WO2015099443A1 - Silsesquioxane having hot melt extrusion forming capability, highly transparent and highly heat-resistant plastic transparent substrate using same, and method of manufacturing same - Google Patents

Silsesquioxane having hot melt extrusion forming capability, highly transparent and highly heat-resistant plastic transparent substrate using same, and method of manufacturing same Download PDF

Info

Publication number
WO2015099443A1
WO2015099443A1 PCT/KR2014/012790 KR2014012790W WO2015099443A1 WO 2015099443 A1 WO2015099443 A1 WO 2015099443A1 KR 2014012790 W KR2014012790 W KR 2014012790W WO 2015099443 A1 WO2015099443 A1 WO 2015099443A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
transparent substrate
plastic transparent
silsesquioxane
thermosetting
Prior art date
Application number
PCT/KR2014/012790
Other languages
French (fr)
Korean (ko)
Inventor
김두식
유재원
최승석
최지식
오성연
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Priority to JP2016542763A priority Critical patent/JP6659550B2/en
Priority to CN201480071015.5A priority patent/CN105873983B/en
Publication of WO2015099443A1 publication Critical patent/WO2015099443A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/05Forming flame retardant coatings or fire resistant coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/06Polysiloxanes containing silicon bound to oxygen-containing groups

Definitions

  • the present invention relates to a silsesquioxane capable of hot melt-extrusion molding, a highly transparent and high heat-resistant plastic transparent substrate using the same, and a manufacturing method thereof, and more particularly to a thermoplastic ladder-type silsesquioxane capable of hot melt-extrusion.
  • a plastic transparent substrate capable of melt-extrusion molding by high temperature prepared by sequential curing by low temperature firing step by step, and excellent thermal prepared by forming a thermosetting silsesukioxane coating layer prepared separately on the surface of the substrate and sequentially curing
  • the present invention relates to a multilayer plastic transparent substrate having optical properties.
  • Flexible transparent substrates are the most important components that determine the fairness, performance, reliability, and price of a flexible display, and are currently receiving considerable attention in the industry.
  • research on materials and processes of various flexible transparent substrates has been conducted.
  • plastics have been widely studied for practical application due to ease of processing, low weight, and suitability of continuous processes.
  • material / process problems compared to glass which is a typical representative substrate material.
  • the manufacturing process of the display panel is usually subjected to a high temperature process, such as inorganic film sputtering or plasma chemical vapor deposition (PECVD), when applying a general plastic transparent substrate is a deformation caused by heat can be ensured to ensure the dimensional stability none.
  • PECVD plasma chemical vapor deposition
  • PC polycarbonate
  • PET polyethylene terephthalate
  • PES polyethersulphone
  • PI polyimide
  • PEN polyethylene naphthalate
  • silsesquioxane polymer materials are mainly applied as an insulating film, a protective film, and an alignment film of a functional film coating material, a laminate or an electronic material, or are developed to improve properties by blending with other plastic materials as additives or fillers.
  • plastic materials it is difficult to find an example of forming a transparent substrate using itself as a base material.
  • Most silicon materials are mainly in liquid form, and in the solid state, they are usually very low in thermoplasticity and are not suitable for melt-extrusion molding, which is a conventional plastic substrate forming process.
  • Patent Document 1 a polyhedral oligomeric silsesquioxane (POSS) modified with terephthalic acid was added to PET to improve heat resistance, but its improvement is not so large, and thus it is difficult to apply to a plastic transparent substrate.
  • Patent Publication No. 2013-0028626 Patent Document 2 attaches a side chain having a functional group capable of hydrogen bonding with a polysiloxane main chain to impart thermoplasticity properties, and is mainly applicable to an insulating coating, a weatherproof coating, a semiconductor encapsulant, and the like. It does not meet the required characteristics.
  • Patent Document 3 provides thermoplastics by providing a method for preparing a ladder-type polyphenylsilsesuccioxane having a specific molecular weight, but in the case of silsesquioxane having phenyl as a functional group, brittleness It is true that application to a substrate is difficult.
  • the present invention is to produce a silsesquioxane having a completely different thermal properties than the conventional plastic substrate material, by using this method for producing a high transparent, high heat-resistant plastic transparent substrate, the It is an object of the present invention to provide a method for manufacturing a multilayer plastic transparent substrate having improved physical properties such as surface flatness, hardness, flexibility and heat resistance by coating the thermosetting composition on the substrate once more.
  • thermoplastic ladder silsesquioxane of Formula 1 and a thermosetting cage silsesquioxane of Formula 4:
  • Each R ′ 1 independently represents an alkyl group having 1-5 carbon atoms
  • n is an integer from 1 to 200;
  • R 11 and R 12 are each independently selected from the formula 2, the organic functional groups, to the organic functional group of Formula 3 or a hydroxyl group are:
  • R 1 and R 9 each independently represent an alkyl group having 1 to 5 carbon atoms
  • R 2 to R 8 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • R 10 is hydrogen or an aromatic, epoxy, acryl or siol group linked to an alkyl group of 1 to 20 carbon atoms;
  • Q is an alkylene group or alkyleneoxy group having 1 to 6 carbon atoms
  • n is an integer of 1-3;
  • n is an integer from 0-4,
  • p 0 or 1.
  • the present invention provides a thermosetting composition
  • a thermosetting composition comprising the thermoplastic ladder silsesquioxane of Formula 1 and the thermosetting cage silsesquioxane of Formula 4.
  • the present invention is a method for manufacturing a plastic transparent substrate (primary plastic transparent substrate) and the plastic transparent substrate prepared according to the step of molding and curing the thermoplastic ladder-type silsesquioxane of the formula (1) by hot melt-extrusion (Primary plastic transparent substrate).
  • thermoplastic ladder-type silsesquioxane of Chemical Formula 1 thermally extruding and molding the thermoplastic ladder-type silsesquioxane of Chemical Formula 1 to prepare a primary plastic transparent substrate;
  • thermosetting composition on the surface of the primary plastic transparent substrate and curing the coating layer and the multilayer plastic transparent substrate manufactured accordingly To provide.
  • the present invention provides an electronic device comprising the plastic transparent substrate.
  • thermoplastic ladder-type silsesquioxane capable of hot melt extrusion may be sequentially cured by low-temperature firing stepwise to produce a plastic transparent substrate (primary plastic transparent substrate) capable of melt-extrusion molding at a high temperature.
  • a thermally curable silsesquioxane coating layer formed using a composition comprising the thermoplastic ladder silsesquioxane and the thermosetting cage silsesquioxane separately prepared on the surface of the substrate, followed by sequential curing.
  • a multilayer plastic transparent substrate (secondary plastic transparent substrate) having optical properties can be produced.
  • the plastic transparent substrate according to the present invention is a flexible display substrate such as a liquid crystal display, an organic light emitting display, an electronic paper, a substrate for a solar cell and a secondary battery, such as a liquid crystal display, an organic light emitting display, an electronic paper, and the like. It can be applied in various ways. In addition, it can be applied to both the hot melt-extrusion method and the solvent caster method, which is a conventional plastic substrate manufacturing process, and can be easily and quickly applied to the industry.
  • Example 3 is a TGA curve of the substrate prepared in Example 4 of the present invention.
  • thermosetting composition of the present invention is a view showing the structure of the silsesquioxane complex in the thermosetting composition of the present invention.
  • the plastic transparent substrate of the present invention includes a thermoplastic ladder-type silsesquioxane alone capable of hot melt extrusion, or a mixture of the thermoplastic ladder-type silsesquioxane and thermosetting cage-type silsesquioxanes on the surface thereof. It characterized in that it comprises a coating layer of the thermosetting composition.
  • thermoplastic ladder silses quoxane is a compound having the structure of Formula 1:
  • Each R ′ 1 independently represents an alkyl group having 1-5 carbon atoms
  • n is an integer from 1 to 200;
  • Each R 11 is independently an organic functional group represented by Formula 2, an organic functional group represented by Formula 3, or a hydroxyl group:
  • R 1 and R 9 represent an alkyl group having 1 to 5 carbon atoms
  • R 2 to R 8 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • R 10 is hydrogen or an aromatic, epoxy, acryl or siol group linked to an alkyl group of 1 to 20 carbon atoms;
  • Q is an alkylene group or alkyleneoxy group having 1 to 6 carbon atoms
  • n is an integer of 1-3;
  • n is an integer from 0-4,
  • p 0 or 1.
  • thermoplastic ladder-type silsesquioxane of Chemical Formula 1 may be produced by hydrolyzing the epoxy group-containing alkoxy silane compound of Chemical Formula 2 and the alkoxy silane compound of Chemical Formula 3 under a base catalyst and continuously condensation reaction, preferably Can be synthesized according to the methods already known by the present inventors, for example, the method described in Korean Patent Publication No. 10-2010-0131904.
  • the relationship of 0.3 ⁇ b / a ⁇ 0.6 is preferably satisfied.
  • the number of moles of hydroxy group is c, 0.001 ⁇ c / (a + b) ⁇ 0.3, preferably considering the appropriate plasticizing properties of the material, it is preferable to satisfy the relationship of 0.01 ⁇ c / (a + b) ⁇ 0.1.
  • a resin having excellent thermoplastic properties may be formed instead of forming a liquid resin or a powder of a small phase having lost thermoplastic properties.
  • the weight average molecular weight of the thermoplastic ladder-type silsesquioxane of the formula (1) is 10,000 to 200,000, preferably 30,000 to 100,000.
  • thermosetting cage-type silsesquioxane may be a compound having a structure of Formula 4:
  • R 12 is each independently an organic functional group of Formula 2, an organic functional group of Formula 3 or a hydroxyl group.
  • thermosetting cage-type silsesquioxane of Chemical Formula 4 may be produced by hydrolyzing the epoxy group-containing alkoxy silane compound of Chemical Formula 2 and the alkoxy silane compound of Chemical Formula 3 under a base catalyst and continuously condensation reaction.
  • the number of moles of the compound of formula (2) in formula (4) is d
  • the number of moles of the compound of formula (3) is e
  • the number of moles of the hydroxy group is f , 0.001 ⁇ f / (d + e) ⁇ 0.01.
  • the thermosetting properties are excellent, and the physical and optical properties of the transparent substrate may be further improved.
  • thermosetting cage-type silsesquioxane of Chemical Formula 4 is 1,000 to 10,000, preferably 2,000 to 4,000.
  • the thermosetting composition may include the thermoplastic ladder silsesquioxane of Formula 1 and the thermosetting cage silsesquioxane of Formula 4, wherein the two silsesquioxanes in the composition
  • the complex may be formed to have a structure as shown in FIG. 4.
  • the number of moles of the compound of formula (1) is x
  • the number of moles of the compound of formula (4) is y
  • the thermosetting composition may further include a known curing agent.
  • curing agent contains phenolic compounds, such as a phenol resin, amine compounds, such as diamine, dimethyltriamine, and a polyamine, acid anhydride compounds, such as phthalic anhydride, tetrahydro phthalic anhydride, tetracarboxylic phthalic anhydride, a norbornene anhydride, etc. Although it does not restrict
  • thermosetting composition may further include a curing accelerator.
  • the curing accelerator is not particularly limited as long as it is a compound that accelerates the reaction between the composition and the curing agent, and the amount is not particularly limited as long as the curing accelerator can be exhibited even in the blended amount.
  • the blending amount of the curing accelerator is 0.1 to 5 parts by weight, preferably 0.5 to 2 parts by weight based on 100 parts by weight of the total weight of the silsesquioxanes of the general formulas (1) and (4). It is good to be a negative range.
  • thermosetting composition may further include a solvent.
  • the solvent that can be used in the present invention is not particularly limited as long as it dissolves the produced curable composition uniformly, but polar organic solvents such as dichloromethane, tetrahydrofuran, methyl ethyl ketone, and dimethylacetamide are preferable.
  • thermosetting composition may further include additives such as a UV absorber, an antioxidant, an antifoaming agent, a leveling agent, a water repellent agent, a flame retardant agent, and an adhesion improving agent for the purpose of improving hardness, strength, durability, moldability, and the like.
  • additives are not particularly limited in use, but may be appropriately added within a range that does not impair the properties of the substrate, that is, properties such as flexibility, light transmittance, heat resistance, hardness, and strength.
  • the present invention also provides a method for producing a plastic transparent substrate (primary plastic transparent substrate) comprising the step of hot melt-extrusion molding and curing the thermoplastic ladder-type silsesquioxane and the plastic transparent substrate produced accordingly .
  • the method for producing the substrate is not particularly limited, and for example, may be produced by a solvent-caster method in addition to the hot melt-extrusion method.
  • the thickness of the substrate may range from 0.1 mm to 2.0 mm, and in consideration of flexibility, it is preferable to have a range of 0.2 mm to 0.5 mm.
  • the curing can be cured using a commonly used method, that is, thermal polymerization curing or photopolymerization curing.
  • thermal polymerization curing or photopolymerization curing There is no restriction
  • One type or two or more types can be used mixing a conventionally used cationic radical hardening
  • the thermal curing when the substrate is thermally cured, the thermal curing may be carried out at a temperature of 40 to 200 °C, preferably by sequential curing by low temperature baking by subdividing the curing temperature and curing time in two or more multi-stage It is good to allow the curing to proceed.
  • the present invention also provides
  • thermoplastic ladder-type silsesquioxane 1) thermally extruding and molding the thermoplastic ladder-type silsesquioxane to prepare a primary plastic transparent substrate;
  • thermosetting composition 1) preparing and curing a coating layer by coating the thermosetting composition on the surface of the primary plastic transparent substrate
  • It provides a method of manufacturing a multilayer plastic transparent substrate (secondary plastic transparent substrate) comprising a and a multilayer plastic transparent substrate (secondary plastic transparent substrate) manufactured accordingly.
  • the manufacturing method of the present invention is characterized in that the secondary plastic transparent substrate including the coating layer is finally manufactured by forming a coating layer of the thermosetting composition as described above on the surface of the prepared primary plastic transparent substrate.
  • the coating layer is to improve the hardness, mechanical strength and heat resistance of the substrate, the thickness of the coating layer is not limited within a range that does not affect the flexible properties of the substrate, but preferably 5 to 30 ⁇ m range .
  • the method of coating the composition may be applied by those skilled in the art arbitrarily selected from known methods such as spin coating, bar coating, slit coating.
  • the curing of the secondary plastic transparent substrate may be performed in the same manner as the curing of the primary plastic transparent substrate described above.
  • the present invention also provides an electronic device comprising the plastic transparent substrate (primary plastic transparent substrate) or the multilayer plastic transparent substrate (secondary plastic transparent substrate).
  • thermoplastic transparent substrate using a thermoplastic ladder-type silsesquioxane capable of hot melt extrusion and sequentially cured by low-temperature firing step by step to perform melt-extrusion molding at a high temperature
  • a multi-layered plastic transparent substrate having excellent thermal and optical properties may be manufactured by forming and sequentially curing a thermosetting silsesquioxane coating layer separately prepared on the surface of the substrate.
  • the plastic transparent substrate according to the present invention is a flexible display substrate such as a liquid crystal display, an organic light emitting display, an electronic paper, a substrate for a solar cell and a secondary battery, such as a liquid crystal display, an organic light emitting display, an electronic paper, and the like. It can be applied in various ways.
  • the stirred solution was washed and fractionated several times with distilled water to remove impurities and finally washed with methanol.
  • the washed liquid was then vacuum dried at room temperature for 20 hours or longer to obtain a solid ladder-type silsesquioxane compound.
  • BPA bisphenol-A epoxy
  • YD-128 methyl phthalic anhydride
  • methyl triphenylphosphonium bromide curing accelerator 100 parts by weight of commercially available bisphenol-A (BPA) epoxy (Kukdo Chemical, trade name YD-128), 80 parts by weight of methyl phthalic anhydride, and 1 part by weight of methyl triphenylphosphonium bromide curing accelerator are added to the stirrer and stirred for at least 3 hours. To obtain a liquid curable composition.
  • BPA bisphenol-A
  • Ladder-type silsesquioxane compound synthesized in Synthesis Example 1 was put into a mold and pressurized at 200 ° C. to perform hot melt molding, and then cooled, followed by 2 hours at 100 ° C., 1 hour at 140 ° C., and complete curing. Curing stepwise at 180 °C for 1 hour to finally produce a 200 ⁇ m thick plastic transparent substrate.
  • the BPA epoxy cured product synthesized in Comparative Synthesis Example 1 was placed in a mold and cured stepwise at 100 ° C. for 1 hour, 120 ° C. for 1 hour, and 150 ° C. for 1 hour to finally prepare a plastic substrate having a thickness of 200 ⁇ m.
  • thermosetting composition prepared in Example 2 Bar-coated the thermosetting composition prepared in Example 2 on the surface of the primary plastic substrate prepared in Example 1 to a thickness of 10 ⁇ m, semi-hardened in an oven at 100 °C, the bar on the opposite side to the same 10 ⁇ m thickness -Coated. After stepwise curing at 120 ° C. for 60 minutes, 140 ° C. for 30 minutes, and 180 ° C. for 30 minutes, a plastic transparent substrate having a thickness of 220 ⁇ m was finally prepared.
  • a plastic transparent substrate was manufactured in the same manner as in Example 4, except that the curable composition prepared in Example 2 was coated on the surface of the first plastic substrate prepared in Comparative Example 1.
  • a 0.5 mm thick polymethylmethacrylate (PMMA, LG MMA) substrate was prepared for comparison with commercially available products.
  • the transmission at 550 nm was measured using a spectrophotometer Cary-4000 (Agilent).
  • the glass transition temperature of 10 mm ⁇ 30 mm ⁇ 0.5 mm (W ⁇ H ⁇ D) size specimens was measured using a viscoelastic analyzer SS6100 (Seiko).
  • the specimen was placed in a 180 ° C. atmosphere for 12 hours to measure a change in transmittance thereto.
  • the primary substrate of the present invention using the thermoplastic ladder-type silsesquioxane compound was superior in light transmittance, glass transition temperature and heat stability compared to the primary substrate of the comparative example.
  • the second substrate of the present invention prepared by coating a composition comprising a mixture of thermoplastic ladder-type silsesquioxane and thermosetting cage-type silsesquioxane compound on the primary substrate of Example 1 is Comparative Examples 2 and 3 The light transmittance, glass transition temperature and thermal stability were superior to those of the substrate.
  • thermoplastic ladder-type silsesquioxane capable of hot melt extrusion may be sequentially cured by low-temperature firing stepwise to produce a plastic transparent substrate (primary plastic transparent substrate) capable of melt-extrusion molding at a high temperature.
  • a thermally curable silsesquioxane coating layer formed using a composition comprising the thermoplastic ladder silsesquioxane and the thermosetting cage silsesquioxane separately prepared on the surface of the substrate, followed by sequential curing.
  • a multilayer plastic transparent substrate (secondary plastic transparent substrate) having optical properties can be produced.
  • the plastic transparent substrate according to the present invention is a flexible display substrate such as a liquid crystal display, an organic light emitting display, an electronic paper, a substrate for a solar cell and a secondary battery, such as a liquid crystal display, an organic light emitting display, an electronic paper, and the like. It can be applied in various ways. In addition, it can be applied to both the hot melt-extrusion method and the solvent caster method, which is a conventional plastic substrate manufacturing process, and can be easily and quickly applied to the industry.

Abstract

The present invention relates to silsesquioxane having hot melt extrusion forming capability, a highly transparent and highly heat-resistant plastic transparent substrate using same, and a method of manufacturing same and, more particularly, to a plastic transparent substrate capable of being formed through hot melt extrusion which is produced by sequentially hardening thermoplastic ladder-type silsesquioxane (having hot melt extrusion capability) through low-temperature thermosetting in stages, and to a multilayer plastic transparent substrate having good thermal and optical properties and manufactured by forming a separately produced thermosetting silsesquioxane coating layer on the surface of the substrate and sequentially hardening same. The plastic transparent substrate according to the present invention has little heat deformation under the processing temperatures used for existing display panels, is flexible, and has good light transmittance, so as to be used in various ways for liquid crystal displays, organic light emitting displays, substrates for flexible displays such as electronic paper, or as substrates for solar cells and secondary cells.

Description

열 용융-압출 성형이 가능한 실세스퀴옥산, 이를 이용한 고투명 및 고내열 플라스틱 투명기판 및 이의 제조방법Silsesquioxane capable of hot melt-extrusion molding, high transparency and high heat resistant plastic transparent substrate using the same, and a method of manufacturing the same
본 발명은 열 용융-압출 성형이 가능한 실세스퀴옥산, 이를 이용한 고투명 및 고내열 플라스틱 투명기판 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 열 용융-압출이 가능한 열가소성 래더형 실세스퀴옥산을 단계별 저온 소성에 의해 순차적으로 경화시켜 제조한 고온에 의한 용융-압출 성형이 가능한 플라스틱 투명 기판, 및 상기 기판의 표면에 별도로 제조된 열경화성 실세스키옥산 코팅층을 형성하고 순차적으로 경화시켜 제조된 우수한 열적, 광학적 특성을 갖는 다층 플라스틱 투명 기판에 관한 것이다.The present invention relates to a silsesquioxane capable of hot melt-extrusion molding, a highly transparent and high heat-resistant plastic transparent substrate using the same, and a manufacturing method thereof, and more particularly to a thermoplastic ladder-type silsesquioxane capable of hot melt-extrusion. A plastic transparent substrate capable of melt-extrusion molding by high temperature prepared by sequential curing by low temperature firing step by step, and excellent thermal prepared by forming a thermosetting silsesukioxane coating layer prepared separately on the surface of the substrate and sequentially curing The present invention relates to a multilayer plastic transparent substrate having optical properties.
플렉시블 투명 기판은 플렉시블 디스플레이의 공정성, 성능, 신뢰성, 가격을 결정하는 가장 중요한 부품으로서 현재 산업적으로 상당한 주목을 받고 있다. 이와 관련하여 다양한 플렉시블 투명 기판의 소재 및 공정 연구가 진행 되고 있으며, 특히 플라스틱은 가공의 용이성, 저중량, 연속공정의 적합성 등으로 인해 실제 적용이 광범위하게 검토되고 있다. 그러나 기존의 대표적인 기판 소재인 유리에 비해 많은 소재적/공정적 문제점을 안고 있는 것이 사실이다. 특히, 디스플레이 패널의 제조 과정은 통상 무기막 스퍼터링이나 플라즈마 화학기상증착(PECVD)과 같은 고온의 공정을 거치게 되는데, 이 때 일반적인 플라스틱 투명 기판을 적용하면 열에 의한 변형이 발생되어 치수 안정성을 보장할 수 없다.Flexible transparent substrates are the most important components that determine the fairness, performance, reliability, and price of a flexible display, and are currently receiving considerable attention in the industry. In this regard, research on materials and processes of various flexible transparent substrates has been conducted. In particular, plastics have been widely studied for practical application due to ease of processing, low weight, and suitability of continuous processes. However, it is true that there are many material / process problems compared to glass, which is a typical representative substrate material. In particular, the manufacturing process of the display panel is usually subjected to a high temperature process, such as inorganic film sputtering or plasma chemical vapor deposition (PECVD), when applying a general plastic transparent substrate is a deformation caused by heat can be ensured to ensure the dimensional stability none.
이를 해결하기 위해 플라스틱 소재의 열적 특성을 향상시키거나, 플라스틱 기판에 적합한 저온 공정을 개발하는 연구가 활발히 진행되고 있으나, 현재까지 실제 수요 업체의 기술 요구 수준에 미치지 못하고 있는 실정이다. In order to solve this problem, researches are being actively conducted to improve thermal properties of plastic materials or to develop low-temperature processes suitable for plastic substrates.
예를 들어, PC(polycarbonate)는 우수한 광학적, 기계적 특성을 가진 플라스틱이지만 취약한 내화학성과 높은 수준의 열팽창계수를 가지는 단점이 있다. 또한, PET(polyethylene terephthalate)는 가격이 저렴하고 성형이 용이하나 낮은 Tg와 치명적으로 광학 이방성을 가져 디스플레이 패널로의 적용이 어렵다. 아울러 대표적인 플라스틱 기판 소재인 PES(polyethersulphone)는 특별히 두드러진 단점이 없어 가장 활발히 검토되고 있으나, 유리에 비해 열팽창계수가 다소 높고, 흡습성이 높아 패널 적용 시 탈수를 위한 추가 공정을 필요로 하게 된다. 그 밖에 PI(polyimide), PEN(polyethylene naphthalate) 등의 플라스틱 소재가 있지만 이 역시 가격적 측면과 함께 치수 안정성 및 광학 이방성 등의 취약점을 가지고 있다. For example, PC (polycarbonate) is a plastic having excellent optical and mechanical properties, but has disadvantages of poor chemical resistance and high coefficient of thermal expansion. In addition, polyethylene terephthalate (PET) is inexpensive and easy to mold, but it is difficult to apply to a display panel because of low Tg and fatal optical anisotropy. In addition, PES (polyethersulphone), which is a representative plastic substrate material, has been reviewed most actively because there is no particular disadvantage, but the thermal expansion coefficient is somewhat higher than that of glass, and the hygroscopicity is high, so that an additional process for dehydration is required when applying the panel. In addition, there are plastic materials such as polyimide (PI) and polyethylene naphthalate (PEN), but they also have disadvantages such as dimensional stability and optical anisotropy along with their cost.
일반적으로 실세스키옥산 고분자 재료들은 주로 기능성 필름 코팅 소재나 적층재 또는 전자재료의 절연막, 보호막 및 배향막 등으로 응용이 되거나, 다른 플라스틱 소재에 첨가제 또는 필러로 배합하여 특성을 향상시키는 용도로 개발이 되고 있지만 그 자체를 모재로 하여 투명기판으로 성형한 예는 찾아보기 힘든 상황이다. 대부분의 실리콘 소재들은 액상형태가 주를 이루고, 고체상인 경우도 보통 열가소 특성이 매우 낮아 통상적인 플라스틱 기판의 성형 공정인 용융-압출 성형에 적합하지 않다. In general, silsesquioxane polymer materials are mainly applied as an insulating film, a protective film, and an alignment film of a functional film coating material, a laminate or an electronic material, or are developed to improve properties by blending with other plastic materials as additives or fillers. However, it is difficult to find an example of forming a transparent substrate using itself as a base material. Most silicon materials are mainly in liquid form, and in the solid state, they are usually very low in thermoplasticity and are not suitable for melt-extrusion molding, which is a conventional plastic substrate forming process.
일례로, 특허공개 2012-0019136(특허문헌 1)에는 PET에 테레프탈산으로 개질한 POSS(polyhedral oligomeric silsesquioxane)를 첨가하여 내열특성 향상을 도모 하였지만 그 개선 폭이 크지 않아 플라스틱 투명 기판으로의 적용은 어렵다. 특허공개 2013-0028626(특허문헌 2)에는 폴리실록세인 주쇄와 수소결합이 가능한 작용기를 갖는 측쇄를 달아 열가소 특성을 부여함으로서, 주로 절연성 피막이나 내후성 도막 및 반도체 봉지제 등에 적용 가능했지만, 플라스틱 투명 기판의 요구 특성에는 미치지 못한다. 그리고 특허공개 2003-226753(특허문헌 3)에서는 특정 분자량의 래더형 폴리페닐실세스키옥산의 제조 방법을 제공함으로서 열가소 특성을 부여하나, 페닐을 관능기로 도입한 실세스퀴옥산의 경우 취성(brittleness)이 있어 기판으로의 적용은 어려운 것이 사실이다.For example, in Patent Publication No. 2012-0019136 (Patent Document 1), a polyhedral oligomeric silsesquioxane (POSS) modified with terephthalic acid was added to PET to improve heat resistance, but its improvement is not so large, and thus it is difficult to apply to a plastic transparent substrate. Patent Publication No. 2013-0028626 (Patent Document 2) attaches a side chain having a functional group capable of hydrogen bonding with a polysiloxane main chain to impart thermoplasticity properties, and is mainly applicable to an insulating coating, a weatherproof coating, a semiconductor encapsulant, and the like. It does not meet the required characteristics. Patent Publication No. 2003-226753 (Patent Document 3) provides thermoplastics by providing a method for preparing a ladder-type polyphenylsilsesuccioxane having a specific molecular weight, but in the case of silsesquioxane having phenyl as a functional group, brittleness It is true that application to a substrate is difficult.
상기와 같은 문제점을 해결하기 위해, 본 발명은 기존의 플라스틱 기판 소재와는 전혀 다른 열적 특성을 가지는 실세스퀴옥산을 제조하고, 이를 이용하여 고투명, 고내열성의 플라스틱 투명 기판을 제조하는 방법, 상기 기판에 열경화성 조성물을 한 번 더 코팅함으로써 표면의 평탄도, 경도, 유연성 및 내열성 등의 물성이 향상된 다층 플라스틱 투명 기판을 제조하는 방법을 제공하는 것을 목적으로 한다.In order to solve the above problems, the present invention is to produce a silsesquioxane having a completely different thermal properties than the conventional plastic substrate material, by using this method for producing a high transparent, high heat-resistant plastic transparent substrate, the It is an object of the present invention to provide a method for manufacturing a multilayer plastic transparent substrate having improved physical properties such as surface flatness, hardness, flexibility and heat resistance by coating the thermosetting composition on the substrate once more.
상기 목적을 달성하기 위해 본 발명은 하기 화학식 1의 열가소성 래더형 실세스퀴옥산 및 하기 화학식 4의 열경화성 케이지형 실세스퀴옥산을 제공한다:In order to achieve the above object, the present invention provides a thermoplastic ladder silsesquioxane of Formula 1 and a thermosetting cage silsesquioxane of Formula 4:
[화학식 1][Formula 1]
Figure PCTKR2014012790-appb-I000001
Figure PCTKR2014012790-appb-I000001
[화학식 4][Formula 4]
Figure PCTKR2014012790-appb-I000002
Figure PCTKR2014012790-appb-I000002
상기 식에서,Where
R'1은 각각 독립적으로 탄소수가 1-5개인 알킬기를 나타내고;Each R ′ 1 independently represents an alkyl group having 1-5 carbon atoms;
n은 1 내지 200의 정수이며;n is an integer from 1 to 200;
R11 및 R12는 각각 독립적으로 하기 화학식 2의 유기 관능기, 하기 화학식 3의 유기 관능기 또는 하이드록시기이며:R 11 and R 12 are each independently selected from the formula 2, the organic functional groups, to the organic functional group of Formula 3 or a hydroxyl group are:
[화학식 2][Formula 2]
Figure PCTKR2014012790-appb-I000003
Figure PCTKR2014012790-appb-I000003
[화학식 3][Formula 3]
Figure PCTKR2014012790-appb-I000004
Figure PCTKR2014012790-appb-I000004
상기 식에서, Where
R1 및 R9는 각각 독립적으로 탄소수가 1 내지 5개인 알킬기를 나타내고;R 1 and R 9 each independently represent an alkyl group having 1 to 5 carbon atoms;
R2 내지 R8은 각각 독립적으로 수소원자 이거나 또는 탄소수 1 내지 8개의 알킬기를 나타내고;R 2 to R 8 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms;
R10은 수소 또는 탄소수 1 내지 20개의 알킬기로 연결된 방향족, 에폭시기, 아크릴기 또는 사이올기이며;R 10 is hydrogen or an aromatic, epoxy, acryl or siol group linked to an alkyl group of 1 to 20 carbon atoms;
Q는 탄소수 1 내지 6개의 알킬렌기 또는 알킬렌옥시기이고;Q is an alkylene group or alkyleneoxy group having 1 to 6 carbon atoms;
n은 1-3의 정수이며;n is an integer of 1-3;
m은 0-4의 정수이며,m is an integer from 0-4,
p는 0 또는 1이다.p is 0 or 1.
또한 본 발명은 상기 화학식 1의 열가소성 래더형 실세스퀴옥산 및 상기 화학식 4의 열경화성 케이지형 실세스퀴옥산을 포함하는 열경화성 조성물을 제공한다.In another aspect, the present invention provides a thermosetting composition comprising the thermoplastic ladder silsesquioxane of Formula 1 and the thermosetting cage silsesquioxane of Formula 4.
또한 본 발명은 상기 화학식 1의 열가소성 래더형 실세스퀴옥산을 열 용융-압출하여 성형하고 경화시키는 단계를 포함하는 플라스틱 투명 기판(1차 플라스틱 투명 기판)의 제조방법 및 이에 따라 제조된 플라스틱 투명 기판(1차 플라스틱 투명 기판)을 제공한다.In another aspect, the present invention is a method for manufacturing a plastic transparent substrate (primary plastic transparent substrate) and the plastic transparent substrate prepared according to the step of molding and curing the thermoplastic ladder-type silsesquioxane of the formula (1) by hot melt-extrusion (Primary plastic transparent substrate).
또한 본 발명은 In addition, the present invention
1) 상기 화학식 1의 열가소성 래더형 실세스퀴옥산을 열 용융-압출하여 성형하여 1차 플라스틱 투명 기판을 제조하는 단계; 및1) thermally extruding and molding the thermoplastic ladder-type silsesquioxane of Chemical Formula 1 to prepare a primary plastic transparent substrate; And
2) 상기 1차 플라스틱 투명 기판의 표면에 상기 열경화성 조성물을 코팅하여 코팅층을 제조하고 경화시키는 단계를 포함하는 다층 플라스틱 투명 기판(2차 플라스틱 투명 기판)의 제조방법 및 이에 따라 제조된 다층 플라스틱 투명 기판을 제공한다.2) a method of manufacturing a multilayer plastic transparent substrate (secondary plastic transparent substrate) comprising the step of coating the thermosetting composition on the surface of the primary plastic transparent substrate and curing the coating layer and the multilayer plastic transparent substrate manufactured accordingly To provide.
또한 본 발명은 상기 플라스틱 투명 기판을 포함하는 전자소자를 제공한다.In another aspect, the present invention provides an electronic device comprising the plastic transparent substrate.
본 발명에 따르면, 열 용융-압출이 가능한 열가소성 래더형 실세스퀴옥산을 단계별 저온 소성에 의해 순차적으로 경화시켜 고온에 의한 용융-압출 성형이 가능한 플라스틱 투명 기판(1차 플라스틱 투명 기판)을 제조할 수 있으며, 상기 기판의 표면에 별도로 제조된, 상기 열가소성 래더형 실세스퀴옥산 및 열경화성 케이지형 실세스퀴옥산을 포함하는 조성물을 이용하여 열경화성 실세스키옥산 코팅층을 형성하고 순차적으로 경화시킴으로써 우수한 열적, 광학적 특성을 갖는 다층 플라스틱 투명 기판(2차 플라스틱 투명 기판)을 제조할 수 있다.According to the present invention, a thermoplastic ladder-type silsesquioxane capable of hot melt extrusion may be sequentially cured by low-temperature firing stepwise to produce a plastic transparent substrate (primary plastic transparent substrate) capable of melt-extrusion molding at a high temperature. And a thermally curable silsesquioxane coating layer formed using a composition comprising the thermoplastic ladder silsesquioxane and the thermosetting cage silsesquioxane separately prepared on the surface of the substrate, followed by sequential curing. A multilayer plastic transparent substrate (secondary plastic transparent substrate) having optical properties can be produced.
본 발명에 따른 플라스틱 투명 기판은 통상의 디스플레이 패널 공정 온도에 대해 열변형이 적고 유연하며 광투과도가 좋아 액정 디스플레이, 유기 발광 디스플레이, 전자 페이퍼 등의 플렉시블 디스플레이용 기판이나, 태양전지 및 2차 전지용 기판 등에 다양하게 응용될 수 있다. 또한, 통상의 플라스틱 기판 제작 공정인 열 용융-압출 방식 및 용매 캐스터 방식 등에 모두 적용 가능하여 쉽고 빠르게 산업에 적용 및 접근할 수 있다. The plastic transparent substrate according to the present invention is a flexible display substrate such as a liquid crystal display, an organic light emitting display, an electronic paper, a substrate for a solar cell and a secondary battery, such as a liquid crystal display, an organic light emitting display, an electronic paper, and the like. It can be applied in various ways. In addition, it can be applied to both the hot melt-extrusion method and the solvent caster method, which is a conventional plastic substrate manufacturing process, and can be easily and quickly applied to the industry.
도 1은 본 발명의 합성예 1에서 합성된 래더형 실세스퀴옥산의 FT-IR 그래프이다.1 is an FT-IR graph of the ladder-type silsesquioxane synthesized in Synthesis Example 1 of the present invention.
도 2는 본 발명의 합성예 2에서 합성된 케이지형 실세스퀴옥산의 FT-IR 그래프이다.2 is an FT-IR graph of the cage silsesquioxane synthesized in Synthesis Example 2 of the present invention.
도 3은 본 발명의 실시예 4에서 제조된 기판의 TGA 곡선이다. 3 is a TGA curve of the substrate prepared in Example 4 of the present invention.
도 4는 본 발명의 열경화성 조성물 내 실세스퀴옥산 복합체의 구조를 내타낸 도면이다.4 is a view showing the structure of the silsesquioxane complex in the thermosetting composition of the present invention.
이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명의 플라스틱 투명 기판은 열 용융-압출이 가능한 열가소성 래더형 실세스퀴옥산을 단독으로 포함하거나, 이의 표면에 상기 열가소성 래더형 실세스퀴옥산 및 열경화성 케이지형 실세스퀴옥산의 혼합물을 포함하는 열경화성 조성물의 코팅층을 포함하는 것을 특징으로 한다.The plastic transparent substrate of the present invention includes a thermoplastic ladder-type silsesquioxane alone capable of hot melt extrusion, or a mixture of the thermoplastic ladder-type silsesquioxane and thermosetting cage-type silsesquioxanes on the surface thereof. It characterized in that it comprises a coating layer of the thermosetting composition.
본 발명에 있어서, 상기 열가소성 래더형 실세스 퀴옥산은 하기 화학식 1의 구조를 갖는 화합물이다:In the present invention, the thermoplastic ladder silses quoxane is a compound having the structure of Formula 1:
[화학식 1][Formula 1]
Figure PCTKR2014012790-appb-I000005
Figure PCTKR2014012790-appb-I000005
상기 식에서,Where
R'1은 각각 독립적으로 탄소수가 1-5개인 알킬기를 나타내고;Each R ′ 1 independently represents an alkyl group having 1-5 carbon atoms;
n은 1 내지 200의 정수이며;n is an integer from 1 to 200;
R11은 각각 독립적으로 하기 화학식 2의 유기 관능기, 하기 화학식 3의 유기 관능기 또는 하이드록시기이며:Each R 11 is independently an organic functional group represented by Formula 2, an organic functional group represented by Formula 3, or a hydroxyl group:
[화학식 2][Formula 2]
Figure PCTKR2014012790-appb-I000006
Figure PCTKR2014012790-appb-I000006
[화학식 3][Formula 3]
Figure PCTKR2014012790-appb-I000007
Figure PCTKR2014012790-appb-I000007
상기 식에서, Where
R1 및 R9는 탄소수가 1 내지 5개인 알킬기를 나타내고;R 1 and R 9 represent an alkyl group having 1 to 5 carbon atoms;
R2 내지 R8은 각각 독립적으로 수소원자 이거나 또는 탄소수 1 내지 8개의 알킬기를 나타내고;R 2 to R 8 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms;
R10은 수소 또는 탄소수 1 내지 20개의 알킬기로 연결된 방향족, 에폭시기, 아크릴기 또는 사이올기이며;R 10 is hydrogen or an aromatic, epoxy, acryl or siol group linked to an alkyl group of 1 to 20 carbon atoms;
Q는 탄소수 1 내지 6개의 알킬렌기 또는 알킬렌옥시기이고;Q is an alkylene group or alkyleneoxy group having 1 to 6 carbon atoms;
n은 1-3의 정수이며;n is an integer of 1-3;
m은 0-4의 정수이며,m is an integer from 0-4,
p는 0 또는 1이다.p is 0 or 1.
상기 화학식 1의 열가소성 래더형 실세스퀴옥산은 상기 화학식 2의 에폭시기 함유 알콕시 실란 화합물과 상기 화학식 3의 알콕시 실란 화합물을 염기촉매 하에서 가수분해 시킨 후, 연속적으로 축합 반응시켜 생성될 수 있으며, 바람직하게는 본 발명자들에 의해 기 공지된 방법, 예를 들면 대한민국 특허공개 제10-2010-0131904호에 기재된 방법에 따라 합성될 수 있다.The thermoplastic ladder-type silsesquioxane of Chemical Formula 1 may be produced by hydrolyzing the epoxy group-containing alkoxy silane compound of Chemical Formula 2 and the alkoxy silane compound of Chemical Formula 3 under a base catalyst and continuously condensation reaction, preferably Can be synthesized according to the methods already known by the present inventors, for example, the method described in Korean Patent Publication No. 10-2010-0131904.
상기 화학식 2의 화합물의 몰수를 a, 화학식 3의 화합물의 몰수를 b라 할 때, 0.3 < b/a < 0.6의 관계를 만족하는 것이 좋고, 하이드록시기의 몰수를 c라 할 때, 0.001 < c/(a+b) < 0.3, 바람직하게는 물질의 적절한 가소 특성을 고려할 때, 0.01 < c/(a+b) < 0.1의 관계를 만족하는 것이 좋다. 상기 범위 내인 경우 액상의 레진이 형성되거나 열가소 특성을 잃어버린 소상의 파우더가 형성되는 대신 우수한 열가소 특성을 가진 레진이 형성될 수 있다.When the number of moles of the compound of Formula 2 is a and the number of moles of the compound of Formula 3 is b, the relationship of 0.3 <b / a <0.6 is preferably satisfied. When the number of moles of hydroxy group is c, 0.001 < c / (a + b) <0.3, preferably considering the appropriate plasticizing properties of the material, it is preferable to satisfy the relationship of 0.01 <c / (a + b) <0.1. In the above range, a resin having excellent thermoplastic properties may be formed instead of forming a liquid resin or a powder of a small phase having lost thermoplastic properties.
또한 상기 화학식 1의 열가소성 래더형 실세스퀴옥산의 중량평균 분자량은 10,000 내지 200,000이고, 바람직하게는 30,000 내지 100,000인 것이 좋다.In addition, the weight average molecular weight of the thermoplastic ladder-type silsesquioxane of the formula (1) is 10,000 to 200,000, preferably 30,000 to 100,000.
본 발명에 있어서, 상기 열경화성 케이지형 실세스퀴옥산은 하기 화학식 4의 구조를 갖는 화합물일 수 있다:In the present invention, the thermosetting cage-type silsesquioxane may be a compound having a structure of Formula 4:
[화학식 4][Formula 4]
Figure PCTKR2014012790-appb-I000008
Figure PCTKR2014012790-appb-I000008
상기 식에서,Where
R12는 각각 독립적으로 상기 화학식 2의 유기 관능기, 상기 화학식 3의 유기 관능기 또는 하이드록시기이다.R 12 is each independently an organic functional group of Formula 2, an organic functional group of Formula 3 or a hydroxyl group.
상기 화학식 4의 열경화성 케이지형 실세스퀴옥산은 상기 화학식 2의 에폭시기 함유 알콕시 실란 화합물과 상기 화학식 3의 알콕시 실란 화합물을 염기촉매 하에서 가수분해 시킨 후, 연속적으로 축합 반응시켜 생성될 수 있다.The thermosetting cage-type silsesquioxane of Chemical Formula 4 may be produced by hydrolyzing the epoxy group-containing alkoxy silane compound of Chemical Formula 2 and the alkoxy silane compound of Chemical Formula 3 under a base catalyst and continuously condensation reaction.
상기 화학식 4에서 화학식 2의 화합물의 몰수를 d, 화학식 3의 화합물의 몰수를 e라 할 때, 0.5 < e/d < 1.5의 관계를 만족하는 것이 좋고, 하이드록시기의 몰수를 f라 할 때, 0.001 < f/(d+e) < 0.01의 관계를 만족하는 것이 좋다. 상기 범위 내인 경우 열경화 특성이 우수하며, 투명기판의 물리적, 광학적 특성을 더욱 향상시킬 수 있다.When the number of moles of the compound of formula (2) in formula (4) is d, the number of moles of the compound of formula (3) is e, it is good to satisfy the relationship of 0.5 <e / d <1.5, when the number of moles of the hydroxy group is f , 0.001 <f / (d + e) <0.01. Within the above range, the thermosetting properties are excellent, and the physical and optical properties of the transparent substrate may be further improved.
또한 상기 화학식 4의 열경화성 케이지형 실세스퀴옥산의 중량평균 분자량은 중량평균 분자량이 1,000 내지 10,000이고, 바람직하게는 2,000 내지 4,000인 것이 좋다.In addition, the weight average molecular weight of the thermosetting cage-type silsesquioxane of Chemical Formula 4 is 1,000 to 10,000, preferably 2,000 to 4,000.
본 발명에 있어서, 상기 열경화성 조성물은 상기 화학식 1의 열가소성 래더형 실세스퀴옥산 및 상기 화학식 4의 열경화성 케이지형 실세스퀴옥산을 포함할 수 있으며, 조성물 내에서 상기 2종의 실세스퀴옥산이 복합체를 형성하여 도 4에 도시된 바와 같은 구조를 가질 수 있다. 이 때, 화학식 1의 화합물의 몰수를 x, 화학식 4의 화합물의 몰수를 y라 할 때, 0.1 < x/y <1.0, 바람직하게는 0.3 < x/y < 0.6의 관계를 만족하는 것이 좋다. 상기 범위 내인 경우 열적 특성, 물리적 특성 및 광학적 특성을 동시에 만족시킬 수 있다.In the present invention, the thermosetting composition may include the thermoplastic ladder silsesquioxane of Formula 1 and the thermosetting cage silsesquioxane of Formula 4, wherein the two silsesquioxanes in the composition The complex may be formed to have a structure as shown in FIG. 4. In this case, when the number of moles of the compound of formula (1) is x and the number of moles of the compound of formula (4) is y, it is preferable to satisfy the relationship of 0.1 <x / y <1.0, preferably 0.3 <x / y <0.6. Within this range, thermal, physical and optical properties can be satisfied at the same time.
상기 열경화성 조성물은 공지의 경화제를 추가로 포함할 수 있다. 상기 경화제는 예를 들어, 페놀 수지 등의 페놀 화합물, 디아민, 디메틸트리아민, 폴리아민 등의 아민 화합물, 무수프탈산, 테트라하이드로 무수프탈산, 테트라카르복실 무수프탈산, 무수노보넨산 등의 산 무수 화합물 등을 들 수 있으나, 이제 한정되는 것은 아니며, 이들 화합물 1종을 단독으로 사용해도 좋고, 2종 이상을 혼용하여 사용하여도 좋다. 경화물의 내열성, 투광성 등의 특성을 고려할 때, 산 무수 경화제를 사용하는 것이 바람직하다. 또한, 경화제의 함량은 적절히 조절할 수 있음은 물론이며, 화학식 1 및 화학식 4의 실세스퀴옥산 중량의 합계 100 중량부에 대하여 20 내지 120 중량부인 것이 좋다.The thermosetting composition may further include a known curing agent. The said hardening | curing agent contains phenolic compounds, such as a phenol resin, amine compounds, such as diamine, dimethyltriamine, and a polyamine, acid anhydride compounds, such as phthalic anhydride, tetrahydro phthalic anhydride, tetracarboxylic phthalic anhydride, a norbornene anhydride, etc. Although it does not restrict | limit now, 1 type of these compounds may be used individually, and 2 or more types may be mixed and used for it. In consideration of properties such as heat resistance and light transmittance of the cured product, it is preferable to use an acid anhydride curing agent. In addition, the amount of the curing agent may be appropriately adjusted, and may be 20 to 120 parts by weight based on 100 parts by weight of the total weight of the silsesquioxanes of the general formulas (1) and (4).
또한 상기 열경화성 조성물은 경화 촉진제를 추가로 포함할 수 있다. 상기 경화 촉진제는 상기 조성물과 경화제의 반응을 촉진시키는 화합물이면 특별히 제한되지 않으며, 배합량에 있어서도 경화 촉진 효과를 나타낼 수 있으면 특별히 그 양에 제한은 없다. 그러나 경화물의 내열성, 투광성 등의 특성을 고려할 때, 상기 화학식 1 및 화학식 4의 실세스퀴옥산 중량의 합계 100 중량부에 대하여 경화 촉진제의 배합량은 0.1 내지 5 중량부, 바람직하게는 0.5 내지 2 중량부 범위인 것이 좋다.In addition, the thermosetting composition may further include a curing accelerator. The curing accelerator is not particularly limited as long as it is a compound that accelerates the reaction between the composition and the curing agent, and the amount is not particularly limited as long as the curing accelerator can be exhibited even in the blended amount. However, in consideration of properties such as heat resistance and light transmittance of the cured product, the blending amount of the curing accelerator is 0.1 to 5 parts by weight, preferably 0.5 to 2 parts by weight based on 100 parts by weight of the total weight of the silsesquioxanes of the general formulas (1) and (4). It is good to be a negative range.
또한 상기 열경화성 조성물은 용매를 추가로 포함할 수 있다. 본 발명에 사용할 수 있는 용매로는 제조된 경화성 조성물을 균일하게 용해시키는 것이면 특별히 제한되지 않지만, 디클로로메탄, 테트라하이드로퓨란, 메틸에틸케톤, 디메틸아세트아마이드 등의 극성 유기용매가 바람직하다.In addition, the thermosetting composition may further include a solvent. The solvent that can be used in the present invention is not particularly limited as long as it dissolves the produced curable composition uniformly, but polar organic solvents such as dichloromethane, tetrahydrofuran, methyl ethyl ketone, and dimethylacetamide are preferable.
또한 상기 열경화성 조성물은 경도, 강도, 내구성, 성형성 등을 개선하는 목적으로 자외선 흡수제, 산화 방지제, 소포제, 레벨링제, 발수제, 난연제, 접착개선제 등의 첨가제를 추가로 포함할 수 있다. 이러한 첨가제는 그 사용에 있어 특별하게 제한은 없으나 기판의 특성 즉, 유연성, 투광성, 내열성, 경도, 강도 등의 물성을 해치지 않는 범위 내에서 적절히 첨가할 수 있다.In addition, the thermosetting composition may further include additives such as a UV absorber, an antioxidant, an antifoaming agent, a leveling agent, a water repellent agent, a flame retardant agent, and an adhesion improving agent for the purpose of improving hardness, strength, durability, moldability, and the like. Such additives are not particularly limited in use, but may be appropriately added within a range that does not impair the properties of the substrate, that is, properties such as flexibility, light transmittance, heat resistance, hardness, and strength.
본 발명은 또한 상기 열가소성 래더형 실세스퀴옥산을 열 용융-압출하여 성형하고 경화시키는 단계를 포함하는 플라스틱 투명 기판(1차 플라스틱 투명 기판)의 제조방법 및 이에 따라 제조된 플라스틱 투명 기판을 제공한다.The present invention also provides a method for producing a plastic transparent substrate (primary plastic transparent substrate) comprising the step of hot melt-extrusion molding and curing the thermoplastic ladder-type silsesquioxane and the plastic transparent substrate produced accordingly .
본 발명에 있어서, 상기 기판을 제조하는 방법은 특별히 제한되지 않으며, 예를 들어, 열 용융-압출법 외에 용매-캐스터 방법에 의해서도 제조될 수 있다. 이 때 상기 기판의 두께는 0.1 ㎜ 내지 2.0 ㎜의 범위를 가질 수 있고, 유연성을 고려하면 바람직하게는 0.2 ㎜ 내지 0.5 ㎜의 범위를 가지는 것이 좋다. In the present invention, the method for producing the substrate is not particularly limited, and for example, may be produced by a solvent-caster method in addition to the hot melt-extrusion method. In this case, the thickness of the substrate may range from 0.1 mm to 2.0 mm, and in consideration of flexibility, it is preferable to have a range of 0.2 mm to 0.5 mm.
본 발명에 있어서, 상기 경화는 통상적으로 사용하는 방법, 즉 열중합 경화 또는 광중합 경화 등을 사용하여 경화할 수 있다. 광중합 경화 시 경화 후 물성에 영향을 주지 않는 범위 내에서 사용에 제한은 없으며, 통상적으로 사용하는 양이온 라디칼 경화제 또는 음이온 라디칼 경화제를 1종류 또는 2종류 이상 혼합하여 사용할 수 있다. In the present invention, the curing can be cured using a commonly used method, that is, thermal polymerization curing or photopolymerization curing. There is no restriction | limiting in use within the range which does not affect the physical property after hardening at the time of photopolymerization hardening, One type or two or more types can be used mixing a conventionally used cationic radical hardening | curing agent or anionic radical hardening | curing agent.
본 발명에 있어서, 상기 기판을 열경화하는 경우, 열경화는 40 내지 200 ℃의 온도에서 수행될 수 있고, 바람직하게는 2단계 이상의 다단계로 경화온도 및 경화시간을 세분화하여 저온 소성에 의해 순차적으로 경화가 진행되도록 하는 것이 좋다.In the present invention, when the substrate is thermally cured, the thermal curing may be carried out at a temperature of 40 to 200 ℃, preferably by sequential curing by low temperature baking by subdividing the curing temperature and curing time in two or more multi-stage It is good to allow the curing to proceed.
본 발명은 또한,The present invention also provides
1) 상기 열가소성 래더형 실세스퀴옥산을 열 용융-압출하여 성형하여 1차 플라스틱 투명 기판을 제조하는 단계; 및1) thermally extruding and molding the thermoplastic ladder-type silsesquioxane to prepare a primary plastic transparent substrate; And
2) 상기 1차 플라스틱 투명 기판의 표면에 상기 열경화성 조성물을 코팅하여 코팅층을 제조하고 경화시키는 단계2) preparing and curing a coating layer by coating the thermosetting composition on the surface of the primary plastic transparent substrate
를 포함하는 다층 플라스틱 투명 기판(2차 플라스틱 투명 기판)의 제조방법 및 이에 따라 제조된 다층 플라스틱 투명 기판(2차 플라스틱 투명 기판)을 제공한다.It provides a method of manufacturing a multilayer plastic transparent substrate (secondary plastic transparent substrate) comprising a and a multilayer plastic transparent substrate (secondary plastic transparent substrate) manufactured accordingly.
본 발명의 제조방법은 상기 제조된 1차 플라스틱 투명 기판의 표면에 상술한 바와 같은 열경화성 조성물의 코팅층을 형성함으로써 최종적으로 코팅층을 포함하는 2차 플라스틱 투명 기판을 제조하는 것을 특징으로 한다. The manufacturing method of the present invention is characterized in that the secondary plastic transparent substrate including the coating layer is finally manufactured by forming a coating layer of the thermosetting composition as described above on the surface of the prepared primary plastic transparent substrate.
본 발명에 있어서, 상기 코팅층은 기판의 경도, 기계적 강도 및 내열성을 향상시키기 위한 것으로, 코팅층의 두께는 기판의 플렉시블 특성에 영향을 주지 않는 범위 내에 제한은 없으나 바람직하게는 5 내지 30 ㎛ 범위가 좋다.In the present invention, the coating layer is to improve the hardness, mechanical strength and heat resistance of the substrate, the thickness of the coating layer is not limited within a range that does not affect the flexible properties of the substrate, but preferably 5 to 30 ㎛ range .
본 발명에 있어서, 상기 조성물을 코팅하는 방법은 스핀코팅, 바코팅, 슬릿코팅 등 공지된 방법 중에서 당업자가 임의로 선택하여 적용할 수 있음은 물론이다. In the present invention, the method of coating the composition may be applied by those skilled in the art arbitrarily selected from known methods such as spin coating, bar coating, slit coating.
본 발명에 있어서, 상기 2차 플라스틱 투명 기판의 경화는 상술한 1차 플라스틱 투명 기판의 경화와 동일하게 수행될 수 있다.In the present invention, the curing of the secondary plastic transparent substrate may be performed in the same manner as the curing of the primary plastic transparent substrate described above.
본 발명은 또한 상기 플라스틱 투명 기판(1차 플라스틱 투명 기판) 또는 다층 플라스틱 투명 기판(2차 플라스틱 투명 기판)을 포함하는 전자소자를 제공한다. The present invention also provides an electronic device comprising the plastic transparent substrate (primary plastic transparent substrate) or the multilayer plastic transparent substrate (secondary plastic transparent substrate).
본 발명에 따르면, 열 용융-압출이 가능한 열가소성 래더형 실세스퀴옥산을 사용하고 단계별 저온 소성에 의해 순차적으로 경화를 진행하여 고온에 의한 용융-압출 성형이 가능한 플라스틱 투명 기판(1차 플라스틱 투명 기판)을 제조할 수 있으며, 상기 기판의 표면에 별도로 제조된 열경화성 실세스키옥산 코팅층을 형성하고 순차적으로 경화시킴으로써 우수한 열적, 광학적 특성을 갖는 다층 플라스틱 투명 기판(2차 플라스틱 투명 기판)을 제조할 수 있다.According to the present invention, a thermoplastic transparent substrate (primary plastic transparent substrate) using a thermoplastic ladder-type silsesquioxane capable of hot melt extrusion and sequentially cured by low-temperature firing step by step to perform melt-extrusion molding at a high temperature ), And a multi-layered plastic transparent substrate (secondary plastic transparent substrate) having excellent thermal and optical properties may be manufactured by forming and sequentially curing a thermosetting silsesquioxane coating layer separately prepared on the surface of the substrate. .
본 발명에 따른 플라스틱 투명 기판은 통상의 디스플레이 패널 공정 온도에 대해 열변형이 적고 유연하며 광투과도가 좋아 액정 디스플레이, 유기 발광 디스플레이, 전자 페이퍼 등의 플렉시블 디스플레이용 기판이나, 태양전지 및 2차 전지용 기판 등에 다양하게 응용될 수 있다.The plastic transparent substrate according to the present invention is a flexible display substrate such as a liquid crystal display, an organic light emitting display, an electronic paper, a substrate for a solar cell and a secondary battery, such as a liquid crystal display, an organic light emitting display, an electronic paper, and the like. It can be applied in various ways.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples are provided to help understanding of the present invention, but the following examples are merely to illustrate the present invention, and the scope of the present invention is not limited to the following examples.
합성예 1Synthesis Example 1 : 래더형 실세스키옥산 화합물의 합성: Synthesis of Ladder Silsesquioxane Compound
냉각관과 교반기를 구비한 건조된 플라스크에, 증류수 15 중량부, 메탄올(순도 99.86%) 85 중량부, 포타슘카보네이트(순도 98%) 1 중량부, 에폭시사이클로헥실에틸트리메톡시실란(Shin-etsu, 상품명 KBM-303) 50 중량부, 감마-메타아크릴옥시프로필트리메톡시실란(다우코닝사, 상품명 DOW CORNING(R) Z-6030 SILANE) 30 중량부 및 페닐트리메톡시실란(다우코닝사, 상품명 DOW CORNING(R) Z-6124 SILANE) 20 중량부를 넣고, 질소 분위기에서 서서히 8시간 동안 교반 후 디클로로메탄(순도 99.5%, 동양제철화학) 100 중량부를 투입하여 2시간 동안 추가 교반하였다.In a dried flask equipped with a cooling tube and a stirrer, 15 parts by weight of distilled water, 85 parts by weight of methanol (99.86% purity), 1 part by weight of potassium carbonate (98% purity), epoxycyclohexylethyltrimethoxysilane (Shin-etsu , 50 parts by weight of KBM-303), 30 parts by weight of gamma-methacryloxypropyltrimethoxysilane (Dow Corning, DOW CORNING (R) Z-6030 SILANE) and phenyltrimethoxysilane (Dow Corning, DOW) CORNING (R) Z-6124 SILANE) 20 parts by weight was added, and the mixture was slowly stirred for 8 hours in a nitrogen atmosphere, and then 100 parts by weight of dichloromethane (purity 99.5%, Dongyang Steel Chemical) was added and stirred for 2 hours.
교반된 액을 증류수로 수차례 세정 및 분별하여 불순물을 제거하고 메탄올로 최종 수세한 후, 상기 세정된 액체를 상온에서 20시간 이상 진공건조하여 최종적으로 고체상의 래더형 실세스키옥산 화합물을 얻었다.The stirred solution was washed and fractionated several times with distilled water to remove impurities and finally washed with methanol. The washed liquid was then vacuum dried at room temperature for 20 hours or longer to obtain a solid ladder-type silsesquioxane compound.
합성예 2Synthesis Example 2 : 케이지형 실세스키옥산 화합물의 합성: Synthesis of cage silsesquioxane compound
*냉각관과 교반기를 구비한 건조된 플라스크에, 증류수 10 중량부, 메탄올(순도 99.86%) 85 중량부, 테트라메틸암모늄하이드록사이드(순도 25%) 5 중량부, 에폭시사이클로헥실에틸트리메톡시실란(Shin-etsu, 상품명 KBM-303) 50 중량부, 감마-메타아크릴옥시프로필트리메톡시실란(다우코닝사, 상품명 DOW CORNING(R) Z-6030 SILANE) 30 중량부 및 메틸트리메톡시실란(다우코닝사, 상품명 DOW CORNING(R) Z-6300 SILANE) 20 중량부를 넣고, 질소 분위기에서 서서히 6시간 동안 교반 후 디클로로메탄(순도 99.5%, 동양제철화학) 200 중량부를 투입하여 24시간 동안 추가 교반하였다. 이 후 상기 합성예 1과 동일한 방법으로 액상의 케이지형 실세스키옥산 화합물을 얻었다.In a dried flask equipped with a cooling tube and a stirrer, 10 parts by weight of distilled water, 85 parts by weight of methanol (99.86% purity), 5 parts by weight of tetramethylammonium hydroxide (25% purity), epoxycyclohexylethyltrimethoxy 50 parts by weight of silane (Shin-etsu, trade name KBM-303), 30 parts by weight of gamma-methacryloxypropyltrimethoxysilane (DOW CORNING, trade name DOW CORNING (R) Z-6030 SILANE) and methyltrimethoxysilane ( Dow Corning, trade name DOW CORNING (R) Z-6300 SILANE) 20 parts by weight, and slowly stirred for 6 hours in a nitrogen atmosphere, 200 parts by weight of dichloromethane (purity 99.5%, Dongyang Steel Chemical) was added and stirred for 24 hours. . Thereafter, a liquid cage-type silsesquioxane compound was obtained in the same manner as in Synthesis example 1.
비교 합성예 1Comparative Synthesis Example 1 : BPA 에폭시 경화물의 합성: Synthesis of BPA Epoxy Cured Product
상용화 되어있는 비스페놀-A(BPA) 에폭시(국도화학, 상품명 YD-128) 100 중량부, 메틸무수프탈산 80 중량부 및 메틸트리페닐포스포늄브롬화물 경화 촉진제 1중량부를 교반기에 넣고 3시간 이상 충분히 교반하여 액상의 경화성 조성물을 얻었다.100 parts by weight of commercially available bisphenol-A (BPA) epoxy (Kukdo Chemical, trade name YD-128), 80 parts by weight of methyl phthalic anhydride, and 1 part by weight of methyl triphenylphosphonium bromide curing accelerator are added to the stirrer and stirred for at least 3 hours. To obtain a liquid curable composition.
실시예 1Example 1 : 1차 기판의 제조: Fabrication of Primary Substrate
상기 합성예 1에서 합성한 래더형 실세스키옥산 화합물을 몰드에 담고 200 ℃에서 가압하여 열 용융 성형을 수행하고, 이를 냉각한 다음, 완전 경화를 위해 100 ℃에서 2시간, 140 ℃에서 1시간 및 180 ℃에서 1시간 동안 단계적으로 경화하여 최종적으로 200 ㎛ 두께의 플라스틱 투명 기판을 제조하였다.Ladder-type silsesquioxane compound synthesized in Synthesis Example 1 was put into a mold and pressurized at 200 ° C. to perform hot melt molding, and then cooled, followed by 2 hours at 100 ° C., 1 hour at 140 ° C., and complete curing. Curing stepwise at 180 ℃ for 1 hour to finally produce a 200 ㎛ thick plastic transparent substrate.
비교예 1Comparative Example 1 : 1차 기판의 제조: Fabrication of Primary Substrate
상기 비교 합성예 1에서 합성한 BPA 에폭시 경화물을 몰드에 담고 100 ℃에서 1시간, 120 ℃에서 1시간 및 150 ℃에서 1시간 동안 단계적으로 경화하여 최종적으로 200 ㎛ 두께의 플라스틱 기판을 제조하였다.The BPA epoxy cured product synthesized in Comparative Synthesis Example 1 was placed in a mold and cured stepwise at 100 ° C. for 1 hour, 120 ° C. for 1 hour, and 150 ° C. for 1 hour to finally prepare a plastic substrate having a thickness of 200 μm.
실시예 2Example 2 : 열경화성 조성물의 제조: Preparation of Thermosetting Composition
상기 합성예 1에서 합성한 래더형 실세스키옥산 화합물 20 중량부와 상기 합성예 2에서 합성한 케이지형 실세스키옥산 화합물 80 중량부, 메틸무수프탈산 40 중량부, 디클로로메탄 40 중량부 및 메틸트리페닐포스포늄브롬화물 경화 촉진제 1중량부를 교반기에 넣고 6시간 이상 충분히 교반하여 액상의 열경화성 조성물을 제조하였다.20 parts by weight of the ladder-type silsesquioxane compound synthesized in Synthesis Example 1 and 80 parts by weight of the cage-type silsesukioxane compound synthesized in Synthesis Example 2, 40 parts by weight of methyl phthalic anhydride, 40 parts by weight of dichloromethane and methyltriphenyl 1 part by weight of phosphonium bromide cure accelerator was added to a stirrer and stirred for at least 6 hours to prepare a liquid thermosetting composition.
실시예 3Example 3 : 열경화성 조성물의 제조: Preparation of Thermosetting Composition
상기 합성예 2에서 합성한 케이지형 실세스키옥산 화합물 100 중량부, 메틸무수프탈산 60 중량부 및 디클로로메탄 80 중량부를 교반기에 넣고 6시간 이상 충분히 교반하여 최종적으로 액상의 열경화성 조성물을 제조하였다.100 parts by weight of the cage-type silsesquioxane compound synthesized in Synthesis Example 2, 60 parts by weight of methyl phthalic anhydride and 80 parts by weight of dichloromethane were added to a stirrer, followed by stirring for at least 6 hours to finally prepare a liquid thermosetting composition.
실시예 4Example 4 : 2차 기판의 제조: Fabrication of Secondary Substrate
상기 실시예 1에서 제조한 1차 플라스틱 기판의 표면에 상기 실시예 2에서 제조한 열경화성 조성물을 10 ㎛ 두께로 바-코팅하고, 100 ℃ 오븐에서 반경화 한 후, 반대편에도 똑같이 10 ㎛ 두께로 바-코팅하였다. 이를 120 ℃에서 60분, 140 ℃에서 30분 및 180 ℃에서 30분 동안 단계적으로 경화한 후, 최종적으로 220 ㎛ 두께의 플라스틱 투명 기판을 제조하였다.Bar-coated the thermosetting composition prepared in Example 2 on the surface of the primary plastic substrate prepared in Example 1 to a thickness of 10 ㎛, semi-hardened in an oven at 100 ℃, the bar on the opposite side to the same 10 ㎛ thickness -Coated. After stepwise curing at 120 ° C. for 60 minutes, 140 ° C. for 30 minutes, and 180 ° C. for 30 minutes, a plastic transparent substrate having a thickness of 220 μm was finally prepared.
비교예 2Comparative Example 2 : 2차 기판의 제조: Fabrication of Secondary Substrate
상기 비교예 1에서 제조한 1차 플라스틱 기판의 표면에 상기 실시예 2에서 제조한 경화성 조성물을 코팅한 것을 제외하고는 상기 실시예 4와 동일한 방법으로 플라스틱 투명 기판을 제조하였다.A plastic transparent substrate was manufactured in the same manner as in Example 4, except that the curable composition prepared in Example 2 was coated on the surface of the first plastic substrate prepared in Comparative Example 1.
비교예 3Comparative Example 3 : 상용 플라스틱 기판Commercial plastic substrate
상용화된 제품과의 비교를 위해 두께 0.5 ㎜의 폴리메틸메타크릴레이트( PMMA, LG MMA) 기판을 준비하였다.A 0.5 mm thick polymethylmethacrylate (PMMA, LG MMA) substrate was prepared for comparison with commercially available products.
시험예Test Example
상기 실시예 1 및 4, 및 비교예 1 내지 3의 플라스틱 투명 기판의 가시광 투과율, 유리전이온도 및 내열안정성을 하기와 같이 수행하였으며, 그 결과를 하기 표 1에 기재하였다.The visible light transmittance, glass transition temperature and heat resistance of the plastic transparent substrates of Examples 1 and 4 and Comparative Examples 1 to 3 were performed as follows, and the results are shown in Table 1 below.
(1) 가시광 투과율(1) visible light transmittance
분광 광도계 Cary-4000(Agilent)을 이용하여 550 ㎚ 파장에서의 투과율을 측정하였다. The transmission at 550 nm was measured using a spectrophotometer Cary-4000 (Agilent).
(2) 유리전이온도(2) glass transition temperature
점탄성 분석기 SS6100(Seiko)을 이용하여 10 ㎜× 30 ㎜× 0.5 ㎜(W× H× D) 크기 시편의 유리전이 온도를 측정하였다.The glass transition temperature of 10 mm × 30 mm × 0.5 mm (W × H × D) size specimens was measured using a viscoelastic analyzer SS6100 (Seiko).
(2) 내열안정성(2) heat stability
최초 광 투과율을 측정 후 시편을 180 ℃ 분위기에 12시간 동안 두어 그에 대한 투과율 변화량을 측정하였다.   After the initial light transmittance was measured, the specimen was placed in a 180 ° C. atmosphere for 12 hours to measure a change in transmittance thereto.
표 1
광투과율(%) 유리전이온도(℃) 내열안정성(감소%)
실시예1 90 192 2
비교예1 84 152 24
실시예4 92 213 2
비교예2 85 167 23
비교예3 92 128 -
Table 1
Light transmittance (%) Glass transition temperature (℃) Heat stability (decrease%)
Example 1 90 192 2
Comparative Example 1 84 152 24
Example 4 92 213 2
Comparative Example 2 85 167 23
Comparative Example 3 92 128 -
상기 표 1에 나타난 바와 같이, 열가소성 래더형 실세스퀴옥산 화합물을 사용한 본 발명의 1차 기판은 비교예의 1차 기판에 비해 광투과율, 유리전이온도 및 내열안정성이 우수하였다.As shown in Table 1, the primary substrate of the present invention using the thermoplastic ladder-type silsesquioxane compound was superior in light transmittance, glass transition temperature and heat stability compared to the primary substrate of the comparative example.
또한, 상기 실시예 1의 1차 기판에 열가소성 래더형 실세스퀴옥산 및 열경화성 케이지형 실세스퀴옥산 화합물의 혼합물을 포함하는 조성물을 코팅하여 제조된 본 발명의 2차 기판은 비교예 2 및 3의 기판에 비해 광투과율, 유리전이온도 및 내열안정성이 우수하였다.In addition, the second substrate of the present invention prepared by coating a composition comprising a mixture of thermoplastic ladder-type silsesquioxane and thermosetting cage-type silsesquioxane compound on the primary substrate of Example 1 is Comparative Examples 2 and 3 The light transmittance, glass transition temperature and thermal stability were superior to those of the substrate.
본 발명에 따르면, 열 용융-압출이 가능한 열가소성 래더형 실세스퀴옥산을 단계별 저온 소성에 의해 순차적으로 경화시켜 고온에 의한 용융-압출 성형이 가능한 플라스틱 투명 기판(1차 플라스틱 투명 기판)을 제조할 수 있으며, 상기 기판의 표면에 별도로 제조된, 상기 열가소성 래더형 실세스퀴옥산 및 열경화성 케이지형 실세스퀴옥산을 포함하는 조성물을 이용하여 열경화성 실세스키옥산 코팅층을 형성하고 순차적으로 경화시킴으로써 우수한 열적, 광학적 특성을 갖는 다층 플라스틱 투명 기판(2차 플라스틱 투명 기판)을 제조할 수 있다.According to the present invention, a thermoplastic ladder-type silsesquioxane capable of hot melt extrusion may be sequentially cured by low-temperature firing stepwise to produce a plastic transparent substrate (primary plastic transparent substrate) capable of melt-extrusion molding at a high temperature. And a thermally curable silsesquioxane coating layer formed using a composition comprising the thermoplastic ladder silsesquioxane and the thermosetting cage silsesquioxane separately prepared on the surface of the substrate, followed by sequential curing. A multilayer plastic transparent substrate (secondary plastic transparent substrate) having optical properties can be produced.
본 발명에 따른 플라스틱 투명 기판은 통상의 디스플레이 패널 공정 온도에 대해 열변형이 적고 유연하며 광투과도가 좋아 액정 디스플레이, 유기 발광 디스플레이, 전자 페이퍼 등의 플렉시블 디스플레이용 기판이나, 태양전지 및 2차 전지용 기판 등에 다양하게 응용될 수 있다. 또한, 통상의 플라스틱 기판 제작 공정인 열 용융-압출 방식 및 용매 캐스터 방식 등에 모두 적용 가능하여 쉽고 빠르게 산업에 적용 및 접근할 수 있다. The plastic transparent substrate according to the present invention is a flexible display substrate such as a liquid crystal display, an organic light emitting display, an electronic paper, a substrate for a solar cell and a secondary battery, such as a liquid crystal display, an organic light emitting display, an electronic paper, and the like. It can be applied in various ways. In addition, it can be applied to both the hot melt-extrusion method and the solvent caster method, which is a conventional plastic substrate manufacturing process, and can be easily and quickly applied to the industry.

Claims (19)

  1. 하기 화학식 1로 표시되는 열가소성 래더형 실세스퀴옥산:Thermoplastic ladder type silsesquioxane represented by the following formula (1):
    [화학식 1][Formula 1]
    Figure PCTKR2014012790-appb-I000009
    Figure PCTKR2014012790-appb-I000009
    상기 식에서,Where
    R'1은 각각 독립적으로 탄소수가 1 ~ 5개인 알킬기를 나타내고;Each R ′ 1 independently represents an alkyl group having 1 to 5 carbon atoms;
    n은 1 내지 200의 정수이며;n is an integer from 1 to 200;
    R11은 하기 화학식 2의 유기 관능기, 하기 화학식 3의 유기 관능기 또는 하이드록시기이고:R 11 is an organic functional group represented by Formula 2, an organic functional group represented by Formula 3, or a hydroxyl group:
    [화학식 2][Formula 2]
    Figure PCTKR2014012790-appb-I000010
    Figure PCTKR2014012790-appb-I000010
    [화학식 3][Formula 3]
    Figure PCTKR2014012790-appb-I000011
    Figure PCTKR2014012790-appb-I000011
    상기 식에서, Where
    R1 및 R9는 탄소수가 1 내지 5개인 알킬기를 나타내고;R 1 and R 9 represent an alkyl group having 1 to 5 carbon atoms;
    R2 내지 R8은 각각 독립적으로 수소원자이거나 또는 탄소수 1 내지 8개의 알킬기를 나타내고;R 2 to R 8 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms;
    R10은 수소 또는 탄소수 1 내지 20개의 알킬기로 연결된 방향족, 에폭시기, 아크릴기 또는 사이올기이며;R 10 is hydrogen or an aromatic, epoxy, acryl or siol group linked to an alkyl group of 1 to 20 carbon atoms;
    Q는 탄소수 1 내지 6개의 알킬렌기 또는 알킬렌옥시기이고;Q is an alkylene group or alkyleneoxy group having 1 to 6 carbon atoms;
    n은 1 ~ 3의 정수이며;n is an integer from 1 to 3;
    m은 0 ~ 4의 정수이며;m is an integer from 0 to 4;
    p는 0 또는 1이다.p is 0 or 1.
  2. 제1항에 있어서,The method of claim 1,
    상기 화학식 1의 열가소성 래더형 실세스퀴옥산이 상기 화학식 2의 에폭시기 함유 알콕시 실란 화합물과 상기 화학식 3의 알콕시 실란 화합물을 염기촉매 하에서 가수분해 시킨 후, 연속적으로 축합 반응시켜 생성되는 것임을 특징으로 하는 열가소성 래더형 실세스퀴옥산.The thermoplastic ladder silsesquioxane of Chemical Formula 1 is produced by hydrolysis of the epoxy group-containing alkoxy silane compound of Chemical Formula 2 and the alkoxy silane compound of Chemical Formula 3 under a base catalyst, followed by continuous condensation reaction. Ladder type silsesquioxane.
  3. 제1항에 있어서,The method of claim 1,
    상기 화학식 2의 화합물의 몰수(a), 화학식 3의 화합물의 몰수(b) 및 하이드록시기의 몰수(c)의 관계가 0.3 < b/a < 0.6 및 0.001 < c/(a+b) < 0.3의 관계를 만족하는 것을 특징으로 하는 열가소성 래더형 실세스퀴옥산.The relationship between the number of moles (a) of the compound of Formula 2, the number of moles (b) of the compound of Formula 3 and the number of moles (c) of the hydroxyl group is 0.3 <b / a <0.6 and 0.001 <c / (a + b) < The thermoplastic ladder type silsesquioxane which satisfy | fills the relationship of 0.3.
  4. 제1항에 있어서,The method of claim 1,
    상기 화학식 1의 열가소성 래더형 실세스퀴옥산의 중량평균 분자량이 10,000 내지 200,000인 것을 특징으로 하는 열가소성 래더형 실세스퀴옥산.Thermoplastic ladder-type silsesquioxane, characterized in that the weight average molecular weight of the thermoplastic ladder-type silsesquioxane of the formula (1) is 10,000 to 200,000.
  5. 하기 화학식 4로 표시되는 열경화성 케이지형 실세스퀴옥산:Thermosetting cage type silsesquioxane represented by the following formula (4):
    [화학식 4][Formula 4]
    Figure PCTKR2014012790-appb-I000012
    Figure PCTKR2014012790-appb-I000012
    상기 식에서,Where
    R12는 각각 독립적으로 하기 화학식 2의 유기 관능기, 하기 화학식 3의 유기 관능기 또는 하이드록시기이고:Each R 12 is independently an organic functional group represented by Formula 2, an organic functional group represented by Formula 3, or a hydroxyl group:
    [화학식 2][Formula 2]
    Figure PCTKR2014012790-appb-I000013
    Figure PCTKR2014012790-appb-I000013
    [화학식 3][Formula 3]
    Figure PCTKR2014012790-appb-I000014
    Figure PCTKR2014012790-appb-I000014
    상기 식에서, Where
    R1 및 R9는 탄소수가 1 내지 5개인 알킬기를 나타내고;R 1 and R 9 represent an alkyl group having 1 to 5 carbon atoms;
    R2 내지 R8은 각각 독립적으로 수소원자 이거나 또는 탄소수 1 내지 8개의 알킬기를 나타내고;R 2 to R 8 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms;
    R10은 수소 또는 탄소수 1 내지 20개의 알킬기로 연결된 방향족, 에폭시기, 아크릴기 또는 사이올기이며;R 10 is hydrogen or an aromatic, epoxy, acryl or siol group linked to an alkyl group of 1 to 20 carbon atoms;
    Q는 탄소수 1 내지 6개의 알킬렌기 또는 알킬렌옥시기이고;Q is an alkylene group or alkyleneoxy group having 1 to 6 carbon atoms;
    n은 1 ~ 3의 정수이며;n is an integer from 1 to 3;
    m은 0 ~ 4의 정수이며;m is an integer from 0 to 4;
    p는 0 또는 1이다.p is 0 or 1.
  6. 제5항에 있어서,The method of claim 5,
    상기 화학식 4의 열경화성 케이지형 실세스퀴옥산이 상기 화학식 2의 에폭시기 함유 알콕시 실란 화합물과 상기 화학식 3의 알콕시 실란 화합물을 염기촉매 하에서 가수분해 시킨 후, 연속적으로 축합 반응시켜 생성되는 것임을 특징으로 하는 열경화성 케이지형 실세스퀴옥산.The thermosetting cage-type silsesquioxane of the formula (4) is a thermosetting characterized in that it is produced by hydrolysis of the epoxy group-containing alkoxy silane compound of the formula (2) and the alkoxy silane compound of the formula (3) under a base catalyst, and subsequently condensation reaction Cage silsesquioxane.
  7. 제5항에 있어서,The method of claim 5,
    상기 화학식 2의 화합물의 몰수(d), 화학식 3의 화합물의 몰수(e) 및 하이드록시기의 몰수(f)의 관계가 0.5 < e/d < 1.5 및 0.001 < f/(d+e) < 0.01의 관계를 만족하는 것을 특징으로 하는 열경화성 케이지형 실세스퀴옥산.The relationship between the number of moles (d) of the compound of formula (2), the number of moles (e) of the compound of formula (3) and the number of moles (f) of hydroxy group is 0.5 <e / d <1.5 and 0.001 <f / (d + e) < A thermosetting cage type silsesquioxane, which satisfies a relationship of 0.01.
  8. 제5항에 있어서,The method of claim 5,
    상기 화학식 1의 열경화성 케이지형 실세스퀴옥산의 중량평균 분자량이 1,000 내지 10,000인 것을 특징으로 하는 열경화성 케이지형 실세스퀴옥산.Thermosetting cage-type silsesquioxane, characterized in that the weight average molecular weight of the thermosetting cage-type silsesquioxane of Formula 1 is 1,000 to 10,000.
  9. 상기 화학식 1의 열가소성 래더형 실세스퀴옥산 및 상기 화학식 4의 열경화성 케이지형 실세스퀴옥산을 포함하며, 화학식 1의 화합물의 몰수(x)와 화학식 4의 화합물의 몰수(y)가 0.1 < x/y <1.0의 관계를 만족하는 것을 특징으로 하는 열경화성 조성물.The thermoplastic ladder silsesquioxane of Chemical Formula 1 and the thermosetting cage silsesquioxane of Chemical Formula 4, wherein the number of moles (x) of the compound of Formula 1 and the number of moles (y) of the compound of Formula 4 are 0.1 <x A thermosetting composition which satisfies the relationship of / y <1.0.
  10. 제9항에 있어서,The method of claim 9,
    상기 열경화성 조성물이 경화제, 경화 촉진제 또는 용매를 추가로 포함하는 것을 특징으로 하는 열경화성 조성물.The thermosetting composition further comprises a curing agent, a curing accelerator or a solvent.
  11. 제1항에 따른 열가소성 래더형 실세스퀴옥산을 열 용융-압출하여 성형하고 경화시키는 단계를 포함하는 플라스틱 투명 기판의 제조방법.A method for producing a plastic transparent substrate, comprising the steps of molding and curing the thermoplastic ladder-type silsesquioxane according to claim 1 by hot melt-extrusion.
  12. 제11항에 있어서,The method of claim 11,
    상기 열경화는 40 내지 200 ℃의 온도에서 2단계 이상의 다단계로 순차적으로 수행되는 것을 특징으로 하는 플라스틱 투명 기판의 제조방법.The thermosetting is a method of manufacturing a plastic transparent substrate, characterized in that performed sequentially in two or more multi-step at a temperature of 40 to 200 ℃.
  13. 제11항에 따른 방법으로 제조된 플라스틱 투명 기판.A plastic transparent substrate produced by the method according to claim 11.
  14. 제11항에 있어서,The method of claim 11,
    상기 기판의 두께는 0.1 mm 내지 2.0 mm인 것을 특징으로 하는 플라스틱 투명 기판.The thickness of the substrate is a plastic transparent substrate, characterized in that 0.1 mm to 2.0 mm.
  15. 1) 제1항에 따른 열가소성 래더형 실세스퀴옥산을 열 용융-압출하여 성형하여 플라스틱 투명 기판(1차 플라스틱 투명 기판)을 제조하는 단계; 및1) thermally extruding and molding the thermoplastic ladder-type silsesquioxane according to claim 1 to produce a plastic transparent substrate (primary plastic transparent substrate); And
    2) 상기 플라스틱 투명 기판의 표면에 제9항에 따른 열경화성 조성물을 코팅하여 코팅층을 제조하고 열경화시키는 단계2) preparing a coating layer and thermosetting by coating the thermosetting composition according to claim 9 on the surface of the plastic transparent substrate
    를 포함하는 코팅층을 포함하는 플라스틱 투명 기판(2차 플라스틱 투명 기판)의 제조방법.Method of manufacturing a plastic transparent substrate (secondary plastic transparent substrate) comprising a coating layer comprising a.
  16. 제15항에 있어서, 상기 1차 플라스틱 투명 기판의 두께는 0.1 mm 내지 2.0 mm이고, 상기 코팅층의 두께는 5 내지 30 ㎛인 것을 특징으로 하는 코팅층을 포함하는 플라스틱 투명 기판(2차 플라스틱 투명 기판)의 제조방법.The method of claim 15, wherein the thickness of the primary plastic transparent substrate is 0.1 mm to 2.0 mm, the thickness of the coating layer is a plastic transparent substrate including a coating layer, characterized in that 5 to 30 ㎛ (secondary plastic transparent substrate) Manufacturing method.
  17. 제15항에 있어서,The method of claim 15,
    상기 열경화는 40 내지 200 ℃의 온도에서 2단계 이상의 다단계로 순차적으로 수행되는 것을 특징으로 하는 코팅층을 포함하는 플라스틱 투명 기판(2차 플라스틱 투명 기판)의 제조방법.The thermosetting is a method of manufacturing a plastic transparent substrate (secondary plastic transparent substrate) comprising a coating layer, characterized in that is performed sequentially in two or more multi-stage at a temperature of 40 to 200 ℃.
  18. 제15항에 따른 방법으로 제조된 코팅층을 포함하는 플라스틱 투명 기판(2차 플라스틱 투명 기판).Plastic transparent substrate (secondary plastic transparent substrate) comprising a coating layer prepared by the method according to claim 15.
  19. 제13항 또는 제18항 기재의 플라스틱 투명 기판을 포함하는 전자소자.An electronic device comprising the plastic transparent substrate according to claim 13 or 18.
PCT/KR2014/012790 2013-12-26 2014-12-24 Silsesquioxane having hot melt extrusion forming capability, highly transparent and highly heat-resistant plastic transparent substrate using same, and method of manufacturing same WO2015099443A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016542763A JP6659550B2 (en) 2013-12-26 2014-12-24 Silsesquioxane capable of hot-melt-extrusion molding, high-transparency and high-heat-resistant plastic transparent substrate using the same, and method for producing the same
CN201480071015.5A CN105873983B (en) 2013-12-26 2014-12-24 It being capable of the molding silsesquioxane of hot-melt extrusion technology, high transparency and high heat resistance plastic, transparent substrate and its manufacturing method using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130163607A KR102170818B1 (en) 2013-12-26 2013-12-26 Sisesquioxane which can be molded by hot melt-extrusion, highly transparent and highly heat resistant plastic transparent substrate, and method for manufacturing thereof
KR10-2013-0163607 2013-12-26

Publications (1)

Publication Number Publication Date
WO2015099443A1 true WO2015099443A1 (en) 2015-07-02

Family

ID=53479208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012790 WO2015099443A1 (en) 2013-12-26 2014-12-24 Silsesquioxane having hot melt extrusion forming capability, highly transparent and highly heat-resistant plastic transparent substrate using same, and method of manufacturing same

Country Status (4)

Country Link
JP (1) JP6659550B2 (en)
KR (1) KR102170818B1 (en)
CN (1) CN105873983B (en)
WO (1) WO2015099443A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108473682A (en) * 2015-12-31 2018-08-31 Ltc有限公司 Flexible base board polysilsesquioxane resins composition
CN110650987A (en) * 2017-05-09 2020-01-03 株式会社大赛璐 Composition for forming insulating film, and semiconductor device provided with insulating film

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170024559A (en) * 2015-08-25 2017-03-07 주식회사 동진쎄미켐 Laminate and producing method for it
KR102012543B1 (en) * 2016-05-11 2019-08-20 삼성에스디아이 주식회사 Window film and display apparatus comprising the same
CN107057517B (en) * 2016-12-22 2019-11-05 广东一通科技股份有限公司 A kind of silicon nitrogen phosphorus cooperative flame retardant aqueous epoxy resins and preparation method thereof of silsesquioxane crosslinking
WO2018124769A1 (en) * 2016-12-30 2018-07-05 주식회사 동진쎄미켐 Coating composition and film manufactured therefrom
KR102158820B1 (en) * 2019-03-18 2020-09-22 인하대학교 산학협력단 A composition for producing a transparent hybrid film, transparent hybrid film and its manufacturing method
CN116082639A (en) * 2022-12-19 2023-05-09 广州一新科技有限公司 Trapezoidal polysilsesquioxane containing two active functional groups and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100037123A (en) * 2007-08-02 2010-04-08 닛뽕소다 가부시키가이샤 Composition containing silsesquioxane and silsesquioxane-containing hydroxyalkyl cellulose resin composition
KR101141110B1 (en) * 2003-03-12 2012-05-02 제이엔씨 주식회사 Polymer obtained with silsesquioxane derivative
JP2012214564A (en) * 2011-03-31 2012-11-08 Nippon Steel Chem Co Ltd Basket type silsesquioxane resin, and method for producing the same
KR20130016069A (en) * 2011-08-03 2013-02-14 주식회사 동진쎄미켐 Photocurable organic-inorganic hybrid resin composition
KR20130089596A (en) * 2012-02-02 2013-08-12 아라까와 가가꾸 고교 가부시끼가이샤 Epoxy group-containing silsesquioxane-modified epoxy resin, curable resin composition, cured product thereof, and coating agent

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101067011B1 (en) * 2003-03-27 2011-09-22 신닛테츠가가쿠 가부시키가이샤 Silicone resin composition and moldings thereof
WO2008065862A1 (en) * 2006-12-01 2008-06-05 Konica Minolta Opto, Inc. Plastic optical device material, plastic optical device made of the same, and optical pickup device
JP2012116989A (en) * 2010-12-02 2012-06-21 Nagase Chemtex Corp Resin lens and optical resin composition
WO2012133079A1 (en) * 2011-03-31 2012-10-04 新日鐵化学株式会社 Basket type silsesquioxane resin, basket type silsesquioxane copolymer and method for producing same
WO2013019040A2 (en) * 2011-08-03 2013-02-07 주식회사 동진쎄미켐 Photo-curable organic-inorganic hybrid resin composition
JP2013091703A (en) * 2011-10-25 2013-05-16 Nippon Steel & Sumikin Chemical Co Ltd Resin composition, resin molded body using the same, and method for producing resin molded body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101141110B1 (en) * 2003-03-12 2012-05-02 제이엔씨 주식회사 Polymer obtained with silsesquioxane derivative
KR20100037123A (en) * 2007-08-02 2010-04-08 닛뽕소다 가부시키가이샤 Composition containing silsesquioxane and silsesquioxane-containing hydroxyalkyl cellulose resin composition
JP2012214564A (en) * 2011-03-31 2012-11-08 Nippon Steel Chem Co Ltd Basket type silsesquioxane resin, and method for producing the same
KR20130016069A (en) * 2011-08-03 2013-02-14 주식회사 동진쎄미켐 Photocurable organic-inorganic hybrid resin composition
KR20130089596A (en) * 2012-02-02 2013-08-12 아라까와 가가꾸 고교 가부시끼가이샤 Epoxy group-containing silsesquioxane-modified epoxy resin, curable resin composition, cured product thereof, and coating agent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108473682A (en) * 2015-12-31 2018-08-31 Ltc有限公司 Flexible base board polysilsesquioxane resins composition
US10934455B2 (en) 2015-12-31 2021-03-02 Ltc Co., Ltd. Polysilsesquioxane resin composition for flexible substrate
CN110650987A (en) * 2017-05-09 2020-01-03 株式会社大赛璐 Composition for forming insulating film, and semiconductor device provided with insulating film

Also Published As

Publication number Publication date
CN105873983A (en) 2016-08-17
KR20150075549A (en) 2015-07-06
KR102170818B1 (en) 2020-10-28
CN105873983B (en) 2019-08-16
JP6659550B2 (en) 2020-03-04
JP2017512215A (en) 2017-05-18

Similar Documents

Publication Publication Date Title
WO2015099443A1 (en) Silsesquioxane having hot melt extrusion forming capability, highly transparent and highly heat-resistant plastic transparent substrate using same, and method of manufacturing same
WO2018056573A1 (en) Polyamide precursor solution and method for producing same
WO2017209413A1 (en) High-strength transparent polyamidimide and method for preparing same
WO2014163352A1 (en) Polyimide cover substrate
WO2017111289A1 (en) Polyamic acid composition to which alicyclic monomers are applied and transparent polyimide film using same
WO2017116171A1 (en) Polysilsesquioxane resin composition for flexible substrate
EP2931795A1 (en) Transparent polyimide substrate and method for fabricating the same
WO2015002427A1 (en) Polyorganosiloxane compound, method for preparing same, and copolycarbonate resin comprising same
WO2017204462A1 (en) Polyamide-imide, method for preparing same, and polyamide-imide film using same
WO2014133287A1 (en) Resin composition for encapsulating optical element
TWI785224B (en) Polyamic acid and its manufacturing method, polyamic acid solution, polyimide, polyimide film, laminate and its manufacturing method, flexible device and its manufacturing method
WO2017039159A1 (en) Low temperature curing composition, cured film formed therefrom, and electronic device having cured film
WO2016140559A1 (en) Composition for polyimide film for flexible substrate of optoelectronic device
WO2020060148A1 (en) Polysiloxane-polycarbonate copolymer having high impact resistance, flame resistance and transparency, and preparation method therefor
WO2019221364A1 (en) Polyimide film for flexible display device substrate having excellent heat dissipation characteristics
WO2019045376A1 (en) Polyimide film for flexible display device substrate
WO2020159174A1 (en) Polyimide-based polymer film, and substrate for display device and optical device, each using same
WO2017061778A1 (en) Composition for increasing adhesion of radiation curable interfaces, and method for modifying surface of substrate by using same
WO2014163376A1 (en) Coating composition comprising bis-type silane compound
WO2018097496A2 (en) Compound
WO2014104655A1 (en) Composite sheet, and display device including same
WO2020145674A1 (en) Poly(amide-imide) block copolymer, and composition and polymer film each comprising same
WO2022055235A1 (en) Polyimide-based polymer film, and substrate for display device and optical device, each using same
WO2010140804A2 (en) Norbornene resins for encapsulating optical device
WO2019160252A1 (en) Polyimide film having improved thermal conductivity and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874197

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016542763

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14874197

Country of ref document: EP

Kind code of ref document: A1