WO2014104655A1 - Composite sheet, and display device including same - Google Patents

Composite sheet, and display device including same Download PDF

Info

Publication number
WO2014104655A1
WO2014104655A1 PCT/KR2013/011928 KR2013011928W WO2014104655A1 WO 2014104655 A1 WO2014104655 A1 WO 2014104655A1 KR 2013011928 W KR2013011928 W KR 2013011928W WO 2014104655 A1 WO2014104655 A1 WO 2014104655A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite sheet
group
polysiloxane
copolymer
substituted
Prior art date
Application number
PCT/KR2013/011928
Other languages
French (fr)
Korean (ko)
Inventor
기승범
박정우
김원중
김정섭
박용완
정경택
고정주
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Publication of WO2014104655A1 publication Critical patent/WO2014104655A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • B32B17/04Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments bonded with or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/445Block-or graft-polymers containing polysiloxane sequences containing polyester sequences
    • C08G77/448Block-or graft-polymers containing polysiloxane sequences containing polyester sequences containing polycarbonate sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/10Block- or graft-copolymers containing polysiloxane sequences

Definitions

  • the present invention relates to a composite sheet and a display device including the same.
  • Glass which is excellent in heat resistance and transparency and has a low coefficient of linear expansion is widely used as a liquid crystal display element, an organic EL display element substrate, a color filter substrate, a solar cell substrate, and the like. Recently, miniaturization, thinning, weight reduction, impact resistance, and flexibility are required as substrate materials for display elements, and plastic substrates are in the spotlight as materials for replacing glass substrates.
  • PC polycarbonate
  • PET polyethylene terephthalate
  • PES polyethersulfone
  • PEN polyethylene naphthalate
  • PAR polyarylate
  • PI polyimide
  • Plastic substrate using polycarbonate is a representative engineering plastic, and has high mechanical properties, impact resistance, dimensional stability, and heat resistance, and thus has a wide range of applications such as electric and electronic materials, electronic product exterior materials, display materials, and automobile parts.
  • Korean Patent Publication No. 2010-0118942 discloses a glass fiber reinforced polycarbonate resin including a polycarbonate resin, a brominated flame retardant, and a glass fiber reinforcement coated with urethane.
  • a plastic substrate using glass fibers and polycarbonate has a problem that yellowness, turbidity, and bending resistance are not good.
  • the polysiloxane may be prepared by matching the refractive index with the glass fiber, but the substrate prepared therefrom has a problem in that the transparency and the bending resistance are good, but the surface strength is very low.
  • An object of the present invention is to provide a composite sheet having excellent surface hardness, flex resistance and light transmittance while ensuring transparency compared to a composite sheet having a polycarbonate or polysiloxane as a matrix.
  • Another object of the present invention is to provide a composite sheet having low yellowness (YI) and low turbidity (Haze).
  • Another object of the present invention is to improve the adhesion between the matrix and the reinforcing material, to provide a composite sheet having high bending resistance, low yellowness and turbidity.
  • Still another object of the present invention is to provide a composite sheet having excellent transparency, surface hardness, flex resistance, and light transmittance by including a copolymer having easy refractive index matching with a reinforcing material in a matrix.
  • Still another object of the present invention is to provide a display device including the composite sheet.
  • a composite sheet according to an aspect of the present invention includes a matrix and a reinforcing material impregnated in the matrix, wherein the matrix includes a cured product of a composition including a polysiloxane-polycarbonate copolymer, and a difference in refractive index between the matrix and the reinforcing material is It may be less than 0.01.
  • the device may comprise the composite sheet.
  • the present invention provides a composite sheet having excellent surface hardness, bending resistance and light transmittance while ensuring transparency while including a reinforcing material such as glass fiber and a copolymer having easy refractive index matching in a matrix.
  • the present invention improves the adhesive force between the matrix and the reinforcing material, to provide a composite sheet having high bending resistance, low yellowness and turbidity.
  • the present invention provides a composite sheet free of bubbles and cracks.
  • FIG. 1 is a cross-sectional view of a composite sheet according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a composite sheet according to an embodiment of the present invention.
  • the composite sheet 10 according to an exemplary embodiment of the present invention has a structure in which a reinforcing material 2 is included in a matrix 1.
  • the matrix 1 may be made of a composition comprising a copolymer comprising polysiloxane units.
  • the copolymer including the polysiloxane unit may be a polysiloxane-polycarbonate copolymer.
  • the polysiloxane-polycarbonate copolymer is included in the matrix composition for producing a composite sheet, and the refractive index matching with the reinforcing material including glass fibers and the like relative to other resins is very easy.
  • the polysiloxane-polycarbonate copolymer can have a refractive index of 1.50 to 1.70, such as 1.56 to 1.57. Within this range, the transparency of the composite sheet may be improved by reducing the difference between the matrix, the reinforcing material, and the refractive index when manufacturing the composite sheet.
  • the refractive index difference between the matrix and the reinforcing material may be less than 0.01, for example, 0.001 or more and less than 0.01, specifically, 0.001 to 0.005.
  • the composite sheet according to the embodiment of the present invention has good light transmittance and transparency, as demonstrated by transmittance of 88% or more at a wavelength of 550 nm, and both yellowness and turbidity may be reduced.
  • the polysiloxane-polycarbonate copolymer has a high adhesive strength to a reinforcing material including glass fibers and the like compared to other resins. This improved adhesion can increase the flex resistance and surface hardness of the composite sheet, it can lower the yellowness and turbidity. Regarding the flex resistance, the composite sheet according to the embodiments of the present invention did not generate whitening phenomenon even at 10,000 times when the composite sheet was folded once per second at 10 mm intervals for a 100 ⁇ m thick specimen.
  • the composite sheet having the same thickness including polycarbonate in the matrix had a whitening phenomenon at 700 or more times, and the same thickness including the polysiloxane-polycarbonate copolymer not containing the polysiloxane unit of Formula 1 in the matrix.
  • the composite sheet also had whitening phenomenon more than 2000 times.
  • the composite sheet according to an embodiment of the present invention may have a pencil hardness of HB or 1B or more.
  • the composite sheet including polysiloxane or a polysiloxane-polycarbonate copolymer not containing the polysiloxane unit of Formula 1 in the matrix was so low in surface hardness that pencil hardness could not be measured.
  • the glass transition temperature of the polysiloxane-polycarbonate copolymer may be 150 ° C. or less, for example, 100 to 150 ° C., specifically 140 to 150 ° C. Within this range, there may be an effect of reducing the coefficient of thermal expansion.
  • the polysiloxane-polycarbonate copolymer includes the polysiloxane unit, and the polysiloxane unit may be included in the main chain of the copolymer at 0.1 to 20% by weight, for example 5 to 15% by weight. Within this range, the flex resistance may be improved when included in the composite sheet.
  • the polymerization ratio (based on weight) of the polysiloxane: polycarbonate in the polysiloxane-polycarbonate copolymer may be 1: 0.1 to 1: 5. Within this range, the refractive index matching with the reinforcing material may be easy, thereby increasing the transparency and light transmittance of the composite sheet, it is possible to increase the bending resistance and surface hardness.
  • the polymerization ratio may be 1: 4 to 1: 4.5.
  • the polysiloxane-polycarbonate copolymer can be linear, branched, or graft, but can have a linear structure, for example.
  • the polysiloxane unit may be represented by the following Chemical Formula 1:
  • R 1 and R 2 are each independently hydrogen, C 1 -C 10 alkyl group, C 6 -C 18 aryl group, C 1 -C 10 alkyl group having halogen or C 1 -C 10 alkoxy group, or halogen or C 1 -C 10 alkoxy
  • a C6-C18 aryl group having a group A and B are each independently a substituted or unsubstituted C2-C20 hydrocarbon group, or a substituted or unsubstituted C2-C20 hydrocarbon group having -O- or -S- Z is a substituted or unsubstituted C1-C24 hydrocarbon group or a substituted or unsubstituted C1-C24 hydrocarbon group including an ester bond, a urethane bond, or a combination thereof, and Y is each independently a hydrogen atom , A halogen, a C1-C18 halogenated alkyl group, a cyano group, or an ester group of C1-C
  • substituted is a hydrogen atom of a halogen group, C1-C30 alkyl group, C1-C30 haloalkyl group, C6-C30 aryl group, C2-C30 heteroaryl group, C1-C20 alkoxy group, combinations thereof It means what was substituted by substituents, such as these.
  • R 1 and R 2 may be C 1 -C 5 alkyl groups.
  • a and B may be C2-C20 alkylene groups, specifically, C2-C10 alkylene groups.
  • Z can be an alkylene group of C 1 -C 20, specifically an alkylene group of C 2 -C 10.
  • m + n can be 40 to 100.
  • the polysiloxane unit of Formula 1 may be derived from Formula 2:
  • R 1 , R 2 , A, B, Z, Y, m and n are as defined in Formula 1 above).
  • polysiloxane unit of Formula 1 may be derived from Formula 3:
  • n are each independently an integer of 4 to 100).
  • the method for preparing the polysiloxane unit may be prepared, for example, by preparing a polysiloxane represented by Chemical Formula 2 by reacting a monohydroxysiloxane represented by Chemical Formula 6 with a diene (second step).
  • the monohydroxysiloxane represented by Formula 6 may be prepared by reacting a siloxane terminated with a hydride represented by Formula 4 with a phenol derivative represented by Formula 5 below (first step).
  • R 1 , R 2 , A, Y and m are as defined in Formula 1, D is a substituted or unsubstituted C2-C20 hydrocarbon group having a double bond, or -O- Or a substituted or unsubstituted C2-C20 hydrocarbon group wherein the terminal having -S- is a double bond.
  • D of the phenol derivative may react with siloxane terminated with hydride to form A of monohydroxysiloxane.
  • two or more compounds having different R 1 , R 2 , A, D, Y, and m may be used, respectively, and A, m, and the like may be represented by Formula 6 different from each other.
  • the compound may react with diene to represent A, B, m, n, and the like of the compound represented by Chemical Formula 2.
  • the hydroxyl group (-OH) groups of Formula 5 and 6 may be bonded to the position 2 of the benzene moiety.
  • the first step is a step of synthesizing the monohydroxysiloxane represented by Chemical Formula 6 by reacting the siloxane terminated with the hydride represented by Chemical Formula 4 and the phenol derivative represented by Chemical Formula 5 in the presence of a catalyst.
  • a catalyst containing platinum may be used.
  • Pt / C for example 10% Pt / C, may be used.
  • the amount of the catalyst used may be 10 to 500 ppm, for example, 50 to 150 ppm with respect to the entire reactant.
  • the reaction may be performed in an organic solvent, and examples of the organic solvent may include, but are not limited to, 1,2-dichloroethane, toluene, xylene, dichlorobenzene, mixed solvents thereof, and the like. For example, it may be performed in toluene.
  • the reaction may control the reaction temperature and reaction time according to the reactivity of the reactants (Formula 4 and Formula 5).
  • the reaction may be carried out at a reaction temperature of 60 to 140 °C, for example 110 to 120 °C, for 2 to 12 hours, for example 3 to 5 hours.
  • the compound of formula 4 prepared in the first step may be purified and used in the next step or in situ in the next step without further purification.
  • the second step is to prepare a polysiloxane represented by the formula (2) by reacting the monohydroxysiloxane represented by the formula (6) and the diene.
  • the diene is a substituted or unsubstituted C1-C20 hydrocarbon group, or a substituted or unsubstituted C1-C20 hydrocarbon group including an ester bond, a urethane bond, or a combination thereof, for example, an ester bond, a urethane bond Or a substituted or unsubstituted C1-C20 alkylene group, a substituted or unsubstituted C6-C20 cycloalkylene group, or a substituted or unsubstituted C6-C20 arylene group, with or without combinations thereof. It may be diene.
  • the polysiloxane represented by Chemical Formula 2 may be prepared by reacting in situ by adding the diene without purifying the monohydroxysiloxane represented by Chemical Formula 6.
  • reaction temperature and reaction time can be appropriately controlled.
  • the reaction temperature and reaction time used in the first step may be used as it is, but is not limited thereto.
  • the polysiloxane prepared can be purified and obtained through conventional methods. For example, after completion of the second step, the reaction product is filtered to remove the catalyst, and the obtained filtrate is concentrated to remove the reaction solvent and the by-product of low molecular weight, thereby obtaining the polysiloxane represented by Chemical Formula 1. Depending on the purity of the polysiloxane, further purification may be carried out.
  • the polycarbonate-polysiloxane copolymer may be a copolymer of a polysiloxane represented by Chemical Formula 2, an aromatic dihydroxy compound, for example, an aromatic dihydroxy compound and a phosgene-based compound represented by the following Chemical Formula 7.
  • a 1 is a single bond, a substituted or unsubstituted C1-C5 alkylene group, a substituted or unsubstituted C1-C5 alkylidene group, a substituted or unsubstituted C3-C6 cycloalkylene group, substituted Or an unsubstituted C5-C6 cycloalkylidene group, CO, S, and SO2,
  • R 3 and R 4 are each independently a substituted or unsubstituted C 1 -C 30 alkyl group, and substituted or unsubstituted It is selected from the group consisting of a substituted C6-C30 aryl group, a and b are each independently an integer of 0 to 4.
  • aromatic dihydroxy compound examples include 4,4'-dihydroxydiphenyl, 2,2-bis- (4-hydroxyphenyl) -propane, 2,4-bis- (4-hydroxyphenyl ) -2-methylbutane, 1,1-bis- (4-hydroxyphenyl) -cyclohexane, 2,2-bis- (3-chloro-4-hydroxyphenyl) -propane, 2,2-bis- (3,5-dichloro-4-hydroxyphenyl) -propane etc. can be illustrated.
  • aromatic dihydroxy compound 2,2-bis- (4-hydroxyphenyl) -propane, 2,2-bis- (3,5-dichloro-4-hydroxyphenyl) -propane, or 1,1-bis- (4-hydroxyphenyl) -cyclohexane can be used, and 2,2-bis- (4-hydroxyphenyl) -propane also specifically called bisphenol-A can be used.
  • the total amount of polysiloxane represented by Formula 2 is 0.1 to 20 parts by weight, for example 5 to 15 parts by weight, based on 100 parts by weight of the total amount of polysiloxane and aromatic dihydroxy compound represented by Formula 2, and the aromatic di
  • the content of hydroxy compound is 80 to 99.9 parts by weight, for example 85 to 95 parts by weight.
  • phosgene-based compound used in the present invention examples include, but are not limited to, phosgene, triphosgene, diphosgene, and the like.
  • an aromatic dihydroxy compound is added to a basic aqueous solution, an organic solvent, a polysiloxane represented by Formula 2 is added and mixed, and a phosgene-based compound is added. It can be prepared by interfacial polymerization. By applying the interfacial polymerization in this way, it is possible to secure remarkably excellent transparency compared to the melt polymerization.
  • the polysiloxane-polycarbonate copolymer in the composite sheet may be included in 5 to 40% by weight, for example, 5 to 30% by weight. Within this range, transparency, light transmittance, bending resistance, and surface strength of the composite sheet may be improved. That is, the polysiloxane-polycarbonate copolymer: reinforcing material may be included in a weight ratio of 5: 95 to 40: 60.
  • the refractive index of the copolymer and the reinforcing material is controlled, and the composite sheet prepared therefrom is prepared compared to using a conventional resin (for example, polycarbonate and polysiloxane alone).
  • a conventional resin for example, polycarbonate and polysiloxane alone.
  • the reinforcement 2 can be included in the matrix 2 in a dispersed, single layer or multiple layer structure.
  • the reinforcement in the composite sheet may have a refractive index of 1.50 to 1.57, for example, 1.56 to 1.57. Within this range, refractive index matching with the polysiloxane-polycarbonate copolymer can be facilitated.
  • the thickness of the reinforcement may be 10 ⁇ m to 200 ⁇ m.
  • the 'thickness' may mean the thickness of the fiber when the reinforcing material in the form of a fiber, the thickness of the woven fabric when the fiber is woven form, but is not limited thereto.
  • the reinforcing material may be at least one of glass fiber, glass fiber cloth, glass fabric, glass nonwoven fabric, and glass fiber mesh.
  • it may be a glass fiber cloth.
  • Glass fiber cloth may vary in thickness, refractive index, etc., depending on the raw material component, thickness, shape, weaving and weft shape of the glass fiber, the number of glass fibers per bundle, etc., and may be selected from among them.
  • the composite sheet thickness may be 15 ⁇ m to 200 ⁇ m. In the above range, it can be used as a composite sheet for flexible substrate applications.
  • the composite sheet may have a thermal expansion coefficient of 0 ppm / ° C. to 400 ppm / ° C., for example, 0 ppm / ° C. to 10 ppm / ° C., specifically 3 ppm / ° C. to 7 ppm / ° C., measured by ASTM E 831. Within this range, thermal deformation can be suppressed in manufacturing the flexible substrate.
  • the composite sheet may have a surface roughness Ra of 100 nm or less, for example, 50 nm or less, specifically 5 nm to 50 nm.
  • the composite sheet may have a transmittance of 88% or more, for example, 88 to 99% at a wavelength of 550 nm.
  • Composite sheet according to an embodiment of the present invention is excellent in both surface hardness, bending resistance and light transmittance while ensuring transparency compared to the composite sheet of a polycarbonate resin or a polysiloxane resin matrix. Therefore, the composite sheet can be applied as a substitute for glass, for example, an optical sheet such as a liquid crystal display device substrate, a flexible substrate, an organic EL display device substrate, a color filter substrate, a solar cell substrate, a transparent sheet, an optical lens, an optical device. , OLED encapsulating material, cover glass, display multilayer thin film and the like can be used.
  • an optical sheet such as a liquid crystal display device substrate, a flexible substrate, an organic EL display device substrate, a color filter substrate, a solar cell substrate, a transparent sheet, an optical lens, an optical device.
  • OLED encapsulating material, cover glass, display multilayer thin film and the like can be used.
  • a method for manufacturing a composite sheet may include curing a composition for a matrix including a copolymer including the polysiloxane unit, and a reinforcing material impregnated in the composition for the matrix.
  • the method for producing a copolymer including the polysiloxane unit is as described above.
  • the refractive index of the copolymer with the refractive index of the reinforcing material, and the polymerization ratio (based on weight) of the polysiloxane: polycarbonate may be 1: 0.1 to 1: 5.
  • the copolymer is dissolved in a conventional organic solvent (eg methylene chloride, THF) and then impregnated with a reinforcing material. Then, the composition and the reinforcing material is cured through a laminating process to produce a composite sheet. Laminating conditions are not particularly limited.
  • a display device may include the composite sheet.
  • the display apparatus include a liquid crystal display device substrate, a flexible substrate, an organic EL display device substrate, a color filter substrate, a solar cell substrate, an optical sheet, a transparent sheet, an optical lens, an optical device, an LED encapsulant, a cover glass, and a display multilayer thin film. It may include one or more, but is not limited thereto.
  • Preparation Example 2 a polycarbonate-polysiloxane copolymer in a powdered state was obtained in the same manner as in Preparation Example 2, except that 109.9 g (26.3 mmol) of Polysiloxane B (Preparation Example 3) was used instead of Polysiloxane A. .
  • DOSY analysis of the obtained copolymer confirmed that the siloxane polymer was present in the main chain of the polycarbonate, and the Si content was 2.1% by weight based on 1H NMR analysis.
  • the weight average molecular weight (Mw) is 20,235 and the refractive index is 1.561.
  • the copolymer of Preparation Example 2 was obtained as a powder in powder form, and the powder was dissolved in a solvent (Methylene chloride) and then impregnated in a glass fiber cloth (# 3313, Nittobo, refractive index: 1.56) having a thickness of 80 ⁇ m, followed by a laminating process. A composite sheet having a thickness of 100 ⁇ m was obtained through the material. At this time, the glass fiber cloth was to be included in 70% by weight based on the composite sheet.
  • a solvent Methylene chloride
  • the powder of the copolymer of Preparation Example 2 is put into an extruder, heated to 400 °C to melt and extruded a 105 ⁇ m thick film through a T-die mounted on the extruder and at the same time glass fiber cloth (# 3313, Nittobo Co., Refractive Index: 1.56) was impregnated to obtain a composite sheet having a thickness of 105 ⁇ m. At this time, the glass fiber cloth was to be included in 70% by weight based on the composite sheet.
  • the copolymer of Preparation Example 4 was obtained as a powder in powder form, and the powder was dissolved in a solvent (Methylene chloride) and then impregnated in a glass fiber cloth (# 3313, Nittobo, refractive index: 1.56) having a thickness of 80 ⁇ m, followed by a laminating process. Through this, a 95-micrometer-thick composite sheet was obtained. At this time, the glass fiber cloth was to be included in 70% by weight based on the composite sheet.
  • a solvent Methylene chloride
  • the powder of the copolymer of Preparation Example 4 was obtained in a powder state, the powder was introduced into an extruder, heated to 400 ° C., melted, and a film having a thickness of 100 ⁇ m was extruded through a T-die mounted on the extruder. (# 3313, Nittobo Co., Refractive Index: 1.56) was impregnated to obtain a composite sheet having a thickness of 100 ⁇ m. At this time, the glass fiber cloth was included in 70% by weight based on the composite sheet.
  • Polysiloxane (Shin-Etsu, X-22-1821, which does not include the polysiloxane unit of Formula 1) and polycarbonate were copolymerized to obtain a powder powder having a refractive index of 1.549.
  • a solvent Methylene chloride
  • a composite sheet having a thickness of 95 ⁇ m was obtained through a laminating process.
  • Polysiloxane (Shin-Etsu, X-22-1821, which does not include the polysiloxane unit of Formula 1) and polycarbonate were copolymerized to obtain a powder powder having a refractive index of 1.549. After drying polysiloxane-polycarbonate, it was heated to 400 ° C., melted, and a 105 ⁇ m thick film was extruded through a T-die mounted on the extruder, and a glass fiber cloth was impregnated to prepare a composite sheet having a thickness of 105 ⁇ m. It was.
  • the polycarbonate chip After drying the polycarbonate chip, it is put into the extruder, heated to 400 °C to melt and extruded 105 ⁇ m thick film through the T-die mounted on the extruder and impregnated glass fiber cloth to prepare a composite sheet having a thickness of 105 ⁇ m It was.
  • a two-component polyalkylarylsiloxane resin (Dow coating (OE-6630) and polysiloxane (in-house developed), containing no polysiloxane unit of Formula 1) was impregnated in a glass fiber cloth and dried to prepare a composite sheet having a thickness of 100 ⁇ m. .
  • Yellowness (YI) A color difference instrument (Konika minota company CM3600D model) was used.
  • Haze was measured using a haze meter (NDH200 from Nippon denshouku).
  • Pencil Hardness It was measured by an electric pencil hardness tester (Core Tech).
  • the composite sheet of Comparative Example 3 including a matrix of polycarbonate was not good bend resistance easily whitening phenomenon occurred in the bending test.
  • the composite sheet of Comparative Example 4 containing a matrix of polysiloxane had excellent flex resistance but very poor surface hardness.
  • the composite sheets of Comparative Examples 1 to 2 including the matrix of the polysiloxane-polycarbonate copolymer had difficulty in matching the refractive index of the copolymer and the reinforcing material, and yellowness and turbidity were also observed in Comparative Examples 1 to 2 in which the refractive index difference was minimized. It was high, and the flex resistance and the surface hardness were not good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

The present invention relates to a composite sheet comprising a matrix and a reinforcing material impregnated with said matrix, wherein the matrix contains a polysiloxane-polycarbonate copolymer and the refractive index difference between the matrix and the reinforcing material is less than 0.01, and the present invention also relates to a display device including same.

Description

복합시트 및 이를 포함하는 디스플레이 장치Composite sheet and display device including same
본 발명은 복합시트 및 이를 포함하는 디스플레이 장치에 관한 것이다.The present invention relates to a composite sheet and a display device including the same.
액정 표시 소자나 유기 EL 표시 소자용 기판, 컬러 필터 기판, 태양 전지 기판 등으로 내열성 및 투명성이 우수하고, 선팽창 계수가 낮은 유리가 널리 이용되고 있다. 최근에는 표시 소자용 기판 소재로 소형화, 박형화, 경량화, 내충격성, 유연성이 요구되고 있어 유리 기판을 대체하기 위한 소재로서 플라스틱 기판이 각광을 받고 있다.Glass which is excellent in heat resistance and transparency and has a low coefficient of linear expansion is widely used as a liquid crystal display element, an organic EL display element substrate, a color filter substrate, a solar cell substrate, and the like. Recently, miniaturization, thinning, weight reduction, impact resistance, and flexibility are required as substrate materials for display elements, and plastic substrates are in the spotlight as materials for replacing glass substrates.
근래에는 플라스틱 기판으로 폴리카보네이트(PC), 폴리실록산, 폴리에틸렌테레프탈레이트(PET), 폴리에테르설폰(PES), 폴리에틸렌나프탈레이트(PEN), 폴리아릴레이트(PAR), 폴리이미드(PI) 등의 소재가 사용되고 있다.Recently, materials such as polycarbonate (PC), polysiloxane, polyethylene terephthalate (PET), polyethersulfone (PES), polyethylene naphthalate (PEN), polyarylate (PAR), and polyimide (PI) are used as plastic substrates. It is used.
폴리카보네이트를 이용한 플라스틱 기판은 대표적인 엔지니어링 플라스틱으로 높은 기계적 성질, 내충격성, 치수 안정성, 내열성 등이 우수하여 전기전자재료, 전자제품 외장재, 디스플레이 소재, 자동차 부품 등 그 활용 범위가 넓다. 이와 관련하여 한국공개특허 2010-0118942호는 폴리카보네이트 수지, 브롬계 난연제 및 우레탄으로 피복된 유리섬유 강화제를 포함하는 유리섬유 강화 폴리카보네이트 수지를 개시하고 있다. 그러나, 폴리카보네이트와 유리섬유의 굴절률을 매칭시키는 것이 용이하지 않다. 또한, 유리섬유와 폴리카보네이트를 이용한 플라스틱 기판은 황색도, 혼탁도 및 내굴곡성이 좋지 않다는 문제점이 있다. Plastic substrate using polycarbonate is a representative engineering plastic, and has high mechanical properties, impact resistance, dimensional stability, and heat resistance, and thus has a wide range of applications such as electric and electronic materials, electronic product exterior materials, display materials, and automobile parts. In this regard, Korean Patent Publication No. 2010-0118942 discloses a glass fiber reinforced polycarbonate resin including a polycarbonate resin, a brominated flame retardant, and a glass fiber reinforcement coated with urethane. However, it is not easy to match the refractive indices of polycarbonate and glass fiber. In addition, a plastic substrate using glass fibers and polycarbonate has a problem that yellowness, turbidity, and bending resistance are not good.
또한, 폴리실록산을 유리섬유와 굴절률을 매칭시켜 기판을 제조할 수 있으나, 이로부터 제조된 기판은 투명성과 내굴곡성은 좋지만, 표면 강도가 매우 낮다는 문제점이 있다.In addition, the polysiloxane may be prepared by matching the refractive index with the glass fiber, but the substrate prepared therefrom has a problem in that the transparency and the bending resistance are good, but the surface strength is very low.
본 발명의 목적은 기존의 폴리카보네이트 또는 폴리실록산 등을 매트릭스로 하는 복합시트 대비 투명성을 확보하면서, 표면경도, 내굴곡성 및 광투과성이 모두 우수한 복합시트를 제공하는 것이다. An object of the present invention is to provide a composite sheet having excellent surface hardness, flex resistance and light transmittance while ensuring transparency compared to a composite sheet having a polycarbonate or polysiloxane as a matrix.
본 발명의 다른 목적은 황색도(YI)와 혼탁도(Haze)가 낮은 복합시트를 제공하는 것이다.Another object of the present invention is to provide a composite sheet having low yellowness (YI) and low turbidity (Haze).
본 발명의 또 다른 목적은 매트릭스와 보강재간의 접착력을 향상시켜, 내굴곡성이 높고, 황색도 및 혼탁도가 낮은 복합시트를 제공하는 것이다. Another object of the present invention is to improve the adhesion between the matrix and the reinforcing material, to provide a composite sheet having high bending resistance, low yellowness and turbidity.
본 발명의 또 다른 목적은 보강재와의 굴절률 매칭이 용이한 공중합체를 매트릭스에 포함시켜, 투명성, 표면경도, 내굴곡성 및 광투과성이 모두 우수한 복합시트를 제공하는 것이다.Still another object of the present invention is to provide a composite sheet having excellent transparency, surface hardness, flex resistance, and light transmittance by including a copolymer having easy refractive index matching with a reinforcing material in a matrix.
본 발명의 또 다른 목적은 기포 및 크랙이 없는 복합시트를 제공하는 것이다.It is another object of the present invention to provide a composite sheet free of bubbles and cracks.
본 발명의 또 다른 목적은 상기 복합시트를 포함하는 디스플레이 장치를 제공하는 것이다.Still another object of the present invention is to provide a display device including the composite sheet.
본 발명의 일 관점인 복합시트는 매트릭스와 상기 매트릭스에 함침된 보강재를 포함하고, 상기 매트릭스는 폴리실록산-폴리카보네이트 공중합체를 포함하는 조성물의 경화물을 포함하고, 상기 매트릭스와 상기 보강재의 굴절률 차이가 0.01 미만이 될 수 있다.A composite sheet according to an aspect of the present invention includes a matrix and a reinforcing material impregnated in the matrix, wherein the matrix includes a cured product of a composition including a polysiloxane-polycarbonate copolymer, and a difference in refractive index between the matrix and the reinforcing material is It may be less than 0.01.
본 발명의 다른 관점인 장치는 상기 복합시트를 포함할 수 있다.Another aspect of the invention the device may comprise the composite sheet.
본 발명은 유리 섬유 등의 보강재와 굴절률 매칭이 용이한 공중합체를 매트릭스에 포함함으로써, 투명성을 확보하면서, 표면경도, 내굴곡성 및 광투과성이 모두 우수한 복합시트를 제공하였다. 또한, 본 발명은 매트릭스와 보강재간의 접착력을 향상시켜, 내굴곡성이 높고, 황색도 및 혼탁도가 낮은 복합시트를 제공하였다. 또한, 본 발명은 기포 및 크랙이 없는 복합시트를 제공하였다.The present invention provides a composite sheet having excellent surface hardness, bending resistance and light transmittance while ensuring transparency while including a reinforcing material such as glass fiber and a copolymer having easy refractive index matching in a matrix. In addition, the present invention improves the adhesive force between the matrix and the reinforcing material, to provide a composite sheet having high bending resistance, low yellowness and turbidity. In addition, the present invention provides a composite sheet free of bubbles and cracks.
도 1은 본 발명의 일 실시예에 따른 복합시트의 단면도이다.1 is a cross-sectional view of a composite sheet according to an embodiment of the present invention.
이하, 도 1을 참조하여 본 발명의 일 실시예에 따른 복합시트에 대해 설명한다. 도 1은 본 발명의 일 실시예에 따른 복합시트의 단면도이다. Hereinafter, a composite sheet according to an embodiment of the present invention will be described with reference to FIG. 1. 1 is a cross-sectional view of a composite sheet according to an embodiment of the present invention.
도 1에 의하면, 본 발명의 일 실시예에 따른 복합시트(10)는 매트릭스(1) 내에 보강재(2)가 포함된 구조로 되어 있다. Referring to FIG. 1, the composite sheet 10 according to an exemplary embodiment of the present invention has a structure in which a reinforcing material 2 is included in a matrix 1.
매트릭스(1)는 폴리실록산 단위(repeating unit)를 포함하는 공중합체를 포함하는 조성물로 제조될 수 있다. 예를들면, 상기 폴리실록산 단위를 포함하는 공중합체는 폴리실록산-폴리카보네이트 공중합체일 수 있다. 폴리실록산-폴리카보네이트 공중합체는 복합시트 제조를 위한 매트릭스용 조성물에 포함되고, 타 수지 대비 유리 섬유 등을 포함하는 보강재와의 굴절률 매칭이 매우 용이하다. The matrix 1 may be made of a composition comprising a copolymer comprising polysiloxane units. For example, the copolymer including the polysiloxane unit may be a polysiloxane-polycarbonate copolymer. The polysiloxane-polycarbonate copolymer is included in the matrix composition for producing a composite sheet, and the refractive index matching with the reinforcing material including glass fibers and the like relative to other resins is very easy.
폴리실록산-폴리카보네이트 공중합체는 굴절률이 1.50 내지 1.70, 예를들면, 1.56 내지 1.57이 될 수 있다. 상기 범위 내에서, 복합시트 제조시 매트릭스와 보강재와 굴절률 차이를 낮추어 복합시트의 투명성을 높일 수 있다.The polysiloxane-polycarbonate copolymer can have a refractive index of 1.50 to 1.70, such as 1.56 to 1.57. Within this range, the transparency of the composite sheet may be improved by reducing the difference between the matrix, the reinforcing material, and the refractive index when manufacturing the composite sheet.
본 발명의 일 실시예에 따른 복합시트는 매트릭스와 보강재의 굴절률 차이가 0.01 미만, 예를들면, 0.001 이상 0.01 미만, 구체적으로는, 0.001 내지 0.005이 될 수 있다. 이러한 굴절률 차이를 확보함으로써 본 발명의 일 실시예에 따른 복합시트는 파장 550nm에서 88% 이상의 투과율에서 입증되는 바와 같이, 광투과성과 투명성이 좋으며, 황색도와 혼탁도 모두가 감소할 수 있다.In the composite sheet according to the embodiment of the present invention, the refractive index difference between the matrix and the reinforcing material may be less than 0.01, for example, 0.001 or more and less than 0.01, specifically, 0.001 to 0.005. By securing such a difference in refractive index, the composite sheet according to the embodiment of the present invention has good light transmittance and transparency, as demonstrated by transmittance of 88% or more at a wavelength of 550 nm, and both yellowness and turbidity may be reduced.
상기 폴리실록산-폴리카보네이트 공중합체는 타 수지 대비 유리 섬유 등을 포함하는 보강재에 대해 접착력이 높다. 이렇게 향상된 접착력은 복합시트의 내굴곡성과 표면경도를 높일 수 있고, 황색도와 혼탁도를 낮출 수 있다. 내굴곡성 관련하여, 본 발명의 실시예들에 따른 복합시트는 두께 100㎛ 시편에 대해 10mm 간격으로 복합시트를 초당 1회로 접었을 때 1만회 이상에서도 백화 현상이 발생하지 않았다. 이에 비해, 폴리카보네이트를 매트릭스에 포함하는 동일 두께의 복합시트는 700회 이상에서 백화 현상이 발생하였고, 상기 화학식 1의 폴리실록산 단위를 포함하지 않는 폴리실록산-폴리카보네이트 공중합체를 매트릭스에 포함하는 동일 두께의 복합시트 역시 2000회 이상에서 백화 현상이 발생하였다. 표면 경도 관련하여, 본 발명의 일 실시예에 따른 복합시트는 연필경도가 HB 또는 1B이상이 될 수 있다. 이에 비해, 폴리실록산, 또는 상기 화학식 1의 폴리실록산 단위를 포함하지 않는 폴리실록산-폴리카보네이트 공중합체를 매트릭스에 포함하는 복합시트는 표면 경도가 현저하게 낮아 연필경도를 측정할 수 없었다.The polysiloxane-polycarbonate copolymer has a high adhesive strength to a reinforcing material including glass fibers and the like compared to other resins. This improved adhesion can increase the flex resistance and surface hardness of the composite sheet, it can lower the yellowness and turbidity. Regarding the flex resistance, the composite sheet according to the embodiments of the present invention did not generate whitening phenomenon even at 10,000 times when the composite sheet was folded once per second at 10 mm intervals for a 100 μm thick specimen. On the other hand, the composite sheet having the same thickness including polycarbonate in the matrix had a whitening phenomenon at 700 or more times, and the same thickness including the polysiloxane-polycarbonate copolymer not containing the polysiloxane unit of Formula 1 in the matrix. The composite sheet also had whitening phenomenon more than 2000 times. In relation to the surface hardness, the composite sheet according to an embodiment of the present invention may have a pencil hardness of HB or 1B or more. In contrast, the composite sheet including polysiloxane or a polysiloxane-polycarbonate copolymer not containing the polysiloxane unit of Formula 1 in the matrix was so low in surface hardness that pencil hardness could not be measured.
폴리실록산-폴리카보네이트 공중합체의 유리전이온도는 150℃ 이하, 예를들면 100 내지 150℃, 구체적으로는140 내지 150℃가 될 수 있다. 상기 범위 이내에서, 열팽창계수의 감소 효과가 있을 수 있다.The glass transition temperature of the polysiloxane-polycarbonate copolymer may be 150 ° C. or less, for example, 100 to 150 ° C., specifically 140 to 150 ° C. Within this range, there may be an effect of reducing the coefficient of thermal expansion.
폴리실록산-폴리카보네이트 공중합체는 상기 폴리실록산 단위를 포함하고, 폴리실록산 단위는 상기 공중합체의 주쇄에 0.1 내지 20중량%, 예를들면 5 내지 15중량%로 포함될 수 있다. 상기 범위 내에서, 복합시트에 포함시 내굴곡성 좋아지는 효과가 있을 수 있다.The polysiloxane-polycarbonate copolymer includes the polysiloxane unit, and the polysiloxane unit may be included in the main chain of the copolymer at 0.1 to 20% by weight, for example 5 to 15% by weight. Within this range, the flex resistance may be improved when included in the composite sheet.
폴리실록산-폴리카보네이트 공중합체 중 상기 폴리실록산: 폴리카보네이트의 중합비(중량 기준)는 1 : 0.1 내지 1 : 5가 될 수 있다. 상기 범위 내에서, 보강재와의 굴절률 매칭이 용이할 수 있고, 이로부터 복합시트의 투명성과 광투성을 높일 수 있으며, 내굴곡성과 표면경도를 높일 수 있다. 예를들면 중합비는 1 : 4 내지 1 : 4.5가 될 수 있다.The polymerization ratio (based on weight) of the polysiloxane: polycarbonate in the polysiloxane-polycarbonate copolymer may be 1: 0.1 to 1: 5. Within this range, the refractive index matching with the reinforcing material may be easy, thereby increasing the transparency and light transmittance of the composite sheet, it is possible to increase the bending resistance and surface hardness. For example, the polymerization ratio may be 1: 4 to 1: 4.5.
폴리실록산-폴리카보네이트 공중합체는 선형, 분지형, 그라프트형 모두 될 수 있지만, 예를들면 선형 구조를 가질 수 있다. The polysiloxane-polycarbonate copolymer can be linear, branched, or graft, but can have a linear structure, for example.
폴리실록산-폴리카보네이트 공중합체에서 폴리실록산 단위는, 구체적으로 하기 화학식 1로 표시될 수 있다:In the polysiloxane-polycarbonate copolymer, the polysiloxane unit may be represented by the following Chemical Formula 1:
<화학식 1><Formula 1>
Figure PCTKR2013011928-appb-I000001
Figure PCTKR2013011928-appb-I000001
상기 식에서, R1과 R2는 각각 독립적으로 수소, C1-C10의 알킬기, C6-C18의 아릴기, 할로겐 또는 C1-C10의 알콕시기를 갖는 C1-C10의 알킬기, 또는 할로겐 또는 C1-C10의 알콕시기를 갖는 C6-C18의 아릴기이고, A와 B는 각각 독립적으로 치환 또는 비치환된 C2-C20의 탄화수소기, 또는 -O- 또는 -S-를 갖는 치환 또는 비치환된 C2-C20의 탄화수소기이고, Z는 치환 또는 비치환된 C1-C24의 탄화수소기, 또는 에스테르 결합, 우레탄 결합, 또는 이들의 조합을 포함하는 치환 또는 비치환된 C1-C24의 탄화수소기이고, Y는 각각 독립적으로 수소 원자, 할로겐, C1-C18의 할로겐화 알킬기, 시아노기, 또는 C1-C18의 에스테르기이고, m과 n은 각각 독립적으로 4 내지 100의 정수이고, *은 연결기이다.Wherein R 1 and R 2 are each independently hydrogen, C 1 -C 10 alkyl group, C 6 -C 18 aryl group, C 1 -C 10 alkyl group having halogen or C 1 -C 10 alkoxy group, or halogen or C 1 -C 10 alkoxy A C6-C18 aryl group having a group, A and B are each independently a substituted or unsubstituted C2-C20 hydrocarbon group, or a substituted or unsubstituted C2-C20 hydrocarbon group having -O- or -S- Z is a substituted or unsubstituted C1-C24 hydrocarbon group or a substituted or unsubstituted C1-C24 hydrocarbon group including an ester bond, a urethane bond, or a combination thereof, and Y is each independently a hydrogen atom , A halogen, a C1-C18 halogenated alkyl group, a cyano group, or an ester group of C1-C18, m and n are each independently an integer of 4 to 100, * is a linking group.
본 명세서에서 '치환'은 수소 원자가 할로겐기, C1-C30의 알킬기, C1-C30의 할로알킬기, C6-C30의 아릴기, C2-C30의 헤테로아릴기, C1-C20의 알콕시기, 이들의 조합 등의 치환기로 치환된 것을 의미한다. 예를들면 R1과 R2는 C1-C5의 알킬기가 될 수 있다. 예를들면, A와 B는 C2-C20의 알킬렌기, 구체적으로는 C2-C10의 알킬렌기가 될 수 있다. 예를들면, Z는 C1-C20의 알킬렌기, 구체적으로는 C2-C10의 알킬렌기가 될 수 있다. 예를들면, m + n은 40 내지 100이 될 수 있다.In this specification, "substituted" is a hydrogen atom of a halogen group, C1-C30 alkyl group, C1-C30 haloalkyl group, C6-C30 aryl group, C2-C30 heteroaryl group, C1-C20 alkoxy group, combinations thereof It means what was substituted by substituents, such as these. For example, R 1 and R 2 may be C 1 -C 5 alkyl groups. For example, A and B may be C2-C20 alkylene groups, specifically, C2-C10 alkylene groups. For example, Z can be an alkylene group of C 1 -C 20, specifically an alkylene group of C 2 -C 10. For example, m + n can be 40 to 100.
상기 화학식 1의 폴리실록산 단위는 하기 화학식 2로부터 유래될 수 있다:The polysiloxane unit of Formula 1 may be derived from Formula 2:
<화학식 2><Formula 2>
Figure PCTKR2013011928-appb-I000002
Figure PCTKR2013011928-appb-I000002
(상기 식에서, R1, R2, A, B, Z, Y, m과 n은 상기 화학식 1에서 정의한 바와 같다).(Wherein R 1 , R 2 , A, B, Z, Y, m and n are as defined in Formula 1 above).
예를들면, 상기 화학식 1의 폴리실록산 단위는 하기 화학식 3으로부터 유래될 수 있다:For example, the polysiloxane unit of Formula 1 may be derived from Formula 3:
<화학식 3><Formula 3>
Figure PCTKR2013011928-appb-I000003
Figure PCTKR2013011928-appb-I000003
(상기에서, m과 n은 각각 독립적으로 4 내지 100의 정수이다).(In the above, m and n are each independently an integer of 4 to 100).
상기 폴리실록산 단위의 제조방법은 예를들면, 하기 화학식 6으로 표시되는 모노하이드록시실록산과 다이엔을 반응시켜 상기 화학식 2로 표시되는 폴리실록산을 제조하는 단계(제2 단계)를 포함하여 제조될 수 있다. 여기서, 상기 화학식 6으로 표시되는 모노하이드록시실록산은 하기 화학식 4로 표시되는 하이드라이드로 종결된 실록산을 하기 화학식 5로 표시되는 페놀 유도체와 반응시켜 제조(제1 단계)할 수 있다.The method for preparing the polysiloxane unit may be prepared, for example, by preparing a polysiloxane represented by Chemical Formula 2 by reacting a monohydroxysiloxane represented by Chemical Formula 6 with a diene (second step). . Here, the monohydroxysiloxane represented by Formula 6 may be prepared by reacting a siloxane terminated with a hydride represented by Formula 4 with a phenol derivative represented by Formula 5 below (first step).
<화학식 4><Formula 4>
Figure PCTKR2013011928-appb-I000004
Figure PCTKR2013011928-appb-I000004
<화학식 5><Formula 5>
Figure PCTKR2013011928-appb-I000005
Figure PCTKR2013011928-appb-I000005
<화학식 6><Formula 6>
Figure PCTKR2013011928-appb-I000006
Figure PCTKR2013011928-appb-I000006
상기 화학식 4 내지 6에서, R1, R2, A, Y 및 m은 상기 화학식 1에서 정의한 바와 같고, D는 말단이 이중결합인 치환 또는 비치환된 C2-C20의 탄화수소기, 또는 -O- 또는 -S-를 갖는 말단이 이중결합인 치환 또는 비치환된 C2-C20의 탄화수소기이다.In Formulas 4 to 6, R 1 , R 2 , A, Y and m are as defined in Formula 1, D is a substituted or unsubstituted C2-C20 hydrocarbon group having a double bond, or -O- Or a substituted or unsubstituted C2-C20 hydrocarbon group wherein the terminal having -S- is a double bond.
예를들면, D는 말단이 이중결합인 치환 또는 비치환된 C2-C20의 알킬렌기, 말단이 이중결합인 치환 또는 비치환된 C6-C20의 아릴렌기, 또는 -O- 또는 -S-를 갖는 말단이 이중결합인 치환 또는 비치환된 C2-C20의 알킬렌기 또는 말단이 이중결합인 치환 또는 비치환된 C6-C20의 아릴렌기, 예를들면 말단이 이중결합인 C2-C10의 알킬렌기, 구체적으로는, 말단이 이중결합인 C2-C6의 알킬렌기, 더욱 구체적으로는, 알릴기(*-CH2-CH=CH2, 상기 *는 상기 화학식 5의 벤젠기에 대한 연결기이다)이다. 여기서, 상기 페놀 유도체의 D는 하이드라이드로 종결된 실록산과 반응하여 모노하이드록시실록산의 A를 형성할 수 있는 것이다. For example, D has a substituted or unsubstituted C2-C20 alkylene group having a double bond at the terminal, a substituted or unsubstituted C6-C20 arylene group having a double bond at the terminal, or -O- or -S- Substituted or unsubstituted C2-C20 alkylene group having a double bond or substituted or unsubstituted C6-C20 arylene group having a double bond, for example, C2-C10 alkylene group having a double bond, As the C2-C6 alkylene group having a double bond, more specifically, an allyl group (* -CH 2 -CH = CH 2 , wherein * is a linking group to the benzene group of Formula 5). Here, D of the phenol derivative may react with siloxane terminated with hydride to form A of monohydroxysiloxane.
상기 화학식 4 내지 6로 표시되는 화합물로는, 각각 R1, R2, A, D, Y 및 m이 다른 2종 이상의 화합물을 사용할 수 있으며, A, m 등이 서로 다른 상기 화학식 6로 표시되는 화합물은 다이엔과 반응하여, 상기 화학식 2로 표시되는 화합물의 A, B, m, n 등을 나타낼 수 있다.As the compounds represented by Formulas 4 to 6, two or more compounds having different R 1 , R 2 , A, D, Y, and m may be used, respectively, and A, m, and the like may be represented by Formula 6 different from each other. The compound may react with diene to represent A, B, m, n, and the like of the compound represented by Chemical Formula 2.
구체예에서, 상기 화학식 5 및 6의 수산화기(-OH)기는 벤젠 모이어티의 2번 위치에 결합될 수 있다.In embodiments, the hydroxyl group (-OH) groups of Formula 5 and 6 may be bonded to the position 2 of the benzene moiety.
이하, 상기 폴리실록산의 제조방법에 대해 구체적으로 설명한다.Hereinafter, the manufacturing method of the said polysiloxane is demonstrated concretely.
제1 단계First step
상기 제1 단계는 상기 화학식 4로 표시되는 하이드라이드로 종결된 실록산과 화학식 5로 표시되는 페놀 유도체를 촉매 존재 하에서 반응시켜 상기 화학식 6으로 표시되는 모노하이드록시실록산을 합성하는 단계이다.The first step is a step of synthesizing the monohydroxysiloxane represented by Chemical Formula 6 by reacting the siloxane terminated with the hydride represented by Chemical Formula 4 and the phenol derivative represented by Chemical Formula 5 in the presence of a catalyst.
상기 촉매로는 백금을 포함하는 촉매를 사용할 수 있다. 예를들면, 상기 촉매는 백금 원소 자체 또는 백금을 포함하는 화합물일 수 있고, 예를들면, H2PtCl6, Pt2{[(CH2=CH)Me2Si]2O}3, Rh[(cod)2]BF4, Rh(PPh3)4Cl, Pt/C 등을 단독 또는 혼합하여 사용할 수 있지만, 이에 제한되는 것은 아니다. 구체적으로는 Pt/C, 예를들면 10% Pt/C을 사용할 수 있다.As the catalyst, a catalyst containing platinum may be used. For example, the catalyst may be a platinum element itself or a compound comprising platinum, for example H 2 PtCl 6 , Pt 2 {[(CH 2 = CH) Me 2 Si] 2 O} 3 , Rh [ (cod) 2 ] BF 4 , Rh (PPh 3 ) 4 Cl, Pt / C and the like can be used alone or in combination, but is not limited thereto. Specifically, Pt / C, for example 10% Pt / C, may be used.
상기 촉매의 사용량은 반응물 전체에 대하여, 10 내지 500ppm, 예를들면 50 내지 150ppm일 수 있다.The amount of the catalyst used may be 10 to 500 ppm, for example, 50 to 150 ppm with respect to the entire reactant.
상기 반응은 유기 용매에서 수행될 수 있으며, 상기 유기 용매로는 1,2-디클로로에탄, 톨루엔, 자일렌, 디클로로벤젠, 이들의 혼합 용매 등을 예시할 수 있지만, 이에 제한되는 것은 아니다. 예를들면, 톨루엔에서 수행될 수 있다.The reaction may be performed in an organic solvent, and examples of the organic solvent may include, but are not limited to, 1,2-dichloroethane, toluene, xylene, dichlorobenzene, mixed solvents thereof, and the like. For example, it may be performed in toluene.
상기 반응은 반응물(화학식 4와 화학식 5)의 반응성에 따라 반응 온도와 반응 시간을 조절할 수 있다. 상기 반응은 반응 온도 60 내지 140℃, 예를들면 110 내지 120℃에서, 2 내지 12시간, 예를들면 3 내지 5시간 동안 수행될 수 있다.The reaction may control the reaction temperature and reaction time according to the reactivity of the reactants (Formula 4 and Formula 5). The reaction may be carried out at a reaction temperature of 60 to 140 ℃, for example 110 to 120 ℃, for 2 to 12 hours, for example 3 to 5 hours.
상기 제1 단계에서 제조된 화학식 4의 화합물은 정제시켜 다음 단계에 사용하거나 또는 추가적인 정제없이 다음 단계에서 인 시투(in situ)로 사용될 수 있다.The compound of formula 4 prepared in the first step may be purified and used in the next step or in situ in the next step without further purification.
제2 단계2nd step
제2 단계는 상기 화학식 6으로 표시되는 모노하이드록시실록산과 다이엔을 반응시켜 상기 화학식 2로 표시되는 폴리실록산을 제조하는 단계이다.The second step is to prepare a polysiloxane represented by the formula (2) by reacting the monohydroxysiloxane represented by the formula (6) and the diene.
상기 다이엔은 치환 또는 비치환된 C1-C20의 탄화수소기, 또는 에스테르 결합, 우레탄 결합 또는 이들의 조합을 포함하는 치환 또는 비치환된 C1-C20의 탄화수소기, 예를들면, 에스테르 결합, 우레탄 결합 또는 이들의 조합을 포함하거나 포함하지 않는, 치환 또는 비치환된 C1-C20의 알킬렌기, 치환 또는 비치환된 C6-C20의 시클로알킬렌기, 또는 치환 또는 비치환된 C6-C20의 아릴렌기를 포함하는 다이엔일 수 있다. The diene is a substituted or unsubstituted C1-C20 hydrocarbon group, or a substituted or unsubstituted C1-C20 hydrocarbon group including an ester bond, a urethane bond, or a combination thereof, for example, an ester bond, a urethane bond Or a substituted or unsubstituted C1-C20 alkylene group, a substituted or unsubstituted C6-C20 cycloalkylene group, or a substituted or unsubstituted C6-C20 arylene group, with or without combinations thereof. It may be diene.
상기 제1 단계를 완료한 후, 상기 화학식 6으로 표시되는 모노하이드록시실록산을 정제하지 않고 상기 다이엔을 첨가하여 인 시투로 반응시켜 상기 화학식 2로 표시되는 폴리실록산을 제조할 수 있다.After completing the first step, the polysiloxane represented by Chemical Formula 2 may be prepared by reacting in situ by adding the diene without purifying the monohydroxysiloxane represented by Chemical Formula 6.
모노하이드록시아릴실록산과 다이엔의 반응 시, 반응 온도와 반응 시간은 적절하게 조절할 수 있다. 예를들면, 상기 제1 단계에서 사용된 반응 온도와 반응 시간을 그대로 사용할 수 있지만, 이에 제한되는 것은 아니다.In the reaction of monohydroxyarylsiloxane and diene, the reaction temperature and reaction time can be appropriately controlled. For example, the reaction temperature and reaction time used in the first step may be used as it is, but is not limited thereto.
제조된 폴리실록산은 통상의 방법을 통하여 정제 및 수득될 수 있다. 예를들면, 제2 단계 완료 후 반응물을 여과하여 촉매를 제거한 후, 얻은 여과액을 농축하여 반응 용매와 저 분자량의 부산물을 제거함으로써 상기 화학식 1로 표시되는 폴리실록산을 얻을 수 있다. 폴리실록산의 순도에 따라 추가적인 정제 과정을 수행할 수 있다.The polysiloxane prepared can be purified and obtained through conventional methods. For example, after completion of the second step, the reaction product is filtered to remove the catalyst, and the obtained filtrate is concentrated to remove the reaction solvent and the by-product of low molecular weight, thereby obtaining the polysiloxane represented by Chemical Formula 1. Depending on the purity of the polysiloxane, further purification may be carried out.
폴리카보네이트-폴리실록산 공중합체는 상기 화학식 2로 표시되는 폴리실록산, 방향족 디히드록시 화합물, 예를 들면, 하기 화학식 7로 표시되는 방향족 디히드록시 화합물 및 포스겐계 화합물의 공중합체일 수 있다.The polycarbonate-polysiloxane copolymer may be a copolymer of a polysiloxane represented by Chemical Formula 2, an aromatic dihydroxy compound, for example, an aromatic dihydroxy compound and a phosgene-based compound represented by the following Chemical Formula 7.
<화학식 7><Formula 7>
Figure PCTKR2013011928-appb-I000007
Figure PCTKR2013011928-appb-I000007
상기 화학식 7에서, A1은 단일 결합, 치환 또는 비치환된 C1-C5의 알킬렌기, 치환 또는 비치환된 C1-C5의 알킬리덴기, 치환 또는 비치환된 C3-C6의 시클로알킬렌기, 치환 또는 비치환된 C5-C6의 시클로알킬리덴기, CO, S, 및 SO2로 이루어진 군에서 선택되고, R3 및 R4는 각각 독립적으로 치환 또는 비치환된 C1-C30의 알킬기, 및 치환 또는 비치환된 C6-C30의 아릴기로 이루어진 군에서 선택되고, a 및 b는 각각 독립적으로 0 내지 4의 정수이다. In Formula 7, A 1 is a single bond, a substituted or unsubstituted C1-C5 alkylene group, a substituted or unsubstituted C1-C5 alkylidene group, a substituted or unsubstituted C3-C6 cycloalkylene group, substituted Or an unsubstituted C5-C6 cycloalkylidene group, CO, S, and SO2, R 3 and R 4 are each independently a substituted or unsubstituted C 1 -C 30 alkyl group, and substituted or unsubstituted It is selected from the group consisting of a substituted C6-C30 aryl group, a and b are each independently an integer of 0 to 4.
상기 방향족 디히드록시 화합물의 구체적인 예로는, 4,4'-디히드록시디페닐, 2,2-비스-(4-히드록시페닐)-프로판, 2,4-비스-(4-히드록시페닐)-2-메틸부탄, 1,1-비스-(4-히드록시페닐)-시클로헥산, 2,2-비스-(3-클로로-4-히드록시페닐)-프로판, 2,2-비스-(3,5-디클로로-4-히드록시페닐)-프로판 등을 예시할 수 있다. 예를들면 상기 방향족 디히드록시 화합물로서, 2,2-비스-(4-히드록시페닐)-프로판, 2,2-비스-(3,5-디클로로-4-히드록시페닐)-프로판, 또는 1,1-비스-(4-히드록시페닐)-시클로헥산을 사용할 수 있고, 구체적으로는 비스페놀-A 라고도 불리는 2,2-비스-(4-히드록시페닐)-프로판을 사용할 수 있다.Specific examples of the aromatic dihydroxy compound include 4,4'-dihydroxydiphenyl, 2,2-bis- (4-hydroxyphenyl) -propane, 2,4-bis- (4-hydroxyphenyl ) -2-methylbutane, 1,1-bis- (4-hydroxyphenyl) -cyclohexane, 2,2-bis- (3-chloro-4-hydroxyphenyl) -propane, 2,2-bis- (3,5-dichloro-4-hydroxyphenyl) -propane etc. can be illustrated. For example, as the aromatic dihydroxy compound, 2,2-bis- (4-hydroxyphenyl) -propane, 2,2-bis- (3,5-dichloro-4-hydroxyphenyl) -propane, or 1,1-bis- (4-hydroxyphenyl) -cyclohexane can be used, and 2,2-bis- (4-hydroxyphenyl) -propane also specifically called bisphenol-A can be used.
상기 화학식 2로 표시되는 폴리실록산 및 방향족 디히드록시 화합물의 총합 100중량부에 대하여, 상기 화학식 2로 표시되는 폴리실록산의 함량은 0.1 내지 20중량부, 예를들면 5 내지 15중량부이고, 상기 방향족 디히드록시 화합물의 함량은 80 내지 99.9중량부, 예를들면 85 내지 95중량부이다.The total amount of polysiloxane represented by Formula 2 is 0.1 to 20 parts by weight, for example 5 to 15 parts by weight, based on 100 parts by weight of the total amount of polysiloxane and aromatic dihydroxy compound represented by Formula 2, and the aromatic di The content of hydroxy compound is 80 to 99.9 parts by weight, for example 85 to 95 parts by weight.
본 발명에 사용되는 포스겐계 화합물로는 예를들면, 포스겐, 트리포스겐, 디포스겐 등을 예시할 수 있으나, 이에 한정되지는 않는다. Examples of the phosgene-based compound used in the present invention include, but are not limited to, phosgene, triphosgene, diphosgene, and the like.
구체예에서, 상기 폴리카보네이트-폴리실록산 공중합체의 제조방법은 염기성 수용액에 방향족 디히드록시 화합물을 투입한 후, 유기용매, 상기 화학식 2로 표시되는 폴리실록산을 투입 및 혼합하고, 포스겐계 화합물을 투입하여 계면중합으로 제조할 수 있다. 이와 같이 계면중합을 적용함으로서 용융중합에 비해 현저히 우수한 투명성을 확보할 수 있다.In a specific embodiment, in the method for preparing the polycarbonate-polysiloxane copolymer, an aromatic dihydroxy compound is added to a basic aqueous solution, an organic solvent, a polysiloxane represented by Formula 2 is added and mixed, and a phosgene-based compound is added. It can be prepared by interfacial polymerization. By applying the interfacial polymerization in this way, it is possible to secure remarkably excellent transparency compared to the melt polymerization.
복합시트 중 폴리실록산-폴리카보네이트 공중합체는, 5 내지 40중량%, 예를들면, 5 내지 30중량%로 포함될 수 있다. 상기 범위 내에서, 복합시트의 투명성, 광투과성, 내굴곡성, 표면강도가 향상될 수 있다. 즉, 폴리실록산-폴리카보네이트 공중합체:보강재는 5 : 95 내지 40 : 60의 중량비로 포함될 수 있다. 복합시트 중 폴리실록산-폴리카보네이트 공중합체와 보강재의 조성비를 조절함으로써, 공중합체와 보강재의 굴절률을 조절하고, 이로부터 제조된 복합시트는 기존의 수지(예: 폴리카보네이트, 폴리실록산 단독)를 사용한 것에 대비 광투과성, 표면경도 및 내굴곡성이 매우 우수할 수 있다. The polysiloxane-polycarbonate copolymer in the composite sheet may be included in 5 to 40% by weight, for example, 5 to 30% by weight. Within this range, transparency, light transmittance, bending resistance, and surface strength of the composite sheet may be improved. That is, the polysiloxane-polycarbonate copolymer: reinforcing material may be included in a weight ratio of 5: 95 to 40: 60. By controlling the composition ratio of the polysiloxane-polycarbonate copolymer and the reinforcing material in the composite sheet, the refractive index of the copolymer and the reinforcing material is controlled, and the composite sheet prepared therefrom is prepared compared to using a conventional resin (for example, polycarbonate and polysiloxane alone). Light transmittance, surface hardness and flex resistance can be very excellent.
보강재(2)는 분산, 단일층 또는 복수층 구조로 매트릭스(2)에 포함될 수 있다. The reinforcement 2 can be included in the matrix 2 in a dispersed, single layer or multiple layer structure.
복합시트 중 보강재는 굴절률이 1.50 내지 1.57, 예를들면 1.56 내지 1.57이 될 수 있다. 상기 범위 내에서, 폴리실록산-폴리카보네이트 공중합체와의 굴절률 매칭이 용이할 수 있다.The reinforcement in the composite sheet may have a refractive index of 1.50 to 1.57, for example, 1.56 to 1.57. Within this range, refractive index matching with the polysiloxane-polycarbonate copolymer can be facilitated.
보강재의 두께는 10㎛ 내지 200㎛가 될 수 있다. 상기 '두께'는 보강재가 섬유 형태인 경우 섬유의 굵기, 섬유가 직조된 형태인 경우 직조물의 두께를 의미할 수 있지만, 이에 제한되지 않는다.The thickness of the reinforcement may be 10 μm to 200 μm. The 'thickness' may mean the thickness of the fiber when the reinforcing material in the form of a fiber, the thickness of the woven fabric when the fiber is woven form, but is not limited thereto.
상기 보강재는 유리섬유, 유리 섬유포(glass fiber cloth), 유리 직물(glass fabric), 유리 부직포, 유리 섬유 메쉬(glass fiber mesh) 중 하나 이상이 될 수 있다. 예를들면 유리 섬유포가 될 수 있다.The reinforcing material may be at least one of glass fiber, glass fiber cloth, glass fabric, glass nonwoven fabric, and glass fiber mesh. For example, it may be a glass fiber cloth.
유리 섬유포는 유리 섬유의 원료 성분, 굵기, 모양, 씨실과 날실의 직조 모양, 한 다발 당 유리 섬유의 개수 등에 따라 두께, 굴절률 등이 달라질 수 있으며, 이들 중 선택하여 사용할 수 있다.Glass fiber cloth may vary in thickness, refractive index, etc., depending on the raw material component, thickness, shape, weaving and weft shape of the glass fiber, the number of glass fibers per bundle, etc., and may be selected from among them.
복합시트 두께는 15㎛ 내지 200㎛가 될 수 있다. 상기 범위에서, 플렉시블 기판 용도의 복합시트로 사용될 수 있다.The composite sheet thickness may be 15 μm to 200 μm. In the above range, it can be used as a composite sheet for flexible substrate applications.
복합시트는 ASTM E 831에 의해 측정된 열팽창계수가 0ppm/℃ 내지 400ppm/℃, 예를들면 0ppm/℃ 내지 10ppm/℃, 구체적으로는 3ppm/℃ 내지 7ppm/℃가 될 수 있다. 상기 범위 내에서, 플렉시블 기판으로 제조시 열 변형이 억제될 수 있다.The composite sheet may have a thermal expansion coefficient of 0 ppm / ° C. to 400 ppm / ° C., for example, 0 ppm / ° C. to 10 ppm / ° C., specifically 3 ppm / ° C. to 7 ppm / ° C., measured by ASTM E 831. Within this range, thermal deformation can be suppressed in manufacturing the flexible substrate.
복합시트는 표면 조도(Ra)가 100nm 이하, 예를들면 50nm 이하 구체적으로는 5nm 내지 50nm가 될 수 있다. The composite sheet may have a surface roughness Ra of 100 nm or less, for example, 50 nm or less, specifically 5 nm to 50 nm.
복합시트는 파장 550nm에서 투과율이 88% 이상, 예를들면 88 내지 99%가 될 수 있다.The composite sheet may have a transmittance of 88% or more, for example, 88 to 99% at a wavelength of 550 nm.
본 발명의 일 실시예에 따른 복합시트는 폴리카보네이트 수지 또는 폴리실록산 수지를 매트릭스로 하는 복합시트에 대비 투명성을 확보하면서, 표면경도, 내굴곡성 및 광투과성이 모두 우수하다. 따라서, 복합시트는 유리용 대체재로서 적용할 수 있고, 예를들면 액정 디스플레이 디바이스 기판, 플렉시블 기판, 유기 EL 디스플레이 디바이스 기판, 컬러필터 기판, 태양전지 기판 등 광학 시트, 투명 시트, 광학 렌즈, 광학 디바이스, OLED 봉지재, 커버 글라스, 디스플레이 다층 박막 등의 용도로 사용될 수 있다.Composite sheet according to an embodiment of the present invention is excellent in both surface hardness, bending resistance and light transmittance while ensuring transparency compared to the composite sheet of a polycarbonate resin or a polysiloxane resin matrix. Therefore, the composite sheet can be applied as a substitute for glass, for example, an optical sheet such as a liquid crystal display device substrate, a flexible substrate, an organic EL display device substrate, a color filter substrate, a solar cell substrate, a transparent sheet, an optical lens, an optical device. , OLED encapsulating material, cover glass, display multilayer thin film and the like can be used.
본 발명의 다른 관점인 복합시트의 제조방법은 상기 폴리실록산 단위를 포함하는 공중합체를 포함하는 매트릭스용 조성물과, 상기 매트릭스용 조성물에 함침된 보강재를 경화시키는 단계를 포함할 수 있다.According to another aspect of the present invention, a method for manufacturing a composite sheet may include curing a composition for a matrix including a copolymer including the polysiloxane unit, and a reinforcing material impregnated in the composition for the matrix.
구체적으로 (A) 상기 폴리실록산 단위를 포함하는 공중합체를 제조하고, (B) 상기 공중합체를 포함하는 조성물에 보강재를 함침하고, (C) 상기 조성물과 보강재를 라미네이팅하는 단계를 포함할 수 있다.Specifically, (A) preparing a copolymer comprising the polysiloxane unit, (B) impregnating a reinforcing material in the composition comprising the copolymer, and (C) laminating the composition and the reinforcing material.
상기 폴리실록산 단위를 포함하는 공중합체를 제조하는 방법은 상기에서 상술한 바와 같다. 이때 공중합체의 굴절률을 보강재의 굴절률과 매칭시키는 것이 중요한데, 상기 폴리실록산:폴리카보네이트의 중합비(중량 기준)는 1 : 0.1 내지 1 : 5가 되도록 하는 것이 좋다. 상기 공중합체를 통상의 유기 용제(예:메틸렌클로라이드, THF)에 용해시킨 후 보강재를 함침한다. 그런 다음, 라미네이팅 과정을 통해 상기 조성물과 보강재가 경화되어 복합시트를 제조할 수 있다. 라미네팅 조건은 특별히 제한되지 않는다. The method for producing a copolymer including the polysiloxane unit is as described above. In this case, it is important to match the refractive index of the copolymer with the refractive index of the reinforcing material, and the polymerization ratio (based on weight) of the polysiloxane: polycarbonate may be 1: 0.1 to 1: 5. The copolymer is dissolved in a conventional organic solvent (eg methylene chloride, THF) and then impregnated with a reinforcing material. Then, the composition and the reinforcing material is cured through a laminating process to produce a composite sheet. Laminating conditions are not particularly limited.
본 발명의 또 다른 관점인 디스플레이 장치는 상기 복합시트를 포함할 수 있다. 디스플레이 장치의 예로는 액정 디스플레이 디바이스 기판, 플렉시블 기판, 유기 EL 디스플레이 디바이스 기판, 컬러필터 기판, 태양전지 기판 등 광학 시트, 투명 시트, 광학 렌즈, 광학 디바이스, LED 봉지재, 커버 글라스, 디스플레이 다층 박막 중 하나 이상을 포함할 수 있으나, 이에 제한되지 않는다.According to another aspect of the present invention, a display device may include the composite sheet. Examples of the display apparatus include a liquid crystal display device substrate, a flexible substrate, an organic EL display device substrate, a color filter substrate, a solar cell substrate, an optical sheet, a transparent sheet, an optical lens, an optical device, an LED encapsulant, a cover glass, and a display multilayer thin film. It may include one or more, but is not limited thereto.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로, 본 발명을 제한하는 것으로 해석되어서는 안 된다.Hereinafter, the present invention will be described in more detail with reference to examples, but these examples are for illustrative purposes only and should not be construed as limiting the present invention.
제조예 1: 폴리실록산의 제조 Preparation Example 1 Preparation of Polysiloxane
반응 용기에 옥타메틸시클로테트라실란 344.5g(1.16mol), 테트라메틸디실란 52.0g(0.375mol) 및 트리플루오르메탄술폰산 500.0ml을 첨가하고 25℃에서 24시간 동안 교반시켰다. MgO 14g을 첨가하여 1시간 교반시켰다. 교반시킨 반응물은 여과한 후, 미반응물을 고온 진공하에서 제거하여 올리고디메틸실록산 300g을 얻었다. 상기 올리고디메틸실록산 300g과 톨루엔 270ml에 Pt/C 0.5g을 첨가한 후 교반시키며 110℃로 가열하였다. 다음으로, 2-알릴페놀 28.2g(0.21mol)과 톨루엔 30ml의 혼합 용액을 천천히 적가하였다. 2-알릴페놀을 적가한 후, 1,5-헥사디엔 9g(0.11mol)을 적가하였고, 110℃에서 1시간 교반시킨 후, 25℃로 냉각시켰다. 반응물을 여과한 후, 미반응물을 고온 진공하에서 제거하여, 오일 상태의 하기 화학식 2a로 표시되는 폴리실록산 A 320g을 얻었다. 344.5 g (1.16 mol) of octamethylcyclotetrasilane, 52.0 g (0.375 mol) of tetramethyldisilane, and 500.0 ml of trifluoromethanesulfonic acid were added to the reaction vessel and stirred at 25 ° C for 24 hours. 14 g of MgO was added and stirred for 1 hour. The stirred reaction product was filtered, and then unreacted material was removed under high temperature vacuum to obtain 300 g of oligodimethylsiloxane. Pt / C 0.5g was added to 300g of the oligodimethylsiloxane and 270ml of toluene, followed by stirring and heating to 110 ° C. Next, a mixed solution of 28.2 g (0.21 mol) of 2-allylphenol and 30 ml of toluene was slowly added dropwise. After 2-allylphenol was added dropwise, 9 g (0.11 mol) of 1,5-hexadiene was added dropwise, stirred at 110 ° C for 1 hour, and then cooled to 25 ° C. After the reaction was filtered, the unreacted material was removed under a high temperature vacuum to obtain 320 g of polysiloxane A represented by the following Chemical Formula 2a in an oil state.
<화학식 2a><Formula 2a>
Figure PCTKR2013011928-appb-I000008
Figure PCTKR2013011928-appb-I000008
(상기에서, m+n은 40이다)(Wherein m + n is 40)
제조예 2: 폴리실록산-폴리카보네이트 공중합체의 제조Preparation Example 2 Preparation of Polysiloxane-Polycarbonate Copolymer
유리 교반 반응기에 H2O 7000ml, 50% NaOH 수용액 2000ml, 및 2,2-비스(4-히드록시 페닐)프로판(BPA) 1500g(6570.6mmol)를 첨가한 후, 강하게 교반하고 용액 온도를 20 내지 25℃로 유지하면서 1시간 동안 교반하였다. 여기에 t-부틸 페놀 41.5g(275.9mmol), 메틸렌 클로라이드 3000ml, 및 상기 폴리실록산 A 112.4g(34.2mmol)을 첨가한 후, 트리포스젠 974.91g(9855.9mmol)이 녹아 있는 메틸렌 클로라이드 용액 3000ml를 1시간 동안 천천히 반응기에 투입하고, 용액 온도를 20 내지 25℃로 유지하면서 1시간 동안 교반하였다. 여기에 트릴에틸아민 7.8g(77.1mmol)을 투입하고, 용액 온도를 30 내지 35℃로 유지하면서 2시간 동안 교반하였다. 교반이 완료된 후, 유기층을 분리하고 10% HCl 용액 7000ml를 가하여 중화한 다음, pH가 중성에 도달할 때까지 물로 여러 번에 걸쳐 세정하였다. 세정 후 유기층의 용매를 내려 받고 트리믹서(제조사: Inoue사, 장치명: TX-15)를 사용하여 건조함으로써, 분말 상태의 폴리카보네이트-폴리실록산 공중합체를 얻었다. 얻어진 공중합체의 DOSY(Diffusion Ordered Spectroscopy) 분석 결과, 폴리실록산이 폴리카보네이트의 주쇄 안에 결합되어 존재함을 확인하였으며, 1H NMR로 분석한 결과 Si함량은 2.1중량%이었다. GPC 분석결과 중량평균분자량(Mw)은 20,846이고, 굴절률은 1.56이다.7000 ml of H 2 O, 2000 ml of 50% NaOH aqueous solution, and 1500 g (6570.6 mmol) of 2,2-bis (4-hydroxyphenyl) propane (BPA) were added to the glass stirring reactor, followed by vigorous stirring and the solution temperature of 20 to Stir for 1 hour while maintaining at 25 ° C. To this was added 41.5 g (275.9 mmol) of t-butyl phenol, 3000 ml of methylene chloride, and 112.4 g (34.2 mmol) of the polysiloxane A. Slowly introduced into the reactor for a time, and stirred for 1 hour while maintaining the solution temperature at 20 to 25 ℃. 7.8 g (77.1 mmol) of triethylamine were added thereto, and the mixture was stirred for 2 hours while maintaining the solution temperature at 30 to 35 ° C. After stirring was complete, the organic layer was separated, neutralized by addition of 7000 ml of 10% HCl solution, and then washed several times with water until the pH reached neutral. After washing, the solvent of the organic layer was lowered and dried using a trimixer (manufacturer: Inoue Co., Ltd., TX-15) to obtain a polycarbonate-polysiloxane copolymer in a powder state. As a result of DOSY (Diffusion Ordered Spectroscopy) analysis of the obtained copolymer, it was confirmed that polysiloxane was bound to the main chain of polycarbonate, and Si content was 2.1% by weight based on 1H NMR analysis. As a result of GPC analysis, the weight average molecular weight (Mw) was 20,846 and the refractive index was 1.56.
제조예 3: 폴리실록산의 제조 Preparation Example 3 Preparation of Polysiloxane
제조예 1에서, 상기 테트라메틸디실란 52.0g(0.375mol) 대신에, 테트라메틸디실란 26.0g(0.129mol)을 사용한 것을 제외하고는 상기 제조예 1과 동일하게 수행하여 오일 상태의 하기 화학식 2b로 표시되는 폴리실록산 B 290g을 얻었다. In Preparation Example 1, except that 52.0g (0.375mol) of tetramethyldisilane, except that 26.0g (0.129mol) of tetramethyldisilane was used in the same manner as in Preparation Example 1 to the formula 2b of the oil state Obtained 290 g of polysiloxane B.
<화학식 2b><Formula 2b>
Figure PCTKR2013011928-appb-I000009
Figure PCTKR2013011928-appb-I000009
(상기에서, m+n은 60이다.)(In the above, m + n is 60.)
제조예 4: 폴리실록산-폴리카보네이트 공중합체의 제조Preparation Example 4 Preparation of Polysiloxane-Polycarbonate Copolymer
제조예 2에서, 상기 폴리실록산 A 대신에, 폴리실록산 B(제조예 3) 109.9g(26.3mmol)을 사용한 것을 제외하고는 상기 제조예 2와 동일하게 수행하여 분말 상태의 폴리카보네이트-폴리실록산 공중합체를 얻었다. 얻어진 공중합체의 DOSY 분석결과 실록산 폴리머가 폴리카보네이트의 주쇄안에 결합되어 존재함을 확인하였으며, 1H NMR로 분석한 결과 Si 함량은 2.1 중량%이었다. GPC 분석 결과 중량평균분자량(Mw)는 20,235이고, 굴절률은 1.561이다.In Preparation Example 2, a polycarbonate-polysiloxane copolymer in a powdered state was obtained in the same manner as in Preparation Example 2, except that 109.9 g (26.3 mmol) of Polysiloxane B (Preparation Example 3) was used instead of Polysiloxane A. . DOSY analysis of the obtained copolymer confirmed that the siloxane polymer was present in the main chain of the polycarbonate, and the Si content was 2.1% by weight based on 1H NMR analysis. As a result of GPC analysis, the weight average molecular weight (Mw) is 20,235 and the refractive index is 1.561.
실시예 1Example 1
상기 제조예 2의 공중합체를 분말 상태의 파우더로 얻고, 상기 파우더를 용제(Methylene chloride)에 녹인 후 두께가 80㎛인 유리 섬유포(#3313, Nittobo사, 굴절률: 1.56)에 함침시킨후 라미네이팅 공정을 거쳐 두께 100㎛ 복합시트를 얻었다. 이때, 유리 섬유포는 복합시트에 대해 70중량%로 포함되도록 하였다.The copolymer of Preparation Example 2 was obtained as a powder in powder form, and the powder was dissolved in a solvent (Methylene chloride) and then impregnated in a glass fiber cloth (# 3313, Nittobo, refractive index: 1.56) having a thickness of 80 μm, followed by a laminating process. A composite sheet having a thickness of 100 μm was obtained through the material. At this time, the glass fiber cloth was to be included in 70% by weight based on the composite sheet.
실시예 2Example 2
상기 제조예 2의 공중합체를 분말 상태의 파우더를 얻고, 상기 파우더를 압출기에 투입하여 400℃로 가열하여 용융시키고 압출기에 장착된 T-다이를 통해 두께 105㎛의 필름을 압출함과 동시에 유리 섬유포(#3313, Nittobo사, 굴절률: 1.56)를 함침하여 두께 105㎛의 복합시트를 얻었다. 이때, 유리 섬유포는 복합시트에 대해 70중량%로 포함되도록 하였다.Obtaining the powder of the copolymer of Preparation Example 2, the powder is put into an extruder, heated to 400 ℃ to melt and extruded a 105 μm thick film through a T-die mounted on the extruder and at the same time glass fiber cloth (# 3313, Nittobo Co., Refractive Index: 1.56) was impregnated to obtain a composite sheet having a thickness of 105 µm. At this time, the glass fiber cloth was to be included in 70% by weight based on the composite sheet.
실시예 3Example 3
상기 제조예 4의 공중합체를 분말 상태의 파우더로 얻고, 상기 파우더를 용제(Methylene chloride)에 녹인 후 두께가 80㎛인 유리 섬유포(#3313, Nittobo사, 굴절률: 1.56)에 함침시킨후 라미네이팅 공정을 거쳐 두께 95㎛ 복합시트를 얻었다. 이때, 유리 섬유포는 복합시트에 대해 70중량%로 포함되도록 하였다.The copolymer of Preparation Example 4 was obtained as a powder in powder form, and the powder was dissolved in a solvent (Methylene chloride) and then impregnated in a glass fiber cloth (# 3313, Nittobo, refractive index: 1.56) having a thickness of 80 μm, followed by a laminating process. Through this, a 95-micrometer-thick composite sheet was obtained. At this time, the glass fiber cloth was to be included in 70% by weight based on the composite sheet.
실시예 4Example 4
상기 제조예 4의 공중합체를 분말 상태의 파우더를 얻고, 상기 파우더를 압출기에 투입하여 400℃로 가열하여 용융시키고 압출기에 장착된 T-다이를 통해 두께 100㎛의 필름을 압출함과 동시에 유리 섬유포(#3313, Nittobo사, 굴절률: 1.56)를 함침하여 두께 100㎛의 복합시트를 얻었다. 이때, 유리 섬유포는 복합시트에 대해 70중량%로 포함되도록 하였다.The powder of the copolymer of Preparation Example 4 was obtained in a powder state, the powder was introduced into an extruder, heated to 400 ° C., melted, and a film having a thickness of 100 μm was extruded through a T-die mounted on the extruder. (# 3313, Nittobo Co., Refractive Index: 1.56) was impregnated to obtain a composite sheet having a thickness of 100 µm. At this time, the glass fiber cloth was included in 70% by weight based on the composite sheet.
비교예 1Comparative Example 1
폴리실록산(Shin-Etsu, X-22-1821, 상기 화학식 1의 폴리실록산 단위를 포함하지 않음)과 폴리카보네이트를 공중합하여 굴절률 1.549인 분말상태의 파우더를 얻었다. 폴리실록산-폴리카보네이트 공중합체를 용제(Methylene chloride)에 녹인 후 두께 80㎛인 유리 섬유포에 함침시킨후 라미네이팅 공정을 거쳐 두께 95㎛의 복합시트를 얻었다.Polysiloxane (Shin-Etsu, X-22-1821, which does not include the polysiloxane unit of Formula 1) and polycarbonate were copolymerized to obtain a powder powder having a refractive index of 1.549. After dissolving the polysiloxane-polycarbonate copolymer in a solvent (Methylene chloride) and impregnated in a glass fiber cloth having a thickness of 80㎛, a composite sheet having a thickness of 95㎛ was obtained through a laminating process.
비교예 2Comparative Example 2
폴리실록산(Shin-Etsu, X-22-1821, 상기 화학식 1의 폴리실록산 단위를 포함하지 않음)과 폴리카보네이트를 공중합하여 굴절률 1.549인 분말상태의 파우더를 얻었다. 폴리실록산-폴리카보네이트 건조시킨 후 압출기에 투입하여 400℃로 가열하여 용융시키고 압출기에 장착된 T-다이를 통해 두께 105㎛의 필름을 압출함과 동시에 유리 섬유포를 함침하여 두께 105㎛의 복합시트를 제조하였다.Polysiloxane (Shin-Etsu, X-22-1821, which does not include the polysiloxane unit of Formula 1) and polycarbonate were copolymerized to obtain a powder powder having a refractive index of 1.549. After drying polysiloxane-polycarbonate, it was heated to 400 ° C., melted, and a 105 μm thick film was extruded through a T-die mounted on the extruder, and a glass fiber cloth was impregnated to prepare a composite sheet having a thickness of 105 μm. It was.
비교예 3Comparative Example 3
폴리카보네이트 칩을 건조시킨 후 압출기에 투입하여 400℃로 가열하여 용융시키고 압출기에 장착된 T-다이를 통해 두께 105㎛의 필름을 압출함과 동시에 유리 섬유포를 함침하여 두께 105㎛의 복합시트를 제조하였다.After drying the polycarbonate chip, it is put into the extruder, heated to 400 ℃ to melt and extruded 105㎛ thick film through the T-die mounted on the extruder and impregnated glass fiber cloth to prepare a composite sheet having a thickness of 105㎛ It was.
비교예 4Comparative Example 4
이액형 폴리알킬아릴실록산 수지(다우코팅(OE-6630)와 폴리실록산 (소내개발), 상기 화학식 1의 폴리실록산 단위를 포함하지 않음)를 유리 섬유포에 함침시키고 건조하여 두께 100㎛의 복합시트를 제조하였다.A two-component polyalkylarylsiloxane resin (Dow coating (OE-6630) and polysiloxane (in-house developed), containing no polysiloxane unit of Formula 1) was impregnated in a glass fiber cloth and dried to prepare a composite sheet having a thickness of 100 μm. .
상기 복합시트에 대해 하기 물성을 측정하였다.The following physical properties were measured for the composite sheet.
1) 투과율: 파장 550nm에서 UV-Visible 기기(JASCO사 V-550기종)를 사용하였다.1) Transmittance: A UV-Visible machine (JASCO V-550) was used at a wavelength of 550 nm.
2) 황색도(YI): 색차계 기기(Konika minota사 CM3600D 기종)를 사용하였다.2) Yellowness (YI): A color difference instrument (Konika minota company CM3600D model) was used.
3) 혼탁도(Haze): haze meter(Nippon denshouku사 NDH200)를 사용하여 측정하였다.3) Haze: Haze was measured using a haze meter (NDH200 from Nippon denshouku).
4) 내굴곡성(bending test): 이동축의 왕복 운동을 통해 내굴곡성을 평가한다. 가로x세로x두께(2cmx7cmx100㎛) 크기의 시편을 10mm 간격까지 [1 bending cycle/sec] 조건으로 왕복 운동하여 백화 현상이 발생하는지 여부를 평가하였다.4) Bending test: The bending resistance is evaluated by the reciprocating motion of the moving shaft. It was evaluated whether the whitening phenomenon occurred by reciprocating the specimen having a width x length x thickness (2cmx7cmx100µm) in a [1 bending cycle / sec] condition up to 10mm interval.
5) 연필경도: 전동식 연필 경도계(Core Tech)으로 측정하였다.5) Pencil Hardness: It was measured by an electric pencil hardness tester (Core Tech).
6) 매트릭스와 보강재의 굴절률 차이: Abbe refractometer(아베 굴절계, ATAGO사)으로 측정하였다. 6) Difference in refractive index between the matrix and the reinforcing material: measured by Abbe refractometer (ABE refractometer, ATAGO).
표 1
실시예1 실시예2 실시예3 실시예4 비교예1 비교예2 비교예3 비교예4
매트릭스 제조예2공중합체 제조예2공중합체 제조예4공중합체 제조예4공중합체 화학식 1미포함 화학식 1미포함 폴리카보네이트 화학식 1미포함
시트두께(㎛) 100 105 80 100 80 105 105 100
투과율(%) 90.2 89.9 88.5 89 82 81.7 31 90
황색도 3.7 3.2 2.9 3.0 9.7 9.8 측정불가 2.3
혼탁도 1.2 1.5 1.3 1.9 12 11 50 1.9
내굴곡성 10000회이상無 10000회이상無 10000회이상無 10000회이상無 2000회백화 발생 2200회백화 발생 700회백화발생 10000회이상 無
연필경도 1B HB HB HB 측정불가 측정불가 1B 측정불가
굴절률차이 0.001 0.002 0.002 0.002 0.01 0.01 - 0.001
Table 1
Example 1 Example 2 Example 3 Example 4 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4
matrix Preparation Example 2 Copolymer Preparation Example 2 Copolymer Preparation Example 4 Copolymer Preparation Example 4 Copolymer Without Formula 1 Without Formula 1 Polycarbonate Without Formula 1
Sheet thickness (㎛) 100 105 80 100 80 105 105 100
Transmittance (%) 90.2 89.9 88.5 89 82 81.7 31 90
Yellow road 3.7 3.2 2.9 3.0 9.7 9.8 Not measurable 2.3
Turbidity 1.2 1.5 1.3 1.9 12 11 50 1.9
Flex resistance 10000 times or more 10000 times or more 10000 times or more 10000 times or more 2000 bleaching occurrence 2200 times bleach 700 times bleach 10000 times or more
Pencil hardness 1B HB HB HB Not measurable Not measurable 1B Not measurable
Refractive index difference 0.001 0.002 0.002 0.002 0.01 0.01 - 0.001
상기 표 1에서 나타난 바와 같이, 본 발명의 일 실시예에 따른 복합시트는 매트릭스 특히 공중합체와 보강재와의 굴절률 차이를 0.01 미만으로 하는 것이 용이함으로써 보강재와 매트릭스의 굴절률이 정확하게 맞아 투과율과 연필경도는 증가하고, 황색도 및 혼탁도는 감소되며, 내굴곡성이 좋았다.As shown in Table 1, in the composite sheet according to the embodiment of the present invention, it is easy to set the difference in refractive index between the matrix, in particular the copolymer and the reinforcing material, to less than 0.01. It increased, yellowness and turbidity decreased, and bending resistance was good.
반면에, 폴리카보네이트로 된 매트릭스를 포함하는 비교예 3의 복합시트는 내굴곡성이 좋지 않아 bending test에서 백화 현상이 쉽게 발생하였다. 폴리실록산으로 된 매트릭스를 포함하는 비교예 4의 복합시트는 내굴곡성은 우수하지만 표면경도가 매우 취약하였다. 또한, 폴리실록산-폴리카보네이트 공중합체로 된 매트릭스를 포함하는 비교예 1 내지 2의 복합시트는 공중합체와 보강재의 굴절률 매칭이 어려웠고, 굴절률 차이를 최대로 줄인 비교예 1 내지 2에서도 황색도와 혼탁도가 높았고, 내굴곡성과 표면경도가 좋지 않았다.On the other hand, the composite sheet of Comparative Example 3 including a matrix of polycarbonate was not good bend resistance easily whitening phenomenon occurred in the bending test. The composite sheet of Comparative Example 4 containing a matrix of polysiloxane had excellent flex resistance but very poor surface hardness. In addition, the composite sheets of Comparative Examples 1 to 2 including the matrix of the polysiloxane-polycarbonate copolymer had difficulty in matching the refractive index of the copolymer and the reinforcing material, and yellowness and turbidity were also observed in Comparative Examples 1 to 2 in which the refractive index difference was minimized. It was high, and the flex resistance and the surface hardness were not good.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims (14)

  1. 매트릭스와 상기 매트릭스에 함침된 보강재를 포함하고, A matrix and a reinforcement impregnated in said matrix,
    상기 매트릭스는 폴리실록산-폴리카보네이트 공중합체를 포함하고The matrix comprises a polysiloxane-polycarbonate copolymer
    상기 매트릭스와 상기 보강재의 굴절률 차이가 0.01미만인 복합시트.The composite sheet of less than 0.01 refractive index difference between the matrix and the reinforcing material.
  2. 제1항에 있어서, 상기 폴리실록산-폴리카보네이트 공중합체가 하기 화학식 1의 폴리실록산 단위를 포함하는 복합시트:The composite sheet of claim 1, wherein the polysiloxane-polycarbonate copolymer comprises a polysiloxane unit of Formula 1
    <화학식 1><Formula 1>
    Figure PCTKR2013011928-appb-I000010
    Figure PCTKR2013011928-appb-I000010
    (상기 식에서, R1 과 R2는 각각 독립적으로 C1-C10의 알킬기, C6-C18의 아릴기, 또는 할로겐 또는 C1-C10의 알콕시기를 갖는 C1-C10의 알킬기 또는 C6-C18의 아릴기이고, A와 B는 각각 독립적으로 치환 또는 비치환된 C2-C20의 탄화수소기, 또는 -O- 또는 -S-를 갖는 치환 또는 비치환된 C2-C20의 탄화수소기이고, Z는 치환 또는 비치환된 C1-C24의 탄화수소기, 또는 에스테르 결합, 우레탄 결합 또는 이들의 조합을 포함하는 치환 또는 비치환된 C1-C24의 탄화수소기이고, Y는 각각 독립적으로 수소 원자, 할로겐, C1-C18의 할로겐화된 알킬기, 시아노기, 또는 C1-C18의 에스테르기이고, m과 n은 각각 독립적으로 4 내지 100의 정수이고, *은 연결기이다).Wherein R 1 and R 2 are each independently a C1-C10 alkyl group, a C6-C18 aryl group, or a C1-C10 alkyl group or a C6-C18 aryl group having a halogen or a C1-C10 alkoxy group, A and B are each independently a substituted or unsubstituted C2-C20 hydrocarbon group, or a substituted or unsubstituted C2-C20 hydrocarbon group having -O- or -S-, and Z is a substituted or unsubstituted C1 -A C24 hydrocarbon group, or a substituted or unsubstituted C1-C24 hydrocarbon group including an ester bond, a urethane bond, or a combination thereof, each independently a hydrogen atom, a halogen, a halogenated alkyl group of C1-C18, A cyano group or an ester group of C1-C18, m and n each independently represent an integer of 4 to 100, and * is a linking group).
  3. 제2항에 있어서, 상기 폴리실록산 단위는 상기 공중합체의 주쇄에 0.1 내지 20중량%로 포함되는 복합시트.The composite sheet of claim 2, wherein the polysiloxane unit is included in an amount of 0.1 to 20 wt% in the main chain of the copolymer.
  4. 제2항에 있어서, 상기 공중합체 중 상기 폴리실록산: 상기 폴리카보네이트의 중량 기준의 중합비는 1 : 0.1 내지 1 : 5인 복합시트.The composite sheet of claim 2, wherein a polymerization ratio based on the weight of the polysiloxane: polycarbonate in the copolymer is 1: 0.1 to 1: 5.
  5. 제1항에 있어서, 상기 공중합체의 경화 후 굴절률은 1.50 내지 1.60인 복합시트.The composite sheet of claim 1, wherein the copolymer has a refractive index of 1.50 to 1.60 after curing.
  6. 제1항에 있어서, 상기 복합시트 중 상기 공중합체는 5 내지 40중량%로 포함되는 복합시트.The composite sheet of claim 1, wherein the copolymer in the composite sheet is included in an amount of 5 to 40 wt%.
  7. 제1항에 있어서, 상기 공중합체의 유리전이온도는 100 내지 150℃인 복합시트.The composite sheet of claim 1, wherein the copolymer has a glass transition temperature of 100 to 150 ° C.
  8. 제1항에 있어서, 상기 공중합체는 하기 화학식 2로 표시되는 폴리실록산, 방향족 디히드록시 화합물 및 포스겐계 화합물의 공중합체인 복합시트:The composite sheet of claim 1, wherein the copolymer is a copolymer of a polysiloxane, an aromatic dihydroxy compound, and a phosgene-based compound represented by Formula 2 below:
    <화학식 2><Formula 2>
    Figure PCTKR2013011928-appb-I000011
    Figure PCTKR2013011928-appb-I000011
    (상기에서, R1, R2, A, B, Z, Y, m과 n은 상기에서 정의한 바와 같다).(Wherein R 1 , R 2 , A, B, Z, Y, m and n are as defined above).
  9. 제8항에 있어서, 상기 방향족 디히드록시 화합물은 하기 화학식 7로 표시되는 복합시트:The composite sheet of claim 8, wherein the aromatic dihydroxy compound is represented by Formula 7:
    <화학식 7><Formula 7>
    Figure PCTKR2013011928-appb-I000012
    Figure PCTKR2013011928-appb-I000012
    (상기에서, A1은 단일결합, 치환 또는 비치환된 C1-C5의 알킬렌기, 치환 또는 비치환된 C1-C5의 알킬리덴기, 치환 또는 비치환된 C3-C6의 시클로알킬렌기, 치환 또는 비치환된 C5-C6의 시클로알킬리덴기, CO, S 및 CO2 중 하나 이상이고, R3과 R4는 각각 독립적으로 치환 또는 비치환된 C1-C30의 알킬기, 또는 치환 또는 비치환된 C6-C30의 아릴기에서 선택되고, a와 b는 각각 독립적으로 0 내지 4의 정수이다).(In the above, A 1 is a single bond, substituted or unsubstituted C1-C5 alkylene group, substituted or unsubstituted C1-C5 alkylidene group, substituted or unsubstituted C3-C6 cycloalkylene group, substituted or An unsubstituted C5-C6 cycloalkylidene group, one or more of CO, S and CO 2 , R 3 and R 4 each independently represent a substituted or unsubstituted C 1 -C 30 alkyl group, or a substituted or unsubstituted C 6 Is selected from an aryl group of -C30, and a and b are each independently an integer of 0 to 4).
  10. 제1항에 있어서, 상기 보강재의 굴절률은 1.50 내지 1.57인 복합시트.The composite sheet of claim 1, wherein a refractive index of the reinforcing material is 1.50 to 1.57.
  11. 제1항에 있어서, 상기 보강재의 두께는 10㎛ 내지 200㎛인 복합시트.The composite sheet of claim 1, wherein the reinforcing material has a thickness of 10 μm to 200 μm.
  12. 제1항에 있어서, 상기 보강재는 유리 섬유, 유리 섬유포(glas s fiber cloth), 유리 직물(glass fabric), 유리 부직포, 유리 섬유 메쉬(glass fiber mesh) 중 하나 이상인 복합시트.The composite sheet of claim 1, wherein the reinforcing material is at least one of glass fiber, glass s fiber cloth, glass fabric, glass nonwoven fabric, and glass fiber mesh.
  13. 제1항에 있어서, 상기 복합시트는 전동식 연필 경도계에 의해 측정된 연필경도가 HB 또는 1B 이상인 복합시트.The composite sheet of claim 1, wherein the composite sheet has a pencil hardness of HB or 1B or more measured by an electric pencil hardness tester.
  14. 제1항의 복합시트를 포함하는 디스플레이 장치.Display device comprising the composite sheet of claim 1.
PCT/KR2013/011928 2012-12-27 2013-12-20 Composite sheet, and display device including same WO2014104655A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120155606A KR20140085250A (en) 2012-12-27 2012-12-27 Composite sheet and display device comprising the same
KR10-2012-0155606 2012-12-27

Publications (1)

Publication Number Publication Date
WO2014104655A1 true WO2014104655A1 (en) 2014-07-03

Family

ID=51021638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011928 WO2014104655A1 (en) 2012-12-27 2013-12-20 Composite sheet, and display device including same

Country Status (2)

Country Link
KR (1) KR20140085250A (en)
WO (1) WO2014104655A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017207611A1 (en) 2016-06-03 2017-12-07 Covestro Deutschland Ag Multi-layer composite material containing special copolycarbonates as a matrix material
GB2559633A (en) * 2017-02-02 2018-08-15 Bailey Douglas Flexible translucent to transparent fireproof composite material
US10175510B2 (en) 2015-07-28 2019-01-08 Dow Corning Corporation Smart optical materials, formulations, methods, uses, articles, and devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0881620A (en) * 1994-07-15 1996-03-26 Idemitsu Petrochem Co Ltd Polycarbonate resin composition
JPH107897A (en) * 1996-06-28 1998-01-13 Mitsubishi Eng Plast Kk Polycarbonate resin
JP2006169324A (en) * 2004-12-14 2006-06-29 Asahi Fiber Glass Co Ltd Polycarbonate resin composition and molded product obtained using the same
JP2006249291A (en) * 2005-03-11 2006-09-21 Teijin Chem Ltd Glass-reinforced polycarbonate resin composition
US20110003128A1 (en) * 2006-10-16 2011-01-06 Idemitsu Kosan Co., Ltd. Flame-retardant polycarbonate resin composition, polycarbonate resin molded article, and method for producing the polycarbonate resin molded article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0881620A (en) * 1994-07-15 1996-03-26 Idemitsu Petrochem Co Ltd Polycarbonate resin composition
JPH107897A (en) * 1996-06-28 1998-01-13 Mitsubishi Eng Plast Kk Polycarbonate resin
JP2006169324A (en) * 2004-12-14 2006-06-29 Asahi Fiber Glass Co Ltd Polycarbonate resin composition and molded product obtained using the same
JP2006249291A (en) * 2005-03-11 2006-09-21 Teijin Chem Ltd Glass-reinforced polycarbonate resin composition
US20110003128A1 (en) * 2006-10-16 2011-01-06 Idemitsu Kosan Co., Ltd. Flame-retardant polycarbonate resin composition, polycarbonate resin molded article, and method for producing the polycarbonate resin molded article

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10175510B2 (en) 2015-07-28 2019-01-08 Dow Corning Corporation Smart optical materials, formulations, methods, uses, articles, and devices
WO2017207611A1 (en) 2016-06-03 2017-12-07 Covestro Deutschland Ag Multi-layer composite material containing special copolycarbonates as a matrix material
JP7269012B2 (en) 2016-06-03 2023-05-08 コベストロ、ドイチュラント、アクチエンゲゼルシャフト Multilayer composites containing specific copolycarbonate as matrix material
JP2019519643A (en) * 2016-06-03 2019-07-11 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag Multilayer composites comprising certain copolycarbonates as matrix material
EP3464471B1 (en) * 2016-06-03 2021-10-06 Covestro Intellectual Property GmbH & Co. KG Laminated sheet containing special siloxane block copolycarbonates as matrix material
US11130321B2 (en) 2016-06-03 2021-09-28 Covestro Deutschland Ag Multi-layer composite material containing special copolycarbonates as a matrix material
GB2576439A (en) * 2017-02-02 2020-02-19 Fire Curtains Inc Flexible translucent to transparent fireproof composite material
US10695795B2 (en) 2017-02-02 2020-06-30 Fire Curtains, Inc. Method of producing a composite panel
GB2576439B (en) * 2017-02-02 2020-07-15 Fire Curtains Inc Flexible translucent to transparent fireproof composite material
GB2575746B (en) * 2017-02-02 2020-12-09 Fire Curtains Inc Flexible translucent to transparent fireproof composite material
GB2559633B (en) * 2017-02-02 2020-02-19 Fire Curtains Inc Flexible translucent to transparent fireproof composite material
GB2575746A (en) * 2017-02-02 2020-01-22 Fire Curtains Inc Flexible translucent to transparent fireproof composite material
GB2559633A (en) * 2017-02-02 2018-08-15 Bailey Douglas Flexible translucent to transparent fireproof composite material

Also Published As

Publication number Publication date
KR20140085250A (en) 2014-07-07

Similar Documents

Publication Publication Date Title
WO2015002427A1 (en) Polyorganosiloxane compound, method for preparing same, and copolycarbonate resin comprising same
WO2015099443A1 (en) Silsesquioxane having hot melt extrusion forming capability, highly transparent and highly heat-resistant plastic transparent substrate using same, and method of manufacturing same
WO2015041441A1 (en) Copolycarbonate resin and product comprising same
WO2012060516A1 (en) Polycarbonate resin and thermoplastic resin composition including polycarbonate resin
WO2014104655A1 (en) Composite sheet, and display device including same
KR20120099021A (en) Transparent substrate
CN109776783B (en) Preparation method of weather-resistant and solvent-resistant copolymerized polycarbonate
WO2015002429A1 (en) Hydroxy-capping monomer, polycarbonate thereof and article comprising same
KR101674246B1 (en) Polycarbonate based thermoplastic resin composition and article comprising the same
WO2012091308A2 (en) Polycarbonate-polysiloxane copolymer, and method for preparing same
WO2014017795A1 (en) Complex sheet, method for manufacturing same, flexible substrate including same, and display device including same
WO2013100288A1 (en) Branched polycarbonate-polysiloxane copolymer and preparation method thereof
WO2014092243A1 (en) Polycarbonate resin, production method for same, and moulded article comprising same
WO2013137531A1 (en) Polycarbonate-polysiloxane copolymer, and method for preparing same
WO2017057903A1 (en) Glass fiber-reinforced polycarbonate resin composition and molded article using same
WO2013176349A1 (en) Novel polysiloxane, method for preparing same and polycarbonate-polysiloxane copolymer comprising same
JP2002235005A (en) Composition for optical material, optical material and method for producing the same material
WO2012173459A2 (en) Composition having high refraction
KR20140073363A (en) Composite sheet and display device comprising the same
WO2013077490A1 (en) Polycarbonate, production method for same and optical film comprising same
WO2014163376A1 (en) Coating composition comprising bis-type silane compound
WO2018097496A2 (en) Compound
WO2018221980A1 (en) Resin composition for coating, and coating film comprising cured product thereof as coating layer
KR20140086772A (en) Polycarbonate-polysiloxane copolymer and method for preparing the same
WO2015141899A1 (en) Hard coating liquid composition and polycarbonate glazing using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867954

Country of ref document: EP

Kind code of ref document: A1