WO2008065862A1 - Plastic optical device material, plastic optical device made of the same, and optical pickup device - Google Patents

Plastic optical device material, plastic optical device made of the same, and optical pickup device Download PDF

Info

Publication number
WO2008065862A1
WO2008065862A1 PCT/JP2007/071629 JP2007071629W WO2008065862A1 WO 2008065862 A1 WO2008065862 A1 WO 2008065862A1 JP 2007071629 W JP2007071629 W JP 2007071629W WO 2008065862 A1 WO2008065862 A1 WO 2008065862A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
group
light
plastic optical
optical
Prior art date
Application number
PCT/JP2007/071629
Other languages
French (fr)
Japanese (ja)
Inventor
Yasumitsu Fujino
Hiroko Omori
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Publication of WO2008065862A1 publication Critical patent/WO2008065862A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13922Means for controlling the beam wavefront, e.g. for correction of aberration passive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD

Definitions

  • Plastic optical element material plastic optical element using the same, and optical pickup device
  • the present invention relates to a plastic optical element material suitably used for a plastic optical element and the like, a plastic optical element using the same, and an optical pickup device to which the plastic optical element is applied.
  • optical pickups are used for recording devices such as players, recorders, and drives that read and record information on MO, CD, DVD, and other optical information recording media (hereinafter also referred to as media).
  • a device is provided.
  • the optical pickup device includes an optical element unit that irradiates a medium with light having a predetermined wavelength emitted from a light source, and receives the reflected light with a light receiving element.
  • the optical element unit receives the light from the reflection layer of the medium.
  • the optical element of the optical pickup device is preferably made of plastic as a material in that it can be manufactured at low cost by means such as injection molding.
  • plastics to which optical elements can be applied a copolymer of cyclic olefin and ⁇ -olefin is known (for example, see Patent Document 1).
  • the optical pickup device has the shape of both media and the wavelength of light to be applied. It is necessary to make the configuration corresponding to the difference. In this case, it is preferable from the viewpoint of cost and pickup characteristics that the optical element unit is common to all the media.
  • silicone resins are known as resins that are said to have high transparency and optically excellent properties and are also excellent in durability to light, and have, for example, oxygen permeability. Rubber-like polydimethylsiloxane is applied to special applications such as contact lenses and variable focus lenses, and these are difficult to apply to general optical elements such as lenses and prisms that require mechanical strength. It was.
  • an optical element using a silicone-based optical resin having a ladder-type silsesquioxane skeleton has been proposed (for example, see Patent Document 2). For example, the optical element using light at around 400 nm is used. The heat resistance is still inadequate to be applied to, and the optical durability of light is high! /, And plastic optical element materials satisfying the heat resistance are still available! .
  • Patent Document 1 JP 2002-105131 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-354547
  • An object of the present invention is to provide a plastic optical element material capable of improving light stability, excellent transparency, and maintaining its characteristics over a long period of time, and a plastic optical element using the same (hereinafter referred to as a plastic optical element) It is also simply referred to as an optical element), and to provide an optical pickup device having good pickup characteristics using the same.
  • At least one kind of caged silsesquioxane having a reactive group, at least one kind of inorganic fine particles having a reactive group, and at least a polyfunctional compound having two or more reactive groups A plastic optical element material, which is a resin composition comprising a polymer obtained by copolymerizing a mixture of one kind.
  • 2. consists structural units said cage silsesquioxane O hexane is represented by T n structure (the following general formula (1)) and D m structure (following one general formula (2)), the following general these 2.
  • n represents an integer of 1 to 3
  • m represents an integer of 1 or 2.
  • R 1 and R 2 represent a hydrogen atom and a substituent, and at least one of the substituents represents a reactive group.
  • T represents the number of siloxane bonds for Si is 3
  • D represents the number of siloxane bonds for Si is 2.
  • 1 is an integer of 1, 2 and o is 1, 2 is an integer, p is an integer from 4 to 20, q, r is an integer from 0 to 20, and p + q + 6.
  • the inorganic fine particles having a reactive group are inorganic oxides, and have a reactive group selected from a bur group, a (meth) acryloyl group, an epoxy group, an oxetanyl group, and a mercapto group. 4.
  • a plastic optical characterized in that the plastic optical element material according to any one of the above !! to 4 is used, and a predetermined fine structure is provided on at least one optical surface. element.
  • the light transmittance at a wavelength of 400 nm of a molded article having a thickness of 3 mm formed using the plastic optical element material according to any one of the above 1 to 4 is 85% or more.
  • Plastic optical element
  • An optical pick-up device that performs at least information reproduction and / or recording on an optical information recording medium, the light source emitting light, and the light emitted from the light source Information
  • An optical element unit that performs at least one of irradiation of the recording medium and condensing of light reflected by the optical information recording medium, and the optical element unit according to any one of 5 to 7 above.
  • An optical pickup device comprising a plastic optical element.
  • a plastic optical element material capable of improving light stability, excellent transparency, and maintaining its characteristics over a long period of time, a plastic optical element using the same, and the same We were able to provide an optical pickup device with good pickup characteristics using
  • FIG. 1 is a side view schematically showing an optical pickup device 1 according to the present invention.
  • FIG. 2 is a sectional side view of the objective lens 10 according to the present invention.
  • FIG. 3 is a sectional side view of an objective lens 10a according to the present invention.
  • FIG. 4 is a sectional side view of an objective lens 10b according to the present invention.
  • FIG. 5 is a sectional side view of an objective lens 10c according to the present invention.
  • FIG. 6 is a sectional side view of an objective lens 10d according to the present invention.
  • FIG. 7 is a sectional side view of a hologram optical element 10e and an objective lens 10f according to the present invention. Explanation of symbols
  • the plastic optical element material applied to the optical element in the invention according to any one of claims [4] to [4] includes a cage-like silsesquioxane having a reactive group, an inorganic fine particle having a reactive group, and It is a resin composition comprising a polymer obtained by copolymerizing a mixture composed of a polyfunctional compound.
  • the cage-like silsesquioxane (polymer) is highly transparent and its structure is rigid, its linear expansion coefficient is large and heat resistant compared to other thermoplastic optical resins such as polycarbonate. It was inferior.
  • an optical element manufactured using a polymer obtained by copolymerizing a mixture of a caged silsesquioxane having a reactive group, inorganic fine particles having a reactive group, and a polyfunctional compound Has high light transmittance, and has a high stabilizing effect against light irradiation. For example, even when continuously irradiated with light having a short wavelength of around 400 nm, white turbidity and fluctuations in refractive index can be suppressed.
  • the deformation of the optical surface in a high temperature environment around 85 ° C. can be suppressed for a long time.
  • the optical stability and thermal stability of the optical element can be improved, and an element capable of maintaining the characteristics for a long time can be manufactured.
  • At least one optical surface is provided with a predetermined fine structure, and this optical element is any one of claims 1-4, Since it is molded using the described plastic optical element material, it has high shape stability against environmental fluctuations such as light and heat, and appropriately suppresses deformation of the microstructure. That's the power S.
  • a molded body having a thickness of 3 mm molded using the plastic optical element material of the present invention has high shape stability and has a high energy wavelength of 4 OOnm. Even if light in the vicinity is transmitted, it is possible to suppress the occurrence of white turbidity, refractive index fluctuation or deformation in the molded body.
  • the light transmittance near the wavelength of 400 nm can be increased to 85% or more. Therefore, for example, it can be suitably used as an optical element for an optical information recording medium having a high information density such as a Blu-ray Disc.
  • the optical element has high shape stability. There is no such thing as degrading characteristics. That is, even when high energy is given to the optical element by light collection, the high shape stability of the optical element makes it possible to suppress deformation of the optical element over a long period of time. This is the power to prevent the deterioration of the optical characteristics.
  • a mixture of a caged silsesquioxane having a reactive group, inorganic fine particles having a reactive group, and a polyfunctional compound is copolymerized. Since it is an optical element manufactured using the plastic optical element material of the present invention which is a resin composition containing the obtained polymer, the stabilization effect against light irradiation is high. For example, irradiation with light having a short wavelength around 400 nm Even with continuous exposure, the cloudiness and refractive index fluctuation are suppressed.
  • the deformation of the optical surface in a high temperature environment of around 85 ° C can be suppressed for a long time. That is, the light stability of the optical element can be improved, and the characteristics can be maintained for a long time. Therefore, for example, information can be read from and written to optical information recording media having a high information density, such as Blu-ray Discs, with good pick-up characteristics over a long period of time, making it a reliable optical pickup device. High quality! / You can get things S.
  • the wavelength of the light emitted from the light source is 390 to 420 nm. That is, for example, even when light in a range of 390 to 420 nm corresponding to an optical information recording medium having a high information density such as a Blu-ray Disc is transmitted, the resin applied to the optical element in the present invention.
  • the composition comprises a caged silsesquioxa compound having a reactive group.
  • the plastic optical element material applied to the plastic optical element of the present invention comprises a mixture comprising a cage-like silsesquioxane having a reactive group, inorganic fine particles having a reactive group, and a polyfunctional compound. It is a resin composition containing a polymer obtained by copolymerization.
  • optical materials made of plastic have a larger coefficient of thermal expansion than inorganic materials such as glass and ceramics, so that the change in the shape of the element is a major problem in applications used in high-temperature environments.
  • the present inventors have used the above-described plastic optical element material of the present invention, so that, for example, even in a high temperature environment of around 85 ° C, It was found that the deformation of the surface can be suppressed for a long time.
  • the heat of optical elements that have a high stabilization effect against light irradiation, such as maintaining transparency and suppressing white turbidity and fluctuations in refractive index even when continuously irradiated with light having a short wavelength of around 400 nm. It has been found that it is possible to improve the stability and light stability and to manufacture an element capable of maintaining the characteristics for a long time.
  • silsesquioxane is also called T-resin, and ordinary silica is represented by the formula of (SiO 2), while synesquioxane (also called polysilsesquioxane) is a compound represented by (RSiO 2). so
  • the cage silsesquioxane is specifically represented by a chemical formula of T 3 : (RSiO 2).
  • T 3 (RSiO) Type represented by chemical formula ((3) — 2), T 3 : (RSi
  • n 3 in the general formula (1), that is, they are made only from the T 3 structure.
  • T 2 structure 2 are two and, for ⁇ 3 ⁇ 3 ⁇ 4 2, wherein the T 3 structure 6,
  • T 3 D 2 consists of T 3 structural forces and 2 D 2 structures.
  • cage silsesquioxanes may be used in combination of two or more kinds in the resin composition.
  • Examples of the inorganic fine particles used in the present invention include inorganic oxide fine particles, Specifically, for example, titanium oxide, zinc oxide, aluminum oxide, zirconium oxide, hafnium oxide, niobium oxide, tantalum oxide, magnesium oxide, calcium oxide, strontium oxide, barium oxide, yttrium oxide, lanthanum oxide, cerium oxide, Phosphate formed in combination with oxides such as indium oxide, tin oxide, lead oxide, and double oxides such as lithium niobate, potassium niobate, and lithium tantalate , Stone) It is possible to mention nitrates and the like.
  • inorganic oxide fine particles Specifically, for example, titanium oxide, zinc oxide, aluminum oxide, zirconium oxide, hafnium oxide, niobium oxide, tantalum oxide, magnesium oxide, calcium oxide, strontium oxide, barium oxide, yttrium oxide, lanthanum oxide, cerium oxide, Phosphate formed in combination with oxides such as
  • the average particle diameter is not less than Inm in order to ensure transparency. 50 nm or less is preferable. More preferably, it is Inm or more and 30 nm or less, or more preferably Inm or more and 20 nm or less, and most preferably Inm or more and l Onm or less. If the average particle size is less than S Inm, it is difficult to disperse the inorganic fine particles at the time of manufacture, so that the desired performance may not be obtained.
  • the resulting plastic optical element material Transparency may decrease due to turbidity and the light transmittance may be less than 70%.
  • the average particle diameter here refers to the diameter when converted to a sphere having the same volume as the particle.
  • the shape of the inorganic fine particles is not particularly limited, but spherical fine particles are preferably used. Further, the particle size distribution is not particularly limited, but those having a relatively narrow distribution are preferably used rather than those having a wide distribution.
  • the inorganic fine particles used in the present invention are prepared by mixing a silane coupling agent having a reactive group such as a bur group, a (meth) atalyloyl group, an epoxy group, an oxetanyl group, or a mercapto group with an inorganic fine particle. It is an inorganic fine particle in which a reactive group is introduced by hydrolyzing and bonding the both, and this is reacted and cured in a mixed composition of a caged silsesquioxane and a polyfunctional compound in a resin. It is possible to secure the transparency of the cured resin by dispersing it evenly.
  • silane coupling agent examples include butyltrioxysilane, vinylenotrichlorosilane, butyltrimethoxysilane, butyltriethoxysilane, and ⁇ -mercapto. Silane etc. are mentioned.
  • These inorganic fine particles may be used in combination of two or more kinds in the resin composition.
  • Examples of the polyfunctional compound used in the present invention include a compound having two or more reactive groups such as a bur group, a (meth) atalyloyl group, an epoxy group, an oxetanyl group, a mercapto group, and the like. It reacts with oxan and inorganic fine particles having a reactive group to form a crosslinked structure in the resin.
  • a polyfunctional (meth) atalylate there are two or more (meth) atalyloyl groups, a ethylene glycolonoresimethacrylate, an ethyleneglyconoresimethacrylate, a tetraethylene glycol diatalate, a diethyleneglycolidialate, Trimethylol propanto tritalylate, trimethylol propane trimetatalylate, pentaerythritol tetraatalylate, pentaerythritol tetrametatalylate, etc.
  • These polyfunctional compounds may be used in combination of two or more kinds in the resin composition.
  • Stabilizer In the plastic optical element material of the present invention, one or more stabilizers selected from hindered amine stabilizers, phenol stabilizers, phosphorus stabilizers, and thio stabilizers may be additionally added.
  • these stabilizers and adding them to the plastic optical element material for example, it is possible to enhance optical characteristics fluctuations such as white turbidity and refractive index fluctuations when continuously irradiated with light of a short wavelength such as 400 nm. Can be suppressed.
  • phenol-based stabilizer conventionally known ones can be used.
  • 2-tert-butylinole 6- (3-tert-butyl-2-hydroxy-5-methylbenzyl) -4-methylenophenyl phenyl acrylate
  • 2,4 di 1-tamyl 6- (1- (3,5 di-tert-amyl 2-hydroxyphenyl) ethyl) phenyl acrylate, etc.
  • JP-A 63-179953 is disclosed in JP 1-168643
  • Atarylate compounds Octadecyl-3- (3,5 di-tert-butyl-4-hydroxyphenol) propionate, 2,2'-methylenebis (
  • Preferred hindered amine stabilizers include bis (2, 2, 6, 6 tetramethyl-4-piperidyl) sebacate, bis (2, 2, 6, 6 tetramethyl-4-piperidyl) succinate, bis (1 , 2, 2, 6, 6 Pentamethyl-4-piperidyl) sebacate, bis (N oxytoxyl 2, 2, 6, 6 tetramethyl-4-piperidyl) sebacate, bis (N benzyloxy 2, 2, 6, 6 tetramethyl-4-piperidyl) sebacate, Bis (N-cyclohexyloxy 2, 2, 6, 6-tetramethyl-4-piperidyl) sebacate, bis (1, 2, 2, 6, 6 Pentamethyl 4-piperidinole) 2— (3,5 di-t-butyl 4-hydroxybenzenole) 2 Butyl malonate, bis (1-acroyl-2,2,6,6 Tetramethyl-4-piperidinole) 2,2 Bis (3,5 Di-tert-butyl-4-hydroxybenzyl
  • the preferred phosphorus stabilizer is not particularly limited as long as it is usually used in the general resin industry.
  • triphenyl phosphite diphenyl isodecyl phosphite, phenyl diisodecyl phosphite.
  • diphosphite compounds such as Among these, tris (noyulphenyl) phosphite, tris (dinoylphenyl) phosphite, tris (2,4 di-tert-butylphenyl) phosphite and the like, which are preferable for monophosphite compounds, are particularly preferable.
  • preferable thio stabilizers include, for example, dilauryl 3,3 thiodipropionate, dimyristyl 3,3'-thiodipropionate, distearyl 3,3-thiodipropionate, lauryl stearyl 3,3-thio Examples include dipropionate, pentaerythritol-tetrakis (/ 3 laurylthio monopropionate), 3,9 bis (2 dodecylthioethyl) 2,4,8,10-tetraoxaspiro [5,5] undecane.
  • the amount of these stabilizers is appropriately selected within a range not to impair the purpose of the present invention, but is usually 0.0; 100 to 2 parts by mass, preferably 0 to 100 parts by mass of the resin composition. 01 ⁇ ;! Mass part. [0057] (Surfactant)
  • a surfactant is a compound having a hydrophilic group and a hydrophobic group in the same molecule.
  • the surfactant prevents white turbidity of the plastic optical element material by adjusting the rate of moisture adhesion to the resin surface and the evaporation rate of moisture from the surface.
  • hydrophilic group of the surfactant examples include a hydroxyalkyl group having 1 or more carbon atoms, a hydroxyl group, a carbonyl group, an ester group, an amino group, an amide group, an ammonium salt, a phenol, and a sulfonate. , Phosphates, polyalkylene glycol groups and the like.
  • the amino group may be any of primary, secondary, and tertiary.
  • hydrophobic group of the surfactant include an alkyl group having 6 or more carbon atoms, a silyl group having an alkyl group having 6 or more carbon atoms, and a fluoroalkyl group having 6 or more carbon atoms.
  • the alkyl group having 6 or more carbon atoms may have an aromatic ring as a substituent.
  • Specific examples of the alkyl group include hexyl, heptyl, octyl, noninole, decyl, undecenyl, dodecyl, tridecinole, tetradecyl, myristyl, stearyl, lauryl, normityl, cyclohexyl and the like.
  • the aromatic ring include a phenyl group. This surfactant may have two or more groups as long as it has at least one hydrophilic group and one hydrophobic group as described above in the same molecule.
  • surfactants include myristyl diethanolamine, 2-hydroxyethyl-2-hydroxydodecylamine, 2-hydroxyethyl-2-hydroxytridecylamine, 2 —Hydroxyethyl-2-hydroxytetradecylamine, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, di-2-hydroxyethyl-2-hydroxydodecylamine, alkyl (carbon Examples thereof include benzyl dimethyl ammonium chloride, ethylene bisalkyl (carbon number 8 to 18) amide, stearyl diethanolamide, lauryl diethanolamide, myristyl jetanol amide, palmityl diethanolamide, and the like. Of these, amine compounds or amide compounds having a hydroxyalkyl group are preferably used. In the present invention, two or more of these compounds may be used in combination.
  • the surfactant is added in an amount of 0.01 to 10 parts by mass with respect to 100 parts by mass of the plastic optical element material.
  • the addition amount of the surfactant is preferably S to be 0.05 to 5 parts by mass with respect to 100 parts by mass of the resin composition S, more preferably 0.3 to 3 parts by mass.
  • the resin composition used in the present invention can be cured by any of ultraviolet and electron beam irradiation, heat treatment, or the like, and the cage silsesquioxane, the inorganic fine particles, and the multifunctional compound are mixed. It is obtained by mixing in an uncured state, and further preparing and curing a resin composition to which additives such as stabilizers and surfactants are added as necessary.
  • the addition amount of the cage silsesquioxane is preferably 10 to 90 parts by mass, more preferably 20 to 70 parts by mass with respect to 100 parts by mass of the resin composition.
  • the addition amount of the inorganic fine particles is preferably 10 to 50 parts by mass, more preferably 5 to 70 parts by mass with respect to 100 parts by mass of the resin composition.
  • the addition amount of the polyfunctional compound is preferably 5 to 80 parts by mass, more preferably 10 to 60 parts by mass with respect to 100 parts by mass of the resin composition.
  • each component is blended in a predetermined amount. It is possible to obtain a liquid curable resin composition by dissolving and mixing later, or uniformly mixing with a mixer, a blender, etc., and then heat-kneading with a second roll or the like, and a resin composition to be prepared In the case of solid, after mixing each component in a predetermined amount, it is dissolved and mixed, or after uniformly mixing with a mixer, a blender, etc. and then heat-kneaded with a kneader tool, etc., after cooling and solidifying Crushing to obtain a solid resin composition.
  • Examples of the photopolymerization initiator used here include acetophenone and acetophenone. Zirketal, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-2-phenenoreacetophenone, xanthone, funole lenon, benzanoldehydr, funole ren, anthraquinone, triphenylamine, carbazole, 3-Methylacetophenone, 4-Chronobenzophenone, 4, A'-Dimethoxybenzophenone, 4, A'-Diaminobenzophenone, Michler's ketone, Benzoinpropinoreethenore, Benzoinetinoreethenole, Penzinoresimethinoreketal Photo-radical initiators such as 1- (4-isopropylphenyl) 2-hydroxy-1-2-methylpropane 1-one, 2-hydroxy-2-methyl-1-phenylpropane 1-one, and the like.
  • thermosetting a resin composition to which a thermal polymerization initiator such as a thermal radical generator is added as necessary is prepared, and then compression molding, transfer molding, injection molding is performed.
  • the thermosetting molding can be performed by the above.
  • the thermal polymerization initiator used here include 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4 dimethylvalero nitrinole), 2,2'-azobis (4-methoxy-).
  • the optical pickup device 1 of the present invention includes a current DVD (hereinafter referred to as current DVD) that applies light having a wavelength of 650 nm, a so-called next-generation DVD (hereinafter referred to as next-generation DVD) that applies light having a wavelength of 405 nm.
  • current DVD current DVD
  • next-generation DVD next-generation DVD
  • the optical pickup device 1 passes laser light (light) emitted from a light source 2 through a single lens optical element such as a collimator lens 3 and an objective lens (plastic optical element) 10 having a fine structure described later, A light collecting spot is formed by collecting on the information recording surface 6 of the optical information recording medium 5 on the optical axis 4, and the reflected light from the information recording surface 6 is taken in by the deflecting beam splitter 7, and the beam is again applied to the light receiving surface of the detector 8. A spot is formed.
  • the light source 2 includes a laser diode, and is configured to be able to select and emit light of two types of wavelengths of 650 nm and 405 nm by a known switching method.
  • the collimator lens 3, the objective lens (plastic optical element) 10, and the deflection beam splitter 7 constitute an optical element unit.
  • the objective lens 10 according to the present invention is an optical element having a fine structure, and is produced by molding a resin composition by injection molding. As shown in FIG. 2, the objective lens 10 is a single-sided optical element having a double-sided aspheric surface, and is predetermined for predetermined light passing through the optical surface 11 on one (light source side) optical surface 11 thereof. It has an optical path difference providing structure 20 (fine structure) that provides an optical path difference.
  • the optical path difference providing structure 20 includes three annular lens surfaces with the optical surface 11 centered on the optical axis 4 (hereinafter, the first annular lens surface 21, the second annular lens surface 22, The three annular lens surfaces 2;! 23 of the adjacent annular lens surfaces 2;! 23 have different refractive powers.
  • the first annular lens surface 21 and the third annular lens surface 23 are on the same optical surface 11, and the second annular lens surface 22 is a surface translated from the optical surface 11! / RU
  • the first annular lens surface 21 transmits light having both wavelengths of 650 nm and 405 nm
  • the second annular lens surface 22 transmits light having a wavelength of 650 nm corresponding to the current DVD and the third annular lens surface.
  • the surface 23 passes light with a wavelength of 405 nm corresponding to the next-generation DVD. The light that has passed through each annular lens surface 2;! 23 is condensed at the same position on the information recording surface 6.
  • the first annular lens surface 21 and the third annular lens surface 23 have a force S provided on the same optical surface 11, and the first and third annular lens surfaces 21.
  • the second annular lens surface 22 does not have to be provided on the same optical surface as 23, and the second annular lens surface 22 is a surface translated from the optical surface 11; Further, the number of the three annular lens surfaces 2123 may be five or at least three.
  • the objective lens 10 Due to the action of the optical path difference providing structure 20 formed in this way, the objective lens 10 has the information recording surface 6 of the light emitted from the light source 2 with respect to a plurality of types of optical information recording media 5 such as the current DVD next-generation DVD. And the light reflected from the information recording surface 6 toward the detector 8 is highly concentrated. Can be performed with high reliability.
  • the resin composition forming the objective lens 10 has a high light transmittance of 85% or more, the above-described light collection can be performed with high efficiency. Therefore, since the power consumption of the light source 2 can be reduced, the power consumption of the entire optical pickup device 1 can be reduced.
  • the objective lens 10 according to the present invention is not limited to the one having the optical path difference providing structure 20 described above.
  • the optical path difference providing structure 20a in Fig. 3 includes a plurality of diffraction ring zones 21a with the optical axis 4 as the center, the cross sections of the plurality of diffraction ring zones 21a are serrated, and each of the diffraction ring zones 21a
  • the optical surface 11a is a discontinuous surface.
  • the plurality of diffraction ring zones 21a are formed to increase in thickness as they move away from the optical axis 4.
  • the objective lens 10a shown in FIG. 3 is a so-called diffractive lens.
  • the optical path difference providing structure 20b in FIG. 4 has a plurality of annular recesses 21b that cause a phase difference around the optical axis 4 in a concentric manner.
  • the ring-shaped concave portions 21b are formed on each of the optical surfaces l ib centered on the optical axis 4 (on the upper and lower optical surfaces centering on the optical axis 4 in FIG. 4).
  • Adjacent ring-shaped recesses 21b are continuously integrated with each other, and the entire cross-section of each ring-shaped recess 21b is stepped.
  • the optical surface 22b that forms each annular zone-shaped recess 21b is a surface that is translated with respect to the optical surface l ib.
  • the objective lens 10b shown in FIG. 4 is a so-called phase difference lens.
  • the adjacent annular recesses 21b are continuous and integrated, and the entire cross section is stepped.
  • the annular recess 21b is simply formed on the optical surface l ib. They may be provided individually (in this case, for example, the structure is the same as that of the objective lens 10 shown in FIG. 2).
  • the force that the annular zone-shaped concave portion 21b has a concentric shape as shown in FIG. 5, the objective lens 10c having the annular zone-shaped convex portion 23b on the third annular zone-shaped lens surface 23 of FIG. (In FIG. 5, the same components as those in FIG. 2 are denoted by the same reference numerals).
  • the optical path difference providing structure 20d in FIG. 6 is composed of a plurality of diffraction ring zones 21d with the optical axis 4 as the center, the cross sections of the plurality of diffraction ring zones 21d are sawtooth-shaped, and each of the diffraction ring zones 21d
  • the optical surface 1 Id is a discontinuous surface.
  • the cross section of each diffraction ring zone 21d is 3 steps 22d along the optical axis direction.
  • the optical surface 12d of each step 22d is a discontinuous surface and is a surface orthogonal to the optical axis 4.
  • the lens 10d shown in FIG. 6 includes, for example, a hologram optical element (HOE) 10e having an optical path difference providing structure 20d similar to FIG. 6 and an objective lens 1 Of as shown in FIG. It may be configured.
  • the hologram optical element 10e uses a flat optical element, and the optical path difference providing structure 20d is provided on the surface of the objective lens 10f of the optical element.
  • the optical pickup device 1 may perform information reproduction and recording on, for example, three types of optical information recording media 5 of a CD, a current DVD, and a next-generation DVD.
  • the combination of the optical information recording medium 5 for reproducing and recording information with the optical pickup device 1 is a design matter and is appropriately set.
  • a white fine powder was obtained in the same manner as in Production Example 2, except that cyclopentyltrimethoxysilane was used instead of ⁇ -methacryloxypropyltrimethoxysilane. According to observation, this powder had an average particle size of about 18 nm. This was designated as inorganic fine particles C; having reactive groups! /, N! /, Inorganic fine particles.
  • each raw material was mixed and then kneaded using a kneader to obtain a uniform thermosetting resin composition.
  • Each of the obtained resin compositions was filled in a mold having dimensions of 30 mm ⁇ 30 mm ⁇ 3 mm, and then heated and pressed at 220 ° C. for 20 minutes to obtain a plate-like plastic optical element.
  • Soil-like silsesquioxane A Methacryl— P ⁇ SS TM (Sigma Aldrich f
  • Soil-like silsesquioxane B Methacryl 1 Isobutyl 1 POS S 1
  • Multifunctional compound A Pentaerythritol tetratalylate
  • Multifunctional compound B Trimethylolpropane trimetatalylate
  • Stabilizer A Tetrakis (1, 2, 2, 6, 6-pentamethylpiperidyl) butanetetracarboxylate
  • Stabilizer ⁇ 2, 2'-Methylenebis (4,6-di-tert-butylphenyl) -2-ethyl hexyl phosphite
  • each optical element made of plastic had a light transmittance of 86% or more and a high transmittance.
  • the molded product molded using the resin composition according to the present invention does not cause coloring or white turbidity even when continuously irradiated with short-wavelength light for a long time, and further deforms. High shape stability could be maintained.
  • An optical element (objective lens) having the same composition as that of the plastic optical element described in Examples 1 to 5 and having the configuration described in FIGS. 2 to 7 was produced by injection molding.
  • Each optical pickup device was fabricated with the structure described. Next, using each optical pickup device, recording and reproduction on DVD were performed using light of a wavelength of 405 nm by a laser diode.
  • An optical element was produced in the same manner as in Example 6 with the same composition as the plastic optical element described in Comparative Examples 1 to 5, and recorded on and reproduced from a DVD in the same manner.
  • the optical pickup device using the optical element of Example 6 showed good pickup characteristics with no deformation or the like even after continuous irradiation for a long time.
  • the optical element of Comparative Example 6 When using, the smaller the optical surface structure is, the more deformed (complex) it is, the more deformation occurs, and the pickup characteristics decline.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Head (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Disclosed is a plastic optical device material having improved optical stability and excellent transparency, which is capable of maintaining such characteristics for a long time. Also disclosed are a plastic optical device made of such a material, and an optical pickup device using such a plastic optical device and having good pickup characteristics. The plastic optical device material is characterized by being a resin composition which contains a polymer obtained by copolymerizing a mixture composed of at least one cage silsesquioxane having a reactive group, at least one inorganic particle having a reactive group, and at least one polyfunctional compound having two or more reactive groups.

Description

明 細 書  Specification
プラスチック光学素子材料、それを用いたプラスチック製光学素子、及び 光ピックアップ装置  Plastic optical element material, plastic optical element using the same, and optical pickup device
技術分野  Technical field
[0001] 本発明は、プラスチック製の光学素子等に好適に用いられるプラスチック光学素子 材料、これを用いたプラスチック製光学素子、及びこのプラスチック製光学素子を適 用した光ピックアップ装置に関する。  TECHNICAL FIELD [0001] The present invention relates to a plastic optical element material suitably used for a plastic optical element and the like, a plastic optical element using the same, and an optical pickup device to which the plastic optical element is applied.
背景技術  Background art
[0002] 従来、 MO、 CD、 DVDとレ、つた光情報記録媒体(以下、媒体とも言う)に対して、情 報の読み取りや記録を行うプレーヤー、レコーダー、ドライブといった記録機器には、 光ピックアップ装置が備えられてレ、る。光ピックアップ装置は光源から発した所定波 長の光を媒体に照射し、反射した光を受光素子で受光する光学素子ユニットを備え ており、光学素子ユニットはこれらの光を媒体の反射層ゃ受光素子で集光させるため のレンズ等の光学素子を有して!/、る。  Conventionally, optical pickups are used for recording devices such as players, recorders, and drives that read and record information on MO, CD, DVD, and other optical information recording media (hereinafter also referred to as media). A device is provided. The optical pickup device includes an optical element unit that irradiates a medium with light having a predetermined wavelength emitted from a light source, and receives the reflected light with a light receiving element. The optical element unit receives the light from the reflection layer of the medium. Have an optical element such as a lens to collect light with the element!
[0003] 光ピックアップ装置の光学素子は、射出成形等の手段により安価に作製できる等の 点でプラスチックを材料として適用することが好ましい。光学素子の適用可能なプラス チックとしては、環状ォレフィンと α—ォレフインの共重合体 (例えば、特許文献 1参 照。)等が知られている。 [0003] The optical element of the optical pickup device is preferably made of plastic as a material in that it can be manufactured at low cost by means such as injection molding. As plastics to which optical elements can be applied, a copolymer of cyclic olefin and α-olefin is known (for example, see Patent Document 1).
[0004] ところで、例えば、 CD/DVDプレーヤーのような複数種の媒体に対して情報の読 み書きが可能な情報機器の場合、光ピックアップ装置は両者の媒体の形状や適用 する光の波長の違いに対応した構成とする必要がある。この場合、光学素子ユニット はいずれの媒体に対しても共通することがコストやピックアップ特性の観点から好まし い。  [0004] By the way, in the case of an information device capable of reading and writing information on a plurality of types of media such as a CD / DVD player, for example, the optical pickup device has the shape of both media and the wavelength of light to be applied. It is necessary to make the configuration corresponding to the difference. In this case, it is preferable from the viewpoint of cost and pickup characteristics that the optical element unit is common to all the media.
[0005] また、近年、 CDや DVDよりも高!/、密度で情報を記録できる媒体として、 CD ( λ = 7 80nm)や DVD ( = 635、 650nm)で用いるよりも短い波長で情報の記録、再生を 行う Blu— ray Disc等の媒体や、これらの媒体で情報の読み書きを行う情報機器の 開発が新たに行われてレ、る。 [0006] しかしながら、 Blu-ray Disc等の所謂次世代 DVDでは、情報の記録、再生には 波長 400nm付近の光を用いるため、上記特許文献 1に記載された熱可塑性樹脂で 構成された光学素子では、当該光学素子がこのような短波長の光照射やそれに伴う 熱の影響を受け、それ自体が白濁したり、光学面が変形したりして光や熱に対する耐 久性に劣る。 [0005] In recent years, as a medium capable of recording information at a higher density than CD and DVD, information can be recorded at a shorter wavelength than that used for CD (λ = 780nm) and DVD (= 635 and 650nm). Development of media such as Blu-ray Discs for playback and information devices that read and write information on these media is newly underway. [0006] However, in so-called next-generation DVDs such as Blu-ray Discs, light having a wavelength of around 400 nm is used for recording and reproducing information, so that the optical element is made of the thermoplastic resin described in Patent Document 1 above. Then, the optical element is affected by such short-wavelength light irradiation and the accompanying heat, and itself becomes cloudy or the optical surface is deformed, resulting in poor durability against light and heat.
[0007] 一方、透明性が高く光学的に優れた性質を有し、且つ光に対する耐久性にも優れ ていると言われる樹脂としてシリコーン系樹脂が知られており、例えば、酸素透過性を 有するコンタクトレンズや可変焦点レンズ等特殊な用途にゴム状ポリジメチルシロキサ ンが応用されているカ、これらは機械的強度が求められるレンズ、プリズム等の一般 的な光学素子への適用は困難であった。これに対し、近年、ラダー型シルセスキォキ サン骨格を有するシリコーン系光学樹脂を用いた光学素子が提案されているが(例 えば、特許文献 2参照。)、例えば、前記 400nm付近の光を用いる光学素子へ適用 するには耐熱性が未だ不十分であり、光に対する耐久性とともに高!/、耐熱性を満足 するプラスチック製光学素子材料が未だ得られて!/、な!/、のが実情である。  [0007] On the other hand, silicone resins are known as resins that are said to have high transparency and optically excellent properties and are also excellent in durability to light, and have, for example, oxygen permeability. Rubber-like polydimethylsiloxane is applied to special applications such as contact lenses and variable focus lenses, and these are difficult to apply to general optical elements such as lenses and prisms that require mechanical strength. It was. On the other hand, in recent years, an optical element using a silicone-based optical resin having a ladder-type silsesquioxane skeleton has been proposed (for example, see Patent Document 2). For example, the optical element using light at around 400 nm is used. The heat resistance is still inadequate to be applied to, and the optical durability of light is high! /, And plastic optical element materials satisfying the heat resistance are still available! .
特許文献 1:特開 2002— 105131号公報  Patent Document 1: JP 2002-105131 A
特許文献 2:特開 2004— 354547号公報  Patent Document 2: Japanese Patent Laid-Open No. 2004-354547
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明の目的は、光安定性を向上させ、透明性に優れ、且つその特性を長時間に 亘つて維持することができるプラスチック光学素子材料、これを用いたプラスチック製 光学素子(以後、単に光学素子とも言う)、及びそれを用いた良好なピックアップ特性 を有する光ピックアップ装置を提供することにある。 [0008] An object of the present invention is to provide a plastic optical element material capable of improving light stability, excellent transparency, and maintaining its characteristics over a long period of time, and a plastic optical element using the same (hereinafter referred to as a plastic optical element) It is also simply referred to as an optical element), and to provide an optical pickup device having good pickup characteristics using the same.
課題を解決するための手段  Means for solving the problem
[0009] 本発明の上記目的は、以下の構成により達成することができる。 [0009] The above object of the present invention can be achieved by the following configurations.
[0010] 1.反応性基を有する籠状シルセスキォキサンの少なくとも 1種、反応性基を有する 無機微粒子の少なくとも 1種及び 2つ以上の反応性基を有する多官能性化合物の少 なくとも 1種とからなる混合物を共重合させて得られる重合体を含む樹脂組成物であ ることを特徴とするプラスチック光学素子材料。 [0011] 2.前記籠状シルセスキォキサンが Tn構造 (下記一般式(1) )及び Dm構造 (下記一 般式(2) )で表される構造単位からなり、これらから下記一般式(3)で表される構造単 位から構成される化合物であって、化合物中に少なくとも 1つの反応性基を有するこ とを特徴とする前記 1に記載のプラスチック光学素子材料。 [0010] 1. At least one kind of caged silsesquioxane having a reactive group, at least one kind of inorganic fine particles having a reactive group, and at least a polyfunctional compound having two or more reactive groups A plastic optical element material, which is a resin composition comprising a polymer obtained by copolymerizing a mixture of one kind. [0011] 2. consists structural units said cage silsesquioxane O hexane is represented by T n structure (the following general formula (1)) and D m structure (following one general formula (2)), the following general these 2. The plastic optical element material as described in 1 above, which is a compound composed of a structural unit represented by the formula (3), wherein the compound has at least one reactive group.
[0012] 一般式(1) R'Si COH) O  [0012] General formula (1) R'Si COH) O
3-n n/2  3-n n / 2
一般式(2) (R2) Si (OH) O General formula (2) (R 2 ) Si (OH) O
2 2-m m/2  2 2-m m / 2
(式中、 nは 1〜3の整数を表し、 mは 1、 2の整数を表す。 R1, R2は水素原子、置換基 を表し、置換基の少なくとも 1つは反応性基を表す。 ) (In the formula, n represents an integer of 1 to 3, m represents an integer of 1 or 2. R 1 and R 2 represent a hydrogen atom and a substituent, and at least one of the substituents represents a reactive group. )
一般式(3) T3 T1General formula (3) T 3 T 1 D °
P q r  P q r
(式中、 Tは Siについてのシロキサン結合の数が 3であることを、 Dは Siについてのシ ロキサン結合の数が 2であることを表す。 1は 1、 2の整数、 oは 1、 2の整数、 pは 4〜20 の整数、 q、 rは 0〜20の整数を表し、 p + q + 6である。 )  (In the formula, T represents the number of siloxane bonds for Si is 3, D represents the number of siloxane bonds for Si is 2. 1 is an integer of 1, 2 and o is 1, 2 is an integer, p is an integer from 4 to 20, q, r is an integer from 0 to 20, and p + q + 6.)
3.前記籠状シルセスキォキサンがビュル基、(メタ)アタリロイル基、エポキシ基、ォ キセタニル基、メルカプト基から選ばれる反応性基を有することを特徴とする前記 1ま たは 2に記載のプラスチック光学素子材料。  3. Said 1 or 2 characterized in that said caged silsesquioxane has a reactive group selected from a bur group, a (meth) attalyloyl group, an epoxy group, an oxetanyl group and a mercapto group. Plastic optical element material.
[0013] 4.前記反応性基を有する無機微粒子が無機酸化物であって、ビュル基、(メタ)ァ クリロイル基、エポキシ基、ォキセタニル基、メルカプト基から選ばれる反応性基を有 することを特徴とする前記 1〜3のいずれ力、 1項に記載のプラスチック光学素子材料。 [0013] 4. The inorganic fine particles having a reactive group are inorganic oxides, and have a reactive group selected from a bur group, a (meth) acryloyl group, an epoxy group, an oxetanyl group, and a mercapto group. 4. The plastic optical element material according to any one of 1 to 3, which is characterized by the above.
[0014] 5.前記;!〜 4のいずれか 1項に記載のプラスチック光学素子材料を用い、少なくと も 1つの光学面に所定の微細構造が設けられていることを特徴とするプラスチック製 光学素子。 [0014] 5. A plastic optical, characterized in that the plastic optical element material according to any one of the above !! to 4 is used, and a predetermined fine structure is provided on at least one optical surface. element.
[0015] 6.前記 1〜4のいずれか 1項に記載のプラスチック光学素子材料を用いて成形さ れた厚さ 3mmの成形体の波長 400nmにおける光線透過率が 85%以上であること を特徴とするプラスチック製光学素子。  [0015] 6. The light transmittance at a wavelength of 400 nm of a molded article having a thickness of 3 mm formed using the plastic optical element material according to any one of the above 1 to 4 is 85% or more. Plastic optical element.
[0016] 7.集光機能を有する集光装置に用いられることを特徴とする前記 5または 6に記載 のプラスチック製光学素子。 [0016] 7. The plastic optical element as described in 5 or 6 above, which is used in a light collecting device having a light collecting function.
[0017] 8.光情報記録媒体に対して情報の再生及び記録の少なくとも!/、ずれかを行う光ピ ックアップ装置であって、光を出射する光源と該光源から出射された光の該光情報記 録媒体への照射及び該光情報記録媒体で反射される光の集光の少なくともいずれ かを行う光学素子ユニットとを備え、且つ該光学素子ユニットは前記 5〜7のいずれか 1項に記載のプラスチック製光学素子を備えることを特徴とする光ピックアップ装置。 [0017] 8. An optical pick-up device that performs at least information reproduction and / or recording on an optical information recording medium, the light source emitting light, and the light emitted from the light source Information An optical element unit that performs at least one of irradiation of the recording medium and condensing of light reflected by the optical information recording medium, and the optical element unit according to any one of 5 to 7 above. An optical pickup device comprising a plastic optical element.
[0018] 9.前記光源は波長 390〜420nmの光を出射することを特徴とする前記 8に記載 の光ピックアップ装置。 [0018] 9. The optical pickup device as described in 8 above, wherein the light source emits light having a wavelength of 390 to 420 nm.
発明の効果  The invention's effect
[0019] 本発明により、光安定性を向上させ、透明性に優れ、且つその特性を長時間に亘 つて維持することができる、プラスチック光学素子材料、これを用いたプラスチック製 光学素子、及びそれを用いた良好なピックアップ特性を有する光ピックアップ装置を 提供すること力 Sできた。  [0019] According to the present invention, a plastic optical element material capable of improving light stability, excellent transparency, and maintaining its characteristics over a long period of time, a plastic optical element using the same, and the same We were able to provide an optical pickup device with good pickup characteristics using
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]本発明に係る光ピックアップ装置 1の概略を示す側面図である。  FIG. 1 is a side view schematically showing an optical pickup device 1 according to the present invention.
[図 2]本発明に係る対物レンズ 10の断側面図である。  FIG. 2 is a sectional side view of the objective lens 10 according to the present invention.
[図 3]本発明に係る対物レンズ 10aの断側面図である。  FIG. 3 is a sectional side view of an objective lens 10a according to the present invention.
[図 4]本発明に係る対物レンズ 10bの断側面図である。  FIG. 4 is a sectional side view of an objective lens 10b according to the present invention.
[図 5]本発明に係る対物レンズ 10cの断側面図である。  FIG. 5 is a sectional side view of an objective lens 10c according to the present invention.
[図 6]本発明に係る対物レンズ 10dの断側面図である。  FIG. 6 is a sectional side view of an objective lens 10d according to the present invention.
[図 7]本発明に係るホログラム光学素子 10e及び対物レンズ 10fの断側面図である。 符号の説明  FIG. 7 is a sectional side view of a hologram optical element 10e and an objective lens 10f according to the present invention. Explanation of symbols
[0021] 1 光ピックアップ装置 [0021] 1 Optical pickup device
2 光源  2 Light source
3 コリメータレンズ  3 Collimator lens
4 光軸  4 optical axis
5 光情報記録媒体  5 Optical information recording media
6 情報記録面  6 Information recording surface
7 偏光ビームスプリッタ  7 Polarizing beam splitter
8 検出器  8 Detector
10、 10a, 10b、 10c、 10d、 lOf 対物レンズ(プラスチック製光学素子、対物光学 素子) 10, 10a, 10b, 10c, 10d, lOf objective lenses (plastic optical elements, objective optics) element)
11、 l la、 l ld、 12d、 22b 光学面  11, l la, l ld, 12d, 22b optical surface
20、 20a, 20b、 20c、 20d 光路差付与構造  20, 20a, 20b, 20c, 20d Optical path difference providing structure
21 第 1輪帯状レンズ面 (輪帯状レンズ面)  21 First annular lens surface (annular lens surface)
22 第 2輪帯状レンズ面(輪帯状レンズ面)  22 Second annular lens surface (annular lens surface)
23 第 3輪帯状レンズ面(輪帯状レンズ面)  23 Third annular lens surface (annular lens surface)
23b 輪帯状凸部  23b Ring-shaped convex part
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 本発明を更に詳しく説明する。 [0022] The present invention will be described in more detail.
[0023] 請求の範囲;!〜 4に記載の発明における光学素子に適用されるプラスチック光学素 子材料は、反応性基を有する籠状シルセスキォキサン、反応性基を有する無機微粒 子、及び多官能性化合物とからなる混合物を共重合させて得られる重合体を含む樹 脂組成物であることを特徴として!/、る。  [0023] The plastic optical element material applied to the optical element in the invention according to any one of claims [4] to [4] includes a cage-like silsesquioxane having a reactive group, an inorganic fine particle having a reactive group, and It is a resin composition comprising a polymer obtained by copolymerizing a mixture composed of a polyfunctional compound.
[0024] 籠状シルセスキォキサン(ポリマー)は透明性が高ぐその構造がリジッドではあるが 、線膨張係数は他の熱可塑性光学樹脂、例えば、ポリカーボネート等と比較して大き く耐熱性に劣るものであった。これに対し、反応性基を有する籠状シルセスキォキサ ン、反応性基を有する無機微粒子、及び多官能性化合物とからなる混合物を共重合 させて得られる重合体を用いて用いて製造された光学素子は、高!/、光線透過率を有 すると共に光照射に対する安定化効果が高ぐ例えば、 400nm付近の短波長の光 の照射を継続的に受けても白濁や屈折率の変動が抑えられる。また、例えば、 85°C 前後の高温環境下における光学面の変形を長時間抑制できることを見出した。つま り、光学素子の光安定性と熱安定性を向上させることができ、当該特性を長時間に 亘つて維持することが可能な素子を製造することができることが判明した。  [0024] Although the cage-like silsesquioxane (polymer) is highly transparent and its structure is rigid, its linear expansion coefficient is large and heat resistant compared to other thermoplastic optical resins such as polycarbonate. It was inferior. On the other hand, an optical element manufactured using a polymer obtained by copolymerizing a mixture of a caged silsesquioxane having a reactive group, inorganic fine particles having a reactive group, and a polyfunctional compound. Has high light transmittance, and has a high stabilizing effect against light irradiation. For example, even when continuously irradiated with light having a short wavelength of around 400 nm, white turbidity and fluctuations in refractive index can be suppressed. In addition, for example, it has been found that the deformation of the optical surface in a high temperature environment around 85 ° C. can be suppressed for a long time. In other words, it was found that the optical stability and thermal stability of the optical element can be improved, and an element capable of maintaining the characteristics for a long time can be manufactured.
[0025] 請求の範囲 5に記載の発明によれば、少なくとも 1つの光学面に所定の微細構造が 設けられているもので、この光学素子は請求の範囲 1〜4のいずれ力、 1項に記載のプ ラスチック光学素子材料を用いて成形されることから、光や熱といった環境変動に対 して高い形状安定性を有しており、微細構造に変形を生じるといったことを適正に抑 制すること力 Sでさる。 [0026] 請求の範囲 6に記載の発明によれば、本発明のプラスチック光学素子材料を用い て成形された、厚さ 3mmの成形体は高い形状安定性を有し、高エネルギーの波長 4 OOnm付近の光を透過させても当該成形体に白濁、屈折率の変動や変形等が生じ るのを抑えることができる。これにより、波長 400nm付近における光線透過率は 85% 以上とすること力 Sできる。従って、例えば、 Blu-ray Discのような高い情報密度を 有する光情報記録媒体に対する光学素子として好適に用いることができる。 [0025] According to the invention described in claim 5, at least one optical surface is provided with a predetermined fine structure, and this optical element is any one of claims 1-4, Since it is molded using the described plastic optical element material, it has high shape stability against environmental fluctuations such as light and heat, and appropriately suppresses deformation of the microstructure. That's the power S. [0026] According to the invention described in claim 6, a molded body having a thickness of 3 mm molded using the plastic optical element material of the present invention has high shape stability and has a high energy wavelength of 4 OOnm. Even if light in the vicinity is transmitted, it is possible to suppress the occurrence of white turbidity, refractive index fluctuation or deformation in the molded body. As a result, the light transmittance near the wavelength of 400 nm can be increased to 85% or more. Therefore, for example, it can be suitably used as an optical element for an optical information recording medium having a high information density such as a Blu-ray Disc.
[0027] 請求の範囲 7に記載の発明によれば、集光機能を有する集光装置に光学素子を 用いても、当該光学素子は高い形状安定性を有しているので、光学素子の光学特 性を低下させるといったことがなくなる。即ち、光学素子に対して集光により高いエネ ルギ一が付与されても、当該光学素子の有する高い形状安定性によって、光学素子 の変形を長時間に亘つて抑制することが可能となり、光学素子の光学特性の低下を 防止すること力でさる。  [0027] According to the invention described in claim 7, even if an optical element is used in a condensing device having a condensing function, the optical element has high shape stability. There is no such thing as degrading characteristics. That is, even when high energy is given to the optical element by light collection, the high shape stability of the optical element makes it possible to suppress deformation of the optical element over a long period of time. This is the power to prevent the deterioration of the optical characteristics.
[0028] 請求の範囲 8に記載の発明によれば、反応性基を有する籠状シルセスキォキサン 、反応性基を有する無機微粒子、及び多官能性化合物とからなる混合物を共重合さ せて得られる重合体を含む樹脂組成物である本発明のプラスチック光学素子材料を 用いて製造される光学素子であるため、光照射に対する安定化効果が高ぐ例えば 、 400nm付近の短波長の光の照射を継続的に受けても、白濁や屈折率の変動が抑 X_られる。  [0028] According to the invention described in claim 8, a mixture of a caged silsesquioxane having a reactive group, inorganic fine particles having a reactive group, and a polyfunctional compound is copolymerized. Since it is an optical element manufactured using the plastic optical element material of the present invention which is a resin composition containing the obtained polymer, the stabilization effect against light irradiation is high. For example, irradiation with light having a short wavelength around 400 nm Even with continuous exposure, the cloudiness and refractive index fluctuation are suppressed.
[0029] また、例えば、 85°C前後の高温環境下における光学面の変形を長時間に亘つて 抑制することができる。つまり、光学素子の光安定性を向上させることができ、当該特 性を長時間に亘つて維持することができる。従って、例えば、 Blu-ray Discのよう な高い情報密度を有する光情報記録媒体に対して、長期間に亘つて良好なピックァ ップ特性で情報の読み書きを行うことができ、光ピックアップ装置として信頼性の高!/、 ものを得ること力 Sできる。  [0029] Further, for example, the deformation of the optical surface in a high temperature environment of around 85 ° C can be suppressed for a long time. That is, the light stability of the optical element can be improved, and the characteristics can be maintained for a long time. Therefore, for example, information can be read from and written to optical information recording media having a high information density, such as Blu-ray Discs, with good pick-up characteristics over a long period of time, making it a reliable optical pickup device. High quality! / You can get things S.
[0030] 請求の範囲 9に記載の発明によれば、光源から出射される光の波長は 390〜420 nmである。即ち、例えば、 Blu-ray Discのような高い情報密度を有する光情報記 録媒体に対応した 390〜420nmと言う範囲の光を透過する場合でも、本発明にお ける光学素子に適用される樹脂組成物は、反応性基を有する籠状シルセスキォキサ ン、反応性基を有する無機微粒子、及び多官能性化合物とからなる混合物とを共重 合させて得られる重合体を含む樹脂組成物を含むものであるため、白濁や屈折率の 変動とレ、つた光学素子の劣化を防止することができる。これにより光学素子の寿命を 延ばして、光ピックアップ装置として信頼性の高いものを得ることができる。 [0030] According to the invention of claim 9, the wavelength of the light emitted from the light source is 390 to 420 nm. That is, for example, even when light in a range of 390 to 420 nm corresponding to an optical information recording medium having a high information density such as a Blu-ray Disc is transmitted, the resin applied to the optical element in the present invention. The composition comprises a caged silsesquioxa compound having a reactive group. And a resin composition containing a polymer obtained by co-polymerizing a mixture of inorganic fine particles having a reactive group and a polyfunctional compound. Deterioration of the optical element can be prevented. As a result, the lifetime of the optical element can be extended, and a highly reliable optical pickup device can be obtained.
[0031] 本発明のプラスチック製光学素子に適用されるプラスチック光学素子材料は、反応 性基を有する籠状シルセスキォキサン、反応性基を有する無機微粒子、及び多官能 性化合物からなる混合物とを共重合させて得られた重合体を含む樹脂組成物である ことを特徴としている。一般に、プラスチック製の光学材料はガラスやセラミックスとい つた無機材料と比較すると、その性質上熱膨張係数が大きいため、高温環境下で使 用される用途においては素子の形状変化が大きな問題となる。  [0031] The plastic optical element material applied to the plastic optical element of the present invention comprises a mixture comprising a cage-like silsesquioxane having a reactive group, inorganic fine particles having a reactive group, and a polyfunctional compound. It is a resin composition containing a polymer obtained by copolymerization. In general, optical materials made of plastic have a larger coefficient of thermal expansion than inorganic materials such as glass and ceramics, so that the change in the shape of the element is a major problem in applications used in high-temperature environments.
[0032] これに対し、本発明者等は上記問題を解決するため鋭意検討した結果、上述した 本発明のプラスチック光学素子材料を用いることで、例えば、 85°C前後の高温環境 下においても光学面の変形を長時間抑制できることを見出した。更に、例えば、 400 nm付近の短波長の光の照射を継続的に受けても透明性を維持し白濁や屈折率の 変動が抑えられる等、光照射に対する安定化効果が高ぐ光学素子の熱安定性と光 安定性を向上させることができ、当該特性を長時間に亘つて維持することが可能な素 子を製造することができることが判明した。  [0032] On the other hand, as a result of diligent investigations to solve the above problems, the present inventors have used the above-described plastic optical element material of the present invention, so that, for example, even in a high temperature environment of around 85 ° C, It was found that the deformation of the surface can be suppressed for a long time. In addition, for example, the heat of optical elements that have a high stabilization effect against light irradiation, such as maintaining transparency and suppressing white turbidity and fluctuations in refractive index even when continuously irradiated with light having a short wavelength of around 400 nm. It has been found that it is possible to improve the stability and light stability and to manufacture an element capable of maintaining the characteristics for a long time.
[0033] (籠状シルセスキォキサン)  [0033] (Silted Silsesquioxane)
本発明で用いられる籠状シルセスキォキサンについて説明する。シルセスキォキサ ンは Tレジンとも呼ばれるもので、通常のシリカが(SiO )の式で表されるのに対し、シ ノレセスキォキサン(ポリシルセスキォキサンとも言う)は(RSiO )で表される化合物で  The caged silsesquioxane used in the present invention will be described. Silsesquioxane is also called T-resin, and ordinary silica is represented by the formula of (SiO 2), while synesquioxane (also called polysilsesquioxane) is a compound represented by (RSiO 2). so
3/2  3/2
あり、通常はテトラエトキシシランに代表されるテトラアルコキシシラン(Si (OR' ) )の  There are usually tetraalkoxysilanes (Si (OR ')) represented by tetraethoxysilane.
4 Four
1つのアルコキシ基をアルキル基またはァリール基に置き換えた (RSi (OR' ) )化合 (RSi (OR ')) compounds in which one alkoxy group is replaced with an alkyl group or an aryl group
3 物の加水分解一重縮合で合成されるポリシロキサンであり、分子配列の形状としては 、無定形、ラダー状、籠状 (縮合ケージ状)が知られている。  Polysiloxane synthesized by hydrolysis and polycondensation of three products. As the molecular arrangement, amorphous, ladder, and cage (condensation cage) are known.
[0034] 籠状シルセスキォキサンとしては、具体的には T3: (RSiO ) の化学式で表される [0034] The cage silsesquioxane is specifically represented by a chemical formula of T 3 : (RSiO 2).
8 3/2 8  8 3/2 8
タイプ((3)— 1)、 T3 : (RSiO ) の化学式で表されるタイプ((3)— 2)、 T3 : (RSi Type ((3) — 1), T 3 : (RSiO) Type represented by chemical formula ((3) — 2), T 3 : (RSi
10 3/2 10 12  10 3/2 10 12
O ) の化学式で表されるタイプ((3)— 3)、 T3 : (RSiO ) の化学式で表されるタ ィプ((3)— 4、(3)— 5)及び : (RSiO ) の化学式で表されるタイプ((3)— 6、(O) The type represented by the chemical formula ((3) —3), T 3 : The type represented by the chemical formula (RSiO) Type ((3) -4, (3) -5) and: (RSiO) represented by the chemical formula ((3) -6, (
16 3/2 16 16 3/2 16
3)— 7)等が知られている。これらはいずれも、前記一般式(1)において n = 3で表さ れる、即ち T3構造のみから出来上がつている。 3) —7) etc. are known. Both of these are represented by n = 3 in the general formula (1), that is, they are made only from the T 3 structure.
[化 1] [Chemical 1]
(3)- (3)-
Figure imgf000009_0001
Figure imgf000009_0001
{3}~2  {3} ~ 2
Figure imgf000009_0002
Figure imgf000009_0002
(3) -3  (3) -3
Figure imgf000009_0003
[化 2] (3) 4
Figure imgf000009_0003
[Chemical 2] (3) 4
Figure imgf000010_0001
Figure imgf000010_0001
(3}― o (3) (3) ―o (3)
Figure imgf000010_0002
Figure imgf000010_0002
[0037] これらは完全縮合ケージと呼ばれている力 この他にも一般式(3)中、 q≠0あるい は r≠0である不完全縮合ケージと呼ばれるタイプも知られており、本発明においては V、ずれのタイプの化合物も使用することができる。不完全縮合ケージと呼ばれるタイ プの具体例としては、 T3 T2で表されるタイプ((3)— 8)、 T3 Τ¾2で表されるタイプ(( [0037] These are forces called perfect condensation cages. In addition, in general formula (3), a type called incomplete condensation cage where q ≠ 0 or r ≠ 0 is also known. In the invention, compounds of V and deviation types can also be used. Specific examples of types called incomplete condensation cages include the type represented by T 3 T 2 ((3) -8), the type represented by T 3 Τ¾ 2 ((
6 2 6  6 2 6
3)—9)、 T3 D2で表されるタイプ((3)— 10)が挙げられる。 3) -9) and T 3 D 2 type ((3) -10).
6 2  6 2
[0038] Τ3 Τ2については、前記一般式(1)の Τ3構造が 6個と前記一般式(1)において η = [0038] For Τ 3 Τ 2, there are six Τ 3 structures in the general formula (1), and η =
6 2  6 2
2で表される即ち Τ2構造が 2個とからなり、 Τ3 Τ¾2については、前記 Τ3構造が 6個、 It consists represented i.e. T 2 structure 2 are two and, for Τ 3 Τ¾ 2, wherein the T 3 structure 6,
6  6
前記 Τ2構造が 1個、及び前記一般式(2)において m = 2で表される即ち D2構造 1個 と力、らなり、更に T3 D2については、前記 T3構造力 個と前記 D2構造 2個とからなる。 One Τ 2 structure and m = 2 in the general formula (2), that is, one D 2 structure Furthermore, T 3 D 2 consists of T 3 structural forces and 2 D 2 structures.
6 2  6 2
[0039] [化 3]  [0039] [Chemical 3]
Figure imgf000011_0001
Figure imgf000011_0001
[0040] 籠状シルセスキォキサンを表す一般式(3)にお!/、て、構成される構造単位を示す 一般式(1)、及び一般式(2)
Figure imgf000011_0002
R2で示される置換基としては、水素原子や、メ チノレ基、ェチル基、シクロペンチル基、シクロへキシル基、イソプロピル基、 2—ェチ ルへキシル基、 t ブチル基、 2—クロ口ェチル基、メタクリロキシプロピル基、ァリル基 、 3—ァミノプロピル基、 3—メルカプトプロピル基、 3—グリシドキシプロピル基等のァ ノレキル基、あるいはフエニル基、 1 ナフチル基、 2—ナフチル基、フエナントリル基 等ァリール基等の芳香族基、あるいは(メタ)アタリロイル基、エポキシ基、ォキセタニ ル基、メルカプト基等の反応性基であって、籠状構造中の少なくとも 1つは前記反応 性基を含む。
[0040] In general formula (3) representing a caged silsesquioxane,! / Indicates a structural unit composed of general formula (1), and general formula (2)
Figure imgf000011_0002
Examples of the substituent represented by R 2 include a hydrogen atom, a methylol group, an ethyl group, a cyclopentyl group, a cyclohexyl group, an isopropyl group, a 2-ethylhexyl group, a t-butyl group, and a 2-chloroethyl group. Group, methacryloxypropyl group, allyl group, 3-amaminopropyl group, 3-mercaptopropyl group, 3-glycidoxypropyl group and other aralkyl groups, phenyl group, 1-naphthyl group, 2-naphthyl group, phenanthryl group, etc. An aromatic group such as an aryl group, or a reactive group such as a (meth) atallyloyl group, an epoxy group, an oxetanyl group, or a mercapto group, and at least one of the cage structures contains the reactive group.
[0041] これら籠状シルセスキォキサンは樹脂組成物中に 1種のみでなぐ複数種を併用し て用いてもよい。  [0041] These cage silsesquioxanes may be used in combination of two or more kinds in the resin composition.
[0042] (反応性基を有する無機微粒子) [0042] (Inorganic fine particles having a reactive group)
本発明にお!/、て用いられる無機微粒子としては、無機酸化物微粒子が挙げられ、 具体的には、例えば、酸化チタン、酸化亜鉛、酸化アルミニウム、酸化ジルコニウム、 酸化ハフニウム、酸化ニオブ、酸化タンタル、酸化マグネシウム、酸化カルシウム、酸 化ストロンチウム、酸化バリウム、酸化イットリウム、酸化ランタン、酸化セリウム、酸化ィ ンジゥム、酸化錫、酸化鉛、これら酸化物より構成される複酸化物であるニオブ酸リチ ゥム、ニオブ酸カリウム、タンタル酸リチウム等、これら酸化物との組み合わせで形成 されるリン酸塩、石) ¾酸塩等を挙げること力 Sできる。 Examples of the inorganic fine particles used in the present invention include inorganic oxide fine particles, Specifically, for example, titanium oxide, zinc oxide, aluminum oxide, zirconium oxide, hafnium oxide, niobium oxide, tantalum oxide, magnesium oxide, calcium oxide, strontium oxide, barium oxide, yttrium oxide, lanthanum oxide, cerium oxide, Phosphate formed in combination with oxides such as indium oxide, tin oxide, lead oxide, and double oxides such as lithium niobate, potassium niobate, and lithium tantalate , Stone) It is possible to mention nitrates and the like.
[0043] これら無機微粒子は樹脂中に分散された状態で存在するため、これを含むプラス チック光学素子材料を光学素子に適用する場合は、透明性を確保する上で平均粒 子径が Inm以上、 50nm以下が好ましい。更に好ましくは Inm以上、 30nm以下、あ るいは Inm以上、 20nm以下がより好ましぐ最も好ましくは Inm以上、 l Onm以下で ある。平均粒子径カ S Inm未満であると、製造時における無機微粒子の分散が困難で あるため所望の性能が得られない恐れがあり、また平均粒子径が 50nmを超えると、 得られるプラスチック光学素子材料が濁るなどして透明性が低下し、光線透過率が 7 0%未満となる恐れがある。ここで言う平均粒子径は粒子と同体積の球に換算した時 の直径を言う。 [0043] Since these inorganic fine particles are present in a state dispersed in a resin, when applying a plastic optical element material containing them to an optical element, the average particle diameter is not less than Inm in order to ensure transparency. 50 nm or less is preferable. More preferably, it is Inm or more and 30 nm or less, or more preferably Inm or more and 20 nm or less, and most preferably Inm or more and l Onm or less. If the average particle size is less than S Inm, it is difficult to disperse the inorganic fine particles at the time of manufacture, so that the desired performance may not be obtained. If the average particle size exceeds 50 nm, the resulting plastic optical element material Transparency may decrease due to turbidity and the light transmittance may be less than 70%. The average particle diameter here refers to the diameter when converted to a sphere having the same volume as the particle.
[0044] 無機微粒子の形状は特に限定されるものではないが、好適には球状の微粒子が用 いられる。また、粒子径の分布に関しても特に制限されるものではないが、広範な分 布を有するものよりも比較的狭い分布を持つものが好適に用いられる。  [0044] The shape of the inorganic fine particles is not particularly limited, but spherical fine particles are preferably used. Further, the particle size distribution is not particularly limited, but those having a relatively narrow distribution are preferably used rather than those having a wide distribution.
[0045] 本発明で用いられる無機微粒子は、ビュル基、(メタ)アタリロイル基、エポキシ基、 ォキセタニル基、メルカプト基等の反応性基を有するシランカップリング剤と無機微粒 子を混合し、これを加水分解させて両者を結合させて反応性基を導入した無機微粒 子であって、これを籠状シルセスキォキサン、及び多官能性化合物との混合組成物 中で反応、硬化させ、樹脂中に均一に分散させることによって硬化樹脂の透明性を 確保すること力 Sでさる。  [0045] The inorganic fine particles used in the present invention are prepared by mixing a silane coupling agent having a reactive group such as a bur group, a (meth) atalyloyl group, an epoxy group, an oxetanyl group, or a mercapto group with an inorganic fine particle. It is an inorganic fine particle in which a reactive group is introduced by hydrolyzing and bonding the both, and this is reacted and cured in a mixed composition of a caged silsesquioxane and a polyfunctional compound in a resin. It is possible to secure the transparency of the cured resin by dispersing it evenly.
[0046] 用いられるシランカップリング剤としては、例えば、ビュルトリァセトキシシラン、ビニ ノレトリクロロシラン、ビュルトリメトキシシラン、ビュルトリエトキシシラン、 γ —メルカプト シラン等が挙げられる。 [0046] Examples of the silane coupling agent to be used include butyltrioxysilane, vinylenotrichlorosilane, butyltrimethoxysilane, butyltriethoxysilane, and γ-mercapto. Silane etc. are mentioned.
[0047] これら無機微粒子は樹脂組成物中に 1種のみでなぐ複数種を併用して用いてもよ い。  [0047] These inorganic fine particles may be used in combination of two or more kinds in the resin composition.
[0048] (多官能性化合物)  [0048] (Polyfunctional compound)
本発明で用いられる多官能性化合物としては、ビュル基、(メタ)アタリロイル基、ェ ポキシ基、ォキセタニル基、メルカプト基等の反応性基を 2つ以上有する化合物であ つて、前記籠状シルセスキォキサン、及び反応性基を有する無機微粒子と反応し、 樹脂中に架橋構造を形成するものである。  Examples of the polyfunctional compound used in the present invention include a compound having two or more reactive groups such as a bur group, a (meth) atalyloyl group, an epoxy group, an oxetanyl group, a mercapto group, and the like. It reacts with oxan and inorganic fine particles having a reactive group to form a crosslinked structure in the resin.
[0049] 例えば、多官能 (メタ)アタリレートとして (メタ)アタリロイル基を 2つ以上有する、ジェ チレングリコーノレジメタクリレート、エチレングリコーノレジメタクリレート、テトラエチレン グリコールジアタリレート、ジエチレングリコーリジアタリレート、トリメチロールプロパント リアタリレート、トリメチロールプロパントリメタタリレート、ペンタエリスリトールテトラアタリ レート、ペンタエリスリトールテトラメタタリレート等力 多官能エポキシ化合物として、ビ スフェノール Aジグリシジルエーテル、ビスフエノール Fジグリシジルエーテル、レゾル シノールジグリシジルェ一テル等のダリシジルェ一テル型エポキシ樹脂、フタル酸ジ グリシジノレエステノレ及びダイマー酸ジグリシジノレエステノレ、トリグリシジノレエーテノレトリ フエニルメタン、テトラグリシジルエーテルテトラフエニルェタン、ビスフエノール Sジグ リシジノレエーテノレ、クレゾ一ノレノボラックグリシジノレエーテノレ、 トリグリシジノレイソシァヌ レート、テトラブロムビスフエノール Aジグリシジルエーテル等力 S、多官能ォキセタン化 合物として、多官能フエノール化合物とォキセタンク口ライドの反応生成物、例えば、 ビスフエノール A型、ビスフエノール F型、ビスフエノール S型、ビフエ二ル型、力ルド型 等の 2官能ォキセタン化合物、トリスフェノールメタン型、トリスクレゾールメタン型等の 3官能ォキセタン化合物、フエノールノポラック型、クレゾールノポラック型、力リックス ァレーン型等の多官能ォキセタン化合物等が挙げられる。  [0049] For example, as a polyfunctional (meth) atalylate, there are two or more (meth) atalyloyl groups, a ethylene glycolonoresimethacrylate, an ethyleneglyconoresimethacrylate, a tetraethylene glycol diatalate, a diethyleneglycolidialate, Trimethylol propanto tritalylate, trimethylol propane trimetatalylate, pentaerythritol tetraatalylate, pentaerythritol tetrametatalylate, etc. Bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, resorci Daricidyl ether type epoxy resin such as Nol diglycidyl ester, Diglycidino estenole phthalate and Diglycidino estenole dimer, Triglycid Noreethenoretriphenylmethane, tetraglycidyl ether tetraphenylethane, bisphenol S diglysidinoreatenore, crezonorenovolac glycidinoreatenore, triglycidinoreisocyanurate, tetrabromobisphenol A diglycidyl Ether isotropic S, as polyfunctional oxetane compound, reaction product of polyfunctional phenolic compound and oxetane lanthanide, for example, bisphenol A type, bisphenol F type, bisphenol S type, biphenyl type, force type And bifunctional oxetane compounds such as trisphenol methane type, trisphenol methane type and tris-resole methane type, and polyfunctional oxetane compounds such as phenol nopolac type, cresol nopolac type, and force-xarane type.
[0050] これら多官能性化合物は樹脂組成物中に 1種のみでなぐ複数種を併用して用い てもよい。  [0050] These polyfunctional compounds may be used in combination of two or more kinds in the resin composition.
[0051] (安定剤) 本発明のプラスチック光学素子材料では、ヒンダードアミン系安定剤、フエノール系 安定剤、リン系安定剤、ィォゥ系安定剤の中から選ばれた 1種以上の安定剤を追加 して添加してもよい。これら安定剤を適宜選択し、プラスチック光学素子材料に添カロ することで、例えば、 400nmといった短波長の光を継続的に照射した場合の白濁や 、屈折率の変動等の光学特性変動をより高度に抑制することができる。 [0051] (Stabilizer) In the plastic optical element material of the present invention, one or more stabilizers selected from hindered amine stabilizers, phenol stabilizers, phosphorus stabilizers, and thio stabilizers may be additionally added. By appropriately selecting these stabilizers and adding them to the plastic optical element material, for example, it is possible to enhance optical characteristics fluctuations such as white turbidity and refractive index fluctuations when continuously irradiated with light of a short wavelength such as 400 nm. Can be suppressed.
[0052] 好ましいフエノール系安定剤としては、従来公知のものが使用でき、例えば、 2— t ーブチノレー 6—(3— t ブチルー 2 ヒドロキシー5 メチルベンジル)ー4ーメチノレ フエニルアタリレート、 2, 4 ジ一 t ァミル一 6— (1— (3, 5 ジ一 t ァミル一 2 ヒ ドロキシフエニル)ェチル)フエニルアタリレート等の特開昭 63— 179953号公報ゃ特 開平 1― 168643号公報に記載されるアタリレート系化合物;ォクタデシル— 3— (3, 5 ジ tーブチルー 4ーヒドロキシフエ二ノレ)プロピオネート、 2, 2' ーメチレンビス([0052] As a preferred phenol-based stabilizer, conventionally known ones can be used. For example, 2-tert-butylinole 6- (3-tert-butyl-2-hydroxy-5-methylbenzyl) -4-methylenophenyl phenyl acrylate, 2,4 di 1-tamyl 6- (1- (3,5 di-tert-amyl 2-hydroxyphenyl) ethyl) phenyl acrylate, etc., disclosed in JP-A 63-179953 is disclosed in JP 1-168643 Atarylate compounds: Octadecyl-3- (3,5 di-tert-butyl-4-hydroxyphenol) propionate, 2,2'-methylenebis (
4 メチル 6— t ブチルフエノール)、 1 , 1 , 3 トリス(2 メチル 4 ヒドロキシ — 5— t ブチルフエニル)ブタン、 1 , 3, 5 トリメチノレー 2, 4, 6 トリス(3, 5 ジ一 tーブチルー 4ーヒドロキシベンジル)ベンゼン、テトラキス(メチレンー3—(3' , 5' ージ tーブチルー ーヒドロキシフエニルプロピオネート)メタン) [即ち、ペンタエリ スリメチルーテトラキス(3—(3, 5—ジ tーブチルー 4ーヒドロキシフエニルプロピオ ネート))]、トリエチレングリコール ビス(3— (3— t ブチルー 4ーヒドロキシ 5—メ チルフヱニル)プロピオネート)等のアルキル置換フエノール系化合物; 6—(4ーヒドロ キシー 3, 5 ジー tーブチルァニリノ) 2, 4 ビスォクチルチオ 1 , 3, 5 トリアジ ン、 4 ビスォクチルチオ 1 , 3, 5 トリアジン、 2 ォクチルチオ 4, 6 ビス(3,4 methyl 6-t butylphenol), 1, 1, 3 tris (2 methyl 4 hydroxy — 5-t butylphenyl) butane, 1, 3, 5 trimethinole 2, 4, 6 tris (3, 5 di-tert-butyl 4- Hydroxybenzyl) benzene, tetrakis (methylene-3- (3 ', 5'-di-tert-butyl-hydroxyphenylpropionate) methane) [ie pentaerythrmethyl-tetrakis (3- (3,5-di-tert-butyl-4) Alkyl-substituted phenolic compounds such as 3-hydroxyphenylpropionate))], triethylene glycol bis (3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate); 6- (4-hydroxy 3,5 g t-Butylanilino) 2, 4 Bisoctylthio 1, 3, 5 Triazine, 4 Bisoctylthio 1, 3, 5 Triazine, 2 Octylthio 4, 6 Bis (3,
5—ジ— t ブチル—4—ォキシァニリノ)— 1 , 3, 5—トリァジン等のトリアジン基含有 フエノール系化合物;等が挙げられる。 5-di-t-butyl-4-oxyanilino) -1-triazine group-containing phenolic compounds such as 1,3,5-triazine and the like.
[0053] また、好ましいヒンダードアミン系安定剤としては、ビス(2, 2, 6, 6 テトラメチル一 4ーピペリジル)セバケート、ビス(2, 2, 6, 6 テトラメチルー 4ーピペリジル)スクシネ ート、ビス(1 , 2, 2, 6, 6 ペンタメチルー 4ーピペリジル)セバケート、ビス(N オタ トキシー 2, 2, 6, 6 テトラメチルー 4ーピペリジル)セバケート、ビス(N ベンジルォ キシ 2, 2, 6, 6 テトラメチルー 4ーピペリジル)セバケート、ビス(N シクロへキシ ルォキシ 2, 2, 6, 6—テトラメチルー 4ーピペリジル)セバケート、ビス(1 , 2, 2, 6, 6 ペンタメチル 4 ピペリジノレ) 2—(3, 5 ジー t ブチル 4ーヒドロキシベンジ ノレ) 2 ブチルマロネート、ビス(1ーァクロイルー 2, 2, 6 , 6 テトラメチルー 4ーピ ペリジノレ) 2, 2 ビス(3, 5 ジ tーブチルー 4ーヒドロキシベンジル)ー2 ブチル マロネート、ビス(1 , 2, 2, 6 , 6 ペンタメチルー 4ーピペリジルデカンジォエート)、 2 , 2, 6 , 6 テトラメチルー 4ーピペリジルメタタリレート、 4 [3— (3, 5 ジ tーブ チルー 4ーヒドロキシフエ二ノレ)プロピオニルォキシ ]ー1 [2—(3—(3, 5 ジー t— ブチルー 4ーヒドロキシフエ二ノレ)プロピオニルォキシ)ェチル ]—2, 2, 6 , 6 テトラメ チルピペリジン、 2 メチルー 2—(2, 2, 6 , 6 テトラメチルー 4ーピペリジル)ァミノ - N - (2, 2, 6 , 6 テトラメチルー 4ーピペリジル)プロピオンアミド等が挙げられる。 [0053] Preferred hindered amine stabilizers include bis (2, 2, 6, 6 tetramethyl-4-piperidyl) sebacate, bis (2, 2, 6, 6 tetramethyl-4-piperidyl) succinate, bis (1 , 2, 2, 6, 6 Pentamethyl-4-piperidyl) sebacate, bis (N oxytoxyl 2, 2, 6, 6 tetramethyl-4-piperidyl) sebacate, bis (N benzyloxy 2, 2, 6, 6 tetramethyl-4-piperidyl) sebacate, Bis (N-cyclohexyloxy 2, 2, 6, 6-tetramethyl-4-piperidyl) sebacate, bis (1, 2, 2, 6, 6 Pentamethyl 4-piperidinole) 2— (3,5 di-t-butyl 4-hydroxybenzenole) 2 Butyl malonate, bis (1-acroyl-2,2,6,6 Tetramethyl-4-piperidinole) 2,2 Bis (3,5 Di-tert-butyl-4-hydroxybenzyl) -2 butyl malonate, bis (1,2,2,6,6 pentamethyl-4-piperidyldecanoate), 2,2,6,6 tetramethyl-4-piperidylmetatalylate, 4 [3-((3,5 di-tert-butyl-4-hydroxyphenenole) propionyloxy]]-1 [2- (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy) ethyl] -2 , 2, 6, 6 tetramethylpiperidine, 2methyl-2- (2,2,6,6 tetramethyl-4-piperidyl) amino-N- (2,2,6,6 tetramethyl-4-piperidyl) propionamide, and the like.
[0054] また、好ましいリン系安定剤としては、一般の樹脂工業で通常使用されるものであ れば格別な限定はなぐ例えば、トリフエニルホスファイト、ジフエニルイソデシルホス ファイト、フエニルジイソデシルホスフアイト、トリス(ノユルフェ二ノレ)ホスファイト、トリス( ジノユルフェ二ノレ)ホスファイト、トリス(2, 4 ジー t ブチルフエ二ノレ)ホスファイト、 1 0—(3 , 5 ジ tーブチルー 4ーヒドロキシベンジル) 9, 10 ジヒドロー 9ーォキ サ 10 ホスファフェナントレン 10 オキサイド等のモノホスファイト系化合物; 4, A' ブチリデンビス(3—メチル 6— t ブチルフエニルージ—トリデシルホスフアイ ト)、 4, 4' —イソプロピリデンビス(フエ二ル一ジ一アルキル(C 〜C )ホスフアイト) [0054] Further, the preferred phosphorus stabilizer is not particularly limited as long as it is usually used in the general resin industry. For example, triphenyl phosphite, diphenyl isodecyl phosphite, phenyl diisodecyl phosphite. Huyte, Tris (Noyulfeninore) phosphite, Tris (Dinoyurfeninole) phosphite, Tris (2,4 di-t-butylphenol) phosphite, 1 0— (3,5 Di-tert-butyl-4-hydroxybenzyl) 9 , 10 Dihydro-9-oxa 10 Phosphaphenanthrene 10 Monophosphite compounds such as oxide; 4, A 'Butylidenebis (3-methyl 6-t butylphenyl-di-tridecyl phosphite), 4, 4' — Isopropi Redenbis (phenyldialkyl (C 1 -C 6) phosphite)
12 15  12 15
等のジホスファイト系化合物等が挙げられる。これらの中でも、モノホスファイト系化合 物が好ましぐトリス(ノユルフェニル)ホスファイト、トリス(ジノユルフェニル)ホスフアイ ト、トリス(2, 4 ジ一 t ブチルフエニル)ホスファイト等が特に好ましい。  And diphosphite compounds such as Among these, tris (noyulphenyl) phosphite, tris (dinoylphenyl) phosphite, tris (2,4 di-tert-butylphenyl) phosphite and the like, which are preferable for monophosphite compounds, are particularly preferable.
[0055] また、好ましいィォゥ系安定剤としては、例えば、ジラウリル 3, 3 チォジプロビオネ ート、ジミリスチル 3, 3' —チォジプロピオネート、ジステアリル 3, 3—チォジプロピオ ネート、ラウリルステアリル 3, 3—チォジプロピオネート、ペンタエリスリトールーテトラ キス(/3 ラウリルチオ一プロピオネート)、 3, 9 ビス(2 ドデシルチオェチル) 2 , 4, 8 , 10—テトラオキサスピロ [5, 5]ゥンデカン等が挙げられる。 [0055] In addition, preferable thio stabilizers include, for example, dilauryl 3,3 thiodipropionate, dimyristyl 3,3'-thiodipropionate, distearyl 3,3-thiodipropionate, lauryl stearyl 3,3-thio Examples include dipropionate, pentaerythritol-tetrakis (/ 3 laurylthio monopropionate), 3,9 bis (2 dodecylthioethyl) 2,4,8,10-tetraoxaspiro [5,5] undecane.
[0056] これらの安定剤の配合量は本発明の目的を損なわれない範囲で適宜選択されるが 、樹脂組成物 100質量部に対して通常 0. 0;!〜 2質量部、好ましくは 0. 01〜;!質量 部である。 [0057] (界面活性剤) [0056] The amount of these stabilizers is appropriately selected within a range not to impair the purpose of the present invention, but is usually 0.0; 100 to 2 parts by mass, preferably 0 to 100 parts by mass of the resin composition. 01 ~ ;! Mass part. [0057] (Surfactant)
界面活性剤は同一分子中に親水基と疎水基とを有する化合物である。界面活性剤 は樹脂表面への水分の付着や上記表面からの水分の蒸発の速度を調節することで 、プラスチック光学素子材料の白濁を防止する。  A surfactant is a compound having a hydrophilic group and a hydrophobic group in the same molecule. The surfactant prevents white turbidity of the plastic optical element material by adjusting the rate of moisture adhesion to the resin surface and the evaporation rate of moisture from the surface.
[0058] 界面活性剤の親水基としては、具体的に炭素数 1以上のヒドロキシアルキル基、ヒド 口キシル基、カルボニル基、エステル基、アミノ基、アミド基、アンモニゥム塩、チォー ノレ、スルホン酸塩、リン酸塩、ポリアルキレングリコール基等が挙げられる。ここで、ァ ミノ基は 1級、 2級、 3級のいずれであってもよい。界面活性剤の疎水基としては、具 体的に炭素数 6以上のアルキル基、炭素数 6以上のアルキル基を有するシリル基、 炭素数 6以上のフルォロアルキル基等が挙げられる。ここで、炭素数 6以上のアルキ ル基は置換基として芳香環を有していてもよい。アルキル基としては、具体的にへキ シル、ヘプチル、ォクチル、ノニノレ、デシル、ゥンデセニル、ドデシル、トリデシノレ、テト ラデシル、ミリスチル、ステアリル、ラウリル、ノ ルミチル、シクロへキシル等が挙げられ る。芳香環としてはフエニル基等が挙げられる。この界面活性剤は上記のような親水 基と疎水基とをそれぞれ同一分子中に少なくとも 1個ずつ有していればよぐ各基を 2 個以上有していてもよい。  [0058] Specific examples of the hydrophilic group of the surfactant include a hydroxyalkyl group having 1 or more carbon atoms, a hydroxyl group, a carbonyl group, an ester group, an amino group, an amide group, an ammonium salt, a phenol, and a sulfonate. , Phosphates, polyalkylene glycol groups and the like. Here, the amino group may be any of primary, secondary, and tertiary. Specific examples of the hydrophobic group of the surfactant include an alkyl group having 6 or more carbon atoms, a silyl group having an alkyl group having 6 or more carbon atoms, and a fluoroalkyl group having 6 or more carbon atoms. Here, the alkyl group having 6 or more carbon atoms may have an aromatic ring as a substituent. Specific examples of the alkyl group include hexyl, heptyl, octyl, noninole, decyl, undecenyl, dodecyl, tridecinole, tetradecyl, myristyl, stearyl, lauryl, normityl, cyclohexyl and the like. Examples of the aromatic ring include a phenyl group. This surfactant may have two or more groups as long as it has at least one hydrophilic group and one hydrophobic group as described above in the same molecule.
[0059] このような界面活性剤としてはより具体的には、例えば、ミリスチルジエタノールアミ ン、 2—ヒドロキシェチルー 2—ヒドロキシドデシルァミン、 2—ヒドロキシェチルー 2—ヒ ドロキシトリデシルァミン、 2—ヒドロキシェチルー 2—ヒドロキシテトラデシルァミン、ぺ ンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリ トールトリステアレート、ジ一 2—ヒドロキシェチル一 2—ヒドロキシドデシルァミン、アル キル(炭素数 8〜 18)ベンジルジメチルアンモニゥムクロライド、エチレンビスアルキル (炭素数 8〜 18)アミド、ステアリルジエタノールアミド、ラウリルジエタノールアミド、ミリ スチルジェタノールアミド、パルミチルジエタノールアミド等が挙げられる。これらの内 でも、ヒドロキシアルキル基を有するァミン化合物またはアミド化合物が好ましく用いら れる。本発明ではこれら化合物を 2種以上組み合わせて用いてもよい。  [0059] Specific examples of such surfactants include myristyl diethanolamine, 2-hydroxyethyl-2-hydroxydodecylamine, 2-hydroxyethyl-2-hydroxytridecylamine, 2 —Hydroxyethyl-2-hydroxytetradecylamine, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, di-2-hydroxyethyl-2-hydroxydodecylamine, alkyl (carbon Examples thereof include benzyl dimethyl ammonium chloride, ethylene bisalkyl (carbon number 8 to 18) amide, stearyl diethanolamide, lauryl diethanolamide, myristyl jetanol amide, palmityl diethanolamide, and the like. Of these, amine compounds or amide compounds having a hydroxyalkyl group are preferably used. In the present invention, two or more of these compounds may be used in combination.
[0060] 界面活性剤は、プラスチック光学素子材料 100質量部に対して 0. 01〜; 10質量部 添加される。界面活性剤の添加量が 0. 01質量部を下回る場合、温度、湿度の変動 に伴う成形物の白濁を効果的に抑えることができない。一方、添加量が 10質量部を 超える場合、成形物の光透過率が低くなり、光ピックアップ装置への適用が困難とな る。界面活性剤の添加量は、樹脂組成物 100質量部に対して 0. 05〜5質量部とす ること力 S好ましく、 0. 3〜3質量部とすることが更に好ましい。 [0060] The surfactant is added in an amount of 0.01 to 10 parts by mass with respect to 100 parts by mass of the plastic optical element material. When the amount of surfactant added is less than 0.01 parts by mass, temperature and humidity fluctuations It is impossible to effectively suppress the cloudiness of the molded product. On the other hand, when the addition amount exceeds 10 parts by mass, the light transmittance of the molded product becomes low, making it difficult to apply to an optical pickup device. The addition amount of the surfactant is preferably S to be 0.05 to 5 parts by mass with respect to 100 parts by mass of the resin composition S, more preferably 0.3 to 3 parts by mass.
[0061] (プラスチック光学素子材料の硬化成形方法) [0061] (Plastic optical element material curing molding method)
本発明で用いられる樹脂組成物は紫外線及び電子線照射、あるレ、は加熱処理の いずれかの操作によって硬化し得るもので、前記籠状シルセスキォキサン、無機微 粒子、多官能性化合物を未硬化の状態で混合させ、更に必要に応じて安定剤、界 面活性剤等の添加剤を加えた樹脂組成物を調製後、硬化させることによって得られ る。籠状シルセスキォキサンの添加量は、樹脂組成物 100質量部に対して 10〜90 質量部とすることが好ましぐ 20〜70質量部とすることが更に好ましい。無機微粒子 の添加量は樹脂組成物 100質量部に対して 5〜70質量部とすることが好ましぐ 10 〜50質量部とすることが更に好ましい。多官能性化合物の添加量は、樹脂組成物 1 00質量部に対して 5〜80質量部とすることが好ましぐ 10〜60質量部とすることが更 に好ましい。  The resin composition used in the present invention can be cured by any of ultraviolet and electron beam irradiation, heat treatment, or the like, and the cage silsesquioxane, the inorganic fine particles, and the multifunctional compound are mixed. It is obtained by mixing in an uncured state, and further preparing and curing a resin composition to which additives such as stabilizers and surfactants are added as necessary. The addition amount of the cage silsesquioxane is preferably 10 to 90 parts by mass, more preferably 20 to 70 parts by mass with respect to 100 parts by mass of the resin composition. The addition amount of the inorganic fine particles is preferably 10 to 50 parts by mass, more preferably 5 to 70 parts by mass with respect to 100 parts by mass of the resin composition. The addition amount of the polyfunctional compound is preferably 5 to 80 parts by mass, more preferably 10 to 60 parts by mass with respect to 100 parts by mass of the resin composition.
[0062] 硬化前の樹脂組成物を調製するにあたっては、適宜の手法を採用することができる 、例えば、調製される樹脂組成物の性状が液体状である場合には各成分を所定 量配合した後に溶解混合し、またはミキサー、プレンダ一等で均一に混合した後に二 一ダーゃロール等で加熱混練して、液体状の硬化性樹脂組成物を得ることができ、 また調製される樹脂組成物の性状が固体状である場合は各成分を所定量配合した 後に溶解混合し、またはミキサー、プレンダ一等で均一に混合した後にニーダーゃ口 ール等で加熱混練したものを、冷却固化した後粉砕して固体状の樹脂組成物を得る こと力 Sでさる。  [0062] In preparing the resin composition before curing, an appropriate method can be employed. For example, when the properties of the resin composition to be prepared are liquid, each component is blended in a predetermined amount. It is possible to obtain a liquid curable resin composition by dissolving and mixing later, or uniformly mixing with a mixer, a blender, etc., and then heat-kneading with a second roll or the like, and a resin composition to be prepared In the case of solid, after mixing each component in a predetermined amount, it is dissolved and mixed, or after uniformly mixing with a mixer, a blender, etc. and then heat-kneaded with a kneader tool, etc., after cooling and solidifying Crushing to obtain a solid resin composition.
[0063] 前記樹脂組成物を硬化させる方法として、樹脂組成物が紫外線及び電子線硬化 性の場合は、透光性の所定形状の金型等に必要に応じて光重合開始剤を添加した 樹脂組成物を充填、あるいは基板上に塗布した後、紫外線及び電子線を照射して硬 化させればよい。  [0063] As a method for curing the resin composition, when the resin composition is ultraviolet and electron beam curable, a resin obtained by adding a photopolymerization initiator to a light-transmitting mold having a predetermined shape as necessary What is necessary is just to harden by filling with a composition or apply | coating on a board | substrate, and irradiating an ultraviolet-ray and an electron beam.
[0064] ここで用いられる光重合開始剤としては、例えば、ァセトフエノン、ァセトフエノンベン ジルケタール、 1ーヒドロキシシクロへキシルフェニルケトン、 2, 2—ジメトキシー2—フ ェニノレアセトフエノン、キサントン、フノレ才レノン、ベンズァノレデヒド、フノレ才レン、アント ラキノン、トリフエニルァミン、カルバゾール、 3—メチルァセトフエノン、 4—クロ口ベン ゾフエノン、 4, A' ージメトキシベンゾフエノン、 4, A' ージァミノべンゾフエノン、ミヒラ ーケトン、ベンゾインプロピノレエーテノレ、ベンゾインェチノレエーテノレ、ペンジノレジメチ ノレケタール、 1— (4—イソプロピルフエニル) 2—ヒドロキシ一 2—メチルプロパン一 1 オン、 2—ヒドロキシ 2—メチルー 1 フエニルプロパン 1 オン等の光ラジカ ル開始剤等が挙げられる。 [0064] Examples of the photopolymerization initiator used here include acetophenone and acetophenone. Zirketal, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-2-phenenoreacetophenone, xanthone, funole lenon, benzanoldehydr, funole ren, anthraquinone, triphenylamine, carbazole, 3-Methylacetophenone, 4-Chronobenzophenone, 4, A'-Dimethoxybenzophenone, 4, A'-Diaminobenzophenone, Michler's ketone, Benzoinpropinoreethenore, Benzoinetinoreethenole, Penzinoresimethinoreketal Photo-radical initiators such as 1- (4-isopropylphenyl) 2-hydroxy-1-2-methylpropane 1-one, 2-hydroxy-2-methyl-1-phenylpropane 1-one, and the like.
[0065] 一方、樹脂組成物が熱硬化性の場合は、必要に応じて熱ラジカル発生剤等の熱重 合開始剤を添加した樹脂組成物を調製後、圧縮成形、トランスファー成形、射出成 形等により熱硬化成形することができる。ここで用いられる熱重合開始剤としては、例 えば、 2, 2' ーァゾビスイソブチロニトリル、 2, 2' ーァゾビス(2 , 4 ジメチルバレロ 二トリノレ)、 2, 2' ーァゾビス(4ーメトキシー 2, 4 ジメチルバレロニトリル)等のァゾ 化合物、ベンゾィルペルォキシド、ラウロイルペルォキシド、 t ブチルペルォキシピ バレート、 1 , 1' ビス(t ブチルペルォキシ)シクロへキサン等の有機過酸化物等 が挙げられる。  [0065] On the other hand, when the resin composition is thermosetting, a resin composition to which a thermal polymerization initiator such as a thermal radical generator is added as necessary is prepared, and then compression molding, transfer molding, injection molding is performed. The thermosetting molding can be performed by the above. Examples of the thermal polymerization initiator used here include 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4 dimethylvalero nitrinole), 2,2'-azobis (4-methoxy-). 2, 4 dimethylvaleronitrile) and other azo compounds, benzoyl peroxide, lauroyl peroxide, t-butylperoxypivalate, 1, 1 'bis (t-butylperoxy) cyclohexane, etc. And the like.
[0066] (光ピックアップ装置)  [0066] (Optical pickup device)
次に、本発明のプラスチック製光学素子及び光ピックアップ装置について図 1及び 図 2を参照して説明する。  Next, the plastic optical element and the optical pickup device of the present invention will be described with reference to FIG. 1 and FIG.
[0067] 本発明の光ピックアップ装置 1は、波長 650nmの光を適用する現行の DVD (以下 、現行 DVDと表記)、波長 405nmの光を適用する、所謂次世代の DVD (以下、次 世代 DVDと表記)の 2種類の光情報記録媒体 5について情報の再生、記録を行う装 置である。  [0067] The optical pickup device 1 of the present invention includes a current DVD (hereinafter referred to as current DVD) that applies light having a wavelength of 650 nm, a so-called next-generation DVD (hereinafter referred to as next-generation DVD) that applies light having a wavelength of 405 nm. This is a device for reproducing and recording information on two types of optical information recording media 5.
[0068] 光ピックアップ装置 1は、光源 2から出射されるレーザー光(光)をコリメータレンズ 3 、後述する微細構造を有する対物レンズ (プラスチック製光学素子) 10といった単玉 光学素子を通過させて、光軸 4上で光情報記録媒体 5の情報記録面 6に集めて集光 スポットを形成し、情報記録面 6からの反射光を偏向ビームスプリッタ 7で取り込み、 検出器 8の受光面に再びビームスポットを形成するものである。 [0069] 光源 2はレーザーダイオードを有して構成されており、公知の切り換え方法により、 650nm 405nmと言う 2種類の波長の光を選択して出射できる構成となっている。 The optical pickup device 1 passes laser light (light) emitted from a light source 2 through a single lens optical element such as a collimator lens 3 and an objective lens (plastic optical element) 10 having a fine structure described later, A light collecting spot is formed by collecting on the information recording surface 6 of the optical information recording medium 5 on the optical axis 4, and the reflected light from the information recording surface 6 is taken in by the deflecting beam splitter 7, and the beam is again applied to the light receiving surface of the detector 8. A spot is formed. [0069] The light source 2 includes a laser diode, and is configured to be able to select and emit light of two types of wavelengths of 650 nm and 405 nm by a known switching method.
[0070] コリメータレンズ 3、対物レンズ (プラスチック製光学素子) 10、偏向ビームスプリッタ 7は、光学素子ユニットを構成する。  [0070] The collimator lens 3, the objective lens (plastic optical element) 10, and the deflection beam splitter 7 constitute an optical element unit.
[0071] 本発明に係る対物レンズ 10は微細構造を有する光学素子であって、樹脂組成物を 射出成形で成形することにより作製される。対物レンズ 10は、図 2に示すように両面 非球面の単玉光学素子であり、その一方(光源側)の光学面 11上に該光学面 11を 通過する所定の光に対して予め定められた光路差を付与する光路差付与構造 20 ( 微細構造)を有している。  [0071] The objective lens 10 according to the present invention is an optical element having a fine structure, and is produced by molding a resin composition by injection molding. As shown in FIG. 2, the objective lens 10 is a single-sided optical element having a double-sided aspheric surface, and is predetermined for predetermined light passing through the optical surface 11 on one (light source side) optical surface 11 thereof. It has an optical path difference providing structure 20 (fine structure) that provides an optical path difference.
[0072] 光路差付与構造 20は、光学面 11が光軸 4を中心とした 3つの輪帯状レンズ面(以 下、内側から順に第 1輪帯状レンズ面 21、第 2輪帯状レンズ面 22、第 3輪帯状レンズ 面 23と言う)により構成され、該 3つの輪帯状レンズ面 2;! 23の内隣り合う輪帯状レ ンズ面 2;! 23は異なる屈折力を有している。  [0072] The optical path difference providing structure 20 includes three annular lens surfaces with the optical surface 11 centered on the optical axis 4 (hereinafter, the first annular lens surface 21, the second annular lens surface 22, The three annular lens surfaces 2;! 23 of the adjacent annular lens surfaces 2;! 23 have different refractive powers.
[0073] 第 1輪帯状レンズ面 21と第 3輪帯状レンズ面 23とは同一の光学面 11上にあり、第 2 輪帯状レンズ面 22は光学面 11から平行移動した面となって!/、る。  [0073] The first annular lens surface 21 and the third annular lens surface 23 are on the same optical surface 11, and the second annular lens surface 22 is a surface translated from the optical surface 11! / RU
[0074] 第 1輪帯状レンズ面 21は、波長 650nm 405nm両方の光を通過させ、第 2輪帯 状レンズ面 22は、現行 DVDに対応した波長 650nmの光を通過させ、第 3輪帯状レ ンズ面 23は、次世代 DVDに対応した波長 405nmの光を通過させる。そして、各輪 帯状レンズ面 2;! 23を通過した光は、情報記録面 6の同じ位置に集光されるように なっている。  [0074] The first annular lens surface 21 transmits light having both wavelengths of 650 nm and 405 nm, and the second annular lens surface 22 transmits light having a wavelength of 650 nm corresponding to the current DVD and the third annular lens surface. The surface 23 passes light with a wavelength of 405 nm corresponding to the next-generation DVD. The light that has passed through each annular lens surface 2;! 23 is condensed at the same position on the information recording surface 6.
[0075] なお、図 2では、第 1輪帯状レンズ面 21と第 3輪帯状レンズ面 23とは同一光学面 11 上に設けられている力 S、これら第 1及び第 3輪帯状レンズ面 21 23とは同一光学面 上に設けなくてもよぐまた第 2輪帯状レンズ面 22は、光学面 11から平行移動した面 となっているが、特に平行移動した面でなくてもよい。また、 3つの輪帯状レンズ面 21 23は 5つであってもよぐ少なくとも 3つ以上であればよい。  In FIG. 2, the first annular lens surface 21 and the third annular lens surface 23 have a force S provided on the same optical surface 11, and the first and third annular lens surfaces 21. The second annular lens surface 22 does not have to be provided on the same optical surface as 23, and the second annular lens surface 22 is a surface translated from the optical surface 11; Further, the number of the three annular lens surfaces 2123 may be five or at least three.
[0076] こうして形成された光路差付与構造 20の作用により、対物レンズ 10は現行 DVD 次世代 DVDといった複数種の光情報記録媒体 5に対して、光源 2で出射した光の情 報記録面 6への集光と、情報記録面 6で反射した光の検出器 8 向けての集光を高 い信頼性で行うことができる。また、対物レンズ 10をなす樹脂組成物は 85%以上と 言う高い光透過率を有しているため、上記集光は高い効率で行うことができる。よつ て、光源 2の消費電力を小さくすることができるので、光ピックアップ装置 1全体の消 費電力を軽減できる。 [0076] Due to the action of the optical path difference providing structure 20 formed in this way, the objective lens 10 has the information recording surface 6 of the light emitted from the light source 2 with respect to a plurality of types of optical information recording media 5 such as the current DVD next-generation DVD. And the light reflected from the information recording surface 6 toward the detector 8 is highly concentrated. Can be performed with high reliability. In addition, since the resin composition forming the objective lens 10 has a high light transmittance of 85% or more, the above-described light collection can be performed with high efficiency. Therefore, since the power consumption of the light source 2 can be reduced, the power consumption of the entire optical pickup device 1 can be reduced.
[0077] なお、本発明に係る対物レンズ 10は、上記光路差付与構造 20を有するものに限ら ず、例えば、図 3〜図 7に示す光路差付与構造 20a〜20dを有する対物レンズ 10a 〜; 10eとしてあよい。  Note that the objective lens 10 according to the present invention is not limited to the one having the optical path difference providing structure 20 described above. For example, the objective lens 10a having the optical path difference providing structures 20a to 20d shown in FIGS. Good as 10e.
[0078] 図 3における光路差付与構造 20aは、光軸 4を中心とした複数の回折輪帯 21aから なり、複数の回折輪帯 21aの断面が鋸歯状であり、且つ各回折輪帯 21aの光学面 11 aが不連続面となっている。また、複数の回折輪帯 21aは光軸 4から離れるにしたがつ て厚みが増すように形成されている。図 3に示す対物レンズ 10aは所謂回折レンズで ある。  [0078] The optical path difference providing structure 20a in Fig. 3 includes a plurality of diffraction ring zones 21a with the optical axis 4 as the center, the cross sections of the plurality of diffraction ring zones 21a are serrated, and each of the diffraction ring zones 21a The optical surface 11a is a discontinuous surface. The plurality of diffraction ring zones 21a are formed to increase in thickness as they move away from the optical axis 4. The objective lens 10a shown in FIG. 3 is a so-called diffractive lens.
[0079] 図 4における光路差付与構造 20bは、光軸 4を中心とした位相差を生じる複数の輪 帯状凹部 21bを同心円状に有している。輪帯状凹部 21bは、光学面 l ibの内の光軸 4を中心とした一方の面(図 4における光軸 4を中心に上下の光学面)に 5つずつ形 成されている。また、隣り合う輪帯状凹部 21bどうしは連続して一体になつており、各 輪帯状凹部 21b全体としての断面が階段状となっている。また、各輪帯状凹部 21bを 形成する光学面 22bは、光学面 l ibに対して平行移動した面となっている。図 4に示 す対物レンズ 10bは、所謂位相差レンズである。  The optical path difference providing structure 20b in FIG. 4 has a plurality of annular recesses 21b that cause a phase difference around the optical axis 4 in a concentric manner. The ring-shaped concave portions 21b are formed on each of the optical surfaces l ib centered on the optical axis 4 (on the upper and lower optical surfaces centering on the optical axis 4 in FIG. 4). Adjacent ring-shaped recesses 21b are continuously integrated with each other, and the entire cross-section of each ring-shaped recess 21b is stepped. In addition, the optical surface 22b that forms each annular zone-shaped recess 21b is a surface that is translated with respect to the optical surface l ib. The objective lens 10b shown in FIG. 4 is a so-called phase difference lens.
[0080] なお、図 4では隣り合う輪帯状凹部 21bどうしが連続して一体になつていて、全体の 断面が階段状のものであるとしたが、単に光学面 l ibに輪帯状凹部 21bを個々に設 けたものとしてもよい(この場合、例えば、図 2に示した対物レンズ 10と同様の構造と なる)。また、図 4では輪帯状凹部 21bを同心円状に有しているとした力 図 5に示す ように、図 2の第 3輪帯状レンズ面 23上に輪帯状凸部 23bを有した対物レンズ 10cと してもよい(図 5中、図 2と同様の構成部分については同様の符号を付した)。  [0080] In Fig. 4, the adjacent annular recesses 21b are continuous and integrated, and the entire cross section is stepped. However, the annular recess 21b is simply formed on the optical surface l ib. They may be provided individually (in this case, for example, the structure is the same as that of the objective lens 10 shown in FIG. 2). Further, in FIG. 4, the force that the annular zone-shaped concave portion 21b has a concentric shape, as shown in FIG. 5, the objective lens 10c having the annular zone-shaped convex portion 23b on the third annular zone-shaped lens surface 23 of FIG. (In FIG. 5, the same components as those in FIG. 2 are denoted by the same reference numerals).
[0081] 図 6における光路差付与構造 20dは、光軸 4を中心とした複数の回折輪帯 21dから なり、複数の回折輪帯 21dの断面が鋸歯状であり、且つ各回折輪帯 21dの光学面 1 Idが不連続面である。そして、各回折輪帯 21dの断面が光軸方向に沿った 3段 22d の階段状であり、各段 22dの光学面 12dが不連続面で、光軸 4に対して直交する面と なっている。 The optical path difference providing structure 20d in FIG. 6 is composed of a plurality of diffraction ring zones 21d with the optical axis 4 as the center, the cross sections of the plurality of diffraction ring zones 21d are sawtooth-shaped, and each of the diffraction ring zones 21d The optical surface 1 Id is a discontinuous surface. The cross section of each diffraction ring zone 21d is 3 steps 22d along the optical axis direction. The optical surface 12d of each step 22d is a discontinuous surface and is a surface orthogonal to the optical axis 4.
[0082] なお、図 6に示すレンズ 10dは、例えば、図 7に示すように図 6と同様の光路差付与 構造 20dを有するホログラム光学素子(HOE) 10eと対物レンズ 1 Ofとで別体の構成 としてもよい。この場合、ホログラム光学素子 10eは平板状の光学素子を使用して、 該光学素子の対物レンズ 10fの面に光路差付与構造 20dを設ける。  [0082] It should be noted that the lens 10d shown in FIG. 6 includes, for example, a hologram optical element (HOE) 10e having an optical path difference providing structure 20d similar to FIG. 6 and an objective lens 1 Of as shown in FIG. It may be configured. In this case, the hologram optical element 10e uses a flat optical element, and the optical path difference providing structure 20d is provided on the surface of the objective lens 10f of the optical element.
[0083] なお、光ピックアップ装置 1は、例えば、 CD、現行 DVD、次世代 DVDの 3種の光 情報記録媒体 5について情報の再生、記録を行うこととしてもよい。光ピックアップ装 置 1で情報の再生、記録を行う光情報記録媒体 5の組み合わせは設計事項であり、 適宜設定される。  Note that the optical pickup device 1 may perform information reproduction and recording on, for example, three types of optical information recording media 5 of a CD, a current DVD, and a next-generation DVD. The combination of the optical information recording medium 5 for reproducing and recording information with the optical pickup device 1 is a design matter and is appropriately set.
実施例  Example
[0084] 次に、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるも のではない。  Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
[0085] (製造例 1)  [0085] (Production Example 1)
0. 027モルのリン酸水素ニナトリウムを含有する水溶液 3Lに、 3. 53モルの硫酸ァ ルミニゥム水溶液と、 7. 06モルのリン酸水素ニナトリウム水溶液のそれぞれ 2Lを、ダ ブルジェット法で 10分間かけて添加した。微粒子形成中の pHは硫酸を用いて 3. 0 に、温度は 30°Cに制御した。添加終了後、限外濾過法により可溶性塩類を脱塩除 去し、 10質量%のリン酸アルミニウム分散液を得た。この分散液 100質量部にメタノ ール 300質量部と 1モル%の硝酸水溶液を添加した。この液を 50°Cで撹拌しながら 、メタノール 100質量部と γ —メタクリロキシプロピルトリメトキシシラン 6質量部の混合 液を 60分かけて添加し、その後更に 2時間撹拌した。得られた透明な分散液を酢酸 ェチルに懸濁させ、遠心分離を行い、白色の微粒粉末を得た。 ΤΕΜ観察によれば この粉末は平均粒径約 20nmであった。これを無機微粒子 Aとした。  0. 027 mol of disodium hydrogen phosphate containing 3 L, 3.53 mol of aluminum sulfate aqueous solution and 7.06 mol of disodium hydrogen phosphate aqueous solution 2 L each Added over a minute. During the microparticle formation, the pH was controlled at 3.0 using sulfuric acid, and the temperature was controlled at 30 ° C. After the addition, soluble salts were desalted and removed by ultrafiltration to obtain a 10% by mass aluminum phosphate dispersion. To 100 parts by mass of this dispersion, 300 parts by mass of methanol and a 1 mol% nitric acid aqueous solution were added. While stirring this solution at 50 ° C., a mixed solution of 100 parts by mass of methanol and 6 parts by mass of γ-methacryloxypropyltrimethoxysilane was added over 60 minutes, and then the mixture was further stirred for 2 hours. The obtained transparent dispersion was suspended in ethyl acetate and centrifuged to obtain a white fine powder. According to observation, this powder had an average particle size of about 20 nm. This was designated as inorganic fine particles A.
[0086] (製造例 2)  [0086] (Production Example 2)
日本ァエロジル社製の酸化アルミニウム C (平均粒径約 13nm)微粒子 5質量部に、 メタノール 300質量部と 1モル%の硝酸水溶液とを添加した。この液を 50°Cで撹拌し ながら、メタノール 100質量部と γ —メタクリロキシプロピルトリメトキシシラン 6質量部 の混合液を 60分かけて添加し、その後更に 2時間撹拌した。得られた透明な分散液 を酢酸ェチルに懸濁させ、遠心分離を行い、白色の微粒粉末を得た。 TEM観察に よればこの粉末は平均粒径約 15nmであった。これを無機微粒子 Bとした。 300 parts by mass of methanol and 1 mol% nitric acid aqueous solution were added to 5 parts by mass of aluminum oxide C (average particle size of about 13 nm) manufactured by Nippon Aerosil Co., Ltd. While stirring this solution at 50 ° C, 100 parts by mass of methanol and 6 parts by mass of γ-methacryloxypropyltrimethoxysilane The mixture was added over 60 minutes and then stirred for another 2 hours. The obtained transparent dispersion was suspended in ethyl acetate and centrifuged to obtain a white fine powder. According to TEM observation, this powder had an average particle size of about 15 nm. This was designated as inorganic fine particles B.
[0087] (製造例 3)  [0087] (Production Example 3)
製造例 2において、 γ—メタクリロキシプロピルトリメトキシシランを用いる代わりにシ クロペンチルトリメトキシシランを用いる以外は、同様の操作で白色の微粒粉末を得た 。 ΤΕΜ観察によればこの粉末は平均粒径約 18nmであった。これを無機微粒子 C ; 反応性基を有して!/、な!/、無機微粒子とした。  A white fine powder was obtained in the same manner as in Production Example 2, except that cyclopentyltrimethoxysilane was used instead of γ-methacryloxypropyltrimethoxysilane. According to observation, this powder had an average particle size of about 18 nm. This was designated as inorganic fine particles C; having reactive groups! /, N! /, Inorganic fine particles.
[0088] 実施例;!〜 5、比較例;!〜 5  [0088] Examples;! To 5, comparative examples;! To 5
表 1に示す配合組成に従って、各原料を混合後、混練機を用いて混練することで 均一な熱硬化性樹脂組成物を得た。得られた樹脂組成物をそれぞれ 30mm X 30m m X 3mmの寸法の金型内に充填した後、 220°Cで 20min加熱プレスすることで板 状のプラスチック製光学素子を得た。  According to the blending composition shown in Table 1, each raw material was mixed and then kneaded using a kneader to obtain a uniform thermosetting resin composition. Each of the obtained resin compositions was filled in a mold having dimensions of 30 mm × 30 mm × 3 mm, and then heated and pressed at 220 ° C. for 20 minutes to obtain a plate-like plastic optical element.
[0089] [表 1] [0089] [Table 1]
JP2007/071629 JP2007 / 071629
贓翁 ( s) 贓 翁 (s)
Figure imgf000023_0001
Figure imgf000023_0001
[0090] なお、表 1中、無機微粒子以外の各成分の詳細は以下の通りである [0090] In Table 1, details of each component other than the inorganic fine particles are as follows.
[0091] 籠状シルセスキォキサン A : Methacryl— P〇SS™ (シグマアルドリッチ社 f [0091] Soil-like silsesquioxane A: Methacryl— P〇SS ™ (Sigma Aldrich f
籠状シルセスキォキサン B: Methacryl一 Isobutyl一 POS S1 Soil-like silsesquioxane B: Methacryl 1 Isobutyl 1 POS S 1
社製)  (Made by company)
籠状シルセスキォキサン C: Octacyclohexvl— POSS™ (反応性基を有して 、か V、籠状シルセスキォキサン、シグマアルドリッチ社製) Saddle Silsesquioxane C: Octacyclohexvl— POSS ™ (with reactive groups V, rod-shaped silsesquioxane, manufactured by Sigma-Aldrich)
多官能性化合物 A :ペンタエリスリトールテトラアタリレート  Multifunctional compound A: Pentaerythritol tetratalylate
多官能性化合物 B:トリメチロールプロパントリメタタリレート  Multifunctional compound B: Trimethylolpropane trimetatalylate
重合開始剤:ァゾビスイソプチロニトリル  Polymerization initiator: Azobisisoptyronitrile
安定剤 A :テトラキス(1 , 2, 2, 6, 6—ペンタメチルピペリジル)ブタンテトラカルボキ シレート  Stabilizer A: Tetrakis (1, 2, 2, 6, 6-pentamethylpiperidyl) butanetetracarboxylate
安定剤 Β : 2, 2' ーメチレンビス(4, 6—ジー t—ブチルフエニル)ー2—ェチルへキ シルホスファイト  Stabilizer Β: 2, 2'-Methylenebis (4,6-di-tert-butylphenyl) -2-ethyl hexyl phosphite
界面活性剤:ペンタエリスリトールジステアレート。  Surfactant: Pentaerythritol distearate.
[0092] 次に、実施例;!〜 5、及び比較例 1〜5にて得られたプラスチック製光学素子につい て、以下の方法に基づき光学特性評価を実施し、結果を表 2に示した。 [0092] Next, the optical properties of the plastic optical elements obtained in Examples;! To 5 and Comparative Examples 1 to 5 were evaluated based on the following method. The results are shown in Table 2. .
[0093] 〔プラスチック製光学素子の評価〕 [Evaluation of Plastic Optical Element]
(着色性及び透明性評価)  (Colorability and transparency evaluation)
上記プラスチック製光学素子について、波長 400nmによる光線透過率の測定し、 透過光を介しての色調を目視観察し、着色性及び透明性の評価を行った。その結果 、各プラスチック製光学素子とも光線透過率が 86%以上で、高い透過率を示した。  About the said plastic optical element, the light transmittance by wavelength 400nm was measured, the color tone through the transmitted light was visually observed, and coloring property and transparency were evaluated. As a result, each optical element made of plastic had a light transmittance of 86% or more and a high transmittance.
[0094] (光耐久性の評価) [0094] (Evaluation of light durability)
90°C、 55%RHの恒温恒湿槽内で、図 1に記載の光ピックアップ装置を用い、各プ ラスチック製光学素子上に光源 2のレーザーダイオードから 405nmの波長の光を直 径 lmmの円形スポット光として 1500時間に亘り連続照射を施した後、そのレーザー 照射箇所を目視観察し、下記の基準に従って、(1)白濁による透明性 (着色度)、 (2 )形状安定性にっレ、て評価した。  Using the optical pickup device shown in Fig. 1 in a constant temperature and humidity chamber at 90 ° C and 55% RH, light with a wavelength of 405 nm is emitted from the laser diode of the light source 2 onto each plastic optical element with a diameter of lmm. After continuous irradiation for 1500 hours as a circular spot light, the laser irradiation spot was visually observed and, according to the following criteria, (1) transparency due to cloudiness (coloration), (2) shape stability. And evaluated.
[0095] (1)着色度 [0095] (1) Coloring degree
〇:連続照射後、レーザー照射箇所に極僅か濁りが認められる  ◯: Slight turbidity is observed at the laser irradiated spot after continuous irradiation
△:連続照射後、レーザー照射箇所に濁りが認められる  Δ: After continuous irradiation, turbidity is observed at the laser irradiation point
X:連続照射後、レーザー照射箇所に白濁現象が認められる  X: After continuous irradiation, white turbidity is observed at the laser irradiation point
△以上なら、実用上許容の範囲にある。  If it is more than Δ, it is in a practically acceptable range.
[0096] (2)形状安定性 〇:連続照射後、レーザー照射箇所に極僅か変形が認められる [0096] (2) Shape stability ○: After continuous irradiation, slight deformation is observed at the laser irradiation point
△:連続照射後、レーザー照射箇所に僅かに変形が認められる  Δ: After continuous irradiation, slight deformation is observed at the laser irradiation point
X:連続照射後、レーザー照射箇所に変形が認められる  X: Deformation is observed in the laser irradiated area after continuous irradiation
△以上なら、実用上許容の範囲にある。  If it is more than Δ, it is in a practically acceptable range.
[表 2] [Table 2]
Figure imgf000025_0001
Figure imgf000025_0001
[0098] 表 2に示すように、本発明に係る樹脂組成物を用いて成形された成形物は、短波 長の光を長時間連続照射しても着色や白濁を生じず、更に変形が生じず高い形状 安定性を維持することができた。 [0098] As shown in Table 2, the molded product molded using the resin composition according to the present invention does not cause coloring or white turbidity even when continuously irradiated with short-wavelength light for a long time, and further deforms. High shape stability could be maintained.
[0099] 実施例 6  [0099] Example 6
実施例 1〜5に記載のプラスチック製光学素子と同様の組成で、射出成形によりそ れぞれについて図 2〜図 7に記載の構成からなる光学素子(対物レンズ)を作製し、 図 1に記載の構成で各光ピックアップ装置を作製した。次いで、各光ピックアップ装 置を用いて、レーザーダイオードによる 405nmの波長の光を用い、 DVDへの記録 及び再生を行った。  An optical element (objective lens) having the same composition as that of the plastic optical element described in Examples 1 to 5 and having the configuration described in FIGS. 2 to 7 was produced by injection molding. Each optical pickup device was fabricated with the structure described. Next, using each optical pickup device, recording and reproduction on DVD were performed using light of a wavelength of 405 nm by a laser diode.
[0100] 比較例 6 [0100] Comparative Example 6
比較例 1〜5に記載のプラスチック製光学素子と同様の組成で、実施例 6と同様の 方法にて光学素子を作製し、同様に DVDへの記録、及び再生を行った。  An optical element was produced in the same manner as in Example 6 with the same composition as the plastic optical element described in Comparative Examples 1 to 5, and recorded on and reproduced from a DVD in the same manner.
[0101] (評価) [0101] (Evaluation)
実施例 6の光学素子を用いた光ピックアップ装置は、長時間連続照射してもいずれ も変形等が認められず良好なピックアップ特性を示した。一方、比較例 6の光学素子 を用いると、その光学面の構造がより微細 (複雑)に形成されているものほど変形が生 じ、ピックアップ特性の低下が見られた。 The optical pickup device using the optical element of Example 6 showed good pickup characteristics with no deformation or the like even after continuous irradiation for a long time. On the other hand, the optical element of Comparative Example 6 When using, the smaller the optical surface structure is, the more deformed (complex) it is, the more deformation occurs, and the pickup characteristics decline.

Claims

請求の範囲 The scope of the claims
[1] 反応性基を有する籠状シルセスキォキサンの少なくとも 1種、反応性基を有する無機 微粒子の少なくとも 1種及び 2つ以上の反応性基を有する多官能性化合物の少なく とも 1種とからなる混合物を共重合させて得られる重合体を含む樹脂組成物であるこ とを特徴とするプラスチック光学素子材料。  [1] At least one kind of caged silsesquioxane having a reactive group, at least one kind of inorganic fine particles having a reactive group, and at least one kind of a polyfunctional compound having two or more reactive groups A plastic optical element material, which is a resin composition comprising a polymer obtained by copolymerizing a mixture comprising:
[2] 前記籠状シルセスキォキサンが Tn構造 (下記一般式( 1 ) )及び Dm構造 (下記一般式 [2] The cage silsesquioxane has a T n structure (the following general formula (1)) and a D m structure (the following general formula
(2) )で表される構造単位からなり、これらから下記一般式(3)で表される構造単位か ら構成される化合物であって、化合物中に少なくとも 1つの反応性基を有することを 特徴とする請求の範囲第 1項に記載のプラスチック光学素子材料。  (2) a compound composed of the structural unit represented by) and composed of the structural unit represented by the following general formula (3), and having at least one reactive group in the compound 2. The plastic optical element material according to claim 1, wherein
一般式(1) R'Si COH) O  General formula (1) R'Si COH) O
3-n n/2  3-n n / 2
一般式(2) (R2) Si (OH) O General formula (2) (R 2 ) Si (OH) O
2 2-m m/2  2 2-m m / 2
(式中、 nは 1〜3の整数を表し、 mは 1、 2の整数を表す。 R1, R2は水素原子、置換基 を表し、置換基の少なくとも 1つは反応性基を表す。 ) (In the formula, n represents an integer of 1 to 3, m represents an integer of 1 or 2. R 1 and R 2 represent a hydrogen atom and a substituent, and at least one of the substituents represents a reactive group. )
一般式(3) T3 T1General formula (3) T 3 T 1 D °
P q r  P q r
(式中、 Tは Siについてのシロキサン結合の数が 3であることを、 Dは Siについてのシ ロキサン結合の数が 2であることを表す。 1は 1、 2の整数、 oは 1、 2の整数、 pは 4〜20 の整数、 q、 rは 0〜20の整数を表し、 p + q + 6である。 )  (In the formula, T represents the number of siloxane bonds for Si is 3, D represents the number of siloxane bonds for Si is 2. 1 is an integer of 1, 2 and o is 1, 2 is an integer, p is an integer from 4 to 20, q, r is an integer from 0 to 20, and p + q + 6.)
[3] 前記籠状シルセスキォキサンがビュル基、(メタ)アタリロイル基、エポキシ基、ォキセ タニル基、メルカプト基から選ばれる反応性基を有することを特徴とする請求の範囲 第 1項または第 2項に記載のプラスチック光学素子材料。 [3] The cage-like silsesquioxane has a reactive group selected from a bur group, a (meth) atalyloyl group, an epoxy group, an oxetanyl group, and a mercapto group. 3. The plastic optical element material according to item 2.
[4] 前記反応性基を有する無機微粒子が無機酸化物であって、ビュル基、(メタ)アタリ口 ィル基、エポキシ基、ォキセタニル基、メルカプト基から選ばれる反応性基を有するこ とを特徴とする請求の範囲第 1項〜第 3項のいずれ力、 1項に記載のプラスチック光学 素子材料。 [4] The inorganic fine particles having a reactive group are inorganic oxides, and have a reactive group selected from a bur group, a (meth) attayl group, an epoxy group, an oxetanyl group, and a mercapto group. The plastic optical element material according to any one of claims 1 to 3, wherein the plastic optical element material according to claim 1 is characterized.
[5] 請求の範囲第 1項〜第 4項のいずれか 1項に記載のプラスチック光学素子材料を用 い、少なくとも 1つの光学面に所定の微細構造が設けられていることを特徴とするプラ スチック製光学素子。  [5] A plastic optical element material according to any one of claims 1 to 4, wherein a predetermined fine structure is provided on at least one optical surface. Stick optical element.
[6] 請求の範囲第 1項〜第 4項のいずれか 1項に記載のプラスチック光学素子材料を用 いて成形された厚さ 3mmの成形体の波長 400nmにおける光線透過率が 85%以上 であることを特徴とするプラスチック製光学素子。 [6] The plastic optical element material according to any one of claims 1 to 4 is used. A plastic optical element characterized in that a 3 mm-thick molded article has a light transmittance of 85% or more at a wavelength of 400 nm.
[7] 集光機能を有する集光装置に用いられることを特徴とする請求の範囲第 5項または 第 6項に記載のプラスチック製光学素子。  [7] The plastic optical element according to [5] or [6], which is used in a light collecting device having a light collecting function.
[8] 光情報記録媒体に対して情報の再生及び記録の少なくともいずれ力、を行う光ピック アップ装置であって、光を出射する光源と該光源から出射された光の該光情報記録 媒体への照射及び該光情報記録媒体で反射される光の集光の少なくともいずれか を行う光学素子ユニットとを備え、且つ該光学素子ユニットは請求の範囲第 5項〜第 7項のいずれ力、 1項に記載のプラスチック製光学素子を備えることを特徴とする光ピッ クアップ装置。  [8] An optical pickup device that performs at least one of reproducing and recording of information on an optical information recording medium, the light source emitting light, and the light emitted from the light source to the optical information recording medium An optical element unit that performs at least one of irradiation of light and condensing of light reflected by the optical information recording medium, and the optical element unit is any one of claims 5 to 7, 1 An optical pick-up device comprising the plastic optical element described in the above item.
[9] 前記光源は波長 390〜420nmの光を出射することを特徴とする請求の範囲第 8項 に記載の光ピックアップ装置。  9. The optical pickup device according to claim 8, wherein the light source emits light having a wavelength of 390 to 420 nm.
PCT/JP2007/071629 2006-12-01 2007-11-07 Plastic optical device material, plastic optical device made of the same, and optical pickup device WO2008065862A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006325362 2006-12-01
JP2006-325362 2006-12-01

Publications (1)

Publication Number Publication Date
WO2008065862A1 true WO2008065862A1 (en) 2008-06-05

Family

ID=39467657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071629 WO2008065862A1 (en) 2006-12-01 2007-11-07 Plastic optical device material, plastic optical device made of the same, and optical pickup device

Country Status (1)

Country Link
WO (1) WO2008065862A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150340A (en) * 2008-12-24 2010-07-08 Nitto Denko Corp Composition for silicone resin
JP2011165277A (en) * 2010-02-10 2011-08-25 Seiko Instruments Inc Near-field optical head and information recording and playback device
US8208359B2 (en) * 2006-12-04 2012-06-26 Panasonic Corporation Optical head, optical information recording and reproducing device, and optical information system device
US8222352B2 (en) 2008-12-24 2012-07-17 Nitto Denko Corporation Silicone resin composition
JP2013173910A (en) * 2012-01-27 2013-09-05 Asahi Kasei E-Materials Corp Composite metal oxide-containing curable resin composition
JP2017512215A (en) * 2013-12-26 2017-05-18 ドンジン セミケム カンパニー リミテッド Silsesquioxane capable of hot melt-extrusion, highly transparent and highly heat-resistant plastic transparent substrate using the same, and method for producing the same
US10787535B2 (en) 2016-04-11 2020-09-29 Nissan Chemical Corporation Polymerizable composition containing reactive silsesquioxane compound containing phenanthrene ring

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035646A1 (en) * 2004-09-27 2006-04-06 Nippon Steel Chemical Co., Ltd. Silica-containing silicone resin composition and its molded product
JP2006293202A (en) * 2005-04-14 2006-10-26 Konica Minolta Opto Inc Optical element and optical pickup device using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035646A1 (en) * 2004-09-27 2006-04-06 Nippon Steel Chemical Co., Ltd. Silica-containing silicone resin composition and its molded product
JP2006293202A (en) * 2005-04-14 2006-10-26 Konica Minolta Opto Inc Optical element and optical pickup device using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8208359B2 (en) * 2006-12-04 2012-06-26 Panasonic Corporation Optical head, optical information recording and reproducing device, and optical information system device
JP2010150340A (en) * 2008-12-24 2010-07-08 Nitto Denko Corp Composition for silicone resin
US8222352B2 (en) 2008-12-24 2012-07-17 Nitto Denko Corporation Silicone resin composition
JP2011165277A (en) * 2010-02-10 2011-08-25 Seiko Instruments Inc Near-field optical head and information recording and playback device
JP2013173910A (en) * 2012-01-27 2013-09-05 Asahi Kasei E-Materials Corp Composite metal oxide-containing curable resin composition
JP2017512215A (en) * 2013-12-26 2017-05-18 ドンジン セミケム カンパニー リミテッド Silsesquioxane capable of hot melt-extrusion, highly transparent and highly heat-resistant plastic transparent substrate using the same, and method for producing the same
US10787535B2 (en) 2016-04-11 2020-09-29 Nissan Chemical Corporation Polymerizable composition containing reactive silsesquioxane compound containing phenanthrene ring

Similar Documents

Publication Publication Date Title
WO2008065862A1 (en) Plastic optical device material, plastic optical device made of the same, and optical pickup device
JP2007131698A (en) Radiation-curable composition, cured material of the same and laminated material of the same
EP2177546A1 (en) Resin material for optical purposes, and optical element utilizing the same
JP2008001895A (en) Optical plastic material and optical element
JP2006188659A (en) Radiation-curable resin composition and cured product thereof
JP2006161030A (en) Radiation curable composition, its cured product and laminate
JP5163640B2 (en) Optical organic / inorganic composite material and optical element
JP2007077235A (en) Thermoplastic resin composition and optical element
JPWO2008015999A1 (en) Composite material and optical element
JP2009013009A (en) Method for producing inorganic fine particle powder, organic-inorganic composite material and optical element
WO2008069193A1 (en) Optical head, optical information recording and retrieval device, and optical information system device
JP2006299183A (en) Non-aqueous fine particle dispersion and thermoplastic composite material and optical element
JP4249634B2 (en) Radiation curable resin composition and method for producing radiation curable resin composition
JP2008074635A (en) Core-shell type silicon oxide particle, method for producing the same, inorganic particulate-dispersed resin composition and optical element using the same
JP2008280443A (en) Method for producing composite resin material, composite resin material, and optical element
JP2007254681A (en) Thermoplastic composite material and optical element
WO2008044342A1 (en) Organic/inorganic composite material and optical element
JP5119850B2 (en) Method for producing composite resin composition
EP1813968A1 (en) Optical element
JP2005036184A (en) Radiation hardenable resin composition and its hardened product
JP2007137984A (en) Composite material and optical element
JP2007270119A (en) Radiation-curable composition, cured product thereof and layered product thereof
JP2011159340A (en) Resin stamper
JP2007206197A (en) Optical resin material and optical element
JP2008074923A (en) Inorganic material for optical use, method for preparing the same, resin material for optical use and optical element by using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07831360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP