WO2018171030A1 - 一种圆捆打捆机喂料口开度自适应控制系统及其控制方法 - Google Patents

一种圆捆打捆机喂料口开度自适应控制系统及其控制方法 Download PDF

Info

Publication number
WO2018171030A1
WO2018171030A1 PCT/CN2017/084795 CN2017084795W WO2018171030A1 WO 2018171030 A1 WO2018171030 A1 WO 2018171030A1 CN 2017084795 W CN2017084795 W CN 2017084795W WO 2018171030 A1 WO2018171030 A1 WO 2018171030A1
Authority
WO
WIPO (PCT)
Prior art keywords
feeding
piston rod
cylinder
oil
electromagnetic reversing
Prior art date
Application number
PCT/CN2017/084795
Other languages
English (en)
French (fr)
Inventor
赵湛
黄贺东
尹建军
唐忠
田春杰
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to CA3012374A priority Critical patent/CA3012374A1/en
Priority to US16/333,300 priority patent/US11252873B2/en
Publication of WO2018171030A1 publication Critical patent/WO2018171030A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01FPROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
    • A01F15/00Baling presses for straw, hay or the like
    • A01F15/08Details
    • A01F15/10Feeding devices for the crop material e.g. precompression devices
    • A01F15/106Feeding devices for the crop material e.g. precompression devices for round balers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01FPROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
    • A01F15/00Baling presses for straw, hay or the like
    • A01F15/08Details
    • A01F15/0841Drives for balers
    • A01F15/085Drives for balers for round balers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D75/00Accessories for harvesters or mowers
    • A01D75/18Safety devices for parts of the machines
    • A01D75/182Avoiding overload
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D90/00Vehicles for carrying harvested crops with means for selfloading or unloading
    • A01D90/14Adaptations of gearing for driving, loading or unloading means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass

Definitions

  • the invention belongs to the technical field of automatic control of balers, and particularly relates to an adaptive control system for feeding opening of a round baler and a control method thereof.
  • the baler can collect and compact loose crop straws and pastures to facilitate storage and transportation, and is a key equipment for large-scale comprehensive utilization. According to the shape of the molding, it can be divided into a square bale and a round baler, wherein the bale baler picks up the material from the ground through the elastic teeth of the picker, feeds into the baling chamber through the feeding device, and continuously rotates to form Round bales are widely used on farms and pastures.
  • the feeding device of the round baler is mainly composed of a feeding knife roller and a lower jaw plate, and is used for pre-compressing the picked materials and forcibly feeding them into the bundle chamber at a certain speed, and the performance of the materials directly affects the materials.
  • the feed performance of the material is mainly affected by the material characteristics and feed amount, the structure of the feed knife roll, the rotation speed, and the opening of the feed port.
  • Each type of baler has a fixed feed roller structure and rated speed, mainly It is to improve the feeding performance by adjusting the feeding opening. At present, this work is still based on manual experience. When the adjusted feeding opening is large, the pre-compression and conveying speed of the material is low, and the material is lowered.
  • the original position of the opening of the plate and the feeding port still needs to be manually set.
  • the force of the cylinder and the force of the lower jaw and the power consumption of the feeding blade are obviously nonlinear, and the power consumption is large.
  • the bundle performance is unstable, and the plugging failure also occurs from time to time.
  • the amount of material fed in the field work of the baler is always dynamic and even abrupt. Therefore, through the real-time monitoring of the feeding device operating state, analysis of the feeding device structure, feeding dynamics characteristics, according to different material characteristics and feed volume changes, the feed opening adjustment automatic device and control method are designed to make the material Stable pressure and initial velocity are thrown into the molding chamber, which improves the working life of the feeding components, the working efficiency and reliability of the whole machine. It has important theoretical research significance and practical value. There is no public research report at present.
  • the object of the present invention is to provide an adaptive control system for feeding opening of a round baler and the same according to the above problems.
  • the control method is to measure the rotation speed of the feeding knife roller by installing a rotary encoder on the shaft end of the feeding knife roller, and install a hydraulic pressure sensor on the rod cavity and the rodless cavity oil road of the lower jaw driving cylinder to calculate the force of the cylinder, and install the displacement sensor to measure
  • the position of the lower jaw is obtained, and the state parameters of the crop feeding operation are obtained by the controller;
  • the hydraulic adjusting system of the feeding device is designed, and the piston rod of the lower jaw driving cylinder is hydraulically driven by controlling the three-position four-way electromagnetic reversing valve.
  • a feeding control system for feeding opening of a round baler comprising a feeding device, a rotary encoder, a displacement sensor, a hydraulic adjusting system and a controller;
  • the rotary encoder is mounted on the feeding knife roller end of the feeding device for measuring the rotation speed of the feeding knife roller;
  • the displacement sensor is mounted on the left shaft of the feeding device, and the measuring rod of the displacement sensor is connected to the left axis a pin for measuring the displacement of the piston rod of the left and right cylinders of the feeding device;
  • the hydraulic adjustment system comprises an oil pressure sensor 1, a throttle valve 1, a three-position four-way electromagnetic reversing valve, an oil pump, a throttle valve 2, a check valve, an accumulator, a throttle valve 3 and a hydraulic pressure sensor 2;
  • the oil pump is connected to the oil tank through a pipeline, the oil inlet P of the three-position four-way electromagnetic reversing valve is connected with the oil pump, and the oil return port T is connected with the oil tank, and the working port A of the three-position four-way electromagnetic reversing valve
  • the pipeline is connected to the rod-shaped oil passages of the check valve, the left cylinder and the right cylinder through the pipeline; the working port B of the three-position four-way electromagnetic reversing valve is connected to the rodless oil passage of the left and right cylinders through the pipeline
  • the oil pressure sensor is installed on the rodless chamber oil path of the left and right cylinders of the feeding device for measuring the oil pressure of the rodless chamber; the oil pressure sensor is installed in the left cylinder
  • the input end of the controller is electrically connected to the rotary encoder, the displacement sensor, the oil pressure sensor and the oil pressure sensor, respectively, and the output end is electrically connected to the three-position four-way electromagnetic reversing valve through the interlock controller; the control The force of the piston rod, the rotation speed of the feeding knife and the rotation speed are the input quantities, and the position of the piston rod is taken as the output, and the fuzzy control model of the feeding opening of the feeding device is established, and the three-way four-way is adopted.
  • the electromagnetic reversing valve controls the extension and retraction of the piston rods of the left and right cylinders under the hydraulic drive to actively adjust, and realizes the adaptive control of the opening of the feeding port.
  • the hydraulic adjustment system further includes a throttle valve 1, a throttle valve 2 and a throttle valve 3;
  • the throttle valve is installed on the working port B of the three-position four-way electromagnetic reversing valve and the rodless oil path of the left and right cylinders;
  • the throttle valve 2 is installed between the working port A of the three-position four-way electromagnetic reversing valve and the pipe of the one-way valve;
  • the throttle valve 3 is mounted on the oil passage between the accumulator and the rod chambers of the left and right cylinders.
  • the hydraulic adjustment system further includes a relief valve 1 and a relief valve 2; the relief valve is connected to the rod chamber oil passage of the left cylinder and the right cylinder;
  • the relief valve 2 is connected to the outlet of the oil pump.
  • a display is further included; the output of the controller is electrically connected to the display, and the display is used for displaying the working status of the feeding device.
  • a control method for an adaptive control system for a feeding opening of a round baler comprising the following steps:
  • Step S1 the baler operation, real-time acquisition of the controller output signal of the rotary encoder, the calculated speed of n-feed blade roll; real-time acquisition controller output signal of a pressure sensor P 1 and two oil pressure sensor Output signal P 1 , calculate the force F of the left cylinder and the right cylinder piston rod;
  • Step S2 the piston rod is subjected to low-pass filtering by the force F to obtain an average value F 0 , and the current time T 0 is zero point, and the data sampling time dt of the controller 27 is used as an interval to respectively establish an array sequence of n and F 0 ⁇ n 1 , n 1 ... n N ⁇ , ⁇ F 01 , F 01 ... F 0N ⁇ , where N is the length of the array sequence, and n N and F 0N are the sample values of n and F 0 at times T 0 -N ⁇ dt, respectively;
  • Step S3 performing gray prediction calculation on the array sequences ⁇ n 1 , n 1 ... n N ⁇ , ⁇ F 01 , F 01 ... F 0N ⁇ respectively, and obtaining n and F 0 predicted values n M at time T 0 +M ⁇ dt And F 0M , the predicted speed change rate is obtained by differentially calculating n M
  • Step S4 predicting the obtained n M , F 0M and Enter the fuzzy control model of the feed opening degree to obtain the adjustment scheme of the position L of the piston rod, and control the left or right coil of the three-position four-way electromagnetic reversing valve to be electrically controlled, and then actively extend the movement according to the piston rod.
  • the speed v o and the active retraction speed v i determine the power time of the left or right coil, and finally control the left or right coil of the three-position four-way electromagnetic reversing valve to be powered by the interlock controller, driving the left cylinder and the right
  • the piston rod movement of the cylinder realizes the adjustment of the feed opening.
  • the fuzzy control model of the feeding opening degree in the step S4 determines the domain according to the allowable range of the force F when the piston rods of the left and right cylinders are at different positions L, and the domain of F follows the piston rod.
  • Position L adaptive adjustment according to feed knife roll speed n and speed change rate Based on the allowable range of variation, determine n and The domain of the argument.
  • the fuzzy control model of the feeding opening degree in the step S4 is the force F of the piston rod of the left and right cylinders, the rotation speed n of the feeding knife roll, and the rate of change of the rotation speed.
  • the position L of the piston rod is taken as the output amount, and the fuzzy control rule table is established according to the determined adjustment strategy of the piston rod position L, and the fuzzy control rule table is adaptively adjusted with the piston rod position L.
  • the power consumption of the feeding knife roller is calculated according to the feeding knife rotation speed n and the received torque T.
  • the material can form a stable bale density ⁇ , reduce the power consumption w of the feeding knife roll, and the allowable range of the force F of the cylinder rod of the cylinder and the avoidance of the feeding knife roll when the structural strength and safety factor are ensured
  • the feeding knife roll speed n is optimized within the allowable range, and the adjustment strategy of the piston rod position L is established.
  • the fuzzy control model of the feeding opening degree in the step 4 is the force F of the piston rod of the left and right cylinders, the rotation speed n of the feeding knife roll and the rate of change of the rotation speed.
  • the position L of the piston rod is taken as the output amount, and the fuzzy control rule table is established according to the determined adjustment strategy of the piston rod position L, and the fuzzy control rule table is adaptively adjusted with the piston rod position L.
  • the three-position four-way electromagnetic reversing valve when the left coil of the three-position four-way electromagnetic reversing valve is energized in the step S4, the three-position four-way electromagnetic reversing valve is in the left working position, and the piston rods of the left and right cylinders are actively extended. , the speed v o is adjusted and controlled by the throttle valve;
  • the three-position four-way electromagnetic reversing valve When the left and right coils of the three-position four-way electromagnetic reversing valve are not energized, the three-position four-way electromagnetic reversing valve is in the intermediate working position, and the left cylinder, the right cylinder and the accumulator constitute a closed oil circuit system.
  • Step S5 the controller collects the displacement sensor output signal in real time to determine the piston rod position L, and the piston rod force field and the control rule table in the feed opening degree fuzzy control model are adaptively adjusted according to the piston rod position L;
  • Step S6 the controller calculates the real-time power consumption w of the feeding knife roller according to the established model of the piston rod force F, the position L and the feeding knife roller torque T;
  • Step S7 The controller transmits the piston rod position L, the force F, the feeding knife roller speed n, and the power consumption w state parameter communication to the display, when the power consumption w and the speed n parameter of the feeding knife roller exceed a set threshold
  • the display gives a prompt and pre-alarm information.
  • the invention has the beneficial effects that the invention extracts the characteristics of the steady state and the instantaneous impact force of the piston rod on the basis of the structural mechanics of the feeding device and the analysis of the material feeding dynamics, and establishes The relationship between the position of the lower jaw driving cylinder and the force of the piston rod, the density of the forming bale, the power consumption of the feeding knife roller and the structural strength of the feeding device is proposed.
  • the hydraulic regulating system design of the feeding device is proposed to realize the instantaneous large load.
  • the feed opening is passively adjusted; the control system is used to combine the gray prediction of the working state with the adaptive fuzzy control method.
  • FIG. 1 is a schematic view showing the three-dimensional structure of a feeding device according to an embodiment of the present invention.
  • Fig. 2 is a front elevational view of a feeding device according to an embodiment of the present invention.
  • Fig. 3 is a left side view of the feeding device according to an embodiment of the present invention.
  • Fig. 4 is a schematic view showing a hydraulic system of a feeding device according to an embodiment of the present invention.
  • Fig. 5 is a schematic diagram showing an electric control circuit of a feeding device according to an embodiment of the present invention.
  • Fig. 6 is a schematic diagram showing the adaptive control of the feed opening degree according to an embodiment of the present invention.
  • FIG. 1 , 2 and 3 show an embodiment of an adaptive opening control system for a feeding opening of a round baler according to the present invention, wherein the feeding control system of the feeding opening of the round baler includes Feeding device, rotary encoder 7, displacement sensor 11, hydraulic adjustment system and controller 27.
  • the feeding knife roller 4 of the feeding device is mounted on the frame 1 by bearings, and is rotatable about the shaft 2, and a rotary encoder 7 is mounted at the top end of the shaft 2 for measuring the rotation speed of the feeding knife roller 4.
  • the left shaft 8 of the feeding device is fixedly mounted to the left side plate of the frame 1, and the right shaft 12 is fixedly mounted to the right side plate of the frame 1, and the axes of the left axis 8 and the right axis 12 are ensured to be on the same center line.
  • the left cylinder 9 and the right cylinder 13 are two-way cylinders of the same model, the earrings of the left cylinder 9 are mounted on the left shaft 8, and the earrings of the right cylinder 13 are mounted on the right shaft 12, and the left cylinder 9 and the right cylinder 13 are secured around the left.
  • the shaft 8 and the right shaft 12 are free to swing.
  • the lower jaw 5 of the feeding device is located below the feeding knife roller 4, and one end of the lower jaw 5 is mounted on the frame 1 through the shaft 2, and the left and right end faces of the lower jaw 5 are respectively fixedly mounted with the left axle pin 10 and The right axle pin 14 is secured and the axes of the left axle pin 10 and the right axle pin 14 are on the same centerline.
  • the piston rods of the left and right cylinders 9 and 13 of the feeding device are respectively connected to the left shaft pin 10 and the right shaft pin 14. Under the driving of the left and right cylinders 9 and the piston rod of the right cylinder 13, the lower jaw 5 can be wound around the shaft. One 2 turns.
  • the earring of the displacement sensor 11 is mounted on the left shaft 8, and the measuring rod of the displacement sensor 11 is connected to the left shaft pin 10, and the measuring rod of the displacement sensor 11 is synchronized with the piston rod of the left cylinder 9 for measuring feeding.
  • the piston rods of the left and right cylinders 9 and 13 of the device are displaced.
  • the piston rods of the left cylinder 9 and the right cylinder 13 are both subjected to the outward force along the piston rod, and the total force of the two piston rods is F.
  • the grass frame 3 is installed above the material discharge port, and the installation gap between the grass frame 3 and the cutter teeth of the feed knife roller 4 is less than 1 mm to prevent the material from being brought back during the rotation of the feed knife roller 4.
  • FIG. 4 shows the schematic diagram of the hydraulic adjustment system of the feeding device.
  • the hydraulic adjustment system includes a hydraulic pressure sensor 15, a relief valve 16, a throttle valve 17, a three-position four-way electromagnetic reversing valve 18, an oil pump 20, an overflow valve two 21, a throttle valve 22, and a single
  • the oil pump 20 is connected to the oil tank 19 through a pipe, and the oil inlet P and the oil pump of the three-position four-way electromagnetic reversing valve 18 20 is connected, the oil return port T is connected with the oil tank 19, and the working port A of the three-position four-way electromagnetic reversing valve 18 is sequentially connected to the throttle valve 22, the check valve 23, the left cylinder 9 and the right cylinder 13 through the pipeline.
  • the three-position four-way electromagnetic reversing valve 18 is a three-position four-way electromagnetic reversing valve, and the working port B of the three-position four-way electromagnetic reversing valve 18 is sequentially connected with the throttle valve through the pipeline.
  • the left cylinder 9 and the right cylinder 13 are connected by a rodless oil passage, and the oil pressure sensor 15 is installed on the rodless oil passage of the left cylinder 9 and the right cylinder 13 of the feeding device for measuring the rodless cavity.
  • Oil pressure is installed on the rod oil passage of the left cylinder 9 and the right cylinder 13 of the feeding device for measuring the oil pressure in the rod chamber;
  • the accumulator 24 and the throttle valve three 25 are connected in parallel between the rod chamber oil passage of the left cylinder 9 and the right cylinder 13 and the check valve 23.
  • the three-position four-way electromagnetic reversing valve 18 When the left coil of the three-position four-way electromagnetic reversing valve 18 is energized, the three-position four-way electromagnetic reversing valve 18 is in the left working position, and the high-pressure oil output from the oil pump 20 passes through the left of the three-position four-way electromagnetic reversing valve 18.
  • the spool and the throttle valve 17 are input to the rodless chamber of the left cylinder 9 and the right cylinder 13; the check valve 23 is opened by the oil pressure, and the rod chambers of the left cylinder 9 and the right cylinder 13 pass through the check valve 23, the section
  • the left valve core of the flow valve 22, the three-position four-way electromagnetic reversing valve 18 is in communication with the oil tank 19; the piston rods of the left and right cylinders 9 and 13 are actively extended, and the speed v o is adjusted and controlled by the throttle valve 17 .
  • the three-position four-way electromagnetic reversing valve 18 When the right coil of the three-position four-way electromagnetic reversing valve 18 is energized, the three-position four-way electromagnetic reversing valve 18 is in the right working position, and the high-pressure oil output by the oil pump 20 passes through the right of the three-position four-way electromagnetic reversing valve 18.
  • the valve core, the throttle valve 22, the check valve 23 are input to the rod chambers of the left cylinder 9 and the right cylinder 13; the rodless chambers of the left cylinder 9 and the right cylinder 13 pass through the throttle valve 17, and the three-position four-way electromagnetic exchange
  • the right spool of the valve 18 is in communication with the oil tank 19; the piston rods of the left and right cylinders 9 and 13 are actively retracted, and the speed v i is regulated by the throttle valve 22 .
  • the three-position four-way electromagnetic reversing valve 18 When the left and right coils of the three-position four-way electromagnetic reversing valve 18 are not energized, the three-position four-way electromagnetic reversing valve 18 is in the intermediate working position, and the high-pressure oil outputted by the oil pump 20 directly passes through the three-position four-way electromagnetic reversing The intermediate spool of the valve 18 is directly returned to the tank 19 for unloading; the left cylinder 9, the right cylinder 13, and the accumulator 24 constitute a closed oil circuit system.
  • the left cylinder 9 and the right cylinder 13 piston rod are subjected to a force F outward along the piston rod.
  • the three-position four-way electromagnetic reversing valve 18 is in the intermediate working position, as the force F increases, the oil pressure P 1 in the rod chamber of the left cylinder 9 and the right cylinder 13 increases, and when P 1 is greater than
  • the pre-charge pressure P 0 set by the energy device 24 the pressure oil in the rod chamber enters the accumulator 24 through the throttle valve 35, and the piston rods of the left cylinder 9 and the right cylinder 13 are extended, and the movement speed is passed.
  • the throttle valve 3 25 adjusts the control; as the force F decreases, the oil pressure P 1 in the rod chamber of the left cylinder 9 and the right cylinder 13 decreases, and when P 1 is smaller than the precharge set by the accumulator 24 At the pressure P 0 , the pressure oil in the accumulator 24 enters the rod chamber through the throttle valve 35, and the piston rods of the left and right cylinders 9 and 13 are retracted to the initial position.
  • the left cylinder 9 and the right cylinder 13 are provided with a hydraulic pressure sensor 26 on the oil passage of the rod chamber, and the hydraulic pressure sensor P 1 is measured, and the oil pressure sensor 15 is installed on the oil tank of the left cylinder 9 and the right cylinder 13 without measuring the rod chamber.
  • the relief valve 21 is connected to the outlet of the oil pump 20.
  • the set opening pressure of the relief valve 21 should be less than the rated output pressure of the oil pump 20, mainly for the system pressure regulation, that is, the three-position four-way electromagnetic reversing valve 18
  • the system oil pressure in the left or right working position does not exceed the opening pressure of the relief valve 21 .
  • the relief valve 16 is connected to the rod chamber oil passage of the left cylinder 9 and the right cylinder 13, and the set opening pressure of the relief valve 16 is greater than the system working pressure, and mainly serves as a safety protection.
  • Figure 5 shows the electrical wiring of the feeding device.
  • the input end of the controller 27 is electrically connected to the rotary encoder 7, the displacement sensor 11, the oil pressure sensor 15 and the oil pressure sensor 26, respectively, and the output end is passed through the interlock controller 29 and the three-position four-way electromagnetic reversing valve.
  • 18 electrical connection; displacement sensor 11, hydraulic pressure sensor 15, oil pressure sensor 26, rotary encoder 7 output signal is directly input to the controller 27, the controller 27 with the force of the piston rod, feeding knife roller 4
  • the speed and speed change rate is the input quantity, and the position of the piston rod is taken as the output quantity, and the fuzzy control model of the feeding opening of the feeding device is established, and the left cylinder 9 and the right cylinder are controlled by the three-position four-way electromagnetic reversing valve 18.
  • the piston rod of 13 is actively adjusted by the extension and retraction under the hydraulic drive to realize the adaptive control of the opening of the feeding port.
  • controller 27 is also electrically coupled to display 28, and the communication output signal is coupled to display 28 for display of the status of the feeding device.
  • the controller 27 two-way switch control signal is first input to the interlock controller 29, and then input to the left and right coils of the three-position four-way electromagnetic reversing valve 18, respectively, to control the working position of the three-position four-way electromagnetic reversing valve 18.
  • the function of the interlock controller 29 is to prevent the left and right coils of the three-position four-way electromagnetic reversing valve 18 from being energized at the same time.
  • Feed opening control is a multi-objective optimization problem. It is mainly to analyze the position L of the piston rods of the left cylinder 9 and the right cylinder 13 against the piston rod force F and the forming bale density ⁇ under different materials and feed amounts. The power consumption w of the feeding knife roll 4 and the influence of the structural strength of the feeding device. The specific process is:
  • the material in the feeding process is the dynamic variation
  • there is a transient impact of the phenomenon can be 0 and F p transient shock expressed by the mean of F F
  • F 0 and F p mainly depend on the material characteristics, the feed amount K and the piston rod position L and the feed knife roll 4 rotation speed n.
  • test method and EDEM are used to simulate the material feeding process:
  • the material can form a stable bale density ⁇ , reduce the power consumption w of the feeding knife roll, and the allowable range of the force of the piston rod F and the avoidance of feeding when the structural strength and safety factor are ensured.
  • the feed knife speed n is optimized within the allowable range, and the adjustment strategy of the piston rod position L is established. There are different adjustment strategies for the position of the piston rod L for materials of different properties (different stiffness and moisture content).
  • the value of the cylinder rod position L can be obtained.
  • the value of the cylinder rod position L can be obtained.
  • the force F of the piston rod, the rotation speed n of the feeding knife roller 4, and the rate of change of the rotational speed For the input quantity, the position of the piston rod L is the output, and the fuzzy control model of the opening of the feeding port is established.
  • the domain of F is adaptively adjusted with the piston rod position L.
  • a fuzzy control rule table is established according to the determined adjustment strategy of the piston rod position L, and the fuzzy control rule table is adaptively adjusted with the piston rod position L.
  • Figure 6 is a flow chart showing the adaptive control method of the feed opening.
  • the controller 27 takes the ARM as the core, and the controller 27 internally establishes a fuzzy control model of the feed opening.
  • a control method for an adaptive control system for a feeding opening of a round baler comprising the following steps:
  • Step S2 the piston rod is subjected to low-pass filtering by the force F to obtain an average value F 0 ;
  • the current time T 0 is zero point, and the data sampling time dt of the controller 27 is used as an interval to respectively establish an array sequence of n and F 0 ⁇ n 1 , n 1 ... n N ⁇ , ⁇ F 01 , F 01 ... F 0N ⁇ , where N is the length of the array sequence, and n N and F 0N are the values of n and F 0 samples at times T 0 -N ⁇ dt, respectively;
  • Step S3 performing gray prediction calculation on the array sequences ⁇ n 1 , n 1 ... n N ⁇ , ⁇ F 01 , F 01 ... F 0N ⁇ respectively, and obtaining n and F 0 predicted values n M at time T 0 +M ⁇ dt And F 0M , the predicted speed change rate is obtained by differentially calculating n M
  • Step S4 predicting the obtained n M , F 0M and Entering the fuzzy control model of the opening of the feeding port to obtain the adjustment scheme of the position L of the piston rod, and electrically controlling the left or right coil of the three-position four-way electromagnetic reversing valve 18, and then actively extending according to the piston rod
  • the movement speed v o and the active retraction movement speed v i determine the power time of the left or right coil, and finally control the left or right coil of the three-position four-way electromagnetic reversing valve 18 through the interlock controller 29 to drive the cylinder rod Exercise to achieve feed opening adjustment;
  • Step S5 the controller 27 collects the output signal of the displacement sensor 11 in real time to determine the piston rod position L, and the piston rod force field and the control rule table in the feed opening degree fuzzy controller are adaptively adjusted according to the piston rod position L;
  • Step S6 the controller 27 calculates the real-time power consumption w of the feeding knife roller 4 according to the established model of the piston rod force F, the position L and the torque T of the feeding knife roller 4;
  • Step S7 the controller 27 transmits the state parameter communication such as the piston rod position L, the force F, the feeding knife roller 4 rotation speed n and the power consumption w to the display 28, when the power consumption w, the rotation speed n, etc. of the feeding knife roller 4
  • the display 28 issues a prompt and pre-alarm information.
  • the fuzzy control model of the feeding opening degree in the step S4 determines the domain according to the allowable range of the force F when the piston rods of the left cylinder 9 and the right cylinder 13 are at different positions L, and the domain of F follows the position of the piston rod L.
  • Adaptive adjustment, according to feed knife roller 4 speed n and speed change rate Based on the allowable range of variation, determine n and The domain of the argument.
  • the fuzzy control model of the feeding opening degree in the step S4 is the force F of the piston rod of the left cylinder 9 and the right cylinder 13, the rotation speed n of the feeding knife roller 4, and the rate of change of the rotation speed.
  • the power consumption w of the feeding knife roll 4 is calculated according to the rotation speed n of the feeding knife roll 4 and the received torque T, so that the material can form a stable bale density ⁇ and reduce the power consumption of the feeding knife roll 4.
  • the optimization of the speed of the feed knife roll 4 is allowed, and the position of the piston rod is determined. Adjustment strategy.
  • the three-position four-way electromagnetic reversing valve 18 When the left coil of the three-position four-way electromagnetic reversing valve 18 is energized in the step S4, the three-position four-way electromagnetic reversing valve 18 is in the left working position, and the piston rods of the left and right cylinders 9 and 13 are actively extended.
  • the speed v o is adjusted and controlled by the throttle valve 17; when the right coil of the three-position four-way electromagnetic reversing valve 18 is energized, the three-position four-way electromagnetic reversing valve 18 is in the right working position, the left cylinder 9 and the right
  • the piston rod of the oil cylinder 13 is actively retracted, and the speed v i is adjusted and controlled by the throttle valve 22; when the left and right coils of the three-position four-way electromagnetic reversing valve 18 are not energized, the three-position four-way electromagnetic exchange
  • the valve 18 is in the intermediate working position, and the left cylinder 9, the right cylinder 13, and the accumulator 24 constitute a closed oil circuit system.
  • the controller 27 collects the output signals of the rotary encoder 7, the displacement sensor 11, the oil pressure sensor 15 and the oil pressure sensor 26, and obtains the rotational speed n of the feeding knife roller 4, the left cylinder 9 and The position L of the piston rod of the right cylinder 13 is subjected to a force F to the piston rod.
  • the controller 27 performs low-pass filtering calculation on the piston F of the left cylinder 9 and the right cylinder 13 to obtain the mean value F 0 of the piston rod force F.
  • the data sampling time dt of the controller 27 is an interval, and an array sequence of n and F 0 ⁇ n 1 , n 1 ... n N ⁇ of the time T 0 -N ⁇ dt before the N sampling period to the current time T 0 is established. ⁇ F 01 , F 01 ... F 0N ⁇ .
  • the controller 27 performs gray calculation on the array sequences ⁇ n 1 , n 1 ... n N ⁇ , ⁇ F 01 , F 01 ... F 0N ⁇ , respectively, to obtain n sums at times T 0 + M ⁇ dt after M sampling periods.
  • F 0 predicts the values n M and F 0M , and obtains the predicted rate of change of the rotational speed by differentially calculating n M
  • the controller 27 obtains n M , F 0M and Enter the fuzzy control model of the feed opening degree established internally to obtain the adjustment scheme of the position L of the piston rod, and then determine the left or right coil according to the active extension speed v o of the piston rod and the active retraction movement speed v i
  • the electric time is finally controlled by the interlock controller 29 to control the left or right coil of the three-position four-way electromagnetic reversing valve 18 to drive the piston rod movement of the cylinder to realize the active adjustment of the opening of the feeding port.
  • the controller 27 is calculated to control the three-position four-way electromagnetic reversing valve 18
  • the opening and closing of the right coil actively adjusts the feeding opening to the minimum position.
  • the controller 27 automatically controls the opening of the feeding port to a certain position by controlling the opening and closing of the left or right coil of the three-position four-way electromagnetic reversing valve 18.
  • the controller 27 When the feed opening is adjusted, the controller 27 will re-determine the field of the piston rod force F and the fuzzy control rule table according to the adjusted piston rod at different positions L to improve the control performance.
  • the piston rods of the left cylinder 9 and the right cylinder 13 are subjected to the outward force F along the piston rod.
  • the controller 27 performs low-pass filtering calculation on the force F of the piston rod, the force mean value F 0 does not increase sharply.
  • the speed n does not change suddenly in the case of instantaneous feeding amount.
  • controller 27 does not actively adjust the opening of the feed port after calculation, and at this time, mainly relies on the accumulator 24 installed on the oil passage on the rod chamber of the left and right cylinders 9 and 13 to perform the opening of the feed port.
  • the active adjustment of the feeding opening is mainly for the stable load condition during the continuous feeding process of the material, and is a continuous steady state process; and the passive adjustment of the feeding opening by the accumulator 24 is mainly for material feeding.
  • An instantaneous surge in the amount of input is a transient process.
  • the controller 27 can calculate the power consumption w of the feeding knife roller 4 according to the piston rod force F, the position L and the torque T model of the feeding knife roller 4, and the piston rod position L,
  • the state parameter communication such as the force F, the feeding knife roller 4 rotation speed n and the power consumption w is transmitted to the display 28, so that the driver can understand the working state of the feeding device, and adjust the machine forward speed according to the working load condition of the material feeding device, when feeding
  • the display 28 issues a prompt and pre-alarm information.
  • the invention is mainly used for the gap between the feeding knife roller 4 and the lower jaw plate 5, that is, the adaptive control of the feeding opening degree.
  • the controller 27 drives the three-position four-way electromagnetic reversing valve 18 to change the direction of the hydraulic oil, thereby realizing the telescopic movement of the cylinder rod of the connecting frame 1 and the lower jaw 5, and adjusting the opening degree of the feeding port of the baler;
  • the displacement sensor 11 measures the position of the lower jaw, and the rotary encoder 7 is mounted on the shaft end of the feeding knife roller 4 to measure the rotation speed of the feeding knife roller 4.
  • the oil pressure sensor is mounted on the rod chamber and the rodless chamber oil path of the cylinder to measure the cylinder.
  • the theory and the test combine to analyze the influence of the material characteristics, the feeding amount, the feeding opening degree on the power consumption of the feeding knife roller and the structural strength of the lower jaw plate, and establish the material.
  • the load model of the feed knife roll and the feed opening control model when the baler is in operation, the controller 27 collects the feed opening degree, the feed knife roll speed and the cylinder force signal for the feed port opening degree in real time.
  • the controller 27 uses a gray system model to predict the feed roller speed and cylinder force to solve the control lag problem.
  • the system adaptively controls the feeding opening degree, so that the material is thrown into the molding chamber at a stable pressure and initial velocity, thereby reducing the instability of the bundle performance due to the uneven feeding amount, and avoiding the surge of the feeding amount to cause the feeding knife.
  • the driver can adjust the forward speed of the machine according to the working load of the material feeding device, thereby improving the working life of the feeding component, the working efficiency and reliability of the whole machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

一种圆捆打捆机喂料口开度自适应控制系统及其控制方法,包括喂料装置、旋转编码器(7)、位移传感器(11)、液压调节系统和控制器(27);控制器(27)的输入端分别与旋转编码器(7)、位移传感器(11)、油压传感器一(15)和油压传感器二(26)电连接,输出端通过互锁控制器(29)与电磁换向阀(18)电连接;控制器(27)以活塞杆的受力、喂料刀辊转速和转速变化率为输入量,以活塞杆的位置为输出量,建立喂料装置的喂料口开度的模糊控制模型,通过电磁换向阀(18)控制左油缸(9)和右油缸(13)的活塞杆在液压驱动下的伸出、缩回主动调节,实现喂料口开度的自适应控制,减少由于喂入量不均匀造成成捆性能不稳定,避免喂入量激增造成喂料刀辊堵塞故障。

Description

一种圆捆打捆机喂料口开度自适应控制系统及其控制方法 技术领域
本发明属于打捆机自动控制技术领域,具体涉及一种圆捆打捆机喂料口开度自适应控制系统及其控制方法。
背景技术
打捆机可以将松散的农作物秸秆、牧草等收集致密成型,以利于储存和运输,是实现规模化综合利用的关键设备。根据成型形状的不同,可以分为方捆和圆捆打捆机,其中圆捆打捆机通过捡拾器的弹齿将物料从地面捡拾,经过喂入装置送入成捆室,并不断旋转形成圆捆,在农场和牧场得到广泛应用。
圆捆打捆机的喂入装置主要由喂料刀辊与下颚板构成,作用是将捡拾的物料进行预压缩、并以一定的速度强制送入成捆室,其性能优劣直接影响着物料成捆的均匀性和密实度。物料的喂入性能主要受到物料特性和喂入量、喂料刀辊结构、转速、喂料口开度的影响,每型打捆机都有固定的喂料刀辊结构和额定的转速,主要是通过调节喂料口开度以改善喂入性能,目前这一工作还是依赖人工经验完成,当调节的喂料口开度较大时,物料的预压缩和抛送速度较低,降低了物料成捆的均匀性和密实度,喂料口开度较小时,喂料刀辊功耗激增,甚至造成喂料口堵塞和下颚板结构损伤。虽然有些机型在下颚板的连接油缸上增加了蓄能器装置,当油缸受力超过设定值时,可以通过蓄能器吸油作用实现下颚板运动和喂料口开度增大,当油缸受力小于设定值时,下颚板和喂料口开度恢复到原始位置,这能够在一定程度上缓解物料喂入量造成的影响,但这一调节的响应滞后、调节速度慢、且下颚板和喂料口开度的原始位置还是需要人工设定,此外受到喂入装置结构影响,油缸受力与下颚板受力和喂料刀辊功耗都是明显的非线性关系,功耗大、成捆性能不稳定、堵塞故障也时有发生。打捆机田间作业时的物料喂入量总是动态变化的,甚至出现突变。因此,通过实时监测的喂入装置作业状态、分析喂入装置结构、喂入动力学特性,根据不同物料特性和喂入量变化,设计喂料口开度调节自动装置和控制方法,使物料以稳定的压力和初速度抛入成型室,从而提高喂料部件的工作寿命、整机的工作效率、可靠性,有着重要的理论研究意义和实用价值,目前未见有公开研究报道。
发明内容
本发明的目的是针对上述问题提供一种圆捆打捆机喂料口开度自适应控制系统及其 控制方法,通过在喂料刀辊轴端安装旋转编码器测量喂料刀辊转速,在下颚板驱动油缸的有杆腔和无杆腔油路上安装油压传感器计算油缸受力,安装位移传感器测量下颚板位置,并通过控制器获取作物喂入作业状态参数;设计了喂料装置的液压调节系统,通过控制三位四通电磁换向阀实现了下颚板驱动油缸的活塞杆在液压驱动下的伸出、缩回主动调节,通过蓄能器实现封闭油路时活塞杆在负载作用下的被动调节;在保证喂入装置结构强度、安全系数和避免喂料刀辊发生堵塞故障的条件下,以活塞杆受力、喂料刀辊转速和转速变化率为输入量,以活塞杆的位置为输出量,建立喂料口开度的模糊控制器,实现作业过程中喂料口开度的自适应控制,从而提高喂料部件的工作寿命、整机的工作效率和可靠性。
本发明的技术方案是:一种圆捆打捆机喂料口开度自适应控制系统,包括喂料装置、旋转编码器、位移传感器、液压调节系统和控制器;
所述旋转编码器安装在喂料装置的喂料刀辊轴端,用于测量喂料刀辊的转速;所述位移传感器安装在喂料装置的左轴上,位移传感器的测量杆连接左轴销,用于测量喂料装置的左油缸和右油缸的活塞杆位移;
所述液压调节系统包括油压传感器一、节流阀一、三位四通电磁换向阀、油泵、节流阀二、单向阀、蓄能器、节流阀三和油压传感器二;所述油泵通过管道与油箱连接,所述三位四通电磁换向阀的进油口P与油泵连接,回油口T与油箱连接,所述三位四通电磁换向阀的工作口A通过管道依次与单向阀、左油缸和右油缸的有杆腔油路连接;所述三位四通电磁换向阀的工作口B通过管道与左油缸和右油缸的无杆腔油路连接,所述油压传感器一安装在喂料装置的左油缸和右油缸的无杆腔油路上,用于测量无杆腔的油压;所述油压传感器二安装在喂料装置的左油缸和右油缸的有杆腔油路上,用于测量有杆腔油压;所述蓄能器并联在左油缸和右油缸的有杆腔与单向阀之间;
所述控制器的输入端分别与旋转编码器、位移传感器、油压传感器一和油压传感器二电连接,输出端通过互锁控制器与三位四通电磁换向阀电连接;所述控制器以活塞杆的受力、喂料刀辊转速和转速变化率为输入量,以活塞杆的位置为输出量,建立喂料装置的喂料口开度的模糊控制模型,通过三位四通电磁换向阀控制左油缸和右油缸的活塞杆在液压驱动下的伸出、缩回主动调节,实现喂料口开度的自适应控制。
上述方案中,所述液压调节系统还包括节流阀一、节流阀二和节流阀三;
所述节流阀一安装在三位四通电磁换向阀的工作口B与左油缸和右油缸的无杆腔油路上;
所述节流阀二安装在三位四通电磁换向阀的工作口A与单向阀的管道之间;
所述节流阀三安装在蓄能器与左油缸和右油缸的有杆腔之间的油路上。
上述方案中,所述液压调节系统还包括溢流阀一和溢流阀二;所述溢流阀一连接到左油缸和右油缸的有杆腔油路;
所述溢流阀二连接到油泵的出口。
上述方案中,还包括显示器;所述控制器的输出端与显示器电连接,所述显示器用于所述喂料装置的作业状态显示。
一种根据所述圆捆打捆机喂料口开度自适应控制系统的控制方法,包括以下步骤:
步骤S1、打捆机工作过程中,所述控制器实时采集旋转编码器的输出信号,计算得到喂料刀辊的转速n;控制器实时采集油压传感器一输出信号P1和油压传感器二输出信号P1,计算得到左油缸和右油缸活塞杆受力F;
步骤S2、将活塞杆受力F进行低通滤波计算得到均值F0,以当前时刻T0为零点,以控制器27的数据采样时间dt为间隔,分别建立n和F0的数组序列{n1、n1…nN}、{F01、F01…F0N},其中N为数组序列长度,nN和F0N分别为T0-N·dt时刻的n和F0采样数值;
步骤S3、将数组序列{n1、n1…nN}、{F01、F01…F0N}分别进行灰色预测计算,得到T0+M·dt时刻的n和F0预测数值nM和F0M,通过对nM进行微分计算得到预测的转速变化率
Figure PCTCN2017084795-appb-000001
步骤S4、将预测获得的nM、F0M
Figure PCTCN2017084795-appb-000002
输入建立的喂料口开度的模糊控制模型,获得活塞杆的位置L的调整方案,进行三位四通电磁换向阀的左线圈或右线圈得电控制,然后根据活塞杆主动伸出运动速度vo和主动缩回运动速度vi确定左线圈或右线圈得电时间,最终通过互锁控制器控制三位四通电磁换向阀的左线圈或右线圈得电,驱动左油缸和右油缸的活塞杆运动,实现喂料口开度调节。
上述方案中,所述步骤S4中喂料口开度的模糊控制模型根据左油缸和右油缸的活塞杆在不同位置L时受力F许用范围确定论域,且F的论域随活塞杆位置L自适应调整,根据喂料刀辊转速n和转速变化率
Figure PCTCN2017084795-appb-000003
的允许变化范围为依据,确定n和
Figure PCTCN2017084795-appb-000004
的论域。
上述方案中,所述步骤S4中的喂料口开度的模糊控制模型是以左油缸和右油缸的活塞杆的受力F、喂料刀辊转速n和转速变化率
Figure PCTCN2017084795-appb-000005
的灰色预测值nM、F0M
Figure PCTCN2017084795-appb-000006
作为输入量,以活塞杆的位置L为输出量,根据确定的活塞杆位置L的调节策略制定模糊控制规则表,且模糊控制规则表随活塞杆位置L自适应调整。
上述方案中,所述步骤S4中根据喂料刀辊转速n和所受扭矩T计算喂料刀辊的功耗 w,以物料能够形成稳定的草捆密度ρ、降低喂料刀辊的功耗w为目标,在保证结构强度和安全系数时油缸活塞杆受力F的许用范围和避免喂料刀辊发生堵塞故障时喂料刀辊转速n允许范围内进行优化,制定活塞杆位置L的调节策略。
上述方案中,所述步骤4中的喂料口开度的模糊控制模型是以左油缸和右油缸的活塞杆的受力F、喂料刀辊转速n和转速变化率
Figure PCTCN2017084795-appb-000007
的灰色预测值nM、F0M
Figure PCTCN2017084795-appb-000008
作为输入量,以活塞杆的位置L为输出量,根据确定的活塞杆位置L的调节策略制定模糊控制规则表,且模糊控制规则表随活塞杆位置L自适应调整。
上述方案中,所述步骤S4中三位四通电磁换向阀的左线圈得电时,三位四通电磁换向阀处于左工作位置,左油缸和右油缸的活塞杆作主动伸出运动,速度vo通过节流阀一调节控制;
所述三位四通电磁换向阀的右线圈得电时,三位四通电磁换向阀处于右工作位置,左油缸和右油缸的活塞杆作主动缩回运动,速度vi通过节流阀二调节控制;
所述三位四通电磁换向阀的左、右线圈均不得电时,三位四通电磁换向阀处于中间工作位置,左油缸、右油缸和蓄能器构成封闭油路系统。
上述方案中,还包括以下步骤:
步骤S5、控制器实时采集位移传感器输出信号以确定活塞杆位置L,喂料口开度模糊控制模型中的活塞杆受力论域和控制规则表根据活塞杆位置L进行自适应调整;
步骤S6、控制器根据建立的活塞杆受力F、位置L与喂料刀辊扭矩T的模型,计算得到喂料刀辊实时的功耗w;
步骤S7、控制器将活塞杆位置L、受力F、喂料刀辊转速n和功耗w状态参数通讯传输给显示器,当喂料刀辊的功耗w、转速n参数超过设定阈值时,显示器发出提示和预报警信息。
与现有技术相比,本发明的有益效果是:本发明在喂入装置结构力学、物料喂入动力学特性分析的基础上,提取活塞杆所受稳态和瞬时冲击受力变化特征,建立下颚板驱动油缸位置对活塞杆受力、成型草捆密度、喂料刀辊功耗和喂入装置结构强度的影响关系,提出通过喂料装置的液压调节系统设计,实现瞬时大负载作用下的喂料口开度被动调节;提出采用控制系统将作业状态的灰色预测和自适应模糊控制方法相结合,在保证喂入装置结构强度、安全系数和避免喂料刀辊发生堵塞故障的条件下,通过对喂料口开度的主动调节,使物料以稳定的压力和初速度抛入成型室,形成均匀性和密实度稳定的草捆,有效解决了由于物料特性和喂入量的变化造成的成捆性能降低、喂料装置堵塞和 结构损伤,提高了整机的工作效率、寿命和可靠性。
附图说明
图1是本发明一实施方式的喂料装置的三维结构示意图。
图2是本发明一实施方式的喂料装置的主视图。
图3是本发明一实施方式的喂料装置的左视图。
图4是本发明一实施方式的喂料装置液压系统原理图。
图5是本发明一实施方式的喂料装置电气控制线路原理图。
图6是本发明一实施方式的喂料口开度自适应控制原理图。
图中:1.机架,2.轴一,3.挡草架,4.喂料刀辊,5.下颚板,6.轴二,7.旋转编码器,8.左轴,9.左油缸,10.左轴销,11.位移传感器,12.右轴,13.右油缸,14.右轴销,15.油压传感器一,16.溢流阀一,17.节流阀一,18.三位四通电磁换向阀,19.油箱,20.油泵,21.溢流阀二,22.节流阀二,23.单向阀,24.蓄能器,25.节流阀三,26.油压传感器二,27.控制器,28.显示器,29.互锁控制器。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细说明,但本发明的保护范围并不限于此。
图1、图2和图3所示为本发明所述圆捆打捆机喂料口开度自适应控制系统的实施方式,所述圆捆打捆机喂料口开度自适应控制系统包括喂料装置、旋转编码器7、位移传感器11、液压调节系统和控制器27。
所述喂料装置的喂料刀辊4通过轴承安装于机架1上,可以绕轴二6转动,在轴二6的顶端安装旋转编码器7,用于测量喂料刀辊4的转速。喂料装置的左轴8固定安装于机架1的左侧板,右轴12固定安装于机架1的右侧板,并保证左轴8和右轴12的轴线处于同一中心线上。左油缸9和右油缸13为型号相同的双向油缸,左油缸9的耳环安装于左轴8上,右油缸13的耳环安装于右轴12上,并保证左油缸9和右油缸13可以绕左轴8和右轴12自由摆动。
所述喂料装置的下颚板5位于喂料刀辊4的下方,下颚板5的一端通过轴一2安装于机架1上,下颚板5的左、右端面分别固定安装左轴销10和右轴销14,并保证左轴销10和右轴销14的轴线处于同一中心线上。
所述喂料装置的左油缸9和右油缸13的活塞杆分别连接于左轴销10和右轴销14上,在左油缸9和右油缸13活塞杆的驱动下,下颚板5可以绕轴一2转动。
所述位移传感器11的耳环安装于左轴8上,位移传感器11的测量杆连接左轴销10,并保证位移传感器11的测量杆与左油缸9的活塞杆作同步运动,用于测量喂料装置的左油缸9和右油缸13的活塞杆位移。
在所述下颚板5的重力和物料输送过程挤压力的作用下,左油缸9和右油缸13活塞杆均受到沿活塞杆向外的作用力,两个活塞杆的总受力为F。
所述挡草架3安装于物料抛出口上方,挡草架3与喂料刀辊4的刀齿之间的安装间隙小于1mm,以防止喂料刀辊4转动过程中带回物料。
图4所示为喂料装置的液压调节系统原理图。所述液压调节系统包括油压传感器一15、溢流阀一16、节流阀一17、三位四通电磁换向阀18、油泵20、溢流阀二21、节流阀二22、单向阀23、蓄能器24、节流阀三25和油压传感器二26;所述油泵20通过管道与油箱19连接,所述三位四通电磁换向阀18的进油口P与油泵20连接,回油口T与油箱19连接,所述三位四通电磁换向阀18的工作口A通过管道依次与节流阀二22、单向阀23、左油缸9和右油缸13的有杆腔油路连接;所述三位四通电磁换向阀18为三位四通电磁换向阀,三位四通电磁换向阀18的工作口B通过管道依次与节流阀一17、左油缸9和右油缸13的无杆腔油路连接,所述油压传感器一15安装在喂料装置的左油缸9和右油缸13的无杆腔油路上,用于测量无杆腔的油压;所述油压传感器二26安装在喂料装置的左油缸9和右油缸13的有杆腔油路上,用于测量有杆腔油压;所述蓄能器24和节流阀三25并联在左油缸9和右油缸13的有杆腔油路与单向阀23之间。
在所述油泵20输出高压油的驱动下,通过三位四通电磁换向阀18实现左油缸9和右油缸13的活塞杆伸出和缩回运动的主动控制;蓄能器24经过节流阀三25连接到左油缸9和右油缸13的有杆腔油路。
所述三位四通电磁换向阀18的左线圈得电时,三位四通电磁换向阀18处于左工作位置,油泵20输出的高压油经过三位四通电磁换向阀18的左阀芯、节流阀一17输入左油缸9和右油缸13的无杆腔;单向阀23在油压作用下打开,左油缸9和右油缸13的有杆腔经过单向阀23、节流阀二22、三位四通电磁换向阀18的左阀芯与油箱19连通;左油缸9和右油缸13的活塞杆作主动伸出运动,速度vo通过节流阀一17调节控制。
所述三位四通电磁换向阀18的右线圈得电时,三位四通电磁换向阀18处于右工作位置,油泵20输出的高压油经过三位四通电磁换向阀18的右阀芯、节流阀二22、单向阀23输入左油缸9和右油缸13的有杆腔;左油缸9和右油缸13的无杆腔经过节流阀一17、三位四通电磁换向阀18的右阀芯与油箱19连通;左油缸9和右油缸13的活塞杆作 主动缩回运动,速度vi通过节流阀二22调节控制。
所述三位四通电磁换向阀18的左、右线圈均不得电时,三位四通电磁换向阀18处于中间工作位置,油泵20输出的高压油直接经过三位四通电磁换向阀18的中间阀芯直接回油箱19,以实现卸荷;左油缸9、右油缸13、蓄能器24构成封闭油路系统。
由喂料装置的结构可知,物料在喂入过程中,左油缸9和右油缸13活塞杆均受到沿活塞杆向外的作用力F。当三位四通电磁换向阀18处于中间工作位置时,随着作用力F的增大,左油缸9和右油缸13有杆腔内的油压P1随之增加,当P1大于蓄能器24设定的预充压力P0时,有杆腔内的压力油经过节流阀三25进入蓄能器24,左油缸9和右油缸13的活塞杆作伸出运动,运动速度通过节流阀三25调节控制;随着作用力F的减小,左油缸9和右油缸13有杆腔内的油压P1随之降低,当P1小于蓄能器24设定的预充压力P0时,蓄能器24内的压力油经过节流阀三25进入有杆腔内,左油缸9和右油缸13的活塞杆缩回至初始位置。
所述左油缸9和右油缸13有杆腔油路上安装油压传感器二26,测量无杆腔油压P1,左油缸9和右油缸13无杆腔油路上安装油压传感器一15,测量无杆腔油压P2;根据左油缸9和右油缸13的有杆腔截面积之和S1和无杆腔截面积之和S2,可以计算得到活塞杆受到的作用力F,即F=P1×S1-P2×S2
所述溢流阀二21连接到油泵20的出口,溢流阀二21的设定开启压力应小于油泵20的额定输出压力,主要起到系统调压作用,即三位四通电磁换向阀18处于左或右工作位置时的系统油压不超过溢流阀二21的开启压力。
所述溢流阀一16连接到左油缸9和右油缸13的有杆腔油路,溢流阀一16的设定开启压力大于系统工作压力,主要起到安全保护作用。
图5所示为喂料装置的电气线路。所述控制器27的输入端分别与旋转编码器7、位移传感器11、油压传感器一15和油压传感器二26电连接,输出端通过互锁控制器29与三位四通电磁换向阀18电连接;位移传感器11、油压传感器一15、油压传感器二26、旋转编码器7的输出信号直接输入控制器27,所述控制器27以活塞杆的受力、喂料刀辊4转速和转速变化率为输入量,以活塞杆的位置为输出量,建立喂料装置的喂料口开度的模糊控制模型,通过三位四通电磁换向阀18控制左油缸9和右油缸13的活塞杆在液压驱动下的伸出、缩回主动调节,实现喂料口开度的自适应控制。
控制器27的输出端还与显示器28电连接,通讯输出信号接入显示器28,用于喂料装置作业状态显示。
控制器27两路开关控制信号首先输入互锁控制器29,然后分别输入三位四通电磁换向阀18的左线圈和右线圈,以控制三位四通电磁换向阀18的工作位置。互锁控制器29的作用是为了避免三位四通电磁换向阀18的左线圈和右线圈同时得电。
喂料口开度控制模型建立方法:
喂料口开度控制是一个多目标优化问题,主要是在不同物料和喂入量情况下,分析左油缸9和右油缸13活塞杆的位置L对活塞杆受力F、成型草捆密度ρ、喂料刀辊4的功耗w和喂入装置结构强度的影响。具体过程为:
采用试验和EDEM对物料喂入过程仿真分析可知,物料在喂入过程中,活塞杆的受力F为动态变化量,存在瞬时冲击现象,可以用F的均值F0和瞬时冲击Fp表示,且F0和Fp主要取决于物料特性、喂入量K和活塞杆位置L和喂料刀辊4转速n。
基于某一种物料(刚度和含水率相同),采用试验和EDEM对物料喂入过程仿真的方法:
在不同油缸活塞杆的位置L下,分析不同喂入量K对成型草捆密度ρ的影响,建立位置L、喂入量K与草捆密度ρ的关系方程:ρ=f1(K,L)。
在不同油缸活塞杆的位置L下,分析不同喂入量K对喂料刀辊扭矩T的影响,建立位置L、喂入量K与喂料刀辊扭矩T的关系方程:T=f2(K,L)。
在不同油缸活塞杆的位置L下,分析不同喂入量K对活塞杆受力F的影响,建立位置L、喂入量K与活塞杆受力F的关系方程:F=f3(K,L)。
在不同油缸活塞杆的位置L下,分析不同喂入量K下颚板的受力大小。
建立活塞杆在不同位置L的喂入装置的三维模型,再Ansys软件中根据活塞杆受力F、喂料刀辊扭矩T和下颚板的受力加载负荷,进行静力学和动力学计算,以保证结构强度和安全系数为目标,确定活塞杆在不同位置L时活塞杆受力F的许用范围[FLmin,FLmax]。
选择不同特性物料进行大喂入量试验,提取活塞杆在不同位置L、喂料刀辊发生堵塞故障时,喂料刀辊转速n的变化情况,确定喂料刀辊转速n的允许变化范围[nmin,nmax]。
根据喂料刀辊转速n和所受扭矩T计算喂料刀辊的功耗w,w=n*T/9550。
使用多目标优化的方法,以物料能够形成稳定的草捆密度ρ、降低喂料刀辊的功耗w为目标,在保证结构强度和安全系数时活塞杆受力F的许用范围和避免喂料刀辊发生堵塞故障时喂料刀辊转速n允许范围内进行优化,制定活塞杆位置L的调节策略。对于不同特性的物料(刚度和含水率不同)有不同的活塞杆位置L的调节策略。
例如:(1)在某一喂入量K情况下,以ρ=max(ρ)为目标,使成型的草捆密度最大,边界条件为:
Figure PCTCN2017084795-appb-000009
经过优化求解可以得到油缸活塞杆位置L的值。
(2)在某一喂入量K情况下,以w=min(w)为目标,使喂料刀辊的功耗w最小,边界条件为:
Figure PCTCN2017084795-appb-000010
经过优化求解可以得到油缸活塞杆位置L的值。
以活塞杆的受力F、喂料刀辊4转速n和转速变化率
Figure PCTCN2017084795-appb-000011
为输入量,以活塞杆的位置L为输出量,建立喂料口开度的模糊控制模型。
根据活塞杆在不同位置L时活塞杆受力F许用范围确定论域,且F的论域随活塞杆位置L自适应调整。
根据喂料刀辊4转速n和转速变化率
Figure PCTCN2017084795-appb-000012
的允许变化范围为依据,确定n和
Figure PCTCN2017084795-appb-000013
的论域。
根据确定的活塞杆位置L的调节策略制定模糊控制规则表,且模糊控制规则表随活塞杆位置L自适应调整。
图6所示为喂料口开度自适应控制方法流程图。所述控制器27以ARM为核心,控制器27内部建立喂料口开度的模糊控制模型。
一种根据所述圆捆打捆机喂料口开度自适应控制系统的控制方法,包括以下步骤:
步骤S1、打捆机工作过程中,控制器27实时采集旋转编码器7输出信号,通过定时计数计算得到喂料刀辊4转速n;控制器27实时采集油压传感器一15输出信号P1和油压传感器二26输出信号P1,根据公式F=P1×S1-P2×S2计算得到左油缸9和右油缸13活塞杆受力F;
步骤S2、将活塞杆受力F进行低通滤波计算得到均值F0;以当前时刻T0为零点,以控制器27的数据采样时间dt为间隔,分别建立n和F0的数组序列{n1、n1…nN}、{F01、 F01…F0N},其中N为数组序列长度,nN和F0N分别为T0-N·dt时刻的n和F0采样数值;
步骤S3、将数组序列{n1、n1…nN}、{F01、F01…F0N}分别进行灰色预测计算,得到T0+M·dt时刻的n和F0预测数值nM和F0M,通过对nM进行微分计算得到预测的转速变化率
Figure PCTCN2017084795-appb-000014
步骤S4、将预测获得的nM、F0M
Figure PCTCN2017084795-appb-000015
输入建立的喂料口开度的模糊控制模型,获得活塞杆的位置L的调整方案,进行三位四通电磁换向阀18的左线圈或右线圈得电控制,然后根据活塞杆主动伸出运动速度vo和主动缩回运动速度vi确定左线圈或右线圈得电时间,最终通过互锁控制器29控制三位四通电磁换向阀18的左线圈或右线圈,驱动油缸活塞杆运动,实现喂料口开度调节;
步骤S5、控制器27实时采集位移传感器11输出信号以确定活塞杆位置L,喂料口开度模糊控制器中的活塞杆受力论域和控制规则表根据活塞杆位置L进行自适应调整;
步骤S6、控制器27根据建立的活塞杆受力F、位置L与喂料刀辊4扭矩T的模型,计算得到喂料刀辊4实时的功耗w;
步骤S7、控制器27将活塞杆位置L、受力F、喂料刀辊4转速n和功耗w等状态参数通讯传输给显示器28,当喂料刀辊4的功耗w、转速n等参数超过设定阈值时,显示器28发出提示和预报警信息。
所述步骤S4中喂料口开度的模糊控制模型根据左油缸9和右油缸13的活塞杆在不同位置L时受力F许用范围确定论域,且F的论域随活塞杆位置L自适应调整,根据喂料刀辊4转速n和转速变化率
Figure PCTCN2017084795-appb-000016
的允许变化范围为依据,确定n和
Figure PCTCN2017084795-appb-000017
的论域。所述步骤S4中的喂料口开度的模糊控制模型是以左油缸9和右油缸13的活塞杆的受力F、喂料刀辊4转速n和转速变化率
Figure PCTCN2017084795-appb-000018
的灰色预测值nM、F0M
Figure PCTCN2017084795-appb-000019
作为输入量,以活塞杆的位置L为输出量,根据确定的活塞杆位置L的调节策略制定模糊控制规则表,且模糊控制规则表随活塞杆位置L自适应调整。
所述步骤S4中根据喂料刀辊4转速n和所受扭矩T计算喂料刀辊4的功耗w,以物料能够形成稳定的草捆密度ρ、降低喂料刀辊4的功耗w为目标,在保证结构强度和安全系数时油缸活塞杆受力F的许用范围和避免喂料刀辊4发生堵塞故障时喂料刀辊4转速n允许范围内进行优化,制定活塞杆位置L的调节策略。
所述步骤S4中三位四通电磁换向阀18的左线圈得电时,三位四通电磁换向阀18处于左工作位置,左油缸9和右油缸13的活塞杆作主动伸出运动,速度vo通过节流阀一17调节控制;所述三位四通电磁换向阀18的右线圈得电时,三位四通电磁换向阀18处 于右工作位置,左油缸9和右油缸13的活塞杆作主动缩回运动,速度vi通过节流阀二22调节控制;所述三位四通电磁换向阀18的左、右线圈均不得电时,三位四通电磁换向阀18处于中间工作位置,左油缸9、右油缸13和蓄能器24构成封闭油路系统。
下面结合实例做进一步的阐述:
打捆机启动后,所述控制器27采集旋转编码器7、位移传感器11、油压传感器一15和油压传感器二26的输出信号,得到喂入刀辊4的转速n、左油缸9和右油缸13活塞杆的位置L对活塞杆受力F。
所述控制器27将左油缸9和右油缸13活塞杆受力F进行低通滤波计算,得到活塞杆受力F的均值F0
所述控制器27的数据采样时间dt为间隔,建立N个采样周期前T0-N·dt时刻至当前时刻T0的n和F0的数组序列{n1、n1…nN}、{F01、F01…F0N}。
所述控制器27将数组序列{n1、n1…nN}、{F01、F01…F0N}分别进行灰色计算,得到M个采样周期后T0+M·dt时刻的n和F0预测数值nM和F0M,并通过对nM进行微分计算得到预测的转速变化率
Figure PCTCN2017084795-appb-000020
所述控制器27获得的nM、F0M
Figure PCTCN2017084795-appb-000021
输入内部建立的喂料口开度的模糊控制模型,获得活塞杆的位置L的调整方案,然后根据活塞杆主动伸出运动速度vo和主动缩回运动速度vi确定左线圈或右线圈得电时间,最终通过互锁控制器29控制三位四通电磁换向阀18的左线圈或右线圈,驱动油缸活塞杆运动,实现喂料口开度的主动调节。
打捆机开始启动运行时,由于物料喂入量较小,左油缸9和右油缸13活塞杆的受力F较小,控制器27经过计算,会通过控制三位四通电磁换向阀18右线圈的通断,将喂料口开度主动调节至最小位置。
打捆机连续作业运行时,物料喂入量总是处于不断变化过程,左油缸9和右油缸13活塞杆的受力F、喂入刀辊4的转速n也会随之发生变化,此时,控制器27经过计算,会通过控制三位四通电磁换向阀18左线圈或右线圈的通断,自动将喂料口开度主动调节至一定位置。
当喂料口开度调节后,控制器27会根据调节后的活塞杆在不同位置L,重新确定活塞杆受力F的论域和模糊控制规则表,以提高控制性能。
左油缸9和右油缸13活塞杆均受到沿活塞杆向外的作用力F,打捆机连续作业运行时,当发生物料瞬间喂入量突然变大造成活塞杆受力F发生瞬时峰值时,由于控制器27对活塞杆受力F进行低通滤波计算,受力均值F0不会急剧增大,此外由于喂料装置的惯 性,在瞬间喂入量情况下,转速n也不会发生突变,有可能控制器27经过计算后不对喂料口开度进行主动调节,此时主要依靠安装在左油缸9和右油缸13的有杆腔油路上的蓄能器24进行喂料口开度的被动调节:即当瞬间喂入量变大导致左油缸9和右油缸13有杆腔内的油压P1大于蓄能器24设定的预充压力P0时,有杆腔内的压力油经过节流阀三25进入蓄能器24,左油缸9和右油缸13的活塞杆作伸出运动,喂料口开度增大;物料喂入量恢复正常状态后,当P1小于P0时,蓄能器24内的压力油经过节流阀三25进入有杆腔内,左油缸9和右油缸13的活塞杆缩回至调节前的初始位置。
可见,喂料口开度的主动调节主要针对物料连续喂入过程中的稳定负载情况,是一个连续的稳态过程;而通过蓄能器24进行喂料口开度的被动调节主要针对物料喂入量发生瞬间突增情况,是一个瞬态过程。
打捆机作业过程中,控制器27可以根据活塞杆受力F、位置L与喂料刀辊4扭矩T模型,计算得到喂料刀辊4的功耗w,并将活塞杆位置L、受力F、喂料刀辊4转速n和功耗w等状态参数通讯传输给显示器28,以便驾驶人员了解喂入装置作业状态,根据物料喂入装置的作业负荷情况调整机器前进速度,当喂料刀辊4的功耗w、转速n等参数超过设定阈值时,显示器28发出提示和预报警信息。
本发明主要用于喂料刀辊4与下颚板5间隙,即喂料口开度的自适应控制。它通过控制器27驱动三位四通电磁换向阀18改变液压油方向,实现连接机架1与下颚板5的油缸活塞杆伸缩移动,进行打捆机喂料口开度大小的调节;通过位移传感器11测量下颚板位置,在喂料刀辊4轴端安装旋转编码器7测量喂料刀辊4的转速,在油缸的有杆腔和无杆腔油路上安装油压传感器测量油缸所受力载荷;根据喂料刀辊4和下颚板5的结构,理论和试验结合分析物料特性、喂入量、喂料口开度对喂料刀辊功耗、下颚板结构强度的影响,建立物料喂入刀辊的负载模型和喂料口开度控制模型;打捆机作业时,控制器27实时采集喂料口开度、喂料刀辊转速和油缸受力信号进行喂料口开度的自适应调节,控制器27中采用灰色系统模型对喂料刀辊转速和油缸受力进行预测,以解决控制滞后问题。该系统通过对喂料口开度自适应控制,使物料以稳定的压力和初速度抛入成型室,减少由于喂入量不均匀造成成捆性能不稳定,避免喂入量激增造成喂料刀辊堵塞故障,驾驶人员可以根据物料喂入装置的作业负荷情况调整机器前进速度,从而提高喂料部件的工作寿命、整机的工作效率、可靠性。
应当理解,虽然本说明书是按照各个实施例描述的,但并非每个实施例仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说 明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施例的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施例或变更均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种圆捆打捆机喂料口开度自适应控制系统,其特征在于,包括喂料装置、旋转编码器(7)、位移传感器(11)、液压调节系统和控制器(27);
    所述旋转编码器(7)安装在喂料装置的喂料刀辊(4)轴端,用于测量喂料刀棍(4)的转速;位移传感器(11)的耳环安装于左轴(8)上,位移传感器(11)的测量杆连接左轴销(10),用于测量喂料装置的左油缸(9)和右油缸(13)的活塞杆位移;
    所述液压调节系统包括油压传感器一(15)、三位四通电磁换向阀(18)、油泵(20)、单向阀(23)、蓄能器(24)和油压传感器二(26);所述油泵(20)通过管道与油箱(19)连接,所述三位四通电磁换向阀(18)的进油口P与油泵(20)连接,回油口T与油箱(19)连接,所述三位四通电磁换向阀(18)的工作口A通过管道依次与单向阀(23)、左油缸(9)和右油缸(13)的有杆腔油路连接;所述三位四通电磁换向阀(18)的工作口B通过管道与左油缸(9)和右油缸(13)的无杆腔油路连接,所述油压传感器一(15)安装在喂料装置的左油缸(9)和右油缸(13)的无杆腔油路上,用于测量无杆腔的油压;所述油压传感器二(26)安装在喂料装置的左油缸(9)和右油缸(13)的有杆腔油路上,用于测量有杆腔油压;所述蓄能器(24)并联在左油缸(9)和右油缸(13)的有杆腔油路与单向阀(23)之间;
    所述控制器(27)的输入端分别与旋转编码器(7)、位移传感器(11)、油压传感器一(15)和油压传感器二(26)电连接,输出端通过互锁控制器(29)与三位四通电磁换向阀(18)电连接;所述控制器(27)以活塞杆的受力、喂料刀辊(4)转速和转速变化率为输入量,以活塞杆的位置为输出量,建立喂料装置的喂料口开度的模糊控制模型,通过三位四通电磁换向阀(18)控制左油缸(9)和右油缸(13)的活塞杆在液压驱动下的伸出、缩回主动调节,实现喂料口开度的自适应控制。
  2. 根据权利要求1所述的一种圆捆打捆机喂料口开度自适应控制系统,其特征在于,所述液压调节系统还包括节流阀一(17)、节流阀二(22)和节流阀三(25);
    所述节流阀一(17)安装在三位四通电磁换向阀(18)的工作口B与左油缸(9)和右油缸(13)的无杆腔油路上;
    所述节流阀二(22)安装在三位四通电磁换向阀(18)的工作口A与单向阀(23)的管道之间;
    所述节流阀三(25)安装在蓄能器(24)与左油缸(9)和右油缸(13)的有杆腔之间的油路上。
  3. 根据权利要求1所述的一种圆捆打捆机喂料口开度自适应控制系统,其特征在于,所述液压调节系统还包括溢流阀一(16)和溢流阀二(21);
    所述溢流阀一(16)连接到左油缸(9)和右油缸(13)的有杆腔油路;
    所述溢流阀二(21)连接到油泵(20)的出口。
  4. 根据权利要求1所述的一种圆捆打捆机喂料口开度自适应控制系统,其特征在于,还包括显示器(28);所述控制器(27)的输出端与显示器(28)电连接,所述显示器(28)用于所述喂料装置的作业状态显示和报警。
  5. 一种根据权利要求1所述圆捆打捆机喂料口开度自适应控制系统的控制方法,其特征在于,包括以下步骤:
    步骤S1、打捆机工作过程中,所述控制器(27)实时采集旋转编码器(7)的输出信号,计算得到喂料刀辊(4)的转速n;控制器(27)实时采集油压传感器一(15)输出信号P1和油压传感器二(26)输出信号P1,计算得到左油缸(9)和右油缸(13)活塞杆受力F;
    步骤S2、将活塞杆受力F进行低通滤波计算得到均值F0,以当前时刻T0为零点,以控制器(27)的数据采样时间dt为间隔,分别建立n和F0的数组序列{n1、n1···nN}、{F01、F01···F0N},其中N为数组序列长度,nN和F0N分别为T0-N·dt时刻的n和F0采样数值;
    步骤S3、将数组序列{n1、n1···nN}、{F01、F01···F0N}分别进行灰色预测计算,得到T0+M·dt时刻的n和F0预测数值nM和F0M,通过对nM进行微分计算得到预测的转速变化率
    Figure PCTCN2017084795-appb-100001
    步骤S4、将预测获得的nM、F0M
    Figure PCTCN2017084795-appb-100002
    输入建立的喂料口开度的模糊控制模型,获得活塞杆的位置L的调整方案,进行三位四通电磁换向阀(18)的左线圈或右线圈得电控制,然后根据活塞杆主动伸出运动速度vo和主动缩回运动速度vi确定左线圈或右线圈得电时间,最终通过互锁控制器(29)控制三位四通电磁换向阀(18)的左线圈或右线圈得电,驱动左油缸(9)和右油缸(13)的活塞杆运动,实现喂料口开度调节。
  6. 根据权利要求5所述圆捆打捆机喂料口开度自适应控制系统的控制方法,其特征在于,所述步骤S4中喂料口开度的模糊控制模型根据左油缸(9)和右油缸(13)的活塞杆在不同位置L时受力F许用范围确定论域,且F的论域随活塞杆位置L自适应调整,根据喂料刀辊(4)转速n和转速变化率
    Figure PCTCN2017084795-appb-100003
    的允许变化范围为依据,确定n和
    Figure PCTCN2017084795-appb-100004
    的论域。
  7. 根据权利要求6所述的一种圆捆打捆机喂料口开度自适应控制系统的控制方法,其特征在于,所述步骤S4中的喂料口开度的模糊控制模型是以左油缸(9)和右油缸(13) 的活塞杆的受力F、喂料刀辊(4)转速n和转速变化率
    Figure PCTCN2017084795-appb-100005
    的灰色预测值nM、F0M
    Figure PCTCN2017084795-appb-100006
    作为输入量,以活塞杆的位置L为输出量,根据确定的活塞杆位置L的调节策略制定模糊控制规则表,且模糊控制规则表随活塞杆位置L自适应调整。
  8. 根据权利要求7所述的一种圆捆打捆机喂料口开度自适应控制系统的控制方法,其特征在于,所述步骤S4中根据喂料刀辊(4)转速n和所受扭矩T计算喂料刀辊(4)的功耗w,以物料能够形成稳定的草捆密度ρ、降低喂料刀辊(4)的功耗w为目标,在保证结构强度和安全系数时油缸活塞杆受力F的许用范围和避免喂料刀辊(4)发生堵塞故障时喂料刀辊(4)转速n允许范围内进行优化,制定活塞杆位置L的调节策略。
  9. 根据权利要求5所述的一种圆捆打捆机喂料口开度自适应控制系统的控制方法,其特征在于,所述步骤S4中的三位四通电磁换向阀(18)的左线圈得电时,三位四通电磁换向阀(18)处于左工作位置,左油缸(9)和右油缸(13)的活塞杆作主动伸出运动,速度vo通过节流阀一(17)调节控制;
    所述三位四通电磁换向阀(18)的右线圈得电时,三位四通电磁换向阀(18)处于右工作位置,左油缸(9)和右油缸(13)的活塞杆作主动缩回运动,速度vi通过节流阀二(22)调节控制;
    所述三位四通电磁换向阀(18)的左、右线圈均不得电时,三位四通电磁换向阀(18)处于中间工作位置,左油缸(9)、右油缸(13)和蓄能器(24)构成封闭油路系统。
  10. 根据权利要求5所述圆捆打捆机喂料口开度自适应控制系统的控制方法,其特征在于,还包括以下步骤:
    步骤S5、控制器(27)实时采集位移传感器(11)输出信号以确定活塞杆位置L,喂料口开度模糊控制模型中的活塞杆受力论域和控制规则表根据活塞杆位置L进行自适应调整;
    步骤S6、控制器(27)根据建立的活塞杆受力F、位置L与喂料刀棍(4)扭矩T的模型,计算得到喂料刀棍(4)实时的功耗w;
    步骤S7、控制器(27)将活塞杆位置L、受力F、喂料刀辊(4)转速n和功耗w状态参数通讯传输给显示器(28),当喂料刀辊(4)的功耗w、转速n参数超过设定阈值时,显示器(28)发出提示和预报警信息。
PCT/CN2017/084795 2017-03-21 2017-05-18 一种圆捆打捆机喂料口开度自适应控制系统及其控制方法 WO2018171030A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3012374A CA3012374A1 (en) 2017-03-21 2017-05-18 Self-adaptive control system for feeding mouth opening of round bale bundling machine and controlling method thereof
US16/333,300 US11252873B2 (en) 2017-03-21 2017-05-18 Self-adaptive control system for feed opening degree of round baler, and control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710168457.7 2017-03-21
CN201710168457.7A CN106884816B (zh) 2017-03-21 2017-03-21 一种圆捆打捆机喂料口开度自适应控制系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2018171030A1 true WO2018171030A1 (zh) 2018-09-27

Family

ID=59181539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084795 WO2018171030A1 (zh) 2017-03-21 2017-05-18 一种圆捆打捆机喂料口开度自适应控制系统及其控制方法

Country Status (2)

Country Link
CN (1) CN106884816B (zh)
WO (1) WO2018171030A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112412899A (zh) * 2020-11-24 2021-02-26 徐州徐工矿业机械有限公司 用于反击式破碎机排料口精确定位的液压系统及控制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017213436A1 (de) * 2017-08-02 2019-02-07 Deere & Company Einrichtung zur Steuerung der Auslassklappe einer Ballenpresse, Ballenpresse und Verfahren
CN109005948B (zh) * 2018-10-15 2023-10-03 吉林大学 一种大型方捆打捆机
CN112205179B (zh) * 2020-09-18 2022-01-28 哈尔滨华惠农业机械制造有限公司 一种具有电调草捆密度的控制系统
CN113615407B (zh) * 2021-08-10 2022-11-29 广东皓耘科技有限公司 一种打捆控制方法、装置及打捆机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3913473A (en) * 1974-07-17 1975-10-21 Deere & Co Bale wrapping mechanism for large cylindrical bales
EP1574124A1 (en) * 2004-03-12 2005-09-14 Deere & Company Crop processing device
CN2757534Y (zh) * 2004-12-29 2006-02-15 徐湘容 植物杆专用压捆机
CN203939793U (zh) * 2014-06-24 2014-11-12 首钢京唐钢铁联合有限责任公司 一种上卷小车升降液压控制回路
CN104838821A (zh) * 2015-01-15 2015-08-19 江苏大学 一种圆捆机强制碎草喂料的防堵装置
CN205727151U (zh) * 2016-01-29 2016-11-30 呼伦贝尔市华迪牧业机械有限公司 一种新型卷捆圆打捆机
CN106258241A (zh) * 2016-09-20 2017-01-04 呼伦贝尔市蒙力农牧业机械制造有限公司 秸秆切碎装置及使用该秸秆切碎装置的圆捆机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2232375B (en) * 1989-06-08 1993-01-13 Deere & Co Machine for forming cylindrical bales of crop
IT1277868B1 (it) * 1995-07-24 1997-11-12 Antonio Feraboli Rotopressa per la raccolta e la formazione di balle cilindriche di foraggio o paglia, del tipo a camera variabile, con camera di
DE19534138C1 (de) * 1995-09-14 1996-10-31 Claas Ohg Ballenpresse für Erntegut
CN203057896U (zh) * 2012-12-14 2013-07-17 江苏省农业科学院 半喂入联合收割机圆捆打捆装置
CN103141229A (zh) * 2013-02-01 2013-06-12 中机美诺科技股份有限公司 一种适用于捡拾圆捆机的可调节草捆密度的液压控制装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3913473A (en) * 1974-07-17 1975-10-21 Deere & Co Bale wrapping mechanism for large cylindrical bales
EP1574124A1 (en) * 2004-03-12 2005-09-14 Deere & Company Crop processing device
CN2757534Y (zh) * 2004-12-29 2006-02-15 徐湘容 植物杆专用压捆机
CN203939793U (zh) * 2014-06-24 2014-11-12 首钢京唐钢铁联合有限责任公司 一种上卷小车升降液压控制回路
CN104838821A (zh) * 2015-01-15 2015-08-19 江苏大学 一种圆捆机强制碎草喂料的防堵装置
CN205727151U (zh) * 2016-01-29 2016-11-30 呼伦贝尔市华迪牧业机械有限公司 一种新型卷捆圆打捆机
CN106258241A (zh) * 2016-09-20 2017-01-04 呼伦贝尔市蒙力农牧业机械制造有限公司 秸秆切碎装置及使用该秸秆切碎装置的圆捆机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112412899A (zh) * 2020-11-24 2021-02-26 徐州徐工矿业机械有限公司 用于反击式破碎机排料口精确定位的液压系统及控制方法

Also Published As

Publication number Publication date
CN106884816B (zh) 2018-06-26
CN106884816A (zh) 2017-06-23

Similar Documents

Publication Publication Date Title
WO2018171030A1 (zh) 一种圆捆打捆机喂料口开度自适应控制系统及其控制方法
US11252873B2 (en) Self-adaptive control system for feed opening degree of round baler, and control method therefor
CN104141326B (zh) 一种挖掘机的节能控制系统
CN103397678B (zh) 一种发动机和液压泵的功率匹配节能系统及方法
CN101688384B (zh) 建筑机械的发动机控制装置
CN104635582B (zh) 一种圆捆打捆机的车载终端与控制系统及方法
CN110747823A (zh) 长距离引调水工程的水闸控制系统及控制方法
WO2023116039A1 (zh) 一种打捆机控制系统及方法
CN109156178B (zh) 一种圆捆机监控系统及方法
CN201801313U (zh) 起重机及其复合动作的控制器
CN208402547U (zh) 方捆打捆机草捆紧实度控制系统
CN104686099A (zh) 一种连续打捆作业的联合收割机
CN207078810U (zh) 高效电缆放线架
CN203423982U (zh) 一种压力参数监控的甘蔗联合收获机
CN110488881B (zh) 压捆机草捆压力控制自动控制方法
CN204533066U (zh) 一种挖掘机动臂势能液压式能量回收系统
US20210137016A1 (en) Agricultural System
CN202703681U (zh) 一种优先型变量转控阀
CN211852310U (zh) 一种适用于棉花收获机采摘头的液压控制回路
CN204462717U (zh) 一种圆捆打捆机的车载终端与控制系统
CN108686747A (zh) 一种自适应防堵进料的枝叶粉碎机及其控制方法
CN110663368B (zh) 方捆打捆机草捆紧实度控制系统及控制方法
CN209299779U (zh) 一种自动化棉花打顶机
CN207246134U (zh) 垃圾压缩机液压油路的先导节能控制系统
CN113464506A (zh) 一种采棉机打包皮带控制系统及采棉机打包皮带控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902055

Country of ref document: EP

Kind code of ref document: A1