WO2018171098A1 - 配套于催化裂化装置的高温高压脱硝余热锅炉 - Google Patents

配套于催化裂化装置的高温高压脱硝余热锅炉 Download PDF

Info

Publication number
WO2018171098A1
WO2018171098A1 PCT/CN2017/095161 CN2017095161W WO2018171098A1 WO 2018171098 A1 WO2018171098 A1 WO 2018171098A1 CN 2017095161 W CN2017095161 W CN 2017095161W WO 2018171098 A1 WO2018171098 A1 WO 2018171098A1
Authority
WO
WIPO (PCT)
Prior art keywords
flue
pressure
stage
denitration
catalytic cracking
Prior art date
Application number
PCT/CN2017/095161
Other languages
English (en)
French (fr)
Inventor
钱飞舟
滕志英
Original Assignee
苏州海陆重工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州海陆重工股份有限公司 filed Critical 苏州海陆重工股份有限公司
Priority to MYPI2019002604A priority Critical patent/MY193415A/en
Publication of WO2018171098A1 publication Critical patent/WO2018171098A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8631Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G1/00Steam superheating characterised by heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/102Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases

Definitions

  • the invention relates to the technical field of boilers, in particular to a denitration waste heat boiler matched with a catalytic cracking device.
  • Catalytic cracking is one of the main methods of secondary processing of petroleum. It plays a very important role in the deep processing of crude oil, especially in the conversion of heavy oil.
  • the catalytic cracking unit emits a large amount of high-temperature flue gas during the catalytic cracking reaction.
  • the high-temperature flue gas contains toxic gases such as carbon monoxide (CO) and nitrogen oxides (NO X ), among which nitrogen oxides mainly include nitrogen monoxide and two. Nitric oxide, nitric acid mist, etc. Both carbon monoxide and nitrogen oxides are major pollutants in air. Low concentrations of carbon monoxide can cause headaches, vertigo, and nausea, and high concentrations of carbon monoxide can cause death.
  • the denitration waste heat boiler is the key equipment for the recovery and utilization of high temperature flue gas waste heat discharged from the catalytic cracking unit, which plays an important role in ensuring the normal operation of the petrochemical enterprise steam pipe network.
  • the high-temperature flue gas discharged from the catalytic cracking unit enters the denitration waste heat boiler and needs supplementary combustion and denitration treatment. Supplemental combustion is used to remove carbon monoxide from high temperature flue gases.
  • Denitrification treatment is used to remove nitrogen oxides from high-temperature flue gas.
  • SCR method selective catalytic reduction method with high denitration efficiency. SCR method is selective treatment with reducing agent under the action of catalyst.
  • the nitrogen oxides in the high temperature flue gas react to reduce the nitrogen oxides to non-toxic nitrogen (N 2 ) and water (H 2 O).
  • the apparatus used in the SCR method is referred to as a denitration apparatus, and the reactor in which the catalyst is contained in the denitration apparatus is referred to as a denitration reactor, and the reducing agent in the SCR method may be ammonia gas, ammonia water or urea.
  • the denitration waste heat boilers supporting the catalytic cracking unit mainly have the following defects: 1. Denitration When the temperature of the flue gas needs to be controlled at 350 ° C ⁇ 400 ° C, the temperature of the flue gas is too high, which will cause the catalyst to be deactivated. If the temperature of the flue gas is too low, the ammonium salt will be formed, and during the denitration process, The situation is more complicated, the temperature of the flue gas is high and low, which leads to the unsatisfactory denitration effect. 2. At present, the steam supplied by the denitration waste heat boiler is mainly used for power generation.
  • the steam belongs to the medium temperature medium pressure superheated steam
  • the actual power generation process indicates the high temperature and high pressure superheated steam.
  • the power generation efficiency is higher. Therefore, the utilization efficiency of the waste heat of the high-temperature flue gas discharged from the catalytic cracking unit of the current denitration waste heat boiler needs to be further improved.
  • the height of the whole boiler equipment is very high. For example, the capacity of the catalytic cracking unit matched with the boiler equipment is increased, and the height of the entire boiler equipment will reach 70 meters or more, which makes the installation of the boiler equipment difficult, and the maintenance and maintenance at the later stage. The cost is also very high.
  • the technical problem to be solved by the present invention is to provide a high temperature and high pressure denitration waste heat boiler which is matched with a catalytic cracking device which can effectively improve the denitration efficiency.
  • a high temperature and high pressure denitration waste heat boiler matched with a catalytic cracking device comprising: a first flue, a second flue, a third flue, and a fourth flue respectively arranged vertically
  • the first flue is connected to the top of the second flue through a horizontal flue
  • the lower end of the second flue is connected to the lower end of the third flue
  • the upper end of the third flue is connected to the upper end of the fourth flue.
  • the lower end of the first flue is in communication with the inlet flue, the first flue above the inlet flue is provided with a burner, the horizontal flue is provided with a front evaporator, and the second flue is arranged from top to bottom.
  • a denitration device and a high pressure economizer are arranged from top to bottom, and the fourth flue below the high pressure economizer is connected with the outlet flue, and the level is
  • a steam drum is arranged at the top of the flue, and a bypass flue is connected to the second flue between the intermediate pressure superheater and the evaporator, and the bypass flue is connected with the third flue, and the bypass flue is provided with a side.
  • the foregoing high temperature and high pressure denitration waste heat boiler supporting the catalytic cracking device wherein The high-pressure economizer feeds water to the steam drum, the steam drum feed water to the pre-evaporator and the evaporator, the pre-evaporator and the heated steam-water mixture in the evaporator are returned to the steam drum, the steam outlet on the steam drum and the high-pressure superheater The inlets are connected and the high pressure superheater outputs high pressure superheated steam.
  • the denitration device comprises: an ammonia spray grid and a denitration reactor disposed in the fourth flue from the top to the bottom.
  • the foregoing high-temperature and high-pressure denitration waste heat boiler supporting the catalytic cracking device wherein the high-pressure economizer is provided with four stages, from top to bottom: four-stage high-pressure economizer and three-stage high-pressure coal-saving The second-stage high-pressure economizer and the first-stage high-pressure economizer, and the four-stage high-pressure economizer feed water to the steam drum.
  • the heat exchange tubes in the four-stage high-pressure economizer, the three-stage high-pressure economizer, and the second-stage high-pressure economizer adopt spiral fins
  • the spacing of the spiral fins on each spiral finned tube is 10 mm to 20 mm, and the height of the spiral fins is 10 mm to 20 mm
  • the heat exchange tubes in the first-stage high-pressure economizer adopt square finned tubes, each The spacing between adjacent square fins on the root square fin tube is 10 mm to 20 mm.
  • the foregoing high-temperature and high-pressure denitration waste heat boiler matched with the catalytic cracking device wherein the second flue is provided with a two-stage high-pressure superheater, and the second-stage high-pressure superheater and the first-stage high-pressure superheater, the steam drum are sequentially arranged from top to bottom.
  • the upper steam outlet is in communication with the input end of the primary high pressure superheater, and the output of the secondary high pressure superheater outputs high pressure superheated steam.
  • the foregoing high-temperature and high-pressure denitration waste heat boiler matched with the catalytic cracking device wherein the second flue is provided with a two-stage medium-pressure superheater, and the second-stage medium-pressure superheater and the first-stage medium-pressure superheater are sequentially arranged from top to bottom. .
  • the foregoing high temperature and high pressure denitration waste heat boiler supporting the catalytic cracking device wherein the lower end of the second flue communicates with the lower end of the third flue through the transition flue.
  • the advantages of the invention are as follows: 1.
  • the height of the entire boiler equipment can be reduced to about 50 meters, which is not only It greatly facilitates the installation, maintenance and overhaul of boiler equipment, and also effectively improves the stability of boiler equipment.
  • the bypass valve on the bypass flue can be opened when the temperature of the high-temperature flue gas entering the fourth flue is lower than 350 ° C, which ensures the entry of the high temperature smoke in the fourth flue
  • the temperature of the gas is always maintained at 350 ° C ⁇ 400 ° C, which not only can greatly improve the denitration efficiency, but also effectively extend the service life of the catalyst, and reduce the operation and maintenance costs of the denitration reactor.
  • FIG. 1 is a schematic view showing the structure of a high temperature and high pressure denitration waste heat boiler equipped with a catalytic cracking unit according to the present invention.
  • the high temperature and high pressure denitration waste heat boiler supporting the catalytic cracking unit comprises: a first flue 3, a second flue 6, a third flue 13, and a fourth flue 15 respectively disposed vertically.
  • the top end of the first flue 3 and the second flue 6 are communicated through the horizontal flue 4, and the lower end of the second flue 6 is communicated with the lower end of the third flue 13 through the transition flue 12, the third flue 13
  • the upper end is in communication with the upper end of the fourth flue 15.
  • the lower end of the first flue 3 is in communication with the inlet flue 1, the first flue 3 above the inlet flue 1 is provided with a burner 2, and the horizontal flue 4 is provided with a pre-evaporator 5.
  • a high pressure superheater, a medium pressure superheater, and an evaporator 9 are disposed in the second flue 6 from top to bottom.
  • a two-stage high-pressure superheater is disposed in the second flue 6, and the second-stage high-pressure superheater 72 and the first-stage high-pressure superheater 71 are sequentially arranged from top to bottom; two-stage medium-voltage overheating is set in the second flue 6 From top to bottom, the secondary medium pressure superheater 62 and the first stage medium pressure superheater 61 are in order.
  • a denitration device and a high-pressure economizer are arranged in the fourth flue 15 from top to bottom, and a fourth flue 15 below the high-pressure economizer is in communication with the outlet flue 18.
  • a steam drum 19 is disposed at the top of the horizontal flue 4, and a bypass flue 11 is connected to the second flue 6 between the intermediate pressure superheater and the evaporator 9, and the bypass flue 11 and the third flue 13 are connected. Connected.
  • the bypass flue 11 is connected to the first stage medium pressure.
  • a bypass valve 10 is disposed on the bypass flue 11 on the second flue 6 between the superheater 61 and the evaporator 9.
  • the denitration apparatus in this embodiment comprises: an ammonia spray grid 14 and a denitration reactor 16 which are disposed in the fourth flue 15 in order from top to bottom.
  • the denitration reactor 16 is provided with three layers.
  • the high-pressure economizer is provided with four stages, from top to bottom: four-stage high-pressure economizer 174, three-stage high-pressure economizer 173, two-stage high-pressure economizer 172, and a first-stage high-pressure economizer. 171.
  • the heat exchange tubes of the four-stage high-pressure economizer 174, the three-stage high-pressure economizer 173, and the second-stage high-pressure economizer 172 all adopt spiral finned tubes, and the spacing of the spiral fins on each spiral finned tube is 10mm ⁇ 20mm, the height of the spiral fins are 10mm ⁇ 20mm; the heat exchange tubes in the first-stage high-pressure economizer 171 are square finned tubes, the spacing of adjacent square fins on each square finned tube is 10mm ⁇ 20mm.
  • the traditional denitration waste heat boiler is used to overcome the technical problem of the ash accumulation in the heat exchange tube due to the large amount of particulate matter in the high temperature flue gas.
  • the heat exchange tubes in the medium and high pressure economizers usually use light pipes.
  • the heat exchange tubes in the four-stage high-pressure economizer 174, the three-stage high-pressure economizer 173, and the second-stage high-pressure economizer 172 all adopt the spiral finned tube and the first-stage high-pressure economizer 171 adopts square fins.
  • the tube tube, and the spacing of the spiral fins on each spiral fin tube is controlled to be 10 mm to 20 mm, the height of the spiral fin is controlled to be 10 mm to 20 mm, and the spacing of adjacent square fins on each square fin tube is controlled. In 10mm ⁇ 20mm, this greatly improves the heat exchange efficiency of the high-pressure economizer, solves the technical problem of ash accumulation in the heat exchange tube, and effectively lowers the height of the entire boiler equipment.
  • the four-stage high-pressure economizer 174 feeds water to the steam drum 19, the steam drum 19 feeds water to the pre-evaporator 5 and the evaporator 9, and the pre-evaporator 5 and the vaporized water mixture in the evaporator 9 are returned to the steam.
  • Package 19 is included.
  • the steam outlet on the drum 19 is in communication with the input of the primary high pressure superheater 71, and the output of the secondary high pressure superheater 72 outputs high pressure superheated steam.
  • the flue gas flow of the denitration waste heat boiler described in this embodiment is as follows: the high temperature flue gas generated by the catalytic cracking unit enters into the first flue 3 from the inlet flue 1, and the high temperature flue gas entering the first flue 3 is burned.
  • the device 2 is ignited for full combustion to remove CO.
  • the high-temperature flue gas from which CO is removed moves upward into the horizontal flue 4, and the high-temperature flue gas entering the horizontal flue 4 exchanges heat with the pre-evaporator 5 and enters the second flue 6.
  • the high-temperature flue gas in the second flue 6 is sequentially exchanged with the second-stage high-pressure superheater 72, the first-stage high-pressure superheater 71, the second-stage medium-pressure superheater 62, the first-stage medium-pressure superheater 61, and the evaporator 9, and
  • the high-temperature flue gas from which the evaporator 9 completes the heat exchange enters the fourth flue 15 through the transition flue 12 and the third flue 13 in sequence.
  • the high-temperature flue gas entering the fourth flue 15 passes through the ammonia spray grid 14 and the three-layer denitration reactor 16 in sequence, and the reducing agent selectively reacts with the nitrogen oxides in the high-temperature flue gas under the action of the catalyst.
  • the high-temperature flue gas from which the nitrogen oxides are removed is sequentially heat-exchanged with the four-stage high-pressure economizer 174, the three-stage high-pressure economizer 173, the second-stage high-pressure economizer 172, and the first-stage high-pressure economizer 171, and the heat exchange is completed.
  • the flue gas is discharged from the outlet flue 18.
  • a bypass flue 11 is also connected to the second flue 6 located between the intermediate pressure superheater 61 and the evaporator 9, and the bypass flue 11 functions to enter the high temperature flue gas in the fourth flue 15
  • the bypass valve 10 on the bypass flue 11 is opened, so that the high-temperature flue gas which is in heat exchange with the first-stage medium-pressure superheater 61 will have a part directly from the bypass flue 11
  • the three flue 13 enters the fourth flue 15, which ensures that the temperature of the high-temperature flue gas entering the fourth flue is stabilized at 350 ° C to 400 ° C, thereby effectively ensuring the activity of the catalyst in the three-layer denitration reactor 16 Improve the denitration efficiency, and effectively extend the service life of the catalyst and reduce the operation and maintenance costs of the denitration reactor.
  • the steam-water flow of the denitration waste heat boiler described in this embodiment is as follows: external feed water to the first-stage high-pressure economizer 171, and the water in the first-stage high-pressure economizer 171 is sequentially passed through the second-stage high-pressure economizer 172 and the third-stage high-pressure coal-saving coal. 173 and the four-stage high-pressure economizer 174, the water continuously absorbs the heat in the high-temperature flue gas through the high-pressure economizer at all levels, and the hot water outputted from the output end of the four-stage high-pressure economizer 174 is supplied to the external device for use, and the other part It is supplied to the drum 19.
  • a part of the hot water in the drum 19 is supplied to the pre-evaporator 5, and the other part is supplied to the evaporator 9.
  • the pre-evaporator 5 and the evaporator 9 absorb the heat of the high-temperature flue gas to form a soda water mixture
  • the material is again returned to the drum 19.
  • the high-pressure saturated steam separated by the steam-water separation device in the steam drum 19 sequentially enters the first-stage high-pressure superheater 71 and the second-stage high-pressure superheater 72, and the high-pressure saturated steam is in the first-stage high-pressure superheater 71 and the second-stage high-pressure superheater 72.
  • the output end of the second-stage high-pressure superheater 72 outputs high-pressure superheated steam
  • the high-pressure superheated steam output is used for power generation and power generation efficiency.
  • the external medium-pressure saturated steam sequentially enters the first-stage intermediate pressure superheater 61 and the second-stage medium-pressure superheater 62, and the medium-pressure saturated steam continuously absorbs the high-temperature flue gas in the first-stage intermediate pressure superheater 61 and the second-stage medium-pressure superheater 62.
  • the invention has the advantages that: one or four first flues 3, a second flue 6, a third flue 13, and a fourth flue 15 which are vertically arranged and connected in sequence, the flue structure can be effectively reduced
  • Finned tube which can greatly improve the heat exchange efficiency of the high-pressure economizer, and can further effectively reduce the height of the boiler equipment.
  • the height of the entire boiler equipment can be reduced to about 50 meters in this embodiment, which not only greatly facilitates the boiler
  • the installation, maintenance and overhaul of the equipment also effectively improve the stability of the boiler equipment.
  • the bypass flue 11 is arranged, and the bypass valve 10 on the bypass flue 11 can be opened when the temperature of the high-temperature flue gas in the fourth flue is lower than 350 ° C, and the heat exchange is completed with the first-stage medium-pressure superheater 61.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Chimneys And Flues (AREA)

Abstract

一种配套于催化裂化装置的高温高压脱硝余热锅炉,包括:第一烟道(3)、第二烟道(6)、第三烟道(13)、第四烟道(15),第一烟道(3)与第二烟道(6)的顶端通过水平烟道(4)相连通,第二烟道(6)的下端与第三烟道(13)的下端相连通,第三烟道(13)的上端与第四烟道(15)的上端相连通,第一烟道(3)的下端部与入口烟道(1)相连通,入口烟道(1)上方的第一烟道(3)内设置有燃烧器(2),水平烟道(4)内设置有前置蒸发器(5),第二烟道(6)内设置有高压过热器、中压过热器、蒸发器(9),第四烟道(15)内设置有脱硝装置和高压省煤器,第四烟道(15)与出口烟道(18)相连通,水平烟道(4)外的顶部设置有汽包(19),位于中压过热器和蒸发器(9)之间的第二烟道(6)上连通有带旁通阀(10)的旁通烟道(11),旁通烟道(11)与第三烟道(13)相连通。

Description

配套于催化裂化装置的高温高压脱硝余热锅炉 技术领域
本发明涉及锅炉技术领域,具体涉及配套于催化裂化装置的脱硝余热锅炉。
背景技术
催化裂化是石油二次加工的主要方法之一,在原油深度加工、特别是在重油转化中,发挥着非常重要的作用。催化裂化装置在进行催化裂化反应过程中会排放出大量的高温烟气,高温烟气中含有毒气体一氧化碳(CO)和氮氧化物(NOX),其中氮氧化物主要包括一氧化氮、二氧化氮、硝酸雾等。一氧化碳和氮氧化物都是空气的主要污染物。低浓度一氧化碳会使人头痛、眼花、恶心,高浓度一氧化碳会使人死亡。排放至空气中的氮氧化物会与空气中的水反应生成硝酸和亚硝酸,而硝酸和亚硝酸正是酸雨的主要成分。氮氧化物会刺激人体肺部,损害人体呼吸道,引起人体呼吸道感染,对哮喘病患的影响尤为明显。氮氧化物还会造成儿童肺部发育受损。
脱硝余热锅炉是催化裂化装置排出的高温烟气余热回收利用的关键设备,对保证石化企业蒸汽管网正常运行起到十分重要的作用。催化裂化装置排放出的高温烟气进入脱硝余热锅炉中需要进行补充燃烧以及脱硝处理。补充燃烧用于去除高温烟气中的一氧化碳。脱硝处理用于去除高温烟气中的氮氧化物,通常脱硝处理采用脱硝效率较高的选择性催化还原法(SCR法),SCR法就是在催化剂的作用下,利用还原剂有选择性的与高温烟气中的氮氧化物进行反应,从而将氮氧化物还原成无毒害作用的氮气(N2)和水(H2O)。SCR法采用的装置称作为脱硝装置,脱硝装置中装有催化剂的反应器称作为脱硝反应器,SCR法中的还原剂可以是氨气、氨水或尿素等。
目前配套于催化裂化装置的脱硝余热锅炉主要存在以下缺陷:一、脱硝处 理时,烟气的温度需要控制在350℃~400℃,烟气的温度过高会造成催化剂烧结失活,烟气的温度过低则会导致铵盐的生成,而在脱硝处理过程中工况较为复杂,烟气的温度时高时低,这导致脱硝效果并不理想。二、目前该脱硝余热锅炉提供的蒸汽主要用作发电,其蒸汽压力P=3.82MPa,温度t=420℃,该蒸汽属于中温中压过热蒸汽,而实际的发电过程表明高温高压的过热蒸汽的发电效率更高,因此目前的脱硝余热锅炉对催化裂化装置排出的高温烟气的余热利用效率有待进一步提高。三、整个锅炉设备的高度很高,如与锅炉设备相配套的催化裂化装置容量增大,整个锅炉设备的高度会达到70米以上,这导致锅炉设备的安装难度很大,后期的检修、维护成本也非常高。
发明内容
本发明需要解决的技术问题是:提供一种能有效提高脱硝效率的配套于催化裂化装置的高温高压脱硝余热锅炉。
为解决上述问题,本发明采用的技术方案是:配套于催化裂化装置的高温高压脱硝余热锅炉,包括:分别竖直设置的第一烟道、第二烟道、第三烟道、第四烟道,第一烟道与第二烟道的顶端通过水平烟道相连通,第二烟道的下端与第三烟道的下端相连通,第三烟道的上端与第四烟道的上端相连通,第一烟道的下端部与入口烟道相连通,入口烟道上方的第一烟道内设置有燃烧器,水平烟道内设置有前置蒸发器,第二烟道内从上至下依次设置有高压过热器、中压过热器、蒸发器,第四烟道内由上至下依次设置有脱硝装置和高压省煤器,高压省煤器下方的第四烟道与出口烟道相连通,水平烟道外的顶部设置有汽包,位于中压过热器和蒸发器之间的第二烟道上连通有旁通烟道,旁通烟道与第三烟道相连通,旁通烟道上设置有旁通阀。
进一步地,前述的配套于催化裂化装置的高温高压脱硝余热锅炉,其中, 高压省煤器给水至汽包,汽包给水至前置蒸发器和蒸发器,前置蒸发器和蒸发器内受热后的汽水混合物回流至汽包内,汽包上的蒸汽出口与高压过热器的入口相连通,高压过热器输出高压过热蒸汽。
进一步地,前述的配套于催化裂化装置的高温高压脱硝余热锅炉,其中,脱硝装置包括:由上至下依次设置在第四烟道内的喷氨格栅和脱硝反应器。
进一步地,前述的配套于催化裂化装置的高温高压脱硝余热锅炉,其中,所述的高压省煤器设置有四级,由上至下依次为:四级高压省煤器、三级高压省煤器、二级高压省煤器和一级高压省煤器,四级高压省煤器给水至汽包。
更进一步地,前述的配套于催化裂化装置的高温高压脱硝余热锅炉,其中,四级高压省煤器、三级高压省煤器、二级高压省煤器内的换热管均采用螺旋翅片管,每根螺旋翅片管上的螺旋翅片的间距均为10mm~20mm、螺旋翅片的高度均为10mm~20mm;一级高压省煤器内的换热管采用方形翅片管,每根方形翅片管上相邻方形翅片的间距为10mm~20mm。
进一步地,前述的配套于催化裂化装置的高温高压脱硝余热锅炉,其中,第二烟道内设置两级高压过热器,从上至下依次为二级高压过热器和一级高压过热器,汽包上的蒸汽出口与一级高压过热器的输入端相连通,二级高压过热器的输出端输出高压过热蒸汽。
进一步地,前述的配套于催化裂化装置的高温高压脱硝余热锅炉,其中,第二烟道内设置两级中压过热器,从上至下依次为二级中压过热器和一级中压过热器。
进一步地,前述的配套于催化裂化装置的高温高压脱硝余热锅炉,其中,第二烟道的下端通过过渡烟道与第三烟道的下端相连通。
本发明的优点是:一、整个锅炉设备的高度可以降低至50米左右,这不仅 大大方便了锅炉设备的安装、维护、检修,还有效提高了锅炉设备的稳定性。二、由于设置了旁通烟道,旁通烟道上的旁通阀能在进入至第四烟道内的高温烟气的温度低于350℃时打开,这能确保进入第四烟道内的高温烟气的温度始终保持在350℃~400℃,从而不仅能大大提高脱硝效率,还能有效延长催化剂的使用寿命,并降低脱硝反应器的运行维护费用。
附图说明
图1是本发明所述的配套于催化裂化装置的高温高压脱硝余热锅炉的结构示意图。
具体实施方式
下面结合附图和优选实施例对本发明作进一步的详细说明。
如图1所示,配套于催化裂化装置的高温高压脱硝余热锅炉,包括:分别竖直设置的第一烟道3、第二烟道6、第三烟道13、第四烟道15。第一烟道3与第二烟道6的顶端通过水平烟道4相连通,第二烟道6的下端与第三烟道13的下端通过过渡烟道12相连通,第三烟道13的上端与第四烟道15的上端相连通。第一烟道3的下端部与入口烟道1相连通,入口烟道1上方的第一烟道3内设置有燃烧器2,水平烟道4内设置有前置蒸发器5。第二烟道6内从上至下依次设置有高压过热器、中压过热器、蒸发器9。本实施例中,第二烟道6内设置两级高压过热器,从上至下依次为二级高压过热器72和一级高压过热器71;第二烟道6内设置两级中压过热器,从上至下依次为二级中压过热器62和一级中压过热器61。第四烟道15内由上至下依次设置有脱硝装置和高压省煤器,高压省煤器下方的第四烟道15与出口烟道18相连通。水平烟道4外的顶部设置有汽包19,位于中压过热器和蒸发器9之间的第二烟道6上连通有旁通烟道11,旁通烟道11与第三烟道13相连通。本实施例中,旁通烟道11连通在一级中压 过热器61与蒸发器9之间的第二烟道6上,旁通烟道11上设置有旁通阀10。
本实施例中脱硝装置包括:由上至下依次设置在第四烟道15内的喷氨格栅14和脱硝反应器16,为了确保烟气脱硝完全,脱硝反应器16设置有三层。本实施例中高压省煤器设置有四级,由上至下依次为:四级高压省煤器174、三级高压省煤器173、二级高压省煤器172和一级高压省煤器171。四级高压省煤器174、三级高压省煤器173、二级高压省煤器172内的换热管均采用螺旋翅片管,每根螺旋翅片管上的螺旋翅片的间距均为10mm~20mm、螺旋翅片的高度均为10mm~20mm;一级高压省煤器171内的换热管均采用方形翅片管,每根方形翅片管上相邻方形翅片的间距为10mm~20mm。尽管光管的换热面积和换热效果远不如螺旋翅片管和方形翅片管,但由于高温烟气中的颗粒物较多,为了克服换热管积灰的技术问题,传统的脱硝余热锅炉中高压省煤器内的换热管通常采用光管。而本实施例中四级高压省煤器174、三级高压省煤器173、二级高压省煤器172内的换热管均采用螺旋翅片管、一级高压省煤器171采用方形翅片管,并将每根螺旋翅片管上的螺旋翅片的间距控制在10mm~20mm、螺旋翅片的高度控制在10mm~20mm、每根方形翅片管上相邻方形翅片的间距控制在10mm~20mm,这就在极大地提高高压省煤器的换热效率的同时,解决了换热管积灰的技术问题,还有效降了低整个锅炉设备的高度。
本实施例中四级高压省煤器174给水至汽包19,汽包19给水至前置蒸发器5和蒸发器9,前置蒸发器5和蒸发器9内受热后的汽水混合物回流至汽包19内。汽包19上的蒸汽出口与一级高压过热器71的输入端相连通,二级高压过热器72的输出端输出高压过热蒸汽。
本实施例所述的脱硝余热锅炉的烟气流程如下:催化裂化装置产生的高温烟气从入口烟道1进入至第一烟道3内,进入第一烟道3内的高温烟气由燃烧 器2点燃进行充分燃烧,从而去除CO。除去了CO的高温烟气向上运动进入至水平烟道4内,进入至水平烟道4内的高温烟气与前置蒸发器5进行热交换后进入第二烟道6内。第二烟道6内的高温烟气依次与二级高压过热器72、一级高压过热器71、二级中压过热器62、一级中压过热器61以及蒸发器9进行热交换,与蒸发器9完成热交换的高温烟气依次经过渡烟道12、第三烟道13进入至第四烟道15内。进入至第四烟道15内的高温烟气依次经过喷氨格栅14和三层脱硝反应器16,在催化剂的作用下还原剂有选择性的与高温烟气中的氮氧化物进行反应,从而将高温烟气中的氮氧化物还原成氮气和水。除去了氮氧化物的高温烟气再依次与四级高压省煤器174、三级高压省煤器173、二级高压省煤器172和一级高压省煤器171进行热交换,热交换完成的烟气从出口烟道18排出。位于中压过热器61和蒸发器9之间的第二烟道6上还连通有旁通烟道11,旁通烟道11的作用在于:当进入第四烟道15内的高温烟气的温度低于350℃时,旁通烟道11上的旁通阀10打开,这样与一级中压过热器61完成热交换的高温烟气就会有一部分直接从旁通烟道11、经第三烟道13进入第四烟道15内,这能确保进入第四烟道内的高温烟气的温度稳定在350℃~400℃,从而有效确保三层脱硝反应器16内的催化剂的活性,大大提高脱硝效率,并能有效延长催化剂的使用寿命,降低脱硝反应器的运行维护费用。
本实施例所述的脱硝余热锅炉的汽水流程如下:外部给水至一级高压省煤器171,一级高压省煤器171内的水依次经二级高压省煤器172、三级高压省煤器173和四级高压省煤器174,水经各级高压省煤器不断吸收高温烟气中的热量,四级高压省煤器174输出端输出的热水一部分供给至外部装置使用,另一部分供给至汽包19。汽包19内的热水一部分供给至前置蒸发器5,另一部分供给至蒸发器9。前置蒸发器5和蒸发器9内吸收了高温烟气的热量而形成的汽水混合 物再回流至汽包19内。汽包19内的由汽水分离装置分离出来的高压饱和蒸汽依次进入至一级高压过热器71和二级高压过热器72,高压饱和蒸汽在一级高压过热器71和二级高压过热器72中不断吸收高温烟气的热量,二级高压过热器72的输出端则输出高压过热蒸汽,高压过热蒸汽的压力P=9.8MPa、温度t=540℃,该高压过热蒸汽输出用作发电,发电效率得到大大提高。外来的中压饱和蒸汽依次进入一级中压过热器61和二级中压过热器62,中压饱和蒸汽在一级中压过热器61和二级中压过热器62中不断吸收高温烟气的热量,二级中压过热器62的输出端则输出中压过热蒸汽,中压过热蒸汽的压力P=3.82MPa、温度t=420℃,该中压过热蒸汽可以输出供相应装置使用。
本发明的优点在于:一、四条分别竖直设置、并依次相连通的第一烟道3、第二烟道6、第三烟道13、第四烟道15,该烟道结构能有效降低整个锅炉设备的高度;四级高压省煤器174、三级高压省煤器173、二级高压省煤器172内的换热管均采用螺旋翅片管、一级高压省煤器171采用方形翅片管,这能大大提高高压省煤器的换热效率,并能进一步有效降低锅炉设备的高度,本实施例所述整个锅炉设备的高度可以降低至50米左右,这不仅大大方便了锅炉设备的安装、维护、检修,还有效提高了锅炉设备的稳定性。二、设置旁通烟道11,旁通烟道11上的旁通阀10能在第四烟道内的高温烟气的温度低于350℃时打开,与一级中压过热器61完成热交换的高温烟气有一部分会直接进入第四烟道15内,这能确保进入第四烟道内的高温烟气的温度稳定在350℃~400℃,从而有效确保三层脱硝反应器16内的催化剂的活性,大大提高脱硝效率,并能有效延长催化剂的使用寿命,降低脱硝反应器16的运行维护费用。三、高压过热器能输出压力P=9.8MPa、温度t=540℃的高压过热蒸汽,中压过热器能输出压力P=3.82MPa、温度t=420℃的中压过热蒸汽,这使得催化裂化装置的高温烟气的 余热利用率得到进一步提高。

Claims (8)

  1. 配套于催化裂化装置的高温高压脱硝余热锅炉,其特征在于:包括:分别竖直设置的第一烟道、第二烟道、第三烟道、第四烟道,第一烟道与第二烟道的顶端通过水平烟道相连通,第二烟道的下端与第三烟道的下端相连通,第三烟道的上端与第四烟道的上端相连通,第一烟道的下端部与入口烟道相连通,入口烟道上方的第一烟道内设置有燃烧器,水平烟道内设置有前置蒸发器,第二烟道内从上至下依次设置有高压过热器、中压过热器、蒸发器,第四烟道内由上至下依次设置有脱硝装置和高压省煤器,高压省煤器下方的第四烟道与出口烟道相连通,水平烟道外的顶部设置有汽包,位于中压过热器和蒸发器之间的第二烟道上连通有旁通烟道,旁通烟道与第三烟道相连通,旁通烟道上设置有旁通阀。
  2. 根据权利要求1所述的配套于催化裂化装置的高温高压脱硝余热锅炉,其特征在于:高压省煤器给水至汽包,汽包给水至前置蒸发器和蒸发器,前置蒸发器和蒸发器内受热后的汽水混合物回流至汽包内,汽包上的蒸汽出口与高压过热器的入口相连通,高压过热器输出高压过热蒸汽。
  3. 根据权利要求1所述的配套于催化裂化装置的高温高压脱硝余热锅炉,其特征在于:脱硝装置包括:由上至下依次设置在第四烟道内的喷氨格栅和脱硝反应器。
  4. 根据权利要求2所述的配套于催化裂化装置的高温高压脱硝余热锅炉,其特征在于:所述的高压省煤器设置有四级,由上至下依次为:四级高压省煤器、三级高压省煤器、二级高压省煤器和一级高压省煤器,四级高压省煤器给水至汽包。
  5. 根据权利要求4所述的配套于催化裂化装置的高温高压脱硝余热锅炉,其特征在于:四级高压省煤器、三级高压省煤器、二级高压省煤器内的换热管 均采用螺旋翅片管,每根螺旋翅片管上的螺旋翅片的间距均为10mm~20mm、螺旋翅片的高度均为10mm~20mm;一级高压省煤器内的换热管采用方形翅片管,每根方形翅片管上相邻方形翅片的间距为10mm~20mm。
  6. 根据权利要求2所述的配套于催化裂化装置的高温高压脱硝余热锅炉,其特征在于:第二烟道内设置两级高压过热器,从上至下依次为二级高压过热器和一级高压过热器,汽包上的蒸汽出口与一级高压过热器的输入端相连通,二级高压过热器的输出端输出高压过热蒸汽。
  7. 根据权利要求1所述的配套于催化裂化装置的高温高压脱硝余热锅炉,其特征在于:第二烟道内设置两级中压过热器,从上至下依次为二级中压过热器和一级中压过热器。
  8. 根据权利要求1所述的配套于催化裂化装置的高温高压脱硝余热锅炉,其特征在于:第二烟道的下端通过过渡烟道与第三烟道的下端相连通。
PCT/CN2017/095161 2017-03-21 2017-07-31 配套于催化裂化装置的高温高压脱硝余热锅炉 WO2018171098A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MYPI2019002604A MY193415A (en) 2017-03-21 2017-07-31 High-temperature and high-pressure denitration waste heat recovery steam generator matched with catalytic cracking unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710168641.1 2017-03-21
CN201710168641.1A CN106949446B (zh) 2017-03-21 2017-03-21 配套于催化裂化装置的高温高压脱硝余热锅炉

Publications (1)

Publication Number Publication Date
WO2018171098A1 true WO2018171098A1 (zh) 2018-09-27

Family

ID=59473473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095161 WO2018171098A1 (zh) 2017-03-21 2017-07-31 配套于催化裂化装置的高温高压脱硝余热锅炉

Country Status (3)

Country Link
CN (1) CN106949446B (zh)
MY (1) MY193415A (zh)
WO (1) WO2018171098A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112657334A (zh) * 2020-12-14 2021-04-16 中冶京诚工程技术有限公司 脱硝余热锅炉
CN116336823A (zh) * 2023-04-26 2023-06-27 深圳凯盛科技工程有限公司 烟气处理系统及方法
CN117006458A (zh) * 2023-09-18 2023-11-07 承德市生态环境局鹰手营子矿区分局 一种火电厂锅炉烟气余热回收利用系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106949446B (zh) * 2017-03-21 2019-02-05 苏州海陆重工股份有限公司 配套于催化裂化装置的高温高压脱硝余热锅炉
CN107314367A (zh) * 2017-07-25 2017-11-03 无锡华光锅炉股份有限公司 煤粉锅炉布置结构
CN113623665B (zh) * 2020-05-06 2023-08-01 洛阳瑞昌环境工程有限公司 一种乙二醇装置废气废液焚烧处理系统及方法
CN112393211B (zh) * 2020-11-05 2022-09-30 苏州海陆重工股份有限公司 新型co焚烧锅炉
CN112393212B (zh) * 2020-11-06 2023-09-01 苏州海陆重工股份有限公司 能配套于废物焚烧装置的余热锅炉

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005401A (ja) * 2000-06-23 2002-01-09 Takuma Co Ltd ごみ処理プラントの廃熱回収システム
CN101701702A (zh) * 2009-10-20 2010-05-05 创冠环保(中国)有限公司 垃圾焚烧余热回收锅炉
CN102393005A (zh) * 2011-11-05 2012-03-28 宁夏科行环保工程有限公司 烟气脱硝与余热锅炉一体化装置
CN106949446A (zh) * 2017-03-21 2017-07-14 苏州海陆重工股份有限公司 配套于催化裂化装置的高温高压脱硝余热锅炉
CN206709040U (zh) * 2017-03-21 2017-12-05 苏州海陆重工股份有限公司 配套于催化裂化装置的高温高压脱硝余热锅炉

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005401A (ja) * 2000-06-23 2002-01-09 Takuma Co Ltd ごみ処理プラントの廃熱回収システム
CN101701702A (zh) * 2009-10-20 2010-05-05 创冠环保(中国)有限公司 垃圾焚烧余热回收锅炉
CN102393005A (zh) * 2011-11-05 2012-03-28 宁夏科行环保工程有限公司 烟气脱硝与余热锅炉一体化装置
CN106949446A (zh) * 2017-03-21 2017-07-14 苏州海陆重工股份有限公司 配套于催化裂化装置的高温高压脱硝余热锅炉
CN206709040U (zh) * 2017-03-21 2017-12-05 苏州海陆重工股份有限公司 配套于催化裂化装置的高温高压脱硝余热锅炉

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112657334A (zh) * 2020-12-14 2021-04-16 中冶京诚工程技术有限公司 脱硝余热锅炉
CN112657334B (zh) * 2020-12-14 2024-04-16 中冶京诚工程技术有限公司 脱硝余热锅炉
CN116336823A (zh) * 2023-04-26 2023-06-27 深圳凯盛科技工程有限公司 烟气处理系统及方法
CN117006458A (zh) * 2023-09-18 2023-11-07 承德市生态环境局鹰手营子矿区分局 一种火电厂锅炉烟气余热回收利用系统
CN117006458B (zh) * 2023-09-18 2024-05-14 辽阳县宏达热电有限公司 一种火电厂锅炉烟气余热回收利用系统

Also Published As

Publication number Publication date
MY193415A (en) 2022-10-12
CN106949446A (zh) 2017-07-14
CN106949446B (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
WO2018171098A1 (zh) 配套于催化裂化装置的高温高压脱硝余热锅炉
CN106288830A (zh) 一种冶炼炉余热锅炉
CN206709040U (zh) 配套于催化裂化装置的高温高压脱硝余热锅炉
CN105222123A (zh) 一种高温富氧式过热注汽锅炉
CN205627628U (zh) 一种低温焦炉烟气脱硫脱硝一体化装置
CN105091008A (zh) 一种可控温的火电厂scr脱硝反应催化装置
CN206253015U (zh) 低温自换热式scr脱硝反应塔
CN111804138A (zh) 一种生物质锅炉烟气脱硝系统及其使用工艺
CN110145754A (zh) 可防止尾部受热面低温腐蚀的锅炉烟气处理系统及方法
CN105737642A (zh) 一种用于锅炉烟气脱硝的尿素热解制氨节能装置
CN105423333A (zh) 一种高温富氧式注汽锅炉
CN215982491U (zh) 一种垃圾热解焚烧系统配套管架式余热回收锅炉
CN209944283U (zh) 高速循环燃烧系统
CN112628698A (zh) 一种新型dcc装置余热锅炉
CN207849329U (zh) 一种可防止scr脱硝铵盐结晶的双通道余热锅炉
CN104832899B (zh) 一种内置于烧结机烟道上的水管加热管余热锅炉系统
CN112097287B (zh) 一种锅炉节能与烟气脱白系统、工艺、应用
CN207112784U (zh) 超低氮排放热水锅炉
CN203370463U (zh) 一种燃煤锅炉烟气脱硝器
CN100436379C (zh) 利用焦炉煤气、焦油、烟气联合发电及生产复合化肥的系统
CN206787059U (zh) 冷凝式节能器
CN208287811U (zh) 一种安全高效scr选择性催化还原脱硝装置
CN213930862U (zh) 新型dcc装置余热锅炉
CN206404566U (zh) 蓄热式天然气锅炉节能脱硝一体化系统
CN109210779A (zh) 一种大容量卧式水管炉膛火管对流受热面室燃锅炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902343

Country of ref document: EP

Kind code of ref document: A1