WO2018169236A1 - Polydimethylsiloxane polymer using aziridine and preparing method therefor - Google Patents

Polydimethylsiloxane polymer using aziridine and preparing method therefor Download PDF

Info

Publication number
WO2018169236A1
WO2018169236A1 PCT/KR2018/002620 KR2018002620W WO2018169236A1 WO 2018169236 A1 WO2018169236 A1 WO 2018169236A1 KR 2018002620 W KR2018002620 W KR 2018002620W WO 2018169236 A1 WO2018169236 A1 WO 2018169236A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
aziridine
azipdms
integer
pdms
Prior art date
Application number
PCT/KR2018/002620
Other languages
French (fr)
Korean (ko)
Inventor
윤효재
문현경
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170126109A external-priority patent/KR101949610B1/en
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2018169236A1 publication Critical patent/WO2018169236A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/388Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing nitrogen

Definitions

  • the present invention relates to a polydimethylsiloxane polymer using aziridine, a three-membered cyclic compound, and a preparation method thereof.
  • epoxides have received particular attention in developing functional polymeric materials.
  • the delicate ring structure of epoxides can be easily opened in the presence of nucleophiles. These features are actively used in many categories of polymer material development, including adhesives, surface coatings, self-healing materials and matrices for making nanometer-sized materials.
  • epoxide has a problem that the ring opening reaction occurs by being promoted by water.
  • the ring-opening reaction of epoxides usually depends on amine-based nucleophiles.
  • Aziridine is a ternary N-heterocyclic compound that is structurally similar to epoxide, but differs greatly in chemical properties.
  • the chemical and regioselectivity of aziridine for the ring-opening reaction is programmable by regulating the electronic structure and steric hindrance of substituents on the nitrogen of two sp3 carbons and aziridine.
  • aziridine can be structurally robust designed even at ambient conditions, including harsh conditions such as high temperature and acidic / basic conditions. Despite the long history of using aziridine in organic synthesis, the use of aziridine in materials science has rarely been achieved.
  • the inventors of the present invention have focused on polydimethylsiloxane as a polymer support.
  • PDMS is widely used in technology requiring organic polymers because it is optically transparent, flexible, inexpensive, commercially available, and non-toxic. This unique feature allows PDMS to be applied to flexible displays and electronics or lab-on-a-chips.
  • the general strategy is for post-modification of PDMS surfaces using oxygen / ultraviolet treatment, chemical click reactions and methods of mixing nanometer-sized particles into PDMS.
  • PDMS analogs formed through this strategy often suffer from the loss of original optical and / or elastomeric properties.
  • Another strategy is to prepare PDMS derivatives with the desired functions based on the synthesis of new siloxane monomers having functional groups and their polymers.
  • This strategy allows the design of PDMS structures at the molecular level and allows for relatively uniform compositions and structures across the sample.
  • Several clickable moieties such as azide and thiols have been incorporated into PDMS by polymerizing siloxane monomers containing these moieties, but it has been difficult to represent a wide range of substrates as well as clickable PDMS based on simple, efficient and direct click reactions.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2006-0003749
  • Patent Document 2 Republic of Korea Patent No. 10-16314781
  • the present invention is to provide a polydimethylsiloxane polymer using aziridine, a three-membered cyclic compound, and a preparation method thereof.
  • the present invention provides a polymer represented by the following [Formula 1] to solve the above problems.
  • a is an integer of 1 to 20
  • b is an integer of 0 to 20
  • c is an integer of 1 to 20
  • l is an integer of 1 to 20
  • m is an integer of 1 to 20. to be.
  • the present invention by reacting the compound represented by the following [Formula 2], the compound represented by the following [Formula 3] and the compound represented by the following [Formula 4] under a karstedt 'catalyst It provides a method for producing a polydimethylsiloxane-based polymer having an aziridine group comprising the step of preparing a polymer represented by 1].
  • a is an integer of 1 to 20
  • b is an integer of 0 to 20
  • c is an integer of 1 to 20
  • l is an integer of 1 to 20
  • m is It is an integer of 1-20
  • a + b + c n.
  • the manufacturing method according to the invention can be used for the production of customized PDMS.
  • the method for producing clickable PDMS (aziPDMS) according to the present invention can be prepared using a simple, general PDMS curing process without damaging the ring structure of aziridine.
  • the orthogonal ring-opening reaction of aziridine according to the present invention is efficient for the post-modification of the polymer support (PDMS) having a wide substrate range.
  • Post-modification of PDMS through the ring opening reaction of aziridine according to the present invention is not limited to the surface, but also possible in internal pores, and may be performed in a region-specific manner.
  • the programmable reactivity and chemical selectivity of aziridine allow the design of advanced materials that respond to the desired reaction conditions.
  • PDMS comprising aziridine covalently linked may be post-modified by orthogonal ring-opening reaction of aziridine with carboxylic acid, alcohol, amine or thiol.
  • This post-modification characterizes the ring-opened aziPDMS by using photoluminescent and fluorinated molecules on the macroscopic and molecular scale, respectively, through ultraviolet irradiation and XPS specificity.
  • the amount inside the PDMS scaffold is directly adjustable.
  • the customized PDMS and its manufacturing method according to the present invention are unprecedentedly attractive and efficient, requiring molecularly controlled functions such as flexible displays, nano ink pens, biomedical sensor chips, optical materials and contact charging surfaces. It can be usefully applied to construct functional materials and devices.
  • Figure 1a is a structure of a compound used to prepare a polydimethylsiloxane-based polymer comprising aziridine according to the present invention.
  • Figure 1b is a schematic of the post-modification through the production and ring-opening reaction of the polydimethylsiloxane-based polymer (aziPDMS) containing aziridine.
  • 1C is a static contact angle image (right) of Comparative Example 1 (PDMS) and Example 1.6 (aziPDMS) film photo (left) and water droplets according to the present invention (right).
  • 1D shows the results of irradiation scans of PDMS (gray, control) and aziPDMS (black line) obtained by X-ray photoelectron spectroscopy (XPS).
  • 1E is an XPS depth profile result obtained through in situ etching of aziPDMS.
  • FIG. 2A shows the Comparative Example 1 (PDMS) and Example 1.6 (aziPDMS) films incubated in 2.5 mM 5 (6) carboxyfluorescein solution, followed by visible light (above) and 254 nm UV light (below). ). aziPDMS emits a significant amount of fluorescence, while PDMS emits little fluorescence.
  • FIG. 2B is a strength-elongation curve of PDMS and aziPDMS fibers before and after ring opening with a carboxylic acid compound (5 (6) -carboxyfluorescein).
  • Figure 2c is a result showing the image of the ring-opening aziPDMS fibers of the present invention according to different elongation.
  • Figure 2d shows the result of post-modification using 5 (5) -carboxyfluorine after preparing the PDMS / aziPDMS laminated structure. Selective post-modification was observed in the aziPDMS region.
  • 3B is the UV absorption spectrum of aziPDMS film. As the aziridine content increased, the absorption strength increased.
  • Figure 3c is a photograph of the aziPDMS film taken after the ring-opening reaction incubated in 2.5 mM 5 (6) -carboxyfluorescein.
  • 3D is the photoluminescence emission spectrum result of the ring-opened aziPDMS film.
  • Figure 3e is a measure of the substrate range of aziPDMS through XPS measurement, a result of incorporating various fluorinated carboxylic acid, alcohol, amine and thiol derivatives into aziPDMS through aziridine ring opening reaction.
  • Inset graph shows high resolution spectral results of the F1s region for PDMS (control) and ring-opened aziPDMS.
  • Figure 4b is a result of confirming the post-modified surface depth of aziPDMS according to the polarity of the solution. As the amount of methanol decreased, the surface depth increased after the first modification (yellow region).
  • 4C is a plot of% surface depth as a function of volume ratio of methanol in solution (defined as the ratio of surface depth after first modification to half width of the entire film).
  • FIG. 5 shows a schematic of the Pt (0) -catalyzed hydrosilylation between aziridine 1 and PDMS prepolymer having a vinyl group at the end.
  • FIG. 6 shows the results of 1 H NMR spectroscopy of Pt (0) -catalyzed hydrosilylation and ring-opening reaction of aziridine and benzoic acid between silyl hydride (curing agent B) and aziridine (1) having a vinyl group at the end.
  • Curing agent B which is a commercial reagent, may be added with a small amount of an additive, and thus a peak may be detected.
  • FIG. 7 shows photoluminescence spectra of aziPDMS incubated in 5 (6) -carboxyfluorescein (red) and 2.5 mM 5 (6) -carboxyfluorescein (black) solutions in methanol.
  • FIG. 8 is a result of applying a thresholding technique for the cut aziPDMS film in FIG. 4B.
  • the inventors of the present invention have completed the present invention by developing a method of introducing aziridine onto a molecular substrate and using a ring-opening reaction of aziridine in order to devise a customized polymer support at the molecular level.
  • the present invention provides a custom-made PDMS (hereinafter referred to as aziPDMS) functionalized by aziridine prepared by curing a conventional PDMS prepolymer (Sylgard 184 Silicone elastomer kit) in the presence of aziridine with vinyl at the end and a method for preparing the same. .
  • the present invention provides a polymer represented by the following [Formula 1].
  • a is an integer of 1 to 20
  • b is an integer of 0 to 20
  • c is an integer of 1 to 20
  • l is an integer of 1 to 20
  • m is an integer of 1 to 20. to be.
  • the polymer of [Formula 1] may be ring-opened by reacting with a compound containing a carboxylic acid, alcohol, amine group or thiol group, the carboxylic acid, alcohol, amine group to the ring-opened aziridine moiety Or a compound containing a thiol group may be attached.
  • the polymer of [Formula 1] is characterized by retaining elasticity, it can be easily stretched up to 250%.
  • the polymer of [Formula 1] is improved in light weight and mechanical elasticity without loss of optical and mechanical properties compared to the conventional PDMS.
  • aziridine-functionalized PDMS according to the present invention can be easily synthesized from readily available prepolymers.
  • the present invention reacts the compound represented by the following [Formula 2], the compound represented by the following [Formula 3] and the compound represented by the following [Formula 4] under a karstedt 'catalyst (Formula 1) It provides a method for producing a polydimethylsiloxane-based polymer having an aziridine group, including the step of preparing a polymer represented by.
  • a is an integer of 1 to 20
  • b is an integer of 0 to 20
  • c is an integer of 1 to 20
  • l is an integer of 1 to 20
  • m is It is an integer of 1-20
  • a + b + c n.
  • the reaction may be a thermosetting reaction carried out at 50 to 100 °C for 0.5 to 3 hours.
  • the compound of [Formula 4] may be prepared by reacting (1-benzylaziridin-2-yl) methanol with chlorodimethyl (vinyl) silane at 40 to 80 ° C., preferably a base It may be reacted in the organic solvent in the presence.
  • the base may be triethylamine, but is not limited thereto.
  • the organic solvent may be an organic solvent selected from methylene chloride, tetrahydrofuran, N, N-dimethylformamide, dimethyl sulfoxide, toluene, ethanol, methanol, ethyl acetate and ether, but is not limited thereto. Toluene.
  • the (1-benzylaziridin-2-yl) methanol is reacted with ethyl 2,3-dibromopropanoate in the presence of a base such as benzylamine in a nitrogen stream and triethylamine.
  • a base such as benzylamine in a nitrogen stream and triethylamine.
  • the present invention with respect to 10 parts by weight of the compound represented by [Formula 2], 0.5 to 2 parts by weight of the compound represented by [Formula 3] and 0.02 to 0.2 parts by weight of the compound represented by [Formula 4] It may be to.
  • the content of the compound represented by the above [Formula 4] is less than the above range, the clickable portion is too small, so that post-modification is not easy, and it is difficult to exhibit elasticity.
  • the above range is exceeded, a serious interference phenomenon occurs in the crosslinking between the base and the curing agent, and the transparency is lost, and powder or oily opaque polymer is produced, which is not preferable.
  • the compound represented by the above [Formula 1] according to the present invention is reacted with a compound containing a carboxylic acid, alcohol, amine group or thiol group to ring-open the aziridine group of [Formula 1];
  • the compound containing the carboxylic acid, alcohol, amine group or thiol group may be attached to the moiety of the ring-opened aziridine.
  • the present invention has three features as follows.
  • the post-modification of PDMS is not limited to the surface, but also inside the pores through the ring opening reaction of aziridine.
  • the molecular substrate may be polydimethylsiloxane (PDMS).
  • PDMS polydimethylsiloxane
  • PDMS containing aziridine can be prepared by thermosetting the prepolymer in the presence of aziridine which is terminally vinyl.
  • the prepolymer may include a base (part A) and a curing agent (part B) in a weight ratio of 8: 1 to 20: 1, and preferably in a 10: 1 weight ratio. Can be.
  • the thermosetting may be performed at 80 ° C. for 2 hours, thereby obtaining a composite (aziPDMS) converted to PDMS having a covalently bonded aziridine pendant.
  • the aziPDMS thus obtained may maintain optical transparency and mechanical elasticity of the existing PDMS.
  • Post-modification of aziPDMS can be achieved through the orthogonal ring-opening reaction of aziridine pendants (FIG. 1B).
  • alcohols, amines, thiols and carboxylic acids can be used for the post-modification of aziPDMS.
  • the production process and structural modification reactions according to the invention are simple and effective and can be carried out using commercial reagents. Together with these advantages, the various and robust ring opening reactions of aziridine are useful for preparing custom polymeric materials.
  • the thickness of the sample inevitably causes errors at the microscopic level, but does not affect the overall tendency of ⁇ max as a function of the mass ratio of aziridine.
  • Photoluminescence spectra were measured using a Hitachi F-7000 Fluorescence spectrophotometer.
  • Tensile strength of PDMS and aziPDMS was measured using a Universal Testing Machine (UTM; WL 2100).
  • Sylgard 184 (Dow Corning) silicone elastomer kit with base and curing agent was used.
  • a conventional synthesis method for preparing PDMS is to add a platinum catalyst to vinyl and Si-H. Specifically, the base and the curing agent are mixed at a weight ratio of 10: 1, and the mixture is left under reduced pressure for 2 hours to form internal bubbles. After the removal, it was prepared by curing at 80 °C for 2 hours.
  • aziPDMS was prepared using a known PDMS manufacturing method. As shown in FIG. 1A, aziPDMS was prepared by mixing the base (A), the curing agent (B), and the aziridine (1) having a vinyl group at the end thereof, and Sylgard 184 was used as a model elastomer. Specifically, 1-benzyl-2-(((dimethyl (vinyl) silyl) oxy) methyl) aziridine is poured into a polytetrafluoroethylene (PTFE) mold to remove the contained bubbles. The degassed was put into a vacuum desiccator for 20 minutes. The mixture was thermoset at 80 ° C. for 2 hours to prepare aziPDMS film.
  • PTFE polytetrafluoroethylene
  • base curing agent: 1-benzyl-2-(((dimethyl (vinyl) silyl) oxy) methyl) aziridine was mixed in a 10: 1: X weight ratio, and X was contained in a range of 0.025 to 0.2 weight ratio.
  • X is larger than 0.2, crosslinking between the base and the curing agent is severely caused by aziridine having a vinyl group at a large amount of terminal, which is not preferable because a powder or oily opaque PDMS is produced.
  • Test Example 1 Silyl using 1H NMR Hydride With polymer (B in FIG. 1A; curing agent) At the end Vinyl Determination of reaction of aziridine having and ring opening reaction by benzoic acid
  • the thermal curing process of the PDMS prepolymer is the basis for hydrosilylation crosslinking by Pt (0) catalyst between silylhydride and vinyl derivative.
  • the Pt catalyst Karlstedt's catalyst, 1 mg, in a clean environment at room temperature
  • a Pt catalyst B 600 mg
  • Compound 1 120 mg, 0.48 mmol
  • the black 1 H NMR spectrum at the bottom is the result of the starting mixture
  • the red 1 H NMR spectrum at the top is the result after 1.5 hours of reaction.
  • the hydrosilylation reaction between Compounds 1 and B was confirmed through 1 H NMR spectra.
  • the chemical shifts of 5.75, 6.01 and 6.10 ppm corresponding to the vinyl protons of Compound 1 disappeared completely within 1.5 hours, confirming that the desired coupling reaction was very efficient.
  • the aziridine ring structure was maintained after the reaction, and the chemical shifts corresponding to the aziridine residues (1.45, 1.69 and 1.77 ppm) were confirmed by being kept unchanged.
  • Test Example 2 X-ray photoelectron spectroscopy; XPS ) analysis
  • the apparent optical transparency of the aziPDMS of Example 1 and the PDMS of Comparative Example 1 was not distinguished.
  • aziPDMS was immersed for 6 hours in hexane and dichloromethane without impurities, and then rinsed.
  • a scan of aziPDMS showed Si2p ( ⁇ 102 eV) and O1s ( ⁇ 532 eV) signals corresponding to the PDMS backbone, and C1s ( ⁇ 284 eV) and N1s corresponding to aziridine pendants. ( ⁇ 398 eV) signal appeared.
  • Table 1 the atomic concentration (atomic%) of the calculated value and the experimental value was consistent in both PDMS and aziPDMS.
  • the depth profile XPD scan was performed by etching the aziPDMS surface (etching rate: ⁇ 5 nm / min).
  • the depth profile of aziPDMS showed the highest atomic percent of Si and O and the lowest atomic percent of c during etching.
  • the atomic% of N1s in aziPDMS was constant during the measurement, which means that aziridine is present at the same surface and interior.
  • Atomic% is calculated using (SiOC 2 ) as a repeating unit
  • all image pixels can be classified as foreground (regions of the aziridine of the present invention ring-opened by 5 (6) -carboxyfluorescein) or background pixels.
  • the percentage of surface depth after the first post-modification was determined by determining the ratio of the width of the white pixels (corresponding to the surface post-modification) to half the width of the film in the line, and estimated by averaging from each of at least 10 samples.
  • Aziridine having an electron-donating substituent (benzyl N-substituent of the present invention) under a nitrogen atmosphere at a slightly higher temperature, such as 50 ° C., was subjected to ring opening by treatment with carboxylic acid without catalyst and additives.
  • the acidic protons of the carboxylic acids react with the lone pair of nitrogen atoms of the aziridine. This reaction produces an activated aziridinium structure followed by subsequent addition of carboxylate.
  • the ring opening reaction of aziridine shows good chemical and regioselectivity and high yield (> 90%).
  • mapping analysis was performed by reacting aziridine in aziPDMS with 5 (6) -carboxyfluorine, a photoluminescent carboxylic acid derivative.
  • the photoluminescence spectrum of aziPDMS showed ⁇ max at ⁇ 531 nm.
  • the red shift of ⁇ max is an indicator that identifies 5 (6) -carboxyfluorescein covalently bound to the backbone of aziPDMS, and the interaction between 5 (6) -carboxyfluorescein molecules linked to PDMS is ⁇ max . Because it induces a change.
  • FIG. 2B is a strength-elongation curve of PDMS and aziPDMS fibers before and after ring opening with a carboxylic acid compound (5 (6) -carboxyfluorescein).
  • Tensile strength for untreated and ring-opened aziPDMS showed no significant change ( ⁇ ⁇ 1.3) of 0.66 MPa and 0.51 MPa, respectively.
  • Figure 2c shows the image of the ring-opening aziPDMS fiber of the present invention according to different elongation, it was confirmed that it is sufficiently extended to 200%.
  • the PDMS and the aziPDMS were repeatedly thermally cured as shown in FIG. 2D to prepare a laminated structure.
  • the laminated films prepared in order to perform mapping analysis on the entire structure were incubated in 5 (5) -carboxyfluorescein solution.
  • photoluminescence was selectively observed in the aziPDMS region rather than the PDMS region, and it was confirmed that the aziPDMS region was selectively modified.
  • Figure 3a is aziPDMS film according to Examples 1.1 to 1.5 showed a slight change in the optical transparency apparent.
  • the intensity of the absorption band at 259 nm increased linearly with the amount of aziridine.
  • the aziPDMS film according to Examples 1.1 to 1.5 was incubated in a 2.5 mM 5 (6) -carboxyfluorescein solution for 18 hours at room temperature, and then washed with chloroform and methanol. And dried under hot oven and vacuum.
  • 3C is an image of the films taken under visible and UV irradiation.
  • the photoluminescence intensity of ring-opened aziPDMS increased with increasing content of aziridine, which is vinyl at the end. As shown in Figure 3d through the above results, it was confirmed that the photoluminescence emission characteristic has a linear correlation with the content of aziridine.
  • the substrate of the aziPDMS ring opening compounds having various functional groups such as carboxylic acids, thiols, alcohols and amine derivatives can be used.
  • the fluorine atom gives a strong signal in the XPS measurement, it is easy to confirm whether or not the ring opening reaction of aziPDMS is by XPS.
  • the fluorine-containing compound was used for the experiment.
  • AziPDMS of Examples 1.1 to 1.5 and PDMS of Comparative Example 1 were treated with THF solution of 0.25 mM fluorine-containing compound at room temperature for 3 or 6 hours, then washed with pure THF, CH 2 Cl 2 and methanol, Dry in oven and in vacuo. As shown in FIG. 3E, the F1s peak appeared in the XPS spectrum of the ring-opening aziPDMS, but was not detected in the PDMS. These results indicate a broad substrate range of ring opening reaction of aziridine after modification.
  • Test Example 8 Evaluation using surface wettability
  • High dielectric constant liquids such as water and methanol show very low wettability, while low dielectric constant liquids such as n-hexane and chloroform diffuse into the majority of the area on the surface and expand PDMS.
  • the surface wettability of these PDMS was used to further demonstrate the site specificity (surface to volume) post-modification of aziPDMS.
  • the customized PDMS and its manufacturing method according to the present invention are unprecedentedly attractive and efficient, requiring molecularly controlled functions such as flexible displays, nano ink pens, biomedical sensor chips, optical materials and contact charging surfaces. It can be usefully applied to construct functional materials and devices.

Abstract

The present invention relates to a polydimethylsiloxane polymer using aziridine and a preparing method therefor.

Description

아지리딘을 이용한 폴리디메틸실록산 고분자 및 이의 제조방법Polydimethylsiloxane Polymer Using Aziridine and Manufacturing Method Thereof
본 발명은 3원 고리형 화합물인 아지리딘을 이용한 폴리디메틸실록산 고분자 및 이의 제조방법에 관한 것이다.The present invention relates to a polydimethylsiloxane polymer using aziridine, a three-membered cyclic compound, and a preparation method thereof.
건강, 에너지 및 환경 문제를 해결하기 위한 급격한 기술의 복잡성 증가로 인해 분자 수준에서 맞춤형 특성을 가진 재료의 요구가 증가하고 있다. 상기와 같은 물질은 클릭할 수 있는 부분 (다른 작용기와 결합될 수 있는 부분)을 간단하고 높은 수율로 기질에 통합시킴으로써 제조될 수 있다. 따라서 고리 변형 유기 고리화합물을 갖는 맞춤형 물질을 구축하는 기술은 수십 년 동안 주목을 받아왔다. 물질의 표면 및/또는 표면상의 유기 고리화합물은 이들의 개환 반응을 통해 추가의 화학반응을 가능하게 하고, 개별적인 적용을 위한 다양한 유형의 생물학적 또는 비생물학적 기질의 구조적 변형을 유도할 수 있다.The rapid increase in the complexity of technologies to address health, energy and environmental issues has driven the demand for materials with custom properties at the molecular level. Such materials can be prepared by incorporating clickable moieties (moieties that can be combined with other functional groups) into the substrate in a simple and high yield. Thus, the technology of building custom materials with ring-modified organic cyclic compounds has attracted attention for decades. The organic cyclic compounds on and / or on the surface of the materials allow for further chemical reactions through their ring opening reactions and can induce structural modifications of various types of biological or non-biological substrates for individual applications.
3원 O-헤테로고리 에폭사이드는 기능성 중합체 물질을 개발하는데 특히 주목을 받아왔다. 에폭사이드의 섬세한 고리 구조는 친핵체의 존재 하에서 쉽게 열릴 수 있다. 이러한 특징은 접착제, 표면 코팅제, 자가치유재료 및 나노미터 크기의 재료를 제조하기 위한 매트릭스를 비롯하여 많은 범주의 고분자 재료 개발 분야에서 적극적으로 활용되고 있다. 그러나 에폭사이드는 수분에 의해 촉진되어 개환 반응이 일어나는 문제가 있다.Ternary O-heterocyclic epoxides have received particular attention in developing functional polymeric materials. The delicate ring structure of epoxides can be easily opened in the presence of nucleophiles. These features are actively used in many categories of polymer material development, including adhesives, surface coatings, self-healing materials and matrices for making nanometer-sized materials. However, epoxide has a problem that the ring opening reaction occurs by being promoted by water.
에폭사이드의 개환 반응은 통상적으로 아민계 친핵체에 의존한다. 아지리딘은 3원 N-헤테로고리 화합물로 에폭사이드와 구조적으로 유사하나, 화학적 성질은 크게 상이하다. 개환 반응에 대한 아지리딘의 화학적 및 위치 선택성은 전자구조와 2개의 sp3 탄소와 아지리딘의 질소 상의 치환체의 입체 장애를 조절함으로써 프로그래밍이 가능하다. 또한, 아지리딘은 고온 및 산성/염기성 조건과 같은 가혹한 조건을 비롯한 주변 조건에서도 구조적으로 견고하게 설계될 수 있다. 유기합성에서 오랫동안 아지리딘을 이용해온 역사에도 불구하고, 재료과학 분야에서 아지리딘을 이용하는 것은 거의 이루어지지 않았다.The ring-opening reaction of epoxides usually depends on amine-based nucleophiles. Aziridine is a ternary N-heterocyclic compound that is structurally similar to epoxide, but differs greatly in chemical properties. The chemical and regioselectivity of aziridine for the ring-opening reaction is programmable by regulating the electronic structure and steric hindrance of substituents on the nitrogen of two sp3 carbons and aziridine. In addition, aziridine can be structurally robust designed even at ambient conditions, including harsh conditions such as high temperature and acidic / basic conditions. Despite the long history of using aziridine in organic synthesis, the use of aziridine in materials science has rarely been achieved.
본 발명의 발명자들은 고분자 지지체로 폴리디메틸실록산에 중점을 두었다. PDMS는 광학적으로 투명하고, 신축성이 있고, 저렴하며, 상업적으로 입수할 수 있고, 독성이 없으므로 유기 고분자를 필요로 하는 기술에서 많이 사용된다. 이러한 독특한 특성으로 인해 PDMS는 신축성 디스플레이 및 전자제품이나 랩온어 칩에 적용될 수 있다. PDMS를 이용하여 복잡한 기술을 실현하려는 요구가 증가함에 따라 분자 수준에서 미세조정 가능한 화학적 성질을 갖는 PDMS 유사체 개발에 많은 노력을 기울이고 있다. 일반적인 전략은 산소/자외선 처리, 화학적 클릭 반응 및 나노미터 크기의 입자를 PDMS에 혼합하는 방법들을 이용하여 PDMS 표면의 후개질에 이용한다. 이러한 전략을 통해 형성된 PDMS 유사체는 종종 원래의 광학적 특성 및/또는 엘라스토머성 특성의 손실을 초래하는 문제가 있다. 또 다른 전략은 작용기를 갖는 새로운 실록산 단량체의 합성 및 이들의 중합체에 기초하여 원하는 기능을 갖는 PDMS 유도체를 제조하는 것이다. 이 전략을 통해서 분자 수준에서 PDMS 구조를 설계할 수 있으며, 샘플을 넘어 조성과 구조를 비교적 균일하게 할 수 있다. 아지드나 티올과 같은 여러 클릭성 잔기는 이들 부분을 함유하는 실록산 모노머를 중합함으로써 PDMS로 통합되었지만, 간단하고, 효율적이며, 직접적인 클릭반응에 기초한 클릭 가능한 PDMS는 물론 광범위한 기판 범위를 나타내는 것이 어려웠다.The inventors of the present invention have focused on polydimethylsiloxane as a polymer support. PDMS is widely used in technology requiring organic polymers because it is optically transparent, flexible, inexpensive, commercially available, and non-toxic. This unique feature allows PDMS to be applied to flexible displays and electronics or lab-on-a-chips. As the need to realize complex technologies using PDMS increases, much effort is being made to develop PDMS analogs with fine-tunable chemical properties at the molecular level. The general strategy is for post-modification of PDMS surfaces using oxygen / ultraviolet treatment, chemical click reactions and methods of mixing nanometer-sized particles into PDMS. PDMS analogs formed through this strategy often suffer from the loss of original optical and / or elastomeric properties. Another strategy is to prepare PDMS derivatives with the desired functions based on the synthesis of new siloxane monomers having functional groups and their polymers. This strategy allows the design of PDMS structures at the molecular level and allows for relatively uniform compositions and structures across the sample. Several clickable moieties such as azide and thiols have been incorporated into PDMS by polymerizing siloxane monomers containing these moieties, but it has been difficult to represent a wide range of substrates as well as clickable PDMS based on simple, efficient and direct click reactions.
[선행기술문헌][Preceding technical literature]
(특허문헌 1) 대한민국 공개특허 제10-2006-0003749호(Patent Document 1) Republic of Korea Patent Publication No. 10-2006-0003749
(특허문헌 2) 대한민국 등록특허 제10-16314781호(Patent Document 2) Republic of Korea Patent No. 10-16314781
본 발명은 3원 고리형 화합물인 아지리딘을 이용한 폴리디메틸실록산 고분자 및 이의 제조방법을 제공하고자 한다.The present invention is to provide a polydimethylsiloxane polymer using aziridine, a three-membered cyclic compound, and a preparation method thereof.
본 발명은 상기 과제를 해결하기 위하여, 하기 [화학식 1]로 표시되는 고분자를 제공한다.The present invention provides a polymer represented by the following [Formula 1] to solve the above problems.
[화학식 1][Formula 1]
Figure PCTKR2018002620-appb-I000001
Figure PCTKR2018002620-appb-I000001
상기 [화학식 1]에서, a는 1 내지 20의 정수이고, b는 0 내지 20의 정수이며, c는 1 내지 20의 정수이고, l은 1 내지 20의 정수이며, m은 1 내지 20의 정수이다.In [Formula 1], a is an integer of 1 to 20, b is an integer of 0 to 20, c is an integer of 1 to 20, l is an integer of 1 to 20, m is an integer of 1 to 20. to be.
또한, 본 발명은 하기 [화학식 2]로 표시되는 화합물, 하기 [화학식 3]으로 표시되는 화합물 및 하기 [화학식 4]로 표시되는 화합물을 카르스테트 촉매(karstedt' catalyst) 하에서 반응시켜 하기 [화학식 1]로 표시되는 고분자를 제조하는 단계;를 포함하는 아지리딘기를 보유한 폴리디메틸실록산계 고분자의 제조방법을 제공한다.In addition, the present invention by reacting the compound represented by the following [Formula 2], the compound represented by the following [Formula 3] and the compound represented by the following [Formula 4] under a karstedt 'catalyst It provides a method for producing a polydimethylsiloxane-based polymer having an aziridine group comprising the step of preparing a polymer represented by 1].
[화학식 2][Formula 2]
Figure PCTKR2018002620-appb-I000002
Figure PCTKR2018002620-appb-I000002
[화학식 3][Formula 3]
Figure PCTKR2018002620-appb-I000003
Figure PCTKR2018002620-appb-I000003
[화학식 4][Formula 4]
Figure PCTKR2018002620-appb-I000004
Figure PCTKR2018002620-appb-I000004
[화학식 1][Formula 1]
Figure PCTKR2018002620-appb-I000005
Figure PCTKR2018002620-appb-I000005
상기 [화학식 1] 내지 [화학식 4]에서, a는 1 내지 20의 정수이고, b는 0 내지 20의 정수이며, c는 1 내지 20의 정수이고, l은 1 내지 20의 정수이며, m은 1 내지 20의 정수이고, a + b + c = n이다.In [Formula 1] to [Formula 4], a is an integer of 1 to 20, b is an integer of 0 to 20, c is an integer of 1 to 20, l is an integer of 1 to 20, m is It is an integer of 1-20, and a + b + c = n.
본 발명에 따른 제조방법은 맞춤형 PDMS의 제조에 이용될 수 있다. 본 발명에 따른 클릭 가능한 PDMS(aziPDMS)의 제조방법은 아지리딘의 고리구조를 손상시키지 않으면서 간단하고, 일반적인 PDMS 경화공정을 이용하여 제조될 수 있다. 또한, 본 발명에 따른 아지리딘의 직교적 개환 반응은 넓은 기질 범위를 가지는 고분자 지지체(PDMS)의 후개질에 효율적이다. 본 발명에 따른 아지리딘의 개환 반응을 통한 PDMS의 후개질은 표면에 국한되지 않고, 내부공극에서도 가능하며, 영역 특이적(region-specific) 방식으로 수행될 수 있다. 또한, 아지리딘의 프로그램 가능한 반응성 및 화학 선택성을 이용하여 목적하는 반응조건에 반응하는 고급 재료의 디자인이 가능하다.The manufacturing method according to the invention can be used for the production of customized PDMS. The method for producing clickable PDMS (aziPDMS) according to the present invention can be prepared using a simple, general PDMS curing process without damaging the ring structure of aziridine. In addition, the orthogonal ring-opening reaction of aziridine according to the present invention is efficient for the post-modification of the polymer support (PDMS) having a wide substrate range. Post-modification of PDMS through the ring opening reaction of aziridine according to the present invention is not limited to the surface, but also possible in internal pores, and may be performed in a region-specific manner. In addition, the programmable reactivity and chemical selectivity of aziridine allow the design of advanced materials that respond to the desired reaction conditions.
또한, 공유결합으로 연결된 아지리딘을 포함하는 PDMS(aziPDMS)는 아지리딘과 카르복실산, 알콜, 아민 또는 티올의 직교된 개환 반응에 의해 후개질 될 수 있다. 이러한 후개질은 각각 자외선 조사 및 XPS 특정을 통한 거시적 및 분자적 규모에서 광발광 및 플루오로화된 분자를 사용함으로써 개환된 aziPDMS을 특성을 확립한다. PDMS 스케폴드 내부의 양은 직접 조정가능하다. 본 발명에 따른 맞춤형 PDMS 및 이의 제조방법은 전례없이 매력적이며, 효율적인 것으로, 신축성 있는 디스플레이, 나노 잉크펜, 생체의학 센서칩, 광학재료 및 접촉 대전 표면 등의 분자적으로 조절된 기능을 필요로 하는 기능성 재료 및 장치를 구축하는데 유용하게 적용할 수 있다.In addition, PDMS comprising aziridine covalently linked (aziPDMS) may be post-modified by orthogonal ring-opening reaction of aziridine with carboxylic acid, alcohol, amine or thiol. This post-modification characterizes the ring-opened aziPDMS by using photoluminescent and fluorinated molecules on the macroscopic and molecular scale, respectively, through ultraviolet irradiation and XPS specificity. The amount inside the PDMS scaffold is directly adjustable. The customized PDMS and its manufacturing method according to the present invention are unprecedentedly attractive and efficient, requiring molecularly controlled functions such as flexible displays, nano ink pens, biomedical sensor chips, optical materials and contact charging surfaces. It can be usefully applied to construct functional materials and devices.
도 1a는 본 발명에 따른 아지리딘을 포함하는 폴리디메틸실록산계 고분자를 제조하는데 사용된 화합물의 구조이다.Figure 1a is a structure of a compound used to prepare a polydimethylsiloxane-based polymer comprising aziridine according to the present invention.
도 1b는 아지리딘을 포함하는 폴리디메틸실록산계 고분자(aziPDMS)의 제조 및 개환 반응을 통한 후개질을 도식화하여 나타낸 것이다.Figure 1b is a schematic of the post-modification through the production and ring-opening reaction of the polydimethylsiloxane-based polymer (aziPDMS) containing aziridine.
도 1c는 본 발명에 따른 비교예 1(PDMS)과 실시예 1.6(aziPDMS) 필름 사진(왼쪽)과 물방울의 정적 접촉각 이미지(오른쪽)이다.1C is a static contact angle image (right) of Comparative Example 1 (PDMS) and Example 1.6 (aziPDMS) film photo (left) and water droplets according to the present invention (right).
도 1d는 X-선 광전자 분광분석(XPS, X-ray photoelectron spectroscopy)으로 얻은 PDMS(회색선, 대조군) 및 aziPDMS(검정색선)의 조사스캔 결과이다.1D shows the results of irradiation scans of PDMS (gray, control) and aziPDMS (black line) obtained by X-ray photoelectron spectroscopy (XPS).
도 1e는 aziPDMS의 인시츄 에칭을 통해 얻은 XPS 깊이 프로파일 결과이다.1E is an XPS depth profile result obtained through in situ etching of aziPDMS.
도 2a는 비교예 1(PDMS) 및 실시예 1.6(aziPDMS) 필름을 2.5 mM 5(6)카르복시플루오세인 용액에서 배양한 뒤, 가시광선(visivle light; 위) 및 254 nm 자외선(UV light; 아래)으로 조사한 결과이다. aziPDMS는 상당한 양의 형광을 방출하였으나, PDMS는 형광을 거의 방출하지 않았다.FIG. 2A shows the Comparative Example 1 (PDMS) and Example 1.6 (aziPDMS) films incubated in 2.5 mM 5 (6) carboxyfluorescein solution, followed by visible light (above) and 254 nm UV light (below). ). aziPDMS emits a significant amount of fluorescence, while PDMS emits little fluorescence.
도 2b는 카르복시산 화합물(5(6)-카르복시플루오세인)에 의한 개환 반응 전 후의 PDMS 및 aziPDMS 섬유의 강도-신장 곡선이다.FIG. 2B is a strength-elongation curve of PDMS and aziPDMS fibers before and after ring opening with a carboxylic acid compound (5 (6) -carboxyfluorescein).
도 2c는 상이한 연신율에 따른 본 발명의 개환 aziPDMS 섬유의 이미지를 나타낸 결과이다.Figure 2c is a result showing the image of the ring-opening aziPDMS fibers of the present invention according to different elongation.
도 2d는 PDMS/aziPDMS 적층 구조를 제조한 뒤, 5(5)-카르복시플루오세인을 이용하여 후개질한 결과이다. aziPDMS 영역에서 선택적으로 후개질된 것이 관찰되었다.Figure 2d shows the result of post-modification using 5 (5) -carboxyfluorine after preparing the PDMS / aziPDMS laminated structure. Selective post-modification was observed in the aziPDMS region.
도 3a는 상이한 함량의 아지리딘을 함유하는 aziPDMS의 이미지이다(베이스:경화제: 말단이 비닐인 아지리딘 1=10:1:x, 여기서 x는 0 내지 0.15).3A is an image of aziPDMS containing different amounts of aziridine (base: curing agent: aziridine 1 = 10: 1: x with vinyl at the end, where x is 0 to 0.15).
도 3b는 aziPDMS 필름의 UV 흡수 스펙트럼이다. 아지리딘의 함량이 증가함에 따라 흡수 강도가 증가하였다.3B is the UV absorption spectrum of aziPDMS film. As the aziridine content increased, the absorption strength increased.
도 3c는 2.5 mM 5(6)-카르복시플루오레신에서 배양하여 개환 반응을 수행한 후 촬영한 aziPDMS 필름의 사진이다.Figure 3c is a photograph of the aziPDMS film taken after the ring-opening reaction incubated in 2.5 mM 5 (6) -carboxyfluorescein.
도 3d는 개환 aziPDMS 필름의 광발광 방출 스펙트럼 결과이다. 도 3e는 XPS 측정을 통한 aziPDMS의 기질 범위를 측정한 것으로, 다양한 플루오로화된 카르복실산, 알콜, 아민 및 티올 유도체를 아지리딘 개환 반응을 통해 aziPDMS에 혼입시킨 결과이다. 삽입된 그래프는 PDMS(대조군) 및 개환 aziPDMS에 대한 F1s 영역의 고분해능 스펙트럼 결과이다.3D is the photoluminescence emission spectrum result of the ring-opened aziPDMS film. Figure 3e is a measure of the substrate range of aziPDMS through XPS measurement, a result of incorporating various fluorinated carboxylic acid, alcohol, amine and thiol derivatives into aziPDMS through aziridine ring opening reaction. Inset graph shows high resolution spectral results of the F1s region for PDMS (control) and ring-opened aziPDMS.
도 4a는 저-습윤성 PDMS에 대한 용액의 극성을 제어함으로써 aziPDMS의 구조적 특이성(표면 대 내부)을 후개질을 통해 확인하였다. aziPDMS 큐브(1 cm × 1 cm × 1 cm)를 개별적으로 제조된 0.25 mM 5(6)-카르복시플루오레신 용액(노랑색; CHCl3:MeOH=1:5, v/v) 및 0.25 mM 7-하이드록시쿠마린(청색; HCl3:MeOH=5:1, v/v)에 연속적으로 배양 및 세절하여 얻은 샘플을 가시광선 및 자외선을 조사하여 촬영한 이미지이다.4A confirmed the structural specificity (surface vs. internal) of aziPDMS via post-modification by controlling the polarity of the solution for low-wetting PDMS. aziPDMS cubes (1 cm × 1 cm × 1 cm) were prepared separately from 0.25 mM 5 (6) -carboxyfluorescein solution (yellow; CHCl 3 : MeOH = 1: 5, v / v) and 0.25 mM 7- A sample obtained by continuously incubating and slicing in hydroxycoumarin (blue; HCl 3 : MeOH = 5: 1, v / v) is an image taken by irradiating visible and ultraviolet rays.
도 4b는 용액의 극성도에 따른 aziPDMS의 후개질 표면 깊이를 확인한 결과이다. 메탄올의 양이 감소함에 따라, 첫 번째 개질 후(노란색 영역) 표면 깊이가 증가하였다.Figure 4b is a result of confirming the post-modified surface depth of aziPDMS according to the polarity of the solution. As the amount of methanol decreased, the surface depth increased after the first modification (yellow region).
도 4c는 용액 내 메탄올의 부피비 함수로서 % 표면 깊이의 플롯을 나타낸 도이다(전체 필름의 절반 폭에 대한 첫 번째 개질 후 표면 깊이의 비율로 정의됨).4C is a plot of% surface depth as a function of volume ratio of methanol in solution (defined as the ratio of surface depth after first modification to half width of the entire film).
도 5는 말단에 비닐기를 갖는 아지리딘 1 과 PDMS 예비중합체 사이의 Pt(0)-촉매화된 하이드로실릴화의 반응식을 도식화하여 나타낸 것이다.FIG. 5 shows a schematic of the Pt (0) -catalyzed hydrosilylation between aziridine 1 and PDMS prepolymer having a vinyl group at the end.
도 6은 실릴 하이드라이드(경화제 B)와 말단에 비닐기를 갖는 아지리딘(1) 사이의 Pt(0)-촉매화된 하이드로실릴화 및 아지리딘 및 벤조산의 개환 반응의 1H NMR 분광분석결과이다. 시판 시약인 경화제 B는 첨가제가 소량 첨가될 수 있으며, 이에 따른 피크가 검출될 수 있다.FIG. 6 shows the results of 1 H NMR spectroscopy of Pt (0) -catalyzed hydrosilylation and ring-opening reaction of aziridine and benzoic acid between silyl hydride (curing agent B) and aziridine (1) having a vinyl group at the end. . Curing agent B, which is a commercial reagent, may be added with a small amount of an additive, and thus a peak may be detected.
도 7은 메탄올 중의 5(6)-카르복시플루오레신(붉은색) 및 2.5 mM 5(6)-카르복시플루오레신(검은색) 용액에서 배양한 aziPDMS의 광발광 스펙트럼 결과이다.FIG. 7 shows photoluminescence spectra of aziPDMS incubated in 5 (6) -carboxyfluorescein (red) and 2.5 mM 5 (6) -carboxyfluorescein (black) solutions in methanol.
도 8은 도 4b에서의 절단된 aziPDMS 필름에 대한 경계화(thresholding) 기법을 적용한 결과이다. FIG. 8 is a result of applying a thresholding technique for the cut aziPDMS film in FIG. 4B.
본 발명의 발명자들은 분자 수준에서 맞춤형 고분자 지지체를 고안하기 위하여 분자 기질 상에 아지리딘을 도입하고, 아지리딘의 개환 반응을 이용하는 방법을 개발하여 본 발명을 완성하게 되었다. 구체적으로 본 발명은 말단이 비닐인 아지리딘 존재하에서 종래의 PDMS 예비중합체(Sylgard 184 Silicone elastomer kit)를 경화시킴으로써 제조된 아지리딘이 관능화된 맞춤형 PDMS(이하, aziPDMS) 및 이의 제조방법을 제공한다.The inventors of the present invention have completed the present invention by developing a method of introducing aziridine onto a molecular substrate and using a ring-opening reaction of aziridine in order to devise a customized polymer support at the molecular level. Specifically, the present invention provides a custom-made PDMS (hereinafter referred to as aziPDMS) functionalized by aziridine prepared by curing a conventional PDMS prepolymer (Sylgard 184 Silicone elastomer kit) in the presence of aziridine with vinyl at the end and a method for preparing the same. .
이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명은 하기 [화학식 1]로 표시되는 고분자를 제공한다.The present invention provides a polymer represented by the following [Formula 1].
[화학식 1][Formula 1]
Figure PCTKR2018002620-appb-I000006
Figure PCTKR2018002620-appb-I000006
상기 [화학식 1]에서, a는 1 내지 20의 정수이고, b는 0 내지 20의 정수이며, c는 1 내지 20의 정수이고, l은 1 내지 20의 정수이며, m은 1 내지 20의 정수이다.In [Formula 1], a is an integer of 1 to 20, b is an integer of 0 to 20, c is an integer of 1 to 20, l is an integer of 1 to 20, m is an integer of 1 to 20. to be.
본 발명에 있어서, 상기 [화학식 1]의 고분자는 카르복시산, 알콜, 아민기 또는 티올기 포함하는 화합물과 반응하여 아지리딘기가 개환될 수 있고, 상기 개환된 아지리딘 모이어티에 상기 카르복시산, 알콜, 아민기 또는 티올기 포함하는 화합물이 부착되는 것일 수 있다.In the present invention, the polymer of [Formula 1] may be ring-opened by reacting with a compound containing a carboxylic acid, alcohol, amine group or thiol group, the carboxylic acid, alcohol, amine group to the ring-opened aziridine moiety Or a compound containing a thiol group may be attached.
본 발명에 의하면, 상기 [화학식 1]의 고분자는 신축성을 보유하는 것이 특징으로, 250 %까지 용이하게 신장될 수 있다.According to the present invention, the polymer of [Formula 1] is characterized by retaining elasticity, it can be easily stretched up to 250%.
본 발명에 의하면, 상기 [화학식 1]의 고분자는 종래의 PDMS와 비교하여 광학적 및 기계적 특성의 손실이 없으면서도, 경량성 및 기계적 탄성은 향상되었다.According to the present invention, the polymer of [Formula 1] is improved in light weight and mechanical elasticity without loss of optical and mechanical properties compared to the conventional PDMS.
또한, 본 발명에 따른 아지리딘이 관능화된 PDMS(aziPDMS)는 입수가 용이한 예비 중합체로부터 용이하게 합성할 수 있다.In addition, aziridine-functionalized PDMS according to the present invention (aziPDMS) can be easily synthesized from readily available prepolymers.
본 발명은 하기 [화학식 2]로 표시되는 화합물, 하기 [화학식 3]으로 표시되는 화합물 및 하기 [화학식 4]로 표시되는 화합물을 카르스테트 촉매(karstedt' catalyst) 하에서 반응시켜 하기 [화학식 1]로 표시되는 고분자를 제조하는 단계;를 포함하는 아지리딘기를 보유한 폴리디메틸실록산계 고분자의 제조방법을 제공한다.The present invention reacts the compound represented by the following [Formula 2], the compound represented by the following [Formula 3] and the compound represented by the following [Formula 4] under a karstedt 'catalyst (Formula 1) It provides a method for producing a polydimethylsiloxane-based polymer having an aziridine group, including the step of preparing a polymer represented by.
[화학식 2][Formula 2]
[화학식 3][Formula 3]
Figure PCTKR2018002620-appb-I000008
Figure PCTKR2018002620-appb-I000008
[화학식 4][Formula 4]
Figure PCTKR2018002620-appb-I000009
Figure PCTKR2018002620-appb-I000009
[화학식 1][Formula 1]
Figure PCTKR2018002620-appb-I000010
Figure PCTKR2018002620-appb-I000010
상기 [화학식 1] 내지 [화학식 4]에서, a는 1 내지 20의 정수이고, b는 0 내지 20의 정수이며, c는 1 내지 20의 정수이고, l은 1 내지 20의 정수이며, m은 1 내지 20의 정수이고, a + b + c = n이다.In [Formula 1] to [Formula 4], a is an integer of 1 to 20, b is an integer of 0 to 20, c is an integer of 1 to 20, l is an integer of 1 to 20, m is It is an integer of 1-20, and a + b + c = n.
본 발명에 의하면, 상기 반응은 50 내지 100 ℃에서 0.5 내지 3시간 동안 수행하는 열경화 반응일 수 있다.According to the present invention, the reaction may be a thermosetting reaction carried out at 50 to 100 ℃ for 0.5 to 3 hours.
본 발명에 의하면, 상기 [화학식 4]의 화합물은 (1-벤질아지리딘-2-일)메탄올과 클로로디메틸(비닐)실란을 40 내지 80 ℃로 반응시킴으로써 제조되는 것일 수 있으며, 바람직하게는 염기 존재하의 유기용매에서 반응시키는 것일 수 있다. 상기 염기는 트리에틸아민일 수 있으나 이에 한정되는 것은 아니다. 상기 유기용매는 메틸렌클로라이드, 테트라하이드로퓨란, N,N-디메틸포름아마이드, 디메틸설폭사이드, 톨루엔, 에탄올, 메탄올, 에틸아세테이트 및 에테르 중에서 선택되는 유기용매 일 수 있으나 이에 한정되는 것은 아니며, 바람직하게는 톨루엔일 수 있다.According to the present invention, the compound of [Formula 4] may be prepared by reacting (1-benzylaziridin-2-yl) methanol with chlorodimethyl (vinyl) silane at 40 to 80 ° C., preferably a base It may be reacted in the organic solvent in the presence. The base may be triethylamine, but is not limited thereto. The organic solvent may be an organic solvent selected from methylene chloride, tetrahydrofuran, N, N-dimethylformamide, dimethyl sulfoxide, toluene, ethanol, methanol, ethyl acetate and ether, but is not limited thereto. Toluene.
본 발명에 의하면, 상기 (1-벤질아지리딘-2-일)메탄올은 에틸 2,3-디브로모프로파노이이트를 벤질아민을 질소 기류 및 트리에틸아민과 같은 염기 존재하에서 반응시켜 에틸 1-벤질아지리딘-2-카복실레이트를 제조하는 단계; 및 상기 에틸 1-벤질아지리딘-2-카복실레이트를 리튬알루미늄하이드라이드와 반응시키는 단계;를 포함하여 수행하여 제조될 수 있다.According to the present invention, the (1-benzylaziridin-2-yl) methanol is reacted with ethyl 2,3-dibromopropanoate in the presence of a base such as benzylamine in a nitrogen stream and triethylamine. Preparing benzylaziridine-2-carboxylate; And reacting the ethyl 1-benzylaziridine-2-carboxylate with lithium aluminum hydride.
본 발명에 의하면, 상기 [화학식 2]로 표시되는 화합물 10 중량부에 대하여, 상기 [화학식 3]으로 표시되는 화합물 0.5 내지 2 중량부 및 상기 [화학식 4]로 표시되는 화합물 0.02 내지 0.2 중량부로 반응시키는 것일 수 있다. 상기 [화학식 4]로 표시되는 화합물의 함량이 상기 범위 미만이면 클릭 가능한 부분이 너무 적어 후개질이 용이하지 않으며, 신축성을 나타내기 어렵다. 한편, 상기 범위를 초과하면 베이스와 경화제 사이의 가교 결합에 심각한 간섭현상이 일어나 투명성을 잃게 되고, 분말이나 유성의 불투명한 고분자가 제조되므로 바람직하지 않다.According to the present invention, with respect to 10 parts by weight of the compound represented by [Formula 2], 0.5 to 2 parts by weight of the compound represented by [Formula 3] and 0.02 to 0.2 parts by weight of the compound represented by [Formula 4] It may be to. When the content of the compound represented by the above [Formula 4] is less than the above range, the clickable portion is too small, so that post-modification is not easy, and it is difficult to exhibit elasticity. On the other hand, if the above range is exceeded, a serious interference phenomenon occurs in the crosslinking between the base and the curing agent, and the transparency is lost, and powder or oily opaque polymer is produced, which is not preferable.
본 발명에 따른 상기 [화학식 1]로 표시되는 화합물은 카르복시산, 알콜, 아민기 또는 티올기 포함하는 화합물과 반응시켜 [화학식 1]의 아지리딘기를 개환시키는 단계;를 더 포함하여 수행할 수 있으며, 상기 카르복시산, 알콜, 아민기 또는 티올기 포함하는 화합물이 개환된 아지리딘의 모이어티에 부착될 수 있다.The compound represented by the above [Formula 1] according to the present invention is reacted with a compound containing a carboxylic acid, alcohol, amine group or thiol group to ring-open the aziridine group of [Formula 1]; The compound containing the carboxylic acid, alcohol, amine group or thiol group may be attached to the moiety of the ring-opened aziridine.
본 발명은 다음과 같은 세 가지 특징이 있다.The present invention has three features as follows.
(1) 클릭할 수 있는 PDMS의 제조는 아지리딘의 고리 구조를 손상 없이, 간단하게 종래의 PDMS 경화공정을 이용하여 제조될 수 있다.(1) The manufacture of clickable PDMS can be prepared simply using a conventional PDMS curing process, without damaging the ring structure of aziridine.
(2) PDMS의 후개질은 표면에 국한되지 않고, 아지리딘의 개환 반응을 통해 공극 내부에서도 가능하다.(2) The post-modification of PDMS is not limited to the surface, but also inside the pores through the ring opening reaction of aziridine.
(3) 프로그래밍 가능한 반응성, 화학 선택성 및 아지리딘의 넓은 기질 범위를 이용하여 원하는 반응 조건에 반응하는 아지리딘계 물질을 디자인할 수 있다.(3) Programmable reactivity, chemical selectivity, and a wide range of substrates of aziridine can be used to design aziridine-based materials that react to the desired reaction conditions.
본 발명에 있어서, 분자 기질은 폴리디메틸실록산(polydimethylsiloxane; PDMS)일 수 있다.In the present invention, the molecular substrate may be polydimethylsiloxane (PDMS).
본 발명에 따르면, 아지리딘이 포함된 PDMS는 말단이 비닐인 아지리딘의 존재하에서 예비중합체를 열경화시켜 제조될 수 있다. 상기 예비중합체는 도 1a에 개시된 바와 같이, 베이스(part A)와 경화제(part B)가 8:1 내지 20:1의 중량비로 함유된 것일 수 있으며, 바람직하게는 10:1 중량비로 함유된 것 일 수 있다.According to the present invention, PDMS containing aziridine can be prepared by thermosetting the prepolymer in the presence of aziridine which is terminally vinyl. As shown in FIG. 1A, the prepolymer may include a base (part A) and a curing agent (part B) in a weight ratio of 8: 1 to 20: 1, and preferably in a 10: 1 weight ratio. Can be.
본 발명에 의하면, 상기 열경화는 80 ℃에서 2시간 동안 수행되는 것일 수 있으며, 이를 통해, 공유결합된 아지리딘 팬던트를 갖는 PDMS로 전환된 합성물(aziPDMS)을 얻을 수 있다. 이렇게 수득된 aziPDMS는 기존의 PDMS가 보유한 광학적 투명성과 기계적 탄성이 유지된 것일 수 있다.According to the present invention, the thermosetting may be performed at 80 ° C. for 2 hours, thereby obtaining a composite (aziPDMS) converted to PDMS having a covalently bonded aziridine pendant. The aziPDMS thus obtained may maintain optical transparency and mechanical elasticity of the existing PDMS.
aziPDMS의 후개질은 아지리딘 팬던트의 직교링 개환 반응을 통해 달성될 수 있다(도 1b). 본 발명에 의하면, 알코올, 아민, 티올 및 카르복시산이 aziPDMS의 후개질에 사용될 수 있다.Post-modification of aziPDMS can be achieved through the orthogonal ring-opening reaction of aziridine pendants (FIG. 1B). According to the invention, alcohols, amines, thiols and carboxylic acids can be used for the post-modification of aziPDMS.
본 발명에 따른 제조공정 및 구조 변형 반응은 간단하고 효과적이며, 상용 시약을 이용하여 수행될 수 있다. 이러한 장점들과 함께 아지리딘의 다양하고 견고한 개환 반응은 맞춤형 고분자 재료를 제조하는데 유용하다.The production process and structural modification reactions according to the invention are simple and effective and can be carried out using commercial reagents. Together with these advantages, the various and robust ring opening reactions of aziridine are useful for preparing custom polymeric materials.
이하 본 발명을 실시예에 기초하여 더욱 상세하게 설명하지만, 하기에 개시되는 본 발명의 실시 형태는 어디까지 예시로써, 본 발명의 범위는 이들의 실시 형태에 한정되지 않는다. 본 발명의 범위는 특허청구범위에 표시되었고, 더욱이 특허 청구범위 기록과 균등한 의미 및 범위 내에서의 모든 변경을 함유하고 있다. 또한, 이하의 실시예, 비교예에서 함유량을 나타내는 "%" 및 "부"는 특별히 언급하지 않는 한 중량 기준이다.Hereinafter, the present invention will be described in more detail with reference to Examples, but embodiments of the present invention disclosed below are exemplified to the last, and the scope of the present invention is not limited to these embodiments. The scope of the invention is indicated in the appended claims, and moreover contains all modifications within the meaning and range equivalent to the claims. In addition, "%" and "part" which show content in a following example and a comparative example are a basis of weight unless there is particular notice.
<실시예><Example>
<시약><Reagent>
특별히 명시하지 않는 한 모든 시약은 시판되는 시약을 구매하여 사용하였다. 유기용매는 대정 (DAEJUNG, KOREA)에서 구입하였으며, 물은 Aqua MAX-Basic System (탈이온수, ~18.2 MΩ·cm의 전기 비저항)을 사용하여 정제하였다. 다우 코닝사의 Sylgard 184 elastoemr kit를 사용하였다.Unless otherwise specified, all reagents were purchased from commercially available reagents. Organic solvents were purchased from Daejeong (DAEJUNG, KOREA) and water was purified using Aqua MAX-Basic System (deionized water, electrical resistivity of ~ 18.2 MΩ · cm). Dow Corning's Sylgard 184 elastoemr kit was used.
<장치><Device>
1H 및 13C NMR 스펙트럼은 CDCl3를 용매로 사용하고, 잔류용매를 내부 표준으로 사용하여 Bruker FT-NMR Advance-500으로 측정되었다. 화학적 이동은 내부 TMS와 관련된 ppm으로 표시되며, 커플링 상수(J)는 Herz이다. MS (ESI-QTOF) 측정은 Bruker compat Q-TOF MS로 측정하였다. 모든 XPS의 측정은 단색화된 Al Kα 소스가 있는 Thermo Scientific K-Alpha XPS 장치에서 수행하였다. UV-vis 스펙트럼은 Agilent technologies - Agilent 8453 UV-Vis 분광계를 이용하여 측정하였다. UV-vis 흡광도 측정의 경우, 손상되지 않은(intact) PDMS 필름을 블랭크로 사용하였다. 샘플의 필름 두께는 일정하게 유지하였다 (~ 2 mm). 샘플의 두께는 미시적인 수준에서 필연적으로 오차가 발생되나, 아지리딘의 질량비의 함수로서 λmax의 전반적인 경향에 영향을 주지는 않는다. 광발광 스펙트럼은 Hitachi F-7000 Fluorescence spectrophotometer를 사용하여 측정하였다. PDMS 및 aziPDMS의 인장강도는 Universal Testing Machine (UTM; WL 2100)을 사용하여 측정하였다. 1 H and 13 C NMR spectra were determined by Bruker FT-NMR Advance-500 using CDCl 3 as solvent and residual solvent as internal standard. Chemical shifts are expressed in ppm relative to internal TMS, with a coupling constant (J) of Herz. MS (ESI-QTOF) measurements were measured with Bruker compat Q-TOF MS. All XPS measurements were performed on a Thermo Scientific K-Alpha XPS instrument with a monochromated Al K α source. UV-vis spectra were measured using Agilent technologies-Agilent 8453 UV-Vis spectrometer. For UV-vis absorbance measurements, an intact PDMS film was used as the blank. The film thickness of the sample was kept constant (˜2 mm). The thickness of the sample inevitably causes errors at the microscopic level, but does not affect the overall tendency of λ max as a function of the mass ratio of aziridine. Photoluminescence spectra were measured using a Hitachi F-7000 Fluorescence spectrophotometer. Tensile strength of PDMS and aziPDMS was measured using a Universal Testing Machine (UTM; WL 2100).
합성예Synthesis Example 1. 1- 1.1- 벤질benzyl -2-(((-2-((( 디메틸(비닐)실릴Dimethyl (vinyl) silyl )) 옥시Oxy )-)- 메틸methyl )아지리딘(1)의 합성Synthesis of Aziridine (1)
[반응식 1] Scheme 1
Figure PCTKR2018002620-appb-I000011
Figure PCTKR2018002620-appb-I000011
합성예Synthesis Example 1.1. 에틸 2,3- 1.1. Ethyl 2,3- 디브로모프로파노에이트Dibromopropanoate
디클로로메탄 75 mL에 에틸아세테이트 (16.3 mL, 150 mmol)를 혼합한 후, 0 ℃의 불활성 대기 하에서 브롬 (7.7 mL, 150 mmol)을 20 분에 걸쳐 천천히 투여하였다. 반응혼합물을 0 ℃에서 1시간 동안 반응시킨 다음, 상온에서 3시간 동안 추가 반응하였다. 반응완료 후, 반응혼합물에 Na2S2O3 포화용액을 첨가하여 반응을 종료시킨 뒤, 디클로로메탄과 물을 이용하여 추출하였으며, 유기층으로부터 목적하는 화합물을 얻었다. 얻어진 화합물의 분석 결과 종래 알려진 데이터 값과 일치하였다. 수율 97% (37.6 g)Ethyl acetate (16.3 mL, 150 mmol) was mixed with 75 mL of dichloromethane, and bromine (7.7 mL, 150 mmol) was slowly administered over 20 minutes under an inert atmosphere at 0 ° C. The reaction mixture was reacted at 0 ° C. for 1 hour and then further reacted at room temperature for 3 hours. After completion of the reaction, the reaction mixture was added with a saturated Na 2 S 2 O 3 solution to terminate the reaction, and extracted with dichloromethane and water to obtain the desired compound from the organic layer. The analysis of the obtained compound was consistent with previously known data values. Yield 97% (37.6 g)
합성예Synthesis Example 1.2. 에틸 1- 1.2. Ethyl 1- 벤질아지리딘Benzylaziridine -2--2- 카복실레이트Carboxylate
0 ℃ 질소기류 하에서 무수에탄올 60 mL에 벤질아민 (3.4 mL, 30.8 mmol)이 용해시킨 다음, 여기에 합성예 1.1의 화합물 (8 g, 30.8 mmol) 및 트리메틸아민 (8.5 mL, 69.6 mmol)을 순차적으로 첨가하고, 60 ℃로 승온하여 1시간 동안 반응시켰다. 반응 종료 후, 용매를 제거하고, 디클로로메탄과 물을 이용하여 추출하였다. 유기층을 건조제(황산마그네슘)으로 건조한 뒤, 감압 증류하였다. 농축된 혼합물은 컬럼크로마토그래피법으로 정제하여 백색 고체의 목적하는 화합물을 얻었다. 얻어진 화합물의 분석 결과 종래 알려진 데이터 값과 일치하였다. 수율 80% (6.2 g)Benzylamine (3.4 mL, 30.8 mmol) was dissolved in 60 mL of anhydrous ethanol under a nitrogen stream at 0 ° C., and the compound of Synthesis Example 1.1 (8 g, 30.8 mmol) and trimethylamine (8.5 mL, 69.6 mmol) were sequentially added thereto. The reaction mixture was added at 0 ° C. and heated at 60 ° C. for 1 hour. After the reaction was completed, the solvent was removed and extracted with dichloromethane and water. The organic layer was dried with a desiccant (magnesium sulfate) and then distilled under reduced pressure. The concentrated mixture was purified by column chromatography to give the desired compound as a white solid. The analysis of the obtained compound was consistent with previously known data values. Yield 80% (6.2 g)
합성예Synthesis Example 1.3. (1- 1.3. (One- 벤질아지리딘Benzylaziridine -2-일)메탄올-2-yl) methanol
디에틸에테르 130 mL에 합성예 1.2의 화합물 (6.2 g, 30.2 mmol)을 용해시킨 뒤, 리튬알루미늄하이드라이드 (2.29 g, 60.4 mmol)를 천천히 첨가하고, 상온에서 3시간동안 교반하였다. 반응 종료 후 물 (2.3 mL)을 첨가하여 퀸칭시키고, 15% NaOH 수용액 (2.3 mL) 및 물 (6.9 mL)를 첨가한 다음 혼합물을 여과하였다. 반응혼합물을 에틸아세테이트로 추출한 뒤, 유기층은 건조제로 건조하고, 감압하여 용매를 제거함으로서 황색 분말 형태의 목적하는 화합물을 얻었다. 얻어진 화합물의 분석 결과 종래 알려진 데이터 값과 일치하였다. 수율 87% (4.31 g)After dissolving the compound of Synthesis Example 1.2 (6.2 g, 30.2 mmol) in 130 mL of diethyl ether, lithium aluminum hydride (2.29 g, 60.4 mmol) was slowly added, followed by stirring at room temperature for 3 hours. After the reaction was quenched by addition of water (2.3 mL), 15% aqueous NaOH solution (2.3 mL) and water (6.9 mL) were added, and the mixture was filtered. After the reaction mixture was extracted with ethyl acetate, the organic layer was dried with a desiccant and dried under reduced pressure to remove the solvent to obtain the desired compound in the form of a yellow powder. The analysis of the obtained compound was consistent with previously known data values. Yield 87% (4.31 g)
합성예Synthesis Example 1.4. 1- 1.4. One- 벤질benzyl -2-(((-2-((( 디메틸(비닐)실릴Dimethyl (vinyl) silyl )) 옥시Oxy )) 메틸methyl )아지리딘(1)Aziridine (1)
질소 기류하의 상온에서 증류시킨 톨루엔 50 mL에 합성예 1.3의 화합물 (5.5 g, 33.7 mmol) 및 트리에틸아민 (5.0 mL, 36.1 mmol)을 첨가한 뒤 클로로디메틸(비닐)실란 (5.1 mL, 35.4 mmol)을 천천히 첨가하였다. 반응 혼합물을 60 ℃로 승온하여 일야 반응시킨 뒤, 에틸아세테이트로 3회 추출하였다. 추출된 에틸아세테이트를 혼합한 뒤, 증류수로 세척한 뒤, 에틸아세테이트에 잔류하는 수분을 무수황산나트륨으로 제거하고, 감압 증류하여 노란색 오일형의 목적하는 화합물을 얻었다. 수율 92% (7.7 g)To 50 mL of toluene distilled at room temperature under a nitrogen stream, the compound of Synthesis Example 1.3 (5.5 g, 33.7 mmol) and triethylamine (5.0 mL, 36.1 mmol) were added, followed by chlorodimethyl (vinyl) silane (5.1 mL, 35.4 mmol). ) Was added slowly. The reaction mixture was heated to 60 ° C., reacted overnight, and then extracted three times with ethyl acetate. After the extracted ethyl acetate was mixed and washed with distilled water, water remaining in ethyl acetate was removed with anhydrous sodium sulfate and distilled under reduced pressure to obtain a yellow oil-like compound. Yield 92% (7.7 g)
1H NMR (500 MHz, CDCl3) δ 7.21 - 7.40 (m, 5H), 6.05 - 6.16 (m, 1H), 5.97 - 6.05 (m, 1H), 5.75 (dd, J=20.1, 4.0 Hz, 1H), 3.62 (dd, J=11.1, 5.6 Hz, 1H), 3.53 (dd, J=11.1, 5.6 Hz, 1H), 3.45 (s, 2H), 1.72 - 1.82 (m, 1H), 1.69 (s, 1H), 1.45 (d, J=6.1 Hz, 1H), 0.18 (s, 6H); 1 H NMR (500 MHz, CDCl 3 ) δ 7.21-7.40 (m, 5H), 6.05-6.16 (m, 1H), 5.97-6.05 (m, 1H), 5.75 (dd, J = 20.1, 4.0 Hz, 1H ), 3.62 (dd, J = 11.1, 5.6 Hz, 1H), 3.53 (dd, J = 11.1, 5.6 Hz, 1H), 3.45 (s, 2H), 1.72-1.82 (m, 1H), 1.69 (s, 1H), 1.45 (d, J = 6.1 Hz, 1H), 0.18 (s, 6H);
13C NMR (126 MHz, CDCl3) δ 139.1, 137.2, 133.3, 128.3, 129.9, 65.3, 64.3, 40.5, 31.2, -2.2, -2.3; 13 C NMR (126 MHz, CDCl 3 ) δ 139.1, 137.2, 133.3, 128.3, 129.9, 65.3, 64.3, 40.5, 31.2, -2.2, -2.3;
MS (ESI) m/z: [M + H]+ calcd for C14H22NOSi: 248.1465; found: 248.1429.MS (ESI) m / z : [M + H] + calcd for C 14 H 22 NOSi: 248.1465; found: 248.1429.
비교예Comparative example 1.  One. PDMS의PDMS 제조 Produce
베이스와 경화제가 포함된 Sylgard 184(Dow Corning) 실리콘 엘라스토머 키트를 사용하였다. PDMS를 제조하는 통상적인 합성방법은 비닐과 Si-H에 백금촉매를 첨가하는 것으로, 구체적으로, 베이스와 경화제를 10:1의 중량비로 혼합하고, 혼합물을 감압하에서 2시간 동안 방치하여 내부의 기포를 제거한 뒤, 80 ℃에서 2시간 동안 경화시켜 제조하였다.Sylgard 184 (Dow Corning) silicone elastomer kit with base and curing agent was used. A conventional synthesis method for preparing PDMS is to add a platinum catalyst to vinyl and Si-H. Specifically, the base and the curing agent are mixed at a weight ratio of 10: 1, and the mixture is left under reduced pressure for 2 hours to form internal bubbles. After the removal, it was prepared by curing at 80 ℃ for 2 hours.
실시예Example 1.  One. aziPDMS의제조Manufacture of aziPDMS
aziPDMS는 알려진 PDMS 제조방법을 이용하여 제조하였다. 도 1a에 개시한 바와 같이, 베이스(A), 경화제(B) 및 말단에 비닐기를 갖는 아지리딘(1)를 혼합하여 aziPDMS를 제조하였으며, 모델 엘라스토머로 Sylgard 184를 사용하였다. 구체적으로, 폴리테트라플루오로에틸렌(PTFE) 몰드에 베이스와 경화제의 혼합물과 1-벤질-2-(((디메틸(비닐)실릴)옥시)메틸)아지리딘을 붓고, 내포된 기포를 제거하기 위해 진공데시케이터 안에 20분 동안 넣어 탈기하였다. 혼합물을 80 ℃에서 2시간 동안 열경화시켜 aziPDMS 필름을 제조하였다.aziPDMS was prepared using a known PDMS manufacturing method. As shown in FIG. 1A, aziPDMS was prepared by mixing the base (A), the curing agent (B), and the aziridine (1) having a vinyl group at the end thereof, and Sylgard 184 was used as a model elastomer. Specifically, 1-benzyl-2-(((dimethyl (vinyl) silyl) oxy) methyl) aziridine is poured into a polytetrafluoroethylene (PTFE) mold to remove the contained bubbles. The degassed was put into a vacuum desiccator for 20 minutes. The mixture was thermoset at 80 ° C. for 2 hours to prepare aziPDMS film.
이때, 베이스:경화제:1-벤질-2-(((디메틸(비닐)실릴)옥시)메틸)아지리딘은 10:1:X 중량비로 혼합하였으며, X는 0.025 내지 0.2 중량비의 범위로 함유시켰다. X가 0.2보다 큰 경우에는 다량의 말단에 비닐기를 갖는 아지리딘에 의해 베이스와 경화제 사이의 가교 결합이 심각한 간섭 현상이 일어나 분말 또는 유성의 불투명한 PDMS가 제조되므로 바람직하지 않았다. In this case, base: curing agent: 1-benzyl-2-(((dimethyl (vinyl) silyl) oxy) methyl) aziridine was mixed in a 10: 1: X weight ratio, and X was contained in a range of 0.025 to 0.2 weight ratio. When X is larger than 0.2, crosslinking between the base and the curing agent is severely caused by aziridine having a vinyl group at a large amount of terminal, which is not preferable because a powder or oily opaque PDMS is produced.
실시예 1.1 : X가 0.025인 aziPDMSExample 1.1 aziPDMS with X 0.025
실시예 1.2 : X가 0.05인 aziPDMSExample 1.2 aziPDMS with X of 0.05
실시예 1.3 : X가 0.1인 aziPDMSExample 1.3 aziPDMS with X of 0.1
실시예 1.4 : X가 0.125인 aziPDMSExample 1.4 aziPDMS with X of 0.125
실시예 1.5 : X가 0.15인 aziPDMSExample 1.5 aziPDMS with X of 0.15
실시예 1.6 : X가 0.2인 aziPDMSExample 1.6 aziPDMS with X equal to 0.2
실시예Example 2. 카르복시산을 사용한 개환  2. Ring opening using carboxylic acid aziPDMS의aziPDMS 제조 Produce
상이한 함량의 아지리딘을 가지는 aziPDMS 필름을 2.5 mM 5(6)-카르복시플루오레신 용액(메탄올:CH2Cl2=1:1; v/v)에 넣고 상온에서 18시간 (또는 50 ℃ 정도의 약간 높은 온도에서 12시간)동안 인큐베이션 하였다. 다음으로, 메탄올과 CH2Cl2로 세척하여 미반응 5(6)-카르복시플루오레신을 제거한 뒤, 고온의 오븐 및 진공 하에서 건조하였다.AziPDMS films with different amounts of aziridine were placed in 2.5 mM 5 (6) -carboxyfluorescein solution (methanol: CH 2 Cl 2 = 1: 1; v / v) at room temperature for 18 hours (or 50 ° C). Incubation for 12 h at slightly higher temperature). Next, the resultant was washed with methanol and CH 2 Cl 2 to remove unreacted 5 (6) -carboxyfluorescein, followed by drying under a high temperature oven and vacuum.
실시예Example 3. 플루오르화 카르복시산, 페놀, 티오페놀 및  3. Fluorinated carboxylic acid, phenol, thiophenol and 아민Amine 유도체를 사용한 개환  Ring opening using derivative aziPDMS의aziPDMS 제조 Produce
플루오로화 카르복시산으로서 3,5-비스(트리플루오로메틸)벤조익산을, 페놀로서 2,3,4,5,6-펜타플로오로페놀을, 티오페놀로서 2,3,4,5,6-펜타플루오로벤젠티올을 사용하였다. aziPDMS 필름을 5(6)-카르복시플루오레신을 이용하는 제조예 3에 따른 방법과 유사한 방법으로 다양한 플루오르화 친핵체를 이용하여 aziPDMS 필름을 후개질하였다. aziPDMS는 각 플루오르화 화합물 20 mM THF 용액에서 인큐베이션하였다. 아민 유도체(4-트리플루오로메틸아닐린)의 경우, 후개질을 위해 루이스산 (10 mM of BF3·OEt2) 을 첨가하였다. 루이스산을 이용한 아민에 대한 aziPDMS의 후개질은 불소화에 의한 아민의 감소된 친핵성에 기인한다.3,5-bis (trifluoromethyl) benzoic acid as fluorinated carboxylic acid, 2,3,4,5,6-pentafluorophenol as phenol, 2,3,4,5,6 as thiophenol Pentafluorobenzenethiol was used. The aziPDMS film was post-modified using various fluorinated nucleophiles in a manner similar to the method according to Preparation Example 3 using aziPDMS film using 5 (6) -carboxyfluorescein. aziPDMS was incubated in 20 mM THF solution of each fluorinated compound. For the amine derivative (4-trifluoromethylaniline), Lewis acid (10 mM of BF 3 · OEt 2 ) was added for post-modification. Post-modification of aziPDMS for amines with Lewis acids is due to the reduced nucleophilicity of the amines by fluorination.
시험예Test Example 1. 1H NMR을 이용한 실릴  1. Silyl using 1H NMR 하이드라이드Hydride 폴리머(도 1a의 B; 경화제)와With polymer (B in FIG. 1A; curing agent) 말단에  At the end 비닐기를Vinyl 갖는 아지리딘의 반응 결정 및 벤조산에 의한 개환 반응 검증 Determination of reaction of aziridine having and ring opening reaction by benzoic acid
도 5에 나타낸 바와 같이, PDMS 예비중합체의 열 경화공정은 실릴하이드라이드와 비닐 유도체 사이의 Pt(0) 촉매에 의한 하이드로 실릴화가교 결합의 기초가 된다.As shown in FIG. 5, the thermal curing process of the PDMS prepolymer is the basis for hydrosilylation crosslinking by Pt (0) catalyst between silylhydride and vinyl derivative.
도 1a에서 도식화 한 바와 같이, 화합물 1(말단에 비닐기를 갖는 아지리딘)의 비닐기가 Pt 촉매의 존재하에서 실릴 하이드라이드와 결합하는지 확인하기 위하여 상온의 깨끗한 환경에서 Pt 촉매 (Karstedt's catalyst, 1 mg, 0.001 mmol, 0.001%) 존재하에 화합물 1 (120 mg, 0.48 mmol)에 B(600 mg)를 첨가하여 80 ℃에서 1.5 시간동안 교반시킨 혼합물의 1H NMR 스펙트럼을 측정하여 반응을 확인하였다.As depicted in FIG. 1A, the Pt catalyst (Karstedt's catalyst, 1 mg, in a clean environment at room temperature) to confirm that the vinyl group of Compound 1 (aziridine with a vinyl group at the end) binds to silyl hydride in the presence of a Pt catalyst B (600 mg) was added to Compound 1 (120 mg, 0.48 mmol) in the presence of 0.001 mmol, 0.001%) and the reaction was confirmed by measuring the 1 H NMR spectrum of the mixture which was stirred at 80 ° C. for 1.5 hours.
도 6에서 하단의 검정색 1H NMR 스펙트럼은 출발 혼합물의 결과이며, 상단의 붉은색 1H NMR 스펙트럼은 반응 1.5시간 후의 결과이다. 도 6에 나타낸 바와 같이, 1H NMR 스펙트럼을 통해 화합물 1과 B 사이의 하이드로실릴화반응이 확인되었다. 화합물 1의 비닐 양성자에 상응되는 5.75, 6.01 및 6.10 ppm의 화학적 이동이 1.5 시간 내에 완전히 사라져서 목적하는 커플링 반응이 매우 효율적임을 확인하였다. 또한, 반응 후에도 아지리딘 고리 구조는 유지되었는데, 아지리딘 잔기에 상응하는 화학적 이동 (1.45, 1.69 및 1.77 ppm)은 변하지 않고 유지되는 것을 통해 확인하였다.In FIG. 6 the black 1 H NMR spectrum at the bottom is the result of the starting mixture, and the red 1 H NMR spectrum at the top is the result after 1.5 hours of reaction. As shown in FIG. 6, the hydrosilylation reaction between Compounds 1 and B was confirmed through 1 H NMR spectra. The chemical shifts of 5.75, 6.01 and 6.10 ppm corresponding to the vinyl protons of Compound 1 disappeared completely within 1.5 hours, confirming that the desired coupling reaction was very efficient. In addition, the aziridine ring structure was maintained after the reaction, and the chemical shifts corresponding to the aziridine residues (1.45, 1.69 and 1.77 ppm) were confirmed by being kept unchanged.
다음으로, 공유 결합된 아지리딘이 카르복실산 유도체와 효과적인 개환 반응을 수행할 수 있는지 확인하였다. 구조적으로 단순한 화합물인 벤조산을 이용하여 실험을 실시하였다. 디클로로메탄 (3 mL) 중의 벤조산 (67.0 mg, 0.55 mmol)을 상온에서 13시간 동안 아지리딘 기능화된 예비중합체에 첨가하였다. 1H NMR로 확인한 결과 아지리딘의 개환 반응은 공유결합된 아지리딘의 양성자에 상응하는 1.45, 1.69 및 1.77 ppm에서의 화학적 이동이 완전히 사라져서, 원하는 개환 반응이 정량적으로 완료되었음이 확인되었다.Next, it was confirmed whether the covalently bonded aziridine can perform an effective ring-opening reaction with the carboxylic acid derivative. The experiment was carried out using benzoic acid, which is a structurally simple compound. Benzoic acid (67.0 mg, 0.55 mmol) in dichloromethane (3 mL) was added to the aziridine functionalized prepolymer at room temperature for 13 hours. 1 H NMR confirmed that the ring-opening reaction of aziridine completely disappeared the chemical shifts at 1.45, 1.69 and 1.77 ppm corresponding to the covalently bound aziridine protons, thus quantitatively completing the desired ring-opening reaction.
시험예Test Example 2. X선 광전자 분광법(X-ray photoelectron spectroscopy;  2. X-ray photoelectron spectroscopy; XPSXPS ) 분석) analysis
도 1c에 나타낸 바와 같이, 실시예 1의 aziPDMS와 비교예 1의 PDMS의 겉보기 광학 투명도는 구별되지 않았다. 실시예 1의 aziPDMS와 비교예 1의 PDMS의 표면 젖음성은 유사하였다 (Δθ=6°).As shown in FIG. 1C, the apparent optical transparency of the aziPDMS of Example 1 and the PDMS of Comparative Example 1 was not distinguished. The surface wettability of aziPDMS of Example 1 and PDMS of Comparative Example 1 was similar (Δθ = 6 °).
XPS를 이용한 구조분석을 하기 위해 aziPDMS를 불순물 없는 헥산과 디클로로메탄에 각각, 6시간 동안 침지한 다음 헹구었다. 하기 도 1d에 나타낸 바와 같이, aziPDMS의 스캔 조사에서 PDMS 백본에 해당하는 Si2p (~ 102 eV) 및 O1s (~ 532 eV) 신호를 나타내었으며, 아지리딘 팬던트에 해당하는 C1s (~ 284 eV) 및 N1s (~ 398 eV)신호가 나타났다. 표 1에 나타낸 바와 같이, PDMS 및 aziPDMS에서 모두 계산값과 실험값의 원자 농도(원자%)가 일치하였다.For structural analysis using XPS, aziPDMS was immersed for 6 hours in hexane and dichloromethane without impurities, and then rinsed. As shown in FIG. 1D, a scan of aziPDMS showed Si2p (˜102 eV) and O1s (˜532 eV) signals corresponding to the PDMS backbone, and C1s (˜284 eV) and N1s corresponding to aziridine pendants. (~ 398 eV) signal appeared. As shown in Table 1, the atomic concentration (atomic%) of the calculated value and the experimental value was consistent in both PDMS and aziPDMS.
깊이 프로파일 XPD 스캔은 aziPDMS 표면을 에칭하여 수행하였다(에칭속도 : ~ 5 nm/min). aziPDMS의 깊이 프로파일은 에칭하는 동안 Si와 O의 원자%가 가장 높았고, c가 가장 낮은 원자%를 나타냈다. 흥미로롭게도 aziPDMS의 N1s의 원자%는 측정하는 동안 일정하였으며, 이는 아지리딘이 표면과 내부에서 동일하게 존재하는 것을 의미한다.The depth profile XPD scan was performed by etching the aziPDMS surface (etching rate: ˜5 nm / min). The depth profile of aziPDMS showed the highest atomic percent of Si and O and the lowest atomic percent of c during etching. Interestingly, the atomic% of N1s in aziPDMS was constant during the measurement, which means that aziridine is present at the same surface and interior.
contentscontents 원자%atom%
SiSi CC OO NN
PDMSPDMS calcd (b)calcd (b) 25.025.0 50.050.0 25.025.0 0.00.0
exptl (c)exptl (c) 29.429.4 43.943.9 26.726.7 0.00.0
aZiPDMS (a)aZiPDMS (a) calcd (d)calcd (d) 24.624.6 50.750.7 24.624.6 0.10.1
exptl (c)exptl (c) 27.327.3 47.647.6 24.624.6 0.50.5
(a). 베이스:경화제:말단이 비닐인 아지리딘(1)의 중량비 10:1:0.2(a). Base: Hardener: Weight ratio of the aziridine (1) whose end is vinyl 10: 1: 0.2
(b). 원자%는 (SiOC2)를 반복단위로 사용하여 계산함(b). Atomic% is calculated using (SiOC 2 ) as a repeating unit
(c). 결과 데이터는 3번 측정한 평균값임(c). The resulting data is the average of three measurements
(d). 아지리딘 펜던트가 있거나 또는 없는 실록산 반복단위의 분자량(Mw)은 74임(d). Molecular weight (Mw) of siloxane repeating units with or without aziridine pendant is 74
시험예Test Example 3. 5(6)- 3.5 (6)- 카복실플루오레신에Carboxyfluorescein 의한 개환  Ring opening aziPDMS의aziPDMS 광발광Photoluminescence 스펙트럼에서의 λmax의 적색이동 Red shift of λmax in the spectrum
표면 깊이는 임계값 방법을 사용한 이미지 분석을 통해 결정하였다. 후개질의 표면 깊이를 결정하기 위해서, 극성 및 비극성 용액에서 두 종류의 다른 광발광성 개환시약을 이용하여 aziPDMS를 기능화하였다. 다기능화된 aziPDMS 필름의 광발광 이미지를 얻었으며, 상기 이미지를 소프트웨어(ImageJ)를 사용하여 회색조 이미지로 변환하였으며, 상기 회색조 이미지를 이용하여 단일 강도 값을 기준으로 이미지를 분석하였다. 각 픽셀에서의 그레이 레벨 강도는 컬러 이미지에서 적색, 녹색 및 청색 부분에 대한 컬러값의 평균으로 계산하였다. 최대 엔트로피 한계점을 적용하여 회색 음영 이미지에서 2진(흑색 및 백색) 이미지를 생성하였다. 상기 방법을 사용하면 모든 이미지 픽셀을 전경(본 발명의 아지리딘이 5(6)-카르복시플루오레신에 의해 개환된 영역) 또는 배경 픽셀로 분류할 수 있다. 첫 번째 후개질 후 표면깊이의 백분율은 라인에서 필름의 폭의 절반에 대한 흰색 픽셀(표면 후개질에 해당)의 폭의 비율을 결정하고, 10개 이상의 각 샘플로부터 평균하여 추정하였다.Surface depth was determined through image analysis using the threshold method. To determine the surface depth of the post-modification, aziPDMS was functionalized using two different photoluminescent ring-opening reagents in polar and nonpolar solutions. Photoluminescent images of the multifunctionalized aziPDMS film were obtained, the images were converted to grayscale images using software (ImageJ), and the grayscale images were analyzed based on single intensity values. The gray level intensity at each pixel was calculated as the average of the color values for the red, green and blue portions of the color image. Maximum entropy thresholds were applied to generate binary (black and white) images from grayscale images. Using this method, all image pixels can be classified as foreground (regions of the aziridine of the present invention ring-opened by 5 (6) -carboxyfluorescein) or background pixels. The percentage of surface depth after the first post-modification was determined by determining the ratio of the width of the white pixels (corresponding to the surface post-modification) to half the width of the film in the line, and estimated by averaging from each of at least 10 samples.
아지리딘의 개환 반응을 통한 aziPDMS의 후개질은 먼저 카르복실산 유도체로 실시하였다. 질소 분위기 하에서 주변 온도 또는 50 ℃와 같은 약간 높은 온도의 조건으로 전자공여성 치환기(본 발명의 벤질 N-치환체)를 갖는 아지리딘을 촉매 및 첨가제 없이 카르복시산으로 처리하여 개환 반응시켰다.Post-modification of aziPDMS via ring opening of aziridine was first performed with carboxylic acid derivatives. Aziridine having an electron-donating substituent (benzyl N-substituent of the present invention) under a nitrogen atmosphere at a slightly higher temperature, such as 50 ° C., was subjected to ring opening by treatment with carboxylic acid without catalyst and additives.
카르복시산의 산성 양성자는 아지리딘의 질소 원자의 고립전자쌍과 반응한다. 이 반응은 활성화된 아지리디늄 구조를 생성하고, 이어서 카복실레이트의 후속첨가가 일어난다. 상기 아지리딘의 개환 반응은 우수한 화학적 및 위치 선택성과 높은 수율(> 90 %)을 나타낸다. aziPDMS의 후개질을 가시화하기 위하여 aziPDMS 내부의 아지리딘과 광발광 카복실산 유도체인 5(6)-카르복시플루오세인을 반응시켜 매핑 분석을 실시하였다.The acidic protons of the carboxylic acids react with the lone pair of nitrogen atoms of the aziridine. This reaction produces an activated aziridinium structure followed by subsequent addition of carboxylate. The ring opening reaction of aziridine shows good chemical and regioselectivity and high yield (> 90%). In order to visualize the post-modification of aziPDMS, mapping analysis was performed by reacting aziridine in aziPDMS with 5 (6) -carboxyfluorine, a photoluminescent carboxylic acid derivative.
상온에서 실시예 1.6의 aziPDMS 및 비교예 1의 PDMS를 2.5 mM 5(6)-카르복시플루오레신 메탄올:CH2Cl2=1:1(부피비) 용액에 18시간 동안 배양한 다음, 메탄올 및 CH2Cl2로 세척하여 미반응 5(6)-카르복시플루오세인을 제거하였다.AziPDMS of Example 1.6 and PDMS of Comparative Example 1 were incubated in a 2.5 mM 5 (6) -carboxyfluorescein methanol: CH 2 Cl 2 = 1: 1 (volume ratio) solution for 18 hours at room temperature, followed by methanol and CH Unreacted 5 (6) -carboxyfluorine was removed by washing with 2 Cl 2 .
도 2a에 나타낸 바와 같이, 자외선(수은 UV램프의 254 nm; 24 W)의 조사 시, 실시예 1.6의 aziPDMS는 육안으로 쉽게 관찰되는 광발광을 방출하는 반면, 비교예 1의 PDMS는 광발광을 방출하지 않았다. 상기와 같은 결과는 아지리딘과 카르복시산의 개환 반응이 효율적이고 직교하여 이루어짐을 의미한다.As shown in FIG. 2A, upon irradiation with ultraviolet (254 nm of mercury UV lamp; 24 W), aziPDMS of Example 1.6 emits photoluminescence easily observed with the naked eye, while PDMS of Comparative Example 1 emits photoluminescence. Did not release. The above results mean that the ring-opening reaction of aziridine and carboxylic acid is efficient and orthogonal.
도 7에 나타낸 바와 같이, aziPDMS의 광발광 스펙트럼은 ~ 531 nm에서 λmax를 나타내었다. 상기 방출 밴드는 용액 상에서 자유 5(6)-카르복시플루오레신에 비해 약간 적색 이동(Δλmax = ~ 10)하였다 (λmax = ~ 521 nm in methanold). 상기 λmax의 적색 이동은 aziPDMS의 골격에 공유결합된 5(6)-카르복시플루오레신을 확인할 수 있는 지표로, PDMS에 연결된 5(6)-카르복시플루오레신 분자 사이의 상호작용은 λmax의 변화를 유도하기 때문이다.As shown in FIG. 7, the photoluminescence spectrum of aziPDMS showed λ max at ˜531 nm. The emission band shifted slightly red (Δλ max = ˜10) compared to free 5 (6) -carboxyfluorescein in solution (λ max = ˜521 nm in methanold). The red shift of λ max is an indicator that identifies 5 (6) -carboxyfluorescein covalently bound to the backbone of aziPDMS, and the interaction between 5 (6) -carboxyfluorescein molecules linked to PDMS is λ max . Because it induces a change.
시험예Test Example 4. 신장성 평가 4. Elongation Evaluation
아지리딘과 5(6)-카르복시플루오레신의 개환 반응 전과 후에 실시예 1.6의 aziPDMS의 탄성계수를 측정하여 실시예 1.6의 aziPDMS의 탄성 특성이 후개질시 변화하는지 여부를 확인하였다. 도 2b는 카르복시산 화합물(5(6)-카르복시플루오세인)에 의한 개환 반응 전 후의 PDMS 및 aziPDMS 섬유의 강도-신장 곡선이다. 미처리 및 개환 aziPDMS에 대한 인장 강도는 각각 0.66MPa 및 0.51 MPa의 유의적이지 않은 변화(~ ×1.3)를 나타내었다.The elastic modulus of aziPDMS of Example 1.6 was measured before and after the ring-opening reaction of aziridine and 5 (6) -carboxyfluorescein to determine whether the elastic properties of aziPDMS of Example 1.6 changed during post-modification. FIG. 2B is a strength-elongation curve of PDMS and aziPDMS fibers before and after ring opening with a carboxylic acid compound (5 (6) -carboxyfluorescein). Tensile strength for untreated and ring-opened aziPDMS showed no significant change (˜ × 1.3) of 0.66 MPa and 0.51 MPa, respectively.
한편, 도 2c는 상이한 연신율에 따른 본 발명의 개환 aziPDMS 섬유의 이미지를 나타낸 결과로, 200%까지 충분히 신장되는 것이 확인되었다.On the other hand, Figure 2c shows the image of the ring-opening aziPDMS fiber of the present invention according to different elongation, it was confirmed that it is sufficiently extended to 200%.
시험예Test Example 5. 호환성 연구 5. Compatibility Study
본 발명에 따른 aziPDMS와 종래의 PDMS가 호환될 수 있는지 확인하기 위하여 도 2d와 같이 PDMS와 aziPDMS를 반복하여 열경화시켜 적층 구조를 제조하였다. 구조 전체에 대한 매핑 분석을 수행하기 위하여 제조된 적층 구조의 필름을 5(5)-카르복시플루오세인 용액에 배양하였다. 도 2d에 나타낸 바와 같이, 광발광은 PDMS 영역이 아닌 aziPDMS 영역에서 선택적으로 관찰되었으며, aziPDMS 영역이 선택적으로 후개질된 것을 확인하였다. 상기와 같은 결과를 통해 aziPDMS에서 아지리딘의 개환 반응이 PDMS 지지체의 후개질에 효율적이라는 것을 확인하였다.In order to confirm whether the aziPDMS and the conventional PDMS according to the present invention are compatible, the PDMS and the aziPDMS were repeatedly thermally cured as shown in FIG. 2D to prepare a laminated structure. The laminated films prepared in order to perform mapping analysis on the entire structure were incubated in 5 (5) -carboxyfluorescein solution. As shown in FIG. 2D, photoluminescence was selectively observed in the aziPDMS region rather than the PDMS region, and it was confirmed that the aziPDMS region was selectively modified. Through the above results, it was confirmed that the ring opening reaction of aziridine in aziPDMS is efficient for the post-modification of the PDMS support.
시험예Test Example 6. 아지리딘 함량에 따른  6. According to the aziridine content aziPDMS의aziPDMS 특성 평가 Property evaluation
실시예 1에서의 방법으로 베이스 및 경화제의 중량비는 동일하게 유지하면서, 말단이 비닐인 아지리딘의 중량비 x를 조절하여 aziPDMS 내부의 아지리딘 함량이 상이한 aziPDMS 필름을 제조하고, 아지리딘 함량에 따른 특성을 평가하였다.While maintaining the weight ratio of the base and the curing agent in the same manner as in Example 1, by adjusting the weight ratio x of the aziridine terminal is vinyl to prepare aziPDMS film having a different aziridine content inside aziPDMS, the characteristics according to the aziridine content Was evaluated.
도 3a는 실시예 1.1 내지 1.5에 따른 aziPDMS 필름으로 외관상 광학 투명도에서 미미한 변화가 관찰되었다. 또한, 도 3b에 나타낸 UV-vis 흡수스펙트럼을 참조하면, 아지리딘의 양이 증가함에 따라 259 nm에서의 흡수 밴드의 강도가 선형적으로 증가하였다.Figure 3a is aziPDMS film according to Examples 1.1 to 1.5 showed a slight change in the optical transparency apparent. In addition, referring to the UV-vis absorption spectrum shown in Figure 3b, the intensity of the absorption band at 259 nm increased linearly with the amount of aziridine.
아지리딘 함량 구배에 따른 개환 반응을 확인하기 위하여, 실시예 1.1 내지 1.5에 따른 aziPDMS 필름을 상온에서 18시간 동안 2.5 mM 5(6)-카르복시플루오레신 용액에 배양한 다음, 클로로포름 및 메탄올로 세척하고, 고온의 오븐 및 진공하에서 건조시켰다. 도 3c는 가시광선 및 UV 조사 하에서 촬영한 상기 필름들의 이미지이다. 개환된 aziPDMS의 광발광 강도는 말단이 비닐인 아지리딘의 함량 증가에 따라 함께 증가하였다. 상기와 같은 결과를 통해 도 3d에 나타낸 바와 같이, 광발광 방출 특성이 아지리딘의 함량과 선형적 상관관계가 있음을 확인하였다.In order to confirm the ring-opening reaction according to the aziridine content gradient, the aziPDMS film according to Examples 1.1 to 1.5 was incubated in a 2.5 mM 5 (6) -carboxyfluorescein solution for 18 hours at room temperature, and then washed with chloroform and methanol. And dried under hot oven and vacuum. 3C is an image of the films taken under visible and UV irradiation. The photoluminescence intensity of ring-opened aziPDMS increased with increasing content of aziridine, which is vinyl at the end. As shown in Figure 3d through the above results, it was confirmed that the photoluminescence emission characteristic has a linear correlation with the content of aziridine.
시험예Test Example 7. 기질 범위 평가 7. Substrate Range Assessment
aziPDMS 개환의 기질로 카르복시산, 티올, 알콜 및 아민 유도체와 같은 다양한 작용기를 갖는 화합물이 사용될 수 있다. 특히 불소 원자는 XPS 측정에서 강한 신호를 내기 때문에 aziPDMS의 개환 반응의 여부를 XPS로 확인하는 것이 용이하므로, 본 발명에서는 불소 함유 화합물을 실험에 이용하였다.As the substrate of the aziPDMS ring opening, compounds having various functional groups such as carboxylic acids, thiols, alcohols and amine derivatives can be used. In particular, since the fluorine atom gives a strong signal in the XPS measurement, it is easy to confirm whether or not the ring opening reaction of aziPDMS is by XPS. In the present invention, the fluorine-containing compound was used for the experiment.
실시예 1.1 내지 1.5의 aziPDMS 및 비교예 1의 PDMS를 3시간 또는 6시간 동안 상온에서 0.25 mM 불소함유 화합물의 THF 용액으로 처리한 뒤, 순수한 THF, CH2Cl2 및 메탄올로 세척하고, 고온의 오븐 및 진공하에서 건조하였다. 도 3e에 나타낸 바와 같이, F1s 피크가 개환 aziPDMS의 XPS 스펙트럼에서는 나타났으나, PDMS에서는 검출되지 않았다. 상기와 같은 결과는 개질 후 아지리딘의 개환 반응의 넓은 기질 범위를 나타낸다.AziPDMS of Examples 1.1 to 1.5 and PDMS of Comparative Example 1 were treated with THF solution of 0.25 mM fluorine-containing compound at room temperature for 3 or 6 hours, then washed with pure THF, CH 2 Cl 2 and methanol, Dry in oven and in vacuo. As shown in FIG. 3E, the F1s peak appeared in the XPS spectrum of the ring-opening aziPDMS, but was not detected in the PDMS. These results indicate a broad substrate range of ring opening reaction of aziridine after modification.
시험예Test Example 8. 표면 습윤성을 이용한 평가 8. Evaluation using surface wettability
도 1c에 나타낸 바와 같이, 통상적인 PDMS는 일반적으로 낮은 습윤성을 나타낸다(물방울의 정적 접촉각 θ = ~ 113°). 물이나 메탄올과 같은 높은 유전 상수의 액체에 의해서는 매우 낮은 습윤성을 나타내는 반면, n-헥산이나 클로로포름과 같은 낮은 유전 상수의 액체에 의해서는 표면에서 대부분의 영역으로 확산되어 PDMS가 팽창한다. 이러한 PDMS의 표면 습윤성을 이용하여 aziPDMS의 위치 특이성(표면 대 부피) 후개질을 추가로 입증하였다.As shown in FIG. 1C, conventional PDMS generally exhibits low wettability (static contact angle θ = ˜113 ° of water droplets). High dielectric constant liquids such as water and methanol show very low wettability, while low dielectric constant liquids such as n-hexane and chloroform diffuse into the majority of the area on the surface and expand PDMS. The surface wettability of these PDMS was used to further demonstrate the site specificity (surface to volume) post-modification of aziPDMS.
도 4에 나타낸 것과 같이, aziPDMS을 입방체(1cm×1cm×1cm)로 제작한 뒤, 50 ℃에서 12 시간 동안 광발광 화합물 (0.25 mM 5(6)-카르복시플루오레신)을 함유하는 극성용액(CHCl3:MeOH = 1:5 부피비)에서 배양한 뒤, 순수한 CHCl3 및 MeOH로 세척하고, 고온의 오븐 및 진공하에서 건조하였다. 건조된 입방체를 다른 광발광 화합물(254 nm UV 조사하에 청색 광발광을 방출하는 0.25 mM 7-하이드록시쿠마린)을 함유하는 보다 낮은 극성의 용액(CHCl3:MeOH = 5:1 부피비)에서 순차적으로 배양하였다. 입방체를 순수한 CHCl3 및 MeOH로 세척하고, 고온의 오븐 및 진공하에서 건조하고, 세절하였다.As shown in FIG. 4, after preparing aziPDMS into a cube (1 cm × 1 cm × 1 cm), a polar solution containing a photoluminescent compound (0.25 mM 5 (6) -carboxyfluorescein) at 50 ° C. for 12 hours ( Incubated in CHCl 3 : MeOH = 1: 5 volume ratio), washed with pure CHCl 3 and MeOH, and dried in a hot oven and in vacuo. The dried cubes were sequentially taken up in a lower polar solution (CHCl 3 : MeOH = 5: 1 volume ratio) containing other photoluminescent compounds (0.25 mM 7-hydroxycoumarin which emits blue photoluminescence under 254 nm UV irradiation). Incubated. The cubes were washed with pure CHCl 3 and MeOH, dried under hot oven and vacuum and shaved.
자외선 조사시 입방체는 표면과 내부에서 각각 노란색과 청색의 광발광을 보였다(도 4a). aziPDMS의 이러한 부위 특이적인 후개질은 세절된 필름의 광발광 이미지에서도 확인되었다. 후개질의 표면 깊이는 용액의 극성을 구배를 형성함으로써 제어될 수 있다. 광발광 화합물인 5(6)-카르복시플루오레신을 다양한 부피비의 CHCl3:MeOH 공용매(0:100~60:40)에 용해시킨 뒤, aziPDMS 입방체를 각각 배양한 뒤, 세척하고, 잔류 내부 부위를 후개질 시키기 위해 비극성 용액(CHCl3:MeOH = 9:1 부피비)에서 배양하였다. 표면 깊이는 상기의 이미지 분석방법을 이용하여 추정하였다. 표면 개질 후 용액 내 메탄올의 부피가 감소함에 따라 도 4b에 나타낸 바와 같이, 개질된 표면 깊이가 증가하였다. 이러한 경향은 메탄올의 부피비(용매의 극성과 직접적으로 관련이 있음)와 전체 표면의 절반 폭에 대한 첫 번째 개질 후 표면 깊이의 비율로 정의되는 % 표면 깊이를 연관시킴으로써 확인할 수 있다(도 4c). % 표면 깊이는 메탄올 비율이 70%인 지점에서 변화하기 시작하였다. During ultraviolet irradiation, the cube showed yellow and blue photoluminescence on the surface and inside, respectively (FIG. 4A). This site-specific post-modification of aziPDMS was also confirmed in photoluminescent images of fragmented films. The surface depth of the post-modification can be controlled by forming a gradient in the polarity of the solution. 5 (6) -carboxyfluorescein, a photoluminescent compound, was dissolved in various volume ratios of CHCl 3 : MeOH cosolvents (0: 100 to 60:40), and then cultured and washed with aziPDMS cubes, respectively. Was incubated in a nonpolar solution (CHCl 3 : MeOH = 9: 1 volume ratio) to post-modify. Surface depth was estimated using the above image analysis method. As the volume of methanol in the solution decreased after surface modification, the modified surface depth increased, as shown in FIG. 4B. This trend can be confirmed by correlating the volume ratio of methanol (which is directly related to the polarity of the solvent) with the% surface depth defined as the ratio of the surface depth after the first modification to half the width of the entire surface (FIG. 4C). The% surface depth began to change at the point where the methanol ratio was 70%.
본 발명에 따른 맞춤형 PDMS 및 이의 제조방법은 전례없이 매력적이며, 효율적인 것으로, 신축성 있는 디스플레이, 나노 잉크펜, 생체의학 센서칩, 광학재료 및 접촉 대전 표면 등의 분자적으로 조절된 기능을 필요로 하는 기능성 재료 및 장치를 구축하는데 유용하게 적용할 수 있다.The customized PDMS and its manufacturing method according to the present invention are unprecedentedly attractive and efficient, requiring molecularly controlled functions such as flexible displays, nano ink pens, biomedical sensor chips, optical materials and contact charging surfaces. It can be usefully applied to construct functional materials and devices.

Claims (9)

  1. 하기 [화학식 1]로 표시되는 고분자:A polymer represented by the following [Formula 1]:
    [화학식 1][Formula 1]
    Figure PCTKR2018002620-appb-I000012
    Figure PCTKR2018002620-appb-I000012
    상기 [화학식 1]에서, a는 1 내지 20의 정수이고, b는 0 내지 20의 정수이며, c는 1 내지 20의 정수이고, l은 1 내지 20의 정수이며, m은 1 내지 20의 정수이다.In [Formula 1], a is an integer of 1 to 20, b is an integer of 0 to 20, c is an integer of 1 to 20, l is an integer of 1 to 20, m is an integer of 1 to 20. to be.
  2. 제1항에 있어서,The method of claim 1,
    카르복시산, 알콜, 아민기 또는 티올기 포함하는 화합물과 반응하여 아지리딘기가 개환되며, 상기 화합물이 개환된 아지리딘 모이어티에 부착되는 것을 특징으로 하는 고분자.Reacting with a compound containing a carboxylic acid, an alcohol, an amine group or a thiol group, the aziridine group is ring-opened, wherein the compound is attached to the ring-opened aziridine moiety.
  3. 제1항에 있어서,The method of claim 1,
    신축성을 나타내는 것을 특징으로 하는 고분자.A polymer characterized by showing elasticity.
  4. 하기 [화학식 2]로 표시되는 화합물, 하기 [화학식 3]으로 표시되는 화합물 및 하기 [화학식 4]로 표시되는 화합물을 카르스테트 촉매(karstedt' catalyst) 하에서 반응시켜 하기 [화학식 1]로 표시되는 고분자를 제조하는 단계;를 포함하는 아지리딘기를 보유한 폴리디메틸실록산계 고분자의 제조방법:A compound represented by the following [Formula 2], a compound represented by the following [Formula 3] and a compound represented by the following [Formula 4] are reacted under a karstedt 'catalyst and represented by the following [Formula 1] A method for preparing a polydimethylsiloxane-based polymer having an aziridine group, including: preparing a polymer:
    [화학식 2][Formula 2]
    Figure PCTKR2018002620-appb-I000013
    Figure PCTKR2018002620-appb-I000013
    [화학식 3][Formula 3]
    Figure PCTKR2018002620-appb-I000014
    Figure PCTKR2018002620-appb-I000014
    [화학식 4][Formula 4]
    Figure PCTKR2018002620-appb-I000015
    Figure PCTKR2018002620-appb-I000015
    [화학식 1][Formula 1]
    Figure PCTKR2018002620-appb-I000016
    Figure PCTKR2018002620-appb-I000016
    상기 [화학식 1] 내지 [화학식 4]에서, a는 1 내지 20의 정수이고, b는 0 내지 20의 정수이며, c는 1 내지 20의 정수이고, l은 1 내지 20의 정수이며, m은 1 내지 20의 정수이고, a + b + c = n이다.In [Formula 1] to [Formula 4], a is an integer of 1 to 20, b is an integer of 0 to 20, c is an integer of 1 to 20, l is an integer of 1 to 20, m is It is an integer of 1-20, and a + b + c = n.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 반응은 50 내지 100 ℃에서 0.5 내지 3시간 동안 수행하는 것을 특징으로 하는 제조방법.The reaction is carried out at 50 to 100 ° C for 0.5 to 3 hours.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 [화학식 4]의 화합물은 (1-벤질아지리딘-2-일)메탄올과 클로로디메틸(비닐)실란을 40 내지 80 ℃로 반응시킴으로써 제조되는 것을 특징으로 하는 제조방법.The compound of [Formula 4] is prepared by reacting (1-benzylaziridin-2-yl) methanol and chlorodimethyl (vinyl) silane at 40 to 80 ℃.
  7. 제6항에 있어서,The method of claim 6,
    상기 (1-벤질아지리딘-2-일)메탄올은,The (1-benzylaziridin-2-yl) methanol,
    에틸 2,3-디브로모프로파노이이트를 벤질아민을 질소 기류 및 트리에틸아민과 같은 염기 존재하에서 반응시켜 에틸 1-벤질아지리딘-2-카복실레이트를 제조하는 단계; 및Reacting ethyl 2,3-dibromopropanoate with benzylamine in the presence of a base such as nitrogen stream and triethylamine to produce ethyl 1-benzylaziridine-2-carboxylate; And
    상기 에틸 1-벤질아지리딘-2-카복실레이트를 리튬알루미늄하이드라이드와 반응시키는 단계;를 포함하여 수행하여 제조되는 것을 특징으로 하는 방법.And reacting the ethyl 1-benzylaziridine-2-carboxylate with lithium aluminum hydride.
  8. 제4항에 있어서,The method of claim 4, wherein
    상기 [화학식 2]로 표시되는 화합물 10 중량부에 대하여, 상기 [화학식 3]으로 표시되는 화합물 0.5 내지 2 중량부 및 상기 [화학식 4]로 표시되는 화합물 0.02 내지 0.2 중량부로 반응시키는 것을 특징으로 하는 제조방법.To 10 parts by weight of the compound represented by [Formula 2], 0.5 to 2 parts by weight of the compound represented by the above [Chemical Formula 3] and 0.02 to 0.2 parts by weight of the compound represented by the [Formula 4] characterized in that the reaction Manufacturing method.
  9. 제4항에 있어서,The method of claim 4, wherein
    상기 [화학식 1]로 표시되는 화합물을 카르복시산, 알콜, 아민기 또는 티올기 포함하는 화합물과 반응시켜 [화학식 1]의 아지리딘기를 개환시키는 단계;를 더 포함하는 것을 특징으로 하는 제조방법.Reacting the compound represented by [Formula 1] with a compound containing a carboxylic acid, an alcohol, an amine group or a thiol group to ring-open the aziridine group of [Formula 1].
PCT/KR2018/002620 2017-03-14 2018-03-06 Polydimethylsiloxane polymer using aziridine and preparing method therefor WO2018169236A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170032036 2017-03-14
KR10-2017-0032036 2017-03-14
KR10-2017-0126109 2017-09-28
KR1020170126109A KR101949610B1 (en) 2017-03-14 2017-09-28 Polydimethylsiloxane using aziridine and method for preparing the same

Publications (1)

Publication Number Publication Date
WO2018169236A1 true WO2018169236A1 (en) 2018-09-20

Family

ID=63522353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002620 WO2018169236A1 (en) 2017-03-14 2018-03-06 Polydimethylsiloxane polymer using aziridine and preparing method therefor

Country Status (1)

Country Link
WO (1) WO2018169236A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6867246B2 (en) * 2000-05-31 2005-03-15 3M Espe Ag N-alkyl aziridine block copolymers and the uses thereof
WO2012016097A2 (en) * 2010-07-30 2012-02-02 Novartis Ag Amphiphilic polysiloxane prepolymers and uses thereof
KR101348107B1 (en) * 2011-06-23 2014-01-07 명지대학교 산학협력단 Hybrid organic-inorganic membrane and the fabrication method thereof
KR101631481B1 (en) * 2015-04-07 2016-06-17 고려대학교 산학협력단 Polymer using aziridine and method for preparing the same
JP2017502095A (en) * 2013-11-07 2017-01-19 スリーエム イノベイティブ プロパティズ カンパニー Fluoropolymer coatings containing aziridine compounds

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6867246B2 (en) * 2000-05-31 2005-03-15 3M Espe Ag N-alkyl aziridine block copolymers and the uses thereof
WO2012016097A2 (en) * 2010-07-30 2012-02-02 Novartis Ag Amphiphilic polysiloxane prepolymers and uses thereof
KR101348107B1 (en) * 2011-06-23 2014-01-07 명지대학교 산학협력단 Hybrid organic-inorganic membrane and the fabrication method thereof
JP2017502095A (en) * 2013-11-07 2017-01-19 スリーエム イノベイティブ プロパティズ カンパニー Fluoropolymer coatings containing aziridine compounds
KR101631481B1 (en) * 2015-04-07 2016-06-17 고려대학교 산학협력단 Polymer using aziridine and method for preparing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAVOLI, PAOLO: "On the effect of ring substituents in the carbonylation of aziridines", TETRAHEDRON, vol. 57, 2001, pages 1801 - 1812, XP004317641, DOI: doi:10.1016/S0040-4020(00)01152-2 *
MOON, HYUN KYUNG: "Aziridine-functionalized polydimethylsiloxanes for tailorable polymeric scaffolds: aziridine as a clickable moiety for structural modification of materials", POLYMER CHEMISTRY, vol. 8, 15 March 2017 (2017-03-15), pages 2287 - 2291, XP055548107, DOI: doi:10.1039/C7PY00317J *

Similar Documents

Publication Publication Date Title
JP5369629B2 (en) Crosslinkable silicon compound, method for producing the same, crosslinkable composition, siloxane polymer, silicone film, silicon compound as a raw material for the crosslinkable silicon compound, and method for producing the same
Wang Synthesis and characterization of UV-curable polydimethylsiloxane epoxy acrylate
WO2015002427A1 (en) Polyorganosiloxane compound, method for preparing same, and copolycarbonate resin comprising same
KR101752182B1 (en) Fluoropro polyhedral oligomeric silsesquioxane-silanes for glass-coating agent and manufacturing method of it
WO2014109455A1 (en) Photocurable composition, barrier layer comprising same, and encapsulated device comprising same
WO2014133287A1 (en) Resin composition for encapsulating optical element
WO2015099443A1 (en) Silsesquioxane having hot melt extrusion forming capability, highly transparent and highly heat-resistant plastic transparent substrate using same, and method of manufacturing same
WO2022196878A1 (en) Silicone-based composition and cured product thereof
WO2011096701A2 (en) Novel fluorinated compound, a composition comprising the same, and a production method for a film using the same
WO2016163741A1 (en) Polymer containing aziridine and method for producing same
WO2011008036A2 (en) Photosensitive polyimide and photosensitive resin composition comprising same
WO2018169236A1 (en) Polydimethylsiloxane polymer using aziridine and preparing method therefor
WO2018186683A1 (en) Biosensor substrate, method for producing same, and biosensor comprising same
EP0445306A1 (en) Novel polysilane composition
WO2014163376A1 (en) Coating composition comprising bis-type silane compound
WO2020017920A1 (en) Polyimide resin and negative-type photosensitive resin composition comprising same
KR20170018237A (en) A polymer film forming composition, polymer film prepared therefrom, and electronic device comprising the polymer film
WO2020235846A1 (en) Uv-curable, highly transparent, and amphiphobic fluorinated silica hybrid material having anti-fingerprint and anti-fouling properties
WO2014104655A1 (en) Composite sheet, and display device including same
WO2018097496A9 (en) Compound
JP2617150B2 (en) Fluorine-containing organosilicon compound
WO2018221980A1 (en) Resin composition for coating, and coating film comprising cured product thereof as coating layer
KR101949610B1 (en) Polydimethylsiloxane using aziridine and method for preparing the same
JP2001040094A (en) Epoxy group-containing silicone resin
WO2012057586A2 (en) Olefin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18768300

Country of ref document: EP

Kind code of ref document: A1