WO2018169301A1 - Ultrasonic fingerprint sensor and method for manufacturing same - Google Patents

Ultrasonic fingerprint sensor and method for manufacturing same Download PDF

Info

Publication number
WO2018169301A1
WO2018169301A1 PCT/KR2018/002973 KR2018002973W WO2018169301A1 WO 2018169301 A1 WO2018169301 A1 WO 2018169301A1 KR 2018002973 W KR2018002973 W KR 2018002973W WO 2018169301 A1 WO2018169301 A1 WO 2018169301A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
piezoelectric layer
fingerprint sensor
ultrasonic fingerprint
layer
Prior art date
Application number
PCT/KR2018/002973
Other languages
French (fr)
Korean (ko)
Inventor
박상영
박영태
Original Assignee
주식회사 베프스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 베프스 filed Critical 주식회사 베프스
Publication of WO2018169301A1 publication Critical patent/WO2018169301A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices

Definitions

  • the present invention relates to an ultrasonic fingerprint sensor and a method of manufacturing the same.
  • Biometrics is a technology that provides a high level of security, and fingerprint technology is one of the important biometric technologies.
  • fingerprint recognition extracts a specific pattern or feature point (for example, a branching point at which the ridge of the fingerprint branches, a disadvantage of ending the ridge) from a fingerprint image formed by receiving a fingerprint from the user, and a pattern of a pre-stored fingerprint image or It is performed to contrast with the feature point.
  • a specific pattern or feature point for example, a branching point at which the ridge of the fingerprint branches, a disadvantage of ending the ridge
  • the fingerprint sensor for recognizing a user's fingerprint may be manufactured in the form of a module including a peripheral component or a structure, for example, and may be implemented integrally with a physical function key. have.
  • FIG 1 schematically illustrates the configuration of an ultrasonic fingerprint sensor according to the prior art.
  • the ultrasonic fingerprint sensor may be configured to be electrically connected to a plurality of piezoelectric rods 100 and upper ends of the plurality of piezoelectric rods 100 arranged to form an array of mxn-type sensors.
  • the depicted reference numeral 102 denotes a shielding layer, which is a protective coating formed on top of the first electrode bar 106 so that the finger is placed in proximity to the sensor array
  • reference numeral 104 denotes a sensor array opposite the shielding layer 102.
  • the support is attached to the end of the support for supporting the plurality of piezoelectric rods 100 from the bottom.
  • the piezoelectric rod 100 is formed of a material having piezo characteristics, for example, PZT (lead zirconate titanate), PST, Quartz, (Pb, Sm) TiO3, PMN (Pb (MgNb) O3
  • the material may include at least one of) -PT (PbTiO3), PVDF, or PVDF-TrFe.
  • a voltage having a resonant frequency of an ultrasonic band is applied to the first electrode bar 106 connected to the upper end of the piezoelectric rod 100 and the second electrode bar 108 connected to the lower end of the piezoelectric rod 100 to thereby move the piezoelectric rod 100 up and down.
  • the ultrasonic signal having a predetermined frequency is generated and emitted as illustrated in FIG.
  • the ultrasonic signal emitted from the piezoelectric rod 100 does not pass through the interface between the piezoelectric rod 100 and the air and returns to the inside of the piezoelectric rod 100.
  • a part of the emitted ultrasonic signal penetrates the interface between the skin of the finger and the piezoelectric rod 100 and proceeds to the inside of the finger.
  • the pattern can be detected.
  • each of the piezoelectric rods 100 operates as a transmitting end Tx and a receiving end Rx of the ultrasonic signal. In this case, even when transmitting an ultrasonic signal, it is inconvenient to perform individual control according to the m x n array.
  • Korean Laid-Open Patent Publication No. 10-2011-0138257 discloses an improved piezoelectric identification device and its application.
  • the transmitter Tx and the receiver Rx are manufactured in different processes (different thickness / material / sintering temperature, etc.) in consideration of their operating characteristics, and then combined into one module to transmit and receive ultrasonic signals. It is an object of the present invention to provide an ultrasonic fingerprint sensor and a method of manufacturing the same.
  • the present invention is to provide an ultrasonic fingerprint sensor and a method of manufacturing the same having a smaller number of transmitters (Tx) than the receiver (Rx) to improve the control convenience in the ultrasonic signal transmission process.
  • An object of the present invention is to provide an ultrasonic fingerprint sensor and a method of manufacturing the same, which can shorten a fingerprint recognition time by subdividing an ultrasonic signal transmission time point for a plurality of transmitters Tx.
  • a method of manufacturing an ultrasonic fingerprint sensor comprising: (a) manufacturing a first piezoelectric layer having a piezoelectric rod in the form of an m x n sensor array; (b) attaching a second piezoelectric layer in the form of a piezoelectric sheet to a lower portion of the first piezoelectric layer, a method of manufacturing an ultrasonic fingerprint sensor is provided.
  • a method of manufacturing an ultrasonic fingerprint sensor comprising the steps of: (a) manufacturing a first piezoelectric layer formed with a piezoelectric rod in the form of an m x n sensor array; (b) attaching a base substrate to the lower portion of the first piezoelectric layer: (c) attaching a second piezoelectric layer in the form of one piezoelectric sheet to side surfaces of the first piezoelectric layer and the base substrate.
  • a method of manufacturing an ultrasonic fingerprint sensor is provided.
  • the first piezoelectric layer may function as a receiver of an ultrasonic fingerprint sensor, and the second piezoelectric layer may function as a transmitter of an ultrasonic fingerprint sensor.
  • Said step (a) comprises the steps of: (a1) providing a first piezoelectric sheet; (a2) cutting in parallel in a first direction at predetermined intervals to a depth at which a remaining region remains on the second surface side at the first surface of the first piezoelectric sheet, and at the second surface of the ceramic sintered body Forming a ceramic workpiece by cutting in parallel in a second direction perpendicular to the first direction at predetermined intervals at a depth at which the remaining region remains on the first surface side; (a3) filling an insulating material into a groove formed in the ceramic workpiece by the cutting in the step (a2); (a4) removing the remaining regions respectively present on the first surface side and the second surface side such that the piezoelectric rods are arranged and exposed in an array form on the first surface and the second surface, respectively.
  • step (a) may include: (a1) providing a first piezoelectric sheet having a first metal layer formed on the first surface and having a second metal layer formed on a second surface not in contact with the first surface; (a2) cutting the first metal layer and the piezoelectric sheet at predetermined intervals in parallel in a first direction; (a3) filling the gap formed in the first piezoelectric sheet by the step (a2) with a predetermined insulating material; (a4) cutting the first piezoelectric sheet and the second metal layer at predetermined intervals in parallel in a second direction orthogonal to a first direction; And (a5) filling the gap formed in the first piezoelectric sheet by the step (a4) with a predetermined insulating material.
  • an ultrasonic fingerprint sensor manufactured by the above-described method for manufacturing an ultrasonic fingerprint sensor.
  • a receiver including a first piezoelectric layer formed with a piezoelectric rod in the form of m x n sensor array;
  • An ultrasonic fingerprint sensor is provided, including a transmitter including a second piezoelectric layer in the form of one piezoelectric sheet, wherein the transmitter is attached to a lower portion of the receiver.
  • the receiving unit including a first piezoelectric layer formed with a piezoelectric rod in the form of m x n sensor array and a base substrate attached to the lower portion of the first piezoelectric layer;
  • An ultrasonic fingerprint sensor is provided, including one or more transmitters including a second piezoelectric layer in the form of one piezoelectric sheet, wherein the transmitter is attached to a side of the receiver.
  • the first piezoelectric layer may be formed using a ceramic sintered body or a composite piezoelectric material produced by an incomplete sintering condition.
  • the second piezoelectric layer may be a second piezoelectric sheet made of a completely sintered body.
  • the ultrasonic signals may be divided in T / K intervals within a period T corresponding to a resonance frequency and sequentially generated in K transmitters.
  • the transmitter Tx and the receiver Rx are manufactured in different processes (different thickness / material / sintering temperature, etc.) in consideration of their operating characteristics, and are then combined into one module to make an ultrasonic signal. There is an effect that shows excellent characteristics in the transmission and reception of a.
  • the fingerprint recognition time can be shortened by subdividing the ultrasonic signal transmission time points for the plurality of transmitters Tx.
  • FIG. 1 is a view schematically showing the configuration of an ultrasonic fingerprint sensor according to the prior art.
  • FIG. 2 is a view for explaining the shape and operation of the piezoelectric rod according to the prior art.
  • Figure 3 illustrates the shape of the ultrasonic fingerprint sensor according to an embodiment of the present invention.
  • FIG. 6 is a view illustrating a shape of a receiver Rx 'included in an ultrasonic fingerprint sensor according to another exemplary embodiment of the present invention.
  • FIG. 7 is a view for explaining a manufacturing process of the receiving unit (Rx ') of the ultrasonic fingerprint sensor according to another embodiment of the present invention.
  • FIG. 8 is a plan view and a cross-sectional view of the ultrasonic fingerprint sensor according to another embodiment of the present invention.
  • FIG. 9 is a view for explaining a manufacturing process of the ultrasonic fingerprint sensor according to another embodiment of the present invention.
  • FIG. 10 is a time graph of ultrasonic signal generation for fingerprint recognition in an ultrasonic fingerprint sensor according to another embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • an element such as a layer, region or substrate is described as being on or “onto” another element, the element may be directly above or directly above another element and There may be intermediate or intervening elements. On the other hand, if one element is mentioned as being “directly on” or extending "directly onto” another element, no other intermediate elements are present. In addition, when one element is described as being “connected” or “coupled” to another element, the element may be directly connected to or directly coupled to another element, or an intermediate intervening element may be present. have. On the other hand, when one element is described as being “directly connected” or “directly coupled” to another element, no other intermediate element exists.
  • FIG. 3 is a diagram illustrating a shape of an ultrasonic fingerprint sensor according to an embodiment of the present invention
  • FIGS. 4 and 5 are views illustrating a manufacturing process of an ultrasonic fingerprint sensor according to an embodiment of the present invention.
  • the ultrasonic fingerprint sensor 300A according to the exemplary embodiment of the present invention is characterized in that the transmitter Tx and the receiver Rx are separated from each other in the vertical direction.
  • the ultrasonic fingerprint sensor 300A includes a receiver Rx including a first piezoelectric layer 310 in which a plurality of piezoelectric rods 311 are arranged in an mxn-type sensor array;
  • the transmission unit Tx including the second piezoelectric layer 320 formed in the shape of one piezoelectric sheet may be included.
  • the first piezoelectric layer 310 has a plurality of first electrode bars 313 arranged on a first surface in a predetermined direction, and a first electrode bar 313 is arranged on a second surface which is not in contact with the first surface. It may further include a plurality of second electrode bars 314 arranged in the direction orthogonal to each other.
  • Each piezoelectric rod 311 may be formed in the shape of a bar or rod having a first length R1.
  • Each piezoelectric rod 311 has a piezo characteristic, for example, PZT (lead zirconate titanate), PST, Quartz, (Pb, Sm) TiO3, PMN (Pb (MgNb) O3) -PT ( PbTiO 3), PVDF or PVDF-TrFe may be formed using a piezoelectric material containing at least one material.
  • PZT lead zirconate titanate
  • PST Quartz
  • Pb, Sm TiO3
  • PMN Pb (MgNb) O3
  • PVDF or PVDF-TrFe may be formed using a piezoelectric material containing at least one material.
  • the first piezoelectric layer 310 may be manufactured using a ceramic sintered body sintered by an incomplete sintering condition instead of a complete sintered body. Alternatively, the first piezoelectric layer 310 may be manufactured using a composite piezoelectric material.
  • the space between the respective piezoelectric rods 311 constituting the sensor array may be filled with the insulating material 312.
  • the insulating material 312 may be determined as a material having a property of electrically separating the respective piezoelectric rods 311 to suppress mutual interference with respect to the reflected ultrasonic signals from the finger received from the neighboring piezoelectric rods.
  • PZT lead zirconate titanate
  • PST Quartz
  • Pb, Sm TiO3
  • PMN Pb (MgNb)
  • O 3 -PT (PbTiO 3)
  • PVDF or PVDF-TrFe may be formed using a piezoelectric material including at least one material.
  • the second piezoelectric layer 320 may be made of a fully sintered body capable of bringing the output of the resonance frequency high so that the generated ultrasonic waves can reach a sufficient position for fingerprint recognition.
  • the second piezoelectric layer 320 may have a thickness greater than or equal to the second length R2 for high output.
  • the second length R2 may be larger than the first length R1 (R2> R1). This is because the transmitter Tx, which should generate a high output ultrasonic signal, should have a sufficient thickness, while the second piezoelectric layer 320 corresponding to the receiver Rx has a relatively thin thickness but is reflected by the finger. Because it is enough to receive it.
  • the second piezoelectric layer 320 may have an area corresponding to the first piezoelectric layer 310 forming the m x n sensor array of the receiver Rx. This is to allow the ultrasonic signal generated in the second piezoelectric layer 320 to affect the entire first piezoelectric layer 310.
  • the second piezoelectric layer 320 may also be provided with an electrode for applying a voltage to generate an ultrasonic signal.
  • the electrode of the second piezoelectric layer 320 has a structure such that an electrical connection is not established with an electrode (particularly, the second electrode bar 314) of the first piezoelectric layer 310 or an insulating material therebetween. It may be intervened.
  • the second piezoelectric layer 320 When a voltage is applied through the electrode of the second piezoelectric layer 320, the second piezoelectric layer 320 generates and emits an ultrasonic signal. In the state where the finger is in contact, a part of the emitted ultrasonic signal is returned by colliding with the melting or valley of the fingerprint, and the fingerprint pattern may be detected by receiving the signal from the first piezoelectric layer 310 and converting the signal into an electrical signal. .
  • a first piezoelectric sheet 301 is provided.
  • the first piezoelectric sheet 301 has a sensor array formed to function as the first piezoelectric layer described above.
  • the piezoelectric sheet is, for example, a piezoelectric ceramic powder such as PZT, which has been heat-treated into a thin sheet, and may be referred to as a sheet or a film depending on its thickness, but will be referred to herein as a sheet.
  • the first piezoelectric sheet 301 provided in step (a) may be a ceramic sintered body produced by sintering under incomplete sintering conditions.
  • Ceramic sinters including piezoelectric sheet forms, are generally formed by full sintering conditions for piezoelectric materials such as PZT and the like.
  • the temperature conditions and time conditions specified as complete sintering conditions may vary, for example, such that the ceramic sinter formed has a density of about 97-99% of the theoretical density.
  • the ceramic sintered body produced by the complete sintering condition is excellent in piezoelectric ceramic characteristics, but has a disadvantage in that the machinability is relatively poor, such that the cutting speed is limited to a speed of about 1-3 mm per second.
  • the first piezoelectric sheet 301 provided in step (a) may be a ceramic sintered body produced by an incomplete sintering condition.
  • the incomplete sintering conditions are relatively poorly specified one or more of the heating temperature, heating time, etc. compared to the above-mentioned complete sintering conditions, so that the resulting ceramic sintered body has a relatively low density (e.g., For example, about 80-90% of the theoretical density).
  • the ceramic sintered body produced by the incomplete sintering conditions has a relatively low sintering level compared to the ceramic sintered body produced by the complete sintering conditions, and thus the properties as piezoelectric ceramics are relatively insufficient, but the mechanical workability is relatively excellent.
  • the first piezoelectric sheet 301 provided in step (a) may be generated by using a composite piezoelectric material.
  • Composite piezoelectric materials include other complex materials in addition to pure piezoelectric materials such as PZT, which are relatively poor as piezoelectric ceramics, but have excellent mechanical processability, and are used for mass production. .
  • step (b) at the first surface (for example, the upper surface) of the first piezoelectric sheet 301, cutting is performed at predetermined intervals (L2 shown) in parallel in the first direction to form grooves.
  • the ceramic workpiece 302 is formed.
  • the cutting depth is limited to a depth having a length relatively smaller than the thickness of the first piezoelectric sheet 301 so that the remaining region remains on the second surface side.
  • step (c) the ceramic workpiece 302 having grooves parallel to the first direction is formed to be orthogonal to the first direction with respect to the second surface (for example, the lower surface) that is not in contact with the first surface. Dicing at predetermined intervals in parallel in two directions. Even in this case, the cutting depth is limited to a depth having a relatively small grinding compared to the thickness of the first piezoelectric sheet 301 so that the remaining region remains on the first surface side.
  • the groove formation in step (c) may be carried out in a state of inverting the vertical direction of the ceramic workpiece 302 for convenience of work.
  • step (d) the ceramic workpiece 302 in which the groove is formed in the first direction on the first surface and the groove in the second direction on the second surface may be sintered according to the complete sintering conditions.
  • step (d) may be omitted as necessary.
  • step (e) the grooves respectively cut in the first direction and the second direction and formed in the ceramic workpiece 302 are filled with the insulating material 312.
  • step (f) the first surface of the ceramic workpiece 302 in which each groove is filled with the insulating material 312 is polished (CMP) to remove the remaining region held on the first surface side.
  • step (f) exposes the piezoelectric rods 311 arranged in the form of an mxn array on the first surface side, and in step (g) any one of the third direction (that is, the first direction and the second direction).
  • a plurality of first electrode bars 313 are arranged in each of the plurality of piezoelectric rods 311 and electrically connected to upper ends of the plurality of piezoelectric rods 311.
  • step (h) the second surface of the ceramic workpiece 302 in which each groove is filled with the insulating material 312 is polished (CMP) to remove the remaining region held on the second surface side.
  • step (h) exposes the piezoelectric rods 311 arranged in the form of an mxn array on the second surface side, and in step (i) the other one of the fourth direction (ie, the first direction and the second direction).
  • a plurality of second electrode bars 314 are arranged, respectively, and electrically connected to upper ends of the plurality of piezoelectric rods 311. Steps (h) and (i) described above may be performed in an upside down direction of the ceramic workpiece 302 for convenience of operation.
  • a second piezoelectric sheet made of a completely sintered body may be prepared and attached to the bottom of the receiver Rx.
  • the second piezoelectric sheet functions as a second piezoelectric layer 320 that generates and emits an ultrasonic signal by applying a voltage, and corresponds to the transmitter Tx.
  • the second piezoelectric layer 320 may be attached to the bottom surface of the receiver Rx by using an adhesive, or may be attached by pressing and bonding a metal and a ceramic at high temperature and pressure.
  • the second piezoelectric layer 320 may have a thickness R2 sufficient to generate an ultrasonic signal and may have an area corresponding to the receiver Rx.
  • grooves are performed on the first piezoelectric sheet 301 formed according to incomplete sintering conditions or made of a composite piezoelectric material during manufacturing of the receiver Rx.
  • the transmitter Tx is formed of a second piezoelectric layer 320 in the form of a sheet having a sufficient area, an ultrasonic signal can be generated corresponding to the entire area of the receiver Rx, so that individual control according to the sensor array is possible. There is an advantage that is not required.
  • FIG. 6 is a view illustrating a shape of a receiver Rx 'included in an ultrasonic fingerprint sensor according to another embodiment of the present invention
  • FIG. 7 is a view of the receiver Rx' of the ultrasonic fingerprint sensor according to another embodiment of the present invention. It is a figure for demonstrating a manufacturing process.
  • the receiver Rx ′ of the ultrasonic fingerprint sensor includes a piezoelectric layer (signal receiving layer) in which a plurality of piezoelectric rods 100a are arranged in an mxn-type sensor array, and a first direction on a first surface of the piezoelectric layer.
  • Each piezoelectric rod 100a formed in the shape of a bar or a rod having a predetermined length has a piezo characteristic as described above, for example, PZT (lead zirconate titanate), PST, and the like.
  • Quartz, (Pb, Sm) TiO 3, PMN (Pb (MgNb) O 3) -PT (PbTiO 3), PVDF or PVDF-TrFe and may be formed using a piezoelectric material including at least one material.
  • the space between the piezoelectric rods 100a constituting the sensor array may be filled with the insulating material 340a.
  • the insulating material 340a may be determined as a material having a characteristic of not suppressing vertical vibration of the piezoelectric rod 100a to which voltage is applied using the first and second electrode bars 325a and 335a.
  • step (a) a sensor array is formed to prepare a first piezoelectric sheet 310a to function as the aforementioned piezoelectric layer (signal receiving layer).
  • the first piezoelectric sheet 310a provided in step (a) may be generated by incomplete sintering conditions. Alternatively, the first piezoelectric sheet 310a provided in step (a) may be generated by using a composite piezoelectric material.
  • step (b) each of the first surface (eg, upper surface shown) of the first piezoelectric sheet 310a and the second surface (eg, lower surface shown) not in contact with the first surface First and second metal layers 320a and 330a having a predetermined thickness are formed, respectively.
  • Each of the first and second metal layers 320a and 330a may be attached to each surface of the first piezoelectric sheet 310a using a conductive paste, or may be attached by pressing metal and ceramic at high temperature and pressure. It may be attached to the piezoelectric sheet 310a in a way.
  • step (c) the first piezoelectric sheet 310a to which the first and second metal layers 320a and 330a are attached is cut at predetermined intervals in parallel in the first direction, respectively, in the first direction.
  • the cutting depth is performed at a depth at which the thicknesses corresponding to the first metal layer 320a and the first piezoelectric sheet 310a are completely cut. In this case, only the lower end of the first piezoelectric sheet 310a may be processed to be cut. However, even if the second metal layer 330a is cut to some depth, if the second metal layer 330a is not completely cut, the conductivity of the second metal layer 330a may be maintained. There is a number.
  • a plating process may be performed to form terminals required for future module fabrication. If the plating for forming the terminal is performed immediately before the cutting process, the terminals corresponding to each of the plurality of first electrode bars 325a are formed together with only the above cutting process, thereby simplifying the manufacturing process.
  • step (d) the gap formed in the first piezoelectric sheet 310a by cutting to form the first electrode bar 325a is transferred to the insulating material 340a.
  • step (e) the first piezoelectric sheet 310a to which the first and second metal layers 320a and 330a are attached is diced at predetermined intervals in parallel in a second direction perpendicular to the first direction. , A plurality of second electrode bars 335a arranged in the second direction, respectively.
  • the cutting depth is performed at a depth at which the thicknesses corresponding to the second metal layer 320a and the first piezoelectric sheet 310a are completely cut, and fabrication of the module immediately before or after the cutting process is performed.
  • a plating process may be performed to form terminals required for the test.
  • the first piezoelectric sheet 310a is etched in a direction orthogonal to form the first electrode bar 325a and the second electrode bar 335a to form a plurality of piezoelectric rods 100a forming an mxn-type sensor array. Done.
  • step (f) the gap formed in the first piezoelectric sheet 310a by cutting to form the second electrode bar 335a is transferred to the insulating material 340a.
  • Steps (e) and (f) described above may be operated while being turned upside down and rotated 90 degrees in the horizontal direction for the convenience of manufacturing the ultrasonic fingerprint sensor.
  • the first electrode bar for applying a voltage to each of the plurality of piezoelectric rods 100a and the plurality of piezoelectric rods 100a, which form an mxn-type sensor array and is surrounded by the insulating material 340a, by the simple process described above.
  • An ultrasonic fingerprint sensor including a 325a and a second electrode bar 335a may be manufactured.
  • the receiving unit Rx 'module can be manufactured by itself.
  • the receiver Rx 'manufactured as described above may have a second piezoelectric sheet made of a fully sintered body as shown in FIG. 5 (j), and may be attached to a lower portion thereof to manufacture an ultrasonic fingerprint sensor.
  • the second piezoelectric sheet functions as a second piezoelectric layer that generates and emits an ultrasonic signal by applying a voltage, and corresponds to the transmitter Tx.
  • FIG. 8 is a plan view and a cross-sectional view taken along line AA of the ultrasonic fingerprint sensor according to another embodiment of the present invention
  • Figure 9 is a view for explaining a manufacturing process of the ultrasonic fingerprint sensor according to another embodiment of the present invention
  • 10 is a time graph of ultrasonic signal generation for fingerprint recognition in an ultrasonic fingerprint sensor according to another embodiment of the present invention.
  • Ultrasonic fingerprint sensor 300B is characterized in that the transmitting unit (Tx) and the receiving unit (Rx) is arranged separated in the horizontal direction.
  • the transmitter Tx may be disposed outside (ie, side) of the receiver Rx.
  • the receiver Rx has a shape with the first embodiment as shown in FIG. 3 and is manufactured by the manufacturing process of FIGS. 4 and 5, this is only one embodiment, and FIG. 6. Of course, it may also be Rx 'manufactured by the manufacturing process of FIG. 7 while having the same shape as that of the second embodiment as shown in FIG.
  • Rx the receiver has a shape as shown in FIG. 3 (Rx).
  • the ultrasonic fingerprint sensor 300B includes a receiver Rx including a first piezoelectric layer 310 in which a plurality of piezoelectric rods 311 are arranged in an mxn-type sensor array.
  • One or more transmitters Tx1 to Tx4 may be formed in the shape of one piezoelectric sheet and include second piezoelectric layers 360a to 360d disposed outside the receiver Rx.
  • the transmitter is arranged in all four directions of the receiver Rx is illustrated, but this is only an example and may be arranged in only one to three directions.
  • a base substrate 350 for supporting the first piezoelectric layer 310 may be provided below.
  • the base substrate 350 has a rigid characteristic and may be formed of glass, for example.
  • the total thicknesses of the first piezoelectric layer 310 and the base substrate 350 correspond to the thicknesses of the second piezoelectric layers 360a to 360d, so that the ultrasonic fingerprint sensor 300B may be entirely horizontal.
  • steps (a) to (i) of manufacturing the first piezoelectric layer 310 are the same as those described above with reference to FIGS. 4 and 5.
  • the base substrate 350 may be attached to the lower portion of the first piezoelectric layer 310.
  • the base substrate 350 serves as a support for supporting the first piezoelectric layer 310 to maintain horizontality, and the base substrate 350 may have a thickness corresponding to the transmission parts Tx1 to Tx4 to be attached to the outside.
  • the thickness of the base substrate 350 may correspond to the difference between the thickness R2 of the second piezoelectric layers 360a to 360d and the thickness R1 of the first piezoelectric layer 310.
  • a second piezoelectric sheet made of a full sintered body may be prepared and attached to the outside of the receiver Rx to which the base substrate 350 is attached.
  • the second piezoelectric sheet functions as second piezoelectric layers 360a to 360d that generate and emit an ultrasonic signal by applying a voltage.
  • the second piezoelectric layers 360a to 360d may have a thickness R2 sufficient to generate an ultrasonic signal, and may have a length corresponding to the width and / or length of the receiver Rx.
  • the transmitter Tx includes one second piezoelectric layer 360a to 360d having a sufficient size to generate an ultrasonic signal corresponding to the entire area of the receiver Rx.
  • ultrasonic signals S1, S2, ... having a predetermined resonance frequency f are shown in (a).
  • K transmitters generating ultrasonic signals may be provided along the outer edge of the receiver Rx.
  • the fingerprint recognition time at the receiver Rx can be shortened by 1 / K.
  • each of the ultrasonic signals S11 and S12, S21 and S22, S31 and S32, S41 and S42 generated by each of the transmitters Tx1 to Tx4 have a predetermined period T.
  • the generation time of the ultrasonic signal in each of the transmitters Tx1 to Tx4 may be divided and divided into T / 4 intervals within one period T. That is, at the first transmitter Tx1, at the first time point T1, at the second transmitter Tx2, at the second time point T1 + T / 4, and at the third transmitter Tx3, at the third time point T1 + 2T. 4), the fourth transmitter Tx4 may generate an ultrasonic signal at a fourth time point T1 + 3T / 4.

Abstract

Provided are an ultrasonic fingerprint sensor and a method for manufacturing same. The method for manufacturing the ultrasonic fingerprint sensor may comprise the steps of: (a) manufacturing a first piezoelectric layer formed of piezoelectric rods arranged in the form of an m x n sensor array; and (b) attaching, to the lower portion of the first piezoelectric layer, a second piezoelectric layer in the form of a single piezoelectric sheet.

Description

초음파 지문 센서 및 그 제조 방법Ultrasonic Fingerprint Sensor and Manufacturing Method Thereof
본 발명은 초음파 지문 센서 및 그 제조 방법에 관한 것이다. The present invention relates to an ultrasonic fingerprint sensor and a method of manufacturing the same.
생체 인식(biometrics)은 고도의 보안 레벨을 제공하는 기술이며, 지문 인식 기술은 중요한 생체 인식 기술 중 하나이다. Biometrics is a technology that provides a high level of security, and fingerprint technology is one of the important biometric technologies.
일반적으로 지문 인식은 사용자에게서 지문을 입력받아 형성한 지문 영상에서 특정 패턴이나 특징점(예를 들어, 지문의 융선이 분기되는 분기점, 융선이 끝나는 단점 등)을 추출하고, 미리 저장된 지문 영상의 패턴 또는 특징점과 대비하도록 수행된다.In general, fingerprint recognition extracts a specific pattern or feature point (for example, a branching point at which the ridge of the fingerprint branches, a disadvantage of ending the ridge) from a fingerprint image formed by receiving a fingerprint from the user, and a pattern of a pre-stored fingerprint image or It is performed to contrast with the feature point.
사용자의 지문을 인식하는 지문 센서는 예를 들어 주변 부품이나 구조를 포함하는 모듈의 형태로 제조될 수 있고, 물리적인 기능키에 일체화되어 구현될 수도 있기 때문에, 최근 각종 전자기기에 다양하게 장착되고 있다.The fingerprint sensor for recognizing a user's fingerprint may be manufactured in the form of a module including a peripheral component or a structure, for example, and may be implemented integrally with a physical function key. have.
도 1에는 종래기술에 따른 초음파 지문 센서의 구성이 개략적으로 도시되어 있다.1 schematically illustrates the configuration of an ultrasonic fingerprint sensor according to the prior art.
도 1을 참조하면, 초음파 지문 센서는 m x n 형태의 센서 어레이(array)를 형성하도록 배열되는 복수의 압전 로드(rod)(100), 복수의 압전 로드(100)의 상측 단부에 전기적으로 접속되도록 제1 방향으로 배열되는 복수의 제1 전극바(106), 복수의 압전 로드(100)의 하측 단부에 전기적으로 접속되도록 제1 방향에 직교하는 제2 방향으로 배열되는 복수의 제2 전극바(108)를 포함한다. Referring to FIG. 1, the ultrasonic fingerprint sensor may be configured to be electrically connected to a plurality of piezoelectric rods 100 and upper ends of the plurality of piezoelectric rods 100 arranged to form an array of mxn-type sensors. The plurality of first electrode bars 106 arranged in one direction and the plurality of second electrode bars 108 arranged in a second direction perpendicular to the first direction to be electrically connected to lower ends of the plurality of piezoelectric rods 100. ).
도시된 참조부호 102는 손가락이 센서 어레이에 근접하게 놓여지도록 하기 위해 제1 전극바(106)의 상부에 형성된 보호 코팅인 차폐층을 나타내고, 참조부호 104는 차폐층(102)에 반대되는 센서 어레이의 단부에 부착되어 복수의 압전 로드(100)를 하부에서 지지하는 지지체를 나타낸다.The depicted reference numeral 102 denotes a shielding layer, which is a protective coating formed on top of the first electrode bar 106 so that the finger is placed in proximity to the sensor array, and reference numeral 104 denotes a sensor array opposite the shielding layer 102. The support is attached to the end of the support for supporting the plurality of piezoelectric rods 100 from the bottom.
여기서, 압전 로드(100)는 피에조(Piezo) 특성을 가지는 소재로 형성되며, 예를 들어 PZT(납 지르콘산염 티탄산염), PST, Quartz, (Pb, Sm)TiO3, PMN(Pb(MgNb)O3)-PT(PbTiO3), PVDF 또는 PVDF-TrFe 중 적어도 하나의 물질이 포함된 소재가 이에 해당될 수 있다.Here, the piezoelectric rod 100 is formed of a material having piezo characteristics, for example, PZT (lead zirconate titanate), PST, Quartz, (Pb, Sm) TiO3, PMN (Pb (MgNb) O3 The material may include at least one of) -PT (PbTiO3), PVDF, or PVDF-TrFe.
압전 로드(100)의 상측 단부에 접속된 제1 전극바(106)와 하측 단부에 접속된 제2 전극바(108)에 초음파 대역의 공진 주파수를 갖는 전압을 인가하여 압전 로드(100)를 상하로 진동시키면, 도 2에 예시된 바와 같이 소정의 주파수를 가지는 초음파 신호가 생성되어 방출된다. A voltage having a resonant frequency of an ultrasonic band is applied to the first electrode bar 106 connected to the upper end of the piezoelectric rod 100 and the second electrode bar 108 connected to the lower end of the piezoelectric rod 100 to thereby move the piezoelectric rod 100 up and down. When vibrating, the ultrasonic signal having a predetermined frequency is generated and emitted as illustrated in FIG.
차폐층(102)에 손가락이 접촉되지 않은 상태에서는, 압전 로드(100)에서 방출된 초음파 신호는 압전 로드(100)와 공기의 계면을 통과하지 못하고 압전 로드(100) 내부로 되돌아온다. In the state where the finger is not in contact with the shielding layer 102, the ultrasonic signal emitted from the piezoelectric rod 100 does not pass through the interface between the piezoelectric rod 100 and the air and returns to the inside of the piezoelectric rod 100.
그러나, 손가락이 접촉된 상태에서는, 방출된 초음파 신호의 일부가 손가락의 피부와 압전 로드(100)의 경계면을 뚫고 손가락 내부로 진행하게 되며, 이때 반사되어 되돌아오는 신호의 강도가 낮아져 이를 이용하여 지문 패턴이 감지될 수 있다. However, in the state where the finger is in contact, a part of the emitted ultrasonic signal penetrates the interface between the skin of the finger and the piezoelectric rod 100 and proceeds to the inside of the finger. The pattern can be detected.
전술한 초음파 지문 센서는 압전 로드(100) 각각이 초음파 신호의 송신단(Tx) 및 수신단(Rx) 겸용으로 작동하게 된다. 이 경우 초음파 신호를 송신할 때에도m x n 어레이에 따라 개별 제어를 수행해야 하는 불편함이 있다. In the above-described ultrasonic fingerprint sensor, each of the piezoelectric rods 100 operates as a transmitting end Tx and a receiving end Rx of the ultrasonic signal. In this case, even when transmitting an ultrasonic signal, it is inconvenient to perform individual control according to the m x n array.
이와 관련하여 한국공개특허 제10-2011-0138257호에는 개량된 압전 식별 장치 및 그 응용이 개시되어 있다. In this regard, Korean Laid-Open Patent Publication No. 10-2011-0138257 discloses an improved piezoelectric identification device and its application.
본 발명은 송신부(Tx)와 수신부(Rx)에 대해 그 동작 특성을 고려하여 각각 상이한 공정(상이한 두께/재질/소결온도 등)으로 제작한 후 하나의 모듈로 결합시켜 초음파 신호의 송신 및 수신에 있어 우수한 특성을 보이는 초음파 지문 센서 및 그 제조 방법을 제공하기 위한 것이다. According to the present invention, the transmitter Tx and the receiver Rx are manufactured in different processes (different thickness / material / sintering temperature, etc.) in consideration of their operating characteristics, and then combined into one module to transmit and receive ultrasonic signals. It is an object of the present invention to provide an ultrasonic fingerprint sensor and a method of manufacturing the same.
본 발명은 수신부(Rx)에 비해 적은 수의 송신부(Tx)를 구비하여 초음파 신호 송신 과정에서의 제어 편의성을 향상시킬 수 있는 초음파 지문 센서 및 그 제조 방법을 제공하기 위한 것이다. The present invention is to provide an ultrasonic fingerprint sensor and a method of manufacturing the same having a smaller number of transmitters (Tx) than the receiver (Rx) to improve the control convenience in the ultrasonic signal transmission process.
본 발명은 복수의 송신부(Tx)에 대해 초음파 신호 송신 시점을 세분화하여 지문 인식 시간을 단축시킬 수 있는 초음파 지문 센서 및 그 제조 방법을 제공하기 위한 것이다. An object of the present invention is to provide an ultrasonic fingerprint sensor and a method of manufacturing the same, which can shorten a fingerprint recognition time by subdividing an ultrasonic signal transmission time point for a plurality of transmitters Tx.
본 발명의 이외의 목적들은 하기의 설명을 통해 쉽게 이해될 수 있을 것이다.Other objects of the present invention will be readily understood through the following description.
본 발명의 일 측면에 따르면, 초음파 지문 센서의 제조 방법에 있어서, (a) m x n 센서 어레이 형태의 압전 로드가 형성된 제1 압전층을 제조하는 단계; (b) 하나의 압전 시트 형태의 제2 압전층을 상기 제1 압전층의 하부에 부착하는 단계를 포함하는 초음파 지문 센서의 제조 방법이 제공된다. According to an aspect of the present invention, a method of manufacturing an ultrasonic fingerprint sensor, comprising: (a) manufacturing a first piezoelectric layer having a piezoelectric rod in the form of an m x n sensor array; (b) attaching a second piezoelectric layer in the form of a piezoelectric sheet to a lower portion of the first piezoelectric layer, a method of manufacturing an ultrasonic fingerprint sensor is provided.
또는 본 발명의 다른 측면에 따르면, 초음파 지문 센서의 제조 방법에 있어서, (a) m x n 센서 어레이 형태의 압전 로드가 형성된 제1 압전층을 제조하는 단계; (b) 상기 제1 압전층의 하부에 베이스 기판을 부착하는 단계: (c) 하나의 압전 시트 형태의 제2 압전층을 상기 제1 압전층 및 상기 베이스 기판의 측면에 부착하는 단계를 포함하는 초음파 지문 센서의 제조 방법이 제공된다. According to another aspect of the present invention, a method of manufacturing an ultrasonic fingerprint sensor, the method comprising the steps of: (a) manufacturing a first piezoelectric layer formed with a piezoelectric rod in the form of an m x n sensor array; (b) attaching a base substrate to the lower portion of the first piezoelectric layer: (c) attaching a second piezoelectric layer in the form of one piezoelectric sheet to side surfaces of the first piezoelectric layer and the base substrate. A method of manufacturing an ultrasonic fingerprint sensor is provided.
상기 제1 압전층은 초음파 지문 센서의 수신부로 기능하고 상기 제2 압전층은 초음파 지문 센서의 송신부로 기능할 수 있다.The first piezoelectric layer may function as a receiver of an ultrasonic fingerprint sensor, and the second piezoelectric layer may function as a transmitter of an ultrasonic fingerprint sensor.
상기 단계 (a)는, (a1) 제1 압전 시트를 마련하는 단계; (a2) 상기 제1 압전 시트의 제1 표면에서 제2 표면 측에 잔존 영역이 남는 깊이로 미리 지정된 간격마다 제1 방향으로 평행하게 절삭(dicing) 가공되고, 상기 세라믹 소결체의 제2 표면에서 상기 제1 표면 측에 잔존 영역이 남는 깊이로 미리 지정된 간격마다 제1 방향에 수직한 제2 방향으로 평행하게 절삭(dicing) 가공되어 세라믹 가공체가 형성되는 단계; (a3) 상기 단계(a2)의 절삭 가공에 의해 상기 세라믹 가공체에 형성된 홈에 절연재가 전충(filling)되는 단계; (a4) 제1 표면과 제2 표면에서 압전 로드가 각각 어레이 형태로 배열되어 노출되도록 제1 표면 측과 제2 표면 측에 각각 존재하는 잔존 영역을 제거하는 단계를 포함할 수 있다.Said step (a) comprises the steps of: (a1) providing a first piezoelectric sheet; (a2) cutting in parallel in a first direction at predetermined intervals to a depth at which a remaining region remains on the second surface side at the first surface of the first piezoelectric sheet, and at the second surface of the ceramic sintered body Forming a ceramic workpiece by cutting in parallel in a second direction perpendicular to the first direction at predetermined intervals at a depth at which the remaining region remains on the first surface side; (a3) filling an insulating material into a groove formed in the ceramic workpiece by the cutting in the step (a2); (a4) removing the remaining regions respectively present on the first surface side and the second surface side such that the piezoelectric rods are arranged and exposed in an array form on the first surface and the second surface, respectively.
또는 상기 단계 (a)는, (a1) 제1 표면에 제1 금속층이 형성되고, 제1 표면과 접촉되지 않는 제2 표면에 제2 금속층이 형성된 제1 압전 시트가 마련되는 단계; (a2) 제1 방향으로 평행하게 미리 지정된 간격으로 상기 제1 금속층과 상기 압전 시트가 절삭(dicing)되는 단계; (a3) 상기 단계(a2)에 의해 상기 제1 압전 시트에 형성된 틈이 미리 지정된 절연재로 전충(filling)되는 단계; (a4) 제1 방향에 직교하는 제2 방향으로 평행하게 미리 지정된 간격으로 상기 제1 압전 시트와 제2 금속층이 절삭되는 단계; 및 (a5) 상기 단계(a4)에 의해 상기 제1 압전 시트에 형성된 틈이 미리 지정된 절연재로 전충되는 단계를 포함할 수 있다. Alternatively, step (a) may include: (a1) providing a first piezoelectric sheet having a first metal layer formed on the first surface and having a second metal layer formed on a second surface not in contact with the first surface; (a2) cutting the first metal layer and the piezoelectric sheet at predetermined intervals in parallel in a first direction; (a3) filling the gap formed in the first piezoelectric sheet by the step (a2) with a predetermined insulating material; (a4) cutting the first piezoelectric sheet and the second metal layer at predetermined intervals in parallel in a second direction orthogonal to a first direction; And (a5) filling the gap formed in the first piezoelectric sheet by the step (a4) with a predetermined insulating material.
또한, 상술한 초음파 지문 센서의 제조 방법에 의해 제조된 초음파 지문 센서가 제공된다.Also provided is an ultrasonic fingerprint sensor manufactured by the above-described method for manufacturing an ultrasonic fingerprint sensor.
한편 본 발명의 또 다른 측면에 따르면, m x n 센서 어레이 형태의 압전 로드가 형성된 제1 압전층을 포함하는 수신부; 하나의 압전 시트 형태의 제2 압전층을 포함하는 송신부를 포함하되, 상기 송신부는 상기 수신부의 하부에 부착된 것을 특징으로 하는 초음파 지문 센서가 제공된다.On the other hand, according to another aspect of the present invention, a receiver including a first piezoelectric layer formed with a piezoelectric rod in the form of m x n sensor array; An ultrasonic fingerprint sensor is provided, including a transmitter including a second piezoelectric layer in the form of one piezoelectric sheet, wherein the transmitter is attached to a lower portion of the receiver.
또는 본 발명의 또 다른 측면에 따르면, m x n 센서 어레이 형태의 압전 로드가 형성된 제1 압전층 및 상기 제1 압전층의 하부에 부착되는 베이스 기판을 포함하는 수신부; 하나의 압전 시트 형태의 제2 압전층을 포함하는 하나 이상의 송신부를 포함하되, 상기 송신부는 상기 수신부의 측면에 부착된 것을 특징으로 하는 초음파 지문 센서가 제공된다. Alternatively, according to another aspect of the invention, the receiving unit including a first piezoelectric layer formed with a piezoelectric rod in the form of m x n sensor array and a base substrate attached to the lower portion of the first piezoelectric layer; An ultrasonic fingerprint sensor is provided, including one or more transmitters including a second piezoelectric layer in the form of one piezoelectric sheet, wherein the transmitter is attached to a side of the receiver.
상기 제1 압전층은 불완전 소결(Half sintering) 조건에 의해 생성된 세라믹 소결체 혹은 컴포지트(composite) 압전 소재를 이용하여 생성될 수 있다.The first piezoelectric layer may be formed using a ceramic sintered body or a composite piezoelectric material produced by an incomplete sintering condition.
상기 제2 압전층은 완전 소결체로 이루어진 제2 압전 시트일 수 있다.The second piezoelectric layer may be a second piezoelectric sheet made of a completely sintered body.
상기 송신부가 K개인 경우, 초음파 신호는 발생 시점이 공진주파수에 상응하는 일 주기(T) 이내에서 T/K 간격으로 분할되어 K개의 상기 송신부에서 순차적으로 발생될 수 있다.When there are K transmitters, the ultrasonic signals may be divided in T / K intervals within a period T corresponding to a resonance frequency and sequentially generated in K transmitters.
전술한 것 외의 다른 측면, 특징, 이점이 이하의 도면, 특허청구범위 및 발명의 상세한 설명으로부터 명확해질 것이다.Other aspects, features, and advantages other than those described above will become apparent from the following drawings, claims, and detailed description of the invention.
본 발명의 실시예에 따르면, 송신부(Tx)와 수신부(Rx)에 대해 그 동작 특성을 고려하여 각각 상이한 공정(상이한 두께/재질/소결온도 등)으로 제작한 후 하나의 모듈로 결합시켜 초음파 신호의 송신 및 수신에 있어 우수한 특성을 보이는 효과가 있다.According to an embodiment of the present invention, the transmitter Tx and the receiver Rx are manufactured in different processes (different thickness / material / sintering temperature, etc.) in consideration of their operating characteristics, and are then combined into one module to make an ultrasonic signal. There is an effect that shows excellent characteristics in the transmission and reception of a.
또한, 수신부(Rx)에 비해 적은 수의 송신부(Tx)를 구비하여 초음파 신호 송신 과정에서의 제어 편의성을 향상시킬 수 있는 효과도 있다.In addition, there is an effect that can improve the control convenience in the ultrasonic signal transmission process by providing a smaller number of transmitters (Tx) than the receiver (Rx).
또한, 복수의 송신부(Tx)에 대해 초음파 신호 송신 시점을 세분화하여 지문 인식 시간을 단축시킬 수 있는 효과도 있다. In addition, there is an effect that the fingerprint recognition time can be shortened by subdividing the ultrasonic signal transmission time points for the plurality of transmitters Tx.
도 1은 종래기술에 따른 초음파 지문 센서의 구성을 개략적으로 나타낸 도면.1 is a view schematically showing the configuration of an ultrasonic fingerprint sensor according to the prior art.
도 2는 종래기술에 따른 압전 로드의 형상 및 동작을 설명하기 위한 도면.2 is a view for explaining the shape and operation of the piezoelectric rod according to the prior art.
도 3은 본 발명의 일 실시예에 따른 초음파 지문 센서의 형상을 예시한 도면.Figure 3 illustrates the shape of the ultrasonic fingerprint sensor according to an embodiment of the present invention.
도 4 및 도 5는 본 발명의 일 실시예에 따른 초음파 지문 센서의 제조 공정을 예시한 도면. 4 and 5 illustrate a manufacturing process of an ultrasonic fingerprint sensor according to an embodiment of the present invention.
도 6은 본 발명의 다른 실시예에 따른 초음파 지문 센서에 포함되는 수신부(Rx') 형상을 예시한 도면.6 is a view illustrating a shape of a receiver Rx 'included in an ultrasonic fingerprint sensor according to another exemplary embodiment of the present invention.
도 7은 본 발명의 다른 실시예에 따른 초음파 지문 센서의 수신부(Rx')의 제조 공정을 설명하기 위한 도면.7 is a view for explaining a manufacturing process of the receiving unit (Rx ') of the ultrasonic fingerprint sensor according to another embodiment of the present invention.
도 8은 본 발명의 다른 실시예에 따른 초음파 지문 센서의 평면도와 단면도.8 is a plan view and a cross-sectional view of the ultrasonic fingerprint sensor according to another embodiment of the present invention.
도 9는 본 발명의 다른 실시예에 따른 초음파 지문 센서의 제조 공정을 설명하기 위한 도면.9 is a view for explaining a manufacturing process of the ultrasonic fingerprint sensor according to another embodiment of the present invention.
도 10은 본 발명의 다른 실시예에 따른 초음파 지문 센서에서의 지문 인식을 위한 초음파 신호 발생의 시간 그래프. 10 is a time graph of ultrasonic signal generation for fingerprint recognition in an ultrasonic fingerprint sensor according to another embodiment of the present invention.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all transformations, equivalents, and substitutes included in the spirit and scope of the present invention. In the following description of the present invention, if it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는"가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "having" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
층, 영역 또는 기판과 같은 요소가 다른 요소 "위(on)"에 존재하는 것으로 또는 "위로(onto)" 확장되는 것으로 기술되는 경우, 그 요소는 다른 요소의 직접 위에 있거나 직접 위로 확장될 수 있고, 또는 중간의 개입 요소가 존재할 수도 있다. 반면에, 하나의 요소가 다른 요소 "바로 위(directly on)"에 있거나 "바로 위로(directly onto)" 확장된다고 언급되는 경우, 다른 중간 요소들은 존재하지 않는다. 또한, 하나의 요소가 다른 요소에 "연결(connected)"되거나 "결합(coupled)"된다고 기술되는 경우, 그 요소는 다른 요소에 직접 연결되거나 직접 결합될 수 있고, 또는 중간의 개입 요소가 존재할 수도 있다. 반면에, 하나의 요소가 다른 요소에 "직접 연결(directly connected)"되거나 "직접 결합(directly coupled)"된다고 기술되는 경우에는 다른 중간 요소가 존재하지 않는다.If an element such as a layer, region or substrate is described as being on or "onto" another element, the element may be directly above or directly above another element and There may be intermediate or intervening elements. On the other hand, if one element is mentioned as being "directly on" or extending "directly onto" another element, no other intermediate elements are present. In addition, when one element is described as being "connected" or "coupled" to another element, the element may be directly connected to or directly coupled to another element, or an intermediate intervening element may be present. have. On the other hand, when one element is described as being "directly connected" or "directly coupled" to another element, no other intermediate element exists.
"아래의(below)" 또는 "위의(above)" 또는 "상부의(upper)" 또는 "하부의(lower)" 또는 "수평의(horizontal)" 또는 "측면의(lateral)" 또는 "수직의(vertical)" 등과 같은 상대적인 용어들은 여기에서 도면에 도시된 바와 같이 하나의 요소, 층 또는 영역의 다른 요소, 층 또는 영역에 대한 관계를 기술하는데 사용될 수 있다. 이들 용어들은 도면에 묘사된 방향(orientation)에 부가하여 장치의 다른 방향을 포괄하기 위한 의도를 갖는 것으로 이해되어야 한다."Below" or "above" or "upper" or "lower" or "horizontal" or "lateral" or "vertical" Relative terms such as "vertical" and the like may be used herein to describe a relationship of one element, layer or region to another element, layer or region, as shown in the figures. It is to be understood that these terms are intended to encompass other directions of the device in addition to the orientation depicted in the figures.
또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일하거나 관련된 참조부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. In addition, in the description with reference to the accompanying drawings, the same components regardless of reference numerals will be given the same or related reference numerals and redundant description thereof will be omitted. In the following description of the present invention, if it is determined that the detailed description of the related known technology may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
도 3은 본 발명의 일 실시예에 따른 초음파 지문 센서의 형상을 예시한 도면이고, 도 4 및 도 5는 본 발명의 일 실시예에 따른 초음파 지문 센서의 제조 공정을 예시한 도면이다. 3 is a diagram illustrating a shape of an ultrasonic fingerprint sensor according to an embodiment of the present invention, and FIGS. 4 and 5 are views illustrating a manufacturing process of an ultrasonic fingerprint sensor according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 초음파 지문 센서(300A)는 송신부(Tx)와 수신부(Rx)가 수직 방향으로 분리되어 배치된 것을 특징으로 하고 있다. The ultrasonic fingerprint sensor 300A according to the exemplary embodiment of the present invention is characterized in that the transmitter Tx and the receiver Rx are separated from each other in the vertical direction.
도 3을 참조하면, 본 실시예에 따른 초음파 지문 센서(300A)는 복수의 압전 로드(311)가 m x n 형태의 센서 어레이로 배열된 제1 압전층(310)을 포함하는 수신부(Rx)와, 하나의 압전 시트 형태로 형성된 제2 압전층(320)을 포함하는 송신부(Tx)를 포함할 수 있다. Referring to FIG. 3, the ultrasonic fingerprint sensor 300A according to the present exemplary embodiment includes a receiver Rx including a first piezoelectric layer 310 in which a plurality of piezoelectric rods 311 are arranged in an mxn-type sensor array; The transmission unit Tx including the second piezoelectric layer 320 formed in the shape of one piezoelectric sheet may be included.
제1 압전층(310)은 제1 표면에 소정의 방향으로 배열된 복수의 제1 전극바(313), 제1 표면에 접촉되지 않는 제2 표면에 제1 전극바(313)의 배열 방향에 직교하는 방향으로 배열된 복수의 제2 전극바(314)를 더 포함할 수 있다. The first piezoelectric layer 310 has a plurality of first electrode bars 313 arranged on a first surface in a predetermined direction, and a first electrode bar 313 is arranged on a second surface which is not in contact with the first surface. It may further include a plurality of second electrode bars 314 arranged in the direction orthogonal to each other.
각각의 압전 로드(311)는 소정의 제1 길이(R1)를 가지는 바(bar) 또는 봉 등의 형상으로 형성될 수 있다. Each piezoelectric rod 311 may be formed in the shape of a bar or rod having a first length R1.
각각의 압전 로드(311)는 피에조(Piezo) 특성을 가지도록 예를 들어 PZT(납 지르콘산염 티탄산염), PST, Quartz, (Pb, Sm)TiO3, PMN(Pb(MgNb)O3)-PT(PbTiO3), PVDF 또는 PVDF-TrFe 등 중 적어도 하나의 물질을 포함하는 압전 재료를 이용하여 형성될 수 있다. Each piezoelectric rod 311 has a piezo characteristic, for example, PZT (lead zirconate titanate), PST, Quartz, (Pb, Sm) TiO3, PMN (Pb (MgNb) O3) -PT ( PbTiO 3), PVDF or PVDF-TrFe may be formed using a piezoelectric material containing at least one material.
제1 압전층(310)의 경우에는 완전 소결체 대신에 불완전 소결(half sintering) 조건에 의해 소결 처리된 세라믹 소결체를 사용하여 제조될 수 있다. 또는 제1 압전층(310)은 컴포지트(composite) 압전 소재를 이용하여 제조될 수도 있다. The first piezoelectric layer 310 may be manufactured using a ceramic sintered body sintered by an incomplete sintering condition instead of a complete sintered body. Alternatively, the first piezoelectric layer 310 may be manufactured using a composite piezoelectric material.
또한, 센서 어레이를 이루는 각각의 압전 로드(311)들 사이의 공간은 절연재(312)로 채워질 수 있다. 절연재(312)는 각각의 압전 로드(311)들을 전기적으로 분리시켜, 이웃하는 압전 로드에서 수신되는 손가락으로부터의 반사 초음파 신호에 대한 상호 간섭을 억제하는 특성을 가지는 재질로 결정될 수 있을 것이다. In addition, the space between the respective piezoelectric rods 311 constituting the sensor array may be filled with the insulating material 312. The insulating material 312 may be determined as a material having a property of electrically separating the respective piezoelectric rods 311 to suppress mutual interference with respect to the reflected ultrasonic signals from the finger received from the neighboring piezoelectric rods.
송신부(Tx)의 제2 압전층(320) 역시 피에조(Piezo) 특성을 가지도록 예를 들어 PZT(납 지르콘산염 티탄산염), PST, Quartz, (Pb, Sm)TiO3, PMN(Pb(MgNb)O3)-PT(PbTiO3), PVDF 또는 PVDF-TrFe 등 중 적어도 하나의 물질을 포함하는 압전 재료를 이용하여 형성될 수 있다. For example, PZT (lead zirconate titanate), PST, Quartz, (Pb, Sm) TiO3, PMN (Pb (MgNb), and the like may also have piezoelectric characteristics. O 3) -PT (PbTiO 3), PVDF or PVDF-TrFe may be formed using a piezoelectric material including at least one material.
특히 제2 압전층(320)은 발생된 초음파가 지문 인식을 위해 충분한 위치까지 도달할 수 있도록 공진주파수의 출력을 높게 가져갈 수 있는 완전 소결체로 이루어질 수 있다. In particular, the second piezoelectric layer 320 may be made of a fully sintered body capable of bringing the output of the resonance frequency high so that the generated ultrasonic waves can reach a sufficient position for fingerprint recognition.
그리고 제2 압전층(320)은 높은 출력을 위해 제2 길이(R2) 이상의 두께를 가질 수 있다. 여기서, 제2 길이(R2)는 제1 길이(R1)보다 클 수 있다(R2 > R1). 이는 높은 출력의 초음파 신호를 발생시켜야 하는 송신부(Tx)는 충분한 두께를 가져야 하는 반면, 수신부(Rx)에 해당하는 제2 압전층(320)은 상대적으로 그 두께가 얇아도 손가락에서 반사되는 초음파 신호를 수신하기에 충분하기 때문이다. The second piezoelectric layer 320 may have a thickness greater than or equal to the second length R2 for high output. Here, the second length R2 may be larger than the first length R1 (R2> R1). This is because the transmitter Tx, which should generate a high output ultrasonic signal, should have a sufficient thickness, while the second piezoelectric layer 320 corresponding to the receiver Rx has a relatively thin thickness but is reflected by the finger. Because it is enough to receive it.
또한, 제2 압전층(320)은 수신부(Rx)의 m x n 형태의 센서 어레이를 이루는 제1 압전층(310)에 상응하는 면적을 가질 수 있다. 이는 제2 압전층(320)에서 발생한 초음파 신호가 제1 압전층(310) 전체에 대해 영향을 미칠 수 있게 하기 위함이다.In addition, the second piezoelectric layer 320 may have an area corresponding to the first piezoelectric layer 310 forming the m x n sensor array of the receiver Rx. This is to allow the ultrasonic signal generated in the second piezoelectric layer 320 to affect the entire first piezoelectric layer 310.
본 실시예에서 제2 압전층(320)에도 초음파 신호를 발생시키기 위해 전압 인가를 위한 전극이 구비될 수 있다. 여기서, 제2 압전층(320)의 전극은 제1 압전층(310)의 전극(특히, 제2 전극바(314))과는 전기적 연결이 수립되지 않도록 하는 구조를 가지거나 그 사이에 절연재가 개재될 수 있을 것이다. In this embodiment, the second piezoelectric layer 320 may also be provided with an electrode for applying a voltage to generate an ultrasonic signal. Here, the electrode of the second piezoelectric layer 320 has a structure such that an electrical connection is not established with an electrode (particularly, the second electrode bar 314) of the first piezoelectric layer 310 or an insulating material therebetween. It may be intervened.
제2 압전층(320)의 전극을 통해 전압이 인가되면, 제2 압전층(320)에서 초음파 신호를 발생시켜 방출하게 된다. 손가락이 접촉된 상태에서는, 방출된 초음파 신호의 일부가 지문의 융 또는 골에 부딛쳐서 되돌아오게 되는데 이러한 신호를 제1 압전층(310)에서 수신하여 전기 신호로 전환시킴으로써 지문 패턴이 감지될 수 있다. When a voltage is applied through the electrode of the second piezoelectric layer 320, the second piezoelectric layer 320 generates and emits an ultrasonic signal. In the state where the finger is in contact, a part of the emitted ultrasonic signal is returned by colliding with the melting or valley of the fingerprint, and the fingerprint pattern may be detected by receiving the signal from the first piezoelectric layer 310 and converting the signal into an electrical signal. .
이하, 도 4 및 도 5를 참조하여 본 실시예에 따른 초음파 지문 센서의 제조 방법에 대해 설명한다. Hereinafter, a method of manufacturing the ultrasonic fingerprint sensor according to the present embodiment will be described with reference to FIGS. 4 and 5.
도 4 및 도 5를 참조하면, 단계 (a)에서 제1 압전 시트(sheet)(301)가 마련된다. 제1 압전 시트(301)는 후술되는 바와 같이, 센서 어레이가 형성되어 전술한 제1 압전층으로 기능한다. 4 and 5, in step (a), a first piezoelectric sheet 301 is provided. As described later, the first piezoelectric sheet 301 has a sensor array formed to function as the first piezoelectric layer described above.
압전 시트는 예를 들어 PZT 등의 압전 세라믹 분말이 열처리하여 박형(薄型) 시트(sheet)화된 것으로, 그 두께에 따라 시트 또는 필름으로 달리 호칭되는 경우가 있으나 본 명세서에서는 시트로 통칭하기로 한다.The piezoelectric sheet is, for example, a piezoelectric ceramic powder such as PZT, which has been heat-treated into a thin sheet, and may be referred to as a sheet or a film depending on its thickness, but will be referred to herein as a sheet.
단계 (a)에서 마련되는 제1 압전 시트(301)는 전술한 것과 같이 불완전 소결 조건에 의해 소결 처리되어 생성된 세라믹 소결체일 수 있다. As described above, the first piezoelectric sheet 301 provided in step (a) may be a ceramic sintered body produced by sintering under incomplete sintering conditions.
압전 시트 형태를 포함하여 일반적으로 세라믹 소결체는 PZT 등과 같은 압전 재료에 대한 완전 소결(Full sintering) 조건에 의해 형성된다. 형성된 세라믹 소결체가 예를 들어 이론적인 밀도의 약 97~99% 밀도를 가지도록 하기 위하여 완전 소결 조건으로 지정되는 온도 조건과 시간 조건은 다양할 수 있다.Ceramic sinters, including piezoelectric sheet forms, are generally formed by full sintering conditions for piezoelectric materials such as PZT and the like. The temperature conditions and time conditions specified as complete sintering conditions may vary, for example, such that the ceramic sinter formed has a density of about 97-99% of the theoretical density.
그러나 완전 소결 조건에 의해 생성된 세라믹 소결체는, 압전 세라믹으로서의 특성은 우수하지만, 절삭 속도가 초당 약 1-3mm의 속도로 제한되는 등 상대적으로 기계적 가공성이 부족한 단점이 있다.However, the ceramic sintered body produced by the complete sintering condition is excellent in piezoelectric ceramic characteristics, but has a disadvantage in that the machinability is relatively poor, such that the cutting speed is limited to a speed of about 1-3 mm per second.
이에 비해, 단계 (a)에서 마련된 제1 압전 시트(301)는 불완전 소결(Half sintering) 조건에 의해 생성된 세라믹 소결체일 수 있다. In contrast, the first piezoelectric sheet 301 provided in step (a) may be a ceramic sintered body produced by an incomplete sintering condition.
여기서, 불완전 소결 조건은 전술한 완전 소결 조건에 비해 가열 온도, 가열 시간 등 중 하나 이상이 상대적으로 열악하게 지정되며, 따라서 생성된 세라믹 소결체는 완전 소결 조건의 경우에 비해 상대적으로 낮은 밀도(예를 들어, 이론적인 밀도의 약 80~90% 밀도)를 가지게 된다. Here, the incomplete sintering conditions are relatively poorly specified one or more of the heating temperature, heating time, etc. compared to the above-mentioned complete sintering conditions, so that the resulting ceramic sintered body has a relatively low density (e.g., For example, about 80-90% of the theoretical density).
불완전 소결 조건에 의해 생성된 세라믹 소결체는 완전 소결 조건에 의해 생성된 세라믹 소결체에 비해 소결 수준이 상대적으로 낮아, 압전 세라믹으로서의 특성은 상대적으로 부족하지만, 기계적 가공성은 상대적으로 우수한 장점이 있다.The ceramic sintered body produced by the incomplete sintering conditions has a relatively low sintering level compared to the ceramic sintered body produced by the complete sintering conditions, and thus the properties as piezoelectric ceramics are relatively insufficient, but the mechanical workability is relatively excellent.
또는 단계 (a)에서 마련된 제1 압전 시트(301)는 컴포지트(composite) 압전 소재를 이용하여 생성된 것일 수도 있다. 컴포지트 압전 소재는 PZT 등의 순수한 압전 소재 이외에 다른 복합적인 물질이 더 포함된 것으로서, 순수한 압전 소재를 이용한 경우에 비해 상대적으로 압전 세라믹으로서의 특성은 열악하나, 기계적 가공성이 우수하여 양산에 적용하여 사용되고 있다. Alternatively, the first piezoelectric sheet 301 provided in step (a) may be generated by using a composite piezoelectric material. Composite piezoelectric materials include other complex materials in addition to pure piezoelectric materials such as PZT, which are relatively poor as piezoelectric ceramics, but have excellent mechanical processability, and are used for mass production. .
단계 (b)에서, 제1 압전 시트(301)의 제1 표면(예를 들어 상측 표면)에서 제1 방향으로 평행하게 미리 지정된 간격(도시된 L2)으로 절삭(dicing) 가공하여, 홈이 형성된 세라믹 가공체(302)가 형성된다. 여기서, 절삭 깊이는 제2 표면측에 잔존 영역이 남도록 제1 압전 시트(301)의 두께에 비해 상대적으로 작은 길이를 가지는 깊이로 한정된다. In step (b), at the first surface (for example, the upper surface) of the first piezoelectric sheet 301, cutting is performed at predetermined intervals (L2 shown) in parallel in the first direction to form grooves. The ceramic workpiece 302 is formed. Here, the cutting depth is limited to a depth having a length relatively smaller than the thickness of the first piezoelectric sheet 301 so that the remaining region remains on the second surface side.
이어서, 단계 (c)에서, 제1 방향으로 평행한 홈이 형성된 세라믹 가공체(302)를 제1 표면에 접촉되지 않는 제2 표면(예를 들어 하측 표면)에 대해 제1 방향에 직교하는 제2 방향으로 평행하게 미리 지정된 간격으로 절삭(dicing) 가공한다. 이 경우에도 절삭 깊이는 제1 표면측에 잔존 영역이 남도록 제1 압전 시트(301)의 두께에 비해 상대적으로 작은 갈이를 가지는 깊이로 한정된다. 단계 (c)에서의 홈 형성은 작업의 편의상 세라믹 가공체(302)의 상하 방향을 뒤집은 상태에서 실시될 수 있을 것이다. Subsequently, in step (c), the ceramic workpiece 302 having grooves parallel to the first direction is formed to be orthogonal to the first direction with respect to the second surface (for example, the lower surface) that is not in contact with the first surface. Dicing at predetermined intervals in parallel in two directions. Even in this case, the cutting depth is limited to a depth having a relatively small grinding compared to the thickness of the first piezoelectric sheet 301 so that the remaining region remains on the first surface side. The groove formation in step (c) may be carried out in a state of inverting the vertical direction of the ceramic workpiece 302 for convenience of work.
이어서, 단계 (d)에서, 제1 표면에서 제1 방향으로 홈이 형성되고, 제2 표면에서 제2 방향으로 홈이 형성된 세라믹 가공체(302)가 완전 소결 조건에 따라 소결 처리될 수 있다. Subsequently, in step (d), the ceramic workpiece 302 in which the groove is formed in the first direction on the first surface and the groove in the second direction on the second surface may be sintered according to the complete sintering conditions.
불완전 소결된 세라믹 가공체(302)가 완전 소결 조건에 따라 소결 처리되는 과정에서 세라믹 가공체(302)에 대한 수축이 발생되고, 따라서 세라믹 가공체(302)의 길이와 홈의 폭은 각각 감소(즉, L1 > L3, L2 > L4)된다. In the process of sintering the incompletely sintered ceramic workpiece 302 according to the complete sintering conditions, shrinkage of the ceramic workpiece 302 occurs, so that the length of the ceramic workpiece 302 and the width of the grooves are respectively reduced ( That is, L1> L3, L2> L4).
이로 인해, 후술될 압전 로드(311)의 배치 간격이 보다 조밀해져 보다 높은 해상도를 가지는 초음파 지문 센서의 제작이 가능해질 수 있는 장점이 있다. 본 실시예에서는 필요에 따라 단계(d)가 생략될 수도 있다. As a result, the spacing of the piezoelectric rods 311 to be described later becomes more compact, so that an ultrasonic fingerprint sensor having a higher resolution can be manufactured. In the present embodiment, step (d) may be omitted as necessary.
이어서, 단계 (e)에서, 제1 방향과 제2 방향으로 각각 절삭되어 세라믹 가공체(302)에 형성된 홈이 절연재(312)로 전충(filling)된다.Subsequently, in step (e), the grooves respectively cut in the first direction and the second direction and formed in the ceramic workpiece 302 are filled with the insulating material 312.
이어서, 단계 (f)에서, 절연재(312)로 각 홈이 전충된 세라믹 가공체(302)의 제1 표면이 연마(CMP) 가공되어 제1 표면측에 유지되는 잔존 영역이 제거된다. Subsequently, in step (f), the first surface of the ceramic workpiece 302 in which each groove is filled with the insulating material 312 is polished (CMP) to remove the remaining region held on the first surface side.
단계 (f)의 연마 가공에 의해 제1 표면측에 m x n 어레이 형태로 배열된 압전 로드(311)들이 노출되고, 단계 (g)에서 제3 방향(즉, 제1 방향 및 제2 방향 중 어느 하나)으로 각각 배열되어 복수의 압전 로드(311)의 상측 단부에 전기적으로 접속되는 복수의 제1 전극바(313)가 각각 형성된다. The polishing process of step (f) exposes the piezoelectric rods 311 arranged in the form of an mxn array on the first surface side, and in step (g) any one of the third direction (that is, the first direction and the second direction). A plurality of first electrode bars 313 are arranged in each of the plurality of piezoelectric rods 311 and electrically connected to upper ends of the plurality of piezoelectric rods 311.
이어서, 단계(h)에서, 절연재(312)로 각 홈이 전충된 세라믹 가공체(302)의 제2 표면이 연마(CMP) 가공되어 제2 표면측에 유지되는 잔존 영역이 제거된다. Subsequently, in step (h), the second surface of the ceramic workpiece 302 in which each groove is filled with the insulating material 312 is polished (CMP) to remove the remaining region held on the second surface side.
단계(h)의 연마 가공에 의해 제2 표면측에m x n 어레이 형태로 배열된 압전 로드(311)들이 노출되고, 단계(i)에서 제4 방향(즉, 제1 방향 및 제2 방향 중 다른 하나)으로 각각 배열되어 복수의 압전 로드(311)의 상측 단부에 전기적으로 접속되는 복수의 제2 전극바(314)가 각각 형성된다. 전술한 단계 (h)와 (i)는 작업의 편의상 세라믹 가공체(302)의 상하 방향으로 뒤집은 상태에서 실시될 수도 있을 것이다.The polishing process of step (h) exposes the piezoelectric rods 311 arranged in the form of an mxn array on the second surface side, and in step (i) the other one of the fourth direction (ie, the first direction and the second direction). A plurality of second electrode bars 314 are arranged, respectively, and electrically connected to upper ends of the plurality of piezoelectric rods 311. Steps (h) and (i) described above may be performed in an upside down direction of the ceramic workpiece 302 for convenience of operation.
상기 단계(a) 내지 (i)를 통해 수신부(Rx)의 제조가 완료된다. Manufacturing of the receiver Rx is completed through the above steps (a) to (i).
이어서, 단계 (j)에서, 완전 소결체로 이루어진 제2 압전 시트를 마련하여 수신부(Rx)의 하부에 부착시킬 수 있다. 제2 압전 시트는 전압 인가에 의해 초음파 신호를 발생시켜 방출하는 제2 압전층(320)으로 기능하며, 송신부(Tx)에 해당한다. Subsequently, in step (j), a second piezoelectric sheet made of a completely sintered body may be prepared and attached to the bottom of the receiver Rx. The second piezoelectric sheet functions as a second piezoelectric layer 320 that generates and emits an ultrasonic signal by applying a voltage, and corresponds to the transmitter Tx.
제2 압전층(320)은 접착제(paste)를 이용하여 수신부(Rx)의 하면에 부착되거나, 고온 및 고압으로 금속과 세라믹을 압착하여 부착하는 방식으로 부착될 수 있다. The second piezoelectric layer 320 may be attached to the bottom surface of the receiver Rx by using an adhesive, or may be attached by pressing and bonding a metal and a ceramic at high temperature and pressure.
제2 압전층(320)은 초음파 신호 발생을 위해 충분한 두께(R2)를 가질 수 있으며, 수신부(Rx)에 상응하는 면적을 가질 수 있다. The second piezoelectric layer 320 may have a thickness R2 sufficient to generate an ultrasonic signal and may have an area corresponding to the receiver Rx.
전술한 바와 같이, 본 실시예에 따른 초음파 지문 센서 제조 방법에서 수신부(Rx)의 제조 시 불완전 소결 조건에 따라 형성되거나 컴포지트 압전 소재로 생성된 제1 압전 시트(301)에 대해 홈 가공을 실시하여 가공의 용이성과 공정 속도의 가속화를 도모할 수 있는 장점이 있다.As described above, in the manufacturing method of the ultrasonic fingerprint sensor according to the present embodiment, grooves are performed on the first piezoelectric sheet 301 formed according to incomplete sintering conditions or made of a composite piezoelectric material during manufacturing of the receiver Rx. There is an advantage that the ease of processing and the acceleration of the process speed can be achieved.
또한, 송신부(Tx)가 충분한 면적을 가지는 1장의 시트 형태인 제2 압전층(320)으로 이루어져 있기 때문에 수신부(Rx)의 전체 면적에 상응하여 초음파 신호를 발생시킬 수 있어 센서 어레이에 따른 개별 제어가 요구되지 않는 장점이 있다. In addition, since the transmitter Tx is formed of a second piezoelectric layer 320 in the form of a sheet having a sufficient area, an ultrasonic signal can be generated corresponding to the entire area of the receiver Rx, so that individual control according to the sensor array is possible. There is an advantage that is not required.
도 6은 본 발명의 다른 실시예에 따른 초음파 지문 센서에 포함되는 수신부(Rx') 형상을 예시한 도면이고, 도 7은 본 발명의 다른 실시예에 따른 초음파 지문 센서의 수신부(Rx')의 제조 공정을 설명하기 위한 도면이다. 6 is a view illustrating a shape of a receiver Rx 'included in an ultrasonic fingerprint sensor according to another embodiment of the present invention, and FIG. 7 is a view of the receiver Rx' of the ultrasonic fingerprint sensor according to another embodiment of the present invention. It is a figure for demonstrating a manufacturing process.
도 6을 참조하면, 초음파 지문 센서의 수신부(Rx')는 복수의 압전 로드(100a)가 m x n 형태의 센서 어레이로 배열된 압전층(신호 수신층), 압전층의 제1 표면에 제1 방향으로 배열된 복수의 제1 전극바(325a), 압전층의 제1 표면에 접촉되지 않는 제2 표면에 제1 방향과 직교하는 방향인 제2 방향으로 배열된 복수의 제2 전극바(335a)를 포함할 수 있다. Referring to FIG. 6, the receiver Rx ′ of the ultrasonic fingerprint sensor includes a piezoelectric layer (signal receiving layer) in which a plurality of piezoelectric rods 100a are arranged in an mxn-type sensor array, and a first direction on a first surface of the piezoelectric layer. A plurality of first electrode bars 325a arranged in a second direction, and a plurality of second electrode bars 335a arranged in a second direction, which is a direction orthogonal to the first direction, on a second surface not in contact with the first surface of the piezoelectric layer. It may include.
소정의 길이를 가지는 바(bar) 또는 봉 등의 형상으로 형성되는 각각의 압전 로드(100a)는 전술한 것과 같이 피에조(Piezo) 특성을 가지도록 예를 들어 PZT(납 지르콘산염 티탄산염), PST, Quartz, (Pb, Sm)TiO3, PMN(Pb(MgNb)O3)-PT(PbTiO3), PVDF 또는 PVDF-TrFe 등 중 적어도 하나의 물질을 포함하는 압전 재료를 이용하여 형성될 수 있다.Each piezoelectric rod 100a formed in the shape of a bar or a rod having a predetermined length has a piezo characteristic as described above, for example, PZT (lead zirconate titanate), PST, and the like. , Quartz, (Pb, Sm) TiO 3, PMN (Pb (MgNb) O 3) -PT (PbTiO 3), PVDF or PVDF-TrFe, and may be formed using a piezoelectric material including at least one material.
센서 어레이를 이루는 각각의 압전 로드(100a)들 사이의 공간은 절연재(340a)로 채워질 수 있다. 절연재(340a)는 제1 및 제2 전극바(325a, 335a)를 이용하여 전압 인가된 압전 로드(100a)의 상하 진동을 억제하지 않는 특성을 가지는 재질로 결정될 수 있을 것이다.The space between the piezoelectric rods 100a constituting the sensor array may be filled with the insulating material 340a. The insulating material 340a may be determined as a material having a characteristic of not suppressing vertical vibration of the piezoelectric rod 100a to which voltage is applied using the first and second electrode bars 325a and 335a.
이하, 도 7을 참조하여 본 발명에 따른 초음파 지문 센서의 제조 방법에 대해 설명한다. Hereinafter, a method of manufacturing the ultrasonic fingerprint sensor according to the present invention will be described with reference to FIG. 7.
도 7을 참조하면, 단계 (a)에서 센서 어레이가 형성되어 전술한 압전층(신호 수신층)으로 기능되어질 제1 압전 시트(310a)가 마련된다. Referring to FIG. 7, in step (a), a sensor array is formed to prepare a first piezoelectric sheet 310a to function as the aforementioned piezoelectric layer (signal receiving layer).
단계 (a)에서 마련되는 제1 압전 시트(310a)는 불완전 소결 조건에 의해 생성된 것일 수 있다. 또는, 단계 (a)에서 마련된 제1 압전 시트(310a)는 컴포지트(composite) 압전 소재를 이용하여 생성된 것일 수도 있다. The first piezoelectric sheet 310a provided in step (a) may be generated by incomplete sintering conditions. Alternatively, the first piezoelectric sheet 310a provided in step (a) may be generated by using a composite piezoelectric material.
단계 (b)에서, 제1 압전 시트(310a)의 제1 표면(예를 들어, 도시된 상측 표면)과 제1 표면에 접촉되지 않는 제2 표면(예를 들어, 도시된 하측 표면) 각각에 미리 지정된 두께의 제1 및 제2 금속층(320a, 330a)이 각각 형성된다. In step (b), each of the first surface (eg, upper surface shown) of the first piezoelectric sheet 310a and the second surface (eg, lower surface shown) not in contact with the first surface First and second metal layers 320a and 330a having a predetermined thickness are formed, respectively.
제1 및 제2 금속층(320a, 330a) 각각은 예를 들어 도전성 접착제(conductive paste)를 이용하여 제1 압전 시트(310a)의 각 표면에 부착되거나, 고온 및 고압으로 금속과 세라믹을 압착하여 부착하는 방식으로 압전 시트(310a)에 부착될 수 있다. Each of the first and second metal layers 320a and 330a may be attached to each surface of the first piezoelectric sheet 310a using a conductive paste, or may be attached by pressing metal and ceramic at high temperature and pressure. It may be attached to the piezoelectric sheet 310a in a way.
단계 (c)에서, 제1 및 제2 금속층(320a, 330a)이 부착된 제1 압전 시트(310a)가 제1 방향으로 평행하게 미리 지정된 간격으로 절삭(dicing) 처리되어, 각각 제1 방향으로 배열된 복수의 제1 전극바(325a)가 형성된다. In step (c), the first piezoelectric sheet 310a to which the first and second metal layers 320a and 330a are attached is cut at predetermined intervals in parallel in the first direction, respectively, in the first direction. A plurality of first electrode bars 325a arranged are formed.
절삭 깊이는 제1 금속층(320a)과 제1 압전 시트(310a)에 해당되는 두께가 완전히 절삭되는 깊이로 실시된다. 이때, 제1 압전 시트(310a)의 하측 단부까지만 절삭되도록 처리될 수 있으나, 제2 금속층(330a)이 일부 깊이까지 절삭될지라도 완전히 절삭되지 않는다면 제2 금속층(330a)의 도전성이 유지되므로 허용될 수는 있다. The cutting depth is performed at a depth at which the thicknesses corresponding to the first metal layer 320a and the first piezoelectric sheet 310a are completely cut. In this case, only the lower end of the first piezoelectric sheet 310a may be processed to be cut. However, even if the second metal layer 330a is cut to some depth, if the second metal layer 330a is not completely cut, the conductivity of the second metal layer 330a may be maintained. There is a number.
전술한 절삭 공정의 직전 또는 직후에 향후 모듈 제작시 필요한 단자를 형성하기 위한 도금 공정이 실시될 수 있다. 만일 절삭 공정의 직전에 단자 형성을 위한 도금이 이루어지는 경우라면, 전술한 절삭 공정만으로 복수의 제1 전극바(325a) 각각에 대응되는 단자가 함께 형성되어 제조 공정이 보다 단순화되는 장점도 있다.Immediately before or after the cutting process described above, a plating process may be performed to form terminals required for future module fabrication. If the plating for forming the terminal is performed immediately before the cutting process, the terminals corresponding to each of the plurality of first electrode bars 325a are formed together with only the above cutting process, thereby simplifying the manufacturing process.
단계 (d)에서, 제1 전극바(325a)의 형성을 위해 절삭되어 제1 압전 시트(310a)에 형성된 틈이 절연재(340a)로 전충된다. In step (d), the gap formed in the first piezoelectric sheet 310a by cutting to form the first electrode bar 325a is transferred to the insulating material 340a.
단계 (e)에서, 제1 및 제2 금속층(320a, 330a)이 부착된 제1 압전 시트(310a)가 제1 방향에 직교하는 제2 방향으로 평행하게 미리 지정된 간격으로 절삭(dicing) 처리되어, 각각 제2 방향으로 배열된 복수의 제2 전극바(335a)가 형성된다. In step (e), the first piezoelectric sheet 310a to which the first and second metal layers 320a and 330a are attached is diced at predetermined intervals in parallel in a second direction perpendicular to the first direction. , A plurality of second electrode bars 335a arranged in the second direction, respectively.
앞서 단계 (c)에서 설명한 바와 같이, 절삭 깊이는 제2 금속층(320a)과 제1 압전 시트(310a)에 해당되는 두께가 완전히 절삭되는 깊이로 실시되고, 절삭 공정의 직전 또는 직후에 향후 모듈 제작시 필요한 단자를 형성하기 위한 도금 공정이 실시될 수 있다.As described above in step (c), the cutting depth is performed at a depth at which the thicknesses corresponding to the second metal layer 320a and the first piezoelectric sheet 310a are completely cut, and fabrication of the module immediately before or after the cutting process is performed. A plating process may be performed to form terminals required for the test.
제1 압전 시트(310a)는 제1 전극바(325a)와 제2 전극바(335a)의 형성을 위해 직교하는 방향으로 각각 식각되어 m x n 형태의 센서 어레이를 이루는 복수의 압전 로드(100a)를 형성하게 된다.The first piezoelectric sheet 310a is etched in a direction orthogonal to form the first electrode bar 325a and the second electrode bar 335a to form a plurality of piezoelectric rods 100a forming an mxn-type sensor array. Done.
단계 (f)에서, 제2 전극바(335a)의 형성을 위해 절삭되어 제1 압전 시트(310a)에 형성된 틈이 절연재(340a)로 전충된다. In step (f), the gap formed in the first piezoelectric sheet 310a by cutting to form the second electrode bar 335a is transferred to the insulating material 340a.
전술한 단계 (e)와 (f)는 초음파 지문 센서 제조의 편의를 위해 상하 방향으로 뒤집고 또한 수평 방향에서 90도 회전시킨 상태에서 작업될 수도 있을 것이다. Steps (e) and (f) described above may be operated while being turned upside down and rotated 90 degrees in the horizontal direction for the convenience of manufacturing the ultrasonic fingerprint sensor.
전술한 단순한 공정만으로, m x n 형태의 센서 어레이를 이루고 절연재(340a)에 의해 각각 둘러싸인 복수의 압전 로드(100a)들과, 복수의 압전 로드(100a)들 각각에 전압을 인가하기 위한 제1 전극바(325a) 및 제2 전극바(335a)를 포함하는 초음파 지문 센서가 제작될 수 있다. The first electrode bar for applying a voltage to each of the plurality of piezoelectric rods 100a and the plurality of piezoelectric rods 100a, which form an mxn-type sensor array and is surrounded by the insulating material 340a, by the simple process described above. An ultrasonic fingerprint sensor including a 325a and a second electrode bar 335a may be manufactured.
또한 제1 전극바(325a)와 제2 전극바(335a) 각각에 외부 단자에 전기적 연결을 위한 단자가 형성되어 있으므로, 그 자체만으로도 수신부(Rx') 모듈 제작이 가능한 소자의 형태로 완성된다. In addition, since terminals for electrical connection are formed at the external terminals on the first electrode bar 325a and the second electrode bar 335a, the receiving unit Rx 'module can be manufactured by itself.
이처럼 제조된 수신부(Rx')에는 도 5의 (j)에 도시된 것과 같이 완전 소결체로 이루어진 제2 압전 시트를 마련하여 그 하부에 부착시켜 초음파 지문 센서를 제조할 수 있다. 여기서, 제2 압전 시트는 전압 인가에 의해 초음파 신호를 발생시켜 방출하는 제2 압전층으로 기능하며, 송신부(Tx)에 해당한다. The receiver Rx 'manufactured as described above may have a second piezoelectric sheet made of a fully sintered body as shown in FIG. 5 (j), and may be attached to a lower portion thereof to manufacture an ultrasonic fingerprint sensor. Here, the second piezoelectric sheet functions as a second piezoelectric layer that generates and emits an ultrasonic signal by applying a voltage, and corresponds to the transmitter Tx.
도 8은 본 발명의 또 다른 실시예에 따른 초음파 지문 센서의 평면도와 A-A선에 따른 단면도이고, 도 9는 본 발명의 또 다른 실시예에 따른 초음파 지문 센서의 제조 공정을 설명하기 위한 도면이며, 도 10은 본 발명의 또 다른 실시예에 따른 초음파 지문 센서에서의 지문 인식을 위한 초음파 신호 발생의 시간 그래프이다. 8 is a plan view and a cross-sectional view taken along line AA of the ultrasonic fingerprint sensor according to another embodiment of the present invention, Figure 9 is a view for explaining a manufacturing process of the ultrasonic fingerprint sensor according to another embodiment of the present invention, 10 is a time graph of ultrasonic signal generation for fingerprint recognition in an ultrasonic fingerprint sensor according to another embodiment of the present invention.
본 발명의 또 다른 실시예에 따른 초음파 지문 센서(300B)는 송신부(Tx)와 수신부(Rx)가 수평 방향으로 분리되어 배치된 것을 특징으로 하고 있다. 특히, 송신부(Tx)는 수신부(Rx)의 외곽(즉, 측면)에 배치될 수 있다. Ultrasonic fingerprint sensor 300B according to another embodiment of the present invention is characterized in that the transmitting unit (Tx) and the receiving unit (Rx) is arranged separated in the horizontal direction. In particular, the transmitter Tx may be disposed outside (ie, side) of the receiver Rx.
도면에서는 수신부(Rx)가 도 3에 도시된 것과 같은 제1 실시예와 형상을 가지고 있으면서 도 4 및 도 5의 제조 공정에 의해 제조된 것으로 도시되어 있지만, 이는 일 실시예에 불과하며, 도 6에 도시된 것과 같은 제2 실시예와 같은 형상을 가지고 있으면서 도 7의 제조 공정에 의해 제조된 것(Rx')일 수도 있음은 물론이다. 이하에서는 발명의 이해와 설명의 편의를 위해 수신부가 도 3에 도시된 것과 같은 형상을 가지는 경우(Rx)를 가정하여 설명한다.In the drawing, although the receiver Rx has a shape with the first embodiment as shown in FIG. 3 and is manufactured by the manufacturing process of FIGS. 4 and 5, this is only one embodiment, and FIG. 6. Of course, it may also be Rx 'manufactured by the manufacturing process of FIG. 7 while having the same shape as that of the second embodiment as shown in FIG. Hereinafter, for convenience of understanding and explanation of the invention, it will be described on the assumption that the receiver has a shape as shown in FIG. 3 (Rx).
도 8을 참조하면, 본 실시예에 따른 초음파 지문 센서(300B)는 복수의 압전 로드(311)가 m x n 형태의 센서 어레이로 배열된 제1 압전층(310)을 포함하는 수신부(Rx)와, 하나의 압전 시트 형태로 형성되고 수신부(Rx)의 외곽에 배치되는 제2 압전층(360a~360d)을 각각 포함하는 하나 이상의 송신부(Tx1~Tx4)를 포함할 수 있다. 도면에서는 송신부가 수신부(Rx)의 4 방향에 모두 배치된 경우가 도시되어 있지만, 이는 일 실시예에 불과하며, 1 내지 3 방향에만 배치될 수도 있을 것이다. Referring to FIG. 8, the ultrasonic fingerprint sensor 300B according to the present exemplary embodiment includes a receiver Rx including a first piezoelectric layer 310 in which a plurality of piezoelectric rods 311 are arranged in an mxn-type sensor array. One or more transmitters Tx1 to Tx4 may be formed in the shape of one piezoelectric sheet and include second piezoelectric layers 360a to 360d disposed outside the receiver Rx. In the figure, a case in which the transmitter is arranged in all four directions of the receiver Rx is illustrated, but this is only an example and may be arranged in only one to three directions.
수신부(Rx)는 제1 압전층(310)을 지지하기 위한 베이스 기판(350)이 하부에 마련될 수 있다. 베이스 기판(350)은 리지드(rigid)한 특성을 가지며, 예를 들어 글래스(glass)로 이루어질 수 있다. In the receiver Rx, a base substrate 350 for supporting the first piezoelectric layer 310 may be provided below. The base substrate 350 has a rigid characteristic and may be formed of glass, for example.
제1 압전층(310)과 베이스 기판(350)의 총 두께가 제2 압전층(360a~360d)의 두께에 대응되어, 초음파 지문 센서(300B)가 전체적으로 수평을 이루게 할 수 있다. The total thicknesses of the first piezoelectric layer 310 and the base substrate 350 correspond to the thicknesses of the second piezoelectric layers 360a to 360d, so that the ultrasonic fingerprint sensor 300B may be entirely horizontal.
도 9를 참조하면, 제1 압전층(310)을 제조하는 단계 (a) 내지 (i)까지의 과정은 앞서 도 4 및 도 5를 참조하여 설명한 과정과 동일하다. Referring to FIG. 9, the processes from steps (a) to (i) of manufacturing the first piezoelectric layer 310 are the same as those described above with reference to FIGS. 4 and 5.
이어서, 단계 (k)에서, 제1 압전층(310)의 하부에 베이스 기판(350)을 부착시킬 수 있다. 베이스 기판(350)은 제1 압전층(310)이 수평을 유지하도록 지지하는 지지부로서 기능하며, 외곽에 부착될 송신부(Tx1~Tx4)에 대응되는 두께를 가질 수 있도록 한다. 이를 위해 베이스 기판(350)의 두께는 제2 압전층(360a~360d)의 두께(R2)와 제1 압전층(310)의 두께(R1)의 차에 상응할 수 있다. Subsequently, in step (k), the base substrate 350 may be attached to the lower portion of the first piezoelectric layer 310. The base substrate 350 serves as a support for supporting the first piezoelectric layer 310 to maintain horizontality, and the base substrate 350 may have a thickness corresponding to the transmission parts Tx1 to Tx4 to be attached to the outside. To this end, the thickness of the base substrate 350 may correspond to the difference between the thickness R2 of the second piezoelectric layers 360a to 360d and the thickness R1 of the first piezoelectric layer 310.
이어서, 단계 (l)에서, 베이스 기판(350)이 부착된 수신부(Rx)의 외곽에 완전 소결체로 이루어진 제2 압전 시트를 마련하여 부착시킬 수 있다. 제2 압전 시트는 전압 인가에 의해 초음파 신호를 발생시켜 방출하는 제2 압전층(360a~360d)으로 기능한다. Subsequently, in step (1), a second piezoelectric sheet made of a full sintered body may be prepared and attached to the outside of the receiver Rx to which the base substrate 350 is attached. The second piezoelectric sheet functions as second piezoelectric layers 360a to 360d that generate and emit an ultrasonic signal by applying a voltage.
제2 압전층(360a~360d)은 초음파 신호 발생을 위해 충분한 두께(R2)를 가질 수 있으며, 수신부(Rx)의 가로 및/또는 세로에 상응하는 길이를 가질 수 있다. The second piezoelectric layers 360a to 360d may have a thickness R2 sufficient to generate an ultrasonic signal, and may have a length corresponding to the width and / or length of the receiver Rx.
본 실시예에서는 송신부(Tx)가 충분한 크기를 가지는 하나의 제2 압전층(360a~360d)으로 이루어져 있어 수신부(Rx)의 전체 면적에 상응하여 초음파 신호를 발생시킬 수 있다. In the present exemplary embodiment, the transmitter Tx includes one second piezoelectric layer 360a to 360d having a sufficient size to generate an ultrasonic signal corresponding to the entire area of the receiver Rx.
도 10을 참조하면, (a)에는 소정의 공진주파수(f)를 가지는 초음파 신호(S1, S2, ...)가 도시되어 있다. 연속된 초음파 신호는 일정 주기(T=1/f) 간격으로 발생될 수 있으며, 이러한 초음파 신호의 공진주파수는 수신부(Rx)에서의 지문 인식 시간과 연관 관계가 있다. Referring to FIG. 10, ultrasonic signals S1, S2, ... having a predetermined resonance frequency f are shown in (a). The continuous ultrasound signal may be generated at regular intervals (T = 1 / f), and the resonance frequency of the ultrasound signal is related to the fingerprint recognition time at the receiver Rx.
본 실시예에서는 초음파 신호를 발생시키는 송신부(Tx)가 수신부(Rx)의 외곽을 따라 K개가 마련될 수 있다. 이 경우 수신부(Rx)에서의 지문 인식 시간을 1/K만큼 단축시킬 수 있다. In the present embodiment, K transmitters generating ultrasonic signals may be provided along the outer edge of the receiver Rx. In this case, the fingerprint recognition time at the receiver Rx can be shortened by 1 / K.
도면에서는 송신부(Tx1~Tx4)가 4개(K=4)인 경우가 도시되어 있는 바, 이를 중심으로 설명하기로 한다. In the figure, a case in which four transmitters Tx1 to Tx4 (K = 4) is illustrated, which will be described below.
도 10의 (b)를 참조하면, 각 송신부(Tx1~Tx4)에서는 발생되는 각 초음파 신호(S11과 S12, S21과 S22, S31과 S32, S41과 S42)는 일정 주기(T)를 가진다. Referring to FIG. 10B, each of the ultrasonic signals S11 and S12, S21 and S22, S31 and S32, S41 and S42 generated by each of the transmitters Tx1 to Tx4 have a predetermined period T.
이 때 각 송신부(Tx1~Tx4)에서 초음파 신호의 발생 시점을 일 주기(T) 내에서 T/4 간격으로 분할하여 구분시킬 수 있다. 즉, 제1 송신부(Tx1)에서는 제1 시점(T1)에, 제2 송신부(Tx2)에서는 제2 시점(T1+T/4)에, 제3 송신부(Tx3)에서는 제3 시점(T1+2T/4)에, 제4 송신부(Tx4)에서는 제4 시점(T1+3T/4)에 초음파 신호가 발생되게 할 수 있다. At this time, the generation time of the ultrasonic signal in each of the transmitters Tx1 to Tx4 may be divided and divided into T / 4 intervals within one period T. That is, at the first transmitter Tx1, at the first time point T1, at the second transmitter Tx2, at the second time point T1 + T / 4, and at the third transmitter Tx3, at the third time point T1 + 2T. 4), the fourth transmitter Tx4 may generate an ultrasonic signal at a fourth time point T1 + 3T / 4.
이 경우 기존과 비교할 때 동일한 시간(T) 동안 4배 많은 초음파 신호가 발생되었는 바, 수신부(Rx) 입장에서도 4배 많은 신호를 수신할 수 있어 지문 인식 시간을 단축시킬 수 있게 된다. 혹은 동일 시간 동안 4배 많은 정보를 받아들임으로써 지문 인식 정확성을 향상시킬 수 있게 된다. In this case, since four times more ultrasonic signals are generated during the same time T as compared with the conventional one, four times more signals can be received from the receiver Rx, thereby reducing the fingerprint recognition time. Or, by accepting four times as much information in the same time, the fingerprint recognition accuracy can be improved.
상기에서는 본 발명의 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although described above with reference to embodiments of the present invention, those of ordinary skill in the art will be variously modified and modified within the scope of the present invention without departing from the spirit and scope of the invention described in the claims below It will be appreciated that it can be changed.

Claims (10)

  1. 초음파 지문 센서의 제조 방법에 있어서, In the manufacturing method of the ultrasonic fingerprint sensor,
    (a) m x n 센서 어레이 형태의 압전 로드가 형성된 제1 압전층을 제조하는 단계; 및(a) manufacturing a first piezoelectric layer having a piezoelectric rod in the form of an m x n sensor array; And
    (b) 하나의 압전 시트 형태의 제2 압전층을 상기 제1 압전층의 하부에 부착하는 단계를 포함하되,(b) attaching a second piezoelectric layer in the form of one piezoelectric sheet to a lower portion of the first piezoelectric layer,
    상기 제1 압전층은 초음파 지문 센서의 수신부로 기능하고 상기 제2 압전층은 초음파 지문 센서의 송신부로 기능하는 것을 특징으로 하는 초음파 지문 센서의 제조 방법. The first piezoelectric layer functions as a receiver of the ultrasonic fingerprint sensor and the second piezoelectric layer functions as a transmitter of the ultrasonic fingerprint sensor.
  2. 초음파 지문 센서의 제조 방법에 있어서, In the manufacturing method of the ultrasonic fingerprint sensor,
    (a) m x n 센서 어레이 형태의 압전 로드가 형성된 제1 압전층을 제조하는 단계;(a) manufacturing a first piezoelectric layer having a piezoelectric rod in the form of an m x n sensor array;
    (b) 상기 제1 압전층의 하부에 리지드(rigid)한 베이스 기판을 부착하는 단계: 및(b) attaching a rigid base substrate to the lower portion of the first piezoelectric layer; and
    (c) 하나의 압전 시트 형태의 제2 압전층을 상기 제1 압전층 및 상기 베이스 기판의 측면에 부착하는 단계를 포함하되,(c) attaching a second piezoelectric layer in the form of one piezoelectric sheet to side surfaces of the first piezoelectric layer and the base substrate,
    상기 제1 압전층은 초음파 지문 센서의 수신부로 기능하고 상기 제2 압전층은 초음파 지문 센서의 송신부로 기능하는 것을 특징으로 하는 초음파 지문 센서의 제조 방법. The first piezoelectric layer functions as a receiver of the ultrasonic fingerprint sensor and the second piezoelectric layer functions as a transmitter of the ultrasonic fingerprint sensor.
  3. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2,
    상기 단계 (a)는, Step (a) is,
    (a1) 불완전 소결(Half sintering) 조건에 의해 생성된 세라믹 소결체 혹은 컴포지트(composite) 압전 소재인 제1 압전 시트를 마련하는 단계; (a1) preparing a first piezoelectric sheet which is a ceramic sintered body or composite piezoelectric material produced by a half sintering condition;
    (a2) 상기 제1 압전 시트의 제1 표면에서 제2 표면 측에 잔존 영역이 남는 깊이로 미리 지정된 간격마다 제1 방향으로 평행하게 절삭(dicing) 가공되고, 상기 제2 표면에서 상기 제1 표면 측에 잔존 영역이 남는 깊이로 미리 지정된 간격마다 제1 방향에 수직한 제2 방향으로 평행하게 절삭(dicing) 가공되어 세라믹 가공체가 형성되고, 상기 세라믹 가공체가 완전 소결 조건에 따라 소결 처리되는 단계;(a2) Dicing parallel to the first direction at predetermined intervals at a depth at which a remaining region remains on the second surface side on the first surface of the first piezoelectric sheet, and the first surface on the second surface. Dicing the substrate parallel to a second direction perpendicular to the first direction at a predetermined interval to a depth at which the remaining region remains on the side to form a ceramic workpiece, and sintering the ceramic workpiece under the conditions of complete sintering;
    (a3) 상기 단계 (a2)의 절삭 가공에 의해 상기 세라믹 가공체에 형성된 홈에 절연재가 전충(filling)되는 단계; (a3) filling the grooves formed in the ceramic workpiece by the cutting process of step (a2);
    (a4) 제1 표면과 제2 표면에서 압전 로드가 각각 어레이 형태로 배열되어 노출되도록 제1 표면 측과 제2 표면 측에 각각 존재하는 잔존 영역을 제거하는 단계를 포함하는 것을 특징으로 하는 초음파 지문 센서의 제조 방법. (a4) removing the remaining regions respectively present on the first surface side and the second surface side such that the piezoelectric rods are arranged and exposed in an array form on the first surface and the second surface, respectively; Method of manufacturing the sensor.
  4. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2,
    상기 단계 (a)는, Step (a) is,
    (a1) 제1 표면에 제1 금속층이 형성되고, 제1 표면과 접촉되지 않는 제2 표면에 제2 금속층이 형성된 제1 압전 시트가 마련되는 단계;(a1) providing a first piezoelectric sheet having a first metal layer formed on the first surface and having a second metal layer formed on a second surface not in contact with the first surface;
    (a2) 제1 방향으로 평행하게 미리 지정된 간격으로 상기 제1 금속층과 상기 압전 시트가 절삭(dicing)되는 단계;(a2) cutting the first metal layer and the piezoelectric sheet at predetermined intervals in parallel in a first direction;
    (a3) 상기 단계 (a2)에 의해 상기 제1 압전 시트에 형성된 틈이 미리 지정된 절연재로 전충(filling)되는 단계;(a3) filling the gap formed in the first piezoelectric sheet by the step (a2) with a predetermined insulating material;
    (a4) 제1 방향에 직교하는 제2 방향으로 평행하게 미리 지정된 간격으로 상기 제1 압전 시트와 제2 금속층이 절삭되는 단계; 및(a4) cutting the first piezoelectric sheet and the second metal layer at predetermined intervals in parallel in a second direction orthogonal to a first direction; And
    (a5) 상기 단계 (a4)에 의해 상기 제1 압전 시트에 형성된 틈이 미리 지정된 절연재로 전충되는 단계를 포함하는 것을 특징으로 하는 초음파 지문 센서의 제조 방법.(a5) The manufacturing method of the ultrasonic fingerprint sensor comprising the step of filling the gap formed in the first piezoelectric sheet by a predetermined insulating material by the step (a4).
  5. 제1항 또는 제2항 중 어느 한 항에 기재된 초음파 지문 센서의 제조 방법에 의해 제조된 초음파 지문 센서.The ultrasonic fingerprint sensor manufactured by the manufacturing method of the ultrasonic fingerprint sensor in any one of Claims 1-5.
  6. m x n 센서 어레이 형태의 압전 로드가 형성된 제1 압전층을 포함하는 수신부; 및a receiver including a first piezoelectric layer having a piezoelectric rod in the form of an m x n sensor array; And
    하나의 압전 시트 형태의 제2 압전층을 포함하는 송신부를 포함하되, Including a transmitter including a second piezoelectric layer in the form of one piezoelectric sheet,
    상기 송신부는 상기 수신부의 하부에 부착되며, The transmitter is attached to the lower portion of the receiver,
    상기 제2 압전층의 두께가 상기 제1 압전층의 두께보다 큰 것을 특징으로 하는 초음파 지문 센서.The thickness of the second piezoelectric layer is greater than the thickness of the first piezoelectric layer, the ultrasonic fingerprint sensor.
  7. m x n 센서 어레이 형태의 압전 로드가 형성된 제1 압전층 및 상기 제1 압전층의 하부에 부착되는 리지드(rigid)한 베이스 기판을 포함하는 수신부; 및a receiver including a first piezoelectric layer having a piezoelectric rod in the form of an m x n sensor array and a rigid base substrate attached to a lower portion of the first piezoelectric layer; And
    하나의 압전 시트 형태의 제2 압전층을 포함하는 하나 이상의 송신부를 포함하되, At least one transmitter including a second piezoelectric layer in the form of one piezoelectric sheet,
    상기 송신부는 상기 수신부의 측면에 부착되며,The transmitter is attached to the side of the receiver,
    상기 제2 압전층의 두께는 상기 제1 압전층 및 상기 베이스 기판의 합산 두께에 상응하는 것을 특징으로 하는 초음파 지문 센서. And a thickness of the second piezoelectric layer corresponds to the sum of the thicknesses of the first piezoelectric layer and the base substrate.
  8. 제6항 또는 제7항에 있어서,The method according to claim 6 or 7,
    상기 제1 압전층은 불완전 소결(Half sintering) 조건에 의해 생성된 세라믹 소결체 혹은 컴포지트(composite) 압전 소재를 이용하여 생성된 것을 특징으로 하는 초음파 지문 센서. And the first piezoelectric layer is formed using a ceramic sintered body or a composite piezoelectric material produced by an incomplete sintering condition.
  9. 제6항 또는 제7항에 있어서,The method according to claim 6 or 7,
    상기 제2 압전층은 완전 소결체로 이루어진 제2 압전 시트인 것을 특징으로 하는 초음파 지문 센서.The second piezoelectric layer is an ultrasonic fingerprint sensor, characterized in that the second piezoelectric sheet made of a sintered body.
  10. 제7항에 있어서,The method of claim 7, wherein
    상기 송신부가 K개인 경우, If the transmitting unit is K,
    초음파 신호는 발생 시점이 공진주파수에 상응하는 일 주기(T) 이내에서 T/K 간격으로 분할되어 K개의 상기 송신부에서 순차적으로 발생됨으로써 상기 수신부에서의 지문 인식 시간을 1/K만큼 단축시킨 것을 특징으로 하는 초음파 지문 센서.The ultrasonic signal is divided into T / K intervals within one cycle T corresponding to the resonance frequency, and is sequentially generated in the K transmitters, thereby reducing the fingerprint recognition time at the receiver by 1 / K. Ultrasonic fingerprint sensor.
PCT/KR2018/002973 2017-03-16 2018-03-14 Ultrasonic fingerprint sensor and method for manufacturing same WO2018169301A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0033141 2017-03-16
KR20170033141 2017-03-16

Publications (1)

Publication Number Publication Date
WO2018169301A1 true WO2018169301A1 (en) 2018-09-20

Family

ID=63522398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002973 WO2018169301A1 (en) 2017-03-16 2018-03-14 Ultrasonic fingerprint sensor and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2018169301A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109614963A (en) * 2019-01-28 2019-04-12 京东方科技集团股份有限公司 Fingerprint recognition structure and display device
CN110265544A (en) * 2019-06-24 2019-09-20 京东方科技集团股份有限公司 Piezoelectric transducer and preparation method, the method and electronic equipment that carry out fingerprint recognition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070101244A (en) * 2004-11-02 2007-10-16 크로스 매치 테크놀로지스, 인크. Multiplexer for a piezo ceramic identification device
KR20130060874A (en) * 2011-11-30 2013-06-10 삼성전기주식회사 Fingerprint sensor and manufacturing method thereof
KR20160069915A (en) * 2014-12-09 2016-06-17 엘지이노텍 주식회사 Finger sensor
KR101696448B1 (en) * 2016-03-10 2017-01-16 주식회사 베프스 Apparatus and method for recognizing biometric information with central point of finger print
KR101705200B1 (en) * 2015-08-18 2017-02-09 재단법인대구경북과학기술원 Finger blood vessel pattern recognition device using ultrasonics wave

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070101244A (en) * 2004-11-02 2007-10-16 크로스 매치 테크놀로지스, 인크. Multiplexer for a piezo ceramic identification device
KR20130060874A (en) * 2011-11-30 2013-06-10 삼성전기주식회사 Fingerprint sensor and manufacturing method thereof
KR20160069915A (en) * 2014-12-09 2016-06-17 엘지이노텍 주식회사 Finger sensor
KR101705200B1 (en) * 2015-08-18 2017-02-09 재단법인대구경북과학기술원 Finger blood vessel pattern recognition device using ultrasonics wave
KR101696448B1 (en) * 2016-03-10 2017-01-16 주식회사 베프스 Apparatus and method for recognizing biometric information with central point of finger print

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109614963A (en) * 2019-01-28 2019-04-12 京东方科技集团股份有限公司 Fingerprint recognition structure and display device
CN109614963B (en) * 2019-01-28 2023-08-29 京东方科技集团股份有限公司 Fingerprint identification structure and display device
CN110265544A (en) * 2019-06-24 2019-09-20 京东方科技集团股份有限公司 Piezoelectric transducer and preparation method, the method and electronic equipment that carry out fingerprint recognition

Similar Documents

Publication Publication Date Title
US10649202B2 (en) Micro-electro-mechanical device with a movable structure, in particular micromirror, and manufacturing process thereof
WO2019093640A1 (en) Display device
CN106236139B (en) Ultrasound transducer apparatus, detector, electronic equipment and diagnostic ultrasound equipment
WO2018101635A2 (en) Finger biometric information recognition module, electronic device employing same, method for manufacturing finger biometric information recognition module, and method for manufacturing transducer
WO2014171702A1 (en) Fingerprint sensor module, portable electronic device comprising same, and manufacturing method therefor
WO2018169301A1 (en) Ultrasonic fingerprint sensor and method for manufacturing same
WO2017183879A1 (en) Image scanning module and electronic device having same
CN103767732A (en) Ultrasonic measurement device, head unit, probe, and diagnostic device
CN105310715A (en) Piezoelectric device, and ultrasonic device and image device, as well as probe, and electronic apparatus
CN103776526A (en) Ultrasonic measurement device, head unit, probe, and diagnostic device
CN103767731A (en) Ultrasonic measurement device, head unit, probe, and diagnostic device
WO2021060755A1 (en) Electronic device including speaker module
US8575824B2 (en) Piezoelectric generator, sensor node, and method of manufacturing piezoelectric generator
WO2017176008A1 (en) Fingerprint recognition module, electronic device employing same, and method for manufacturing sound wave control member therefor
WO2018169298A1 (en) Ultrasonic fingerprint sensor and manufacturing method therefor
WO2018169299A1 (en) Method for manufacturing ultrasonic fingerprint sensor
WO2010151022A2 (en) Dome-shaped piezoelectric linear motor
WO2017082672A1 (en) Complex device and electronic device comprising same
WO2017078448A1 (en) Electronic device having pressure sensor
WO2018074674A1 (en) Audio output device
WO2022005030A1 (en) Piezoelectric single-crystal element, mems device using same, and method for manufacturing same
WO2019058978A1 (en) Piezoelectric transducer and piezoelectric module
WO2017078335A1 (en) Pressure sensor and composite element having same
WO2020040376A1 (en) Method of manufacturing ultrasonic sensors
WO2021149843A1 (en) Roll-slide mobile terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/12/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 18767870

Country of ref document: EP

Kind code of ref document: A1