WO2019058978A1 - Piezoelectric transducer and piezoelectric module - Google Patents

Piezoelectric transducer and piezoelectric module Download PDF

Info

Publication number
WO2019058978A1
WO2019058978A1 PCT/JP2018/032951 JP2018032951W WO2019058978A1 WO 2019058978 A1 WO2019058978 A1 WO 2019058978A1 JP 2018032951 W JP2018032951 W JP 2018032951W WO 2019058978 A1 WO2019058978 A1 WO 2019058978A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
electrode
region
layer
piezoelectric layer
Prior art date
Application number
PCT/JP2018/032951
Other languages
French (fr)
Japanese (ja)
Inventor
健介 水原
庄司 岡本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017181581A external-priority patent/JP2021007118A/en
Priority claimed from JP2017181580A external-priority patent/JP2021007117A/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019058978A1 publication Critical patent/WO2019058978A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers

Definitions

  • the present disclosure relates to a piezoelectric transducer and a piezoelectric module, and more particularly to a piezoelectric transducer including a plurality of piezoelectric layers and a piezoelectric module including the piezoelectric transducer.
  • a piezoelectric device (piezoelectric transducer) described in Patent Document 1 is exemplified as a conventional example.
  • the piezoelectric device described in Patent Document 1 includes a substrate and an upper layer (piezoelectric portion) supported by the substrate.
  • the upper layer includes a vibrating portion, and the vibrating portion includes a lower electrode, an intermediate electrode, and an upper electrode which are spaced apart from each other in the thickness direction.
  • the upper layer is a first piezoelectric layer (first piezoelectric layer) disposed so as to be at least partially sandwiched by the lower electrode and the intermediate electrode, and the intermediate electrode and the upper layer disposed so as to overlap the first piezoelectric layer.
  • a second piezoelectric layer (second piezoelectric layer) disposed so as to be at least partially sandwiched by the electrodes.
  • An object of the present disclosure is to provide a piezoelectric transducer and a piezoelectric module having improved characteristics in which the first piezoelectric region and the second piezoelectric region of the piezoelectric portion convert alternating voltage into vibration or characteristics in which vibration is converted into alternating voltage. Do.
  • a piezoelectric transducer includes a frame-shaped support portion, and a plate-shaped piezoelectric portion supported by the support portion and covering the cavity from one side in the thickness direction.
  • the frame-like support has a first surface, a second surface opposite to the first surface, and a cavity provided between and inward of the first surface and the second surface.
  • the piezoelectric portion has a first electrode, a second electrode, a first piezoelectric layer sandwiched between the first electrode and the second electrode in the thickness direction, a third electrode, a fourth electrode, and a thickness. And a second piezoelectric layer sandwiched between the third electrode and the fourth electrode in a direction.
  • the piezoelectric portion includes a first piezoelectric region in which the first electrode, the second electrode, and the first piezoelectric layer overlap the cavity in a direction perpendicular to the first surface, and a third electrode, a fourth electrode, and a second piezoelectric layer. And a second piezoelectric region overlapping the cavity in a direction perpendicular to the first surface.
  • the first piezoelectric layer is not disposed at a position overlapping the second piezoelectric region when viewed from the direction perpendicular to the first surface.
  • a piezoelectric module includes a plurality of the piezoelectric transducers.
  • the piezoelectric transducer and the piezoelectric module according to each aspect of the present disclosure, it is possible to improve the characteristics in which the first piezoelectric region and the second piezoelectric region convert alternating voltage into vibration or the characteristics in converting vibration into alternating voltage.
  • FIG. 1 is a plan view of the piezoelectric transducer according to the first embodiment.
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG.
  • FIG. 3 is a cross-sectional view taken along the line III-III of FIG.
  • FIG. 4 is a layout diagram showing the same piezoelectric transducer as above and corresponding to the IV-IV cross section of FIG.
  • FIG. 5 is an end view showing a method of manufacturing the piezoelectric transducer according to the first embodiment.
  • FIG. 6 is an end view showing a method of manufacturing the above piezoelectric transducer.
  • FIG. 7 is a schematic view of the piezoelectric module according to the first embodiment.
  • FIG. 8 is a plan view of a piezoelectric transducer according to a second embodiment.
  • FIG. 9 shows the same piezoelectric transducer as above, and is an end view taken along the line IX-IX of FIG.
  • FIG. 10 shows the same piezoelectric transducer as above, and is an XX end view of FIG.
  • FIG. 11 shows the same piezoelectric transducer as above, and is a layout diagram corresponding to the CC cross section of FIG.
  • FIG. 12 is an end view showing a method of manufacturing a piezoelectric transducer according to the second embodiment.
  • FIG. 13 is an end view showing a method of manufacturing the same piezoelectric transducer as above.
  • FIG. 14 is a schematic view of a piezoelectric module according to the second embodiment.
  • the piezoelectric transducer 1 includes a support portion 2 and a piezoelectric portion 3.
  • the piezoelectric portion 3 includes a first piezoelectric layer 40, a second piezoelectric layer 50, a first electrode 41, a second electrode 42, a third electrode 51, and a fourth electrode 52.
  • the piezoelectric portion 3 further includes a protective layer 6 and an insulating layer 7.
  • the support portion 2 is formed in a frame shape in which a cavity 23 is formed inside.
  • the outer edge of the support portion 2 is square.
  • the support portion 2 is formed of, for example, a semiconductor substrate.
  • the support portion 2 is formed using silicon as a main material.
  • the support portion 2 has a first surface 21 and a second surface 22 opposite to the first surface 21 in the thickness direction of the support portion 2.
  • the cavity 23 is a hole penetrating in the thickness direction of the support portion 2.
  • the cavity 23 is formed in a circular shape when viewed from the thickness direction of the support portion 2.
  • the center of the cavity 23 is located near the center of the support portion 2.
  • the thickness direction of the support portion 2 refers to a direction perpendicular to the first surface 21.
  • the piezoelectric portion 3 is formed in a plate shape.
  • the piezoelectric portion 3 is formed in a square shape in plan view.
  • the piezoelectric portion 3 is supported by the support portion 2.
  • the thickness direction of the support portion 2 and the thickness direction of the piezoelectric portion 3 coincide with each other.
  • the piezoelectric portion 3 covers the cavity 23 from one side in the thickness direction of the piezoelectric portion 3 (the upper side in the drawing of FIG. 2).
  • the thickness direction of the piezoelectric portion 3 is defined as the Z-axis direction unless otherwise noted.
  • the support portion 2 and the piezoelectric portion 3 are arranged in the Z-axis direction.
  • the support portion 2 side is defined as the negative side of the Z-axis
  • the piezoelectric portion 3 side is defined as the positive side of the Z-axis.
  • the directions of two adjacent sides in plan view are respectively defined as an X-axis direction and a Y-axis direction. Therefore, the X axis direction, the Y axis direction, and the Z axis direction are orthogonal to one another.
  • the protective layer 6 of the piezoelectric portion 3 is formed on the first surface 21 of the support portion 2.
  • the protective layer 6 is formed on the entire area of the first surface 21 so as to cover the cavity 23 from one side (positive side) in the Z-axis direction.
  • the protective layer 6 is formed of, for example, silicon dioxide (SiO 2 ).
  • the first piezoelectric layer 40 and the second piezoelectric layer 50 are formed of a piezoelectric body.
  • the first piezoelectric layer 40 and the second piezoelectric layer 50 have a thickness in the Z-axis direction.
  • the polarization directions of the first piezoelectric layer 40 and the second piezoelectric layer 50 are along the Z-axis direction.
  • the piezoelectric unit 3 has a structure in which the second electrode 42, the first piezoelectric layer 40, and the first electrode 41 are stacked in this order from the support 2 side (the negative side of the Z axis).
  • the piezoelectric portion 3 has a structure in which the fourth electrode 52, the second piezoelectric layer 50, and the third electrode 51 are laminated in this order from the support portion 2 side (the negative side of the Z axis).
  • the fourth electrode 52 is formed on the surface of the protective layer 6 opposite to the support 2 side.
  • the fourth electrode 52 is formed on the entire surface of the protective layer 6 on the opposite side to the support 2 side.
  • the fourth electrode 52 is made of, for example, platinum.
  • the second piezoelectric layer 50 is formed in a plate shape on the surface of the fourth electrode 52 opposite to the support 2 side.
  • the second piezoelectric layer 50 is formed on the entire surface of the fourth electrode 52 on the side opposite to the support portion 2 except for the vicinity of the left end in FIG.
  • the second piezoelectric layer 50 is formed in a rectangular shape.
  • the length of each side of the second piezoelectric layer 50 is larger than the diameter of the cavity 23.
  • the second piezoelectric layer 50 overlaps the entire cavity 23 in the Z-axis direction.
  • the second electrode 42 and the third electrode 51 are formed on the surface of the second piezoelectric layer 50 opposite to the support 2 side.
  • the second electrode 42 and the third electrode 51 are formed of, for example, platinum.
  • the second electrode 42 and the third electrode 51 are located at the same position in the Z-axis direction. In short, the second electrode 42 and the third electrode 51 are located on the same plane orthogonal to the Z-axis direction.
  • FIG. 4 is a view of FIG. 2 as viewed from the IV-IV cross section.
  • the second electrode 42 is formed in a circular shape.
  • the second electrode 42 is formed near the center of the piezoelectric portion 3 when viewed in the Z-axis direction.
  • the piezoelectric transducer 1 further includes a wire 421.
  • the wiring 421 is formed in a linear shape, one end thereof is connected to the second electrode 42, and the other end is located in the vicinity of the peripheral edge of the piezoelectric portion 3.
  • “viewing from the Z-axis direction” means viewing through the piezoelectric transducer 1 from the Z-axis direction.
  • “viewing from the Z-axis direction” means viewing through the piezoelectric transducer 1 from the Z-axis direction.
  • the third electrode 51 is formed in an arc shape.
  • the third electrode 51 is formed to surround the second electrode 42. More specifically, the third electrode 51 is formed in an arc shape concentric with the second electrode 42.
  • a wire 421 connected to the second electrode 42 is located between opposing ends 510 of the third electrode 51.
  • the piezoelectric transducer 1 further includes a wire 511.
  • the wiring 511 is formed in a linear shape, one end thereof is connected to the third electrode 51, and the other end is located in the vicinity of the peripheral edge of the piezoelectric portion 3.
  • the surface on the piezoelectric portion 3 side of the frame-shaped support portion 2 is a first surface 21.
  • An inner edge 211 of the first surface 21 on the cavity 23 side is circular.
  • the outer edge (the outer edge 512: see FIG. 4) in the radial direction is along the inner edge 211 of the first surface 21 when viewed from the Z-axis direction. More specifically, the outer edge 512 of the third electrode 51 is formed in an arc shape slightly larger in diameter than the cavity 23. Further, of the third electrode 51, the inner edge (inner edge 515: see FIG. 4) in the radial direction is formed in an arc shape having a diameter smaller than that of the cavity 23. That is, the third electrode 51 straddles the cavity 23 and the support 2 as viewed in the Z-axis direction.
  • the first piezoelectric layer 40 is formed in a plate shape on the surface of the second electrode 42 opposite to the support 2 side.
  • the first piezoelectric layer 40 is formed on the entire surface of the second electrode 42 on the opposite side to the support 2 side. That is, the first piezoelectric layer 40 is formed in a circular shape.
  • the insulating layer 7 includes a portion of the surface of the fourth electrode 52, a portion of the surface of the second piezoelectric layer 50, a surface of the wiring 421 opposite to the support portion 2, and a portion of the third electrode 51. It is formed on the surface on the opposite side to the part 2 side and the surface on the side opposite to the support part 2 side of the wiring 511. That is, in the fourth electrode 52, the insulating layer 7 is formed on the surface opposite to the support 2 side and in the portion where the second piezoelectric layer 50 is not formed (near the left end in FIG. 2). Further, in the second piezoelectric layer 50, the insulating layer 7 is formed on the surface opposite to the support 2 side and in the portion where the second electrode 42, the third electrode 51, the wiring 421 and the wiring 511 are not formed. It is done.
  • the insulating layer 7 has a flat surface 70 on the side opposite to the support 2 side.
  • the surface 70 of the insulating layer 7 is substantially flush with the surface 400 of the first piezoelectric layer 40.
  • the insulating layer 7 is formed of, for example, silicon dioxide.
  • the insulating layer 7 has electrical insulation.
  • the first electrode 41, the second electrode 42, the third electrode 51, and the fourth electrode 52 sandwich at least one of the insulating layer 7, the first piezoelectric layer 40, and the second piezoelectric layer 50 between each other, They are electrically isolated from each other.
  • the insulating layer 7 reduces the possibility of the occurrence of electrical coupling between the conductors, such as between the first lead wire 413 and the third electrode 51 described later.
  • the insulating layer 7 may be formed of, for example, a resin material.
  • the first electrode 41 is formed in a disk shape on the surface 400 of the first piezoelectric layer 40. More specifically, the first electrode 41 is formed in a disc shape having a diameter slightly smaller than that of the first piezoelectric layer 40. The first electrode 41 is formed in the vicinity of the center of the piezoelectric portion 3 as viewed in the Z-axis direction.
  • the first electrode 41 is made of, for example, gold.
  • the second piezoelectric layer 50 is located at a position different from the first piezoelectric layer 40 in the Z-axis direction. More specifically, the second piezoelectric layer 50 is located on the negative side in the Z-axis direction with respect to the first piezoelectric layer 40. That is, the second piezoelectric layer 50 is located between the first piezoelectric layer 40 and the cavity 23 in the Z-axis direction.
  • the first piezoelectric layer 40 overlaps the second piezoelectric layer 50 in the Z-axis direction. More specifically, when viewed in the Z-axis direction, the first piezoelectric layer 40 is located inside the outer edge of the second piezoelectric layer 50. The first piezoelectric layer 40 has a smaller area than the second piezoelectric layer 50 when viewed in the Z-axis direction.
  • the thickness of the support portion 2 is 200 ⁇ m.
  • the thickness of the fourth electrode 52 is 0.4 ⁇ m.
  • the thickness of the second piezoelectric layer 50 is 2 ⁇ m.
  • the thickness of the second electrode 42 and the third electrode 51 is 0.4 ⁇ m.
  • the thickness of the first piezoelectric layer 40 is 2 ⁇ m.
  • the thickness of the insulating layer 7 is 2 ⁇ m.
  • the thickness of the first electrode 41 is 0.2 ⁇ m.
  • the diameter of the cavity 23 is 30 ⁇ m.
  • the length of one side of the support portion 2 is 50 ⁇ m.
  • the first piezoelectric layer 40 is sandwiched between the first electrode 41 and the second electrode 42 in the Z-axis direction.
  • the second piezoelectric layer 50 is sandwiched between the third electrode 51 and the fourth electrode 52 in the Z-axis direction.
  • the piezoelectric portion 3 includes a first piezoelectric region R4 and a second piezoelectric region R5.
  • the first piezoelectric region R4 is a region in which the first piezoelectric layer 40, the first electrode 41, and the second electrode 42 overlap the cavity 23 in the Z-axis direction.
  • the second piezoelectric region R5 is a region in which the second piezoelectric layer 50, the third electrode 51, and the fourth electrode 52 overlap the cavity 23 in the Z-axis direction.
  • the second piezoelectric region R5 is located in a region surrounding the first piezoelectric region R4 when viewed from the Z-axis direction (see FIG. 4).
  • the first piezoelectric region R4 is circular along the first electrode 41 (see FIG. 4), and the second piezoelectric region R5 is circular along the third electrode 51. When viewed in the Z-axis direction, the second piezoelectric region R5 coincides with the region where the third electrode 51 is located (see FIG. 2).
  • the third electrode 51 straddles the cavity 23 and the support 2 as viewed in the Z-axis direction. Therefore, as viewed in the Z-axis direction, the second piezoelectric region R5 straddles the cavity 23 and the support portion 2. Further, as described above, the outer edge 512 of the third electrode 51 is along the inner edge 211 of the first surface 21 of the frame-like support 2. Therefore, as viewed in the Z-axis direction, a part of the second piezoelectric region R5 is along the inner edge 211 of the first surface 21.
  • the first piezoelectric region R4 and the second piezoelectric region R5 generate an AC voltage when receiving ultrasonic waves.
  • the first piezoelectric region R4 and the second piezoelectric region R5 vibrate when an alternating voltage is applied to transmit ultrasonic waves. Reception and transmission of ultrasonic waves by the first piezoelectric region R4 and the second piezoelectric region R5 are performed via the protective layer 6.
  • the first piezoelectric layer 40 of the first piezoelectric region R4 is formed of, for example, lead zirconate titanate (PZT).
  • the second piezoelectric layer 50 of the second piezoelectric region R5 is made of, for example, aluminum nitride (AlN).
  • Aluminum nitride is a material having a high Young's modulus and a low density as compared to lead zirconate titanate. Therefore, it is preferable that the second piezoelectric layer 50 be disposed so as to cover the entire cavity 23 from one side in the Z-axis direction and be used as part of the configuration of the vibrating film of the piezoelectric transducer 1.
  • the vibrating film of the piezoelectric transducer 1 is configured to perform at least one of receiving and vibrating an ultrasonic wave or the like and transmitting an ultrasonic wave or the like by vibration.
  • the first piezoelectric layer 40 is not disposed at a position overlapping the second piezoelectric region R5 when viewed in the thickness direction. Therefore, since there are few parts which inhibit the bending movement of the piezoelectric part 3, transmission / reception sensitivity is high.
  • the first piezoelectric layer 40 does not overlap the second piezoelectric layer 50 in the direction orthogonal to the thickness direction.
  • the second piezoelectric layer 50 can be disposed so as to cover the entire cavity 23 from one side in the Z-axis direction, and can be used as a part of the configuration of the vibrating film of the piezoelectric transducer 1. .
  • the vibrating film of the piezoelectric transducer 1 is configured to perform at least one of receiving and vibrating an ultrasonic wave or the like and transmitting an ultrasonic wave or the like by vibration. Further, since the second piezoelectric layer 50 can be used as part of the configuration of the vibrating film, the process of forming the vibrating film can be omitted, and the cost for manufacturing the element can be reduced.
  • the piezoelectric constant d 31 of the first piezoelectric layer 40 is larger than the piezoelectric constant d 31 of the second piezoelectric layer 50. Further, the relative dielectric constant ⁇ r of the first piezoelectric layer 40 is larger than the relative dielectric constant ⁇ r of the second piezoelectric layer 50.
  • the relative dielectric constant ⁇ r of the first piezoelectric layer 40 is, for example, 1200.
  • the relative dielectric constant ⁇ r of the second piezoelectric layer 50 is, for example, 10.
  • a first piezoelectric region R4 is characteristic for converting an AC voltage to the vibration in the Z-axis direction second piezoelectric region Better than R5.
  • the value (d 31 / ⁇ r ) obtained by dividing the piezoelectric constant d 31 by the relative dielectric constant ⁇ r is larger than d 31 / ⁇ r of the first piezoelectric layer 40
  • the region R5 has better characteristics for converting vibration into an alternating voltage than the first piezoelectric region R4.
  • the piezoelectric transducer 1 has a plurality of (four in FIG. 1) lead wires (first lead wire 413, second lead wire 423, third lead wire 513, and the like) on the surface 70 of the insulating layer 7.
  • a fourth lead 523) and a plurality of (four in FIG. 1) pads are further provided.
  • Each lead wire and each pad are formed as a conductor layer.
  • the plurality of pads are formed at four corners of the surface 70 of the insulating layer 7. Each pad is formed in a rectangular shape. Each pad may be formed in a square shape.
  • the first lead wire 413 electrically connects the first electrode 41 and the first pad 414.
  • the second lead wire 423 electrically connects the wire 421 connected to the second electrode 42 and the second pad 424.
  • the insulating layer 7 has an opening 72.
  • One end of the wiring 421 is located at the back of the opening 72 (lower in FIG. 3).
  • the second lead wire 423 and the wire 421 are formed by falling along the inner wall of the opening 72 toward the wire 421 and overlapping a part of the wire 421 in the Z-axis direction. Is connected.
  • the third lead wire 513 electrically connects the wiring 511 connected to the third electrode 51 and the third pad 514.
  • the insulating layer 7 has an opening 73. One end of the wiring 511 is located at the back of the opening 73 (lower in FIG. 3).
  • the third lead wire 513 falls along the inner wall of the opening 73 toward the wire 511 and is formed to overlap a part of the wire 511 in the Z-axis direction. Is connected.
  • the fourth lead wire 523 electrically connects the fourth electrode 52 and the fourth pad 524.
  • the insulating layer 7 has an opening 74 in a region where the second piezoelectric layer 50 is not formed (in the vicinity of the left end in FIG. 1) as viewed in the Z-axis direction.
  • the fourth lead-out wire 523 is formed to fall along the inner wall of the opening 74 toward the fourth electrode 52 and to overlap with a portion of the fourth electrode 52 in the Z-axis direction. And the fourth electrode 52 are connected.
  • the protective layer 6 made of a thermal oxide film is formed on the first surface 201 of the base material 200 which is a silicon substrate which is the base of the support portion 2 of the piezoelectric transducer 1.
  • a protective layer made of a thermal oxide film is also formed on the second surface 202 opposite to the first surface 201 in the thickness direction of the base 200.
  • the illustration of the protective layer formed on the second surface 202 is omitted.
  • the substrate 200 is a disk-shaped wafer.
  • the fourth electrode 52 is formed on the entire surface 60 of the protective layer 6.
  • the fourth electrode 52 is formed, for example, by sputtering.
  • the first layer 81 of aluminum nitride is formed on the entire surface 520 of the fourth electrode 52.
  • the first layer 81 is a layer to be the second piezoelectric layer 50 later.
  • the first layer 81 is formed, for example, by sputtering.
  • a second layer 82 of platinum is formed on the surface 810 of the first layer 81 opposite to the substrate 200 side.
  • the second layer 82 is a layer to be the second electrode 42, the third electrode 51, the wiring 421, and the wiring 511 later (see FIG. 4).
  • the second layer 82 is formed, for example, by sputtering.
  • a third layer 83 of lead zirconate titanate is formed on the surface 820 of the second layer 82 opposite to the substrate 200 side.
  • the third layer 83 is a layer to be the first piezoelectric layer 40 later.
  • the third layer 83 is formed, for example, by sputtering.
  • the third layer 83 is patterned by photolithography and etching.
  • the first piezoelectric layer 40 formed of a part of the third layer 83 is formed.
  • the second layer 82 is patterned by photolithography and etching.
  • the second electrode 42, the third electrode 51, the wiring 421 (see FIG. 4), and the wiring 511 (see FIG. 4), which are part of the second layer 82, are formed.
  • the first layer 81 is patterned by photolithography and etching. That is, a portion of the first layer 81 near the left end in A of FIG. 6 is removed.
  • the second piezoelectric layer 50 formed of a part of the first layer 81 is formed in the region of the surface 520 of the fourth electrode 52 except the vicinity of the left end in A of FIG. That is, the exposed surface 521 on which the second piezoelectric layer 50 is not formed is formed on the surface 520.
  • the insulating layer 7 is the exposed surface 521 on the fourth electrode 52 and the surface of the second piezoelectric layer 50, and the second electrode 42, the third electrode 51, and the wiring 421. 4 (see FIG. 4) and the wiring 511 (see FIG. 4) are not formed, the surface of the wiring 421, the surface of the third electrode 51, and the surface of the wiring 511.
  • the insulating layer 7 is formed by, for example, a chemical vapor deposition (CVD) method so as to cover the first piezoelectric layer 40 and then polished or etched back from the surface to form the surface 400 of the first piezoelectric layer 40 Be made flush.
  • CVD chemical vapor deposition
  • the openings 72 (see FIG. 3), 73 (see FIG. 3), and 74 are formed in the insulating layer 7.
  • the openings 72, 73, 74 are formed, for example, using photolithography technology and etching technology.
  • the first electrode 41 is formed on the surface 400 of the first piezoelectric layer 40, and the first lead wire 413, the second lead wire 423, the third on the surface 70 of the insulating layer 7.
  • the leads 513, the fourth lead 523, the first pad 414, the second pad 424, the third pad 514, and the fourth pad 524 are formed (see FIG. 1).
  • the first electrode 41, each lead wire, and each pad are formed of gold as a material by a vapor deposition method or a sputtering method using a metal mask.
  • the first electrode 41, the leads, and the pads may be formed using photolithography technology and etching technology.
  • the first electrode 41, the leads, and the pads may be formed using a photolithography technique, a thin film forming technique, and a lift-off method.
  • the cavity 23 is formed in the base material 200.
  • the support part 2 is formed.
  • the cavity 23 is formed, for example, by anisotropic etching with an alkaline solution. More specifically, first, the protective layer formed on the second surface 202 (see E of FIG. 6) is patterned using photolithography technology and etching technology. Furthermore, the cavity 23 is formed by etching the central portion of the substrate 200 from the second surface 202 using the patterned remaining protective layer as an etching mask.
  • the protective layer 6 functions as an etching stopper. That is, the protective layer 6 is difficult to be etched by the alkaline solution. Therefore, the variation in the thickness of the protective layer 6 is reduced.
  • the substrate 200 is diced. That is, the substrate 200 is divided into areas occupied by one piezoelectric transducer 1.
  • the piezoelectric transducer 1 is manufactured.
  • the piezoelectric module 10 includes a plurality (16 in FIG. 7) of piezoelectric transducers 1.
  • the plurality of piezoelectric transducers 1 are mounted on a substrate.
  • the plurality of piezoelectric transducers 1 are arranged in a two-dimensional array of four vertical rows and four horizontal rows.
  • the piezoelectric module 10 further includes a first switching unit 11, a second switching unit 12, and a processing unit 13.
  • the first switching unit 11 and the second switching unit 12 each have a plurality of switches.
  • the first electrode 41 of each piezoelectric transducer 1 is connected to the external power supply 15 via the first pad 414 and the switch of the first switching unit 11.
  • the four piezoelectric transducers 1 arranged in a horizontal row share one switch connected to the external power supply 15 in the first switching unit 11.
  • each piezoelectric transducer 1 is connected to the ground via the second pad 424 and the switch of the second switch 12.
  • the four piezoelectric transducers 1 arranged in a vertical line share one switch connected to the ground in the second switching unit 12.
  • each piezoelectric transducer 1 is connected to the processing unit 13 via the third pad 514 and the switch of the second switching unit 12.
  • the four piezoelectric transducers 1 arranged in a vertical line share one switch connected to the processing unit 13 in the second switching unit 12.
  • each piezoelectric transducer 1 is connected to the ground via the fourth pad 524 and the switch of the first switching unit 11.
  • the four piezoelectric transducers 1 arranged in a horizontal row share one switch connected to the ground in the first switching unit 11.
  • the first switching unit 11 and the second switching unit 12 switch the connection between the piezoelectric transducer 1 and the external power supply 15 for each piezoelectric transducer 1.
  • the first switching unit 11 and the second switching unit 12 switch the connection between the piezoelectric transducer 1 and the processing unit 13 for each of the piezoelectric transducers 1.
  • an alternating voltage is applied to the first piezoelectric layer 40 from the external power supply 15.
  • the piezoelectric transducer 1 When connected to the processing unit 13, the piezoelectric transducer 1 outputs an alternating voltage generated in the second piezoelectric region R ⁇ b> 5 to the processing unit 13.
  • the first switching unit 11 and the second switching unit 12 may have a plurality of relays or a plurality of multiplexers instead of the plurality of switches.
  • the processing unit 13 includes, for example, a processor such as a central processing unit (CPU) and an AC-DC converter.
  • the AC-DC converter converts an AC voltage input from the piezoelectric transducer 1 into a DC voltage, and outputs the DC voltage to the processor.
  • the processor is electrically connected to the first switching unit 11 and controls opening and closing of the plurality of switches of the first switching unit 11. Furthermore, the processor controls the opening and closing of the plurality of switches of the second switching unit 12.
  • the processing unit 13 controls the opening and closing of the switches of the first switching unit 11 and the second switching unit 12 to connect the piezoelectric transducer 1 to the external power supply 15.
  • the first piezoelectric region R4 transmits an ultrasonic wave as the first piezoelectric layer 40 vibrates in the Z-axis direction.
  • the first electrode 41 and the second electrode 42 are electrodes for applying an alternating voltage to the first piezoelectric layer 40.
  • the processing unit 13 controls the opening and closing of the switches of the first switching unit 11 and the second switching unit 12 to connect to the piezoelectric transducer 1.
  • the second piezoelectric region R5 receives ultrasonic waves
  • the second piezoelectric layer 50 vibrates in the Z-axis direction
  • the second piezoelectric region R5 converts the vibration of the second piezoelectric layer 50 in the Z-axis direction into an alternating voltage.
  • the third electrode 51 and the fourth electrode 52 are electrodes for extracting AC voltage generated in the second piezoelectric region R5.
  • the third electrode 51 and the fourth electrode 52 take out an alternating voltage generated by the second piezoelectric region R ⁇ b> 5 receiving an ultrasonic wave, and output the alternating voltage to the processing unit 13.
  • the first piezoelectric region R4 transmits ultrasonic waves mainly in the negative direction of the Z axis.
  • the second piezoelectric region R5 mainly receives ultrasonic waves that have arrived from the negative side of the Z axis. That is, the direction in which the transmission intensity of the first piezoelectric region R4 and the second piezoelectric region R5 is the maximum and the direction in which the reception sensitivity is the maximum are along the negative direction of the Z axis.
  • the piezoelectric module 10 is used, for example, as an ultrasonic sensor mounted on a car and measuring a distance between the car and an object around the car.
  • the piezoelectric module 10 transmits and receives ultrasonic waves.
  • the processing unit 13 measures the time from when the piezoelectric module 10 transmits an ultrasonic wave until the ultrasonic wave is reflected by the object and returns, so that the processing unit 13 measures the time between the object and the piezoelectric module 10. The distance can be calculated.
  • the piezoelectric module 10 is mounted on a mobile phone or the like and used as a sensor for detecting a human fingerprint.
  • the plurality of piezoelectric transducers 1 are arranged such that the distance between the centers of the adjacent piezoelectric transducers 1 is smaller than the distance between the unevenness of the fingerprints.
  • the plurality of piezoelectric transducers 1 transmit ultrasonic waves and receive ultrasonic waves reflected by human fingers. Since the acoustic impedance is different between the concave and the convex portions of the fingerprint, the processing unit 13 can detect the fingerprint based on the intensity of the ultrasonic wave received by the plurality of piezoelectric transducers 1.
  • the first piezoelectric layer 40 is distorted when the first piezoelectric layer 40 vibrates.
  • the second piezoelectric layer 50 near the first piezoelectric layer 40 may be distorted.
  • the second piezoelectric layer 50 may be distorted, which may distort the first piezoelectric layer 40.
  • the distortion of the first piezoelectric layer 40 and the second piezoelectric layer 50 may act to cancel out.
  • the second piezoelectric region R5 is located in a region surrounding the first piezoelectric region R4 when viewed from the Z-axis direction. Therefore, as compared with the case where the first piezoelectric region R4 and the second piezoelectric region R5 overlap in the Z-axis direction, the extent to which the strain of the first piezoelectric layer 40 and the strain of the second piezoelectric layer 50 affect each other Can be reduced. Thereby, it is possible to improve the characteristics of the first piezoelectric region R4 and the second piezoelectric region R5 (the characteristics of converting an alternating voltage into vibrations or the characteristics of converting vibrations into an alternating voltage).
  • the first piezoelectric region R4 is disposed so as to overlap the entire area of the cavity 23 in the Z-axis direction, the following problems may occur. That is, when the first piezoelectric layer 40 vibrates, a direction in which the portion of the first piezoelectric region R4 overlapping the region on the center side of the cavity 23 is distorted, and the region of the first piezoelectric region R4 on the outer peripheral side of the cavity 23 Since the direction in which the overlapping portion is distorted is opposite to that of the first piezoelectric region R4, the characteristics of the first piezoelectric region R4 (for example, the efficiency of converting AC voltage into vibration) may be reduced.
  • the second piezoelectric region R5 is disposed so as to overlap the entire area of the cavity 23 in the Z-axis direction, the following problem may occur. That is, when the second piezoelectric layer 50 vibrates, a direction in which the portion of the second piezoelectric region R5 overlapping the region on the center side of the cavity 23 is distorted, and the region of the second piezoelectric region R5 on the outer peripheral side of the cavity 23 Since the overlapping portion is opposite to the direction of distortion, the characteristics (for example, wave receiving sensitivity) of the second piezoelectric region R5 may be reduced.
  • the first piezoelectric region R4 at a position overlapping the region on the center side of the cavity 23 as in the present embodiment, the direction of strain in the first piezoelectric region R4 can be aligned. Further, by arranging the second piezoelectric region R5 at a position overlapping the region on the outer peripheral side of the cavity 23, the direction of strain in the second piezoelectric region R5 can be aligned. Thereby, the characteristics of the first piezoelectric region R4 and the characteristics of the second piezoelectric region R5 are improved.
  • the second electrode 42 and the third electrode 51 face in the Z-axis direction.
  • the second electrode 42 and the third electrode 51 may be capacitively coupled to each other. Therefore, when the piezoelectric portion 3 vibrates, electrical interference may occur between the second electrode 42 and the third electrode 51.
  • the second piezoelectric region R5 of the present embodiment is located in a region surrounding the first piezoelectric region R4 when viewed from the Z-axis direction, and the first piezoelectric region R4 and the second piezoelectric region R5 do not overlap in the Z-axis direction Therefore, the occurrence of capacitive coupling between the second electrode 42 and the third electrode 51 is suppressed. Therefore, the electrical interference between the second electrode 42 and the third electrode 51 is suppressed. For example, by suppressing crosstalk (an example of electrical interference) between the second electrode 42 and the third electrode 51, in the piezoelectric transducer 1, the transmission intensity and the reception sensitivity are improved, and Noise and noise in the received signal are reduced. Further, the reduction of the noise of the transmission signal and the noise of the reception signal improves the S / N ratio of the transmission signal and the S / N ratio of the reception signal.
  • the second piezoelectric region R5 of the present embodiment is located in the region surrounding the first piezoelectric region R4 when viewed from the Z-axis direction, the first piezoelectric region R4 and the second piezoelectric region R5 overlap in the Z-axis direction.
  • the bending rigidity of the second piezoelectric layer 50 can be reduced as compared with the case where For example, when the insulating layer 7 is not provided in the piezoelectric portion 3, when the insulating layer 7 is thinly formed in the Z-axis direction, or when the insulating layer 7 is formed of a soft material, etc.
  • the bending rigidity of the second piezoelectric layer 50 can be reduced as compared with the case where the second piezoelectric region R5 overlaps the Z-axis direction. Thereby, the characteristic (for example, receiving sensitivity) of the second piezoelectric region R5 can be improved.
  • the second piezoelectric layer 50 may be located on the positive side in the Z-axis direction with respect to the first piezoelectric layer 40.
  • the second electrode 42, the first piezoelectric layer 40, and the first electrode 41 are stacked in this order on the protective layer 6 to form a second layer on the upper layer (positive side in the Z-axis direction) than the first electrode 41.
  • the piezoelectric layer 50 may be stacked.
  • the first piezoelectric layer 40 may be located at a position different from the second piezoelectric layer 50 in the thickness direction (Z-axis direction) of the piezoelectric portion 3. That the first piezoelectric layer 40 is located at a position different from the second piezoelectric layer 50 in the thickness direction of the piezoelectric portion 3 means that part of the first piezoelectric layer 40 or the first piezoelectric layer 40 is viewed from the direction orthogonal to the thickness direction of the piezoelectric portion 3 It means that all and part or all of the second piezoelectric layer 50 do not overlap.
  • the first piezoelectric layer 40 may not overlap with the second piezoelectric layer 50 in the Z-axis direction. That is, in the second piezoelectric layer 50, a portion overlapping with the first piezoelectric layer 40 in the Z-axis direction may be hollow, and a layer having electrical insulation like the insulating layer 7 is formed in the portion. It may be
  • the second piezoelectric region R5 of the embodiment substantially surrounds the first piezoelectric region R4 when viewed from the Z-axis direction
  • the second piezoelectric region R5 surrounds the first piezoelectric region R4 when viewed from the Z-axis direction. Is not required.
  • the second piezoelectric region R5 may be located in at least a part of the region surrounding the first piezoelectric region R4 when viewed from the Z-axis direction. In other words, when viewed in the thickness direction (Z-axis direction), the second piezoelectric region R5 may be disposed along a part of the first piezoelectric region R4.
  • the first piezoelectric region R4 when viewed in the thickness direction (Z-axis direction), at least a portion of the first piezoelectric region R4 is located on the center side of the cavity 23, and at least a portion of the second piezoelectric region R5 is located on the outer periphery of the cavity Just do it.
  • the shape of the outer edge of the support part 2 is not limited to square shape.
  • the outer edge of the support portion 2 may be formed, for example, in a rectangular shape or a circular shape.
  • the shape of the cavity 23 is not limited to a circle.
  • the cavity 23 may be formed, for example, in a square or rectangular shape.
  • the support part 2 of embodiment is formed in the frame shape which followed the circumferential direction.
  • the frame shape is not limited to the shape continuous in the circumferential direction, and a part of the circumferential direction may be discontinuous.
  • the frame shape may be a shape including the following two parts in the structure which is annular as viewed from the thickness direction (Z-axis direction) of the piezoelectric portion 3. That is, in the support portion, the two portions may face each other with at least one of the first piezoelectric region R4 and the second piezoelectric region R5 in between as viewed from the thickness direction of the piezoelectric portion 3. The two parts may be connected or may be formed separately.
  • the support portion may have a shape lacking a part in the circumferential direction, for example, a C shape or a U shape. Further, the support portion may be divided into a plurality of members, and the piezoelectric portion 3 may be spanned by the plurality of members. Each of the plurality of members may be formed in, for example, a rectangular parallelepiped shape or a cube shape.
  • the outer edge 512 of the third electrode 51 may overlap a part of the inner edge 211 of the first surface 21 of the frame-like support 2.
  • the method of forming the first piezoelectric layer 40 and the second piezoelectric layer 50 is not limited to the sputtering method.
  • the first piezoelectric layer 40 and the second piezoelectric layer 50 may be formed by, for example, a chemical vapor deposition (CVD) method such as MOCVD (metal organic chemical vapor deposition) method, or a sol-gel method.
  • CVD chemical vapor deposition
  • MOCVD metal organic chemical vapor deposition
  • the second electrode 42, the third electrode 51, the first piezoelectric layer 40, the second piezoelectric layer 50, etc. are formed using a metal mask or the like instead of being formed by photolithography and etching techniques. Alternatively, they may be formed by sputtering.
  • the material of the first piezoelectric layer 40 is not limited to lead zirconate titanate, and the material of the second piezoelectric layer 50 is not limited to aluminum nitride.
  • the first piezoelectric layer 40 and the second piezoelectric layer 50 may be formed of a resin such as polyvinylidene fluoride (PVDF) or zinc oxide (ZnO).
  • PVDF polyvinylidene fluoride
  • ZnO zinc oxide
  • the first piezoelectric layer 40 may be formed of aluminum nitride
  • the second piezoelectric layer 50 may be formed of lead zirconate titanate.
  • a piezoelectric material containing PZTN (: Pb (ZrTiNb) O 3 ), bismuth (Bi) or an alkali metal as a main component may be used.
  • the sound waves transmitted or received by the first piezoelectric region R4 and the second piezoelectric region R5 are not limited to the ultrasonic waves.
  • the first piezoelectric region R4 and the second piezoelectric region R5 may transmit or receive sound waves in the audible range.
  • first piezoelectric region R4 and the second piezoelectric region R5 may be used for ultrasonic wave transmission and the other may be used for ultrasonic wave reception, or both for ultrasonic wave transmission. Or both may be used for ultrasonic wave reception. That is, the first electrode 41 and the second electrode 42 are electrodes for extracting the alternating voltage generated in the first piezoelectric region R4, and the third electrode 51 and the fourth electrode 52 are an alternating current to the second piezoelectric layer 50. It may be an electrode for applying a voltage. Alternatively, the first electrode 41 and the second electrode 42 are electrodes for applying an alternating voltage to the first piezoelectric layer 40, and the third electrode 51 and the fourth electrode 52 are alternating current to the second piezoelectric layer 50.
  • the first electrode 41 and the second electrode 42 are electrodes for extracting alternating voltage generated in the first piezoelectric region R4, and the third electrode 51 and the fourth electrode 52 are alternating current generated in the second piezoelectric region R5. It may be an electrode for taking out a voltage.
  • the second lead wire 423 does not fall along the inner wall of the opening 72, and the inner surface of the opening 72 is Z
  • the second lead wire 423 may be formed to be inclined with respect to the axial direction, and the second lead wire 423 may fall along the inclined inner surface of the opening 71. That is, the inner surface of the opening 72 is formed to be inclined so as to connect one end of the wiring 421 to the second pad 424, and the wiring 421 is formed by the second lead wire 423 formed along the inclined inner surface of the opening 72. And the second pad 424 may be electrically connected.
  • the third lead 513 and the fourth lead 523 may be formed along the inclined inner surface of the opening.
  • the second electrode 42 and the third electrode 51 may be electrically connected.
  • an electrode in which the second electrode 42 and the third electrode 51 are integrated may be formed on the entire surface of the second piezoelectric layer 50 on the opposite side to the support 2 side.
  • the timing at which the current flows to the first electrode 41 and the timing at which the current flows to the fourth electrode 52 differ from each other. Mutual interference between the piezoelectric layer 40 and the second piezoelectric layer 50 may be suppressed.
  • the number of piezoelectric layers provided in the piezoelectric transducer 1 is not limited to two, that is, the first piezoelectric layer 40 and the second piezoelectric layer 50.
  • the piezoelectric transducer 1 may have three or more piezoelectric layers.
  • two piezoelectric transducers 1 are disposed so as to surround the first piezoelectric layer 40 on both sides of the first piezoelectric layer 40 having the same shape as that of the embodiment and the first piezoelectric layer 40 in the X axis direction.
  • An arc-shaped piezoelectric layer may be provided.
  • the piezoelectric portion 3 may be formed.
  • the second piezoelectric layer 50 can function as a vibrating film, which is advantageous for miniaturization without the need for a vibrating film.
  • a vibrating membrane formed of Si) or the like may be separately disposed. Since it is possible to adjust the mechanical constant of the movable part (the part that overlaps with the cavity when viewed from the thickness direction and vibrates during transmission and reception) to a value suitable for use conditions, transmission and The effect of being able to improve the efficiency of a received wave can be acquired.
  • the second piezoelectric layer 50 is sandwiched between the third electrode 51 and the fourth electrode 52 in the thickness direction.
  • the first piezoelectric layer 40 is located at a position different from the second piezoelectric layer 50 in the thickness direction.
  • the piezoelectric portion 3 includes a first piezoelectric region R4 and a second piezoelectric region R5.
  • the first piezoelectric region R4 is a region in which the first electrode 41, the second electrode 42, and the first piezoelectric layer 40 overlap the cavity 23 in the thickness direction.
  • the second piezoelectric region R5 is a region in which the third electrode 51, the fourth electrode 52, and the second piezoelectric layer 50 overlap the cavity 23 in the thickness direction.
  • the second piezoelectric region R5 is located in a region surrounding the first piezoelectric region R4 when viewed in the thickness direction.
  • the second piezoelectric region R5 is located in the region surrounding the first piezoelectric region R4 when viewed from the thickness direction (Z-axis direction) of the piezoelectric portion 3. Therefore, as compared with the case where the first piezoelectric region R4 and the second piezoelectric region R5 overlap in the thickness direction, the distortion of the first piezoelectric layer 40 of the first piezoelectric region R4 causes the second piezoelectric of the second piezoelectric region R5 to The degree to which the layer 50 is distorted can be reduced. Moreover, the extent to which the first piezoelectric layer 40 is distorted due to the distortion of the second piezoelectric layer 50 can be reduced. As a result, it is possible to improve the characteristics in which the first piezoelectric region R4 and the second piezoelectric region R5 convert an alternating voltage into vibration or the characteristics in which vibration is converted into an alternating voltage.
  • the first electrode 41 and the second electrode 42 are electrodes for applying an alternating voltage to the first piezoelectric layer 40.
  • the third electrode 51 and the fourth electrode 52 are electrodes for applying an alternating voltage to the second piezoelectric layer 50.
  • the piezoelectric transducer 1 When a force is applied to the piezoelectric portion 3 in the thickness direction (Z-axis direction) by the piezoelectric portion 3 receiving a sound wave or the like, stress is likely to be concentrated in the vicinity of the inner edge 211 of the support portion 2 . Therefore, in the piezoelectric transducer 1 described above, it is possible to improve the characteristics of the second piezoelectric region R5 (characteristics of converting vibration to alternating voltage or characteristics of converting alternating voltage to vibration).
  • the configurations according to the second to eleventh aspects are not essential to the piezoelectric transducer 1 and can be omitted as appropriate.
  • the first piezoelectric layer 40 and the second piezoelectric layer 50 are formed of a piezoelectric body.
  • the first piezoelectric layer 40 and the second piezoelectric layer 50 have a thickness in the Z-axis direction.
  • the polarization directions of the first piezoelectric layer 40 and the second piezoelectric layer 50 are along the Z-axis direction.
  • the first electrode 41, the second electrode 42, the third electrode 51, and the fourth electrode 52 sandwich at least one of the insulating layer 7, the first piezoelectric layer 40, and the second piezoelectric layer 50 between each other, They are electrically isolated from each other.
  • the insulating layer 7 reduces the possibility of the occurrence of electrical coupling between the conductors, such as between the first lead wire 413 and the wiring 421 described later.
  • the insulating layer 7 may be formed of, for example, a resin material.
  • the fourth electrode 52 straddles the cavity 23 and the support 2 as viewed in the Z-axis direction. Further, the third electrode 51 and the second piezoelectric layer 50 also straddle the cavity 23 and the support portion 2 when viewed from the Z-axis direction. Therefore, as viewed in the Z-axis direction, the second piezoelectric region R5 straddles the cavity 23 and the support portion 2.
  • the piezoelectric constant d 31 of the first piezoelectric layer 40 is larger than the piezoelectric constant d 31 of the second piezoelectric layer 50. Further, the relative dielectric constant ⁇ r of the first piezoelectric layer 40 is larger than the relative dielectric constant ⁇ r of the second piezoelectric layer 50.
  • the relative dielectric constant ⁇ r of the first piezoelectric layer 40 is, for example, 1200.
  • the relative dielectric constant ⁇ r of the second piezoelectric layer 50 is, for example, 10.
  • a first piezoelectric region R4 is characteristic for converting an AC voltage to the vibration in the Z-axis direction second piezoelectric region Better than R5.
  • the value (d 31 / ⁇ r ) obtained by dividing the piezoelectric constant d 31 by the relative dielectric constant ⁇ r is larger than d 31 / ⁇ r of the first piezoelectric layer 40
  • the region R5 has better characteristics for converting vibration into an alternating voltage than the first piezoelectric region R4.
  • the plurality of pads are formed near the periphery of the surface 70 of the insulating layer 7. More specifically, the first pad 414 and the second pad 424 are formed on the surface 70 of the insulating layer 7 near the periphery on the positive side of the Y axis and near the center in the X axis direction. The third pad 514 and the fourth pad 524 are formed on the surface 70 of the insulating layer 7 near the periphery on the negative side of the Y axis and near the center in the X axis direction. Each pad is formed in a rectangular shape. Each pad may be formed in a square shape.
  • the second lead wire 423 electrically connects the wire 421 connected to the second electrode 42 and the second pad 424.
  • the insulating layer 7 has an opening 72.
  • One end of the wiring 421 is located at the back of the opening 72 (lower in FIG. 10).
  • the second lead wire 423 and the wire 421 are formed by falling along the inner wall of the opening 72 toward the wire 421 and overlapping a part of the wire 421 in the Z-axis direction. Is connected.
  • the fourth lead wire 523 electrically connects the wire 521 connected to the fourth electrode 52 and the fourth pad 524.
  • the insulating layer 7 has an opening 74.
  • One end of the wiring 521 is located at the back of the opening 74 (lower in FIG. 10).
  • the fourth lead-out wire 523 falls along the inner wall of the opening 74 toward the wire 521 and is formed so as to overlap with a part of the wire 521 in the Z-axis direction. Is connected.
  • the protective layer 6 made of a thermal oxide film is formed on the first surface 201 of the base material 200 which is a silicon substrate which is the base of the support portion 2 of the piezoelectric transducer 1.
  • a protective layer made of a thermal oxide film is also formed on the second surface 202 opposite to the first surface 201 in the thickness direction of the base 200.
  • the illustration of the protective layer formed on the second surface 202 is omitted.
  • the substrate 200 is a disk-shaped wafer.
  • the second layer 92 of lead zirconate titanate is formed on the entire surface 910 of the first layer 91.
  • the second layer 92 is a layer to be the first piezoelectric layer 40 later.
  • the second layer 92 is formed, for example, by sputtering.
  • the first layer 91 is patterned by photolithography and etching.
  • the second electrode 42, the fourth electrode 52, the wiring 421 (see FIG. 11), and the wiring 521 (see FIG. 11), which are part of the first layer 91, are formed.
  • the second electrode 42, the fourth electrode 52, the wiring 421 (see FIG. 11) and the wiring 521 (see FIG. 11) are formed on the surface 60 of the protective layer 6.
  • a third layer 93 of aluminum nitride is formed on the non-portion 61 and on the surfaces of the first piezoelectric layer 40, the fourth electrode 52, the wiring 421, and the wiring 521.
  • the third layer 93 is a layer to be the second piezoelectric layer 50 later.
  • the third layer 93 is formed by sputtering, for example.
  • the first piezoelectric layer 40 is exposed by polishing or etching the third layer 93.
  • the third layer 93 is patterned by photolithography and etching.
  • the second piezoelectric layer 50 which is a part of the third layer 93 is formed.
  • the insulating layer 7 is formed in the part 61 in which the electrode and wiring are not formed among the surfaces 60 of the protective layer 6.
  • the insulating layer 7 is formed by, for example, a chemical vapor deposition (CVD) method so as to cover the first piezoelectric layer 40 and the second piezoelectric layer 50, and then polished or etched back from the surface to form a first piezoelectric layer. It is flush with the surface 400 of the layer 40 and the surface 500 of the second piezoelectric layer 50.
  • CVD chemical vapor deposition
  • the openings 72 and 74 are formed in the insulating layer 7.
  • the openings 72 and 74 are formed, for example, using photolithography technology and etching technology.
  • a cavity 23 is formed in the base 200.
  • the support part 2 is formed.
  • the cavity 23 is formed, for example, by anisotropic etching with an alkaline solution. More specifically, first, the protective layer formed on the second surface 202 (see C of FIG. 13) is patterned using photolithography technology and etching technology. Furthermore, the cavity 23 is formed by etching the central portion of the substrate 200 from the second surface 202 using the patterned remaining protective layer as an etching mask.
  • the protective layer 6 functions as an etching stopper. That is, the protective layer 6 is difficult to be etched by the alkaline solution. Therefore, the variation in the thickness of the protective layer 6 is reduced.
  • the substrate 200 is diced. That is, the substrate 200 is divided into areas occupied by one piezoelectric transducer 1.
  • the piezoelectric transducer 1 is manufactured.
  • At least one region of the first piezoelectric layer 40 overlaps at least one region of the second piezoelectric layer 50 in the direction orthogonal to the thickness direction.
  • the substrates of the first electrode 41 and the third electrode 51 are not provided if the first piezoelectric layer 40 does not overlap the second piezoelectric layer 50 in the direction orthogonal to the thickness direction.
  • wiring of the wiring is complicated to eliminate the difference in distance, at least one region of the first piezoelectric layer 40 overlaps at least one region of the second piezoelectric layer 50 in the direction orthogonal to the thickness direction, The process of wire routing becomes easy.
  • the first switching unit 11 and the second switching unit 12 each have a plurality of switches.
  • the first electrode 41 of each piezoelectric transducer 1 is connected to the external power supply 15 via the first pad 414 and the switch of the first switching unit 11.
  • the four piezoelectric transducers 1 arranged in a horizontal row share one switch connected to the external power supply 15 in the first switching unit 11.
  • each piezoelectric transducer 1 is connected to the ground via the second pad 424 and the switch of the second switch 12.
  • the four piezoelectric transducers 1 arranged in a vertical line share one switch connected to the ground in the second switching unit 12.
  • the first switching unit 11 and the second switching unit 12 switch the connection between the piezoelectric transducer 1 and the external power supply 15 for each piezoelectric transducer 1.
  • the first switching unit 11 and the second switching unit 12 switch the connection between the piezoelectric transducer 1 and the processing unit 13 for each of the piezoelectric transducers 1.
  • an alternating voltage is applied to the first piezoelectric layer 40 from the external power supply 15.
  • the piezoelectric transducer 1 When connected to the processing unit 13, the piezoelectric transducer 1 outputs an alternating voltage generated in the second piezoelectric region R ⁇ b> 5 to the processing unit 13.
  • the first switching unit 11 and the second switching unit 12 may have a plurality of relays or a plurality of multiplexers instead of the plurality of switches.
  • the piezoelectric module 10 is used, for example, as an ultrasonic sensor mounted on a car and measuring a distance between the car and an object around the car.
  • the piezoelectric module 10 transmits and receives ultrasonic waves.
  • the processing unit 13 measures the time from when the piezoelectric module 10 transmits an ultrasonic wave until the ultrasonic wave is reflected by the object and returns, so that the processing unit 13 measures the time between the object and the piezoelectric module 10. The distance can be calculated.
  • the piezoelectric module 10 is mounted on a mobile phone or the like and used as a sensor for detecting a human fingerprint.
  • the plurality of piezoelectric transducers 1 are arranged such that the distance between the centers of the adjacent piezoelectric transducers 1 is smaller than the distance between the unevenness of the fingerprints.
  • the plurality of piezoelectric transducers 1 transmit ultrasonic waves and receive ultrasonic waves reflected by human fingers. Since the acoustic impedance is different between the concave and the convex portions of the fingerprint, the processing unit 13 can detect the fingerprint based on the intensity of the ultrasonic wave received by the plurality of piezoelectric transducers 1.
  • the first piezoelectric layer 40 is distorted when the first piezoelectric layer 40 vibrates.
  • the second piezoelectric layer 50 near the first piezoelectric layer 40 may be distorted.
  • the second piezoelectric layer 50 may be distorted, which may distort the first piezoelectric layer 40.
  • the second piezoelectric region R5 is located in a region surrounding the first piezoelectric region R4 when viewed from the Z-axis direction. Therefore, as compared with the case where the first piezoelectric region R4 and the second piezoelectric region R5 overlap in the Z-axis direction, the extent to which the strain of the first piezoelectric layer 40 and the strain of the second piezoelectric layer 50 affect each other Can be reduced. Thereby, it is possible to improve the characteristics of the first piezoelectric region R4 and the second piezoelectric region R5 (the characteristics of converting an alternating voltage into vibrations or the characteristics of converting vibrations into an alternating voltage).
  • the second piezoelectric region R5 is disposed so as to overlap the entire area of the cavity 23 in the Z-axis direction, the following problem may occur. That is, when the second piezoelectric layer 50 vibrates, a direction in which the portion of the second piezoelectric region R5 overlapping the region on the center side of the cavity 23 is distorted, and the region of the second piezoelectric region R5 on the outer peripheral side of the cavity 23 Since the overlapping portion is opposite to the direction of distortion, the characteristics (for example, wave receiving sensitivity) of the second piezoelectric region R5 may be reduced.
  • the first piezoelectric region R4 at a position overlapping the region on the center side of the cavity 23 as in the present embodiment, the direction of strain in the first piezoelectric region R4 can be aligned. Further, by arranging the second piezoelectric region R5 at a position overlapping the region on the outer peripheral side of the cavity 23, the direction of strain in the second piezoelectric region R5 can be aligned. Thereby, the characteristics of the first piezoelectric region R4 and the characteristics of the second piezoelectric region R5 are improved.
  • the second electrode 42 and the third electrode 51 face in the Z-axis direction.
  • the second electrode 42 and the third electrode 51 may be capacitively coupled to each other. Therefore, when the piezoelectric portion 3 vibrates, electrical interference may occur between the second electrode 42 and the third electrode 51.
  • the second piezoelectric region R5 of the present embodiment is located in a region surrounding the first piezoelectric region R4 when viewed from the Z-axis direction, and the first piezoelectric region R4 and the second piezoelectric region R5 do not overlap in the Z-axis direction Therefore, the occurrence of capacitive coupling between the second electrode 42 and the third electrode 51 is suppressed. Therefore, the electrical interference between the second electrode 42 and the third electrode 51 is suppressed. For example, by suppressing crosstalk (an example of electrical interference) between the second electrode 42 and the third electrode 51, in the piezoelectric transducer 1, the transmission intensity and the reception sensitivity are improved, and Noise and noise in the received signal are reduced. Further, the reduction of the noise of the transmission signal and the noise of the reception signal improves the S / N ratio of the transmission signal and the S / N ratio of the reception signal.
  • the first piezoelectric layer 40 prevents the bending of the second piezoelectric layer 50, or the second piezoelectric layer 50 However, it is difficult to prevent the bending of the first piezoelectric layer 40. Thereby, the characteristics of the first piezoelectric region R4 and the characteristics of the second piezoelectric region R5 (for example, the transmission intensity and the reception sensitivity) can be improved.
  • Both ends of the first piezoelectric layer 40 may not coincide with both ends of the second piezoelectric layer 50 in the Z-axis direction. At least one region of the first piezoelectric layer 40 may overlap at least one region of the second piezoelectric layer 50 in the direction orthogonal to the Z-axis direction.
  • the thickness of the second piezoelectric layer 50 may be smaller than that of the first piezoelectric layer 40, and both ends of the second piezoelectric layer 50 may be located between the ends of the first piezoelectric layer 40 in the Z-axis direction.
  • the first piezoelectric layer 40 may be thinner than the second piezoelectric layer 50, and both ends of the first piezoelectric layer 40 may be located between the two ends of the second piezoelectric layer 50 in the Z-axis direction. .
  • a convex portion may be provided on the protective layer 6.
  • One of the first piezoelectric layer 40 and the second piezoelectric layer 50 may be formed in the convex portion of the protective layer 6, and the other may be formed around the convex portion of the protective layer 6.
  • the ends on the support 2 side are located at mutually different positions in the Z-axis direction.
  • the ends of the first piezoelectric layer 40 and the second piezoelectric layer 50 opposite to the support 2 may be located at the same position in the Z-axis direction or at different positions.
  • the convex portion may be formed only in the protective layer 6, or the convex portion may be formed in the support portion 2, and the convex portion of the protective layer 6 may be formed so as to overlap with the convex portion of the support portion 2. .
  • the second piezoelectric region R5 of the embodiment substantially surrounds the first piezoelectric region R4 when viewed from the Z-axis direction
  • the second piezoelectric region R5 surrounds the first piezoelectric region R4 when viewed from the Z-axis direction. Is not required.
  • the second piezoelectric region R5 may be located in at least a part of the region surrounding the first piezoelectric region R4 when viewed from the Z-axis direction. In other words, when viewed in the thickness direction (Z-axis direction), the second piezoelectric region R5 may be disposed along a part of the first piezoelectric region R4.
  • the first piezoelectric region R4 when viewed in the thickness direction (Z-axis direction), at least a portion of the first piezoelectric region R4 is located on the center side of the cavity 23, and at least a portion of the second piezoelectric region R5 is located on the outer periphery of the cavity Just do it.
  • the shape of the outer edge of the support part 2 is not limited to square shape.
  • the outer edge of the support portion 2 may be formed, for example, in a rectangular shape or a circular shape.
  • the shape of the cavity 23 is not limited to a circle.
  • the cavity 23 may be formed, for example, in a square or rectangular shape.
  • the support part 2 of embodiment is formed in the frame shape which followed the circumferential direction.
  • the frame shape is not limited to the shape continuous in the circumferential direction, and a part of the circumferential direction may be discontinuous.
  • the frame shape may be a shape including the following two parts in the structure which is annular as viewed from the thickness direction (Z-axis direction) of the piezoelectric portion 3. That is, in the support portion, the two portions may face each other with at least one of the first piezoelectric region R4 and the second piezoelectric region R5 in between as viewed from the thickness direction of the piezoelectric portion 3. The two parts may be connected or may be formed separately.
  • the method of forming the first piezoelectric layer 40 and the second piezoelectric layer 50 is not limited to the sputtering method.
  • the first piezoelectric layer 40 and the second piezoelectric layer 50 may be formed by, for example, a chemical vapor deposition (CVD) method such as MOCVD (metal organic chemical vapor deposition) method, or a sol-gel method.
  • CVD chemical vapor deposition
  • MOCVD metal organic chemical vapor deposition
  • the third electrode 51, the fourth electrode 52, the first piezoelectric layer 40, the second piezoelectric layer 50, etc. are formed by using a metal mask or the like instead of being formed by photolithography technology and etching technology. Alternatively, they may be formed by sputtering.
  • a piezoelectric material containing PZTN (: Pb (ZrTiNb) O 3 ), bismuth (Bi) or an alkali metal as a main component may be used.
  • the sound waves transmitted or received by the first piezoelectric region R4 and the second piezoelectric region R5 are not limited to the ultrasonic waves.
  • the first piezoelectric region R4 and the second piezoelectric region R5 may transmit or receive sound waves in the audible range.
  • first piezoelectric region R4 and the second piezoelectric region R5 may be used for ultrasonic wave transmission and the other may be used for ultrasonic wave reception, or both for ultrasonic wave transmission. Or both may be used for ultrasonic wave reception. That is, the first electrode 41 and the second electrode 42 are electrodes for extracting the alternating voltage generated in the first piezoelectric region R4, and the third electrode 51 and the fourth electrode 52 are an alternating current to the second piezoelectric layer 50. It may be an electrode for applying a voltage. Alternatively, the first electrode 41 and the second electrode 42 are electrodes for applying an alternating voltage to the first piezoelectric layer 40, and the third electrode 51 and the fourth electrode 52 are alternating current to the second piezoelectric layer 50.
  • the first electrode 41 and the second electrode 42 are electrodes for extracting alternating voltage generated in the first piezoelectric region R4, and the third electrode 51 and the fourth electrode 52 are alternating current generated in the second piezoelectric region R5. It may be an electrode for taking out a voltage.
  • the application of the piezoelectric transducer 1 is not limited to the application which transmits or receives a sound wave.
  • the application of the piezoelectric transducer 1 may be an actuator.
  • first electrode 41 and the third electrode 51 may be electrically connected.
  • an electrode in which the first electrode 41 and the third electrode 51 are integrated is formed on the entire surface 70 of the insulating layer 7, the surface 400 of the first piezoelectric layer 40, and the surface 500 of the second piezoelectric layer 50.
  • the second electrode 42 and the fourth electrode 52 may be electrically connected.
  • the timing at which the piezoelectric transducer 1 is used for transmission by applying an alternating voltage to the first piezoelectric layer 40 and the timing at which the piezoelectric transducer 1 is used for receiving waves by extracting the alternating voltage generated in the second piezoelectric layer 50 And may be different.
  • the number of piezoelectric layers provided in the piezoelectric transducer 1 is not limited to two, that is, the first piezoelectric layer 40 and the second piezoelectric layer 50.
  • the piezoelectric transducer 1 may have three or more piezoelectric layers.
  • two piezoelectric transducers 1 are disposed so as to surround the first piezoelectric layer 40 on both sides of the first piezoelectric layer 40 having the same shape as that of the embodiment and the first piezoelectric layer 40 in the X axis direction.
  • An arc-shaped piezoelectric layer may be provided.
  • the piezoelectric portion 3 may be formed.
  • a vibrating film formed of, for example, silicon (Si) or the like may be separately disposed on either the surface on the cavity 23 side of the protective layer 6 or the surface on the first piezoelectric layer 40 side.
  • the mechanical constant of the movable portion can be adjusted to a value suitable for the use conditions, so that the efficiency of transmitting and receiving waves can be improved.
  • the thickness of the insulating layer 7 in a region overlapping with the cavity 23 when viewed in the thickness direction (Z direction) can be, for example, about 0.1 ⁇ m. This is because the thickness may be any as long as it functions as a protective layer of the first piezoelectric layer 40 and the second piezoelectric layer 50.
  • the piezoelectric transducer 1 includes the support portion 2 and the piezoelectric portion 3.
  • the support portion 2 is in the form of a frame in which a cavity 23 is formed inside.
  • the piezoelectric portion 3 is supported by the support portion 2.
  • the piezoelectric portion 3 has a plate shape that covers the cavity 23 from one side in the thickness direction (Z-axis direction).
  • the piezoelectric portion 3 includes a first electrode 41, a second electrode 42, a first piezoelectric layer 40, a third electrode 51, a fourth electrode 52, and a second piezoelectric layer 50.
  • the first piezoelectric layer 40 is sandwiched between the first electrode 41 and the second electrode 42 in the thickness direction.
  • the second piezoelectric layer 50 is sandwiched between the third electrode 51 and the fourth electrode 52 in the thickness direction. At least one region of the first piezoelectric layer 40 overlaps at least one region of the second piezoelectric layer 50 in the direction orthogonal to the thickness direction.
  • the piezoelectric portion 3 includes a first piezoelectric region R4 and a second piezoelectric region R5.
  • the first piezoelectric region R4 is a region in which the first electrode 41, the second electrode 42, and the first piezoelectric layer 40 overlap the cavity 23 in the thickness direction.
  • the second piezoelectric region R5 is a region in which the third electrode 51, the fourth electrode 52, and the second piezoelectric layer 50 overlap the cavity 23 in the thickness direction.
  • the second piezoelectric region R5 is located in a region surrounding the first piezoelectric region R4 when viewed in the thickness direction.
  • the second piezoelectric region R5 is located in the region surrounding the first piezoelectric region R4 when viewed from the thickness direction (Z-axis direction) of the piezoelectric portion 3. Therefore, as compared with the case where the first piezoelectric region R4 and the second piezoelectric region R5 overlap in the thickness direction, the distortion of the first piezoelectric layer 40 of the first piezoelectric region R4 causes the second piezoelectric of the second piezoelectric region R5 to The degree to which the layer 50 is distorted can be reduced. Moreover, the extent to which the first piezoelectric layer 40 is distorted due to the distortion of the second piezoelectric layer 50 can be reduced. As a result, it is possible to improve the characteristics in which the first piezoelectric region R4 and the second piezoelectric region R5 convert an alternating voltage into vibration or the characteristics in which vibration is converted into an alternating voltage.
  • the first piezoelectric layer 40 is not disposed at a position overlapping the second piezoelectric region R5 when viewed in the thickness direction. Therefore, since there are few parts which inhibit the bending movement of the piezoelectric part 3, transmission / reception sensitivity is high.
  • the material of the first piezoelectric layer 40 is different from the material of the second piezoelectric layer 50. Therefore, it is possible to obtain an effect that the first piezoelectric region R4 and the second piezoelectric region R5 can have different functions of transmission and reception.
  • both ends of the second piezoelectric layer 50 are positioned between the ends of the first piezoelectric layer 40 in the thickness direction (Z-axis direction). Do.
  • both ends of the second piezoelectric layer 50 are positioned between the two ends of the first piezoelectric layer 40 in the thickness direction. That is, the thickness of the second piezoelectric layer 50 is smaller than that of the first piezoelectric layer 40. Therefore, it is possible to improve the characteristic of the second piezoelectric region R5 (the characteristic of converting vibration into an alternating voltage or the characteristic of converting alternating voltage into vibration).
  • the first electrode 41 and the second electrode 42 are electrodes for applying an alternating voltage to the first piezoelectric layer 40.
  • the third electrode 51 and the fourth electrode 52 are electrodes for extracting AC voltage generated in the second piezoelectric region R5.
  • the first electrode 41 and the second electrode 42 are electrodes for applying an alternating voltage to the first piezoelectric layer 40. That is, the first piezoelectric region R4 converts alternating voltage into vibration.
  • the third electrode 51 and the fourth electrode 52 are electrodes for extracting alternating-current voltage generated in the second piezoelectric region R5. That is, the second piezoelectric region R5 converts the vibration into an alternating voltage.
  • the first electrode 41 and the second electrode 42 are electrodes for extracting alternating-current voltage generated in the first piezoelectric region R4.
  • the third electrode 51 and the fourth electrode 52 are electrodes for applying an alternating voltage to the second piezoelectric layer 50.
  • the first electrode 41 and the second electrode 42 are electrodes for extracting the AC voltage generated in the first piezoelectric region R4. That is, the first piezoelectric region R4 converts the vibration into an alternating voltage.
  • the third electrode 51 and the fourth electrode 52 are electrodes for applying an alternating voltage to the second piezoelectric layer 50. That is, the second piezoelectric region R5 converts an alternating voltage into vibration.
  • the first electrode 41 and the second electrode 42 are electrodes for applying an alternating voltage to the first piezoelectric layer 40.
  • the third electrode 51 and the fourth electrode 52 are electrodes for applying an alternating voltage to the second piezoelectric layer 50.
  • the first electrode 41 and the second electrode 42 are electrodes for extracting alternating-current voltage generated in the first piezoelectric region R4.
  • the third electrode 51 and the fourth electrode 52 are electrodes for extracting AC voltage generated in the second piezoelectric region R5.
  • an alternating voltage is extracted from the first piezoelectric region R4, and an alternating voltage is extracted from the second piezoelectric region R5. That is, the piezoelectric transducer 1 functions as a device for converting the vibration into an alternating voltage in the first piezoelectric region R4 and the second piezoelectric region R5. That is, when the piezoelectric transducer 1 functions as a device for converting vibration into an alternating voltage, it is possible to improve the characteristics in which the first piezoelectric region R4 and the second piezoelectric region R5 convert vibration into an alternating voltage.
  • the piezoelectric transducer 1 according to the twentieth aspect, in the sixteenth aspect, the piezoelectric constant d 31 of the first piezoelectric layer 40 is larger than the piezoelectric constant d 31 of the second piezoelectric layer 50.
  • the first electrode 41, the second electrode 42, the third electrode 51, and the fourth electrode 52 are electrically insulated from each other. It is done.
  • the piezoelectric transducer 1 When a force is applied to the piezoelectric portion 3 in the thickness direction (Z-axis direction) by the piezoelectric portion 3 receiving a sound wave or the like, stress is likely to be concentrated in the vicinity of the inner edge 211 of the support portion 2 . Therefore, in the piezoelectric transducer 1 described above, it is possible to improve the characteristics of the second piezoelectric region R5 (characteristics of converting vibration to alternating voltage or characteristics of converting alternating voltage to vibration).
  • the second piezoelectric region R5 Straddle when viewed from the thickness direction (Z-axis direction), the second piezoelectric region R5 Straddle.
  • the piezoelectric transducer 1 When a force is applied to the piezoelectric portion 3 in the thickness direction (Z-axis direction) by the piezoelectric portion 3 receiving a sound wave or the like, stress is likely to be concentrated in the vicinity of the inner edge 211 of the support portion 2 . Therefore, in the piezoelectric transducer 1 described above, it is possible to improve the characteristics of the second piezoelectric region R5 (characteristics of converting vibration to alternating voltage or characteristics of converting alternating voltage to vibration).
  • the piezoelectric module 10 according to the twenty-fourth aspect includes a plurality of piezoelectric transducers 1 according to any of the thirteenth through twenty-second aspects.
  • the second piezoelectric region R5 of the piezoelectric transducer 1 is located in the region surrounding the first piezoelectric region R4 when viewed from the thickness direction (Z-axis direction) of the piezoelectric portion 3. Therefore, as compared with the case where the first piezoelectric region R4 and the second piezoelectric region R5 overlap in the thickness direction, the distortion of the first piezoelectric layer 40 of the first piezoelectric region R4 causes the second piezoelectric of the second piezoelectric region R5 to The degree to which the layer 50 is distorted can be reduced. Moreover, the extent to which the first piezoelectric layer 40 is distorted due to the distortion of the second piezoelectric layer 50 can be reduced.
  • the piezoelectric module 10 also includes a plurality of piezoelectric transducers 1. Thereby, compared with the case where only one piezoelectric transducer 1 is used, the output by converting the AC voltage into the vibration by the first piezoelectric region R4 and the second piezoelectric region R5 can be made larger, or the vibration It is possible to further increase the sensitivity for converting the voltage into an alternating voltage.
  • the configurations according to the fourteenth to twenty-third aspects are not essential components of the piezoelectric transducer 1 and can be omitted as appropriate.
  • the piezoelectric transducer and the piezoelectric module of the present disclosure it is possible to improve the characteristics in which the first piezoelectric region and the second piezoelectric region convert alternating voltage into vibration or the characteristics in converting vibration into alternating voltage. Thereby, high performance piezoelectric transducers and piezoelectric modules can be obtained, and thus the piezoelectric transducers and piezoelectric modules of the present disclosure are industrially useful.
  • piezoelectric transducer 10 piezoelectric module 2 support portion 21 first surface (surface) 23 cavity 211, 515 inner edge 3 piezoelectric portion 40 first piezoelectric layer 41 first electrode 42 second electrode 50 second piezoelectric layer 51 third electrode 52 fourth electrode R4 first piezoelectric region R5 second piezoelectric region

Abstract

The present invention improves the characteristics of a first piezoelectric region and a second piezoelectric region, said characteristics converting alternating voltage into vibration or converting vibration into alternating voltage. This piezoelectric transducer is provided with: a frame-like supporting part (2) which is internally provided with a cavity (23); and a piezoelectric part (3) which is supported by the supporting part (2). A first piezoelectric layer (40) of the piezoelectric part (3) is in a position that is different from the position of a second piezoelectric layer (50) of the piezoelectric part (3) in the thickness direction of the piezoelectric part (3). A first piezoelectric region (R4) is a region where a first electrode (41), a second electrode (42) and the first piezoelectric layer (40) overlap the cavity (23) in the thickness direction. A second piezoelectric region (R5) is a region where a third electrode (51), a fourth electrode (52) and the second piezoelectric layer (50) overlap the cavity (23) in the thickness direction. The second piezoelectric region (R5) is positioned in a region that surrounds the first piezoelectric region (R4) when viewed from the thickness direction.

Description

圧電トランスデューサ及び圧電モジュールPiezoelectric transducer and piezoelectric module
 本開示は圧電トランスデューサ及び圧電モジュールに関し、より詳細には、複数の圧電層を含む圧電トランスデューサ及びこの圧電トランスデューサを備える圧電モジュールに関する。 The present disclosure relates to a piezoelectric transducer and a piezoelectric module, and more particularly to a piezoelectric transducer including a plurality of piezoelectric layers and a piezoelectric module including the piezoelectric transducer.
 従来例として特許文献1記載の圧電デバイス(圧電トランスデューサ)を例示する。特許文献1記載の圧電デバイスは、基材と、基材によって支持された上部層(圧電部)とを備える。上部層は、振動部を含み、振動部は、厚み方向に互いに離隔して配置された下部電極、中間電極及び上部電極を含む。上部層は、下部電極及び中間電極によって少なくとも一部が挟み込まれるように配置された第1圧電体層(第一圧電層)と、第1圧電体層に重なるように配置されつつ中間電極及び上部電極によって少なくとも一部が挟み込まれるように配置された第2圧電体層(第二圧電層)とを含む。 A piezoelectric device (piezoelectric transducer) described in Patent Document 1 is exemplified as a conventional example. The piezoelectric device described in Patent Document 1 includes a substrate and an upper layer (piezoelectric portion) supported by the substrate. The upper layer includes a vibrating portion, and the vibrating portion includes a lower electrode, an intermediate electrode, and an upper electrode which are spaced apart from each other in the thickness direction. The upper layer is a first piezoelectric layer (first piezoelectric layer) disposed so as to be at least partially sandwiched by the lower electrode and the intermediate electrode, and the intermediate electrode and the upper layer disposed so as to overlap the first piezoelectric layer. And a second piezoelectric layer (second piezoelectric layer) disposed so as to be at least partially sandwiched by the electrodes.
国際公開第2016/175013号International Publication No. 2016/175013
 特許文献1記載の圧電デバイスにおいて、上部層が交流電圧を振動に変換する特性又は振動を交流電圧に変換する特性の向上を求められることがあった。 In the piezoelectric device described in Patent Document 1, there have been cases where it has been required to improve the characteristics in which the upper layer converts an alternating voltage into vibration or the characteristics in which vibration is converted into an alternating voltage.
 本開示は、圧電部の第一圧電領域及び第二圧電領域が交流電圧を振動に変換する特性又は振動を交流電圧に変換する特性を向上させた圧電トランスデューサ及び圧電モジュールを提供することを目的とする。 An object of the present disclosure is to provide a piezoelectric transducer and a piezoelectric module having improved characteristics in which the first piezoelectric region and the second piezoelectric region of the piezoelectric portion convert alternating voltage into vibration or characteristics in which vibration is converted into alternating voltage. Do.
 上記の課題を解決するために、本開示の一態様に係る圧電トランスデューサは、枠状の支持部と、支持部により支持され、空洞を厚み方向の一方側から覆う板状の圧電部と、を備える。枠状の支持部は、第一面と、第一面とは逆側に位置する第二面と、第一面と第二面とに挟まれかつ内側に設けられた空洞を有する。圧電部は、第一電極と、第二電極と、厚み方向において前記第一電極と前記第二電極との間に挟まれた第一圧電層と、第三電極と、第四電極と、厚み方向において前記第三電極と前記第四電極との間に挟まれた第二圧電層と、を含む。圧電部は、第一電極と第二電極と第一圧電層とが第一面とは垂直である方向において空洞に重なる第一圧電領域、及び、第三電極と第四電極と第二圧電層とが第一面とは垂直である方向において空洞に重なる第二圧電領域を含む。第一圧電層は、第一面とは垂直である方向から見て第二圧電領域に重なる位置に配置されていない。 In order to solve the above problems, a piezoelectric transducer according to an aspect of the present disclosure includes a frame-shaped support portion, and a plate-shaped piezoelectric portion supported by the support portion and covering the cavity from one side in the thickness direction. Prepare. The frame-like support has a first surface, a second surface opposite to the first surface, and a cavity provided between and inward of the first surface and the second surface. The piezoelectric portion has a first electrode, a second electrode, a first piezoelectric layer sandwiched between the first electrode and the second electrode in the thickness direction, a third electrode, a fourth electrode, and a thickness. And a second piezoelectric layer sandwiched between the third electrode and the fourth electrode in a direction. The piezoelectric portion includes a first piezoelectric region in which the first electrode, the second electrode, and the first piezoelectric layer overlap the cavity in a direction perpendicular to the first surface, and a third electrode, a fourth electrode, and a second piezoelectric layer. And a second piezoelectric region overlapping the cavity in a direction perpendicular to the first surface. The first piezoelectric layer is not disposed at a position overlapping the second piezoelectric region when viewed from the direction perpendicular to the first surface.
 本開示の一態様に係る圧電モジュールは、前記圧電トランスデューサを複数備える。 A piezoelectric module according to an aspect of the present disclosure includes a plurality of the piezoelectric transducers.
 本開示の各態様に係る圧電トランスデューサ及び圧電モジュールでは、第一圧電領域及び第二圧電領域が交流電圧を振動に変換する特性又は振動を交流電圧に変換する特性を向上させることができる。 In the piezoelectric transducer and the piezoelectric module according to each aspect of the present disclosure, it is possible to improve the characteristics in which the first piezoelectric region and the second piezoelectric region convert alternating voltage into vibration or the characteristics in converting vibration into alternating voltage.
図1は、第1の実施形態に係る圧電トランスデューサの平面図である。FIG. 1 is a plan view of the piezoelectric transducer according to the first embodiment. 図2は、同上の圧電トランスデューサを示し、図1のII-II断面図である。FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 図3は、同上の圧電トランスデューサを示し、図1のIII-III断面図である。FIG. 3 is a cross-sectional view taken along the line III-III of FIG. 図4は、同上の圧電トランスデューサを示し、図2のIV-IV断面に対応するレイアウト図である。FIG. 4 is a layout diagram showing the same piezoelectric transducer as above and corresponding to the IV-IV cross section of FIG. 図5は、第1の実施形態に係る圧電トランスデューサの製造方法を示す端面図である。FIG. 5 is an end view showing a method of manufacturing the piezoelectric transducer according to the first embodiment. 図6は、同上の圧電トランスデューサの製造方法を示す端面図である。FIG. 6 is an end view showing a method of manufacturing the above piezoelectric transducer. 図7は、第1の実施形態に係る圧電モジュールの模式図である。FIG. 7 is a schematic view of the piezoelectric module according to the first embodiment. 図8は、第2の実施形態に係る圧電トランスデューサの平面図である。FIG. 8 is a plan view of a piezoelectric transducer according to a second embodiment. 図9は、同上の圧電トランスデューサを示し、図8のIX-IX端面図である。FIG. 9 shows the same piezoelectric transducer as above, and is an end view taken along the line IX-IX of FIG. 図10は、同上の圧電トランスデューサを示し、図8のX-X端面図である。FIG. 10 shows the same piezoelectric transducer as above, and is an XX end view of FIG. 図11は、同上の圧電トランスデューサを示し、図8のC-C断面に対応するレイアウト図である。FIG. 11 shows the same piezoelectric transducer as above, and is a layout diagram corresponding to the CC cross section of FIG. 図12は、第2の実施形態に係る圧電トランスデューサの製造方法を示す端面図である。FIG. 12 is an end view showing a method of manufacturing a piezoelectric transducer according to the second embodiment. 図13は、同上の圧電トランスデューサの製造方法を示す端面図である。FIG. 13 is an end view showing a method of manufacturing the same piezoelectric transducer as above. 図14は、第2の実施形態に係る圧電モジュールの模式図である。FIG. 14 is a schematic view of a piezoelectric module according to the second embodiment.
 [第1の実施形態]
 以下、第1の実施形態に係る圧電トランスデューサ及び圧電モジュールについて、図面を用いて説明する。ただし、以下に説明する実施形態は、本発明の様々な実施形態の一部に過ぎない。下記の実施形態は、本発明の目的を達成できれば、設計等に応じて種々の変更が可能である。下記の実施形態において説明する各図は模式的な図であり、図中の構成要素の大きさ及び厚さの比が、必ずしも実際の寸法比を反映しているとは限らない。
First Embodiment
Hereinafter, the piezoelectric transducer and the piezoelectric module according to the first embodiment will be described with reference to the drawings. However, the embodiments described below are only some of the various embodiments of the present invention. The following embodiments can be variously modified according to the design and the like as long as the object of the present invention can be achieved. Each drawing described in the following embodiments is a schematic drawing, and the ratio of the size and thickness of the component in the drawing does not necessarily reflect the actual size ratio.
 (圧電トランスデューサの構成)
 図1~4に示すように、圧電トランスデューサ1は、支持部2と、圧電部3と、を備えている。圧電部3は、第一圧電層40と、第二圧電層50と、第一電極41と、第二電極42と、第三電極51と、第四電極52と、を含む。圧電部3は、保護層6と、絶縁層7と、を更に含む。
(Configuration of piezoelectric transducer)
As shown in FIGS. 1 to 4, the piezoelectric transducer 1 includes a support portion 2 and a piezoelectric portion 3. The piezoelectric portion 3 includes a first piezoelectric layer 40, a second piezoelectric layer 50, a first electrode 41, a second electrode 42, a third electrode 51, and a fourth electrode 52. The piezoelectric portion 3 further includes a protective layer 6 and an insulating layer 7.
 支持部2は、内側に空洞23が形成された枠状に形成されている。支持部2の外縁は、正方形状である。支持部2は、例えば、半導体基板により形成されている。支持部2は、シリコンを主材料として形成されている。図2、3に示すように、支持部2は、第一面21と、支持部2の厚み方向において第一面21とは反対側の第二面22とを有している。空洞23は、支持部2の厚み方向に貫通した孔である。空洞23は、支持部2の厚み方向から見て、円状に形成されている。支持部2の厚み方向から見て、空洞23の中心は、支持部2の中心付近に位置している。なお、支持部2の厚み方向とは、第一面21とは垂直である方向をいう。 The support portion 2 is formed in a frame shape in which a cavity 23 is formed inside. The outer edge of the support portion 2 is square. The support portion 2 is formed of, for example, a semiconductor substrate. The support portion 2 is formed using silicon as a main material. As shown in FIGS. 2 and 3, the support portion 2 has a first surface 21 and a second surface 22 opposite to the first surface 21 in the thickness direction of the support portion 2. The cavity 23 is a hole penetrating in the thickness direction of the support portion 2. The cavity 23 is formed in a circular shape when viewed from the thickness direction of the support portion 2. When viewed from the thickness direction of the support portion 2, the center of the cavity 23 is located near the center of the support portion 2. The thickness direction of the support portion 2 refers to a direction perpendicular to the first surface 21.
 圧電部3は、板状に形成されている。圧電部3は、平面視において正方形状に形成されている。圧電部3は、支持部2により支持されている。支持部2の厚み方向と圧電部3の厚み方向とは、一致している。圧電部3は、空洞23を圧電部3の厚み方向の一方側(図2では紙面の上側)から覆っている。 The piezoelectric portion 3 is formed in a plate shape. The piezoelectric portion 3 is formed in a square shape in plan view. The piezoelectric portion 3 is supported by the support portion 2. The thickness direction of the support portion 2 and the thickness direction of the piezoelectric portion 3 coincide with each other. The piezoelectric portion 3 covers the cavity 23 from one side in the thickness direction of the piezoelectric portion 3 (the upper side in the drawing of FIG. 2).
 圧電トランスデューサ1において、以下、特に断りの無い限り、圧電部3の厚み方向をZ軸方向と規定する。支持部2と圧電部3とは、Z軸方向に並んでいる。Z軸方向において、支持部2側をZ軸の負の側とし、圧電部3側をZ軸の正の側と規定する。また、圧電部3のうち、平面視において隣り合う2辺の方向を、それぞれX軸方向及びY軸方向と規定する。したがって、X軸方向、Y軸方向及びZ軸方向は、互いに直交する。 In the piezoelectric transducer 1, hereinafter, the thickness direction of the piezoelectric portion 3 is defined as the Z-axis direction unless otherwise noted. The support portion 2 and the piezoelectric portion 3 are arranged in the Z-axis direction. In the Z-axis direction, the support portion 2 side is defined as the negative side of the Z-axis, and the piezoelectric portion 3 side is defined as the positive side of the Z-axis. Further, in the piezoelectric portion 3, the directions of two adjacent sides in plan view are respectively defined as an X-axis direction and a Y-axis direction. Therefore, the X axis direction, the Y axis direction, and the Z axis direction are orthogonal to one another.
 圧電部3の保護層6は、支持部2の第一面21に形成されている。保護層6は、空洞23をZ軸方向の一方側(正の側)から覆うようにして、第一面21の全域に形成されている。保護層6は、例えば、二酸化ケイ素(SiO)により形成されている。 The protective layer 6 of the piezoelectric portion 3 is formed on the first surface 21 of the support portion 2. The protective layer 6 is formed on the entire area of the first surface 21 so as to cover the cavity 23 from one side (positive side) in the Z-axis direction. The protective layer 6 is formed of, for example, silicon dioxide (SiO 2 ).
 第一圧電層40及び第二圧電層50は、圧電体により形成されている。第一圧電層40及び第二圧電層50は、Z軸方向に厚みを有している。第一圧電層40及び第二圧電層50の分極方向は、Z軸方向に沿っている。 The first piezoelectric layer 40 and the second piezoelectric layer 50 are formed of a piezoelectric body. The first piezoelectric layer 40 and the second piezoelectric layer 50 have a thickness in the Z-axis direction. The polarization directions of the first piezoelectric layer 40 and the second piezoelectric layer 50 are along the Z-axis direction.
 圧電部3は、第二電極42、第一圧電層40及び第一電極41が、支持部2側(Z軸の負の側)からこの順に積層した構造を有している。また、圧電部3は、第四電極52、第二圧電層50及び第三電極51が、支持部2側(Z軸の負の側)からこの順に積層した構造を有している。 The piezoelectric unit 3 has a structure in which the second electrode 42, the first piezoelectric layer 40, and the first electrode 41 are stacked in this order from the support 2 side (the negative side of the Z axis). The piezoelectric portion 3 has a structure in which the fourth electrode 52, the second piezoelectric layer 50, and the third electrode 51 are laminated in this order from the support portion 2 side (the negative side of the Z axis).
 第四電極52は、保護層6のうち支持部2側とは反対側の表面に形成されている。第四電極52は、保護層6のうち支持部2側とは反対側の表面の全域に形成されている。第四電極52は、例えば、白金により形成されている。 The fourth electrode 52 is formed on the surface of the protective layer 6 opposite to the support 2 side. The fourth electrode 52 is formed on the entire surface of the protective layer 6 on the opposite side to the support 2 side. The fourth electrode 52 is made of, for example, platinum.
 第二圧電層50は、第四電極52のうち支持部2側とは反対側の表面に、板状に形成されている。第二圧電層50は、第四電極52のうち支持部2側とは反対側の表面において、図2における左端付近を除く全域に形成されている。第二圧電層50は、長方形状に形成されている。第二圧電層50の各辺の長さは、空洞23の直径よりも大きい。Z軸方向において、第二圧電層50は、空洞23の全体に重なっている。 The second piezoelectric layer 50 is formed in a plate shape on the surface of the fourth electrode 52 opposite to the support 2 side. The second piezoelectric layer 50 is formed on the entire surface of the fourth electrode 52 on the side opposite to the support portion 2 except for the vicinity of the left end in FIG. The second piezoelectric layer 50 is formed in a rectangular shape. The length of each side of the second piezoelectric layer 50 is larger than the diameter of the cavity 23. The second piezoelectric layer 50 overlaps the entire cavity 23 in the Z-axis direction.
 第二電極42及び第三電極51は、第二圧電層50のうち支持部2側とは反対側の表面に形成されている。第二電極42及び第三電極51は、例えば、白金により形成されている。第二電極42及び第三電極51は、Z軸方向において同じ位置に位置している。要するに、第二電極42及び第三電極51は、Z軸方向と直交する同一の平面上に位置している。 The second electrode 42 and the third electrode 51 are formed on the surface of the second piezoelectric layer 50 opposite to the support 2 side. The second electrode 42 and the third electrode 51 are formed of, for example, platinum. The second electrode 42 and the third electrode 51 are located at the same position in the Z-axis direction. In short, the second electrode 42 and the third electrode 51 are located on the same plane orthogonal to the Z-axis direction.
 図4は、図2をIV-IV断面から見た図である。ただし、図4では、絶縁層7を図示していない。第二電極42は、円状に形成されている。第二電極42は、Z軸方向から見て圧電部3の中心付近に形成されている。圧電トランスデューサ1は、配線421を更に備えている。配線421は、直線状に形成されており、一端が第二電極42に繋がっており、他端が圧電部3の周縁付近に位置している。ここで、「Z軸方向から見て」とは、圧電トランスデューサ1を透視してZ軸方向から見ることである。以下の説明でも同様に、「Z軸方向から見て」とは、圧電トランスデューサ1を透視してZ軸方向から見ることである。 FIG. 4 is a view of FIG. 2 as viewed from the IV-IV cross section. However, the insulating layer 7 is not shown in FIG. The second electrode 42 is formed in a circular shape. The second electrode 42 is formed near the center of the piezoelectric portion 3 when viewed in the Z-axis direction. The piezoelectric transducer 1 further includes a wire 421. The wiring 421 is formed in a linear shape, one end thereof is connected to the second electrode 42, and the other end is located in the vicinity of the peripheral edge of the piezoelectric portion 3. Here, “viewing from the Z-axis direction” means viewing through the piezoelectric transducer 1 from the Z-axis direction. Likewise, in the following description, “viewing from the Z-axis direction” means viewing through the piezoelectric transducer 1 from the Z-axis direction.
 第三電極51は、円弧状に形成されている。第三電極51は、第二電極42を囲むように形成されている。より詳細には、第三電極51は、第二電極42と同心の円弧状に形成されている。第三電極51の互いに対向する両端の間510には、第二電極42に繋がった配線421が位置している。圧電トランスデューサ1は、配線511を更に備えている。配線511は、直線状に形成されており、一端が第三電極51に繋がっており、他端が圧電部3の周縁付近に位置している。 The third electrode 51 is formed in an arc shape. The third electrode 51 is formed to surround the second electrode 42. More specifically, the third electrode 51 is formed in an arc shape concentric with the second electrode 42. A wire 421 connected to the second electrode 42 is located between opposing ends 510 of the third electrode 51. The piezoelectric transducer 1 further includes a wire 511. The wiring 511 is formed in a linear shape, one end thereof is connected to the third electrode 51, and the other end is located in the vicinity of the peripheral edge of the piezoelectric portion 3.
 図2に示すように、枠状の支持部2における圧電部3側の面は、第一面21である。第一面21のうち、空洞23側の内縁211は、円状である。第三電極51のうち、径方向において外側の縁(外縁512:図4参照)は、Z軸方向から見て第一面21の内縁211に沿っている。より詳細には、第三電極51の外縁512は、空洞23よりもわずかに直径が大きい円弧状に形成されている。また、第三電極51のうち、径方向において内側の縁(内縁515:図4参照)は、空洞23よりも直径が小さい円弧状に形成されている。すなわち、Z軸方向から見て、第三電極51は、空洞23と支持部2とに跨っている。 As shown in FIG. 2, the surface on the piezoelectric portion 3 side of the frame-shaped support portion 2 is a first surface 21. An inner edge 211 of the first surface 21 on the cavity 23 side is circular. Of the third electrode 51, the outer edge (the outer edge 512: see FIG. 4) in the radial direction is along the inner edge 211 of the first surface 21 when viewed from the Z-axis direction. More specifically, the outer edge 512 of the third electrode 51 is formed in an arc shape slightly larger in diameter than the cavity 23. Further, of the third electrode 51, the inner edge (inner edge 515: see FIG. 4) in the radial direction is formed in an arc shape having a diameter smaller than that of the cavity 23. That is, the third electrode 51 straddles the cavity 23 and the support 2 as viewed in the Z-axis direction.
 図2、3に示すように、第一圧電層40は、第二電極42のうち支持部2側とは反対側の表面に、板状に形成されている。第一圧電層40は、第二電極42のうち支持部2側とは反対側の表面の全域に形成されている。すなわち、第一圧電層40は、円状に形成されている。 As shown in FIGS. 2 and 3, the first piezoelectric layer 40 is formed in a plate shape on the surface of the second electrode 42 opposite to the support 2 side. The first piezoelectric layer 40 is formed on the entire surface of the second electrode 42 on the opposite side to the support 2 side. That is, the first piezoelectric layer 40 is formed in a circular shape.
 絶縁層7は、第四電極52の表面の一部と、第二圧電層50表面の一部と、配線421のうち支持部2側とは反対側の表面と、第三電極51のうち支持部2側とは反対側の表面と、配線511のうち支持部2側とは反対側の表面とに形成されている。すなわち、第四電極52において、絶縁層7は、支持部2側とは反対側の表面であって第二圧電層50が形成されていない部分(図2では左端付近)に形成されている。また、第二圧電層50において、絶縁層7は、支持部2側とは反対側の表面であって第二電極42、第三電極51、配線421及び配線511が形成されていない部分に形成されている。 The insulating layer 7 includes a portion of the surface of the fourth electrode 52, a portion of the surface of the second piezoelectric layer 50, a surface of the wiring 421 opposite to the support portion 2, and a portion of the third electrode 51. It is formed on the surface on the opposite side to the part 2 side and the surface on the side opposite to the support part 2 side of the wiring 511. That is, in the fourth electrode 52, the insulating layer 7 is formed on the surface opposite to the support 2 side and in the portion where the second piezoelectric layer 50 is not formed (near the left end in FIG. 2). Further, in the second piezoelectric layer 50, the insulating layer 7 is formed on the surface opposite to the support 2 side and in the portion where the second electrode 42, the third electrode 51, the wiring 421 and the wiring 511 are not formed. It is done.
 絶縁層7は、支持部2側とは反対側の表面70が平状に形成されている。絶縁層7の表面70は、第一圧電層40の表面400と略面一である。絶縁層7は、例えば、二酸化ケイ素により形成されている。絶縁層7は、電気絶縁性を有している。第一電極41、第二電極42、第三電極51及び第四電極52は、互いの間にそれぞれ絶縁層7、第一圧電層40及び第二圧電層50のうち少なくとも1つを挟んで、互いに電気的に絶縁されている。絶縁層7は、後述の第一引出線413と第三電極51との間等、導体間で電気的なカップリングが発生する可能性を低減している。なお、絶縁層7は、例えば、樹脂材料により形成されていてもよい。 The insulating layer 7 has a flat surface 70 on the side opposite to the support 2 side. The surface 70 of the insulating layer 7 is substantially flush with the surface 400 of the first piezoelectric layer 40. The insulating layer 7 is formed of, for example, silicon dioxide. The insulating layer 7 has electrical insulation. The first electrode 41, the second electrode 42, the third electrode 51, and the fourth electrode 52 sandwich at least one of the insulating layer 7, the first piezoelectric layer 40, and the second piezoelectric layer 50 between each other, They are electrically isolated from each other. The insulating layer 7 reduces the possibility of the occurrence of electrical coupling between the conductors, such as between the first lead wire 413 and the third electrode 51 described later. The insulating layer 7 may be formed of, for example, a resin material.
 第一電極41は、第一圧電層40の表面400に、円盤状に形成されている。より詳細には、第一電極41は、第一圧電層40よりもわずかに直径が小さい円盤状に形成されている。第一電極41は、Z軸方向から見て圧電部3の中心付近に形成されている。第一電極41は、例えば、金により形成されている。 The first electrode 41 is formed in a disk shape on the surface 400 of the first piezoelectric layer 40. More specifically, the first electrode 41 is formed in a disc shape having a diameter slightly smaller than that of the first piezoelectric layer 40. The first electrode 41 is formed in the vicinity of the center of the piezoelectric portion 3 as viewed in the Z-axis direction. The first electrode 41 is made of, for example, gold.
 第二圧電層50は、Z軸方向において第一圧電層40とは異なる位置に位置する。より詳細には、第二圧電層50は、第一圧電層40に対してZ軸方向の負の側に位置している。つまり、第二圧電層50は、Z軸方向において第一圧電層40と空洞23との間に位置している。 The second piezoelectric layer 50 is located at a position different from the first piezoelectric layer 40 in the Z-axis direction. More specifically, the second piezoelectric layer 50 is located on the negative side in the Z-axis direction with respect to the first piezoelectric layer 40. That is, the second piezoelectric layer 50 is located between the first piezoelectric layer 40 and the cavity 23 in the Z-axis direction.
 また、第一圧電層40は、第二圧電層50とZ軸方向において重なっている。より詳細には、Z軸方向から見て、第一圧電層40は、第二圧電層50の外縁より内側に位置している。Z軸方向から見て、第一圧電層40は、第二圧電層50よりも面積が小さい。 The first piezoelectric layer 40 overlaps the second piezoelectric layer 50 in the Z-axis direction. More specifically, when viewed in the Z-axis direction, the first piezoelectric layer 40 is located inside the outer edge of the second piezoelectric layer 50. The first piezoelectric layer 40 has a smaller area than the second piezoelectric layer 50 when viewed in the Z-axis direction.
 以下に、各構成の寸法の一例を挙げる。支持部2の厚みは、200μmである。第四電極52の厚みは、0.4μmである。第二圧電層50の厚みは、2μmである。第二電極42及び第三電極51の厚みは、0.4μmである。第一圧電層40の厚みは、2μmである。絶縁層7の厚みは、2μmである。第一電極41の厚みは、0.2μmである。空洞23の直径は、30μmである。支持部2の一辺の長さは、50μmである。 Below, an example of the dimension of each structure is given. The thickness of the support portion 2 is 200 μm. The thickness of the fourth electrode 52 is 0.4 μm. The thickness of the second piezoelectric layer 50 is 2 μm. The thickness of the second electrode 42 and the third electrode 51 is 0.4 μm. The thickness of the first piezoelectric layer 40 is 2 μm. The thickness of the insulating layer 7 is 2 μm. The thickness of the first electrode 41 is 0.2 μm. The diameter of the cavity 23 is 30 μm. The length of one side of the support portion 2 is 50 μm.
 第一圧電層40は、Z軸方向において第一電極41と第二電極42との間に挟まれている。第二圧電層50は、Z軸方向において第三電極51と第四電極52との間に挟まれている。 The first piezoelectric layer 40 is sandwiched between the first electrode 41 and the second electrode 42 in the Z-axis direction. The second piezoelectric layer 50 is sandwiched between the third electrode 51 and the fourth electrode 52 in the Z-axis direction.
 圧電部3は、第一圧電領域R4及び第二圧電領域R5を含む。第一圧電領域R4は、第一圧電層40と第一電極41と第二電極42とがZ軸方向において空洞23に重なっている領域である。第二圧電領域R5は、第二圧電層50と第三電極51と第四電極52とがZ軸方向において空洞23に重なっている領域である。第二圧電領域R5は、Z軸方向から見て第一圧電領域R4を囲む領域に位置している(図4参照)。 The piezoelectric portion 3 includes a first piezoelectric region R4 and a second piezoelectric region R5. The first piezoelectric region R4 is a region in which the first piezoelectric layer 40, the first electrode 41, and the second electrode 42 overlap the cavity 23 in the Z-axis direction. The second piezoelectric region R5 is a region in which the second piezoelectric layer 50, the third electrode 51, and the fourth electrode 52 overlap the cavity 23 in the Z-axis direction. The second piezoelectric region R5 is located in a region surrounding the first piezoelectric region R4 when viewed from the Z-axis direction (see FIG. 4).
 第一圧電領域R4は、第一電極41に沿った円状であり(図4参照)、第二圧電領域R5は、第三電極51に沿った円弧状である。Z軸方向から見て、第二圧電領域R5は、第三電極51が位置する領域に一致している(図2参照)。 The first piezoelectric region R4 is circular along the first electrode 41 (see FIG. 4), and the second piezoelectric region R5 is circular along the third electrode 51. When viewed in the Z-axis direction, the second piezoelectric region R5 coincides with the region where the third electrode 51 is located (see FIG. 2).
 上述の通り、Z軸方向から見て、第三電極51は、空洞23と支持部2とに跨っている。したがって、Z軸方向から見て、第二圧電領域R5は、空洞23と支持部2とに跨っている。また、上述の通り、第三電極51の外縁512は、枠状の支持部2の第一面21の内縁211に沿っている。したがって、Z軸方向から見て、第二圧電領域R5の一部は、第一面21の内縁211に沿っている。 As described above, the third electrode 51 straddles the cavity 23 and the support 2 as viewed in the Z-axis direction. Therefore, as viewed in the Z-axis direction, the second piezoelectric region R5 straddles the cavity 23 and the support portion 2. Further, as described above, the outer edge 512 of the third electrode 51 is along the inner edge 211 of the first surface 21 of the frame-like support 2. Therefore, as viewed in the Z-axis direction, a part of the second piezoelectric region R5 is along the inner edge 211 of the first surface 21.
 第一圧電領域R4及び第二圧電領域R5は、超音波を受波すると交流電圧を発生する。また、第一圧電領域R4及び第二圧電領域R5は、交流電圧が印加されると振動して超音波を送波する。第一圧電領域R4及び第二圧電領域R5による超音波の受波及び送波は、保護層6を介して行われる。 The first piezoelectric region R4 and the second piezoelectric region R5 generate an AC voltage when receiving ultrasonic waves. In addition, the first piezoelectric region R4 and the second piezoelectric region R5 vibrate when an alternating voltage is applied to transmit ultrasonic waves. Reception and transmission of ultrasonic waves by the first piezoelectric region R4 and the second piezoelectric region R5 are performed via the protective layer 6.
 第一圧電領域R4の第一圧電層40は、例えば、チタン酸ジルコン酸鉛(PZT)により形成されている。第二圧電領域R5の第二圧電層50は、例えば、窒化アルミニウム(AlN)により形成されている。窒化アルミニウムは、チタン酸ジルコン酸鉛と比較して、ヤング率が高くかつ密度が小さい材料である。したがって、第二圧電層50は、Z軸方向の一方側から空洞23の全体を覆うように配置されて、圧電トランスデューサ1の振動膜の構成の一部として利用すると好ましい。圧電トランスデューサ1の振動膜とは、超音波等を受波して振動することと、振動して超音波等を送波することとのうち少なくとも一方を行う構成である。 The first piezoelectric layer 40 of the first piezoelectric region R4 is formed of, for example, lead zirconate titanate (PZT). The second piezoelectric layer 50 of the second piezoelectric region R5 is made of, for example, aluminum nitride (AlN). Aluminum nitride is a material having a high Young's modulus and a low density as compared to lead zirconate titanate. Therefore, it is preferable that the second piezoelectric layer 50 be disposed so as to cover the entire cavity 23 from one side in the Z-axis direction and be used as part of the configuration of the vibrating film of the piezoelectric transducer 1. The vibrating film of the piezoelectric transducer 1 is configured to perform at least one of receiving and vibrating an ultrasonic wave or the like and transmitting an ultrasonic wave or the like by vibration.
 ここで、第一圧電層40は、厚み方向から見て第二圧電領域R5に重なる位置に配置されていない。よって、圧電部3の曲げ運動を阻害する部位が少ないので、送受信感度が高い。 Here, the first piezoelectric layer 40 is not disposed at a position overlapping the second piezoelectric region R5 when viewed in the thickness direction. Therefore, since there are few parts which inhibit the bending movement of the piezoelectric part 3, transmission / reception sensitivity is high.
 また、第一圧電層40が、厚み方向と直交する方向において第二圧電層50に重なっていない。第二圧電層50を、Z軸方向の一方側から空洞23の全体を覆うように配置させて、圧電トランスデューサ1の振動膜の構成の一部として利用することができるという効果を奏することができる。なお、圧電トランスデューサ1の振動膜とは、超音波等を受波して振動することと、振動して超音波等を送波することとのうち少なくとも一方を行う構成である。また、第二圧電層50を振動膜の構成の一部として利用することができるので、振動膜を形成するプロセスを省くことが可能となり素子作製にかかるコストを低減できる。 The first piezoelectric layer 40 does not overlap the second piezoelectric layer 50 in the direction orthogonal to the thickness direction. The second piezoelectric layer 50 can be disposed so as to cover the entire cavity 23 from one side in the Z-axis direction, and can be used as a part of the configuration of the vibrating film of the piezoelectric transducer 1. . The vibrating film of the piezoelectric transducer 1 is configured to perform at least one of receiving and vibrating an ultrasonic wave or the like and transmitting an ultrasonic wave or the like by vibration. Further, since the second piezoelectric layer 50 can be used as part of the configuration of the vibrating film, the process of forming the vibrating film can be omitted, and the cost for manufacturing the element can be reduced.
 第一圧電層40の圧電定数d31は、第二圧電層50の圧電定数d31よりも大きい。また、第一圧電層40の比誘電率εは、第二圧電層50の比誘電率εよりも大きい。第一圧電層40の比誘電率εは、例えば、1200である。第二圧電層50の比誘電率εは、例えば、10である。 The piezoelectric constant d 31 of the first piezoelectric layer 40 is larger than the piezoelectric constant d 31 of the second piezoelectric layer 50. Further, the relative dielectric constant ε r of the first piezoelectric layer 40 is larger than the relative dielectric constant ε r of the second piezoelectric layer 50. The relative dielectric constant ε r of the first piezoelectric layer 40 is, for example, 1200. The relative dielectric constant ε r of the second piezoelectric layer 50 is, for example, 10.
 第一圧電層40の圧電定数d31が第二圧電層50の圧電定数d31よりも大きいため、第一圧電領域R4は、交流電圧をZ軸方向の振動に変換する特性が第二圧電領域R5よりも良好である。一方、第二圧電層50では、圧電定数d31を比誘電率εで割った値(d31/ε)が第一圧電層40のd31/εよりも大きいため、第二圧電領域R5は、振動を交流電圧に変換する特性が第一圧電領域R4よりも良好である。 Since the piezoelectric constant d 31 of the first piezoelectric layer 40 is larger than the piezoelectric constant d 31 of the second piezoelectric layer 50, a first piezoelectric region R4 is characteristic for converting an AC voltage to the vibration in the Z-axis direction second piezoelectric region Better than R5. On the other hand, in the second piezoelectric layer 50, since the value (d 31 / ε r ) obtained by dividing the piezoelectric constant d 31 by the relative dielectric constant ε r is larger than d 31 / ε r of the first piezoelectric layer 40 The region R5 has better characteristics for converting vibration into an alternating voltage than the first piezoelectric region R4.
 図1に示すように、圧電トランスデューサ1は、絶縁層7の表面70に、複数(図1では4つ)の引出線(第一引出線413、第二引出線423、第三引出線513及び第四引出線523)と、複数(図1では4つ)のパッド(第一パッド414、第二パッド424、第三パッド514及び第四パッド524)と、を更に備えている。各引出線及び各パッドは、導体層として形成されている。 As shown in FIG. 1, the piezoelectric transducer 1 has a plurality of (four in FIG. 1) lead wires (first lead wire 413, second lead wire 423, third lead wire 513, and the like) on the surface 70 of the insulating layer 7. A fourth lead 523) and a plurality of (four in FIG. 1) pads (a first pad 414, a second pad 424, a third pad 514 and a fourth pad 524) are further provided. Each lead wire and each pad are formed as a conductor layer.
 複数のパッドは、絶縁層7の表面70の4隅に形成されている。各パッドは、長方形状に形成されている。なお、各パッドは、正方形状に形成されていてもよい。 The plurality of pads are formed at four corners of the surface 70 of the insulating layer 7. Each pad is formed in a rectangular shape. Each pad may be formed in a square shape.
 第一引出線413は、第一電極41と第一パッド414とを電気的に接続している。 The first lead wire 413 electrically connects the first electrode 41 and the first pad 414.
 第二引出線423は、第二電極42に繋がった配線421と第二パッド424とを電気的に接続している。図1、3に示すように、絶縁層7は、開口部72を有している。開口部72の奥(図3では下)には、配線421の一端が位置している。第二引出線423が開口部72の内壁に沿って配線421へ向かって立ち下がり、配線421の一部とZ軸方向に重なって形成されていることにより、第二引出線423と配線421とが接続されている。 The second lead wire 423 electrically connects the wire 421 connected to the second electrode 42 and the second pad 424. As shown in FIGS. 1 and 3, the insulating layer 7 has an opening 72. One end of the wiring 421 is located at the back of the opening 72 (lower in FIG. 3). The second lead wire 423 and the wire 421 are formed by falling along the inner wall of the opening 72 toward the wire 421 and overlapping a part of the wire 421 in the Z-axis direction. Is connected.
 第三引出線513は、第三電極51に繋がった配線511と第三パッド514とを電気的に接続している。絶縁層7は、開口部73を有している。開口部73の奥(図3では下)には、配線511の一端が位置している。第三引出線513が開口部73の内壁に沿って配線511へ向かって立ち下がり、配線511の一部とZ軸方向に重なって形成されていることにより、第三引出線513と配線511とが接続されている。 The third lead wire 513 electrically connects the wiring 511 connected to the third electrode 51 and the third pad 514. The insulating layer 7 has an opening 73. One end of the wiring 511 is located at the back of the opening 73 (lower in FIG. 3). The third lead wire 513 falls along the inner wall of the opening 73 toward the wire 511 and is formed to overlap a part of the wire 511 in the Z-axis direction. Is connected.
 第四引出線523は、第四電極52と第四パッド524とを電気的に接続している。図1、2に示すように、絶縁層7は、Z軸方向から見て第二圧電層50が形成されていない領域(図1では左端付近)に開口部74を有している。第四引出線523が開口部74の内壁に沿って第四電極52へ向かって立ち下がり、第四電極52の一部とZ軸方向に重なって形成されていることにより、第四引出線523と第四電極52とが接続されている。 The fourth lead wire 523 electrically connects the fourth electrode 52 and the fourth pad 524. As shown in FIGS. 1 and 2, the insulating layer 7 has an opening 74 in a region where the second piezoelectric layer 50 is not formed (in the vicinity of the left end in FIG. 1) as viewed in the Z-axis direction. The fourth lead-out wire 523 is formed to fall along the inner wall of the opening 74 toward the fourth electrode 52 and to overlap with a portion of the fourth electrode 52 in the Z-axis direction. And the fourth electrode 52 are connected.
 (製造方法)
 次に、圧電トランスデューサ1の製造方法の一例について、図5(A~F)、図6(A~F)を参照して説明する。
(Production method)
Next, an example of a method of manufacturing the piezoelectric transducer 1 will be described with reference to FIGS. 5 (A to F) and 6 (A to F).
 まず、図5のAに示すように、圧電トランスデューサ1の支持部2の元になるシリコン基板である基材200の第一面201に、熱酸化膜からなる保護層6を形成する。また、基材200の厚み方向において第一面201とは反対側の第二面202にも、熱酸化膜からなる保護層を形成する。ただし、図5のAでは、第二面202に形成された保護層の図示を省略している。基材200は、円盤状のウェハである。 First, as shown in A of FIG. 5, the protective layer 6 made of a thermal oxide film is formed on the first surface 201 of the base material 200 which is a silicon substrate which is the base of the support portion 2 of the piezoelectric transducer 1. In addition, a protective layer made of a thermal oxide film is also formed on the second surface 202 opposite to the first surface 201 in the thickness direction of the base 200. However, in FIG. 5A, the illustration of the protective layer formed on the second surface 202 is omitted. The substrate 200 is a disk-shaped wafer.
 次に、図5のBに示すように、保護層6の表面60の全域に、第四電極52を形成する。第四電極52は、例えば、スパッタ法により形成される。 Next, as shown in FIG. 5B, the fourth electrode 52 is formed on the entire surface 60 of the protective layer 6. The fourth electrode 52 is formed, for example, by sputtering.
 次に、図5のCに示すように、第四電極52の表面520の全域に、窒化アルミニウムの第一層81を形成する。第一層81は、後に第二圧電層50となる層である。第一層81は、例えば、スパッタ法により形成される。 Next, as shown in FIG. 5C, the first layer 81 of aluminum nitride is formed on the entire surface 520 of the fourth electrode 52. The first layer 81 is a layer to be the second piezoelectric layer 50 later. The first layer 81 is formed, for example, by sputtering.
 次に、図5のDに示すように、第一層81のうち基材200側とは反対側の表面810に、白金の第二層82を形成する。第二層82は、後に第二電極42、第三電極51、配線421及び配線511となる層である(図4参照)。第二層82は、例えば、スパッタ法により形成される。 Next, as shown in D of FIG. 5, a second layer 82 of platinum is formed on the surface 810 of the first layer 81 opposite to the substrate 200 side. The second layer 82 is a layer to be the second electrode 42, the third electrode 51, the wiring 421, and the wiring 511 later (see FIG. 4). The second layer 82 is formed, for example, by sputtering.
 次に、図5のEに示すように、第二層82のうち基材200側とは反対側の表面820に、チタン酸ジルコン酸鉛の第三層83を形成する。第三層83は、後に第一圧電層40となる層である。第三層83は、例えば、スパッタ法により形成される。 Next, as shown in E of FIG. 5, a third layer 83 of lead zirconate titanate is formed on the surface 820 of the second layer 82 opposite to the substrate 200 side. The third layer 83 is a layer to be the first piezoelectric layer 40 later. The third layer 83 is formed, for example, by sputtering.
 次に、図5のFに示すように、第三層83を、フォトリソグラフィ技術及びエッチング技術によりパターニングする。この工程により、第三層83の一部からなる第一圧電層40を形成する。 Next, as shown in FIG. 5F, the third layer 83 is patterned by photolithography and etching. By this process, the first piezoelectric layer 40 formed of a part of the third layer 83 is formed.
 次に、図6のAに示すように、第二層82を、フォトリソグラフィ技術及びエッチング技術によりパターニングする。この工程により、第二層82の一部からなる第二電極42、第三電極51、配線421(図4参照)及び配線511(図4参照)を形成する。 Next, as shown in FIG. 6A, the second layer 82 is patterned by photolithography and etching. By this process, the second electrode 42, the third electrode 51, the wiring 421 (see FIG. 4), and the wiring 511 (see FIG. 4), which are part of the second layer 82, are formed.
 次に、図6のBに示すように、第一層81を、フォトリソグラフィ技術及びエッチング技術によりパターニングする。すなわち、第一層81のうち、図6のAにおける左端付近の部分を除去する。この工程において、第一層81の一部からなる第二圧電層50は、第四電極52の表面520のうち、図6のAにおける左端付近を除く領域に形成される。すなわち、表面520には、第二圧電層50が形成されていない露出面521が形成される。 Next, as shown in FIG. 6B, the first layer 81 is patterned by photolithography and etching. That is, a portion of the first layer 81 near the left end in A of FIG. 6 is removed. In this step, the second piezoelectric layer 50 formed of a part of the first layer 81 is formed in the region of the surface 520 of the fourth electrode 52 except the vicinity of the left end in A of FIG. That is, the exposed surface 521 on which the second piezoelectric layer 50 is not formed is formed on the surface 520.
 次に、図6のCに示すように、絶縁層7を、第四電極52上の露出面521と、第二圧電層50の表面であって第二電極42、第三電極51、配線421(図4参照)及び配線511(図4参照)が形成されていない部分と、配線421の表面と、第三電極51の表面と、配線511の表面とに形成する。絶縁層7は、例えば、第一圧電層40を覆うように化学気相成長(CVD)法により形成された後、表面から研磨又はエッチバックされることにより、第一圧電層40の表面400と面一にされる。 Next, as shown in C of FIG. 6, the insulating layer 7 is the exposed surface 521 on the fourth electrode 52 and the surface of the second piezoelectric layer 50, and the second electrode 42, the third electrode 51, and the wiring 421. 4 (see FIG. 4) and the wiring 511 (see FIG. 4) are not formed, the surface of the wiring 421, the surface of the third electrode 51, and the surface of the wiring 511. The insulating layer 7 is formed by, for example, a chemical vapor deposition (CVD) method so as to cover the first piezoelectric layer 40 and then polished or etched back from the surface to form the surface 400 of the first piezoelectric layer 40 Be made flush.
 次に、図6のDに示すように、絶縁層7に、開口部72(図3参照)、73(図3参照)、74を形成する。開口部72、73、74は、例えば、フォトリソグラフィ技術及びエッチング技術を用いて形成される。 Next, as shown in D of FIG. 6, the openings 72 (see FIG. 3), 73 (see FIG. 3), and 74 are formed in the insulating layer 7. The openings 72, 73, 74 are formed, for example, using photolithography technology and etching technology.
 次に、図6のEに示すように、第一圧電層40の表面400に第一電極41を形成し、絶縁層7の表面70に第一引出線413、第二引出線423、第三引出線513、第四引出線523、第一パッド414、第二パッド424、第三パッド514及び第四パッド524を形成する(図1参照)。第一電極41、各引出線及び各パッドは、金を材料として、メタルマスクを用いて、蒸着法又はスパッタ法により形成される。また、第一電極41、各引出線及び各パッドは、フォトリソグラフィ技術及びエッチング技術を利用して形成されてもよい。また、第一電極41、各引出線及び各パッドは、フォトリソグラフィ技術、薄膜形成技術及びリフトオフ法を利用して形成されてもよい。 Next, as shown in E of FIG. 6, the first electrode 41 is formed on the surface 400 of the first piezoelectric layer 40, and the first lead wire 413, the second lead wire 423, the third on the surface 70 of the insulating layer 7. The leads 513, the fourth lead 523, the first pad 414, the second pad 424, the third pad 514, and the fourth pad 524 are formed (see FIG. 1). The first electrode 41, each lead wire, and each pad are formed of gold as a material by a vapor deposition method or a sputtering method using a metal mask. In addition, the first electrode 41, the leads, and the pads may be formed using photolithography technology and etching technology. In addition, the first electrode 41, the leads, and the pads may be formed using a photolithography technique, a thin film forming technique, and a lift-off method.
 次に、図6のFに示すように、基材200に空洞23を形成する。これにより、支持部2が形成される。空洞23は、例えば、アルカリ溶液による異方性エッチングにより形成される。より詳細には、まず、第二面202(図6のE参照)に形成されている保護層を、フォトリソグラフィ技術及びエッチング技術を用いてパターニングする。さらに、パターニングされて残った保護層をエッチングマスクとして用いて、第二面202から基材200の中心部分をエッチングすることにより、空洞23を形成する。保護層6は、エッチングストッパとして機能する。すなわち、保護層6は、アルカリ溶液によりエッチングされ難い。したがって、保護層6の厚さのばらつきが低減される。 Next, as shown to F of FIG. 6, the cavity 23 is formed in the base material 200. As shown to FIG. Thereby, the support part 2 is formed. The cavity 23 is formed, for example, by anisotropic etching with an alkaline solution. More specifically, first, the protective layer formed on the second surface 202 (see E of FIG. 6) is patterned using photolithography technology and etching technology. Furthermore, the cavity 23 is formed by etching the central portion of the substrate 200 from the second surface 202 using the patterned remaining protective layer as an etching mask. The protective layer 6 functions as an etching stopper. That is, the protective layer 6 is difficult to be etched by the alkaline solution. Therefore, the variation in the thickness of the protective layer 6 is reduced.
 次に、基材200をダイシングする。つまり、1つの圧電トランスデューサ1が占める領域ごとに基材200を分割する。 Next, the substrate 200 is diced. That is, the substrate 200 is divided into areas occupied by one piezoelectric transducer 1.
 以上により、圧電トランスデューサ1が製造される。 Thus, the piezoelectric transducer 1 is manufactured.
 (圧電モジュールの構成)
 図7に示すように、圧電モジュール10は、圧電トランスデューサ1を複数(図7では16個)備えている。複数の圧電トランスデューサ1は、基板に実装されている。複数の圧電トランスデューサ1は、縦4列、横4列の2次元アレイ状に並んでいる。圧電モジュール10は、第一切替部11と、第二切替部12と、処理部13と、を更に備えている。
(Configuration of piezoelectric module)
As shown in FIG. 7, the piezoelectric module 10 includes a plurality (16 in FIG. 7) of piezoelectric transducers 1. The plurality of piezoelectric transducers 1 are mounted on a substrate. The plurality of piezoelectric transducers 1 are arranged in a two-dimensional array of four vertical rows and four horizontal rows. The piezoelectric module 10 further includes a first switching unit 11, a second switching unit 12, and a processing unit 13.
 第一切替部11及び第二切替部12はそれぞれ、複数のスイッチを有する。各々の圧電トランスデューサ1の第一電極41は、第一パッド414と、第一切替部11のスイッチとを介して、外部電源15に接続される。横一列に並んだ4つの圧電トランスデューサ1は、第一切替部11のうち外部電源15に接続された1つのスイッチを共用している。 The first switching unit 11 and the second switching unit 12 each have a plurality of switches. The first electrode 41 of each piezoelectric transducer 1 is connected to the external power supply 15 via the first pad 414 and the switch of the first switching unit 11. The four piezoelectric transducers 1 arranged in a horizontal row share one switch connected to the external power supply 15 in the first switching unit 11.
 各々の圧電トランスデューサ1の第二電極42は、第二パッド424と、第二切替部12のスイッチとを介して、グラウンドに接続される。縦一列に並んだ4つの圧電トランスデューサ1は、第二切替部12のうちグラウンドに接続された1つのスイッチを共用している。 The second electrode 42 of each piezoelectric transducer 1 is connected to the ground via the second pad 424 and the switch of the second switch 12. The four piezoelectric transducers 1 arranged in a vertical line share one switch connected to the ground in the second switching unit 12.
 各々の圧電トランスデューサ1の第三電極51は、第三パッド514と、第二切替部12のスイッチとを介して、処理部13に接続される。縦一列に並んだ4つの圧電トランスデューサ1は、第二切替部12のうち処理部13に接続された1つのスイッチを共用している。 The third electrode 51 of each piezoelectric transducer 1 is connected to the processing unit 13 via the third pad 514 and the switch of the second switching unit 12. The four piezoelectric transducers 1 arranged in a vertical line share one switch connected to the processing unit 13 in the second switching unit 12.
 各々の圧電トランスデューサ1の第四電極52は、第四パッド524と、第一切替部11のスイッチとを介して、グラウンドに接続される。横一列に並んだ4つの圧電トランスデューサ1は、第一切替部11のうちグラウンドに接続された1つのスイッチを共用している。 The fourth electrode 52 of each piezoelectric transducer 1 is connected to the ground via the fourth pad 524 and the switch of the first switching unit 11. The four piezoelectric transducers 1 arranged in a horizontal row share one switch connected to the ground in the first switching unit 11.
 第一切替部11及び第二切替部12は、個々の圧電トランスデューサ1ごとに、圧電トランスデューサ1と外部電源15との接続を切り替える。また、第一切替部11及び第二切替部12は、個々の圧電トランスデューサ1ごとに、圧電トランスデューサ1と処理部13との接続を切り替える。圧電トランスデューサ1が外部電源15に接続されると、第一圧電層40には、外部電源15から交流電圧が印加される。圧電トランスデューサ1は、処理部13に接続されると、第二圧電領域R5で生じる交流電圧を、処理部13に出力する。なお、第一切替部11及び第二切替部12は、複数のスイッチに代えて、複数のリレー又は複数のマルチプレクサを有していてもよい。 The first switching unit 11 and the second switching unit 12 switch the connection between the piezoelectric transducer 1 and the external power supply 15 for each piezoelectric transducer 1. The first switching unit 11 and the second switching unit 12 switch the connection between the piezoelectric transducer 1 and the processing unit 13 for each of the piezoelectric transducers 1. When the piezoelectric transducer 1 is connected to the external power supply 15, an alternating voltage is applied to the first piezoelectric layer 40 from the external power supply 15. When connected to the processing unit 13, the piezoelectric transducer 1 outputs an alternating voltage generated in the second piezoelectric region R <b> 5 to the processing unit 13. The first switching unit 11 and the second switching unit 12 may have a plurality of relays or a plurality of multiplexers instead of the plurality of switches.
 処理部13は、例えば、CPU(Central Processing Unit)等のプロセッサと、AC-DCコンバータとを含む。AC-DCコンバータは、圧電トランスデューサ1から入力される交流電圧を直流電圧に変換し、プロセッサに出力する。プロセッサは、第一切替部11に電気的に接続されており、第一切替部11の複数のスイッチの開閉を制御する。さらに、プロセッサは、第二切替部12の複数のスイッチの開閉を制御する。 The processing unit 13 includes, for example, a processor such as a central processing unit (CPU) and an AC-DC converter. The AC-DC converter converts an AC voltage input from the piezoelectric transducer 1 into a DC voltage, and outputs the DC voltage to the processor. The processor is electrically connected to the first switching unit 11 and controls opening and closing of the plurality of switches of the first switching unit 11. Furthermore, the processor controls the opening and closing of the plurality of switches of the second switching unit 12.
 (動作)
 次に、圧電トランスデューサ1及び圧電モジュール10の動作例を説明する。
(Operation)
Next, an operation example of the piezoelectric transducer 1 and the piezoelectric module 10 will be described.
 処理部13は、第一切替部11及び第二切替部12のスイッチの開閉を制御して、圧電トランスデューサ1を外部電源15に接続する。圧電トランスデューサ1の第一圧電層40に対して外部電源15から交流電圧が印加されると、第一圧電層40がZ軸方向に振動することにより、第一圧電領域R4は、超音波を送波する。第一電極41及び第二電極42は、第一圧電層40への交流電圧の印加用の電極である。 The processing unit 13 controls the opening and closing of the switches of the first switching unit 11 and the second switching unit 12 to connect the piezoelectric transducer 1 to the external power supply 15. When an AC voltage is applied from the external power supply 15 to the first piezoelectric layer 40 of the piezoelectric transducer 1, the first piezoelectric region R4 transmits an ultrasonic wave as the first piezoelectric layer 40 vibrates in the Z-axis direction. To wave. The first electrode 41 and the second electrode 42 are electrodes for applying an alternating voltage to the first piezoelectric layer 40.
 処理部13は、第一切替部11及び第二切替部12のスイッチの開閉を制御して圧電トランスデューサ1に接続する。第二圧電領域R5が超音波を受波すると、第二圧電層50がZ軸方向に振動し、第二圧電領域R5は、第二圧電層50のZ軸方向の振動を交流電圧に変換する。第三電極51及び第四電極52は、第二圧電領域R5で生じる交流電圧の取り出し用の電極である。第三電極51及び第四電極52は、第二圧電領域R5が超音波を受波することにより生じる交流電圧を取り出し、処理部13に出力する。 The processing unit 13 controls the opening and closing of the switches of the first switching unit 11 and the second switching unit 12 to connect to the piezoelectric transducer 1. When the second piezoelectric region R5 receives ultrasonic waves, the second piezoelectric layer 50 vibrates in the Z-axis direction, and the second piezoelectric region R5 converts the vibration of the second piezoelectric layer 50 in the Z-axis direction into an alternating voltage. . The third electrode 51 and the fourth electrode 52 are electrodes for extracting AC voltage generated in the second piezoelectric region R5. The third electrode 51 and the fourth electrode 52 take out an alternating voltage generated by the second piezoelectric region R <b> 5 receiving an ultrasonic wave, and output the alternating voltage to the processing unit 13.
 第一圧電領域R4は、主として、Z軸の負の向きに超音波を送波する。第二圧電領域R5は、主として、Z軸の負の側から到達した超音波を受波する。すなわち、第一圧電領域R4及び第二圧電領域R5の送波強度が最大となる向き及び受波感度が最大となる向きは、Z軸の負の向きに沿っている。 The first piezoelectric region R4 transmits ultrasonic waves mainly in the negative direction of the Z axis. The second piezoelectric region R5 mainly receives ultrasonic waves that have arrived from the negative side of the Z axis. That is, the direction in which the transmission intensity of the first piezoelectric region R4 and the second piezoelectric region R5 is the maximum and the direction in which the reception sensitivity is the maximum are along the negative direction of the Z axis.
 圧電モジュール10は、例えば、自動車に搭載され、自動車の周りの物体との間の距離を測定する超音波センサとして用いられる。圧電モジュール10は、超音波の送波及び受波を行う。圧電モジュール10が超音波を送波してから超音波が物体で反射して戻ってくるまでの時間を処理部13が計測することにより、処理部13は、物体と圧電モジュール10との間の距離を算出することができる。 The piezoelectric module 10 is used, for example, as an ultrasonic sensor mounted on a car and measuring a distance between the car and an object around the car. The piezoelectric module 10 transmits and receives ultrasonic waves. The processing unit 13 measures the time from when the piezoelectric module 10 transmits an ultrasonic wave until the ultrasonic wave is reflected by the object and returns, so that the processing unit 13 measures the time between the object and the piezoelectric module 10. The distance can be calculated.
 別の例として、圧電モジュール10は、携帯電話等に搭載され、人の指紋を検出するセンサとして用いられる。圧電モジュール10において、複数の圧電トランスデューサ1は、隣り合う圧電トランスデューサ1同士の中心間の間隔が、指紋の凹凸の間隔よりも小さい間隔となるように配置される。複数の圧電トランスデューサ1は、超音波を送波し、人の指で反射した超音波を受波する。指紋の凹部と凸部とで音響インピーダンスが異なるので、処理部13は、複数の圧電トランスデューサ1で受波した超音波の強度に基づいて指紋を検出することができる。 As another example, the piezoelectric module 10 is mounted on a mobile phone or the like and used as a sensor for detecting a human fingerprint. In the piezoelectric module 10, the plurality of piezoelectric transducers 1 are arranged such that the distance between the centers of the adjacent piezoelectric transducers 1 is smaller than the distance between the unevenness of the fingerprints. The plurality of piezoelectric transducers 1 transmit ultrasonic waves and receive ultrasonic waves reflected by human fingers. Since the acoustic impedance is different between the concave and the convex portions of the fingerprint, the processing unit 13 can detect the fingerprint based on the intensity of the ultrasonic wave received by the plurality of piezoelectric transducers 1.
 (効果)
 仮に、圧電トランスデューサ1において、第一圧電領域R4と第二圧電領域R5とがZ軸方向に重なっている場合は、第一圧電層40が振動するときに、第一圧電層40が歪むことにより、第一圧電層40の近くの第二圧電層50が歪むことがある。また、第二圧電層50が振動するときに、第二圧電層50が歪むことにより、第一圧電層40が歪むことがある。特に、第一圧電層40がZ軸と直交する方向に収縮しようとし、第二圧電層50がZ軸と直交する方向に伸長しようとする場合は、第一圧電層40の歪みと第二圧電層50の歪みとが打ち消し合うように作用することがある。
(effect)
If, in the piezoelectric transducer 1, the first piezoelectric region R4 and the second piezoelectric region R5 overlap in the Z-axis direction, the first piezoelectric layer 40 is distorted when the first piezoelectric layer 40 vibrates. The second piezoelectric layer 50 near the first piezoelectric layer 40 may be distorted. In addition, when the second piezoelectric layer 50 vibrates, the second piezoelectric layer 50 may be distorted, which may distort the first piezoelectric layer 40. In particular, when the first piezoelectric layer 40 tends to contract in the direction orthogonal to the Z axis and the second piezoelectric layer 50 tries to extend in the direction orthogonal to the Z axis, the distortion of the first piezoelectric layer 40 and the second piezoelectric layer The strain of the layer 50 may act to cancel out.
 本実施形態の圧電トランスデューサ1では、第二圧電領域R5は、Z軸方向から見て第一圧電領域R4を囲む領域に位置する。したがって、第一圧電領域R4と第二圧電領域R5とがZ軸方向に重なっている場合と比較して、第一圧電層40の歪みと第二圧電層50の歪みとが互いに影響し合う程度を低減させることができる。これにより、第一圧電領域R4及び第二圧電領域R5の特性(交流電圧を振動に変換する特性又は振動を交流電圧に変換する特性)を向上させることができる。 In the piezoelectric transducer 1 of the present embodiment, the second piezoelectric region R5 is located in a region surrounding the first piezoelectric region R4 when viewed from the Z-axis direction. Therefore, as compared with the case where the first piezoelectric region R4 and the second piezoelectric region R5 overlap in the Z-axis direction, the extent to which the strain of the first piezoelectric layer 40 and the strain of the second piezoelectric layer 50 affect each other Can be reduced. Thereby, it is possible to improve the characteristics of the first piezoelectric region R4 and the second piezoelectric region R5 (the characteristics of converting an alternating voltage into vibrations or the characteristics of converting vibrations into an alternating voltage).
 また、仮に、第一圧電領域R4が、Z軸方向において空洞23の全域と重なるようにして配されている場合は、次のような問題が生じ得る。すなわち、第一圧電層40が振動するときに、第一圧電領域R4のうち空洞23の中央側の領域と重なる部分が歪む方向と、第一圧電領域R4のうち空洞23の外周側の領域と重なる部分が歪む方向とが反対となるため、第一圧電領域R4の特性(例えば、交流電圧を振動に変換する効率)が低下することがある。 Also, if the first piezoelectric region R4 is disposed so as to overlap the entire area of the cavity 23 in the Z-axis direction, the following problems may occur. That is, when the first piezoelectric layer 40 vibrates, a direction in which the portion of the first piezoelectric region R4 overlapping the region on the center side of the cavity 23 is distorted, and the region of the first piezoelectric region R4 on the outer peripheral side of the cavity 23 Since the direction in which the overlapping portion is distorted is opposite to that of the first piezoelectric region R4, the characteristics of the first piezoelectric region R4 (for example, the efficiency of converting AC voltage into vibration) may be reduced.
 同様に、仮に、第二圧電領域R5が、Z軸方向において空洞23の全域と重なるようにして配されている場合は、次のような問題が生じ得る。すなわち、第二圧電層50が振動するときに、第二圧電領域R5のうち空洞23の中央側の領域と重なる部分が歪む方向と、第二圧電領域R5のうち空洞23の外周側の領域と重なる部分が歪む方向とが反対となるため、第二圧電領域R5の特性(例えば、受波感度)が低下することがある。 Similarly, if the second piezoelectric region R5 is disposed so as to overlap the entire area of the cavity 23 in the Z-axis direction, the following problem may occur. That is, when the second piezoelectric layer 50 vibrates, a direction in which the portion of the second piezoelectric region R5 overlapping the region on the center side of the cavity 23 is distorted, and the region of the second piezoelectric region R5 on the outer peripheral side of the cavity 23 Since the overlapping portion is opposite to the direction of distortion, the characteristics (for example, wave receiving sensitivity) of the second piezoelectric region R5 may be reduced.
 そこで、本実施形態のように、第一圧電領域R4を空洞23の中央側の領域と重なる位置に配することで、第一圧電領域R4における歪みの方向を揃えることができる。また、第二圧電領域R5を空洞23の外周側の領域と重なる位置に配することで、第二圧電領域R5における歪みの方向を揃えることができる。これにより、第一圧電領域R4の特性と第二圧電領域R5の特性とが向上する。 Therefore, by arranging the first piezoelectric region R4 at a position overlapping the region on the center side of the cavity 23 as in the present embodiment, the direction of strain in the first piezoelectric region R4 can be aligned. Further, by arranging the second piezoelectric region R5 at a position overlapping the region on the outer peripheral side of the cavity 23, the direction of strain in the second piezoelectric region R5 can be aligned. Thereby, the characteristics of the first piezoelectric region R4 and the characteristics of the second piezoelectric region R5 are improved.
 また、仮に、第一圧電領域R4と第二圧電領域R5とがZ軸方向に重なっている場合は、第二電極42と第三電極51とがZ軸方向に向かい合う。この場合は、第二電極42と第三電極51とが互いに容量結合する場合がある。したがって、圧電部3が振動するときに、第二電極42と第三電極51との間で電気的干渉が生じる場合がある。 Also, if the first piezoelectric region R4 and the second piezoelectric region R5 overlap in the Z-axis direction, the second electrode 42 and the third electrode 51 face in the Z-axis direction. In this case, the second electrode 42 and the third electrode 51 may be capacitively coupled to each other. Therefore, when the piezoelectric portion 3 vibrates, electrical interference may occur between the second electrode 42 and the third electrode 51.
 一方、本実施形態の第二圧電領域R5は、Z軸方向から見て第一圧電領域R4を囲む領域に位置し、第一圧電領域R4と第二圧電領域R5とがZ軸方向に重ならないため、第二電極42と第三電極51との容量結合の発生が抑制される。したがって、第二電極42と第三電極51との間の電気的干渉が抑制される。例えば、第二電極42と第三電極51との間のクロストーク(電気的干渉の一例)が抑制されることにより、圧電トランスデューサ1では、送波強度及び受波感度が向上し、送信信号のノイズ及び受信信号のノイズが低減する。また、送信信号のノイズ及び受信信号のノイズが低減することにより、送信信号のS/N比及び受信信号のS/N比が向上する。 On the other hand, the second piezoelectric region R5 of the present embodiment is located in a region surrounding the first piezoelectric region R4 when viewed from the Z-axis direction, and the first piezoelectric region R4 and the second piezoelectric region R5 do not overlap in the Z-axis direction Therefore, the occurrence of capacitive coupling between the second electrode 42 and the third electrode 51 is suppressed. Therefore, the electrical interference between the second electrode 42 and the third electrode 51 is suppressed. For example, by suppressing crosstalk (an example of electrical interference) between the second electrode 42 and the third electrode 51, in the piezoelectric transducer 1, the transmission intensity and the reception sensitivity are improved, and Noise and noise in the received signal are reduced. Further, the reduction of the noise of the transmission signal and the noise of the reception signal improves the S / N ratio of the transmission signal and the S / N ratio of the reception signal.
 また、本実施形態の第二圧電領域R5は、Z軸方向から見て第一圧電領域R4を囲む領域に位置するので、第一圧電領域R4と第二圧電領域R5とがZ軸方向に重なっている場合と比較して、第二圧電層50の曲げ剛性を低減できることがある。例えば、圧電部3に絶縁層7を設けない場合、絶縁層7をZ軸方向に薄く形成する場合、又は、絶縁層7を軟性の材料で形成する場合等には、第一圧電領域R4と第二圧電領域R5とがZ軸方向に重なっている場合と比較して、第二圧電層50の曲げ剛性を低減できる。これにより、第二圧電領域R5の特性(例えば、受波感度)を向上させることができる。 Further, since the second piezoelectric region R5 of the present embodiment is located in the region surrounding the first piezoelectric region R4 when viewed from the Z-axis direction, the first piezoelectric region R4 and the second piezoelectric region R5 overlap in the Z-axis direction. In some cases, the bending rigidity of the second piezoelectric layer 50 can be reduced as compared with the case where For example, when the insulating layer 7 is not provided in the piezoelectric portion 3, when the insulating layer 7 is thinly formed in the Z-axis direction, or when the insulating layer 7 is formed of a soft material, etc. The bending rigidity of the second piezoelectric layer 50 can be reduced as compared with the case where the second piezoelectric region R5 overlaps the Z-axis direction. Thereby, the characteristic (for example, receiving sensitivity) of the second piezoelectric region R5 can be improved.
 (第1の実施形態の変形例)
 以下、第1の実施形態の変形例を列挙する。以下の変形例は、適宜組み合わせて実現されてもよい。
(Modification of the first embodiment)
Hereinafter, modified examples of the first embodiment will be listed. The following modifications may be implemented in combination as appropriate.
 第二圧電層50は、第一圧電層40に対してZ軸方向の正の側に位置していてもよい。例えば、保護層6の上に第二電極42、第一圧電層40及び第一電極41がこの順で積層されて、第一電極41よりも上層(Z軸方向の正の側)に第二圧電層50が積層されていてもよい。 The second piezoelectric layer 50 may be located on the positive side in the Z-axis direction with respect to the first piezoelectric layer 40. For example, the second electrode 42, the first piezoelectric layer 40, and the first electrode 41 are stacked in this order on the protective layer 6 to form a second layer on the upper layer (positive side in the Z-axis direction) than the first electrode 41. The piezoelectric layer 50 may be stacked.
 つまり、第一圧電層40は、圧電部3の厚み方向(Z軸方向)において第二圧電層50とは異なる位置に位置していればよい。第一圧電層40が圧電部3の厚み方向において第二圧電層50とは異なる位置に位置するとは、圧電部3の厚み方向と直交する方向から見て、第一圧電層40の一部又は全部と第二圧電層50の一部又は全部とが重なっていないことを指す。 That is, the first piezoelectric layer 40 may be located at a position different from the second piezoelectric layer 50 in the thickness direction (Z-axis direction) of the piezoelectric portion 3. That the first piezoelectric layer 40 is located at a position different from the second piezoelectric layer 50 in the thickness direction of the piezoelectric portion 3 means that part of the first piezoelectric layer 40 or the first piezoelectric layer 40 is viewed from the direction orthogonal to the thickness direction of the piezoelectric portion 3 It means that all and part or all of the second piezoelectric layer 50 do not overlap.
 また、第一圧電層40は、第二圧電層50とZ軸方向において重なっていなくてもよい。すなわち、第二圧電層50は、第一圧電層40とZ軸方向において重なる部分が空洞になっていてもよいし、当該部分に、絶縁層7のように電気絶縁性を有する層が形成されていてもよい。 Also, the first piezoelectric layer 40 may not overlap with the second piezoelectric layer 50 in the Z-axis direction. That is, in the second piezoelectric layer 50, a portion overlapping with the first piezoelectric layer 40 in the Z-axis direction may be hollow, and a layer having electrical insulation like the insulating layer 7 is formed in the portion. It may be
 また、実施形態の第二圧電領域R5は、Z軸方向から見て第一圧電領域R4を略囲んでいるが、Z軸方向から見て第二圧電領域R5が第一圧電領域R4を囲むことは必須ではない。Z軸方向から見て第二圧電領域R5は、第一圧電領域R4を囲む領域の少なくとも一部に位置していればよい。言い換えれば、厚み方向(Z軸方向)から見て、第二圧電領域R5は、第一圧電領域R4の一部に沿って配置されていればよい。あるいは、厚み方向(Z軸方向)から見て、第一圧電領域R4の少なくとも一部は空洞23の中央側に位置し、第二圧電領域R5の少なくとも一部は空洞の外周側に位置していればよい。 Further, although the second piezoelectric region R5 of the embodiment substantially surrounds the first piezoelectric region R4 when viewed from the Z-axis direction, the second piezoelectric region R5 surrounds the first piezoelectric region R4 when viewed from the Z-axis direction. Is not required. The second piezoelectric region R5 may be located in at least a part of the region surrounding the first piezoelectric region R4 when viewed from the Z-axis direction. In other words, when viewed in the thickness direction (Z-axis direction), the second piezoelectric region R5 may be disposed along a part of the first piezoelectric region R4. Alternatively, when viewed in the thickness direction (Z-axis direction), at least a portion of the first piezoelectric region R4 is located on the center side of the cavity 23, and at least a portion of the second piezoelectric region R5 is located on the outer periphery of the cavity Just do it.
 また、支持部2の外縁の形状は、正方形状に限定されない。支持部2の外縁は、例えば、長方形状又は円状に形成されていてもよい。また、空洞23の形状は、円状に限定されない。空洞23は、例えば、正方形状又は長方形状に形成されていてもよい。 Moreover, the shape of the outer edge of the support part 2 is not limited to square shape. The outer edge of the support portion 2 may be formed, for example, in a rectangular shape or a circular shape. Further, the shape of the cavity 23 is not limited to a circle. The cavity 23 may be formed, for example, in a square or rectangular shape.
 また、実施形態の支持部2は、周方向に連続した枠状に形成されている。支持部2において、枠状とは、周方向に連続した形状に限らず、周方向の一部が非連続な形状であってもよい。支持部において、枠状とは、圧電部3の厚み方向(Z軸方向)から見て環状である構造のうち、次の2つの部分を含む形状であればよい。すなわち、支持部において、当該2つの部分は、圧電部3の厚み方向から見て第一圧電領域R4と第二圧電領域R5とのうち少なくとも一方を間に挟んで向かい合っていればよい。当該2つの部分は、繋がっていてもよいし、別体に形成されていてもよい。支持部は、周方向の一部を欠いた形状、例えば、C字状又はU字状であってもよい。また、支持部は、複数の部材に分かれて形成されていて、圧電部3は、複数の部材に架け渡されていてもよい。複数の部材の各々は、例えば、直方体状又は立方体状に形成されていてもよい。 Moreover, the support part 2 of embodiment is formed in the frame shape which followed the circumferential direction. In the support portion 2, the frame shape is not limited to the shape continuous in the circumferential direction, and a part of the circumferential direction may be discontinuous. In the support portion, the frame shape may be a shape including the following two parts in the structure which is annular as viewed from the thickness direction (Z-axis direction) of the piezoelectric portion 3. That is, in the support portion, the two portions may face each other with at least one of the first piezoelectric region R4 and the second piezoelectric region R5 in between as viewed from the thickness direction of the piezoelectric portion 3. The two parts may be connected or may be formed separately. The support portion may have a shape lacking a part in the circumferential direction, for example, a C shape or a U shape. Further, the support portion may be divided into a plurality of members, and the piezoelectric portion 3 may be spanned by the plurality of members. Each of the plurality of members may be formed in, for example, a rectangular parallelepiped shape or a cube shape.
 また、Z軸方向から見て、第三電極51の外縁512は、枠状の支持部2の第一面21の内縁211の一部と重なっていてもよい。 Further, as viewed in the Z-axis direction, the outer edge 512 of the third electrode 51 may overlap a part of the inner edge 211 of the first surface 21 of the frame-like support 2.
 また、第一圧電層40及び第二圧電層50を形成する方法は、スパッタ法に限定されない。第一圧電層40及び第二圧電層50は例えば、MOCVD(有機金属化学気相成長)法等の化学気相成長(CVD)法、又は、ゾルゲル法により形成されてもよい。 Further, the method of forming the first piezoelectric layer 40 and the second piezoelectric layer 50 is not limited to the sputtering method. The first piezoelectric layer 40 and the second piezoelectric layer 50 may be formed by, for example, a chemical vapor deposition (CVD) method such as MOCVD (metal organic chemical vapor deposition) method, or a sol-gel method.
 また、第二電極42、第三電極51、第一圧電層40及び第二圧電層50等は、フォトリソグラフィ技術及びエッチング技術により形成されるのに代えて、メタルマスク等を用いて、蒸着法又はスパッタ法により形成されてもよい。 In addition, the second electrode 42, the third electrode 51, the first piezoelectric layer 40, the second piezoelectric layer 50, etc. are formed using a metal mask or the like instead of being formed by photolithography and etching techniques. Alternatively, they may be formed by sputtering.
 また、第一圧電層40の材料はチタン酸ジルコン酸鉛に限定されないし、第二圧電層50の材料は窒化アルミニウムに限定されない。例えば、第一圧電層40及び第二圧電層50は、ポリフッ化ビニリデン(PVDF)等の樹脂、又は、酸化亜鉛(ZnO)を材料として形成されていてもよい。また、第一圧電層40が窒化アルミニウムにより形成されていてもよいし、第二圧電層50がチタン酸ジルコン酸鉛により形成されていてもよい。また、第一圧電層40及び第二圧電層50の材料として、PZTN(:Pb(ZrTiNb)O)、ビスマス(Bi)又はアルカリ金属を主成分とする圧電材料を用いてもよい。 Further, the material of the first piezoelectric layer 40 is not limited to lead zirconate titanate, and the material of the second piezoelectric layer 50 is not limited to aluminum nitride. For example, the first piezoelectric layer 40 and the second piezoelectric layer 50 may be formed of a resin such as polyvinylidene fluoride (PVDF) or zinc oxide (ZnO). In addition, the first piezoelectric layer 40 may be formed of aluminum nitride, and the second piezoelectric layer 50 may be formed of lead zirconate titanate. Further, as a material of the first piezoelectric layer 40 and the second piezoelectric layer 50, a piezoelectric material containing PZTN (: Pb (ZrTiNb) O 3 ), bismuth (Bi) or an alkali metal as a main component may be used.
 また、第一圧電領域R4及び第二圧電領域R5が送波又は受波する音波は、超音波に限定されない。例えば、第一圧電領域R4及び第二圧電領域R5は、可聴域の音波を送波又は受波してもよい。 Further, the sound waves transmitted or received by the first piezoelectric region R4 and the second piezoelectric region R5 are not limited to the ultrasonic waves. For example, the first piezoelectric region R4 and the second piezoelectric region R5 may transmit or receive sound waves in the audible range.
 また、第一圧電領域R4及び第二圧電領域R5のうち、一方を超音波の送波用に用いて他方を超音波の受波用に用いてもよいし、両方を超音波の送波用に用いてもよいし、両方を超音波の受波用に用いてもよい。すなわち、第一電極41及び第二電極42は、第一圧電領域R4で生じる交流電圧の取り出し用の電極であって、第三電極51及び第四電極52は、第二圧電層50への交流電圧の印加用の電極であってもよい。あるいは、第一電極41及び第二電極42は、第一圧電層40への交流電圧の印加用の電極であって、第三電極51及び第四電極52は、第二圧電層50への交流電圧の印加用の電極であってもよい。あるいは、第一電極41及び第二電極42は、第一圧電領域R4で生じる交流電圧の取り出し用の電極であって、第三電極51及び第四電極52は、第二圧電領域R5で生じる交流電圧の取り出し用の電極であってもよい。 Alternatively, one of the first piezoelectric region R4 and the second piezoelectric region R5 may be used for ultrasonic wave transmission and the other may be used for ultrasonic wave reception, or both for ultrasonic wave transmission. Or both may be used for ultrasonic wave reception. That is, the first electrode 41 and the second electrode 42 are electrodes for extracting the alternating voltage generated in the first piezoelectric region R4, and the third electrode 51 and the fourth electrode 52 are an alternating current to the second piezoelectric layer 50. It may be an electrode for applying a voltage. Alternatively, the first electrode 41 and the second electrode 42 are electrodes for applying an alternating voltage to the first piezoelectric layer 40, and the third electrode 51 and the fourth electrode 52 are alternating current to the second piezoelectric layer 50. It may be an electrode for applying a voltage. Alternatively, the first electrode 41 and the second electrode 42 are electrodes for extracting alternating voltage generated in the first piezoelectric region R4, and the third electrode 51 and the fourth electrode 52 are alternating current generated in the second piezoelectric region R5. It may be an electrode for taking out a voltage.
 また、圧電トランスデューサ1の用途は、音波を送波又は受波する用途に限定されない。例えば、圧電トランスデューサ1の用途は、アクチュエータであってもよい。 Moreover, the application of the piezoelectric transducer 1 is not limited to the application which transmits or receives a sound wave. For example, the application of the piezoelectric transducer 1 may be an actuator.
 また、第二電極42と第二パッド424とを電気的に接続するために、第二引出線423が開口部72の内壁に沿って立ち下がっているのではなく、開口部72の内面がZ軸方向に対して傾斜して形成されていて、開口部71の傾斜した内面に沿って第二引出線423が立ち下がっていてもよい。つまり、配線421の一端と第二パッド424とを結ぶように、開口部72の内面を傾斜して形成し、開口部72の傾斜した内面に沿って形成した第二引出線423により、配線421と第二パッド424とを電気的に接続してもよい。第三引出線513、第四引出線523も同様に、開口部の傾斜した内面に沿って形成されていてもよい。 In addition, in order to electrically connect the second electrode 42 and the second pad 424, the second lead wire 423 does not fall along the inner wall of the opening 72, and the inner surface of the opening 72 is Z The second lead wire 423 may be formed to be inclined with respect to the axial direction, and the second lead wire 423 may fall along the inclined inner surface of the opening 71. That is, the inner surface of the opening 72 is formed to be inclined so as to connect one end of the wiring 421 to the second pad 424, and the wiring 421 is formed by the second lead wire 423 formed along the inclined inner surface of the opening 72. And the second pad 424 may be electrically connected. Similarly, the third lead 513 and the fourth lead 523 may be formed along the inclined inner surface of the opening.
 また、第二電極42と第三電極51とは、電気的に接続されていてもよい。例えば、第二圧電層50のうち支持部2側とは反対側の表面の全域に、第二電極42と第三電極51とが一体になった電極が形成されていてもよい。第二電極42と第三電極51とが電気的に接続されている場合に、第一電極41に電流を流すタイミングと、第四電極52に電流を流すタイミングとを異ならせることにより、第一圧電層40と第二圧電層50との相互干渉を抑制してもよい。 In addition, the second electrode 42 and the third electrode 51 may be electrically connected. For example, an electrode in which the second electrode 42 and the third electrode 51 are integrated may be formed on the entire surface of the second piezoelectric layer 50 on the opposite side to the support 2 side. When the second electrode 42 and the third electrode 51 are electrically connected, the timing at which the current flows to the first electrode 41 and the timing at which the current flows to the fourth electrode 52 differ from each other. Mutual interference between the piezoelectric layer 40 and the second piezoelectric layer 50 may be suppressed.
 また、圧電トランスデューサ1が備える圧電層の数は、第一圧電層40と第二圧電層50との2つに限定されない。圧電トランスデューサ1は、3つ以上の圧電層を備えていてもよい。例えば、圧電トランスデューサ1は、圧電層として、実施形態と同一形状の第一圧電層40と、X軸方向において第一圧電層40の両側に第一圧電層40を囲むように配置された2つの円弧状の圧電層と、を備えていてもよい。 Further, the number of piezoelectric layers provided in the piezoelectric transducer 1 is not limited to two, that is, the first piezoelectric layer 40 and the second piezoelectric layer 50. The piezoelectric transducer 1 may have three or more piezoelectric layers. For example, as the piezoelectric layer, two piezoelectric transducers 1 are disposed so as to surround the first piezoelectric layer 40 on both sides of the first piezoelectric layer 40 having the same shape as that of the embodiment and the first piezoelectric layer 40 in the X axis direction. An arc-shaped piezoelectric layer may be provided.
 また、支持部2の元になる基材として、シリコン基板の一の面に凹部が形成されており、凹部の開口を塞ぐように一の面に絶縁膜が形成された基材を用いてもよい。当該基材の絶縁膜上に圧電部3を形成してから、圧電部3とは反対側から当該基材のシリコン基板をエッチングし、一の面の凹部と繋がった空洞を形成することにより、圧電トランスデューサ1を形成してもよい。 Also, even if a base having a recess formed on one surface of a silicon substrate and having an insulating film formed on one surface so as to close the opening of the recess is used as a base on which the support portion 2 is formed. Good. By forming the piezoelectric portion 3 on the insulating film of the base material, and then etching the silicon substrate of the base material from the side opposite to the piezoelectric portion 3 to form a cavity connected to the recess on one surface, The piezoelectric transducer 1 may be formed.
 例えば図2の実施形態では第二圧電層50を振動膜として機能させることもできるため振動膜を必要とせず小型化に有利であるが、保護層6と第四電極52の間に例えばケイ素(Si)などで形成された振動膜を別途、配置することもできる。可動部(厚み方向からみて空洞と重なる位置に存在し、送波および受波の際に振動する部分)の機械定数を使用条件に適した値に調整することが可能となるため、送波及び受波の効率を向上させることができるという効果を得ることができる。 For example, in the embodiment of FIG. 2, the second piezoelectric layer 50 can function as a vibrating film, which is advantageous for miniaturization without the need for a vibrating film. A vibrating membrane formed of Si) or the like may be separately disposed. Since it is possible to adjust the mechanical constant of the movable part (the part that overlaps with the cavity when viewed from the thickness direction and vibrates during transmission and reception) to a value suitable for use conditions, transmission and The effect of being able to improve the efficiency of a received wave can be acquired.
 (まとめ)
 以上説明したように、第1の態様に係る圧電トランスデューサ1は、支持部2と、圧電部3と、を備える。支持部2は、内側に空洞23が形成された枠状である。圧電部3は、支持部2により支持される。圧電部3は、空洞23を厚み方向(Z軸方向)の一方側から覆う板状である。圧電部3は、第一電極41と、第二電極42と、第一圧電層40と、第三電極51と、第四電極52と、第二圧電層50と、を含む。第一圧電層40は、厚み方向において第一電極41と第二電極42との間に挟まれている。第二圧電層50は、厚み方向において第三電極51と第四電極52との間に挟まれている。第一圧電層40は、厚み方向において第二圧電層50とは異なる位置に位置する。圧電部3は、第一圧電領域R4、及び、第二圧電領域R5を含む。第一圧電領域R4は、第一電極41と第二電極42と第一圧電層40とが厚み方向において空洞23に重なる領域である。第二圧電領域R5は、第三電極51と第四電極52と第二圧電層50とが厚み方向において空洞23に重なる領域である。第二圧電領域R5は、厚み方向から見て第一圧電領域R4を囲む領域に位置する。
(Summary)
As described above, the piezoelectric transducer 1 according to the first aspect includes the support portion 2 and the piezoelectric portion 3. The support portion 2 is in the form of a frame in which a cavity 23 is formed inside. The piezoelectric portion 3 is supported by the support portion 2. The piezoelectric portion 3 has a plate shape that covers the cavity 23 from one side in the thickness direction (Z-axis direction). The piezoelectric portion 3 includes a first electrode 41, a second electrode 42, a first piezoelectric layer 40, a third electrode 51, a fourth electrode 52, and a second piezoelectric layer 50. The first piezoelectric layer 40 is sandwiched between the first electrode 41 and the second electrode 42 in the thickness direction. The second piezoelectric layer 50 is sandwiched between the third electrode 51 and the fourth electrode 52 in the thickness direction. The first piezoelectric layer 40 is located at a position different from the second piezoelectric layer 50 in the thickness direction. The piezoelectric portion 3 includes a first piezoelectric region R4 and a second piezoelectric region R5. The first piezoelectric region R4 is a region in which the first electrode 41, the second electrode 42, and the first piezoelectric layer 40 overlap the cavity 23 in the thickness direction. The second piezoelectric region R5 is a region in which the third electrode 51, the fourth electrode 52, and the second piezoelectric layer 50 overlap the cavity 23 in the thickness direction. The second piezoelectric region R5 is located in a region surrounding the first piezoelectric region R4 when viewed in the thickness direction.
 上記の構成によれば、第二圧電領域R5は、圧電部3の厚み方向(Z軸方向)から見て第一圧電領域R4を囲む領域に位置する。したがって、第一圧電領域R4と第二圧電領域R5とが厚み方向に重なっている場合と比較して、第一圧電領域R4の第一圧電層40の歪みにより第二圧電領域R5の第二圧電層50が歪む程度を低減させることができる。また、第二圧電層50の歪みにより第一圧電層40が歪む程度を低減させることができる。これにより、第一圧電領域R4及び第二圧電領域R5が交流電圧を振動に変換する特性又は振動を交流電圧に変換する特性を向上させることができる。 According to the above configuration, the second piezoelectric region R5 is located in the region surrounding the first piezoelectric region R4 when viewed from the thickness direction (Z-axis direction) of the piezoelectric portion 3. Therefore, as compared with the case where the first piezoelectric region R4 and the second piezoelectric region R5 overlap in the thickness direction, the distortion of the first piezoelectric layer 40 of the first piezoelectric region R4 causes the second piezoelectric of the second piezoelectric region R5 to The degree to which the layer 50 is distorted can be reduced. Moreover, the extent to which the first piezoelectric layer 40 is distorted due to the distortion of the second piezoelectric layer 50 can be reduced. As a result, it is possible to improve the characteristics in which the first piezoelectric region R4 and the second piezoelectric region R5 convert an alternating voltage into vibration or the characteristics in which vibration is converted into an alternating voltage.
 また、第一圧電層40は、厚み方向から見て第二圧電領域R5に重なる位置に配置されていない。よって、圧電部3の曲げ運動を阻害する部位が少ないので、送受信感度が高い。 Further, the first piezoelectric layer 40 is not disposed at a position overlapping the second piezoelectric region R5 when viewed in the thickness direction. Therefore, since there are few parts which inhibit the bending movement of the piezoelectric part 3, transmission / reception sensitivity is high.
 また、第2の態様に係る圧電トランスデューサ1では、第1の態様において、第一電極41及び第二電極42は、第一圧電層40への交流電圧の印加用の電極である。第三電極51及び第四電極52は、第二圧電領域R5で生じる交流電圧の取り出し用の電極である。 In the piezoelectric transducer 1 according to the second aspect, in the first aspect, the first electrode 41 and the second electrode 42 are electrodes for applying an alternating voltage to the first piezoelectric layer 40. The third electrode 51 and the fourth electrode 52 are electrodes for extracting AC voltage generated in the second piezoelectric region R5.
 上記の構成によれば、第一電極41及び第二電極42は、第一圧電層40への交流電圧の印加用の電極である。すなわち、第一圧電領域R4は、交流電圧を振動に変換する。また、第三電極51及び第四電極52は、第二圧電領域R5で生じる交流電圧の取り出し用の電極である。すなわち、第二圧電領域R5は、振動を交流電圧に変換する。圧電部3が音波を受波する等により、圧電部3に対して、厚み方向(Z軸方向)に力が加えられたとき、第一圧電領域R4よりも、第一圧電領域R4を囲む領域に位置する第二圧電領域R5に応力が集中する可能性が高い。したがって、上記の圧電トランスデューサ1では、第二圧電領域R5が振動を交流電圧に変換する特性を向上させることができる。 According to the above configuration, the first electrode 41 and the second electrode 42 are electrodes for applying an alternating voltage to the first piezoelectric layer 40. That is, the first piezoelectric region R4 converts alternating voltage into vibration. The third electrode 51 and the fourth electrode 52 are electrodes for extracting alternating-current voltage generated in the second piezoelectric region R5. That is, the second piezoelectric region R5 converts the vibration into an alternating voltage. When a force is applied to the piezoelectric portion 3 in the thickness direction (Z-axis direction) by the piezoelectric portion 3 receiving a sound wave or the like, a region surrounding the first piezoelectric region R4 more than the first piezoelectric region R4 There is a high possibility that stress may concentrate on the second piezoelectric region R5 located on the Therefore, in the piezoelectric transducer 1 described above, it is possible to improve the characteristics of the second piezoelectric region R5 for converting vibration into an alternating voltage.
 また、第一圧電層40が、厚み方向と直交する方向において第二圧電層50に重なっていない。第二圧電層50を、Z軸方向の一方側から空洞23の全体を覆うように配置させて、圧電トランスデューサ1の振動膜の構成の一部として利用することができるという効果を奏することができる。なお、圧電トランスデューサ1の振動膜とは、超音波等を受波して振動することと、振動して超音波等を送波することとのうち少なくとも一方を行う構成である。また、第二圧電層50を振動膜の構成の一部として利用することができるので、振動膜を形成するプロセスを省くことが可能となり素子作製にかかるコストを低減できる。 The first piezoelectric layer 40 does not overlap the second piezoelectric layer 50 in the direction orthogonal to the thickness direction. The second piezoelectric layer 50 can be disposed so as to cover the entire cavity 23 from one side in the Z-axis direction, and can be used as a part of the configuration of the vibrating film of the piezoelectric transducer 1. . The vibrating film of the piezoelectric transducer 1 is configured to perform at least one of receiving and vibrating an ultrasonic wave or the like and transmitting an ultrasonic wave or the like by vibration. Further, since the second piezoelectric layer 50 can be used as part of the configuration of the vibrating film, the process of forming the vibrating film can be omitted, and the cost for manufacturing the element can be reduced.
 また、第3の態様に係る圧電トランスデューサ1では、第1の態様において、第一電極41及び第二電極42は、第一圧電領域R4で生じる交流電圧の取り出し用の電極である。第三電極51及び第四電極52は、第二圧電層50への交流電圧の印加用の電極である。 Moreover, in the piezoelectric transducer 1 according to the third aspect, in the first aspect, the first electrode 41 and the second electrode 42 are electrodes for extracting alternating-current voltage generated in the first piezoelectric region R4. The third electrode 51 and the fourth electrode 52 are electrodes for applying an alternating voltage to the second piezoelectric layer 50.
 上記の構成によれば、第一電極41及び第二電極42は、第一圧電領域R4で生じる交流電圧の取り出し用の電極である。すなわち、第一圧電領域R4は、振動を交流電圧に変換する。また、第三電極51及び第四電極52は、第二圧電層50への交流電圧の印加用の電極である。すなわち、第二圧電領域R5は、交流電圧を振動に変換する。圧電部3が音波を受波する等により、圧電部3に対して、厚み方向(Z軸方向)に力が加えられたとき、第一圧電領域R4よりも、第一圧電領域R4を囲む領域に位置する第二圧電領域R5に応力が集中する可能性が高い。したがって、上記の圧電トランスデューサ1では、第二圧電領域R5が交流電圧を振動に変換する特性を向上させることができる。 According to the above configuration, the first electrode 41 and the second electrode 42 are electrodes for extracting the AC voltage generated in the first piezoelectric region R4. That is, the first piezoelectric region R4 converts the vibration into an alternating voltage. The third electrode 51 and the fourth electrode 52 are electrodes for applying an alternating voltage to the second piezoelectric layer 50. That is, the second piezoelectric region R5 converts an alternating voltage into vibration. When a force is applied to the piezoelectric portion 3 in the thickness direction (Z-axis direction) by the piezoelectric portion 3 receiving a sound wave or the like, a region surrounding the first piezoelectric region R4 more than the first piezoelectric region R4 There is a high possibility that stress may concentrate on the second piezoelectric region R5 located on the Therefore, in the piezoelectric transducer 1 described above, it is possible to improve the characteristics of the second piezoelectric region R5 for converting an alternating voltage into vibration.
 また、第4の態様に係る圧電トランスデューサ1では、第1の態様において、第一電極41及び第二電極42は、第一圧電層40への交流電圧の印加用の電極である。第三電極51及び第四電極52は、第二圧電層50への交流電圧の印加用の電極である。 In the piezoelectric transducer 1 according to the fourth aspect, in the first aspect, the first electrode 41 and the second electrode 42 are electrodes for applying an alternating voltage to the first piezoelectric layer 40. The third electrode 51 and the fourth electrode 52 are electrodes for applying an alternating voltage to the second piezoelectric layer 50.
 上記の構成によれば、第一圧電層40及び第二圧電層50には、交流電圧が印加される。つまり、圧電トランスデューサ1は、第一圧電層40及び第二圧電層50に印加された交流電圧を振動に変換する装置として機能する。すなわち、圧電トランスデューサ1が交流電圧を振動に変換する装置として機能する場合に、第一圧電領域R4及び第二圧電領域R5が交流電圧を振動に変換する特性を向上させることができる。 According to the above configuration, an alternating voltage is applied to the first piezoelectric layer 40 and the second piezoelectric layer 50. That is, the piezoelectric transducer 1 functions as a device that converts the alternating voltage applied to the first piezoelectric layer 40 and the second piezoelectric layer 50 into vibration. That is, when the piezoelectric transducer 1 functions as a device for converting alternating voltage into vibration, it is possible to improve the characteristics in which the first piezoelectric region R4 and the second piezoelectric region R5 convert alternating voltage into vibration.
 また、第5の態様に係る圧電トランスデューサ1では、第1の態様において、第一電極41及び第二電極42は、第一圧電領域R4で生じる交流電圧の取り出し用の電極である。第三電極51及び第四電極52は、第二圧電領域R5で生じる交流電圧の取り出し用の電極である。 Moreover, in the piezoelectric transducer 1 according to the fifth aspect, in the first aspect, the first electrode 41 and the second electrode 42 are electrodes for extracting alternating-current voltage generated in the first piezoelectric region R4. The third electrode 51 and the fourth electrode 52 are electrodes for extracting AC voltage generated in the second piezoelectric region R5.
 上記の構成によれば、第一圧電領域R4から交流電圧が取り出され、第二圧電領域R5から交流電圧が取り出される。つまり、圧電トランスデューサ1は、第一圧電領域R4及び第二圧電領域R5において振動を交流電圧に変換する装置として機能する。すなわち、圧電トランスデューサ1が振動を交流電圧に変換する装置として機能する場合に、第一圧電領域R4及び第二圧電領域R5が振動を交流電圧に変換する特性を向上させることができる。 According to the above configuration, an alternating voltage is extracted from the first piezoelectric region R4, and an alternating voltage is extracted from the second piezoelectric region R5. That is, the piezoelectric transducer 1 functions as a device for converting the vibration into an alternating voltage in the first piezoelectric region R4 and the second piezoelectric region R5. That is, when the piezoelectric transducer 1 functions as a device for converting vibration into an alternating voltage, it is possible to improve the characteristics in which the first piezoelectric region R4 and the second piezoelectric region R5 convert vibration into an alternating voltage.
 また、第6の態様に係る圧電トランスデューサ1では、第2の態様において、第一圧電層40の圧電定数d31は、第二圧電層50の圧電定数d31よりも大きい。 In the piezoelectric transducer 1 according to the sixth aspect, in the second aspect, the piezoelectric constant d 31 of the first piezoelectric layer 40 is larger than the piezoelectric constant d 31 of the second piezoelectric layer 50.
 上記の構成によれば、第一圧電領域R4が交流電圧を振動に変換する特性と、第二圧電領域R5が振動を交流電圧に変換する特性とを向上させることができる。 According to the above configuration, it is possible to improve the characteristics of the first piezoelectric region R4 for converting an alternating voltage into vibration and the characteristics of the second piezoelectric region R5 for converting vibration into an alternating voltage.
 また、第7の態様に係る圧電トランスデューサ1では、第1~6の態様のいずれかにおいて、第一電極41、第二電極42、第三電極51及び第四電極52は、互いに電気的に絶縁されている。 In the piezoelectric transducer 1 according to the seventh aspect, in any of the first to sixth aspects, the first electrode 41, the second electrode 42, the third electrode 51, and the fourth electrode 52 are electrically insulated from each other It is done.
 上記の構成によれば、第一圧電領域R4と第二圧電領域R5とで電気的なカップリングが生じる可能性を低減することができる。 According to the above configuration, the possibility of electrical coupling between the first piezoelectric region R4 and the second piezoelectric region R5 can be reduced.
 また、第8の態様に係る圧電トランスデューサ1では、第1~7の態様のいずれかにおいて、第二圧電層50は、厚み方向(Z軸方向)において第一圧電層40と空洞23との間に位置している。 In the piezoelectric transducer 1 according to the eighth aspect, in any of the first to seventh aspects, the second piezoelectric layer 50 is between the first piezoelectric layer 40 and the cavity 23 in the thickness direction (Z-axis direction). It is located in
 上記の構成によれば、圧電部3が音波を受波する等により、圧電部3に対して、厚み方向(Z軸方向)に力が加えられたとき、第一圧電層40よりも、支持部2により近い第二圧電層50に応力が集中する可能性が高い。したがって、上記の圧電トランスデューサ1では、第二圧電領域R5が交流電圧を振動に変換する特性又は振動を交流電圧に変換する特性を向上させることができる。 According to the above configuration, when a force is applied to the piezoelectric portion 3 in the thickness direction (Z-axis direction) by the piezoelectric portion 3 receiving a sound wave or the like, the piezoelectric portion 3 is supported more than the first piezoelectric layer 40 There is a high possibility that stress may concentrate on the second piezoelectric layer 50 closer to the portion 2. Therefore, in the piezoelectric transducer 1 described above, it is possible to improve the characteristics in which the second piezoelectric region R5 converts an alternating voltage into vibration or the characteristics in which vibration is converted into an alternating voltage.
 また、第9の態様に係る圧電トランスデューサ1では、第1~8の態様のいずれかにおいて、厚み方向(Z軸方向)において、第二圧電層50は、空洞23の全体に重なる。 In the piezoelectric transducer 1 according to the ninth aspect, in any of the first to eighth aspects, the second piezoelectric layer 50 overlaps the entire cavity 23 in the thickness direction (Z-axis direction).
 上記の構成によれば、第二圧電層50が空洞23の全体に重ならない場合よりも、第二圧電層50のうち厚み方向(Z軸方向)から見て空洞23の内側に位置する部分の面積を大きくすることができる。 According to the above-described configuration, the portion of the second piezoelectric layer 50 located inside the cavity 23 as viewed from the thickness direction (Z-axis direction) of the second piezoelectric layer 50 than when the second piezoelectric layer 50 does not entirely overlap the cavity 23. The area can be increased.
 また、第10の態様に係る圧電トランスデューサ1では、第1~9の態様のいずれかにおいて、厚み方向(Z軸方向)から見て、第二圧電領域R5の少なくとも一部は、支持部2における圧電部3側の面(第一面21)のうち、空洞23側の内縁211に沿っている。 In the piezoelectric transducer 1 according to the tenth aspect, in any of the first to ninth aspects, at least a part of the second piezoelectric region R5 in the support portion 2 when viewed from the thickness direction (Z-axis direction) Of the surface (first surface 21) on the piezoelectric portion 3 side, it is along the inner edge 211 on the cavity 23 side.
 圧電部3が音波を受波する等により、圧電部3に対して、厚み方向(Z軸方向)に力が加えられたとき、支持部2の内縁211付近に応力が集中する可能性が高い。したがって、上記の圧電トランスデューサ1では、第二圧電領域R5の特性(振動を交流電圧に変換する特性又は交流電圧を振動に変換する特性)を向上させることができる。 When a force is applied to the piezoelectric portion 3 in the thickness direction (Z-axis direction) by the piezoelectric portion 3 receiving a sound wave or the like, stress is likely to be concentrated in the vicinity of the inner edge 211 of the support portion 2 . Therefore, in the piezoelectric transducer 1 described above, it is possible to improve the characteristics of the second piezoelectric region R5 (characteristics of converting vibration to alternating voltage or characteristics of converting alternating voltage to vibration).
 また、第11の態様に係る圧電トランスデューサ1では、第1~10の態様のいずれかにおいて、厚み方向(Z軸方向)から見て、第二圧電領域R5は、空洞23と支持部2とに跨っている。 In the piezoelectric transducer 1 according to the eleventh aspect, in any of the first to tenth aspects, when viewed from the thickness direction (Z-axis direction), the second piezoelectric region R5 Straddle.
 圧電部3が音波を受波する等により、圧電部3に対して、厚み方向(Z軸方向)に力が加えられたとき、支持部2の内縁211付近に応力が集中する可能性が高い。したがって、上記の圧電トランスデューサ1では、第二圧電領域R5の特性(振動を交流電圧に変換する特性又は交流電圧を振動に変換する特性)を向上させることができる。 When a force is applied to the piezoelectric portion 3 in the thickness direction (Z-axis direction) by the piezoelectric portion 3 receiving a sound wave or the like, stress is likely to be concentrated in the vicinity of the inner edge 211 of the support portion 2 . Therefore, in the piezoelectric transducer 1 described above, it is possible to improve the characteristics of the second piezoelectric region R5 (characteristics of converting vibration to alternating voltage or characteristics of converting alternating voltage to vibration).
 また、第12の態様に係る圧電モジュール10は、第1~11の態様のいずれかに係る圧電トランスデューサ1を複数備える。 The piezoelectric module 10 according to the twelfth aspect includes a plurality of piezoelectric transducers 1 according to any of the first to eleventh aspects.
 上記の構成によれば、圧電トランスデューサ1の第二圧電領域R5は、圧電部3の厚み方向(Z軸方向)から見て第一圧電領域R4を囲む領域に位置する。したがって、第一圧電領域R4と第二圧電領域R5とが厚み方向に重なっている場合と比較して、第一圧電領域R4の第一圧電層40の歪みにより第二圧電領域R5の第二圧電層50が歪む程度を低減させることができる。また、第二圧電層50の歪みにより第一圧電層40が歪む程度を低減させることができる。これにより、第一圧電領域R4及び第二圧電領域R5が交流電圧を振動に変換する特性又は振動を交流電圧に変換する特性を向上させることができる。また、圧電モジュール10は、圧電トランスデューサ1を複数備える。これにより、圧電トランスデューサ1を1つのみ用いる場合と比較して、第一圧電領域R4及び第二圧電領域R5が交流電圧を振動に変換することによる出力をより大きくすることができる、又は、振動を交流電圧に変換する感度をより大きくすることができる。 According to the above configuration, the second piezoelectric region R5 of the piezoelectric transducer 1 is located in the region surrounding the first piezoelectric region R4 when viewed from the thickness direction (Z-axis direction) of the piezoelectric portion 3. Therefore, as compared with the case where the first piezoelectric region R4 and the second piezoelectric region R5 overlap in the thickness direction, the distortion of the first piezoelectric layer 40 of the first piezoelectric region R4 causes the second piezoelectric of the second piezoelectric region R5 to The degree to which the layer 50 is distorted can be reduced. Moreover, the extent to which the first piezoelectric layer 40 is distorted due to the distortion of the second piezoelectric layer 50 can be reduced. As a result, it is possible to improve the characteristics in which the first piezoelectric region R4 and the second piezoelectric region R5 convert an alternating voltage into vibration or the characteristics in which vibration is converted into an alternating voltage. The piezoelectric module 10 also includes a plurality of piezoelectric transducers 1. Thereby, compared with the case where only one piezoelectric transducer 1 is used, the output by converting the AC voltage into the vibration by the first piezoelectric region R4 and the second piezoelectric region R5 can be made larger, or the vibration It is possible to further increase the sensitivity for converting a.
 第2~11の態様に係る構成については、圧電トランスデューサ1に必須の構成ではなく、適宜省略可能である。 The configurations according to the second to eleventh aspects are not essential to the piezoelectric transducer 1 and can be omitted as appropriate.
 [第2の実施形態]
 以下、第2の実施形態に係る圧電トランスデューサ及び圧電モジュールについて、図面を用いて説明する。ただし、以下に説明する実施形態は、本発明の様々な実施形態の一部に過ぎない。下記の実施形態は、本発明の目的を達成できれば、設計等に応じて種々の変更が可能である。下記の実施形態において説明する各図は模式的な図であり、図中の構成要素の大きさ及び厚さの比が、必ずしも実際の寸法比を反映しているとは限らない。
Second Embodiment
Hereinafter, a piezoelectric transducer and a piezoelectric module according to a second embodiment will be described using the drawings. However, the embodiments described below are only some of the various embodiments of the present invention. The following embodiments can be variously modified according to the design and the like as long as the object of the present invention can be achieved. Each drawing described in the following embodiments is a schematic drawing, and the ratio of the size and thickness of the component in the drawing does not necessarily reflect the actual size ratio.
 (圧電トランスデューサの構成)
 図8~11に示すように、圧電トランスデューサ1は、支持部2と、圧電部3と、を備えている。圧電部3は、第一圧電層40と、第二圧電層50と、第一電極41と、第二電極42と、第三電極51と、第四電極52と、を含む。圧電部3は、保護層6と、絶縁層7と、を更に含む。
(Configuration of piezoelectric transducer)
As shown in FIGS. 8 to 11, the piezoelectric transducer 1 includes a support portion 2 and a piezoelectric portion 3. The piezoelectric portion 3 includes a first piezoelectric layer 40, a second piezoelectric layer 50, a first electrode 41, a second electrode 42, a third electrode 51, and a fourth electrode 52. The piezoelectric portion 3 further includes a protective layer 6 and an insulating layer 7.
 支持部2は、内側に空洞23が形成された枠状に形成されている。支持部2の外縁は、正方形状である。支持部2は、例えば、半導体基板により形成されている。支持部2は、シリコンを主材料として形成されている。図9、10に示すように、支持部2は、第一面21と、支持部2の厚み方向において第一面21とは反対側の第二面22とを有している。空洞23は、支持部2の厚み方向に貫通した孔である。空洞23は、支持部2の厚み方向から見て、円状に形成されている。支持部2の厚み方向から見て、空洞23の中心は、支持部2の中心付近に位置している。なお、支持部2の厚み方向とは、第一面21とは垂直である方向をいう。 The support portion 2 is formed in a frame shape in which a cavity 23 is formed inside. The outer edge of the support portion 2 is square. The support portion 2 is formed of, for example, a semiconductor substrate. The support portion 2 is formed using silicon as a main material. As shown in FIGS. 9 and 10, the support portion 2 has a first surface 21 and a second surface 22 opposite to the first surface 21 in the thickness direction of the support portion 2. The cavity 23 is a hole penetrating in the thickness direction of the support portion 2. The cavity 23 is formed in a circular shape when viewed from the thickness direction of the support portion 2. When viewed from the thickness direction of the support portion 2, the center of the cavity 23 is located near the center of the support portion 2. The thickness direction of the support portion 2 refers to a direction perpendicular to the first surface 21.
 圧電部3は、板状に形成されている。圧電部3は、平面視において正方形状に形成されている。圧電部3は、支持部2により支持されている。支持部2の厚み方向と圧電部3の厚み方向とは、一致している。圧電部3は、空洞23を圧電部3の厚み方向の一方側(図9では紙面の上側)から覆っている。 The piezoelectric portion 3 is formed in a plate shape. The piezoelectric portion 3 is formed in a square shape in plan view. The piezoelectric portion 3 is supported by the support portion 2. The thickness direction of the support portion 2 and the thickness direction of the piezoelectric portion 3 coincide with each other. The piezoelectric portion 3 covers the cavity 23 from one side in the thickness direction of the piezoelectric portion 3 (the upper side in the drawing of FIG. 9).
 圧電トランスデューサ1において、以下、特に断りの無い限り、圧電部3の厚み方向をZ軸方向と規定する。支持部2と圧電部3とは、Z軸方向に並んでいる。Z軸方向において、支持部2側をZ軸の負の側とし、圧電部3側をZ軸の正の側と規定する。また、圧電部3のうち、平面視において隣り合う2辺の方向を、それぞれX軸方向及びY軸方向と規定する。したがって、X軸方向、Y軸方向及びZ軸方向は、互いに直交する。 In the piezoelectric transducer 1, hereinafter, the thickness direction of the piezoelectric portion 3 is defined as the Z-axis direction unless otherwise noted. The support portion 2 and the piezoelectric portion 3 are arranged in the Z-axis direction. In the Z-axis direction, the support portion 2 side is defined as the negative side of the Z-axis, and the piezoelectric portion 3 side is defined as the positive side of the Z-axis. Further, in the piezoelectric portion 3, the directions of two adjacent sides in plan view are respectively defined as an X-axis direction and a Y-axis direction. Therefore, the X axis direction, the Y axis direction, and the Z axis direction are orthogonal to one another.
 圧電部3の保護層6は、支持部2の第一面21に形成されている。保護層6は、空洞23をZ軸方向の一方側(正の側)から覆うようにして、第一面21の全域に形成されている。保護層6は、例えば、二酸化ケイ素(SiO)により形成されている。 The protective layer 6 of the piezoelectric portion 3 is formed on the first surface 21 of the support portion 2. The protective layer 6 is formed on the entire area of the first surface 21 so as to cover the cavity 23 from one side (positive side) in the Z-axis direction. The protective layer 6 is formed of, for example, silicon dioxide (SiO 2 ).
 第一圧電層40及び第二圧電層50は、圧電体により形成されている。第一圧電層40及び第二圧電層50は、Z軸方向に厚みを有している。第一圧電層40及び第二圧電層50の分極方向は、Z軸方向に沿っている。 The first piezoelectric layer 40 and the second piezoelectric layer 50 are formed of a piezoelectric body. The first piezoelectric layer 40 and the second piezoelectric layer 50 have a thickness in the Z-axis direction. The polarization directions of the first piezoelectric layer 40 and the second piezoelectric layer 50 are along the Z-axis direction.
 圧電部3は、第二電極42、第一圧電層40及び第一電極41が、支持部2側(Z軸の負の側)からこの順に積層した構造を有している。また、圧電部3は、第四電極52、第二圧電層50及び第三電極51が、支持部2側(Z軸の負の側)からこの順に積層した構造を有している。 The piezoelectric unit 3 has a structure in which the second electrode 42, the first piezoelectric layer 40, and the first electrode 41 are stacked in this order from the support 2 side (the negative side of the Z axis). The piezoelectric portion 3 has a structure in which the fourth electrode 52, the second piezoelectric layer 50, and the third electrode 51 are laminated in this order from the support portion 2 side (the negative side of the Z axis).
 第二電極42及び第四電極52は、保護層6のうち支持部2側とは反対側の表面60に形成されている。第二電極42及び第四電極52は、Z軸方向において同じ位置に位置している。要するに、第二電極42及び第四電極52は、Z軸方向と直交する同一の平面上に位置している。第二電極42及び第四電極52は、例えば、白金により形成されている。 The second electrode 42 and the fourth electrode 52 are formed on the surface 60 of the protective layer 6 on the opposite side to the support 2 side. The second electrode 42 and the fourth electrode 52 are located at the same position in the Z-axis direction. In short, the second electrode 42 and the fourth electrode 52 are located on the same plane orthogonal to the Z-axis direction. The second electrode 42 and the fourth electrode 52 are formed of, for example, platinum.
 図11は、図9をXI-XI断面から見た図である。ただし、図11では、絶縁層7を図示していない。第二電極42は、円状に形成されている。第二電極42は、Z軸方向から見て圧電部3の中心付近に形成されている。圧電トランスデューサ1は、配線421を更に備えている。配線421は、直線状に形成されており、一端が第二電極42に繋がっており、他端が圧電部3の周縁付近に位置している。ここで、「Z軸方向から見て」とは、圧電トランスデューサ1を透視してZ軸方向から見ることである。以下の説明でも同様に、「Z軸方向から見て」とは、圧電トランスデューサ1を透視してZ軸方向から見ることである。 FIG. 11 is a view of FIG. 9 as viewed from the XI-XI cross section. However, the insulating layer 7 is not shown in FIG. The second electrode 42 is formed in a circular shape. The second electrode 42 is formed near the center of the piezoelectric portion 3 when viewed in the Z-axis direction. The piezoelectric transducer 1 further includes a wire 421. The wiring 421 is formed in a linear shape, one end thereof is connected to the second electrode 42, and the other end is located in the vicinity of the peripheral edge of the piezoelectric portion 3. Here, “viewing from the Z-axis direction” means viewing through the piezoelectric transducer 1 from the Z-axis direction. Likewise, in the following description, “viewing from the Z-axis direction” means viewing through the piezoelectric transducer 1 from the Z-axis direction.
 第四電極52は、円弧状に形成されている。第四電極52は、第二電極42を囲むように形成されている。より詳細には、第四電極52は、第二電極42と同心の円弧状に形成されている。第四電極52の互いに対向する両端の間520には、第二電極42に繋がった配線421が位置している。圧電トランスデューサ1は、配線521を更に備えている。配線521は、直線状に形成されており、一端が第四電極52に繋がっており、他端が圧電部3の周縁付近に位置している。 The fourth electrode 52 is formed in an arc shape. The fourth electrode 52 is formed to surround the second electrode 42. More specifically, the fourth electrode 52 is formed in an arc shape concentric with the second electrode 42. A wire 421 connected to the second electrode 42 is located between opposing ends 520 of the fourth electrode 52. The piezoelectric transducer 1 further includes a wire 521. The wiring 521 is formed in a linear shape, one end thereof is connected to the fourth electrode 52, and the other end is located in the vicinity of the peripheral edge of the piezoelectric portion 3.
 図9に示すように、枠状の支持部2における圧電部3側の面は、第一面21である。第一面21のうち、空洞23側の内縁211は、円状である。第四電極52のうち、径方向において外側の縁(外縁522:図11参照)は、Z軸方向から見て第一面21の内縁211に沿っている。より詳細には、第四電極52の外縁522は、空洞23よりもわずかに直径が大きい円弧状に形成されている。また、第四電極52のうち、径方向において内側の縁(内縁525:図11参照)は、空洞23よりも直径が小さい円弧状に形成されている。すなわち、Z軸方向から見て、第四電極52は、空洞23と支持部2とに跨っている。 As shown in FIG. 9, the surface on the piezoelectric portion 3 side in the frame-shaped support portion 2 is a first surface 21. An inner edge 211 of the first surface 21 on the cavity 23 side is circular. Of the fourth electrode 52, the outer edge (the outer edge 522: see FIG. 11) in the radial direction is along the inner edge 211 of the first surface 21 when viewed from the Z-axis direction. More specifically, the outer edge 522 of the fourth electrode 52 is formed in an arc shape slightly larger in diameter than the cavity 23. Further, of the fourth electrodes 52, the inner edge (inner edge 525: see FIG. 11) in the radial direction is formed in an arc shape having a diameter smaller than that of the cavity 23. That is, when viewed in the Z-axis direction, the fourth electrode 52 straddles the cavity 23 and the support portion 2.
 図9、10に示すように、第一圧電層40は、第二電極42のうち支持部2側とは反対側の表面に、板状に形成されている。第一圧電層40は、第二電極42のうち支持部2側とは反対側の表面の全域に形成されている。すなわち、第一圧電層40は、円状に形成されている。 As shown in FIGS. 9 and 10, the first piezoelectric layer 40 is formed in a plate shape on the surface of the second electrode 42 on the opposite side to the support 2 side. The first piezoelectric layer 40 is formed on the entire surface of the second electrode 42 on the opposite side to the support 2 side. That is, the first piezoelectric layer 40 is formed in a circular shape.
 第二圧電層50は、第四電極52のうち支持部2側とは反対側の表面に、板状に形成されている。第二圧電層50は、第四電極52のうち支持部2側とは反対側の表面の全域に形成されている。すなわち、第二圧電層50は、円弧状に形成されている。第二圧電層50は、第一圧電層40を囲むように形成されている。より詳細には、第二圧電層50は、第一圧電層40と同心の円弧状に形成されている。 The second piezoelectric layer 50 is formed in a plate shape on the surface of the fourth electrode 52 opposite to the support 2 side. The second piezoelectric layer 50 is formed on the entire surface of the fourth electrode 52 on the opposite side to the support 2 side. That is, the second piezoelectric layer 50 is formed in an arc shape. The second piezoelectric layer 50 is formed to surround the first piezoelectric layer 40. More specifically, the second piezoelectric layer 50 is formed in an arc shape concentric with the first piezoelectric layer 40.
 第二圧電層50は、Z軸方向と直交する方向において第一圧電層40に重なっている。より詳細には、Z軸方向において、第二圧電層50の両端は、第一圧電層40の両端に一致している。 The second piezoelectric layer 50 overlaps the first piezoelectric layer 40 in the direction orthogonal to the Z-axis direction. More specifically, both ends of the second piezoelectric layer 50 coincide with both ends of the first piezoelectric layer 40 in the Z-axis direction.
 第一電極41は、第一圧電層40のうち支持部2側とは反対側の表面400に形成されている。第一電極41は、第一圧電層40の表面400の全域に形成されている。すなわち、第一電極41は、円状に形成されている。より詳細には、第一電極41は、第一圧電層40よりもわずかに直径が小さい円状に形成されている。第一電極41は、Z軸方向から見て圧電部3の中心付近に形成されている。第一電極41は、例えば、金により形成されている。 The first electrode 41 is formed on the surface 400 of the first piezoelectric layer 40 on the opposite side to the support 2 side. The first electrode 41 is formed on the entire surface 400 of the first piezoelectric layer 40. That is, the first electrode 41 is formed in a circular shape. More specifically, the first electrode 41 is formed in a circular shape slightly smaller in diameter than the first piezoelectric layer 40. The first electrode 41 is formed in the vicinity of the center of the piezoelectric portion 3 as viewed in the Z-axis direction. The first electrode 41 is made of, for example, gold.
 第三電極51は、第二圧電層50のうち支持部2側とは反対側の表面500に形成されている。第三電極51は、第二圧電層50の表面500の全域に形成されている。すなわち、第三電極51は、円弧状に形成されている。第三電極51は、第一電極41を囲むように形成されている。より詳細には、第三電極51は、第一電極41と同心の円弧状に形成されている。第三電極51の互いに対向する両端の間510(図8参照)には、第一電極41に繋がった後述の第一引出線413が位置している。第三電極51は、例えば、金により形成されている。 The third electrode 51 is formed on the surface 500 of the second piezoelectric layer 50 opposite to the support 2 side. The third electrode 51 is formed on the entire surface 500 of the second piezoelectric layer 50. That is, the third electrode 51 is formed in an arc shape. The third electrode 51 is formed to surround the first electrode 41. More specifically, the third electrode 51 is formed in an arc shape concentric with the first electrode 41. A first lead wire 413, which will be described later, connected to the first electrode 41 is located between opposing ends of the third electrode 51 (see FIG. 8). The third electrode 51 is made of, for example, gold.
 絶縁層7は、保護層6のうち支持部2側とは反対側の表面60であって第二電極42、第四電極52、配線421及び配線521が形成されていない部分61に形成されている。絶縁層7は、支持部2側とは反対側の表面70が平状に形成されている。絶縁層7の表面70と、第一圧電層40の表面400と、第二圧電層50の表面500とは、略面一である。絶縁層7は、例えば、二酸化ケイ素により形成されている。絶縁層7は、電気絶縁性を有している。第一電極41、第二電極42、第三電極51及び第四電極52は、互いの間にそれぞれ絶縁層7、第一圧電層40及び第二圧電層50のうち少なくとも1つを挟んで、互いに電気的に絶縁されている。絶縁層7は、後述の第一引出線413と配線421との間等、導体間で電気的なカップリングが発生する可能性を低減している。なお、絶縁層7は、例えば、樹脂材料により形成されていてもよい。 The insulating layer 7 is formed on the surface 60 of the protective layer 6 on the side opposite to the support portion 2 and in the portion 61 where the second electrode 42, the fourth electrode 52, the wiring 421 and the wiring 521 are not formed. There is. The insulating layer 7 has a flat surface 70 on the side opposite to the support 2 side. The surface 70 of the insulating layer 7, the surface 400 of the first piezoelectric layer 40, and the surface 500 of the second piezoelectric layer 50 are substantially flush. The insulating layer 7 is formed of, for example, silicon dioxide. The insulating layer 7 has electrical insulation. The first electrode 41, the second electrode 42, the third electrode 51, and the fourth electrode 52 sandwich at least one of the insulating layer 7, the first piezoelectric layer 40, and the second piezoelectric layer 50 between each other, They are electrically isolated from each other. The insulating layer 7 reduces the possibility of the occurrence of electrical coupling between the conductors, such as between the first lead wire 413 and the wiring 421 described later. The insulating layer 7 may be formed of, for example, a resin material.
 以下に、各構成の寸法の一例を挙げる。支持部2の厚みは、200μmである。第二電極42及び第四電極52の厚みは、0.4μmである。第二圧電層50の厚みは、2μmである。第一圧電層40の厚みは、2μmである。絶縁層7の厚みは、2μmである。第一電極41及び第二電極42の厚みは、0.2μmである。保護層6の厚みは、2μmである。空洞23の直径は、30μmである。支持部2の一辺の長さは、50μmである。 Below, an example of the dimension of each structure is given. The thickness of the support portion 2 is 200 μm. The thickness of the second electrode 42 and the fourth electrode 52 is 0.4 μm. The thickness of the second piezoelectric layer 50 is 2 μm. The thickness of the first piezoelectric layer 40 is 2 μm. The thickness of the insulating layer 7 is 2 μm. The thickness of the first electrode 41 and the second electrode 42 is 0.2 μm. The thickness of the protective layer 6 is 2 μm. The diameter of the cavity 23 is 30 μm. The length of one side of the support portion 2 is 50 μm.
 第一圧電層40は、Z軸方向において第一電極41と第二電極42との間に挟まれている。第二圧電層50は、Z軸方向において第三電極51と第四電極52との間に挟まれている。 The first piezoelectric layer 40 is sandwiched between the first electrode 41 and the second electrode 42 in the Z-axis direction. The second piezoelectric layer 50 is sandwiched between the third electrode 51 and the fourth electrode 52 in the Z-axis direction.
 圧電部3は、第一圧電領域R4及び第二圧電領域R5を含む。第一圧電領域R4は、第一圧電層40と第一電極41と第二電極42とがZ軸方向において空洞23に重なっている領域である。第二圧電領域R5は、第二圧電層50と第三電極51と第四電極52とがZ軸方向において空洞23に重なっている領域である。第二圧電領域R5は、Z軸方向から見て第一圧電領域R4を囲む領域に位置している(図8参照)。 The piezoelectric portion 3 includes a first piezoelectric region R4 and a second piezoelectric region R5. The first piezoelectric region R4 is a region in which the first piezoelectric layer 40, the first electrode 41, and the second electrode 42 overlap the cavity 23 in the Z-axis direction. The second piezoelectric region R5 is a region in which the second piezoelectric layer 50, the third electrode 51, and the fourth electrode 52 overlap the cavity 23 in the Z-axis direction. The second piezoelectric region R5 is located in a region surrounding the first piezoelectric region R4 when viewed from the Z-axis direction (see FIG. 8).
 第一圧電領域R4は、第一電極41に沿った円状であり(図8参照)、第二圧電領域R5は、第三電極51に沿った円弧状である。Z軸方向から見て、第二圧電領域R5は、第三電極51が位置する領域に一致している(図9参照)。 The first piezoelectric region R4 is circular along the first electrode 41 (see FIG. 8), and the second piezoelectric region R5 is circular along the third electrode 51. As viewed from the Z-axis direction, the second piezoelectric region R5 coincides with the region where the third electrode 51 is located (see FIG. 9).
 上述の通り、Z軸方向から見て、第四電極52は、空洞23と支持部2とに跨っている。また、Z軸方向から見て、第三電極51及び第二圧電層50も、空洞23と支持部2とに跨っている。したがって、Z軸方向から見て、第二圧電領域R5は、空洞23と支持部2とに跨っている。 As described above, the fourth electrode 52 straddles the cavity 23 and the support 2 as viewed in the Z-axis direction. Further, the third electrode 51 and the second piezoelectric layer 50 also straddle the cavity 23 and the support portion 2 when viewed from the Z-axis direction. Therefore, as viewed in the Z-axis direction, the second piezoelectric region R5 straddles the cavity 23 and the support portion 2.
 また、上述の通り、第四電極52の外縁522(図11参照)は、枠状の支持部2の第一面21の内縁211に沿っている。したがって、Z軸方向から見て、第二圧電領域R5の一部は、第一面21の内縁211に沿っている。また、第三電極51のうち、径方向において外側の縁512(図8参照)、及び、第二圧電層50のうち、径方向において外側の縁も、第一面21の内縁211に沿っている。 Further, as described above, the outer edge 522 (see FIG. 11) of the fourth electrode 52 is along the inner edge 211 of the first surface 21 of the frame-like support 2. Therefore, as viewed in the Z-axis direction, a part of the second piezoelectric region R5 is along the inner edge 211 of the first surface 21. Further, of the third electrode 51, the outer edge 512 in the radial direction (see FIG. 8) and the outer edge in the radial direction of the second piezoelectric layer 50 are also along the inner edge 211 of the first surface 21. There is.
 第一圧電領域R4及び第二圧電領域R5は、超音波を受波すると交流電圧を発生する。また、第一圧電領域R4及び第二圧電領域R5は、交流電圧が印加されると振動して超音波を送波する。第一圧電領域R4及び第二圧電領域R5による超音波の受波及び送波は、保護層6を介して行われる。 The first piezoelectric region R4 and the second piezoelectric region R5 generate an AC voltage when receiving ultrasonic waves. In addition, the first piezoelectric region R4 and the second piezoelectric region R5 vibrate when an alternating voltage is applied to transmit ultrasonic waves. Reception and transmission of ultrasonic waves by the first piezoelectric region R4 and the second piezoelectric region R5 are performed via the protective layer 6.
 第一圧電領域R4の第一圧電層40は、例えば、チタン酸ジルコン酸鉛(PZT)により形成されている。第二圧電領域R5の第二圧電層50は、例えば、窒化アルミニウム(AlN)により形成されている。窒化アルミニウムは、チタン酸ジルコン酸鉛と比較して、ヤング率が高くかつ密度が小さい材料である。 The first piezoelectric layer 40 of the first piezoelectric region R4 is formed of, for example, lead zirconate titanate (PZT). The second piezoelectric layer 50 of the second piezoelectric region R5 is made of, for example, aluminum nitride (AlN). Aluminum nitride is a material having a high Young's modulus and a low density as compared to lead zirconate titanate.
 第一圧電層40は、厚み方向から見て第二圧電領域R5に重なる位置に配置されていない。よって、圧電部3の曲げ運動を阻害する部位が少ないので、送受信感度が高い。 The first piezoelectric layer 40 is not disposed at a position overlapping the second piezoelectric region R5 when viewed in the thickness direction. Therefore, since there are few parts which inhibit the bending movement of the piezoelectric part 3, transmission / reception sensitivity is high.
 第一圧電層40の材料は、第二圧電層50の材料と異なる。よって、第一圧電領域R4と第二圧電領域R5に送波と受波のうちの互いに異なる機能をもたせることができるという効果を得ることができる。 The material of the first piezoelectric layer 40 is different from the material of the second piezoelectric layer 50. Therefore, it is possible to obtain an effect that the first piezoelectric region R4 and the second piezoelectric region R5 can have different functions of transmission and reception.
 第一圧電層40の圧電定数d31は、第二圧電層50の圧電定数d31よりも大きい。また、第一圧電層40の比誘電率εは、第二圧電層50の比誘電率εよりも大きい。第一圧電層40の比誘電率εは、例えば、1200である。第二圧電層50の比誘電率εは、例えば、10である。 The piezoelectric constant d 31 of the first piezoelectric layer 40 is larger than the piezoelectric constant d 31 of the second piezoelectric layer 50. Further, the relative dielectric constant ε r of the first piezoelectric layer 40 is larger than the relative dielectric constant ε r of the second piezoelectric layer 50. The relative dielectric constant ε r of the first piezoelectric layer 40 is, for example, 1200. The relative dielectric constant ε r of the second piezoelectric layer 50 is, for example, 10.
 第一圧電層40の圧電定数d31が第二圧電層50の圧電定数d31よりも大きいため、第一圧電領域R4は、交流電圧をZ軸方向の振動に変換する特性が第二圧電領域R5よりも良好である。一方、第二圧電層50では、圧電定数d31を比誘電率εで割った値(d31/ε)が第一圧電層40のd31/εよりも大きいため、第二圧電領域R5は、振動を交流電圧に変換する特性が第一圧電領域R4よりも良好である。 Since the piezoelectric constant d 31 of the first piezoelectric layer 40 is larger than the piezoelectric constant d 31 of the second piezoelectric layer 50, a first piezoelectric region R4 is characteristic for converting an AC voltage to the vibration in the Z-axis direction second piezoelectric region Better than R5. On the other hand, in the second piezoelectric layer 50, since the value (d 31 / ε r ) obtained by dividing the piezoelectric constant d 31 by the relative dielectric constant ε r is larger than d 31 / ε r of the first piezoelectric layer 40 The region R5 has better characteristics for converting vibration into an alternating voltage than the first piezoelectric region R4.
 図8に示すように、圧電トランスデューサ1は、絶縁層7の表面70に、複数(図8では3つ)の引出線(第一引出線413、第二引出線423及び第四引出線523)と、複数(図8では4つ)のパッド(第一パッド414、第二パッド424、第三パッド514及び第四パッド524)と、を更に備えている。圧電トランスデューサ1は、第三引出線を更に備えていてもよい。各引出線及び各パッドは、導体層として形成されている。 As shown in FIG. 8, the piezoelectric transducer 1 has a plurality of (three in FIG. 8) lead wires (a first lead wire 413, a second lead wire 423, and a fourth lead wire 523) on the surface 70 of the insulating layer 7. And a plurality of (four in FIG. 8) pads (first pad 414, second pad 424, third pad 514 and fourth pad 524). The piezoelectric transducer 1 may further include a third lead. Each lead wire and each pad are formed as a conductor layer.
 複数のパッドは、絶縁層7の表面70の周縁付近に形成されている。より詳細には、第一パッド414及び第二パッド424は、絶縁層7の表面70のうち、Y軸の正の側の周縁付近であってX軸方向における中心付近に形成されている。第三パッド514及び第四パッド524は、絶縁層7の表面70のうち、Y軸の負の側の周縁付近であってX軸方向における中心付近に形成されている。各パッドは、長方形状に形成されている。なお、各パッドは、正方形状に形成されていてもよい。 The plurality of pads are formed near the periphery of the surface 70 of the insulating layer 7. More specifically, the first pad 414 and the second pad 424 are formed on the surface 70 of the insulating layer 7 near the periphery on the positive side of the Y axis and near the center in the X axis direction. The third pad 514 and the fourth pad 524 are formed on the surface 70 of the insulating layer 7 near the periphery on the negative side of the Y axis and near the center in the X axis direction. Each pad is formed in a rectangular shape. Each pad may be formed in a square shape.
 第一引出線413は、第一電極41と第一パッド414とを電気的に接続している。 The first lead wire 413 electrically connects the first electrode 41 and the first pad 414.
 第二引出線423は、第二電極42に繋がった配線421と第二パッド424とを電気的に接続している。図8、10に示すように、絶縁層7は、開口部72を有している。開口部72の奥(図10では下)には、配線421の一端が位置している。第二引出線423が開口部72の内壁に沿って配線421へ向かって立ち下がり、配線421の一部とZ軸方向に重なって形成されていることにより、第二引出線423と配線421とが接続されている。 The second lead wire 423 electrically connects the wire 421 connected to the second electrode 42 and the second pad 424. As shown in FIGS. 8 and 10, the insulating layer 7 has an opening 72. One end of the wiring 421 is located at the back of the opening 72 (lower in FIG. 10). The second lead wire 423 and the wire 421 are formed by falling along the inner wall of the opening 72 toward the wire 421 and overlapping a part of the wire 421 in the Z-axis direction. Is connected.
 第三電極51は、第三パッド514に直接繋がることにより、第三パッド514に電気的に接続されている。なお、第三電極51は、絶縁層7の表面70に形成された第三引出線を介して第三パッド514に電気的に接続されていてもよい。 The third electrode 51 is electrically connected to the third pad 514 by being directly connected to the third pad 514. The third electrode 51 may be electrically connected to the third pad 514 through the third lead formed on the surface 70 of the insulating layer 7.
 第四引出線523は、第四電極52に繋がった配線521と第四パッド524とを電気的に接続している。絶縁層7は、開口部74を有している。開口部74の奥(図10では下)には、配線521の一端が位置している。第四引出線523が開口部74の内壁に沿って配線521へ向かって立ち下がり、配線521の一部とZ軸方向に重なって形成されていることにより、第四引出線523と配線521とが接続されている。 The fourth lead wire 523 electrically connects the wire 521 connected to the fourth electrode 52 and the fourth pad 524. The insulating layer 7 has an opening 74. One end of the wiring 521 is located at the back of the opening 74 (lower in FIG. 10). The fourth lead-out wire 523 falls along the inner wall of the opening 74 toward the wire 521 and is formed so as to overlap with a part of the wire 521 in the Z-axis direction. Is connected.
 (製造方法)
 次に、圧電トランスデューサ1の製造方法の一例について、図12(A~F)、図13(A~D)を参照して説明する。
(Production method)
Next, an example of a method of manufacturing the piezoelectric transducer 1 will be described with reference to FIGS. 12 (A to F) and 13 (A to D).
 まず、図12のAに示すように、圧電トランスデューサ1の支持部2の元になるシリコン基板である基材200の第一面201に、熱酸化膜からなる保護層6を形成する。また、基材200の厚み方向において第一面201とは反対側の第二面202にも、熱酸化膜からなる保護層を形成する。ただし、図12のAでは、第二面202に形成された保護層の図示を省略している。基材200は、円盤状のウェハである。 First, as shown in A of FIG. 12, the protective layer 6 made of a thermal oxide film is formed on the first surface 201 of the base material 200 which is a silicon substrate which is the base of the support portion 2 of the piezoelectric transducer 1. In addition, a protective layer made of a thermal oxide film is also formed on the second surface 202 opposite to the first surface 201 in the thickness direction of the base 200. However, in FIG. 12A, the illustration of the protective layer formed on the second surface 202 is omitted. The substrate 200 is a disk-shaped wafer.
 次に、図12のBに示すように、保護層6の表面60の全域に、白金の第一層91を形成する。第一層91は、後に第二電極42、第四電極52、配線421及び配線521となる層である(図11参照)。第一層91は、例えば、スパッタ法により形成される。 Next, as shown in B of FIG. 12, a first layer 91 of platinum is formed on the entire surface 60 of the protective layer 6. The first layer 91 is a layer to be the second electrode 42, the fourth electrode 52, the wiring 421, and the wiring 521 later (see FIG. 11). The first layer 91 is formed, for example, by sputtering.
 次に、図12のCに示すように、第一層91の表面910の全域に、チタン酸ジルコン酸鉛の第二層92を形成する。第二層92は、後に第一圧電層40となる層である。第二層92は、例えば、スパッタ法により形成される。 Next, as shown in C of FIG. 12, the second layer 92 of lead zirconate titanate is formed on the entire surface 910 of the first layer 91. The second layer 92 is a layer to be the first piezoelectric layer 40 later. The second layer 92 is formed, for example, by sputtering.
 次に、図12のDに示すように、第二層92を、フォトリソグラフィ技術及びエッチング技術によりパターニングする。この工程により、第二層92の一部からなる第一圧電層40を形成する。 Next, as shown in FIG. 12D, the second layer 92 is patterned by photolithography and etching. By this process, the first piezoelectric layer 40 which is a part of the second layer 92 is formed.
 次に、図12のEに示すように、第一層91を、フォトリソグラフィ技術及びエッチング技術によりパターニングする。この工程により、第一層91の一部からなる第二電極42、第四電極52、配線421(図11参照)及び配線521(図11参照)を形成する。 Next, as shown in FIG. 12E, the first layer 91 is patterned by photolithography and etching. By this process, the second electrode 42, the fourth electrode 52, the wiring 421 (see FIG. 11), and the wiring 521 (see FIG. 11), which are part of the first layer 91, are formed.
 次に、図12のFに示すように、保護層6の表面60であって第二電極42、第四電極52、配線421(図11参照)及び配線521(図11参照)が形成されていない部分61と、第一圧電層40、第四電極52、配線421及び配線521の表面とに、窒化アルミニウムの第三層93を形成する。第三層93は、後に第二圧電層50となる層である。第三層93は、例えば、スパッタ法により形成される。さらに、第三層93を研磨又はエッチングすることにより、第一圧電層40を露出させる。 Next, as shown in F of FIG. 12, the second electrode 42, the fourth electrode 52, the wiring 421 (see FIG. 11) and the wiring 521 (see FIG. 11) are formed on the surface 60 of the protective layer 6. A third layer 93 of aluminum nitride is formed on the non-portion 61 and on the surfaces of the first piezoelectric layer 40, the fourth electrode 52, the wiring 421, and the wiring 521. The third layer 93 is a layer to be the second piezoelectric layer 50 later. The third layer 93 is formed by sputtering, for example. Furthermore, the first piezoelectric layer 40 is exposed by polishing or etching the third layer 93.
 次に、図13のAに示すように、第三層93を、フォトリソグラフィ技術及びエッチング技術によりパターニングする。この工程により、第三層93の一部からなる第二圧電層50を形成する。 Next, as shown in FIG. 13A, the third layer 93 is patterned by photolithography and etching. By this process, the second piezoelectric layer 50 which is a part of the third layer 93 is formed.
 次に、図13のBに示すように、絶縁層7を、保護層6の表面60のうち電極及び配線が形成されていない部分61に形成する。絶縁層7は、例えば、第一圧電層40及び第二圧電層50を覆うように化学気相成長(CVD)法により形成された後、表面から研磨又はエッチバックされることにより、第一圧電層40の表面400及び第二圧電層50の表面500と面一にされる。 Next, as shown to B of FIG. 13, the insulating layer 7 is formed in the part 61 in which the electrode and wiring are not formed among the surfaces 60 of the protective layer 6. As shown in FIG. The insulating layer 7 is formed by, for example, a chemical vapor deposition (CVD) method so as to cover the first piezoelectric layer 40 and the second piezoelectric layer 50, and then polished or etched back from the surface to form a first piezoelectric layer. It is flush with the surface 400 of the layer 40 and the surface 500 of the second piezoelectric layer 50.
 次に、絶縁層7に、開口部72(図10参照)、74(図10参照)を形成する。開口部72、74は、例えば、フォトリソグラフィ技術及びエッチング技術を用いて形成される。 Next, the openings 72 (see FIG. 10) and 74 (see FIG. 10) are formed in the insulating layer 7. The openings 72 and 74 are formed, for example, using photolithography technology and etching technology.
 次に、図13のCに示すように、第一圧電層40の表面400に第一電極41を形成する。第二圧電層50の表面500に第三電極51を形成する。絶縁層7の表面70に第一引出線413、第二引出線423、第四引出線523、第一パッド414、第二パッド424、第三パッド514及び第四パッド524を形成する。第一電極41、第三電極51、各引出線及び各パッドは、金を材料として、メタルマスクを用いて、蒸着法又はスパッタ法により形成される。また、第一電極41、第三電極51、各引出線及び各パッドは、フォトリソグラフィ技術及びエッチング技術を利用して形成されてもよい。また、第一電極41、第三電極51、各引出線及び各パッドは、フォトリソグラフィ技術、薄膜形成技術及びリフトオフ法を利用して形成されてもよい。 Next, as shown in C of FIG. 13, the first electrode 41 is formed on the surface 400 of the first piezoelectric layer 40. The third electrode 51 is formed on the surface 500 of the second piezoelectric layer 50. The first lead wire 413, the second lead wire 423, the fourth lead wire 523, the first pad 414, the second pad 424, the third pad 514, and the fourth pad 524 are formed on the surface 70 of the insulating layer 7. The first electrode 41, the third electrode 51, the leads, and the pads are formed by vapor deposition or sputtering using a metal mask, using gold as a material. In addition, the first electrode 41, the third electrode 51, the leads, and the pads may be formed using photolithography technology and etching technology. In addition, the first electrode 41, the third electrode 51, the leads, and the pads may be formed using a photolithography technique, a thin film forming technique, and a lift-off method.
 次に、図13のDに示すように、基材200に空洞23を形成する。これにより、支持部2が形成される。空洞23は、例えば、アルカリ溶液による異方性エッチングにより形成される。より詳細には、まず、第二面202(図13のC参照)に形成されている保護層を、フォトリソグラフィ技術及びエッチング技術を用いてパターニングする。さらに、パターニングされて残った保護層をエッチングマスクとして用いて、第二面202から基材200の中心部分をエッチングすることにより、空洞23を形成する。保護層6は、エッチングストッパとして機能する。すなわち、保護層6は、アルカリ溶液によりエッチングされ難い。したがって、保護層6の厚さのばらつきが低減される。 Next, as shown in D of FIG. 13, a cavity 23 is formed in the base 200. Thereby, the support part 2 is formed. The cavity 23 is formed, for example, by anisotropic etching with an alkaline solution. More specifically, first, the protective layer formed on the second surface 202 (see C of FIG. 13) is patterned using photolithography technology and etching technology. Furthermore, the cavity 23 is formed by etching the central portion of the substrate 200 from the second surface 202 using the patterned remaining protective layer as an etching mask. The protective layer 6 functions as an etching stopper. That is, the protective layer 6 is difficult to be etched by the alkaline solution. Therefore, the variation in the thickness of the protective layer 6 is reduced.
 次に、基材200をダイシングする。つまり、1つの圧電トランスデューサ1が占める領域ごとに基材200を分割する。 Next, the substrate 200 is diced. That is, the substrate 200 is divided into areas occupied by one piezoelectric transducer 1.
 以上により、圧電トランスデューサ1が製造される。 Thus, the piezoelectric transducer 1 is manufactured.
 第一圧電層40の少なくとも一領域が、厚み方向と直交する方向において第二圧電層50の少なくとも一領域に重なる。 At least one region of the first piezoelectric layer 40 overlaps at least one region of the second piezoelectric layer 50 in the direction orthogonal to the thickness direction.
 図12のCに示すように第一圧電層40用にチタン酸ジルコン酸鉛の第二層92を形成し、その後、図12のFに示すように第二圧電層50用に窒化アルミニウムの第三層93を形成する工程とすることができる。チタン酸ジルコン酸鉛の形成温度に左右されずに第二圧電層50の材料を選定することができ、例えば有機圧電体などを用いることも可能である。すなわち、第二圧電層50の材料選択性が高いという効果を奏する。 A second layer 92 of lead zirconate titanate is formed for the first piezoelectric layer 40 as shown in C of FIG. 12, and then a second layer of aluminum nitride is used for the second piezoelectric layer 50 as shown in F of FIG. 12. It can be a process of forming the three layers 93. The material of the second piezoelectric layer 50 can be selected without being influenced by the formation temperature of lead zirconate titanate, and it is also possible to use, for example, an organic piezoelectric material. That is, there is an effect that the material selectivity of the second piezoelectric layer 50 is high.
 また、圧電トランスデューサ1は基板に実装されるが、第一圧電層40が、厚み方向と直交する方向において第二圧電層50に重っていないと、第一電極41と第三電極51の基板実装面までの距離差が大きい。その距離差を解消するために配線の引き回しが複雑になるが、第一圧電層40の少なくとも一領域が、厚み方向と直交する方向において第二圧電層50の少なくとも一領域に重なっているので、配線引き回しの工程が容易となる。 Moreover, although the piezoelectric transducer 1 is mounted on the substrate, the substrates of the first electrode 41 and the third electrode 51 are not provided if the first piezoelectric layer 40 does not overlap the second piezoelectric layer 50 in the direction orthogonal to the thickness direction. There is a large difference in distance to the mounting surface. Although wiring of the wiring is complicated to eliminate the difference in distance, at least one region of the first piezoelectric layer 40 overlaps at least one region of the second piezoelectric layer 50 in the direction orthogonal to the thickness direction, The process of wire routing becomes easy.
 (圧電モジュールの構成)
 図14に示すように、圧電モジュール10は、圧電トランスデューサ1を複数(図7では16個)備えている。複数の圧電トランスデューサ1は、基板に実装されている。複数の圧電トランスデューサ1は、縦4列、横4列の2次元アレイ状に並んでいる。圧電モジュール10は、第一切替部11と、第二切替部12と、処理部13と、を更に備えている。
(Configuration of piezoelectric module)
As shown in FIG. 14, the piezoelectric module 10 includes a plurality (16 in FIG. 7) of piezoelectric transducers 1. The plurality of piezoelectric transducers 1 are mounted on a substrate. The plurality of piezoelectric transducers 1 are arranged in a two-dimensional array of four vertical rows and four horizontal rows. The piezoelectric module 10 further includes a first switching unit 11, a second switching unit 12, and a processing unit 13.
 第一切替部11及び第二切替部12はそれぞれ、複数のスイッチを有する。各々の圧電トランスデューサ1の第一電極41は、第一パッド414と、第一切替部11のスイッチとを介して、外部電源15に接続される。横一列に並んだ4つの圧電トランスデューサ1は、第一切替部11のうち外部電源15に接続された1つのスイッチを共用している。 The first switching unit 11 and the second switching unit 12 each have a plurality of switches. The first electrode 41 of each piezoelectric transducer 1 is connected to the external power supply 15 via the first pad 414 and the switch of the first switching unit 11. The four piezoelectric transducers 1 arranged in a horizontal row share one switch connected to the external power supply 15 in the first switching unit 11.
 各々の圧電トランスデューサ1の第二電極42は、第二パッド424と、第二切替部12のスイッチとを介して、グラウンドに接続される。縦一列に並んだ4つの圧電トランスデューサ1は、第二切替部12のうちグラウンドに接続された1つのスイッチを共用している。 The second electrode 42 of each piezoelectric transducer 1 is connected to the ground via the second pad 424 and the switch of the second switch 12. The four piezoelectric transducers 1 arranged in a vertical line share one switch connected to the ground in the second switching unit 12.
 各々の圧電トランスデューサ1の第三電極51は、第三パッド514と、第二切替部12のスイッチとを介して、処理部13に接続される。縦一列に並んだ4つの圧電トランスデューサ1は、第二切替部12のうち処理部13に接続された1つのスイッチを共用している。 The third electrode 51 of each piezoelectric transducer 1 is connected to the processing unit 13 via the third pad 514 and the switch of the second switching unit 12. The four piezoelectric transducers 1 arranged in a vertical line share one switch connected to the processing unit 13 in the second switching unit 12.
 各々の圧電トランスデューサ1の第四電極52は、第四パッド524と、第一切替部11のスイッチとを介して、グラウンドに接続される。横一列に並んだ4つの圧電トランスデューサ1は、第一切替部11のうちグラウンドに接続された1つのスイッチを共用している。 The fourth electrode 52 of each piezoelectric transducer 1 is connected to the ground via the fourth pad 524 and the switch of the first switching unit 11. The four piezoelectric transducers 1 arranged in a horizontal row share one switch connected to the ground in the first switching unit 11.
 第一切替部11及び第二切替部12は、個々の圧電トランスデューサ1ごとに、圧電トランスデューサ1と外部電源15との接続を切り替える。また、第一切替部11及び第二切替部12は、個々の圧電トランスデューサ1ごとに、圧電トランスデューサ1と処理部13との接続を切り替える。圧電トランスデューサ1が外部電源15に接続されると、第一圧電層40には、外部電源15から交流電圧が印加される。圧電トランスデューサ1は、処理部13に接続されると、第二圧電領域R5で生じる交流電圧を、処理部13に出力する。なお、第一切替部11及び第二切替部12は、複数のスイッチに代えて、複数のリレー又は複数のマルチプレクサを有していてもよい。 The first switching unit 11 and the second switching unit 12 switch the connection between the piezoelectric transducer 1 and the external power supply 15 for each piezoelectric transducer 1. The first switching unit 11 and the second switching unit 12 switch the connection between the piezoelectric transducer 1 and the processing unit 13 for each of the piezoelectric transducers 1. When the piezoelectric transducer 1 is connected to the external power supply 15, an alternating voltage is applied to the first piezoelectric layer 40 from the external power supply 15. When connected to the processing unit 13, the piezoelectric transducer 1 outputs an alternating voltage generated in the second piezoelectric region R <b> 5 to the processing unit 13. The first switching unit 11 and the second switching unit 12 may have a plurality of relays or a plurality of multiplexers instead of the plurality of switches.
 処理部13は、例えば、CPU(Central Processing Unit)等のプロセッサと、AC-DCコンバータとを含む。AC-DCコンバータは、圧電トランスデューサ1から入力される交流電圧を直流電圧に変換し、プロセッサに出力する。プロセッサは、第一切替部11に電気的に接続されており、第一切替部11の複数のスイッチの開閉を制御する。さらに、プロセッサは、第二切替部12の複数のスイッチの開閉を制御する。 The processing unit 13 includes, for example, a processor such as a central processing unit (CPU) and an AC-DC converter. The AC-DC converter converts an AC voltage input from the piezoelectric transducer 1 into a DC voltage, and outputs the DC voltage to the processor. The processor is electrically connected to the first switching unit 11 and controls opening and closing of the plurality of switches of the first switching unit 11. Furthermore, the processor controls the opening and closing of the plurality of switches of the second switching unit 12.
 (動作)
 次に、圧電トランスデューサ1及び圧電モジュール10の動作例を説明する。
(Operation)
Next, an operation example of the piezoelectric transducer 1 and the piezoelectric module 10 will be described.
 処理部13は、第一切替部11及び第二切替部12のスイッチの開閉を制御して、圧電トランスデューサ1を外部電源15に接続する。圧電トランスデューサ1の第一圧電層40に対して外部電源15から交流電圧が印加されると、第一圧電層40がZ軸方向に振動することにより、第一圧電領域R4は、超音波を送波する。第一電極41及び第二電極42は、第一圧電層40への交流電圧の印加用の電極である。 The processing unit 13 controls the opening and closing of the switches of the first switching unit 11 and the second switching unit 12 to connect the piezoelectric transducer 1 to the external power supply 15. When an AC voltage is applied from the external power supply 15 to the first piezoelectric layer 40 of the piezoelectric transducer 1, the first piezoelectric region R4 transmits an ultrasonic wave as the first piezoelectric layer 40 vibrates in the Z-axis direction. To wave. The first electrode 41 and the second electrode 42 are electrodes for applying an alternating voltage to the first piezoelectric layer 40.
 処理部13は、第一切替部11及び第二切替部12のスイッチの開閉を制御して圧電トランスデューサ1に接続する。第二圧電領域R5が超音波を受波すると、第二圧電層50がZ軸方向に振動し、第二圧電領域R5は、第二圧電層50のZ軸方向の振動を交流電圧に変換する。第三電極51及び第四電極52は、第二圧電領域R5で生じる交流電圧の取り出し用の電極である。第三電極51及び第四電極52は、第二圧電領域R5が超音波を受波することにより生じる交流電圧を取り出し、処理部13に出力する。 The processing unit 13 controls the opening and closing of the switches of the first switching unit 11 and the second switching unit 12 to connect to the piezoelectric transducer 1. When the second piezoelectric region R5 receives ultrasonic waves, the second piezoelectric layer 50 vibrates in the Z-axis direction, and the second piezoelectric region R5 converts the vibration of the second piezoelectric layer 50 in the Z-axis direction into an alternating voltage. . The third electrode 51 and the fourth electrode 52 are electrodes for extracting AC voltage generated in the second piezoelectric region R5. The third electrode 51 and the fourth electrode 52 take out an alternating voltage generated by the second piezoelectric region R <b> 5 receiving an ultrasonic wave, and output the alternating voltage to the processing unit 13.
 第一圧電領域R4は、主として、Z軸の負の向きに超音波を送波する。第二圧電領域R5は、主として、Z軸の負の側から到達した超音波を受波する。すなわち、第一圧電領域R4及び第二圧電領域R5の送波強度が最大となる向き及び受波感度が最大となる向きは、Z軸の負の向きに沿っている。 The first piezoelectric region R4 transmits ultrasonic waves mainly in the negative direction of the Z axis. The second piezoelectric region R5 mainly receives ultrasonic waves that have arrived from the negative side of the Z axis. That is, the direction in which the transmission intensity of the first piezoelectric region R4 and the second piezoelectric region R5 is the maximum and the direction in which the reception sensitivity is the maximum are along the negative direction of the Z axis.
 圧電モジュール10は、例えば、自動車に搭載され、自動車の周りの物体との間の距離を測定する超音波センサとして用いられる。圧電モジュール10は、超音波の送波及び受波を行う。圧電モジュール10が超音波を送波してから超音波が物体で反射して戻ってくるまでの時間を処理部13が計測することにより、処理部13は、物体と圧電モジュール10との間の距離を算出することができる。 The piezoelectric module 10 is used, for example, as an ultrasonic sensor mounted on a car and measuring a distance between the car and an object around the car. The piezoelectric module 10 transmits and receives ultrasonic waves. The processing unit 13 measures the time from when the piezoelectric module 10 transmits an ultrasonic wave until the ultrasonic wave is reflected by the object and returns, so that the processing unit 13 measures the time between the object and the piezoelectric module 10. The distance can be calculated.
 別の例として、圧電モジュール10は、携帯電話等に搭載され、人の指紋を検出するセンサとして用いられる。圧電モジュール10において、複数の圧電トランスデューサ1は、隣り合う圧電トランスデューサ1同士の中心間の間隔が、指紋の凹凸の間隔よりも小さい間隔となるように配置される。複数の圧電トランスデューサ1は、超音波を送波し、人の指で反射した超音波を受波する。指紋の凹部と凸部とで音響インピーダンスが異なるので、処理部13は、複数の圧電トランスデューサ1で受波した超音波の強度に基づいて指紋を検出することができる。 As another example, the piezoelectric module 10 is mounted on a mobile phone or the like and used as a sensor for detecting a human fingerprint. In the piezoelectric module 10, the plurality of piezoelectric transducers 1 are arranged such that the distance between the centers of the adjacent piezoelectric transducers 1 is smaller than the distance between the unevenness of the fingerprints. The plurality of piezoelectric transducers 1 transmit ultrasonic waves and receive ultrasonic waves reflected by human fingers. Since the acoustic impedance is different between the concave and the convex portions of the fingerprint, the processing unit 13 can detect the fingerprint based on the intensity of the ultrasonic wave received by the plurality of piezoelectric transducers 1.
 (効果)
 仮に、圧電トランスデューサ1において、第一圧電領域R4と第二圧電領域R5とがZ軸方向に重なっている場合は、第一圧電層40が振動するときに、第一圧電層40が歪むことにより、第一圧電層40の近くの第二圧電層50が歪むことがある。また、第二圧電層50が振動するときに、第二圧電層50が歪むことにより、第一圧電層40が歪むことがある。特に、第一圧電層40がZ軸と直交する方向に収縮しようとし、第二圧電層50がZ軸と直交する方向に伸長しようとする場合は、第一圧電層40の歪みと第二圧電層50の歪みとが打ち消し合うように作用することがある。
(effect)
If, in the piezoelectric transducer 1, the first piezoelectric region R4 and the second piezoelectric region R5 overlap in the Z-axis direction, the first piezoelectric layer 40 is distorted when the first piezoelectric layer 40 vibrates. The second piezoelectric layer 50 near the first piezoelectric layer 40 may be distorted. In addition, when the second piezoelectric layer 50 vibrates, the second piezoelectric layer 50 may be distorted, which may distort the first piezoelectric layer 40. In particular, when the first piezoelectric layer 40 tends to contract in the direction orthogonal to the Z axis and the second piezoelectric layer 50 tries to extend in the direction orthogonal to the Z axis, the distortion of the first piezoelectric layer 40 and the second piezoelectric layer The strain of the layer 50 may act to cancel out.
 本実施形態の圧電トランスデューサ1では、第二圧電領域R5は、Z軸方向から見て第一圧電領域R4を囲む領域に位置する。したがって、第一圧電領域R4と第二圧電領域R5とがZ軸方向に重なっている場合と比較して、第一圧電層40の歪みと第二圧電層50の歪みとが互いに影響し合う程度を低減させることができる。これにより、第一圧電領域R4及び第二圧電領域R5の特性(交流電圧を振動に変換する特性又は振動を交流電圧に変換する特性)を向上させることができる。 In the piezoelectric transducer 1 of the present embodiment, the second piezoelectric region R5 is located in a region surrounding the first piezoelectric region R4 when viewed from the Z-axis direction. Therefore, as compared with the case where the first piezoelectric region R4 and the second piezoelectric region R5 overlap in the Z-axis direction, the extent to which the strain of the first piezoelectric layer 40 and the strain of the second piezoelectric layer 50 affect each other Can be reduced. Thereby, it is possible to improve the characteristics of the first piezoelectric region R4 and the second piezoelectric region R5 (the characteristics of converting an alternating voltage into vibrations or the characteristics of converting vibrations into an alternating voltage).
 また、仮に、第一圧電領域R4が、Z軸方向において空洞23の全域と重なるようにして配されている場合は、次のような問題が生じ得る。すなわち、第一圧電層40が振動するときに、第一圧電領域R4のうち空洞23の中央側の領域と重なる部分が歪む方向と、第一圧電領域R4のうち空洞23の外周側の領域と重なる部分が歪む方向とが反対となるため、第一圧電領域R4の特性(例えば、交流電圧を振動に変換する効率)が低下することがある。 Also, if the first piezoelectric region R4 is disposed so as to overlap the entire area of the cavity 23 in the Z-axis direction, the following problems may occur. That is, when the first piezoelectric layer 40 vibrates, a direction in which the portion of the first piezoelectric region R4 overlapping the region on the center side of the cavity 23 is distorted, and the region of the first piezoelectric region R4 on the outer peripheral side of the cavity 23 Since the direction in which the overlapping portion is distorted is opposite to that of the first piezoelectric region R4, the characteristics of the first piezoelectric region R4 (for example, the efficiency of converting AC voltage into vibration) may be reduced.
 同様に、仮に、第二圧電領域R5が、Z軸方向において空洞23の全域と重なるようにして配されている場合は、次のような問題が生じ得る。すなわち、第二圧電層50が振動するときに、第二圧電領域R5のうち空洞23の中央側の領域と重なる部分が歪む方向と、第二圧電領域R5のうち空洞23の外周側の領域と重なる部分が歪む方向とが反対となるため、第二圧電領域R5の特性(例えば、受波感度)が低下することがある。 Similarly, if the second piezoelectric region R5 is disposed so as to overlap the entire area of the cavity 23 in the Z-axis direction, the following problem may occur. That is, when the second piezoelectric layer 50 vibrates, a direction in which the portion of the second piezoelectric region R5 overlapping the region on the center side of the cavity 23 is distorted, and the region of the second piezoelectric region R5 on the outer peripheral side of the cavity 23 Since the overlapping portion is opposite to the direction of distortion, the characteristics (for example, wave receiving sensitivity) of the second piezoelectric region R5 may be reduced.
 そこで、本実施形態のように、第一圧電領域R4を空洞23の中央側の領域と重なる位置に配することで、第一圧電領域R4における歪みの方向を揃えることができる。また、第二圧電領域R5を空洞23の外周側の領域と重なる位置に配することで、第二圧電領域R5における歪みの方向を揃えることができる。これにより、第一圧電領域R4の特性と第二圧電領域R5の特性とが向上する。 Therefore, by arranging the first piezoelectric region R4 at a position overlapping the region on the center side of the cavity 23 as in the present embodiment, the direction of strain in the first piezoelectric region R4 can be aligned. Further, by arranging the second piezoelectric region R5 at a position overlapping the region on the outer peripheral side of the cavity 23, the direction of strain in the second piezoelectric region R5 can be aligned. Thereby, the characteristics of the first piezoelectric region R4 and the characteristics of the second piezoelectric region R5 are improved.
 また、仮に、第一圧電領域R4と第二圧電領域R5とがZ軸方向に重なっている場合は、第二電極42と第三電極51とがZ軸方向に向かい合う。この場合は、第二電極42と第三電極51とが互いに容量結合する場合がある。したがって、圧電部3が振動するときに、第二電極42と第三電極51との間で電気的干渉が生じる場合がある。 Also, if the first piezoelectric region R4 and the second piezoelectric region R5 overlap in the Z-axis direction, the second electrode 42 and the third electrode 51 face in the Z-axis direction. In this case, the second electrode 42 and the third electrode 51 may be capacitively coupled to each other. Therefore, when the piezoelectric portion 3 vibrates, electrical interference may occur between the second electrode 42 and the third electrode 51.
 一方、本実施形態の第二圧電領域R5は、Z軸方向から見て第一圧電領域R4を囲む領域に位置し、第一圧電領域R4と第二圧電領域R5とがZ軸方向に重ならないため、第二電極42と第三電極51との容量結合の発生が抑制される。したがって、第二電極42と第三電極51との間の電気的干渉が抑制される。例えば、第二電極42と第三電極51との間のクロストーク(電気的干渉の一例)が抑制されることにより、圧電トランスデューサ1では、送波強度及び受波感度が向上し、送信信号のノイズ及び受信信号のノイズが低減する。また、送信信号のノイズ及び受信信号のノイズが低減することにより、送信信号のS/N比及び受信信号のS/N比が向上する。 On the other hand, the second piezoelectric region R5 of the present embodiment is located in a region surrounding the first piezoelectric region R4 when viewed from the Z-axis direction, and the first piezoelectric region R4 and the second piezoelectric region R5 do not overlap in the Z-axis direction Therefore, the occurrence of capacitive coupling between the second electrode 42 and the third electrode 51 is suppressed. Therefore, the electrical interference between the second electrode 42 and the third electrode 51 is suppressed. For example, by suppressing crosstalk (an example of electrical interference) between the second electrode 42 and the third electrode 51, in the piezoelectric transducer 1, the transmission intensity and the reception sensitivity are improved, and Noise and noise in the received signal are reduced. Further, the reduction of the noise of the transmission signal and the noise of the reception signal improves the S / N ratio of the transmission signal and the S / N ratio of the reception signal.
 また、本実施形態の第二圧電領域R5は、Z軸方向から見て第一圧電領域R4を囲む領域に位置するので、第一圧電領域R4と第二圧電領域R5とがZ軸方向に重なっている場合と比較して、第一圧電層40及び第二圧電層50の曲げ剛性を低減できる。すなわち、第一圧電領域R4と第二圧電領域R5とがZ軸方向に重なっている場合と比較して、第一圧電層40が第二圧電層50の曲げを妨げたり、第二圧電層50が第一圧電層40の曲げを妨げたりしにくい。これにより、第一圧電領域R4の特性及び第二圧電領域R5の特性(例えば、送波強度及び受波感度)を向上させることができる。 Further, since the second piezoelectric region R5 of the present embodiment is located in the region surrounding the first piezoelectric region R4 when viewed from the Z-axis direction, the first piezoelectric region R4 and the second piezoelectric region R5 overlap in the Z-axis direction. The bending rigidity of the first piezoelectric layer 40 and the second piezoelectric layer 50 can be reduced as compared with the case of FIG. That is, compared with the case where the first piezoelectric region R4 and the second piezoelectric region R5 overlap in the Z-axis direction, the first piezoelectric layer 40 prevents the bending of the second piezoelectric layer 50, or the second piezoelectric layer 50 However, it is difficult to prevent the bending of the first piezoelectric layer 40. Thereby, the characteristics of the first piezoelectric region R4 and the characteristics of the second piezoelectric region R5 (for example, the transmission intensity and the reception sensitivity) can be improved.
 (第2の実施形態の変形例)
 以下、第2の実施形態の変形例を列挙する。以下の変形例は、適宜組み合わせて実現されてもよい。
(Modification of the second embodiment)
Hereinafter, modifications of the second embodiment will be listed. The following modifications may be implemented in combination as appropriate.
 Z軸方向において、第一圧電層40の両端は、第二圧電層50の両端に一致していなくてもよい。第一圧電層40の少なくとも一領域が、Z軸方向と直交する方向において第二圧電層50の少なくとも一領域に重なっていればよい。 Both ends of the first piezoelectric layer 40 may not coincide with both ends of the second piezoelectric layer 50 in the Z-axis direction. At least one region of the first piezoelectric layer 40 may overlap at least one region of the second piezoelectric layer 50 in the direction orthogonal to the Z-axis direction.
 例えば、第一圧電層40よりも第二圧電層50の方が厚みが小さく、Z軸方向において、第一圧電層40の両端の間に第二圧電層50の両端が位置していてもよい。あるいは、第二圧電層50よりも第一圧電層40の方が厚みが小さく、Z軸方向において、第二圧電層50の両端の間に第一圧電層40の両端が位置していてもよい。 For example, the thickness of the second piezoelectric layer 50 may be smaller than that of the first piezoelectric layer 40, and both ends of the second piezoelectric layer 50 may be located between the ends of the first piezoelectric layer 40 in the Z-axis direction. . Alternatively, the first piezoelectric layer 40 may be thinner than the second piezoelectric layer 50, and both ends of the first piezoelectric layer 40 may be located between the two ends of the second piezoelectric layer 50 in the Z-axis direction. .
 あるいは、第一圧電層40のうちZ軸の正の側の一端付近が、Z軸方向と直交する方向において、第二圧電層50のうちZ軸の負の側の一端付近と重なっていてもよい。あるいは、第一圧電層40のうちZ軸の負の側の一端付近が、Z軸方向と直交する方向において、第二圧電層50のうちZ軸の正の側の一端付近と重なっていてもよい。 Alternatively, even if one end of the first piezoelectric layer 40 on the positive side of the Z axis overlaps with one end of the second piezoelectric layer 50 on the negative side of the Z axis in the direction orthogonal to the Z axis direction. Good. Alternatively, even if one end of the first piezoelectric layer 40 near the negative side of the Z axis overlaps with one end of the second piezoelectric layer 50 near the positive side of the Z axis in the direction orthogonal to the Z axis direction. Good.
 また、保護層6に凸部が設けられていてもよい。第一圧電層40と第二圧電層50とのうち一方が保護層6の凸部に形成されており、他方が保護層6の凸部の周りに形成されていてもよい。この構成によれば、第一圧電層40及び第二圧電層50では、支持部2側の端がZ軸方向において互いに異なる位置に位置することになる。第一圧電層40及び第二圧電層50における支持部2側とは反対側の端は、Z軸方向において同じ位置に位置していてもよいし、互いに異なる位置に位置していてもよい。保護層6にのみ凸部が形成されていてもよいし、支持部2に凸部が形成されており、支持部2の凸部に重なって保護層6の凸部が形成されていてもよい。 Further, a convex portion may be provided on the protective layer 6. One of the first piezoelectric layer 40 and the second piezoelectric layer 50 may be formed in the convex portion of the protective layer 6, and the other may be formed around the convex portion of the protective layer 6. According to this configuration, in the first piezoelectric layer 40 and the second piezoelectric layer 50, the ends on the support 2 side are located at mutually different positions in the Z-axis direction. The ends of the first piezoelectric layer 40 and the second piezoelectric layer 50 opposite to the support 2 may be located at the same position in the Z-axis direction or at different positions. The convex portion may be formed only in the protective layer 6, or the convex portion may be formed in the support portion 2, and the convex portion of the protective layer 6 may be formed so as to overlap with the convex portion of the support portion 2. .
 また、実施形態の第二圧電領域R5は、Z軸方向から見て第一圧電領域R4を略囲んでいるが、Z軸方向から見て第二圧電領域R5が第一圧電領域R4を囲むことは必須ではない。Z軸方向から見て第二圧電領域R5は、第一圧電領域R4を囲む領域の少なくとも一部に位置していればよい。言い換えれば、厚み方向(Z軸方向)から見て、第二圧電領域R5は、第一圧電領域R4の一部に沿って配置されていればよい。あるいは、厚み方向(Z軸方向)から見て、第一圧電領域R4の少なくとも一部は空洞23の中央側に位置し、第二圧電領域R5の少なくとも一部は空洞の外周側に位置していればよい。 Further, although the second piezoelectric region R5 of the embodiment substantially surrounds the first piezoelectric region R4 when viewed from the Z-axis direction, the second piezoelectric region R5 surrounds the first piezoelectric region R4 when viewed from the Z-axis direction. Is not required. The second piezoelectric region R5 may be located in at least a part of the region surrounding the first piezoelectric region R4 when viewed from the Z-axis direction. In other words, when viewed in the thickness direction (Z-axis direction), the second piezoelectric region R5 may be disposed along a part of the first piezoelectric region R4. Alternatively, when viewed in the thickness direction (Z-axis direction), at least a portion of the first piezoelectric region R4 is located on the center side of the cavity 23, and at least a portion of the second piezoelectric region R5 is located on the outer periphery of the cavity Just do it.
 また、支持部2の外縁の形状は、正方形状に限定されない。支持部2の外縁は、例えば、長方形状又は円状に形成されていてもよい。また、空洞23の形状は、円状に限定されない。空洞23は、例えば、正方形状又は長方形状に形成されていてもよい。 Moreover, the shape of the outer edge of the support part 2 is not limited to square shape. The outer edge of the support portion 2 may be formed, for example, in a rectangular shape or a circular shape. Further, the shape of the cavity 23 is not limited to a circle. The cavity 23 may be formed, for example, in a square or rectangular shape.
 また、実施形態の支持部2は、周方向に連続した枠状に形成されている。支持部2において、枠状とは、周方向に連続した形状に限らず、周方向の一部が非連続な形状であってもよい。支持部において、枠状とは、圧電部3の厚み方向(Z軸方向)から見て環状である構造のうち、次の2つの部分を含む形状であればよい。すなわち、支持部において、当該2つの部分は、圧電部3の厚み方向から見て第一圧電領域R4と第二圧電領域R5とのうち少なくとも一方を間に挟んで向かい合っていればよい。当該2つの部分は、繋がっていてもよいし、別体に形成されていてもよい。支持部は、周方向の一部を欠いた形状、例えば、C字状又はU字状であってもよい。また、支持部は、複数の部材に分かれて形成されていて、圧電部3は、複数の部材に架け渡されていてもよい。複数の部材の各々は、例えば、直方体状又は立方体状に形成されていてもよい。 Moreover, the support part 2 of embodiment is formed in the frame shape which followed the circumferential direction. In the support portion 2, the frame shape is not limited to the shape continuous in the circumferential direction, and a part of the circumferential direction may be discontinuous. In the support portion, the frame shape may be a shape including the following two parts in the structure which is annular as viewed from the thickness direction (Z-axis direction) of the piezoelectric portion 3. That is, in the support portion, the two portions may face each other with at least one of the first piezoelectric region R4 and the second piezoelectric region R5 in between as viewed from the thickness direction of the piezoelectric portion 3. The two parts may be connected or may be formed separately. The support portion may have a shape lacking a part in the circumferential direction, for example, a C shape or a U shape. Further, the support portion may be divided into a plurality of members, and the piezoelectric portion 3 may be spanned by the plurality of members. Each of the plurality of members may be formed in, for example, a rectangular parallelepiped shape or a cube shape.
 また、Z軸方向から見て、第四電極52の外縁522は、枠状の支持部2の第一面21の内縁211の一部と重なっていてもよい。また、第三電極51のうち、径方向において外側の縁512が、第一面21の内縁211の一部と重なっていてもよい。また、第二圧電層50のうち、径方向において外側の縁が、第一面21の内縁211の一部と重なっていてもよい。 Further, the outer edge 522 of the fourth electrode 52 may overlap with a part of the inner edge 211 of the first surface 21 of the frame-like support 2 as viewed in the Z-axis direction. In the third electrode 51, the outer edge 512 in the radial direction may overlap with a part of the inner edge 211 of the first surface 21. In the second piezoelectric layer 50, the outer edge in the radial direction may overlap with a part of the inner edge 211 of the first surface 21.
 また、第一圧電層40及び第二圧電層50を形成する方法は、スパッタ法に限定されない。第一圧電層40及び第二圧電層50は例えば、MOCVD(有機金属化学気相成長)法等の化学気相成長(CVD)法、又は、ゾルゲル法により形成されてもよい。 Further, the method of forming the first piezoelectric layer 40 and the second piezoelectric layer 50 is not limited to the sputtering method. The first piezoelectric layer 40 and the second piezoelectric layer 50 may be formed by, for example, a chemical vapor deposition (CVD) method such as MOCVD (metal organic chemical vapor deposition) method, or a sol-gel method.
 また、第三電極51、第四電極52、第一圧電層40及び第二圧電層50等は、フォトリソグラフィ技術及びエッチング技術により形成されるのに代えて、メタルマスク等を用いて、蒸着法又はスパッタ法により形成されてもよい。 In addition, the third electrode 51, the fourth electrode 52, the first piezoelectric layer 40, the second piezoelectric layer 50, etc. are formed by using a metal mask or the like instead of being formed by photolithography technology and etching technology. Alternatively, they may be formed by sputtering.
 また、第一圧電層40の材料はチタン酸ジルコン酸鉛に限定されないし、第二圧電層50の材料は窒化アルミニウムに限定されない。例えば、第一圧電層40及び第二圧電層50は、ポリフッ化ビニリデン(PVDF)等の樹脂、又は、酸化亜鉛(ZnO)を材料として形成されていてもよい。また、第一圧電層40が窒化アルミニウムにより形成されていてもよいし、第二圧電層50がチタン酸ジルコン酸鉛により形成されていてもよい。また、第一圧電層40及び第二圧電層50の材料として、PZTN(:Pb(ZrTiNb)O)、ビスマス(Bi)又はアルカリ金属を主成分とする圧電材料を用いてもよい。 Further, the material of the first piezoelectric layer 40 is not limited to lead zirconate titanate, and the material of the second piezoelectric layer 50 is not limited to aluminum nitride. For example, the first piezoelectric layer 40 and the second piezoelectric layer 50 may be formed of a resin such as polyvinylidene fluoride (PVDF) or zinc oxide (ZnO). In addition, the first piezoelectric layer 40 may be formed of aluminum nitride, and the second piezoelectric layer 50 may be formed of lead zirconate titanate. Further, as a material of the first piezoelectric layer 40 and the second piezoelectric layer 50, a piezoelectric material containing PZTN (: Pb (ZrTiNb) O 3 ), bismuth (Bi) or an alkali metal as a main component may be used.
 また、第一圧電領域R4及び第二圧電領域R5が送波又は受波する音波は、超音波に限定されない。例えば、第一圧電領域R4及び第二圧電領域R5は、可聴域の音波を送波又は受波してもよい。 Further, the sound waves transmitted or received by the first piezoelectric region R4 and the second piezoelectric region R5 are not limited to the ultrasonic waves. For example, the first piezoelectric region R4 and the second piezoelectric region R5 may transmit or receive sound waves in the audible range.
 また、第一圧電領域R4及び第二圧電領域R5のうち、一方を超音波の送波用に用いて他方を超音波の受波用に用いてもよいし、両方を超音波の送波用に用いてもよいし、両方を超音波の受波用に用いてもよい。すなわち、第一電極41及び第二電極42は、第一圧電領域R4で生じる交流電圧の取り出し用の電極であって、第三電極51及び第四電極52は、第二圧電層50への交流電圧の印加用の電極であってもよい。あるいは、第一電極41及び第二電極42は、第一圧電層40への交流電圧の印加用の電極であって、第三電極51及び第四電極52は、第二圧電層50への交流電圧の印加用の電極であってもよい。あるいは、第一電極41及び第二電極42は、第一圧電領域R4で生じる交流電圧の取り出し用の電極であって、第三電極51及び第四電極52は、第二圧電領域R5で生じる交流電圧の取り出し用の電極であってもよい。 Alternatively, one of the first piezoelectric region R4 and the second piezoelectric region R5 may be used for ultrasonic wave transmission and the other may be used for ultrasonic wave reception, or both for ultrasonic wave transmission. Or both may be used for ultrasonic wave reception. That is, the first electrode 41 and the second electrode 42 are electrodes for extracting the alternating voltage generated in the first piezoelectric region R4, and the third electrode 51 and the fourth electrode 52 are an alternating current to the second piezoelectric layer 50. It may be an electrode for applying a voltage. Alternatively, the first electrode 41 and the second electrode 42 are electrodes for applying an alternating voltage to the first piezoelectric layer 40, and the third electrode 51 and the fourth electrode 52 are alternating current to the second piezoelectric layer 50. It may be an electrode for applying a voltage. Alternatively, the first electrode 41 and the second electrode 42 are electrodes for extracting alternating voltage generated in the first piezoelectric region R4, and the third electrode 51 and the fourth electrode 52 are alternating current generated in the second piezoelectric region R5. It may be an electrode for taking out a voltage.
 また、圧電トランスデューサ1の用途は、音波を送波又は受波する用途に限定されない。例えば、圧電トランスデューサ1の用途は、アクチュエータであってもよい。 Moreover, the application of the piezoelectric transducer 1 is not limited to the application which transmits or receives a sound wave. For example, the application of the piezoelectric transducer 1 may be an actuator.
 また、第一電極41と第三電極51とは、電気的に接続されていてもよい。例えば、絶縁層7の表面70、第一圧電層40の表面400及び第二圧電層50の表面500の全域に、第一電極41と第三電極51とが一体になった電極が形成されていてもよい。同様に、第二電極42と第四電極52とが、電気的に接続されていてもよい。第一電極41と第三電極51とが電気的に接続されている場合、又は、第二電極42と第四電極52とが電気的に接続されている場合に、次のようにして第一圧電層40と第二圧電層50との相互干渉を抑制してもよい。すなわち、第一圧電層40に交流電圧を印加することで圧電トランスデューサ1を送波用に用いるタイミングと、第二圧電層50で生じる交流電圧を取り出すことで圧電トランスデューサ1を受波用に用いるタイミングとを異ならせてもよい。 Further, the first electrode 41 and the third electrode 51 may be electrically connected. For example, an electrode in which the first electrode 41 and the third electrode 51 are integrated is formed on the entire surface 70 of the insulating layer 7, the surface 400 of the first piezoelectric layer 40, and the surface 500 of the second piezoelectric layer 50. May be Similarly, the second electrode 42 and the fourth electrode 52 may be electrically connected. When the first electrode 41 and the third electrode 51 are electrically connected, or when the second electrode 42 and the fourth electrode 52 are electrically connected, the first process is performed as follows. Mutual interference between the piezoelectric layer 40 and the second piezoelectric layer 50 may be suppressed. That is, the timing at which the piezoelectric transducer 1 is used for transmission by applying an alternating voltage to the first piezoelectric layer 40 and the timing at which the piezoelectric transducer 1 is used for receiving waves by extracting the alternating voltage generated in the second piezoelectric layer 50 And may be different.
 また、圧電トランスデューサ1が備える圧電層の数は、第一圧電層40と第二圧電層50との2つに限定されない。圧電トランスデューサ1は、3つ以上の圧電層を備えていてもよい。例えば、圧電トランスデューサ1は、圧電層として、実施形態と同一形状の第一圧電層40と、X軸方向において第一圧電層40の両側に第一圧電層40を囲むように配置された2つの円弧状の圧電層と、を備えていてもよい。 Further, the number of piezoelectric layers provided in the piezoelectric transducer 1 is not limited to two, that is, the first piezoelectric layer 40 and the second piezoelectric layer 50. The piezoelectric transducer 1 may have three or more piezoelectric layers. For example, as the piezoelectric layer, two piezoelectric transducers 1 are disposed so as to surround the first piezoelectric layer 40 on both sides of the first piezoelectric layer 40 having the same shape as that of the embodiment and the first piezoelectric layer 40 in the X axis direction. An arc-shaped piezoelectric layer may be provided.
 また、支持部2の元になる基材として、シリコン基板の一の面に凹部が形成されており、凹部の開口を塞ぐように一の面に絶縁膜が形成された基材を用いてもよい。当該基材の絶縁膜上に圧電部3を形成してから、圧電部3とは反対側から当該基材のシリコン基板をエッチングし、一の面の凹部と繋がった空洞を形成することにより、圧電トランスデューサ1を形成してもよい。 Also, even if a base having a recess formed on one surface of a silicon substrate and having an insulating film formed on one surface so as to close the opening of the recess is used as a base on which the support portion 2 is formed. Good. By forming the piezoelectric portion 3 on the insulating film of the base material, and then etching the silicon substrate of the base material from the side opposite to the piezoelectric portion 3 to form a cavity connected to the recess on one surface, The piezoelectric transducer 1 may be formed.
 なお、保護層6の空洞23側の面又は第一圧電層40側の面のいずれか一方に、例えばケイ素(Si)などで形成された振動膜を別途、配置することもできる。これにより、可動部の機械定数を使用条件に適した値に調整することが可能となるため、送波及び受波の効率を向上させることができるという効果を得ることができる。 A vibrating film formed of, for example, silicon (Si) or the like may be separately disposed on either the surface on the cavity 23 side of the protective layer 6 or the surface on the first piezoelectric layer 40 side. As a result, the mechanical constant of the movable portion can be adjusted to a value suitable for the use conditions, so that the efficiency of transmitting and receiving waves can be improved.
 また、厚み方向(Z方向)から見て空洞23と重なる領域における絶縁層7の厚さは、例えば0.1μm程度とすることができる。第一圧電層40や第二圧電層50の保護層として機能する厚さであればよいからである。 In addition, the thickness of the insulating layer 7 in a region overlapping with the cavity 23 when viewed in the thickness direction (Z direction) can be, for example, about 0.1 μm. This is because the thickness may be any as long as it functions as a protective layer of the first piezoelectric layer 40 and the second piezoelectric layer 50.
 (まとめ)
 以上説明したように、第13の態様に係る圧電トランスデューサ1は、支持部2と、圧電部3と、を備える。支持部2は、内側に空洞23が形成された枠状である。圧電部3は、支持部2により支持される。圧電部3は、空洞23を厚み方向(Z軸方向)の一方側から覆う板状である。圧電部3は、第一電極41と、第二電極42と、第一圧電層40と、第三電極51と、第四電極52と、第二圧電層50と、を含む。第一圧電層40は、厚み方向において第一電極41と第二電極42との間に挟まれている。第二圧電層50は、厚み方向において第三電極51と第四電極52との間に挟まれている。第一圧電層40の少なくとも一領域は、厚み方向と直交する方向において第二圧電層50の少なくとも一領域に重なる。圧電部3は、第一圧電領域R4、及び、第二圧電領域R5を含む。第一圧電領域R4は、第一電極41と第二電極42と第一圧電層40とが厚み方向において空洞23に重なる領域である。第二圧電領域R5は、第三電極51と第四電極52と第二圧電層50とが厚み方向において空洞23に重なる領域である。第二圧電領域R5は、厚み方向から見て第一圧電領域R4を囲む領域に位置する。
(Summary)
As described above, the piezoelectric transducer 1 according to the thirteenth aspect includes the support portion 2 and the piezoelectric portion 3. The support portion 2 is in the form of a frame in which a cavity 23 is formed inside. The piezoelectric portion 3 is supported by the support portion 2. The piezoelectric portion 3 has a plate shape that covers the cavity 23 from one side in the thickness direction (Z-axis direction). The piezoelectric portion 3 includes a first electrode 41, a second electrode 42, a first piezoelectric layer 40, a third electrode 51, a fourth electrode 52, and a second piezoelectric layer 50. The first piezoelectric layer 40 is sandwiched between the first electrode 41 and the second electrode 42 in the thickness direction. The second piezoelectric layer 50 is sandwiched between the third electrode 51 and the fourth electrode 52 in the thickness direction. At least one region of the first piezoelectric layer 40 overlaps at least one region of the second piezoelectric layer 50 in the direction orthogonal to the thickness direction. The piezoelectric portion 3 includes a first piezoelectric region R4 and a second piezoelectric region R5. The first piezoelectric region R4 is a region in which the first electrode 41, the second electrode 42, and the first piezoelectric layer 40 overlap the cavity 23 in the thickness direction. The second piezoelectric region R5 is a region in which the third electrode 51, the fourth electrode 52, and the second piezoelectric layer 50 overlap the cavity 23 in the thickness direction. The second piezoelectric region R5 is located in a region surrounding the first piezoelectric region R4 when viewed in the thickness direction.
 上記の構成によれば、第二圧電領域R5は、圧電部3の厚み方向(Z軸方向)から見て第一圧電領域R4を囲む領域に位置する。したがって、第一圧電領域R4と第二圧電領域R5とが厚み方向に重なっている場合と比較して、第一圧電領域R4の第一圧電層40の歪みにより第二圧電領域R5の第二圧電層50が歪む程度を低減させることができる。また、第二圧電層50の歪みにより第一圧電層40が歪む程度を低減させることができる。これにより、第一圧電領域R4及び第二圧電領域R5が交流電圧を振動に変換する特性又は振動を交流電圧に変換する特性を向上させることができる。 According to the above configuration, the second piezoelectric region R5 is located in the region surrounding the first piezoelectric region R4 when viewed from the thickness direction (Z-axis direction) of the piezoelectric portion 3. Therefore, as compared with the case where the first piezoelectric region R4 and the second piezoelectric region R5 overlap in the thickness direction, the distortion of the first piezoelectric layer 40 of the first piezoelectric region R4 causes the second piezoelectric of the second piezoelectric region R5 to The degree to which the layer 50 is distorted can be reduced. Moreover, the extent to which the first piezoelectric layer 40 is distorted due to the distortion of the second piezoelectric layer 50 can be reduced. As a result, it is possible to improve the characteristics in which the first piezoelectric region R4 and the second piezoelectric region R5 convert an alternating voltage into vibration or the characteristics in which vibration is converted into an alternating voltage.
 また、第一圧電層40は、厚み方向から見て第二圧電領域R5に重なる位置に配置されていない。よって、圧電部3の曲げ運動を阻害する部位が少ないので、送受信感度が高い。 Further, the first piezoelectric layer 40 is not disposed at a position overlapping the second piezoelectric region R5 when viewed in the thickness direction. Therefore, since there are few parts which inhibit the bending movement of the piezoelectric part 3, transmission / reception sensitivity is high.
 また、第14の態様に係る圧電トランスデューサ1では、第13の態様において、第一圧電層40の材料は、第二圧電層50の材料と異なる。よって、第一圧電領域R4と第二圧電領域R5に送波と受波のうちの互いに異なる機能をもたせることができるという効果を得ることができる。 Further, in the piezoelectric transducer 1 according to the fourteenth aspect, in the thirteenth aspect, the material of the first piezoelectric layer 40 is different from the material of the second piezoelectric layer 50. Therefore, it is possible to obtain an effect that the first piezoelectric region R4 and the second piezoelectric region R5 can have different functions of transmission and reception.
 また、第15の態様に係る圧電トランスデューサ1では、第13または第14の態様において、厚み方向(Z軸方向)において、第一圧電層40の両端の間に第二圧電層50の両端が位置する。 In the piezoelectric transducer 1 according to the fifteenth aspect, in the thirteenth or fourteenth aspect, both ends of the second piezoelectric layer 50 are positioned between the ends of the first piezoelectric layer 40 in the thickness direction (Z-axis direction). Do.
 上記の構成によれば、厚み方向において、第一圧電層40の両端の間に第二圧電層50の両端が位置する。すなわち、第二圧電層50は第一圧電層40よりも厚みが小さく形成される。したがって、第二圧電領域R5の特性(振動を交流電圧に変換する特性又は交流電圧を振動に変換する特性)を向上させることができる。 According to the above configuration, both ends of the second piezoelectric layer 50 are positioned between the two ends of the first piezoelectric layer 40 in the thickness direction. That is, the thickness of the second piezoelectric layer 50 is smaller than that of the first piezoelectric layer 40. Therefore, it is possible to improve the characteristic of the second piezoelectric region R5 (the characteristic of converting vibration into an alternating voltage or the characteristic of converting alternating voltage into vibration).
 また、第16の態様に係る圧電トランスデューサ1では、第13~15の態様において、第一電極41及び第二電極42は、第一圧電層40への交流電圧の印加用の電極である。第三電極51及び第四電極52は、第二圧電領域R5で生じる交流電圧の取り出し用の電極である。 In the piezoelectric transducer 1 according to the sixteenth aspect, in the thirteenth to fifteenth aspects, the first electrode 41 and the second electrode 42 are electrodes for applying an alternating voltage to the first piezoelectric layer 40. The third electrode 51 and the fourth electrode 52 are electrodes for extracting AC voltage generated in the second piezoelectric region R5.
 上記の構成によれば、第一電極41及び第二電極42は、第一圧電層40への交流電圧の印加用の電極である。すなわち、第一圧電領域R4は、交流電圧を振動に変換する。また、第三電極51及び第四電極52は、第二圧電領域R5で生じる交流電圧の取り出し用の電極である。すなわち、第二圧電領域R5は、振動を交流電圧に変換する。圧電部3が音波を受波する等により、圧電部3に対して、厚み方向(Z軸方向)に力が加えられたとき、第一圧電領域R4よりも、第一圧電領域R4を囲む領域に位置する第二圧電領域R5に応力が集中する可能性が高い。したがって、上記の圧電トランスデューサ1では、第二圧電領域R5が振動を交流電圧に変換する特性を向上させることができる。 According to the above configuration, the first electrode 41 and the second electrode 42 are electrodes for applying an alternating voltage to the first piezoelectric layer 40. That is, the first piezoelectric region R4 converts alternating voltage into vibration. The third electrode 51 and the fourth electrode 52 are electrodes for extracting alternating-current voltage generated in the second piezoelectric region R5. That is, the second piezoelectric region R5 converts the vibration into an alternating voltage. When a force is applied to the piezoelectric portion 3 in the thickness direction (Z-axis direction) by the piezoelectric portion 3 receiving a sound wave or the like, a region surrounding the first piezoelectric region R4 more than the first piezoelectric region R4 There is a high possibility that stress may concentrate on the second piezoelectric region R5 located on the Therefore, in the piezoelectric transducer 1 described above, it is possible to improve the characteristics of the second piezoelectric region R5 for converting vibration into an alternating voltage.
 また、第17の態様に係る圧電トランスデューサ1では、第13~15の態様において、第一電極41及び第二電極42は、第一圧電領域R4で生じる交流電圧の取り出し用の電極である。第三電極51及び第四電極52は、第二圧電層50への交流電圧の印加用の電極である。 Further, in the piezoelectric transducer 1 according to the seventeenth aspect, in the thirteenth to fifteenth aspects, the first electrode 41 and the second electrode 42 are electrodes for extracting alternating-current voltage generated in the first piezoelectric region R4. The third electrode 51 and the fourth electrode 52 are electrodes for applying an alternating voltage to the second piezoelectric layer 50.
 上記の構成によれば、第一電極41及び第二電極42は、第一圧電領域R4で生じる交流電圧の取り出し用の電極である。すなわち、第一圧電領域R4は、振動を交流電圧に変換する。また、第三電極51及び第四電極52は、第二圧電層50への交流電圧の印加用の電極である。すなわち、第二圧電領域R5は、交流電圧を振動に変換する。圧電部3が音波を受波する等により、圧電部3に対して、厚み方向(Z軸方向)に力が加えられたとき、第一圧電領域R4よりも、第一圧電領域R4を囲む領域に位置する第二圧電領域R5に応力が集中する可能性が高い。したがって、上記の圧電トランスデューサ1では、第二圧電領域R5が交流電圧を振動に変換する特性を向上させることができる。 According to the above configuration, the first electrode 41 and the second electrode 42 are electrodes for extracting the AC voltage generated in the first piezoelectric region R4. That is, the first piezoelectric region R4 converts the vibration into an alternating voltage. The third electrode 51 and the fourth electrode 52 are electrodes for applying an alternating voltage to the second piezoelectric layer 50. That is, the second piezoelectric region R5 converts an alternating voltage into vibration. When a force is applied to the piezoelectric portion 3 in the thickness direction (Z-axis direction) by the piezoelectric portion 3 receiving a sound wave or the like, a region surrounding the first piezoelectric region R4 more than the first piezoelectric region R4 There is a high possibility that stress may concentrate on the second piezoelectric region R5 located on the Therefore, in the piezoelectric transducer 1 described above, it is possible to improve the characteristics of the second piezoelectric region R5 for converting an alternating voltage into vibration.
 また、第18の態様に係る圧電トランスデューサ1では、第13~15の態様において、第一電極41及び第二電極42は、第一圧電層40への交流電圧の印加用の電極である。第三電極51及び第四電極52は、第二圧電層50への交流電圧の印加用の電極である。 In the piezoelectric transducer 1 according to the eighteenth aspect, in the thirteenth to fifteenth aspects, the first electrode 41 and the second electrode 42 are electrodes for applying an alternating voltage to the first piezoelectric layer 40. The third electrode 51 and the fourth electrode 52 are electrodes for applying an alternating voltage to the second piezoelectric layer 50.
 上記の構成によれば、第一圧電層40及び第二圧電層50には、交流電圧が印加される。つまり、圧電トランスデューサ1は、第一圧電層40及び第二圧電層50に印加された交流電圧を振動に変換する装置として機能する。すなわち、圧電トランスデューサ1が交流電圧を振動に変換する装置として機能する場合に、第一圧電領域R4及び第二圧電領域R5が交流電圧を振動に変換する特性を向上させることができる。 According to the above configuration, an alternating voltage is applied to the first piezoelectric layer 40 and the second piezoelectric layer 50. That is, the piezoelectric transducer 1 functions as a device that converts the alternating voltage applied to the first piezoelectric layer 40 and the second piezoelectric layer 50 into vibration. That is, when the piezoelectric transducer 1 functions as a device for converting alternating voltage into vibration, it is possible to improve the characteristics in which the first piezoelectric region R4 and the second piezoelectric region R5 convert alternating voltage into vibration.
 また、第19の態様に係る圧電トランスデューサ1では、第13~15の態様において、第一電極41及び第二電極42は、第一圧電領域R4で生じる交流電圧の取り出し用の電極である。第三電極51及び第四電極52は、第二圧電領域R5で生じる交流電圧の取り出し用の電極である。 Further, in the piezoelectric transducer 1 according to the nineteenth aspect, in the thirteenth to fifteenth aspects, the first electrode 41 and the second electrode 42 are electrodes for extracting alternating-current voltage generated in the first piezoelectric region R4. The third electrode 51 and the fourth electrode 52 are electrodes for extracting AC voltage generated in the second piezoelectric region R5.
 上記の構成によれば、第一圧電領域R4から交流電圧が取り出され、第二圧電領域R5から交流電圧が取り出される。つまり、圧電トランスデューサ1は、第一圧電領域R4及び第二圧電領域R5において振動を交流電圧に変換する装置として機能する。すなわち、圧電トランスデューサ1が振動を交流電圧に変換する装置として機能する場合に、第一圧電領域R4及び第二圧電領域R5が振動を交流電圧に変換する特性を向上させることができる。 According to the above configuration, an alternating voltage is extracted from the first piezoelectric region R4, and an alternating voltage is extracted from the second piezoelectric region R5. That is, the piezoelectric transducer 1 functions as a device for converting the vibration into an alternating voltage in the first piezoelectric region R4 and the second piezoelectric region R5. That is, when the piezoelectric transducer 1 functions as a device for converting vibration into an alternating voltage, it is possible to improve the characteristics in which the first piezoelectric region R4 and the second piezoelectric region R5 convert vibration into an alternating voltage.
 また、第20の態様に係る圧電トランスデューサ1では、第16の態様において、第一圧電層40の圧電定数d31は、第二圧電層50の圧電定数d31よりも大きい。 Also, the piezoelectric transducer 1 according to the twentieth aspect, in the sixteenth aspect, the piezoelectric constant d 31 of the first piezoelectric layer 40 is larger than the piezoelectric constant d 31 of the second piezoelectric layer 50.
 上記の構成によれば、第一圧電領域R4が交流電圧を振動に変換する特性と、第二圧電領域R5が振動を交流電圧に変換する特性とを向上させることができる。 According to the above configuration, it is possible to improve the characteristics of the first piezoelectric region R4 for converting an alternating voltage into vibration and the characteristics of the second piezoelectric region R5 for converting vibration into an alternating voltage.
 また、第21の態様に係る圧電トランスデューサ1では、第13~19の態様のいずれかにおいて、第一電極41、第二電極42、第三電極51及び第四電極52は、互いに電気的に絶縁されている。 In the piezoelectric transducer 1 according to the twenty-first aspect, in any of the thirteenth to nineteenth aspects, the first electrode 41, the second electrode 42, the third electrode 51, and the fourth electrode 52 are electrically insulated from each other. It is done.
 上記の構成によれば、第一圧電領域R4と第二圧電領域R5とで電気的なカップリングが生じる可能性を低減することができる。 According to the above configuration, the possibility of electrical coupling between the first piezoelectric region R4 and the second piezoelectric region R5 can be reduced.
 また、第22の態様に係る圧電トランスデューサ1では、第13~20の態様のいずれかにおいて、厚み方向(Z軸方向)から見て、第二圧電領域R5の少なくとも一部は、支持部2における圧電部3側の面(第一面21)のうち、空洞23側の内縁211に沿っている。 In the piezoelectric transducer 1 according to the twenty-second aspect, in any of the thirteenth to twentieth aspects, at least a part of the second piezoelectric region R5 in the support portion 2 when viewed from the thickness direction (Z-axis direction) Of the surface (first surface 21) on the piezoelectric portion 3 side, it is along the inner edge 211 on the cavity 23 side.
 圧電部3が音波を受波する等により、圧電部3に対して、厚み方向(Z軸方向)に力が加えられたとき、支持部2の内縁211付近に応力が集中する可能性が高い。したがって、上記の圧電トランスデューサ1では、第二圧電領域R5の特性(振動を交流電圧に変換する特性又は交流電圧を振動に変換する特性)を向上させることができる。 When a force is applied to the piezoelectric portion 3 in the thickness direction (Z-axis direction) by the piezoelectric portion 3 receiving a sound wave or the like, stress is likely to be concentrated in the vicinity of the inner edge 211 of the support portion 2 . Therefore, in the piezoelectric transducer 1 described above, it is possible to improve the characteristics of the second piezoelectric region R5 (characteristics of converting vibration to alternating voltage or characteristics of converting alternating voltage to vibration).
 また、第23の態様に係る圧電トランスデューサ1では、第13~21の態様のいずれかにおいて、厚み方向(Z軸方向)から見て、第二圧電領域R5は、空洞23と支持部2とに跨っている。 In the piezoelectric transducer 1 according to the twenty-third aspect, in any of the thirteenth to twenty-first aspects, when viewed from the thickness direction (Z-axis direction), the second piezoelectric region R5 Straddle.
 圧電部3が音波を受波する等により、圧電部3に対して、厚み方向(Z軸方向)に力が加えられたとき、支持部2の内縁211付近に応力が集中する可能性が高い。したがって、上記の圧電トランスデューサ1では、第二圧電領域R5の特性(振動を交流電圧に変換する特性又は交流電圧を振動に変換する特性)を向上させることができる。 When a force is applied to the piezoelectric portion 3 in the thickness direction (Z-axis direction) by the piezoelectric portion 3 receiving a sound wave or the like, stress is likely to be concentrated in the vicinity of the inner edge 211 of the support portion 2 . Therefore, in the piezoelectric transducer 1 described above, it is possible to improve the characteristics of the second piezoelectric region R5 (characteristics of converting vibration to alternating voltage or characteristics of converting alternating voltage to vibration).
 また、第24の態様に係る圧電モジュール10は、第13~22の態様のいずれかに係る圧電トランスデューサ1を複数備える。 The piezoelectric module 10 according to the twenty-fourth aspect includes a plurality of piezoelectric transducers 1 according to any of the thirteenth through twenty-second aspects.
 上記の構成によれば、圧電トランスデューサ1の第二圧電領域R5は、圧電部3の厚み方向(Z軸方向)から見て第一圧電領域R4を囲む領域に位置する。したがって、第一圧電領域R4と第二圧電領域R5とが厚み方向に重なっている場合と比較して、第一圧電領域R4の第一圧電層40の歪みにより第二圧電領域R5の第二圧電層50が歪む程度を低減させることができる。また、第二圧電層50の歪みにより第一圧電層40が歪む程度を低減させることができる。これにより、第一圧電領域R4及び第二圧電領域R5が交流電圧を振動に変換する特性又は振動を交流電圧に変換する特性を向上させることができる。また、圧電モジュール10は、圧電トランスデューサ1を複数備える。これにより、圧電トランスデューサ1を1つのみ用いる場合と比較して、第一圧電領域R4及び第二圧電領域R5が交流電圧を振動に変換することによる出力をより大きくすることができる、又は、振動を交流電圧に変換する感度をより大きくすることができる。 According to the above configuration, the second piezoelectric region R5 of the piezoelectric transducer 1 is located in the region surrounding the first piezoelectric region R4 when viewed from the thickness direction (Z-axis direction) of the piezoelectric portion 3. Therefore, as compared with the case where the first piezoelectric region R4 and the second piezoelectric region R5 overlap in the thickness direction, the distortion of the first piezoelectric layer 40 of the first piezoelectric region R4 causes the second piezoelectric of the second piezoelectric region R5 to The degree to which the layer 50 is distorted can be reduced. Moreover, the extent to which the first piezoelectric layer 40 is distorted due to the distortion of the second piezoelectric layer 50 can be reduced. As a result, it is possible to improve the characteristics in which the first piezoelectric region R4 and the second piezoelectric region R5 convert an alternating voltage into vibration or the characteristics in which vibration is converted into an alternating voltage. The piezoelectric module 10 also includes a plurality of piezoelectric transducers 1. Thereby, compared with the case where only one piezoelectric transducer 1 is used, the output by converting the AC voltage into the vibration by the first piezoelectric region R4 and the second piezoelectric region R5 can be made larger, or the vibration It is possible to further increase the sensitivity for converting the voltage into an alternating voltage.
 第14~23の態様に係る構成については、圧電トランスデューサ1に必須の構成ではなく、適宜省略可能である。 The configurations according to the fourteenth to twenty-third aspects are not essential components of the piezoelectric transducer 1 and can be omitted as appropriate.
 本開示の圧電トランスデューサ及び圧電モジュールでは、第一圧電領域及び第二圧電領域が交流電圧を振動に変換する特性又は振動を交流電圧に変換する特性を向上させることができる。それにより、性能の高い圧電トランスデューサ及び圧電モジュールを得ることができ、従って本開示の圧電トランスデューサ及び圧電モジュールは産業上有用である。 In the piezoelectric transducer and the piezoelectric module of the present disclosure, it is possible to improve the characteristics in which the first piezoelectric region and the second piezoelectric region convert alternating voltage into vibration or the characteristics in converting vibration into alternating voltage. Thereby, high performance piezoelectric transducers and piezoelectric modules can be obtained, and thus the piezoelectric transducers and piezoelectric modules of the present disclosure are industrially useful.
1 圧電トランスデューサ
10 圧電モジュール
2 支持部
21 第一面(面)
23 空洞
211、515 内縁
3 圧電部
40 第一圧電層
41 第一電極
42 第二電極
50 第二圧電層
51 第三電極
52 第四電極
R4 第一圧電領域
R5 第二圧電領域
Reference Signs List 1 piezoelectric transducer 10 piezoelectric module 2 support portion 21 first surface (surface)
23 cavity 211, 515 inner edge 3 piezoelectric portion 40 first piezoelectric layer 41 first electrode 42 second electrode 50 second piezoelectric layer 51 third electrode 52 fourth electrode R4 first piezoelectric region R5 second piezoelectric region

Claims (24)

  1.  第一面と、前記第一面とは逆側に位置する第二面と、前記第一面と前記第二面とに挟まれかつ内側に設けられた空洞を有する、枠状の支持部と、
     前記支持部により支持され、前記第一面側より前記空洞を覆う板状の圧電部と、を備え、
     前記圧電部は、
      第一電極と、
      第二電極と、
      前記第一面とは垂直である方向において前記第一電極と前記第二電極との間に挟まれた第一圧電層と、
      第三電極と、
      第四電極と、
      前記第一面とは垂直である方向において前記第三電極と前記第四電極との間に挟まれた第二圧電層と、を含み、
     前記圧電部は、
      前記第一電極と前記第二電極と前記第一圧電層とが前記第一面とは垂直である方向において前記空洞に重なる第一圧電領域、及び、
      前記第三電極と前記第四電極と前記第二圧電層とが前記第一面とは垂直である方向において前記空洞に重なる第二圧電領域を含み、
      前記第一圧電層は、前記第一面とは垂直である方向から見て前記第二圧電領域に重なる位置に配置されていない、
     圧電トランスデューサ。
    A frame-shaped support portion having a first surface, a second surface opposite to the first surface, and a cavity provided between the first surface and the second surface and provided on the inner side; ,
    A plate-like piezoelectric portion supported by the support portion and covering the cavity from the first surface side,
    The piezoelectric portion is
    The first electrode,
    A second electrode,
    A first piezoelectric layer sandwiched between the first electrode and the second electrode in a direction perpendicular to the first surface;
    The third electrode,
    The fourth electrode,
    A second piezoelectric layer sandwiched between the third electrode and the fourth electrode in a direction perpendicular to the first surface;
    The piezoelectric portion is
    A first piezoelectric region in which the first electrode, the second electrode, and the first piezoelectric layer overlap the cavity in a direction perpendicular to the first surface;
    A second piezoelectric region in which the third electrode, the fourth electrode, and the second piezoelectric layer overlap the cavity in a direction perpendicular to the first surface;
    The first piezoelectric layer is not disposed at a position overlapping the second piezoelectric region when viewed from a direction perpendicular to the first surface.
    Piezoelectric transducer.
  2.  前記第一圧電層が、前記厚み方向と直交する方向において前記第二圧電層に重ならない、
     請求項1記載の圧電トランスデューサ。
    The first piezoelectric layer does not overlap the second piezoelectric layer in the direction orthogonal to the thickness direction.
    The piezoelectric transducer according to claim 1.
  3.  前記第一電極及び前記第二電極は、前記第一圧電層への交流電圧の印加用の電極であり、
     前記第三電極及び前記第四電極は、前記第二圧電領域で生じる交流電圧の取り出し用の電極である、
     請求項2記載の圧電トランスデューサ。
    The first electrode and the second electrode are electrodes for applying an alternating voltage to the first piezoelectric layer,
    The third electrode and the fourth electrode are electrodes for extracting AC voltage generated in the second piezoelectric region.
    The piezoelectric transducer according to claim 2.
  4.  前記第一圧電層の圧電定数は、前記第二圧電層の圧電定数よりも大きい、
     請求項3記載の圧電トランスデューサ。
    The piezoelectric constant of the first piezoelectric layer is larger than the piezoelectric constant of the second piezoelectric layer,
    The piezoelectric transducer according to claim 3.
  5.  前記第一電極及び前記第二電極は、前記第一圧電領域で生じる交流電圧の取り出し用の電極であり、
     前記第三電極及び前記第四電極は、前記第二圧電層への交流電圧の印加用の電極である、
     請求項2記載の圧電トランスデューサ。
    The first electrode and the second electrode are electrodes for extracting alternating voltage generated in the first piezoelectric region,
    The third electrode and the fourth electrode are electrodes for applying an alternating voltage to the second piezoelectric layer,
    The piezoelectric transducer according to claim 2.
  6.  前記第一電極、前記第二電極、前記第三電極及び前記第四電極は、互いに電気的に絶縁されている、
     請求項2~5のいずれか一項に記載の圧電トランスデューサ。
    The first electrode, the second electrode, the third electrode and the fourth electrode are electrically isolated from each other
    The piezoelectric transducer according to any one of claims 2 to 5.
  7.  前記第二圧電層は、前記厚み方向において前記第一圧電層と前記空洞との間に位置している、
     請求項2~6のいずれか一項に記載の圧電トランスデューサ。
    The second piezoelectric layer is located between the first piezoelectric layer and the cavity in the thickness direction.
    The piezoelectric transducer according to any one of claims 2 to 6.
  8.  前記厚み方向において、前記第二圧電層は、前記空洞の全体に重なる、
     請求項2~7のいずれか一項に記載の圧電トランスデューサ。
    In the thickness direction, the second piezoelectric layer overlaps the entire cavity.
    The piezoelectric transducer according to any one of claims 2 to 7.
  9.  前記第一面とは垂直である方向から見て、前記第二圧電領域の少なくとも一部は、前記空洞の縁に沿っている、
     請求項2~8のいずれか一項に記載の圧電トランスデューサ。
    Seen from the direction perpendicular to the first surface, at least a portion of the second piezoelectric region is along the edge of the cavity,
    A piezoelectric transducer according to any one of claims 2-8.
  10.  前記第一面とは垂直である方向から見て、前記第二圧電領域は、前記空洞と前記支持部とに跨っている、
     請求項2~9のいずれか一項に記載の圧電トランスデューサ。
    When viewed from a direction perpendicular to the first surface, the second piezoelectric region straddles the cavity and the support.
    The piezoelectric transducer according to any one of claims 2 to 9.
  11.  前記第一面とは垂直である方向から見て、前記第二圧電領域は、前記第一圧電領域の一部に沿って配置されている、
     請求項2~10のいずれか一項に記載の圧電トランスデューサ。
    When viewed from a direction perpendicular to the first surface, the second piezoelectric region is disposed along a portion of the first piezoelectric region.
    The piezoelectric transducer according to any one of claims 2 to 10.
  12.  前記第一面とは垂直である方向から見て、前記第一圧電領域の少なくとも一部は前記空洞の中央側に位置し、前記第二圧電領域の少なくとも一部は前記空洞の外周側に位置している、
     請求項2~10のいずれか一項に記載の圧電トランスデューサ。
    When viewed from the direction perpendicular to the first surface, at least a portion of the first piezoelectric region is located at the center of the cavity, and at least a portion of the second piezoelectric region is located at the outer periphery of the cavity doing,
    The piezoelectric transducer according to any one of claims 2 to 10.
  13.  前記第一圧電層の少なくとも一領域が、前記第一面とは垂直である方向と直交する方向において前記第二圧電層の少なくとも一領域に重なる、
    請求項1に記載の圧電トランスデューサ。
    At least a region of the first piezoelectric layer overlaps at least a region of the second piezoelectric layer in a direction perpendicular to a direction perpendicular to the first surface.
    The piezoelectric transducer according to claim 1.
  14.  前記第一圧電層の材料は、前記第二圧電層の材料と異なる、
     請求項13に記載の圧電トランスデューサ。
    The material of the first piezoelectric layer is different from the material of the second piezoelectric layer,
    The piezoelectric transducer according to claim 13.
  15.  前記厚み方向において、前記第一圧電層の両端の間に前記第二圧電層の両端が位置する、
     請求項13又は14記載の圧電トランスデューサ。
    Both ends of the second piezoelectric layer are located between the ends of the first piezoelectric layer in the thickness direction,
    A piezoelectric transducer according to claim 13 or 14.
  16.  前記第一電極及び前記第二電極は、前記第一圧電層への交流電圧の印加用の電極であり、
     前記第三電極及び前記第四電極は、前記第二圧電領域で生じる交流電圧の取り出し用の電極である、
     請求項13~15のいずれか一項に記載の圧電トランスデューサ。
    The first electrode and the second electrode are electrodes for applying an alternating voltage to the first piezoelectric layer,
    The third electrode and the fourth electrode are electrodes for extracting AC voltage generated in the second piezoelectric region.
    The piezoelectric transducer according to any one of claims 13-15.
  17.  前記第一電極及び前記第二電極は、前記第一圧電領域で生じる交流電圧の取り出し用の電極であり、
     前記第三電極及び前記第四電極は、前記第二圧電層への交流電圧の印加用の電極である、
     請求項13~15のいずれか一項に記載の圧電トランスデューサ。
    The first electrode and the second electrode are electrodes for extracting alternating voltage generated in the first piezoelectric region,
    The third electrode and the fourth electrode are electrodes for applying an alternating voltage to the second piezoelectric layer,
    The piezoelectric transducer according to any one of claims 13-15.
  18.  前記第一圧電層の圧電定数は、前記第二圧電層の圧電定数よりも大きい、
     請求項16記載の圧電トランスデューサ。
    The piezoelectric constant of the first piezoelectric layer is larger than the piezoelectric constant of the second piezoelectric layer,
    The piezoelectric transducer according to claim 16.
  19.  前記第一電極、前記第二電極、前記第三電極及び前記第四電極は、互いに電気的に絶縁されている、
     請求項13~18のいずれか一項に記載の圧電トランスデューサ。
    The first electrode, the second electrode, the third electrode and the fourth electrode are electrically isolated from each other
    A piezoelectric transducer according to any of claims 13-18.
  20.  前記厚み方向から見て、前記第二圧電領域の少なくとも一部は、前記支持部における前記圧電部側の面のうち、前記空洞側の内縁に沿っている、
     請求項13~19のいずれか一項に記載の圧電トランスデューサ。
    When viewed from the thickness direction, at least a portion of the second piezoelectric region is along the inner edge on the cavity side in the surface on the piezoelectric portion side of the support portion.
    The piezoelectric transducer according to any one of claims 13-19.
  21.  前記第一面とは垂直である方向から見て、前記第二圧電領域は、前記空洞と前記支持部とに跨っている、
     請求項13~20のいずれか一項に記載の圧電トランスデューサ。
    When viewed from a direction perpendicular to the first surface, the second piezoelectric region straddles the cavity and the support.
    The piezoelectric transducer according to any one of claims 13 to 20.
  22.  前記第一面とは垂直である方向から見て、前記第二圧電領域は、前記第一圧電領域の一部に沿って配置されている、
     請求項13~21のいずれか一項に記載の圧電トランスデューサ。
    When viewed from a direction perpendicular to the first surface, the second piezoelectric region is disposed along a portion of the first piezoelectric region.
    The piezoelectric transducer according to any one of claims 13 to 21.
  23.  前記厚み方向から見て、前記第一圧電領域の少なくとも一部は前記空洞の中央側に位置し、前記第二圧電領域の少なくとも一部は前記空洞の外周側に位置している、
     請求項13~22のいずれか一項に記載の圧電トランスデューサ。
    When viewed in the thickness direction, at least a portion of the first piezoelectric region is located on the center side of the cavity, and at least a portion of the second piezoelectric region is located on the outer periphery side of the cavity.
    The piezoelectric transducer according to any one of claims 13 to 22.
  24.  請求項1~23のいずれか一項に記載の圧電トランスデューサを複数備える、
     圧電モジュール。
    A plurality of piezoelectric transducers according to any one of the preceding claims,
    Piezoelectric module.
PCT/JP2018/032951 2017-09-21 2018-09-06 Piezoelectric transducer and piezoelectric module WO2019058978A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-181581 2017-09-21
JP2017181581A JP2021007118A (en) 2017-09-21 2017-09-21 Piezoelectric transducer and piezoelectric module
JP2017181580A JP2021007117A (en) 2017-09-21 2017-09-21 Piezoelectric transducer and piezoelectric module
JP2017-181580 2017-09-21

Publications (1)

Publication Number Publication Date
WO2019058978A1 true WO2019058978A1 (en) 2019-03-28

Family

ID=65810801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032951 WO2019058978A1 (en) 2017-09-21 2018-09-06 Piezoelectric transducer and piezoelectric module

Country Status (1)

Country Link
WO (1) WO2019058978A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020191359A (en) * 2019-05-21 2020-11-26 新日本無線株式会社 Piezoelectric element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027584A (en) * 1988-02-29 1990-01-11 Motorola Inc High impedance piezoelectric transducer
JP2013062571A (en) * 2011-09-12 2013-04-04 Seiko Epson Corp Ultrasonic probe and ultrasonic wave image diagnostic apparatus
JP2014195495A (en) * 2013-03-29 2014-10-16 セイコーエプソン株式会社 Ultrasonic transducer device, probe, electronic device, and ultrasonic image device
WO2016175013A1 (en) * 2015-04-30 2016-11-03 株式会社村田製作所 Piezoelectric device, piezoelectric transformer, and piezoelectric device manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027584A (en) * 1988-02-29 1990-01-11 Motorola Inc High impedance piezoelectric transducer
JP2013062571A (en) * 2011-09-12 2013-04-04 Seiko Epson Corp Ultrasonic probe and ultrasonic wave image diagnostic apparatus
JP2014195495A (en) * 2013-03-29 2014-10-16 セイコーエプソン株式会社 Ultrasonic transducer device, probe, electronic device, and ultrasonic image device
WO2016175013A1 (en) * 2015-04-30 2016-11-03 株式会社村田製作所 Piezoelectric device, piezoelectric transformer, and piezoelectric device manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020191359A (en) * 2019-05-21 2020-11-26 新日本無線株式会社 Piezoelectric element
JP7349090B2 (en) 2019-05-21 2023-09-22 日清紡マイクロデバイス株式会社 Piezoelectric element

Similar Documents

Publication Publication Date Title
TWI689461B (en) Monolithic integration of pmut on cmos
JP6123171B2 (en) Ultrasonic transducer, ultrasonic probe and ultrasonic inspection equipment
KR20100071607A (en) Piezoelectric acoustic transducer and method for fabricating the same
JP2007074263A (en) Ultrasonic transducer and manufacturing method therefor
KR101761819B1 (en) Ultrasonic transducer and method of manufacturing the sames
JP2013065983A (en) Electromechanical conversion device and manufacturing method of the same
JP2008085507A (en) Acoustic sensor, and sound module with acoustic sensor
US20230217163A1 (en) Bone conduction sound transmission devices
WO2018037730A1 (en) Capacitive micromachined ultrasonic transducer and ultrasonic imaging apparatus comprising same
JP2005340961A (en) Acoustic receiver
JP5627279B2 (en) Vibration power generation device and manufacturing method thereof
KR102184454B1 (en) Ultrasonic transducer and method of manufacturing ultrasonic transducer
JP2015019434A (en) Power generation device
WO2019058978A1 (en) Piezoelectric transducer and piezoelectric module
JP2017183867A (en) Ultrasonic transducer, ultrasonic array, ultrasonic module, ultrasonic measurement apparatus, and electronic apparatus
JP2019212992A (en) Capacitive transducer and method of manufacturing the same
WO2013002207A1 (en) Vibrating element and method for producing vibrating element
KR20160011104A (en) Ultrasonic transducer and method of manufacturing ultrasonic transducer
JP2021007117A (en) Piezoelectric transducer and piezoelectric module
US7164222B2 (en) Film bulk acoustic resonator (FBAR) with high thermal conductivity
JP2013126070A (en) Electromechanical conversion device
JP2021007118A (en) Piezoelectric transducer and piezoelectric module
US11376628B2 (en) Capacitive device and piezoelectric device
JPS61220596A (en) Ultrasonic wave transducer
JP2011182298A (en) Mems transducer and ultrasonic parametric array speaker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18857470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP