WO2018186683A1 - Biosensor substrate, method for producing same, and biosensor comprising same - Google Patents

Biosensor substrate, method for producing same, and biosensor comprising same Download PDF

Info

Publication number
WO2018186683A1
WO2018186683A1 PCT/KR2018/003986 KR2018003986W WO2018186683A1 WO 2018186683 A1 WO2018186683 A1 WO 2018186683A1 KR 2018003986 W KR2018003986 W KR 2018003986W WO 2018186683 A1 WO2018186683 A1 WO 2018186683A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
biosensor
compound
amine
norbornadiene
Prior art date
Application number
PCT/KR2018/003986
Other languages
French (fr)
Korean (ko)
Inventor
권오석
이창수
박철순
김경호
김진영
박선주
이지연
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Publication of WO2018186683A1 publication Critical patent/WO2018186683A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54353Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals with ligand attached to the carrier via a chemical coupling agent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/544Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic

Definitions

  • the present invention relates to a biosensor substrate and a method of manufacturing the same used for manufacturing a multi-diagnosis biosensor.
  • biosensors eg PCR, diagnostic kits, etc.
  • biosensors eg PCR, diagnostic kits, etc.
  • It is widely used for industrial purposes.
  • the substrate (platform) of the biosensor is made of a material such as glass, silicon, or polymer, and the material of the substrate is determined according to the use of the biosensor.
  • biosensors such as real-time PCs (RT-PCR) and biochips are made of glass or silicon substrates.
  • biosensors The measurement of these biosensors is based on hydrodynamics, so the performance of the biosensors varies markedly with the surface properties of the substrate. For example, biochips have different flow rates depending on whether their surfaces are hydrophilic or hydrophobic, resulting in differences in reaction rates, which have a significant effect on the response time and sensitivity of the biosensor. Therefore, in order to improve the performance of the biosensor, it is important to consider what kind of surface treatment substrate is used.
  • an object of the present invention is to provide a biosensor substrate that can efficiently provide multiple diagnostic biosensors.
  • Another object of the present invention is to provide a method for manufacturing the biosensor substrate.
  • Another object of the present invention is to provide a biosensor comprising the biosensor substrate.
  • Another object of the present invention is to provide a method of manufacturing the biosensor.
  • the substrate portion containing a polymer; And a modification unit coupled to the surface of the substrate unit and including a light sensitive derivative, wherein the light sensitive derivative is a norbornadiene-based derivative.
  • the norbornadiene derivative may have a structure represented by Formula 1 below.
  • the polymer is polystyrene (PS), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyester (PE), polycarbonate (PC), polyimide (PI), polyurethane (PU), Polyvinylidene fluoride (PVDF), polyamide (PA), polyethersulfone (PES), polytetrafluoroethylene (PTFE) and polymethyl methacrylate (PMMA) Can be.
  • the modified part may be coupled to a plurality of surfaces of the substrate part.
  • the present invention a) preparing a substrate portion containing a polymer; b) reacting the prepared substrate part with a catecholamine-based compound; c) introducing a amine-containing compound in which a norbornadiene derivative is bonded to a molecular terminal to a substrate portion reacted with the catecholamine-based compound to form a modified portion. .
  • the catecholamine-based compound may be dopamine.
  • the amine-containing compound may be a compound represented by the following formula (2).
  • n is an integer of 100 to 1,000,000.
  • step c) reacting the substrate portion with an amine-containing linker compound; And c-2) reacting the substrate portion reacted with the amine-containing linker compound with the norbornadiene-based compound.
  • the norbornadiene-based compound may be a compound represented by Formula 3 below.
  • the amine-containing linker compound includes polyethyleneimine, tris (2-aminoethyl) amine and 2,2 '-(ethylenedioxy) bis (ethylamine) (2,2' -(ethylenedioxy) bis (ethylamine)) may be one or more selected from the group consisting of.
  • the present invention the biosensor substrate; And a bio probe unit coupled to a reforming unit of the bio sensor substrate.
  • the bioprobe unit may include a plurality, and the plurality of bioprobes may probe different target materials from each other.
  • the present invention A) preparing the biosensor substrate; B) masking a portion of the biosensor substrate and irradiating light to form an activated reformed portion and an inactivated modified portion; C) binding a bioprobe to the activated reforming unit; D) activating the deactivated reformate; And E) combining the bioprobe unit that probes a different target material with the bioprobe unit coupled in step C) to the reformer activated in step D).
  • the activation of the reformed portion deactivated in step D) may be performed by heat treatment or reaction with a transition metal.
  • the biosensor substrate according to the present invention includes a reforming unit selectively activated or deactivated by light, the biosensor substrate may efficiently provide multiple diagnostic biosensors when the biosensor is manufactured using the biosensor substrate.
  • FIG 1 and 2 are reference diagrams for explaining the biosensor substrate of the present invention.
  • FIG. 3 is a reference diagram for explaining a method of manufacturing the biosensor substrate of the present invention.
  • FIG. 4 is a reference diagram for explaining the biosensor of the present invention.
  • FIG. 5 is a reference diagram for explaining a method of manufacturing a biosensor according to the present invention.
  • 6 to 8 are reference diagrams for explaining Experimental Examples 1 to 3 of the present invention, respectively.
  • the surface of the biosensor substrate which is the base substrate of the biosensor
  • the conventional method for example, plasma treatment
  • the surface is selectively modified so that various bio Characterized in that it can be combined with the probe, it will be described in detail with reference to the drawings as follows.
  • the biosensor substrate of the present invention includes a substrate portion 10 and a reforming portion 20.
  • the substrate unit 10 included in the biosensor substrate of the present invention serves as a base of the biosensor substrate, and may include a polymer.
  • the substrate unit 10 may be made of polystyrene (PS), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyester (PE), polycarbonate (PC), polyimide (PI), poly 1 selected from the group consisting of urethane (PU), polyvinylidene fluoride (PVDF), polyamide (PA), polyethersulfone (PES), polytetrafluoroethylene (PTFE) and polymethyl methacrylate (PMMA) It may consist of more than one species of polymer.
  • PS polystyrene
  • PE polyethylene
  • PP polypropylene
  • PVC polyvinyl chloride
  • PET polycarbonate
  • PI polyimide
  • poly 1 selected from the group consisting of urethane (PU), polyvinylidene fluoride (PVDF), polyamide (PA), polyethersulfone (PES), polytetrafluoroethylene (PTFE) and polymethyl methacrylate (PMMA) It may consist of
  • the reforming unit 20 included in the biosensor substrate of the present invention is present in combination with the surface of the substrate unit 10.
  • the reforming unit 20 is formed by undergoing a surface modification process of the substrate unit 10 in the manufacturing process of the biosensor substrate, and includes a light-sensitive derivative.
  • the light-sensitive derivative is a norbornadiene-based derivative, and may be a norbornadiene-based derivative including a norbornadiene group.
  • the modifying unit 20 may be selectively activated or deactivated when light (for example, ultraviolet rays) is irradiated by the norbornadiene-based derivative.
  • the norbornadiene-based derivative is not particularly limited, but preferably has a structure represented by the following formula (1). This is because the norbornadiene-based derivative has a structure represented by the following Chemical Formula 1, which is excellent in reactivity with light and can easily induce activation and deactivation of the reforming unit 20 according to specific conditions.
  • the norbornadiene-based derivative may be bonded to the substrate portion 10 by a linker including a structure in which a polymer (eg, polydopamine) and an amine-containing linker compound of the catecholamine-based compound are bonded.
  • a linker including a structure in which a polymer (eg, polydopamine) and an amine-containing linker compound of the catecholamine-based compound are bonded.
  • the reforming portion 20 is composed of a linker and a norbonadiene derivative
  • the polymer of the catecholamine-based compound included in the linker is bonded to the surface of the substrate portion 10
  • the amine-containing linker compound included in the linker Norbornadiene-based derivative (* in the structure of Formula 1 means a position bonded to the molecular terminal of the amine-containing linker compound) is bonded to the molecular terminal of the modified portion 20 is the surface of the substrate portion 10 Can be fixed.
  • the modifying unit 20 may be coupled to the surface of the substrate unit 10 in plurality.
  • the present invention provides a method of manufacturing the above-described biosensor substrate, which will be described in detail with reference to FIG. 3 as follows.
  • the substrate unit 10 including the polymer is prepared.
  • Preparation of the substrate portion 10 may be made by a conventionally known method.
  • the prepared substrate portion 10 is reacted with a catecholamine compound (first linker compound). Specifically, the substrate 10 is immersed in a salt mixed catecholamine-based compound (eg, dopamine hydrochloride) and a buffer solution (eg, Tri-HCl, etc.) for a predetermined time. By coupling a portion (L 1 ) of the linker capable of fixing the derivative of the light-sensitive compound on the surface of the substrate portion 10.
  • a catecholamine compound eg, dopamine hydrochloride
  • a buffer solution eg, Tri-HCl, etc.
  • the catecholamine-based compound is not particularly limited, but is preferably dopamine.
  • the reaction between the substrate unit 10 and the catecholamine-based compound may be performed at room temperature, and the reaction time is not particularly limited, but may be 2 to 4 hours.
  • the modified portion 20 is formed by introducing an amine-containing compound in which at least one norbornadiene-based derivative is bonded to a molecule terminal to the substrate portion 10 reacted with the catecholamine-based compound.
  • Formation of the modified portion 20 is a reaction of the amine-containing compound in which at least one norbornadiene-based derivative is bonded at the molecular end directly with the substrate portion 10, or the amine-containing linker compound (second linker compound)
  • the bonadiene compound may be formed by sequentially reacting with the substrate portion 10.
  • the modified amine-containing compound is reacted with the substrate portion 10 reacted with the catecholamine-based compound to modify the modified portion 20
  • the substrate 10 reacted with the catecholamine-based compound may be reacted with the amine-containing linker compound to form the remainder of the linker, and then the reacted portion 20 may be formed with the norbornadiene-based compound.
  • the linker compound refers to a reactant used to form a linker that serves as a bridge to connect (bond) the norbornadiene compound to the reforming unit 20.
  • the norbornadiene-based compound may include a norbornadiene group.
  • the norbornadiene-based compound is not particularly limited, but is preferably a compound represented by the following formula (3).
  • the amine-containing linker compound is not particularly limited, polyethyleneimine (M w : 100,000 or less), Tris (2-aminoethyl) amine (M w : 800 or less) and 2,2 '-(ethylenedioxy) bis (ethylamine) (2,2'- (ethylenedioxy) bis (ethylamine)) (M w : 25,000 or less) is preferably one or more selected from the group consisting of, and more preferably polyethyleneimine.
  • the amine-containing compound is not particularly limited, but is preferably a compound represented by the following formula (2).
  • n is an integer of 100 to 1,000,000.
  • the present invention provides a biosensor capable of probing (detecting) various bio target materials, which will be described in detail with reference to FIG. 4.
  • the biosensor of the present invention includes a biosensor substrate 100 and a bioprobe unit 200.
  • the biosensor substrate 100 included in the biosensor of the present invention serves as a base substrate of the biosensor. It is the same as that described in "Bio-Sensor Substrate” and will be omitted.
  • the bioprobe 200 included in the biosensor of the present invention is to be coupled to the modified portion 20 of the biosensor substrate 100 (specifically, to the norbornadiene derivative of the modified portion 20), Probe and detect bio targets (eg, target nucleic acids, blood glucose, glycated proteins, etc.).
  • the bioprobe 200 may be a functional group (eg, -S-, etc.) coupled with the reforming unit 20 of the biosensor substrate 100 and a reactor (eg, an antigen) capable of binding to a biotarget material. , Aptamer, protein, etc.) is not particularly limited.
  • a plurality of bioprobes 200 included in the biosensor may also be provided.
  • the plurality of bio probes may probe different bio target materials from each other, and accordingly, the present invention may provide a multi-diagnosis bio sensor.
  • the present invention provides a method of manufacturing the above-described biosensor, which will be described in detail with reference to FIG. 5 as follows.
  • the biosensor substrate 100 described above is prepared.
  • a portion of the prepared biosensor substrate 100 is masked and irradiated with light (for example, ultraviolet rays) to form the activated reformed portion 20a and the inactivated modified portion 20b.
  • light for example, ultraviolet rays
  • the mask is placed on the selected region and irradiated with light, and the modified portion 20a of the selected region is maintained in an active state.
  • the reformed portion 20b of the non-selected region may be placed in an inactive state by the reaction of the light-sensitive derivative with light to form the activated reformed portion 20a and the inactivated modified portion 20b.
  • the bio probe 200a is coupled to the activated reforming unit 20a.
  • the bio probe 200a may be combined by a conventionally known method (for example, bio-thiolation).
  • the deactivated reforming unit 20b is activated.
  • the method of activating the deactivated reforming unit 20b is not particularly limited, but may be performed by heat treatment or reaction with a transition metal.
  • the heat treatment condition of the reforming unit 20b is not particularly limited, but may be performed at 50 to 80 ° C. for 12 to 24 hours.
  • the biosensor substrate 100 is immersed in a solution containing silver (Ag), cobalt (Co), or tin (Sn) and reacted for 10 to 14 hours. It can be made to.
  • the bio-probe 200b for probing different bio target materials from the bio-probe 200a coupled in the step C) is coupled to the reformed portion 20b activated through the step D).
  • the reforming unit 20a to which the bio probe unit 200a is coupled, and a reforming unit to couple the new bio probe unit 200b to probe a different bio target material from the bio probe unit 200a to which the bio probe unit 200a is coupled ( 20b) masking the region and irradiating light (for example, ultraviolet rays) to deactivate the unmasked region, and then combining the new bioprobe 200b to process the bio-bonded in step C).
  • the bio probe 200b may be combined with the probe 200a to probe different bio target materials.
  • Combination of the bioprobe 200a and the bioprobe 200b for probing a different bio target material may be generally performed by a known method (eg, bio-thiolation).
  • a biosensor substrate and a biosensor using a light sensitive compound capable of reversible reaction which is inactivated when irradiated with light and activated by specific conditions (eg, heat treatment, reaction with a transition metal, etc.) Since the manufacturing of the biosensor to include can increase the manufacturing efficiency of the multi-diagnostic biosensor.
  • the biosensor substrate in irradiating light to a biosensor substrate including a modified portion combined with a light-sensitive derivative, the biosensor substrate is selectively activated or deactivated by irradiating light for each desired region.
  • the biosensor is manufactured by combining various bioprobes in the region, multiple diagnostic biosensors may be efficiently manufactured.
  • the present invention can easily induce the activation and deactivation of the biosensor substrate (region-by-region) using a mask, it is possible to easily manufacture a biosensor having a micro-miniature pattern.
  • Dicyclopentadiene, 2-butynedioic acid, 1,4-dioxane, N, N'-dicyclohexylcarbodiimide (N, N ') -Dicyclohexylcarbodiimide) were each purchased from Aldrich and used without purification.
  • a JEOL 3700 was used as an instrument.
  • Dicyclopentadiene (7 mL, 52 mmol) was distilled off to obtain monomeric cyclopentadiene (monomeric cyclopentadiene).
  • the resulting monomeric cyclopentadiene (2.0 g, 30 mmol) was mixed with 1,4-dionic acid (20 mL) and 2-butyndioic acid (3.0 g, 26.3 mmol) under an ice-water bath. To the solution. Next, the solution containing monomeric cyclopentadiene was stirred at room temperature overnight, and then hexane (5 mL) was added and collected to obtain a solid precipitate (4.18 g, yield: 88%).
  • 2,5-norbornadiene-2,3-dicarboxylic anhydride (100 mg) and Polyethyleneimine (300 mg) synthesized in Synthesis Example 2 were dissolved in dimethylformamide (10 ml), mixed and mixed at room temperature for 1 hour. Norbonadiene-containing solution was prepared by agitation. Next, dimethylformamide was removed from the solution by rotary evaporation and dried in vacuo without further purification to obtain an amine-containing compound (yield: 100%).
  • the solution was prepared by dissolving dopamine hydrochloride (2 mg / ml) in 10 mM Tri-HCl buffer solution (pH 8.5). After immersing the polystyrene substrate (polystyrene film) in the prepared solution and shaking for 3 hours at room temperature to obtain a substrate functionalized with polydopamine.
  • the substrate functionalized with polydopamine was then washed with deionized water and dried with nitrogen gas.
  • the substrate functionalized with polydopamine was immersed in a mixture of the amine-containing compound (100 mg) synthesized in Synthesis Example 3 and a 10 mM Tri-HCl buffer solution (pH 8.5, 20 ml), and then kept at room temperature overnight. Shaking. The amine containing compound was then introduced to the substrate functionalized with polydopamine by washing with deionized water and drying with nitrogen gas.
  • An amine-containing compound was introduced into a polydopamine-functionalized substrate in the same manner as in Example 1 except that a substrate made of polypropylene was applied instead of a substrate made of polystyrene.
  • An amine-containing compound was introduced into a polydopamine functionalized substrate in the same manner as in Example 1 except that a substrate made of polyvinyl chloride was applied instead of a substrate made of polystyrene.
  • the solution was prepared by dissolving dopamine hydrochloride (2 mg / ml) in 10 mM Tri-HCl buffer solution (pH 8.5). After immersing the polystyrene substrate (polystyrene film) in the prepared solution and shaking for 3 hours at room temperature to obtain a substrate functionalized with polydopamine. The substrate functionalized with polydopamine was then washed with deionized water and dried with nitrogen gas.
  • a polydopamine-functionalized substrate was immersed in a solution mixed with polyethyleneimine (1 g) and 10 mM Tri-HCl buffer solution (pH 8.5, 20 ml), and shaken overnight at room temperature. . Subsequently, the substrate was washed with deionized water and dried with nitrogen gas to introduce polyethyleneimine into the substrate functionalized with polydopamine.
  • polyethyleneimine was introduced into a solution obtained by dissolving 2,5-norbornadiene-2,3-dicarboxylic anhydride (100 mg) synthesized in Synthesis Example 2 in dimethylformamide (10 ml). The substrate was immersed and shaken overnight at room temperature.
  • the substrate was washed with dimethylformamide and deionized water and dried with nitrogen gas to introduce an amine containing compound into the substrate functionalized with polydopamine.
  • Steps A and B Part of the surface of the polystyrene substrate of Example 1 in which the amine containing compound was introduced was covered with a hand-made mask. Next, the surface of the substrate was irradiated with ultraviolet light ( ⁇ 300 nm) to inactivate the surface of the substrate not covered with a mask (quadricyclane form) so that a thiolation reaction did not occur (steps A and B).
  • ultraviolet light ⁇ 300 nm
  • step D the substrate reacted with thiol-terminal bioprobe was immersed in a mixed solution of AgClO 4 and methanol and reacted for 12 hours to activate the surface of the substrate which was inactivated.
  • steps A) to D) were repeated to prepare a biosensor in which another thiol-terminal bioprobe (thiol-terminal bioprobe) (HS-TATCAGTTCTTTGACCTTTGTCA-FAM-3 ', Bioneer) was combined.
  • thiol-terminal bioprobe HS-TATCAGTTCTTTGACCTTTGTCA-FAM-3 ', Bioneer
  • a biosensor was manufactured in the same manner as in Preparation Example 1, except that the polypropylene substrate of Example 2 was applied instead of the polystyrene substrate of Example 1.
  • a biosensor was manufactured in the same manner as in Preparation Example 1, except that the polyvinyl chloride substrate of Example 3 was applied instead of the polystyrene substrate of Example 1.
  • the FITC absorbance appears on a polypropylene substrate having a thiol-terminal bioprobe. This supports the incorporation of thiol-terminal bioprobes to polypropylene substrates incorporating polydopamine and amine containing compounds.
  • a bioprobe was prepared by combining a bioprobe in which the S. aureus electric field dielectric having -SH is bonded to the polypropylene substrate (PP) of Example 2 in a conventional manner.
  • a biosensor was prepared by combining a bioprobe in which the S. aureus electric field dielectric having -SH is bonded to the polyvinyl chloride substrate (PVC) of Example 3 in a conventional manner.
  • each substrate is showing a positive result for the S. aureus bacteria.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The present invention relates to a biosensor substrate, a method for producing same, and a biosensor comprising same.

Description

바이오 센서 기판, 이의 제조방법 및 이를 포함하는 바이오 센서Biosensor substrate, manufacturing method thereof and biosensor comprising same
본 발명은 다중 진단용 바이오 센서를 제조하는데 사용되는 바이오 센서 기판 및 이의 제조방법에 관한 것이다.The present invention relates to a biosensor substrate and a method of manufacturing the same used for manufacturing a multi-diagnosis biosensor.
현재까지 다양한 바이오/화학 센서가 개발되고 있고, 그 중 헬스케어 진단 산업 분야에서 위해요소(hazard)를 감지하는 바이오 센서(예를 들어, PCR, 진단 키트 등)는 정확성과 정밀성에서 우수한 결과를 보여줌으로써 산업용으로 널리 활용되고 있다.To date, various bio / chemical sensors have been developed, among which biosensors (eg PCR, diagnostic kits, etc.) that detect hazards in the healthcare diagnostic industry show excellent results in accuracy and precision. It is widely used for industrial purposes.
상기 바이오 센서의 기판(플랫폼)은 유리, 실리콘, 또는 고분자 등의 소재로 이루어져 있으며, 바이오 센서의 용도에 따라 기판의 소재가 결정되고 있다. 예를 들어 리얼타임 피씨알(RT-PCR)이나 바이오 칩과 같은 바이오 센서는 유리 또는 실리콘 소재의 기판이 사용되고 있다.The substrate (platform) of the biosensor is made of a material such as glass, silicon, or polymer, and the material of the substrate is determined according to the use of the biosensor. For example, biosensors such as real-time PCs (RT-PCR) and biochips are made of glass or silicon substrates.
이러한 바이오 센서의 측정은 유체역학에 기반을 두고 있어, 바이오 센서의 성능은 기판의 표면 성질에 따라 확연한 차이를 나타낸다. 예를 들어, 바이오 칩은 그 표면이 친수성인지 소수성인지에 따라 유체의 흐름이 달라져 반응속도의 차이를 가져오며, 이는 바이오 센서의 반응시간과 민감도에 중요한 영향을 끼치게 된다. 따라서 바이오 센서의 성능을 향상시키기 위해서는 어떠한 표면처리를 실시하여 제조된 기판을 사용할 것인지에 대해 중요하게 고려되어야 한다.The measurement of these biosensors is based on hydrodynamics, so the performance of the biosensors varies markedly with the surface properties of the substrate. For example, biochips have different flow rates depending on whether their surfaces are hydrophilic or hydrophobic, resulting in differences in reaction rates, which have a significant effect on the response time and sensitivity of the biosensor. Therefore, in order to improve the performance of the biosensor, it is important to consider what kind of surface treatment substrate is used.
그런데 현재 바이오 센서의 기판을 제조함에 있어 기판의 선택적 표면 기능화의 기술 개발이 부족한 상태임에 따라 다중 진단용 바이오 센서를 얻는데 한계가 있다. 또한 목표 물질을 검출하기 위한 바이오 탐침(항원, 압타머, 단백질 등)을 기판에 부착하기 위해 복잡한 후처리 공정이 요구됨에 따라 바이오 센서의 제조 효율이 떨어지는 문제점도 있다.However, there is a limitation in obtaining a multi-diagnosis biosensor as the current state of the technology development of selective surface functionalization of the substrate is insufficient in manufacturing a biosensor substrate. In addition, as a complex post-treatment process is required to attach a bioprobe (antigen, aptamer, protein, etc.) for detecting a target substance to a substrate, there is a problem in that manufacturing efficiency of the biosensor is deteriorated.
본 발명은 상기 문제점을 해결하기 위해, 다중 진단용 바이오 센서를 효율적으로 제공할 수 있는 바이오 센서 기판을 제공하는 것을 목적으로 한다.In order to solve the above problems, an object of the present invention is to provide a biosensor substrate that can efficiently provide multiple diagnostic biosensors.
또한, 본 발명은 상기 바이오 센서 기판의 제조방법을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a method for manufacturing the biosensor substrate.
또한, 본 발명은 상기 바이오 센서 기판을 포함하는 바이오 센서를 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a biosensor comprising the biosensor substrate.
또한, 본 발명은 상기 바이오 센서의 제조방법을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a method of manufacturing the biosensor.
상기 과제를 해결하기 위해 본 발명은, 고분자를 포함하는 기판부; 및 상기 기판부의 표면에 결합되며, 빛 감응형 유도체를 포함하는 개질부;를 포함하고, 상기 빛 감응형 유도체가 노르보나디엔(Norbornadiene)계 유도체인 것인 바이오 센서 기판을 제공한다.In order to solve the above problems, the present invention, the substrate portion containing a polymer; And a modification unit coupled to the surface of the substrate unit and including a light sensitive derivative, wherein the light sensitive derivative is a norbornadiene-based derivative.
상기 노르보나디엔계 유도체는 하기 화학식 1로 표시되는 구조를 가질 수 있다.The norbornadiene derivative may have a structure represented by Formula 1 below.
[화학식 1][Formula 1]
Figure PCTKR2018003986-appb-I000001
Figure PCTKR2018003986-appb-I000001
상기 고분자는 폴리스티렌(PS), 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리비닐클로라이드(PVC), 폴리에스테르(PE), 폴리카보네이트(PC), 폴리이미드(PI), 폴리우레탄(PU), 폴리비닐리덴플루오라이드(PVDF), 폴리아미드(PA), 폴리에테르설폰(PES), 폴리테트라플루오로에틸렌(PTFE) 및 폴리메틸메타크릴레이트(PMMA)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.The polymer is polystyrene (PS), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyester (PE), polycarbonate (PC), polyimide (PI), polyurethane (PU), Polyvinylidene fluoride (PVDF), polyamide (PA), polyethersulfone (PES), polytetrafluoroethylene (PTFE) and polymethyl methacrylate (PMMA) Can be.
상기 개질부는 상기 기판부의 표면에 복수 개로 결합될 수 있다.The modified part may be coupled to a plurality of surfaces of the substrate part.
본 발명은, a) 고분자를 포함하는 기판부를 준비하는 단계; b) 상기 준비된 기판부를 카테콜아민계 화합물과 반응시키는 단계; c) 상기 카테콜아민계 화합물과 반응한 기판부에 노르보나디엔(Norbornadiene)계 유도체가 분자 말단에 결합된 아민 함유 화합물을 도입하여 개질부를 형성하는 단계;를 포함하는 바이오 센서 기판의 제조방법을 제공한다.The present invention, a) preparing a substrate portion containing a polymer; b) reacting the prepared substrate part with a catecholamine-based compound; c) introducing a amine-containing compound in which a norbornadiene derivative is bonded to a molecular terminal to a substrate portion reacted with the catecholamine-based compound to form a modified portion. .
상기 카테콜아민계 화합물은 도파민일 수 있다.The catecholamine-based compound may be dopamine.
상기 아민 함유 화합물은 하기 화학식 2로 표시되는 화합물일 수 있다.The amine-containing compound may be a compound represented by the following formula (2).
[화학식 2][Formula 2]
Figure PCTKR2018003986-appb-I000002
Figure PCTKR2018003986-appb-I000002
상기 화학식 2에서 n은 100 내지 1,000,000의 정수이다.In Formula 2 n is an integer of 100 to 1,000,000.
상기 c) 단계는, c-1) 노르보나디엔계 화합물과 아민 함유 링커화합물을 반응시켜 상기 아민 함유 화합물을 합성하는 단계; 및 c-2) 상기 합성된 아민 함유 화합물을 상기 기판부와 반응시키는 단계;를 포함할 수 있다.C), c-1) synthesizing the amine-containing compound by reacting the norbornadiene-based compound with the amine-containing linker compound; And c-2) reacting the synthesized amine-containing compound with the substrate portion.
또한, 상기 c) 단계는, c-1) 상기 기판부를 아민 함유 링커화합물과 반응시키는 단계; 및 c-2) 상기 아민 함유 링커화합물과 반응한 기판부를 노르보나디엔계 화합물과 반응시키는 단계;를 포함할 수 있다.In addition, the step c), c-1) reacting the substrate portion with an amine-containing linker compound; And c-2) reacting the substrate portion reacted with the amine-containing linker compound with the norbornadiene-based compound.
상기 노르보나디엔계 화합물은 하기 화학식 3으로 표시되는 화합물일 수 있다.The norbornadiene-based compound may be a compound represented by Formula 3 below.
[화학식 3][Formula 3]
Figure PCTKR2018003986-appb-I000003
Figure PCTKR2018003986-appb-I000003
상기 아민 함유 링커화합물은 폴리에틸렌이민(polyethyleneimine), 트리스(2-아미노에틸)아민(Tris(2-aminoethyl)amine) 및 2,2'-(에틸렌디옥시)비스(에틸아민)(2,2'-(ethylenedioxy)bis(ethylamine))으로 이루어진 군에서 선택된 1종 이상일 수 있다.The amine-containing linker compound includes polyethyleneimine, tris (2-aminoethyl) amine and 2,2 '-(ethylenedioxy) bis (ethylamine) (2,2' -(ethylenedioxy) bis (ethylamine)) may be one or more selected from the group consisting of.
본 발명은, 상기 바이오 센서 기판; 및 상기 바이오 센서 기판의 개질부에 결합된 바이오 탐침부;를 포함하는 바이오 센서를 제공한다.The present invention, the biosensor substrate; And a bio probe unit coupled to a reforming unit of the bio sensor substrate.
상기 바이오 탐침부는 복수 개로 포함되며, 상기 복수 개의 바이오 탐침부는 서로 상이한 표적물질을 탐침할 수 있다.The bioprobe unit may include a plurality, and the plurality of bioprobes may probe different target materials from each other.
본 발명은, A) 상기 바이오 센서 기판을 준비하는 단계; B) 상기 바이오 센서 기판의 일부 영역을 마스킹(masking)하고, 빛을 조사하여 활성화된 개질부와 비활성화된 개질부를 형성하는 단계; C) 상기 활성화된 개질부에 바이오 탐침부를 결합시키는 단계; D) 상기 비활성화된 개질부를 활성화시키는 단계; 및 E) 상기 D) 단계에서 활성화된 개질부에 상기 C) 단계에서 결합된 바이오 탐침부와 상이한 표적물질을 탐침하는 바이오 탐침부를 결합시키는 단계;를 포함하는 바이오 센서의 제조방법을 제공한다.The present invention, A) preparing the biosensor substrate; B) masking a portion of the biosensor substrate and irradiating light to form an activated reformed portion and an inactivated modified portion; C) binding a bioprobe to the activated reforming unit; D) activating the deactivated reformate; And E) combining the bioprobe unit that probes a different target material with the bioprobe unit coupled in step C) to the reformer activated in step D).
상기 D) 단계에서 비활성화된 개질부의 활성화는 열처리 또는 전이금속과의 반응에 의해 이루어질 수 있다.The activation of the reformed portion deactivated in step D) may be performed by heat treatment or reaction with a transition metal.
본 발명에 따른 바이오 센서 기판은 빛에 의해 선택적으로 활성화 또는 비활성화되는 개질부를 포함하기 때문에 이를 이용하여 바이오 센서를 제조할 경우 다중 진단용 바이오 센서를 효율적으로 제공할 수 있다.Since the biosensor substrate according to the present invention includes a reforming unit selectively activated or deactivated by light, the biosensor substrate may efficiently provide multiple diagnostic biosensors when the biosensor is manufactured using the biosensor substrate.
도 1 및 도 2는 본 발명의 바이오 센서 기판을 설명하기 위한 참고도이다.1 and 2 are reference diagrams for explaining the biosensor substrate of the present invention.
도 3은 본 발명의 바이오 센서 기판의 제조방법을 설명하기 위한 참고도이다.3 is a reference diagram for explaining a method of manufacturing the biosensor substrate of the present invention.
도 4는 본 발명의 바이오 센서를 설명하기 위한 참고도이다.4 is a reference diagram for explaining the biosensor of the present invention.
도 5는 본 발명의 바이오 센서의 제조방법을 설명하기 위한 참고도이다.5 is a reference diagram for explaining a method of manufacturing a biosensor according to the present invention.
도 6 내지 도 8은 본 발명의 실험예 1 내지 3을 각각 설명하기 위한 참고도이다.6 to 8 are reference diagrams for explaining Experimental Examples 1 to 3 of the present invention, respectively.
<부호의 설명><Description of the code>
10: 기판부10: substrate portion
20, 20a, 20b: 개질부20, 20a, 20b: reforming part
100: 바이오 센서 기판100: biosensor substrate
200, 200a, 200b: 바이오 탐침부200, 200a, 200b: bio probe part
이하 본 발명을 설명한다.Hereinafter, the present invention will be described.
본 발명은 바이오 센서의 베이스 기재가 되는 바이오 센서 기판의 표면을 개질함에 있어, 표면을 전체적 또는 일괄적으로 개질하던 종래의 방법(예를 들어, 플라즈마 처리)과 달리 표면을 선택적으로 개질하여 다양한 바이오 탐침부를 결합시킬 수 있도록 한 것이 특징으로, 이에 대해 도면을 참조하여 구체적으로 설명하면 다음과 같다.In the present invention, in the modification of the surface of the biosensor substrate, which is the base substrate of the biosensor, unlike the conventional method (for example, plasma treatment) in which the surface is modified in whole or in a batch, the surface is selectively modified so that various bio Characterized in that it can be combined with the probe, it will be described in detail with reference to the drawings as follows.
1. 바이오 센서 기판1. Biosensor Substrate
도 1을 참조하면, 본 발명의 바이오 센서 기판은 기판부(10)와 개질부(20)를 포함한다.Referring to FIG. 1, the biosensor substrate of the present invention includes a substrate portion 10 and a reforming portion 20.
본 발명의 바이오 센서 기판에 포함되는 기판부(10)는 바이오 센서 기판의 베이스 역할을 하는 것으로, 고분자를 포함할 수 있다.The substrate unit 10 included in the biosensor substrate of the present invention serves as a base of the biosensor substrate, and may include a polymer.
구체적으로 기판부(10)는 폴리스티렌(PS), 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리비닐클로라이드(PVC), 폴리에스테르(PE), 폴리카보네이트(PC), 폴리이미드(PI), 폴리우레탄(PU), 폴리비닐리덴플루오라이드(PVDF), 폴리아미드(PA), 폴리에테르설폰(PES), 폴리테트라플루오로에틸렌(PTFE) 및 폴리메틸메타크릴레이트(PMMA)로 이루어진 군에서 선택된 1종 이상의 고분자로 이루어질 수 있다.Specifically, the substrate unit 10 may be made of polystyrene (PS), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyester (PE), polycarbonate (PC), polyimide (PI), poly 1 selected from the group consisting of urethane (PU), polyvinylidene fluoride (PVDF), polyamide (PA), polyethersulfone (PES), polytetrafluoroethylene (PTFE) and polymethyl methacrylate (PMMA) It may consist of more than one species of polymer.
본 발명의 바이오 센서 기판에 포함되는 개질부(20)는 기판부(10)의 표면에 결합되어 존재한다. 상기 개질부(20)는 바이오 센서 기판의 제조과정에서 기판부(10)의 표면개질 과정을 거침에 따라 형성되는 것으로, 빛 감응형 유도체를 포함한다.The reforming unit 20 included in the biosensor substrate of the present invention is present in combination with the surface of the substrate unit 10. The reforming unit 20 is formed by undergoing a surface modification process of the substrate unit 10 in the manufacturing process of the biosensor substrate, and includes a light-sensitive derivative.
상기 빛 감응형 유도체는 노르보나디엔(Norbornadiene)계 유도체인 것으로, 노르보나디엔기를 포함하는 노르보나디엔계 유도체일 수 있다. 상기 노르보나디엔계 유도체에 의해 개질부(20)는 빛(예를 들어, 자외선)이 조사될 경우 선택적으로 활성화 또는 비활성화될 수 있다.The light-sensitive derivative is a norbornadiene-based derivative, and may be a norbornadiene-based derivative including a norbornadiene group. The modifying unit 20 may be selectively activated or deactivated when light (for example, ultraviolet rays) is irradiated by the norbornadiene-based derivative.
상기 노르보나디엔계 유도체는 특별히 한정되지 않으나, 하기 화학식 1로 표시되는 구조를 갖는 것이 바람직하다. 상기 노르보나디엔계 유도체가 하기 화학식 1로 표시되는 구조를 가짐에 따라 빛에 대한 반응성이 우수하면서 특정 조건에 따라 개질부(20)의 활성화와 비활성화의 유도를 용이하게 실시할 수 있기 때문이다.The norbornadiene-based derivative is not particularly limited, but preferably has a structure represented by the following formula (1). This is because the norbornadiene-based derivative has a structure represented by the following Chemical Formula 1, which is excellent in reactivity with light and can easily induce activation and deactivation of the reforming unit 20 according to specific conditions.
[화학식 1][Formula 1]
Figure PCTKR2018003986-appb-I000004
Figure PCTKR2018003986-appb-I000004
이러한 노르보나디엔계 유도체는 카테콜아민계 화합물의 중합물(예를 들어, 폴리도파민)과 아민 함유 링커화합물이 결합된 구조를 포함하는 링커(linker)에 의해 기판부(10)에 결합될 수 있다. 즉, 개질부(20)는 링커와 노르보나디엔계 유도체로 이루어지며, 상기 링커에 포함된 카테콜아민계 화합물의 중합물이 기판부(10)의 표면에 결합되고, 상기 링커에 포함된 아민 함유 링커화합물의 분자 말단에 노르보나디엔계 유도체(상기 화학식 1의 구조에서 *는 아민 함유 링커화합물의 분자 말단에 결합되는 위치를 의미함)가 결합되어 개질부(20)가 기판부(10)의 표면에 고정될 수 있다.The norbornadiene-based derivative may be bonded to the substrate portion 10 by a linker including a structure in which a polymer (eg, polydopamine) and an amine-containing linker compound of the catecholamine-based compound are bonded. That is, the reforming portion 20 is composed of a linker and a norbonadiene derivative, the polymer of the catecholamine-based compound included in the linker is bonded to the surface of the substrate portion 10, the amine-containing linker compound included in the linker Norbornadiene-based derivative (* in the structure of Formula 1 means a position bonded to the molecular terminal of the amine-containing linker compound) is bonded to the molecular terminal of the modified portion 20 is the surface of the substrate portion 10 Can be fixed.
한편 개질부(20)는 도 2에 도시된 바와 같이 복수 개로 기판부(10)의 표면에 결합될 수 있다.Meanwhile, as illustrated in FIG. 2, the modifying unit 20 may be coupled to the surface of the substrate unit 10 in plurality.
2. 바이오 센서 기판의 제조방법2. Manufacturing Method of Biosensor Substrate
본 발명은 상술한 바이오 센서 기판의 제조방법을 제공하는데, 이에 대해 도 3을 참조하여 구체적으로 설명하면 다음과 같다.The present invention provides a method of manufacturing the above-described biosensor substrate, which will be described in detail with reference to FIG. 3 as follows.
a) 기판부(10)의 준비a) Preparation of the board | substrate part 10
먼저, 고분자를 포함하는 기판부(10)를 준비한다. 상기 기판부(10)의 준비는 통상적으로 공지된 방법에 의해 이루어질 수 있다.First, the substrate unit 10 including the polymer is prepared. Preparation of the substrate portion 10 may be made by a conventionally known method.
b) 카테콜아민계 화합물과의 반응b) reaction with catecholamine compounds
상기 준비된 기판부(10)를 카테콜아민계 화합물(제1 링커화합물)과 반응시킨다. 구체적으로, 기판부(10)를 염(salt) 형태의 카테콜아민계 화합물(예를 들어, 도파민 히드로클로라이드)과 버퍼 용액(예를 들어, Tri-HCl 등)이 혼합된 용액에 담그고 일정 시간 동안 반응시켜 기판부(10)의 표면에 빛 감응형 화합물의 유도체를 고정시킬 수 있는 링커의 일부(L1)를 결합시킨다.The prepared substrate portion 10 is reacted with a catecholamine compound (first linker compound). Specifically, the substrate 10 is immersed in a salt mixed catecholamine-based compound (eg, dopamine hydrochloride) and a buffer solution (eg, Tri-HCl, etc.) for a predetermined time. By coupling a portion (L 1 ) of the linker capable of fixing the derivative of the light-sensitive compound on the surface of the substrate portion 10.
상기 카테콜아민계 화합물은 특별히 한정되지 않으나, 도파민(dopamine)인 것이 바람직하다.The catecholamine-based compound is not particularly limited, but is preferably dopamine.
상기 기판부(10)와 카테콜아민계 화합물의 반응은 상온에서 이루어질 수 있고, 반응 시간은 특별히 한정되지 않으나 2 내지 4 시간일 수 있다.The reaction between the substrate unit 10 and the catecholamine-based compound may be performed at room temperature, and the reaction time is not particularly limited, but may be 2 to 4 hours.
c) 개질부(20)의 형성c) formation of the reforming portion 20
상기 카테콜아민계 화합물과 반응한 기판부(10)에 노르보나디엔(Norbornadiene)계 유도체가 분자 말단에 하나 이상 결합된 아민 함유 화합물을 도입하여 개질부(20)를 형성한다.The modified portion 20 is formed by introducing an amine-containing compound in which at least one norbornadiene-based derivative is bonded to a molecule terminal to the substrate portion 10 reacted with the catecholamine-based compound.
상기 개질부(20)의 형성은 노르보나디엔계 유도체가 분자 말단에 하나 이상 결합된 아민 함유 화합물을 직접적으로 기판부(10)와 반응시키거나, 아민 함유 링커화합물(제2 링커화합물)과 노르보나디엔계 화합물을 기판부(10)와 순차적으로 반응시켜 형성할 수 있다.Formation of the modified portion 20 is a reaction of the amine-containing compound in which at least one norbornadiene-based derivative is bonded at the molecular end directly with the substrate portion 10, or the amine-containing linker compound (second linker compound) The bonadiene compound may be formed by sequentially reacting with the substrate portion 10.
구체적으로, 노르보나디엔계 화합물과 아민 함유 링커화합물을 반응시켜 아민 함유 화합물을 합성한 후, 합성된 아민 함유 화합물을 카테콜아민계 화합물과 반응한 기판부(10)와 반응시켜 개질부(20)를 형성하거나, 카테콜아민계 화합물과 반응한 기판부(10)를 아민 함유 링커화합물과 반응시켜 링커의 나머지 부분을 형성한 후, 이를 노르보나디엔계 화합물과 반응시켜 개질부(20)를 형성할 수 있다.Specifically, after reacting the norbornadiene compound and the amine-containing linker compound to synthesize the amine-containing compound, the modified amine-containing compound is reacted with the substrate portion 10 reacted with the catecholamine-based compound to modify the modified portion 20 Alternatively, the substrate 10 reacted with the catecholamine-based compound may be reacted with the amine-containing linker compound to form the remainder of the linker, and then the reacted portion 20 may be formed with the norbornadiene-based compound. .
상기 링커화합물이란 노르보나디엔계 화합물을 개질부(20)에 연결(결합)시키기 위해 다리 역할을 하는 링커를 형성하는데 사용되는 반응물을 의미한다.The linker compound refers to a reactant used to form a linker that serves as a bridge to connect (bond) the norbornadiene compound to the reforming unit 20.
상기 노르보나디엔계 화합물은 노르보나디엔기를 포함할 수 있다.The norbornadiene-based compound may include a norbornadiene group.
상기 노르보나디엔계 화합물은 특별히 한정되지 않으나, 하기 화학식 3으로 표시되는 화합물인 것이 바람직하다.The norbornadiene-based compound is not particularly limited, but is preferably a compound represented by the following formula (3).
[화학식 3][Formula 3]
Figure PCTKR2018003986-appb-I000005
Figure PCTKR2018003986-appb-I000005
상기 아민 함유 링커화합물은 특별히 한정되지 않으나, 폴리에틸렌이민(polyethyleneimine)(Mw: 100,000 이하), 트리스(2-아미노에틸)아민(Tris(2-aminoethyl)amine)(Mw: 800 이하) 및 2,2'-(에틸렌디옥시)비스(에틸아민)(2,2'-(ethylenedioxy)bis(ethylamine))(Mw: 25,000 이하)으로 이루어진 군에서 선택된 1종 이상인 것이 바람직하고, 폴리에틸렌이민인 것이 더욱 바람직하다. 구체적으로 상기 아민 함유 화합물은 특별히 한정되지 않으나, 하기 화학식 2로 표시되는 화합물인 것이 바람직하다.The amine-containing linker compound is not particularly limited, polyethyleneimine (M w : 100,000 or less), Tris (2-aminoethyl) amine (M w : 800 or less) and 2,2 '-(ethylenedioxy) bis (ethylamine) (2,2'- (ethylenedioxy) bis (ethylamine)) (M w : 25,000 or less) is preferably one or more selected from the group consisting of, and more preferably polyethyleneimine. Specifically, the amine-containing compound is not particularly limited, but is preferably a compound represented by the following formula (2).
[화학식 2][Formula 2]
Figure PCTKR2018003986-appb-I000006
Figure PCTKR2018003986-appb-I000006
상기 화학식 2에서, n은 100 내지 1,000,000의 정수이다.In Formula 2, n is an integer of 100 to 1,000,000.
3. 바이오 센서3. biosensor
본 발명은 다양한 바이오 표적물질을 탐침(검출)할 수 있는 바이오 센서를 제공하는데, 이에 대해 도 4를 참조하여 구체적으로 설명하면 다음과 같다.The present invention provides a biosensor capable of probing (detecting) various bio target materials, which will be described in detail with reference to FIG. 4.
본 발명의 바이오 센서는 바이오 센서 기판(100)과 바이오 탐침부(200)를 포함한다.The biosensor of the present invention includes a biosensor substrate 100 and a bioprobe unit 200.
본 발명의 바이오 센서에 포함되는 바이오 센서 기판(100)은 바이오 센서의 베이스 기재 역할을 하는 것으로, 이에 대한 설명은 상기 '1. 바이오 센서 기판'에서 설명한 바와 동일하므로 생략한다.The biosensor substrate 100 included in the biosensor of the present invention serves as a base substrate of the biosensor. It is the same as that described in "Bio-Sensor Substrate" and will be omitted.
본 발명의 바이오 센서에 포함되는 바이오 탐침부(200)는 바이오 센서 기판(100)의 개질부(20)에 결합(구체적으로, 개질부(20)의 노르보나디엔계 유도체에 결합)되는 것으로, 바이오 표적물질(예를 들어, 표적 핵산, 혈당, 당화 단백질 등)을 탐침 및 검출한다. 상기 바이오 탐침부(200)는 바이오 센서 기판(100)의 개질부(20)와 결합되는 작용기(예를 들어, -S- 등)와 바이오 표적물질과 결합할 수 있는 반응기(예를 들어, 항원, 압타머, 단백질 등)를 갖는 것이라면 특별히 한정되지 않는다.The bioprobe 200 included in the biosensor of the present invention is to be coupled to the modified portion 20 of the biosensor substrate 100 (specifically, to the norbornadiene derivative of the modified portion 20), Probe and detect bio targets (eg, target nucleic acids, blood glucose, glycated proteins, etc.). The bioprobe 200 may be a functional group (eg, -S-, etc.) coupled with the reforming unit 20 of the biosensor substrate 100 and a reactor (eg, an antigen) capable of binding to a biotarget material. , Aptamer, protein, etc.) is not particularly limited.
한편 바이오 센서 기판(100)에 개질부(20)가 복수 개일 경우, 바이오 센서에 포함되는 바이오 탐침부(200)도 복수 개로 구비될 수 있다. 이때, 복수 개의 바이오 탐침부는 서로 상이한 바이오 표적물질을 탐침할 수 있는 것으로, 이로 인해 본 발명은 다중 진단용 바이오 센서를 제공할 수 있다.Meanwhile, when there are a plurality of reformers 20 on the biosensor substrate 100, a plurality of bioprobes 200 included in the biosensor may also be provided. In this case, the plurality of bio probes may probe different bio target materials from each other, and accordingly, the present invention may provide a multi-diagnosis bio sensor.
4. 바이오 센서의 제조방법4. Manufacturing method of bio sensor
본 발명은 상술한 바이오 센서의 제조방법을 제공하는데, 이에 대해 도 5를 참조하여 구체적으로 설명하면 다음과 같다.The present invention provides a method of manufacturing the above-described biosensor, which will be described in detail with reference to FIG. 5 as follows.
A) 바이오 센서 기판(100)의 준비A) Preparation of the biosensor substrate 100
먼저, 상술한 바이오 센서 기판(100)을 준비한다.First, the biosensor substrate 100 described above is prepared.
B) 활성화된 개질부(20a)와 비활성화된 개질부(20b)의 형성B) Formation of Activated Reform 20a and Deactivated Reform 20b
상기 준비된 바이오 센서 기판(100)의 일부 영역을 마스킹(masking)하고, 빛(예를 들어, 자외선)을 조사하여 활성화된 개질부(20a)와 비활성화된 개질부(20b)를 형성한다.A portion of the prepared biosensor substrate 100 is masked and irradiated with light (for example, ultraviolet rays) to form the activated reformed portion 20a and the inactivated modified portion 20b.
구체적으로, 바이오 센서 기판(100)에서 바이오 탐침부(200)를 결합시키고자 하는 영역을 선택한 후, 선택된 영역 위에 마스크를 올려놓고 빛을 조사하면 선택된 영역의 개질부(20a)는 활성화 상태를 유지하게 되고, 선택되지 않은 영역의 개질부(20b)는 빛 감응형 유도체와 빛의 반응에 의해 비활성화 상태에 놓이게 되어 활성화된 개질부(20a)와 비활성화된 개질부(20b)를 형성할 수 있다.Specifically, after selecting the region to which the bio probe unit 200 is to be coupled in the biosensor substrate 100, the mask is placed on the selected region and irradiated with light, and the modified portion 20a of the selected region is maintained in an active state. In addition, the reformed portion 20b of the non-selected region may be placed in an inactive state by the reaction of the light-sensitive derivative with light to form the activated reformed portion 20a and the inactivated modified portion 20b.
C) 바이오 탐침부(200a)의 결합C) bonding of the bioprobe unit 200a
상기 활성화된 개질부(20a)에 바이오 탐침부(200a)를 결합시킨다. 상기 바이오 탐침부(200a)의 결합은 통상적으로 공지된 방법(예를 들어, 바이오-티올레이션(bio-thiolation))에 의해 이루어질 수 있다.The bio probe 200a is coupled to the activated reforming unit 20a. The bio probe 200a may be combined by a conventionally known method (for example, bio-thiolation).
D) 비활성화된 개질부(20b)의 활성화D) Activation of the disabled reformer 20b
상기 바이오 탐침부(200a)를 결합시킨 후 비활성화된 개질부(20b)를 활성화시킨다. 상기 비활성화된 개질부(20b)를 활성화시키는 방법은 특별히 한정되지 않으나, 열처리 또는 전이금속과의 반응에 의해 이루어질 수 있다.After combining the bioprobe 200a, the deactivated reforming unit 20b is activated. The method of activating the deactivated reforming unit 20b is not particularly limited, but may be performed by heat treatment or reaction with a transition metal.
상기 개질부(20b)의 열처리 조건은 특별히 한정되지 않으나, 50 내지 80 ℃에서 12 내지 24 시간 동안 이루어질 수 있다.The heat treatment condition of the reforming unit 20b is not particularly limited, but may be performed at 50 to 80 ° C. for 12 to 24 hours.
상기 개질부(20b)와 전이금속의 반응도 특별히 한정되지 않으나, 은(Ag), 코발트(Co), 또는 주석(Sn)이 함유된 용액에 바이오 센서 기판(100)을 담그고 10 내지 14 시간 동안 반응시키는 것으로 이루어질 수 있다.Although the reaction between the modified part 20b and the transition metal is not particularly limited, the biosensor substrate 100 is immersed in a solution containing silver (Ag), cobalt (Co), or tin (Sn) and reacted for 10 to 14 hours. It can be made to.
E) 바이오 탐침부(200b)의 결합E) binding of the bioprobe unit 200b
상기 D) 단계를 통해 활성화된 개질부(20b)에 상기 C) 단계에서 결합된 바이오 탐침부(200a)와 상이한 바이오 표적물질을 탐침하는 바이오 탐침부(200b)를 결합시킨다.The bio-probe 200b for probing different bio target materials from the bio-probe 200a coupled in the step C) is coupled to the reformed portion 20b activated through the step D).
구체적으로, 바이오 탐침부(200a)가 결합된 개질부(20a) 영역과, 이미 결합된 바이오 탐침부(200a)와 상이한 바이오 표적물질을 탐침하는 새로운 바이오 탐침부(200b)를 결합시킬 개질부(20b) 영역을 마스킹(masking)하고 빛(예를 들어, 자외선)을 조사하여 마스킹되지 않은 영역을 비활성화시킨 후, 새로운 바이오 탐침부(200b)를 결합시키는 과정을 거쳐 상기 C) 단계에서 결합된 바이오 탐침부(200a)와 상이한 바이오 표적물질을 탐침하는 바이오 탐침부(200b)를 결합시킬 수 있다.Specifically, the reforming unit 20a to which the bio probe unit 200a is coupled, and a reforming unit to couple the new bio probe unit 200b to probe a different bio target material from the bio probe unit 200a to which the bio probe unit 200a is coupled ( 20b) masking the region and irradiating light (for example, ultraviolet rays) to deactivate the unmasked region, and then combining the new bioprobe 200b to process the bio-bonded in step C). The bio probe 200b may be combined with the probe 200a to probe different bio target materials.
상기 바이오 탐침부(200a)와 상이한 바이오 표적물질을 탐침하는 바이오 탐침부(200b)의 결합은 통상적으로 공지된 방법(예를 들어, 바이오-티올레이션(bio-thiolation))에 의해 이루어질 수 있다.Combination of the bioprobe 200a and the bioprobe 200b for probing a different bio target material may be generally performed by a known method (eg, bio-thiolation).
이상에 따른 본 발명은 빛이 조사될 경우 비활성화되었다가 특정 조건(예를 들어, 열처리, 전이금속과의 반응 등)에 의해 활성화되는 가역 반응이 가능한 빛 감응형 화합물을 이용하여 바이오 센서 기판 및 이를 포함하는 바이오 센서를 제조하기 때문에 다중 진단용 바이오 센서의 제조 효율을 높일 수 있다.According to the present invention, a biosensor substrate and a biosensor using a light sensitive compound capable of reversible reaction which is inactivated when irradiated with light and activated by specific conditions (eg, heat treatment, reaction with a transition metal, etc.) Since the manufacturing of the biosensor to include can increase the manufacturing efficiency of the multi-diagnostic biosensor.
구체적으로 본 발명은 빛 감응형 유도체가 결합된 개질부를 포함하는 바이오 센서 기판에 빛을 조사함에 있어, 원하는 영역별로 빛을 조사하여 바이오 센서 기판을 선택적으로(영역별로) 활성화 또는 비활성화시키고, 활성화된 영역에 다양한 바이오 탐침부를 결합시켜 바이오 센서를 제조함에 따라 다중 진단용 바이오 센서를 효율적으로 제조할 수 있다.Specifically, in the present invention, in irradiating light to a biosensor substrate including a modified portion combined with a light-sensitive derivative, the biosensor substrate is selectively activated or deactivated by irradiating light for each desired region. As the biosensor is manufactured by combining various bioprobes in the region, multiple diagnostic biosensors may be efficiently manufactured.
또한 본 발명은 마스크를 사용하여 바이오 센서 기판의 활성화와 비활성화를 선택적으로(영역별로) 유도할 수 있기 때문에 초소형이면서 마이크로 패턴을 갖는 바이오 센서를 용이하게 제조할 수 있다.In addition, the present invention can easily induce the activation and deactivation of the biosensor substrate (region-by-region) using a mask, it is possible to easily manufacture a biosensor having a micro-miniature pattern.
이하 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following Examples. However, the following Examples are merely to illustrate the present invention, the present invention is not limited by the following Examples.
[원료 물질 및 기기][Raw materials and devices]
디시클로펜타디엔(dicyclopentadiene), 2-부틴디오익산(2-butynedioic acid), 1,4-디옥산(1,4-dioxane), N,N'-디시클로헥실카르보디이미드(N,N'-Dicyclohexylcarbodiimide)을 각각 알드리치(Aldrich)사로부터 구입하여 정제없이 사용하였다. 측정 기기(Instrumentation)로는 A JEOL 3700를 사용하였다.Dicyclopentadiene, 2-butynedioic acid, 1,4-dioxane, N, N'-dicyclohexylcarbodiimide (N, N ') -Dicyclohexylcarbodiimide) were each purchased from Aldrich and used without purification. A JEOL 3700 was used as an instrument.
[합성예 1] 노르보나디엔-2,3-디카르복시산(Norbornadiene-2,3-dicarboxylic acid)의 합성Synthesis Example 1 Synthesis of Norbornadiene-2,3-dicarboxylic Acid
디시클로펜타디엔(7 ㎖, 52 mmol)을 증류하여 모노머릭 시클로펜타디엔(monomeric cyclopentadiene)을 얻었다. 얻어진 모노머릭 시클로펜타디엔(2.0 g, 30 mmol)을 쿨링 시스템(ice-water bath) 하의 1,4-디오닉산(20 ㎖) 및 2-부틴디오익산(3.0 g, 26.3 mmol)이 혼합된 용액에 첨가하였다. 다음, 모노머릭 시클로펜타디엔이 첨가된 용액을 상온에서 밤새도록 저어준 후 헥산(5 ㎖)을 첨가하고 수집하는 과정을 거쳐 고체 침전물(4.18 g, 수율: 88 %)을 얻었다.Dicyclopentadiene (7 mL, 52 mmol) was distilled off to obtain monomeric cyclopentadiene (monomeric cyclopentadiene). The resulting monomeric cyclopentadiene (2.0 g, 30 mmol) was mixed with 1,4-dionic acid (20 mL) and 2-butyndioic acid (3.0 g, 26.3 mmol) under an ice-water bath. To the solution. Next, the solution containing monomeric cyclopentadiene was stirred at room temperature overnight, and then hexane (5 mL) was added and collected to obtain a solid precipitate (4.18 g, yield: 88%).
[합성예 2] 2,5-노르보나디엔-2,3-디카르복시산 무수물(2,5-Norbornadiene-2,3-dicarboxylic acid anhydride)의 합성Synthesis Example 2 Synthesis of 2,5-norbornadiene-2,3-dicarboxylic acid anhydride (2,5-Norbornadiene-2,3-dicarboxylic acid anhydride)
합성예 1에서 합성된 노르보나디엔-2,3-디카르복시산(500 mg, 2.78 mmol, 1.0 eq)과 아세톤(28 ㎖)이 혼합된 혼합물을 N,N'-디시클로헥실카르보디이미드(573 mg, 2.78 mmol, 1.0 eq) 용액에 첨가하였다. 다음, 혼합물이 첨가된 용액을 상온에서 밤새도록 저어준 후 여과 및 증발 과정(evaporating process)을 거쳐 생성물을 수득하였다. 수득된 생성물을 숏 컬럼 크로마토그래피(short column chromatography)를 통해 정제하여 정제된 생성물(215 mg, 수율: 43 %)을 얻었다.The mixture of norbornadiene-2,3-dicarboxylic acid (500 mg, 2.78 mmol, 1.0 eq) and acetone (28 mL) synthesized in Synthesis Example 1 was mixed with N, N'-dicyclohexylcarbodiimide (573). mg, 2.78 mmol, 1.0 eq) was added to the solution. Then, the solution to which the mixture was added was stirred at room temperature overnight, and then, the product was obtained by filtration and evaporating process. The obtained product was purified by short column chromatography to give the purified product (215 mg, yield: 43%).
1H-NMR (CDCl3): d 2.71 (s, 2H), 3.99 (s, 2H), 6.98 (s, 2H). 1 H-NMR (CDCl 3 ): d 2.71 (s, 2H), 3.99 (s, 2H), 6.98 (s, 2H).
[합성예 3] 아민 함유 화합물의 합성Synthesis Example 3 Synthesis of Amine-Containing Compound
합성예 2에서 합성된 2,5-노르보나디엔-2,3-디카르복시산 무수물(100 mg)과 Polyethyleneimine(300 mg)을 디메틸포름아미드(dimethylformamide, 10 ㎖)에 녹인 후 혼합하고 상온에서 1 시간 동안 저어 주는 과정을 거쳐 노르보나디엔 함유 용액을 제조하였다. 다음, 회전증발(rotary evaporation)을 통해 상기 용액에서 디메틸포름아미드를 제거하고 추가적인 정제없이 진공 건조하여 아민 함유 화합물(수율: 100 %)을 얻었다.2,5-norbornadiene-2,3-dicarboxylic anhydride (100 mg) and Polyethyleneimine (300 mg) synthesized in Synthesis Example 2 were dissolved in dimethylformamide (10 ml), mixed and mixed at room temperature for 1 hour. Norbonadiene-containing solution was prepared by agitation. Next, dimethylformamide was removed from the solution by rotary evaporation and dried in vacuo without further purification to obtain an amine-containing compound (yield: 100%).
[실시예 1]Example 1
10 mM의 Tri-HCl 버퍼 용액(pH 8.5)에 도파민 히드로클로라이드(Dopamine hydrochloride, 2 ㎎/㎖)를 용해시켜 용액을 제조하였다. 제조된 용액에 폴리스티렌으로 이루어진 기판(폴리스티렌 필름)을 담근 후 상온에서 3 시간 동안 흔들어 주는 과정을 거쳐 폴리도파민으로 기능화된 기판을 얻었다.The solution was prepared by dissolving dopamine hydrochloride (2 mg / ml) in 10 mM Tri-HCl buffer solution (pH 8.5). After immersing the polystyrene substrate (polystyrene film) in the prepared solution and shaking for 3 hours at room temperature to obtain a substrate functionalized with polydopamine.
다음, 폴리도파민으로 기능화된 기판을 탈이온수로 세정하고 질소 가스로 건조시켰다.The substrate functionalized with polydopamine was then washed with deionized water and dried with nitrogen gas.
그 다음, 합성예 3에서 합성된 아민 함유 화합물(100 mg)과 10 mM의 Tri-HCl 버퍼 용액(pH 8.5, 20 ㎖)이 혼합된 용액에 폴리도파민으로 기능화된 기판을 담그고, 상온에서 밤새도록 흔들어(shaking) 주었다. 다음, 탈이온수로 세정하고 질소 가스로 건조시켜 폴리도파민으로 기능화된 기판에 아민 함유 화합물을 도입하였다.Subsequently, the substrate functionalized with polydopamine was immersed in a mixture of the amine-containing compound (100 mg) synthesized in Synthesis Example 3 and a 10 mM Tri-HCl buffer solution (pH 8.5, 20 ml), and then kept at room temperature overnight. Shaking. The amine containing compound was then introduced to the substrate functionalized with polydopamine by washing with deionized water and drying with nitrogen gas.
[실시예 2]Example 2
폴리스티렌으로 이루어진 기판 대신에 폴리프로필렌으로 이루어진 기판을 적용한 것을 제외하고는 실시예 1과 동일한 과정을 거쳐 폴리도파민으로 기능화된 기판에 아민 함유 화합물을 도입하였다.An amine-containing compound was introduced into a polydopamine-functionalized substrate in the same manner as in Example 1 except that a substrate made of polypropylene was applied instead of a substrate made of polystyrene.
[실시예 3]Example 3
폴리스티렌으로 이루어진 기판 대신에 폴리비닐클로라이드로 이루어진 기판을 적용한 것을 제외하고는 실시예 1과 동일한 과정을 거쳐 폴리도파민으로 기능화된 기판에 아민 함유 화합물을 도입하였다.An amine-containing compound was introduced into a polydopamine functionalized substrate in the same manner as in Example 1 except that a substrate made of polyvinyl chloride was applied instead of a substrate made of polystyrene.
[실시예 4]Example 4
10 mM의 Tri-HCl 버퍼 용액(pH 8.5)에 도파민 히드로클로라이드(Dopamine hydrochloride, 2 ㎎/㎖)를 용해시켜 용액을 제조하였다. 제조된 용액에 폴리스티렌으로 이루어진 기판(폴리스티렌 필름)을 담근 후 상온에서 3 시간 동안 흔들어 주는 과정을 거쳐 폴리도파민으로 기능화된 기판을 얻었다. 이후, 폴리도파민으로 기능화된 기판을 탈이온수로 세정하고 질소 가스로 건조시켰다.The solution was prepared by dissolving dopamine hydrochloride (2 mg / ml) in 10 mM Tri-HCl buffer solution (pH 8.5). After immersing the polystyrene substrate (polystyrene film) in the prepared solution and shaking for 3 hours at room temperature to obtain a substrate functionalized with polydopamine. The substrate functionalized with polydopamine was then washed with deionized water and dried with nitrogen gas.
다음, 폴리에틸렌이민(Polyethyleneimine)(1 g)과 10 mM의 Tri-HCl 버퍼 용액(pH 8.5, 20 ㎖)이 혼합된 용액에 폴리도파민으로 기능화된 기판을 담그고, 상온에서 밤새도록 흔들어(shaking) 주었다. 이후, 기판을 탈이온수로 세정하고 질소 가스로 건조시켜 폴리도파민으로 기능화된 기판에 폴리에틸렌이민(Polyethyleneimine)을 도입하였다.Next, a polydopamine-functionalized substrate was immersed in a solution mixed with polyethyleneimine (1 g) and 10 mM Tri-HCl buffer solution (pH 8.5, 20 ml), and shaken overnight at room temperature. . Subsequently, the substrate was washed with deionized water and dried with nitrogen gas to introduce polyethyleneimine into the substrate functionalized with polydopamine.
그 다음, 합성예 2에서 합성된 2,5-노르보나디엔-2,3-디카르복시산 무수물(100 mg)을 디메틸포름아미드(dimethylformamide, 10 ㎖)에 녹여 얻어진 용액에 폴리에틸렌이민(Polyethyleneimine)이 도입된 기판을 담그고, 상온에서 밤새도록 흔들어(shaking) 주었다.Next, polyethyleneimine was introduced into a solution obtained by dissolving 2,5-norbornadiene-2,3-dicarboxylic anhydride (100 mg) synthesized in Synthesis Example 2 in dimethylformamide (10 ml). The substrate was immersed and shaken overnight at room temperature.
다음, 기판을 디메틸포름아미드(dimethylformamide) 및 탈이온수로 세정하고 질소 가스로 건조시켜 폴리도파민으로 기능화된 기판에 아민 함유 화합물을 도입하였다.Subsequently, the substrate was washed with dimethylformamide and deionized water and dried with nitrogen gas to introduce an amine containing compound into the substrate functionalized with polydopamine.
[제조예 1][Production Example 1]
아민 함유 화합물이 도입된 실시예 1의 폴리스티렌 기판의 일부 표면을 마스크(hand-made mask)로 커버하였다. 다음, 기판의 표면에 자외선(≤300 nm)을 조사하여 마스크로 커버되지 않은 기판의 표면을 비활성화시켜(quadricyclane form) 티올레이션(thiolation) 반응이 일어나지 않도록 하였다(A) 및 B) 단계).Part of the surface of the polystyrene substrate of Example 1 in which the amine containing compound was introduced was covered with a hand-made mask. Next, the surface of the substrate was irradiated with ultraviolet light (≤300 nm) to inactivate the surface of the substrate not covered with a mask (quadricyclane form) so that a thiolation reaction did not occur (steps A and B).
그 다음, 형광 라벨(fluorescence label)된 티올-말단 바이오프로브(thiol-terminal bioprobe)(펩타이드(HS-CDMSPPWHK-K-FITC, Lusen Sci.,))가 함유된 10 ㎕의 용액에 일부 표면만이 활성화된 기판을 담그고 12 시간 동안 반응시킨 후 탈이온수로 세정하였다(C) 단계).Next, only a few surfaces in 10 μl solution containing fluorescence labeled thiol-terminal bioprobe (peptide (HS-CDMSPPWHK-K-FITC, Lusen Sci.,)) The activated substrate was immersed and reacted for 12 hours, followed by washing with deionized water (C).
다음, thiol-terminal bioprobe와 반응한 기판을 AgClO4와 메탄올이 혼합된 용액에 담그고 12 시간 동안 반응시켜 비활성화되었던 기판의 표면을 활성화시켰다(D) 단계).Subsequently, the substrate reacted with thiol-terminal bioprobe was immersed in a mixed solution of AgClO 4 and methanol and reacted for 12 hours to activate the surface of the substrate which was inactivated (step D).
이후, 상기 A) 내지 D) 단계를 반복하여 다른 티올-말단 바이오프로브 (thiol-terminal bioprobe)(압타머(HS-TATCAGTTCTTTGACCTTTGTCA-FAM-3', Bioneer))가 결합된 바이오 센서를 제조하였다.Thereafter, steps A) to D) were repeated to prepare a biosensor in which another thiol-terminal bioprobe (thiol-terminal bioprobe) (HS-TATCAGTTCTTTGACCTTTGTCA-FAM-3 ', Bioneer) was combined.
[제조예 2][Production Example 2]
실시예 1의 폴리스티렌 기판 대신에 실시예 2의 폴리프로필렌 기판을 적용한 것을 제외하고는 제조예 1과 동일한 과정을 거쳐 바이오 센서를 제조하였다.A biosensor was manufactured in the same manner as in Preparation Example 1, except that the polypropylene substrate of Example 2 was applied instead of the polystyrene substrate of Example 1.
[제조예 3][Production Example 3]
실시예 1의 폴리스티렌 기판 대신에 실시예 3의 폴리비닐클로라이드 기판을 적용한 것을 제외하고는 제조예 1과 동일한 과정을 거쳐 바이오 센서를 제조하였다.A biosensor was manufactured in the same manner as in Preparation Example 1, except that the polyvinyl chloride substrate of Example 3 was applied instead of the polystyrene substrate of Example 1.
[실험예 1]Experimental Example 1
제조예 2에서 제조된 폴리프로필렌 기판에 티올-말단 바이오프로브(thiol-terminal bioprobe)가 결합되었는지를 확인하기 위해 티올-말단 바이오프로브(thiol-terminal bioprobe)의 말단의 형광레이블의 에미션(emission)을 단계별로 형광 현미경(EVOS FL cell imaging system, Thermo Fisher scientific)으로 확인하였으며, 그 결과를 도 6에 나타내었다.Emission of the fluorescent label at the end of the thiol-terminal bioprobe to confirm whether the thiol-terminal bioprobe is bound to the polypropylene substrate prepared in Preparation Example 2 Was confirmed by fluorescence microscopy (EVOS FL cell imaging system, Thermo Fisher scientific) step by step, the results are shown in FIG.
도 6을 참조하면, 폴리프로필렌 기판에 서로 다른 티올-말단 바이오프로브(thiol-terminal bioprobe)가 잘 결합되어 있음을 확인할 수 있다.Referring to Figure 6, it can be seen that different thiol-terminal bioprobe (thiol-terminal bioprobe) is well coupled to the polypropylene substrate.
[실험예 2]Experimental Example 2
제조예 2에서 C) 단계까지 진행하여 얻어진 폴리프로필렌 기판에 티올-말단 바이오프로브(thiol-terminal bioprobe)(펩타이드(HS-CDMSPPWHK-K-FITC, Lusen Sci.,)가 결합되었는지를 확인하기 위해 마이크로플레이트 리더기를 이용하여 형광을 측정하였으며, 그 결과를 도 7에 나타내었다. 이때, 티올-말단 바이오프로브(thiol-terminal bioprobe)가 결합되기 전인 실시예 2의 폴리프로필렌 기판을 비교대상으로 하였다.In order to check whether the thiol-terminal bioprobe (peptide (HS-CDMSPPWHK-K-FITC, Lusen Sci.,)) Is bound to the polypropylene substrate obtained by proceeding to step C) in Preparation Example 2 Fluorescence was measured using a plate reader, and the results are shown in Fig. 7. At this time, the polypropylene substrate of Example 2 before the thiol-terminal bioprobe was combined was compared.
도 7을 참조하면, 티올-말단 바이오프로브(thiol-terminal bioprobe)가 결합된 폴리프로필렌 기판에서 FITC 흡광도가 나타나는 것을 확인 할 수 있다. 이러한 점은 폴리도파민 및 아민 함유 화합물이 도입된 폴리프로필렌 기판에 티올-말단 바이오프로브(thiol-terminal bioprobe)가 잘 결합됨을 뒷받침하는 것이다.Referring to FIG. 7, it can be seen that the FITC absorbance appears on a polypropylene substrate having a thiol-terminal bioprobe. This supports the incorporation of thiol-terminal bioprobes to polypropylene substrates incorporating polydopamine and amine containing compounds.
[제조예 4][Production Example 4]
실시예 2의 폴리프로필렌 기판(PP)에 -SH를 가지고 있는 S. aureus 전장 유전체가 결합된 바이오프로브(bioprobe)를 통상적인 방법으로 결합시켜 바이오 센서를 제조하였다.A bioprobe was prepared by combining a bioprobe in which the S. aureus electric field dielectric having -SH is bonded to the polypropylene substrate (PP) of Example 2 in a conventional manner.
[제조예 5]Production Example 5
실시예 3의 폴리비닐클로라이드 기판(PVC)에 -SH를 가지고 있는 S. aureus 전장 유전체가 결합된 바이오프로브(bioprobe)를 통상적인 방법으로 결합시켜 바이오 센서를 제조하였다.A biosensor was prepared by combining a bioprobe in which the S. aureus electric field dielectric having -SH is bonded to the polyvinyl chloride substrate (PVC) of Example 3 in a conventional manner.
[실험예 3]Experimental Example 3
제조예 3 및 제조예 4에서 제조된 바이오 센서를 이용하여 통상적인 방법으로 핵산등온증폭 실험을 진행하였으며, 그 결과를 도 8에 나타내었다.Using the biosensors prepared in Preparation Example 3 and Preparation Example 4 was carried out the nucleic acid isothermal amplification experiment in a conventional manner, the results are shown in FIG.
도 8을 참조하면, 각 기판이 S. aureus 균에 대해 positive 한 결과를 잘 나타내고 있는 것을 확인할 수 있다.Referring to Figure 8, it can be seen that each substrate is showing a positive result for the S. aureus bacteria.

Claims (15)

  1. 고분자를 포함하는 기판부; 및A substrate portion including a polymer; And
    상기 기판부의 표면에 결합되며, 빛 감응형 유도체를 포함하는 개질부;를 포함하고,It is coupled to the surface of the substrate portion, including a modified portion containing a light-sensitive derivative;
    상기 빛 감응형 유도체가 노르보나디엔(Norbornadiene)계 유도체인 것인 바이오 센서 기판.The light-sensitive derivative is a biosensor substrate that is a norbornadiene (Norbornadiene) derivative.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 노르보나디엔계 유도체가 하기 화학식 1로 표시되는 구조를 갖는 것인 바이오 센서 기판.The norbonadiene-based derivative is a biosensor substrate having a structure represented by the following formula (1).
    [화학식 1][Formula 1]
    Figure PCTKR2018003986-appb-I000007
    Figure PCTKR2018003986-appb-I000007
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 고분자가 폴리스티렌(PS), 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리비닐클로라이드(PVC), 폴리에스테르(PE), 폴리카보네이트(PC), 폴리이미드(PI), 폴리우레탄(PU), 폴리비닐리덴플루오라이드(PVDF), 폴리아미드(PA), 폴리에테르설폰(PES), 폴리테트라플루오로에틸렌(PTFE) 및 폴리메틸메타크릴레이트(PMMA)로 이루어진 군에서 선택된 1종 이상을 포함하는 것인 바이오 센서 기판.The polymer is polystyrene (PS), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyester (PE), polycarbonate (PC), polyimide (PI), polyurethane (PU), At least one selected from the group consisting of polyvinylidene fluoride (PVDF), polyamide (PA), polyethersulfone (PES), polytetrafluoroethylene (PTFE) and polymethyl methacrylate (PMMA) A biosensor substrate.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 개질부가 상기 기판부의 표면에 복수 개로 결합된 것인 바이오 센서 기판.The biosensor substrate is coupled to a plurality of the modified portion on the surface of the substrate portion.
  5. a) 고분자를 포함하는 기판부를 준비하는 단계;a) preparing a substrate part including a polymer;
    b) 상기 준비된 기판부를 카테콜아민계 화합물과 반응시키는 단계;b) reacting the prepared substrate part with a catecholamine-based compound;
    c) 상기 카테콜아민계 화합물과 반응한 기판부에 노르보나디엔(Norbornadiene)계 유도체가 분자 말단에 결합된 아민 함유 화합물을 도입하여 개질부를 형성하는 단계;를 포함하는 바이오 센서 기판의 제조방법.c) introducing a amine-containing compound in which a norbornadiene derivative is bonded to a molecular terminal to a substrate portion reacted with the catecholamine compound to form a modified portion.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 카테콜아민계 화합물이 도파민인 것인 바이오 센서 기판의 제조방법.The catecholamine compound is a dopamine manufacturing method of the biosensor substrate.
  7. 청구항 5에 있어서,The method according to claim 5,
    상기 아민 함유 화합물이 하기 화학식 2로 표시되는 화합물인 것인 바이오 센서 기판의 제조방법.Method for producing a biosensor substrate, wherein the amine-containing compound is a compound represented by the following formula (2).
    [화학식 2][Formula 2]
    Figure PCTKR2018003986-appb-I000008
    Figure PCTKR2018003986-appb-I000008
    상기 화학식 2에서 n은 100 내지 1,000,000의 정수이다.In Formula 2 n is an integer of 100 to 1,000,000.
  8. 청구항 5에 있어서,The method according to claim 5,
    상기 c) 단계는,C),
    c-1) 노르보나디엔계 화합물과 아민 함유 링커화합물을 반응시켜 상기 아민 함유 화합물을 합성하는 단계; 및c-1) synthesizing the amine-containing compound by reacting the norbornadiene compound with the amine-containing linker compound; And
    c-2) 상기 합성된 아민 함유 화합물을 상기 기판부와 반응시키는 단계;를 포함하는 것인 바이오 센서 기판의 제조방법.c-2) reacting the synthesized amine-containing compound with the substrate portion.
  9. 청구항 5에 있어서,The method according to claim 5,
    상기 c) 단계는,C),
    c-1) 상기 기판부를 아민 함유 링커화합물과 반응시키는 단계; 및c-1) reacting the substrate portion with an amine-containing linker compound; And
    c-2) 상기 아민 함유 링커화합물과 반응한 기판부를 노르보나디엔계 화합물과 반응시키는 단계;를 포함하는 것인 바이오 센서 기판의 제조방법.c-2) reacting the substrate portion reacted with the amine-containing linker compound with the norbornadiene-based compound.
  10. 청구항 8 또는 청구항 9에 있어서,The method according to claim 8 or 9,
    상기 노르보나디엔계 화합물이 하기 화학식 3으로 표시되는 화합물인 것인 바이오 센서 기판의 제조방법.Method of producing a biosensor substrate, wherein the norbornadiene compound is a compound represented by the following formula (3).
    [화학식 3][Formula 3]
    Figure PCTKR2018003986-appb-I000009
    Figure PCTKR2018003986-appb-I000009
  11. 청구항 8 또는 청구항 9에 있어서,The method according to claim 8 or 9,
    상기 아민 함유 링커화합물이 폴리에틸렌이민(polyethyleneimine), 트리스(2-아미노에틸)아민(Tris(2-aminoethyl)amine) 및 2,2'-(에틸렌디옥시)비스(에틸아민)(2,2'-(ethylenedioxy)bis(ethylamine))으로 이루어진 군에서 선택된 1종 이상인 것인 바이오 센서 기판의 제조방법.The amine-containing linker compound includes polyethyleneimine, tris (2-aminoethyl) amine and 2,2 '-(ethylenedioxy) bis (ethylamine) (2,2' -(ethylenedioxy) bis (ethylamine)) is a method for producing a biosensor substrate that is at least one selected from the group consisting of.
  12. 청구항 1 내지 청구항 4 중 어느 한 항에 따른 바이오 센서 기판; 및A biosensor substrate according to any one of claims 1 to 4; And
    상기 바이오 센서 기판의 개질부에 결합된 바이오 탐침부;를 포함하는 바이오 센서.And a bioprobe unit coupled to the reforming unit of the biosensor substrate.
  13. 청구항 12에 있어서,The method according to claim 12,
    상기 바이오 탐침부가 복수 개로 포함되며,It includes a plurality of bio probes,
    상기 복수 개의 바이오 탐침부는 서로 상이한 표적물질을 탐침하는 것인 바이오 센서.The plurality of bio probes will probe different target materials from each other.
  14. A) 청구항 1 내지 청구항 4 중 어느 한 항에 따른 바이오 센서 기판을 준비하는 단계;A) preparing a biosensor substrate according to any one of claims 1 to 4;
    B) 상기 바이오 센서 기판의 일부 영역을 마스킹(masking)하고, 빛을 조사하여 활성화된 개질부와 비활성화된 개질부를 형성하는 단계;B) masking a portion of the biosensor substrate and irradiating light to form an activated reformed portion and an inactivated modified portion;
    C) 상기 활성화된 개질부에 바이오 탐침부를 결합시키는 단계;C) binding a bioprobe to the activated reforming unit;
    D) 상기 비활성화된 개질부를 활성화시키는 단계; 및D) activating the deactivated reformate; And
    E) 상기 D) 단계에서 활성화된 개질부에 상기 C) 단계에서 결합된 바이오 탐침부와 상이한 표적물질을 탐침하는 바이오 탐침부를 결합시키는 단계;를 포함하는 바이오 센서의 제조방법.E) combining the bio-probe to probe the target material different from the bio-probe unit coupled in the step C) to the reformer activated in the step D).
  15. 청구항 14에 있어서,The method according to claim 14,
    상기 D) 단계에서 비활성화된 개질부의 활성화는 열처리 또는 전이금속과의 반응에 의해 이루어지는 것인 바이오 센서의 제조방법.Activation of the reformed portion deactivated in the step D) is a method of manufacturing a biosensor made by a heat treatment or a reaction with a transition metal.
PCT/KR2018/003986 2017-04-04 2018-04-04 Biosensor substrate, method for producing same, and biosensor comprising same WO2018186683A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0043731 2017-04-04
KR1020170043731A KR101875471B1 (en) 2017-04-04 2017-04-04 Substrate for biosensor, method for preparing the same, and biosensor comprising the same

Publications (1)

Publication Number Publication Date
WO2018186683A1 true WO2018186683A1 (en) 2018-10-11

Family

ID=62921020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003986 WO2018186683A1 (en) 2017-04-04 2018-04-04 Biosensor substrate, method for producing same, and biosensor comprising same

Country Status (2)

Country Link
KR (1) KR101875471B1 (en)
WO (1) WO2018186683A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113150680A (en) * 2019-12-25 2021-07-23 南京金斯瑞生物科技有限公司 Chip coating, preparation method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102097492B1 (en) * 2018-07-27 2020-04-06 서울대학교 산학협력단 Ring opening metathesis polymers with cis-alpha-beta unsaturated anhydride structures for pH-responsive grafting and degradation and use thereof
KR102585794B1 (en) * 2021-08-10 2023-10-06 재단법인 오송첨단의료산업진흥재단 Microfluidic immunoassay chip and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050014409A (en) * 2003-07-31 2005-02-07 삼성에스디아이 주식회사 Substrate for immobilizing physiological material, and a method of preparing the same
US20080161200A1 (en) * 2006-12-05 2008-07-03 The Board Of Trustees Of The Leland Stanford Junior University Biomolecule Immobilization on Biosensors
KR20090119476A (en) * 2008-05-16 2009-11-19 한국전자통신연구원 A method for fabricating patterned biosensor substrate and a biosensor using the same
KR20140100317A (en) * 2013-02-06 2014-08-14 엘지전자 주식회사 Method of Hydrophilizing Surface of Separation Membrane for Water treatment Using Mixed Solution of Dopamine
KR20150123391A (en) * 2014-04-24 2015-11-04 한국과학기술원 A surface treatment method for bio-material deposition and an immunoassay chip using the same
KR101875470B1 (en) * 2017-04-04 2018-07-06 한국생명공학연구원 Substrate for biosensor, method for preparing the same, and biosensor comprising the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311579A (en) * 1992-05-01 1993-11-22 Hiroshi Kiyokawa Sunlight absorbing and thermal energy storage textile material and its production
WO2012052147A1 (en) * 2010-10-19 2012-04-26 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Process for the modification of polymers, in particular polymer nanoparticles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050014409A (en) * 2003-07-31 2005-02-07 삼성에스디아이 주식회사 Substrate for immobilizing physiological material, and a method of preparing the same
US20080161200A1 (en) * 2006-12-05 2008-07-03 The Board Of Trustees Of The Leland Stanford Junior University Biomolecule Immobilization on Biosensors
KR20090119476A (en) * 2008-05-16 2009-11-19 한국전자통신연구원 A method for fabricating patterned biosensor substrate and a biosensor using the same
KR20140100317A (en) * 2013-02-06 2014-08-14 엘지전자 주식회사 Method of Hydrophilizing Surface of Separation Membrane for Water treatment Using Mixed Solution of Dopamine
KR20150123391A (en) * 2014-04-24 2015-11-04 한국과학기술원 A surface treatment method for bio-material deposition and an immunoassay chip using the same
KR101875470B1 (en) * 2017-04-04 2018-07-06 한국생명공학연구원 Substrate for biosensor, method for preparing the same, and biosensor comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113150680A (en) * 2019-12-25 2021-07-23 南京金斯瑞生物科技有限公司 Chip coating, preparation method and application thereof
CN113150680B (en) * 2019-12-25 2023-11-24 南京金斯瑞生物科技有限公司 Chip coating, preparation method and application thereof

Also Published As

Publication number Publication date
KR101875471B1 (en) 2018-07-06

Similar Documents

Publication Publication Date Title
WO2018186683A1 (en) Biosensor substrate, method for producing same, and biosensor comprising same
WO2009136741A1 (en) Novel au / ag core-shell composite useful for biosensor
CN102933554A (en) Crosslinking reagents, methods, and compositions for studying protein-protein interactions
WO2009093821A2 (en) Synthesis of peptide nucleic acids conjugated with amino acids and their application
Gobbo et al. Synthesis of a toolbox of clickable rhodamine B derivatives
WO2020226232A1 (en) Organic electrochemical transistor device and manufacturing method for same
WO2018186682A1 (en) Biosensor substrate, method for producing same, and biosensor comprising same
KR100938777B1 (en) Peptide Nucleic Acids Conjugated with Multi-Amine Linkers and Nucleic Acid Detecting Device Using the Same
JP3760158B2 (en) Novel conductive polymer, sensor using the same, and target substance detection method
WO2020138982A1 (en) Graphene channel member comprising cadaverine olfactory receptor and sensor comprising same
WO2020060194A1 (en) Poly(allyl glycidyl ether)-based redox polymer and electrochemical biosensor using same
Strømgaard et al. A versatile method for solid-phase synthesis of polyamines: neuroactive polyamine toxins as example
CN107365352A (en) A kind of new tripeptide compound for containing 9 adenine alanine and its preparation method and application
WO2012102584A9 (en) Sensor for detecting target virus, and method for screening target virus and analyzing mutation location using same
Li et al. Synthesis of a library of imidazolin-4-ones using poly (ethylene glycol) as soluble support
WO2020138979A1 (en) Compound, graphene channel member and sensor comprising same
WO2020242046A1 (en) Fluoroalkene compound precursor, method for synthesizing precursor, and method for preparing fluoroalkene compound by using precursor
WO2020013668A1 (en) Substrate for nucleic acid amplification, and method for manufacturing same
Anderson et al. A convenient procedure for parallel ester hydrolysis
WO2023033271A1 (en) Thin film-type electrochemical system comprising salt bridge and electrochemical analysis method using same
KR100601999B1 (en) A method for detecting a target molecule using a novel electrically conductive polymer
WO2022225347A1 (en) Graphene channel member comprising virus receptor, and sensor comprising same
JP2976017B2 (en) Double-headed nucleobase derivatives cross-linked with long alkylene chains
Wang et al. Liquid-phase traceless synthesis of 3, 5-disubstituted 1, 2, 4-triazoles
EP1958690A1 (en) Substrate structure, oligomer probe array and methods for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18780934

Country of ref document: EP

Kind code of ref document: A1