JPWO2008015999A1 - Composite material and optical element - Google Patents

Composite material and optical element Download PDF

Info

Publication number
JPWO2008015999A1
JPWO2008015999A1 JP2008527739A JP2008527739A JPWO2008015999A1 JP WO2008015999 A1 JPWO2008015999 A1 JP WO2008015999A1 JP 2008527739 A JP2008527739 A JP 2008527739A JP 2008527739 A JP2008527739 A JP 2008527739A JP WO2008015999 A1 JPWO2008015999 A1 JP WO2008015999A1
Authority
JP
Japan
Prior art keywords
composite material
resin
optical
compound
adamantyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008527739A
Other languages
Japanese (ja)
Inventor
安藤 浩明
浩明 安藤
蔵方 慎一
慎一 蔵方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Publication of JPWO2008015999A1 publication Critical patent/JPWO2008015999A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/008Mountings, adjusting means, or light-tight connections, for optical elements with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一定の光線透過率を維持しながら屈折率の低下を抑えかつ耐熱性に優れた光学素子を提供する。本発明に係る光学素子としての対物レンズは複合材料を成型したものであり、当該複合材料は樹脂と無機粒子との複合材料であって、前記無機粒子がアダマンチル基を有する化合物で表面修飾されている。Provided is an optical element that suppresses a decrease in refractive index while maintaining a constant light transmittance and is excellent in heat resistance. An objective lens as an optical element according to the present invention is formed by molding a composite material, and the composite material is a composite material of a resin and inorganic particles, and the inorganic particles are surface-modified with a compound having an adamantyl group. Yes.

Description

本発明は、レンズ、フィルター、グレーディング、光ファイバー、平板光導波路等として好適に用いられる複合材料及び光学素子に関する。   The present invention relates to a composite material and an optical element that are suitably used as a lens, a filter, a grading, an optical fiber, a flat optical waveguide, and the like.

MO、CD、DVD、HD−DVD、ブルーレイディスク等の光情報記録媒体に対して、情報の読み取りや、記録を行うプレーヤー、レコーダー及びドライブ等の情報機器には、光ピックアップ装置が備えられている。光ピックアップ装置には、光源から発した所定波長の光を光情報記録媒体に照射し、反射した光を受光素子で受光する光学素子ユニットが具備されており、この光学素子ユニットは、これらの光を光情報記録媒体の反射層や受光素子で集光させるためのレンズ等の光学素子を有している。   Information devices such as players, recorders, and drives for reading and recording information on optical information recording media such as MO, CD, DVD, HD-DVD, and Blu-ray disc are equipped with an optical pickup device. . The optical pickup device is provided with an optical element unit that irradiates an optical information recording medium with light having a predetermined wavelength emitted from a light source, and receives the reflected light by a light receiving element. And an optical element such as a lens for condensing the light with a reflection layer or a light receiving element of the optical information recording medium.

上述した光ピックアップ装置の光学素子は、射出成型等の手段により安価に作製できる等の点で、プラスチック材料を適用することが好ましい。光学素子に適用可能なプラスチックとしては、環状オレフィンとα−オレフィンの共重合体等が知られている(特許文献1参照)が、環状オレフィンが含有された物質は、湿度変化による屈折率の安定性は優れているものの、温度変化による屈折率の安定性は所望の効果を得ることが困難であった。   The optical element of the optical pickup device described above is preferably made of a plastic material in that it can be manufactured at low cost by means such as injection molding. As plastics applicable to optical elements, copolymers of cyclic olefins and α-olefins are known (see Patent Document 1), but substances containing cyclic olefins have a stable refractive index due to changes in humidity. Although the properties are excellent, the stability of the refractive index due to temperature change is difficult to obtain the desired effect.

屈折率の安定性は、樹脂と無機粒子とを混合した複合材料により線膨張を抑制することで向上できることが期待できる(特許文献2参照)。特許文献2に開示された技術では、線膨張率の抑制だけでなく、シリカ粒子の欠点である低屈折率を補うため、他の金属との複合酸化物の微粒子として用いることが提案されている。しかし、この手法では、吸湿性に富む酸化物の使用で、複合材料としての耐湿性、すなわち屈折率が湿度に依存して顕著に低下する可能性がある。
特開2002−105131号公報 特開2005−146042号公報
It can be expected that the stability of the refractive index can be improved by suppressing linear expansion with a composite material in which a resin and inorganic particles are mixed (see Patent Document 2). In the technique disclosed in Patent Document 2, it is proposed not only to suppress the linear expansion coefficient but also to use it as fine particles of complex oxides with other metals in order to compensate for the low refractive index, which is a defect of silica particles. . However, in this method, the use of an oxide having a high hygroscopic property may cause the moisture resistance as a composite material, that is, the refractive index, to be significantly reduced depending on the humidity.
JP 2002-105131 A JP 2005-146042 A

そこで、無機粒子の吸湿性を減じる手法として、無機粒子の表面をシランカップリング剤や各種有機物で処理することが考えられる。しかし、複合材料の光線透過率を向上させるために無機粒子の粒子径を小さくすると、無機粒子の表面積が大きくなることでその表面処理に必要な処理材料が多くなるとともに、樹脂中に拡散する量が増えることが多い。カップリング剤の副生成物としてのシリコンオイルや、表面処理剤としての有機物として頻繁に用いられる脂肪酸等は屈折率を低下させ、樹脂の耐熱性を損なう。   Therefore, as a technique for reducing the hygroscopicity of the inorganic particles, it is conceivable to treat the surface of the inorganic particles with a silane coupling agent or various organic substances. However, if the particle size of the inorganic particles is reduced in order to improve the light transmittance of the composite material, the surface area of the inorganic particles increases, so that the amount of treatment material required for the surface treatment increases and the amount that diffuses into the resin. Often increases. Silicon oil as a by-product of the coupling agent, fatty acid frequently used as an organic substance as the surface treatment agent, etc. lowers the refractive index and impairs the heat resistance of the resin.

本発明の目的は、一定の光線透過率を維持しながら屈折率の低下を抑えかつ耐熱性に優れた複合材料及び光学素子を提供することを目的とする。   An object of the present invention is to provide a composite material and an optical element that suppress a decrease in refractive index while maintaining a constant light transmittance and are excellent in heat resistance.

上記の目的を達成するための、本発明の第1の形態は、
樹脂と無機粒子との複合材料であって、
前記無機粒子がアダマンチル基を有する化合物で表面修飾されていることを特徴としている。
In order to achieve the above object, the first aspect of the present invention provides:
A composite material of resin and inorganic particles,
The inorganic particles are surface-modified with a compound having an adamantyl group.

上記複合材料においては、
前記アダマンチル基を有する化合物が、アダマンチル基とカルボキシル基又は水酸基とを結合した化合物であってもよいし、アダマンチル基を有するモノマーとアダマンチル基を有しないモノマーとを共重合した化合物であってもよいし、アダマンチル基をシランカップリング剤の官能基に導入した化合物であってもよい。
In the above composite material,
The compound having an adamantyl group may be a compound in which an adamantyl group and a carboxyl group or a hydroxyl group are bonded, or may be a compound obtained by copolymerizing a monomer having an adamantyl group and a monomer having no adamantyl group. Further, it may be a compound in which an adamantyl group is introduced into a functional group of a silane coupling agent.

上記複合材料においては、
前記樹脂がシクロオレフィン樹脂であるのが好ましい。
In the above composite material,
The resin is preferably a cycloolefin resin.

本発明の第2の形態は、
第1の形態の複合材料を用いて成型された光学素子である。
The second aspect of the present invention is:
It is the optical element shape | molded using the composite material of a 1st form.

本発明によれば、一定の光線透過率を維持しながら屈折率の低下を抑えかつ耐熱性に優れた複合材料及び光学素子を提供することができる(下記実施例参照)。   ADVANTAGE OF THE INVENTION According to this invention, the composite material and optical element which suppressed the fall of refractive index and excellent in heat resistance, maintaining a fixed light transmittance can be provided (refer the following Example).

光ピックアップ装置の内部構造を示す模式図である。It is a schematic diagram which shows the internal structure of an optical pick-up apparatus.

符号の説明Explanation of symbols

1 光ピックアップ装置
2 半導体レーザ発振器
3 コリメータ
4 ビームスプリッタ
5 1/4波長板
6 絞り
7 対物レンズ(光学素子)
8 センサーレンズ群
9 センサー
10 2次元アクチュエータ
D 光ディスク
D1 保護基板
D2 情報記録面
DESCRIPTION OF SYMBOLS 1 Optical pick-up apparatus 2 Semiconductor laser oscillator 3 Collimator 4 Beam splitter 5 1/4 wavelength plate 6 Aperture 7 Objective lens (optical element)
8 Sensor lens group 9 Sensor 10 Two-dimensional actuator D Optical disk D1 Protective substrate D2 Information recording surface

以下、本発明を実施するための最良の形態について図面を用いて説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、発明の範囲を以下の実施形態及び図示例に限定するものではない。   The best mode for carrying out the present invention will be described below with reference to the drawings. However, although various technically preferable limitations for implementing the present invention are given to the embodiments described below, the scope of the invention is not limited to the following embodiments and illustrated examples.

まず始めに、本発明に係る複合材料について説明する。   First, the composite material according to the present invention will be described.

当該複合材料には、(1)樹脂と(2)無機粒子とが含有されている。以下、(1)樹脂と(2)無機粒子とについてそれぞれ説明し、その後に(3)複合材料の製造方法、(4)複合材料の性質及び(5)光学素子の製造方法やその適用例についてそれぞれ説明する。
(1)樹脂
樹脂としては、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂などが適用可能である。光学材料として一般的に用いられる透明樹脂であれば、特に限定されるものではないが、光学素子としての加工性、成型サイクルタイムの関係で、当該樹脂は熱可塑性樹脂であることが好ましく、アクリル樹脂、環状オレフィン樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリアミド樹脂又はポリイミド樹脂であることがより好ましく、吸湿性が低い観点で、特に環状オレフィン樹脂であることが好ましい。例えば、当該樹脂として、特開2003−73559号公報等に記載の化合物を挙げることができ、その好ましい化合物を下記表1に示す。これらの樹脂のうち、吸湿率が0.5%以下であるものが好ましく、0.2%以下であるものが更に好ましい。
The composite material contains (1) resin and (2) inorganic particles. Hereinafter, (1) resin and (2) inorganic particles will be described, respectively, and then (3) composite material manufacturing method, (4) composite material properties, and (5) optical element manufacturing method and application examples thereof. Each will be explained.
(1) Resin As a resin, a thermoplastic resin, a thermosetting resin, a photocurable resin, etc. are applicable. Although it is not particularly limited as long as it is a transparent resin that is generally used as an optical material, the resin is preferably a thermoplastic resin in terms of workability as an optical element and molding cycle time, and acrylic resin. A resin, a cyclic olefin resin, a polycarbonate resin, a polyester resin, a polyether resin, a polyamide resin, or a polyimide resin is more preferable, and a cyclic olefin resin is particularly preferable from the viewpoint of low hygroscopicity. For example, examples of the resin include compounds described in JP-A No. 2003-73559, etc., and preferred compounds are shown in Table 1 below. Among these resins, those having a moisture absorption rate of 0.5% or less are preferred, and those having a moisture absorption rate of 0.2% or less are more preferred.

(2)無機粒子
(2.1)無機粒子
当該無機粒子は、特に限定されるものではなく、得られる複合材料の温度による屈折率の変化率(以後、|dn/dT|とする。)が小さいという目的を達成可能とする無機粒子の中から任意に選択することができる。
(2) Inorganic particles (2.1) Inorganic particles The inorganic particles are not particularly limited, and have a refractive index change rate (hereinafter referred to as | dn / dT |) depending on the temperature of the obtained composite material. It can be arbitrarily selected from inorganic particles that can achieve the purpose of being small.

具体的には酸化物微粒子、金属塩微粒子、半導体微粒子などが好ましく用いられ、この中から、光学素子として使用する波長領域において吸収、発光、蛍光等が生じないものを適宜選択して使用することが好ましい。   Specifically, oxide fine particles, metal salt fine particles, semiconductor fine particles, and the like are preferably used. Of these, those that do not generate absorption, light emission, fluorescence, etc. in the wavelength region used as an optical element are appropriately selected and used. Is preferred.

酸化物微粒子としては、金属酸化物を構成する金属が、Li、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Rb、Sr、Y、Nb、Zr、Mo、Ag、Cd、In、Sn、Sb、Cs、Ba、La、Ta、Hf、W、Ir、Tl、Pb、Bi及び希土類金属からなる群より選ばれる1種または2種以上の金属である金属酸化物を用いることができ、具体的には、例えば、二酸化ケイ素(シリカ)、酸化チタン、酸化亜鉛、酸化アルミニウム(アルミナ)、酸化ジルコニウム、酸化ハフニウム、酸化ニオブ、酸化タンタル、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化インジウム、酸化錫、酸化鉛、これら酸化物より構成される複酸化物であるニオブ酸リチウム、ニオブ酸カリウム、タンタル酸リチウム、アルミニウム・マグネシウム酸化物(MgAl)等が挙げられる。As oxide fine particles, the metal constituting the metal oxide is Li, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb. 1 selected from the group consisting of Sr, Y, Nb, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Ta, Hf, W, Ir, Tl, Pb, Bi and rare earth metals A metal oxide that is a seed or two or more kinds of metals can be used. Specifically, for example, silicon dioxide (silica), titanium oxide, zinc oxide, aluminum oxide (alumina), zirconium oxide, hafnium oxide, oxidation Niobium, tantalum oxide, magnesium oxide, calcium oxide, strontium oxide, barium oxide, indium oxide, tin oxide, lead oxide, niobium which is a double oxide composed of these oxides Lithium, potassium niobate, lithium tantalate, the aluminum magnesium oxide (MgAl 2 O 4), and the like.

また、酸化物微粒子として、希土類酸化物を用いることもでき、具体的には、酸化スカンジウム、酸化イットリウム、酸化ランタン、酸化セリウム、酸化プラセオジム、酸化ネオジム、酸化サマリウム、酸化ユウロピウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロシウム、酸化ホルミウム、酸化エルビウム、酸化ツリウム、酸化イッテルビウム、酸化ルテチウム等も挙げられる。   In addition, rare earth oxides can also be used as oxide fine particles. Specifically, scandium oxide, yttrium oxide, lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, and terbium oxide. Dysprosium oxide, holmium oxide, erbium oxide, thulium oxide, ytterbium oxide, lutetium oxide, and the like.

さらに、金属塩微粒子としては、炭酸塩、リン酸塩、硫酸塩などが挙げられ、具体的には炭酸カルシウム、リン酸アルミニウム等が挙げられる。   Further, examples of the metal salt fine particles include carbonates, phosphates, sulfates, and the like, specifically, calcium carbonate, aluminum phosphate and the like.

上述した無機粒子は、1種類の無機粒子を用いてもよく、また複数種類の無機粒子を併用してもよい。異なる性質を有する複数種類の無機粒子を用いることで、必要とされる特性を更に効率よく向上させることもできる。   As the inorganic particles described above, one type of inorganic particles may be used, or a plurality of types of inorganic particles may be used in combination. By using a plurality of types of inorganic particles having different properties, the required properties can be improved more efficiently.

無機粒子の平均粒子径は、1nm以上、100nm以下であることが好ましく、1nm以上、40nm以下であることがより好ましい。これは、平均粒子径が1nm未満の場合、無機粒子の分散が困難になり所望の性能が得られないおそれがあるため、平均粒子径は1nm以上であることが好ましい。一方、平均粒子径が100nmを超える場合、得られる複合材料が濁るなどして透明性が低下し、光線透過率が70%未満となるおそれがあることから、平均粒子径は100nm以下であることが好ましい。   The average particle diameter of the inorganic particles is preferably 1 nm or more and 100 nm or less, and more preferably 1 nm or more and 40 nm or less. This is because when the average particle size is less than 1 nm, it is difficult to disperse the inorganic particles and the desired performance may not be obtained. Therefore, the average particle size is preferably 1 nm or more. On the other hand, if the average particle diameter exceeds 100 nm, the resulting composite material may become turbid, resulting in a decrease in transparency and the light transmittance may be less than 70%. Therefore, the average particle diameter should be 100 nm or less. Is preferred.

ここで、平均粒子径とは、各粒子を同体積の球に換算した時の直径(球換算粒径)の体積平均値をいう。
(2.2)アダマンチル基を有する化合物
上記無機粒子は、アダマンチル基を有する化合物で表面修飾されている。
Here, an average particle diameter means the volume average value of the diameter (sphere conversion particle size) when each particle is converted into a sphere having the same volume.
(2.2) Compound having adamantyl group The inorganic particles are surface-modified with a compound having an adamantyl group.

アダマンチル基を有する化合物は、一の性質として、融点やガラス転移温度が高く、樹脂と混合されたとき当該複合材料のガラス転移温度を低下させにくい。他の性質として、アダマンチル基を有する化合物は、短波長領域から紫外線領域に至るまでの光吸収が少なく、吸湿率も低く、耐熱性にも優れる等の利点を有し、樹脂と混合されたとき当該複合材料で成型した光学素子の物性を劣化させにくい。他の性質として、アダマンチル基を有する化合物は、無機粒子の表面に存在すると分子間力が弱く、特にシクロオレフィン樹脂中で分散し易い。他の性質として、アダマンチル基を有する化合物は、比較的屈折率が高く、樹脂と混合されたとき当該複合材料の屈折率を低下させ難い。   A compound having an adamantyl group, as one property, has a high melting point and glass transition temperature, and when mixed with a resin, it is difficult to lower the glass transition temperature of the composite material. As another property, a compound having an adamantyl group has advantages such as low light absorption from the short wavelength region to the ultraviolet region, low moisture absorption, and excellent heat resistance, and when mixed with a resin. It is difficult to deteriorate the physical properties of an optical element molded with the composite material. As another property, a compound having an adamantyl group has a weak intermolecular force when present on the surface of inorganic particles, and is particularly easily dispersed in a cycloolefin resin. As another property, a compound having an adamantyl group has a relatively high refractive index, and when mixed with a resin, it is difficult to lower the refractive index of the composite material.

当該アダマンチル基を有する化合物としては、(2.2.1)アダマンチル基とカルボキシル基又は水酸基とを結合した化合物、(2.2.2)アダマンチル基を有するモノマーとその他のモノマーとを共重合した化合物及び(2.2.3)アダマンチル基をシランカップリング剤の官能基に導入した化合物が挙げられる。
(2.2.1)アダマンチル基とカルボキシル基又は水酸基とを結合した化合物
当該化合物は、下記式(1)のアダマンタン環とカルボキシル基又は水酸基とを結合した化合物である。
Examples of the compound having an adamantyl group include (2.2.1) a compound in which an adamantyl group and a carboxyl group or a hydroxyl group are bonded, and (2.2.2) a monomer having an adamantyl group and another monomer. Examples thereof include compounds and (2.2.3) compounds in which an adamantyl group is introduced into a functional group of a silane coupling agent.
(2.2.1) Compound in which an adamantyl group is bonded to a carboxyl group or a hydroxyl group The compound is a compound in which an adamantane ring of the following formula (1) is bonded to a carboxyl group or a hydroxyl group.

(2.2.2)アダマンチル基を有するモノマーとその他のモノマー(アダマンチル基を有しないモノマー)とを共重合した化合物
アダマンチル基を有するモノマーとしては、下記式(2)〜(11)の化合物等が挙げられる。これら二重結合を含む官能基の他、エポキシやイソシアネート、アミノ基とアダマンチル基を有する化合物等から得られる重合物が適用可能である。
(2.2.2) Compound obtained by copolymerizing monomer having adamantyl group and other monomer (monomer having no adamantyl group) Examples of the monomer having adamantyl group include compounds of the following formulas (2) to (11) Is mentioned. In addition to these functional groups containing double bonds, polymers obtained from epoxies, isocyanates, compounds having amino groups and adamantyl groups, and the like are applicable.

(2.2.3)アダマンチル基をシランカップリング剤の官能基に導入した化合物
当該化合物は、例えば上記式(2)〜(11)の化合物を、反応性基を有するシランカップリング剤と共重合することで得ることができる。重合性基を有するカップリング剤としては、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メルカプトプロピルジメトキシシラン等が挙げられる。
(3)複合材料の製造方法
複合材料の製造方法は、(3.1)無機粒子を上記「(2.2.1)〜(2.2.3)」の各項目で説明したアダマンチル基を有する化合物で表面修飾する表面修飾工程と、(3.2)表面修飾工程後に当該無機粒子を樹脂に分散させる分散工程と、を備えている。
(3.1)表面修飾工程
表面修飾工程では、無機粒子の分散液中に表面修飾剤(アダマンチル基を有する化合物)を添加し、加熱、乾燥処理を行い処理する方法や、乾燥した無機粒子の粉体に表面修飾剤の溶液を噴霧して加熱、乾燥して処理する方法などが挙げられる。上記の手法においては、各種分散機やミキサーなどを使用し、均一な表面処理を行うことが好ましい。
(3.2)分散工程
当該分散工程では、アダマンチル基を有する化合物で表面修飾された無機粒子(以下「表面修飾粒子」という。)と樹脂(特に熱可塑性樹脂)とを混合して、表面修飾粒子を樹脂に分散させる。表面修飾粒子と樹脂との混合方法としては、揮発性物質の使用量を低減させる観点から、溶融混練法を利用することが好ましい。
(2.2.3) Compound in which an adamantyl group is introduced into a functional group of a silane coupling agent The compound includes, for example, compounds of the above formulas (2) to (11) together with a silane coupling agent having a reactive group. It can be obtained by polymerization. Examples of the coupling agent having a polymerizable group include p-styryltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, and 3-mercaptopropyldimethoxysilane.
(3) Manufacturing method of composite material The manufacturing method of a composite material is (3.1) The adamantyl group which explained the inorganic particle in each item of said "(2.2.1)-(2.2.3)". And (3.2) a dispersion step of dispersing the inorganic particles in the resin after the surface modification step.
(3.1) Surface Modification Step In the surface modification step, a method of adding a surface modifier (compound having an adamantyl group) to a dispersion of inorganic particles, heating and drying, and processing the dried inorganic particles A method of spraying a solution of a surface modifier on the powder, heating and drying, and the like can be mentioned. In the above method, it is preferable to perform uniform surface treatment using various dispersers and mixers.
(3.2) Dispersing Step In the dispersing step, surface modification is performed by mixing inorganic particles surface-modified with a compound having an adamantyl group (hereinafter referred to as “surface-modified particles”) and a resin (particularly a thermoplastic resin). Disperse the particles in the resin. As a method of mixing the surface-modified particles and the resin, it is preferable to use a melt-kneading method from the viewpoint of reducing the amount of volatile substances used.

分散工程で溶融混練法を利用する場合には、表面修飾粒子と樹脂とを一括で添加し混練してもよいし、段階的に分割添加して混練してもよい。   When the melt kneading method is used in the dispersing step, the surface-modified particles and the resin may be added and kneaded all at once, or may be added in stages and kneaded.

分割添加する方法としては、一成分を数回に分けて添加する方法や、一成分を一括で添加し、他の成分を段階的に添加する方法、これらを組合せた方法を用いることができる。表面修飾粒子の添加は、粉体又は凝集状態のまま行うことが可能である。表面修飾粒子を液中に分散させた状態で添加することも可能であるが、この場合には、混練後に脱揮処理を行うことが必要であり、また、予め凝集粒子を一次粒子に分散させた後に添加することが好ましい。また、表面修飾粒子と樹脂とを予め混練した後、樹脂(熱可塑性樹脂)以外の成分で予め添加しなかった成分を添加して更に溶融混練する際も、これらを一括で添加して混練してもよいし、段階的に分割添加して混練してもよい。   As a method of adding in a divided manner, a method of adding one component in several times, a method of adding one component at a time and adding other components in stages, or a method combining these can be used. The addition of the surface-modified particles can be performed in a powder or agglomerated state. It is also possible to add the surface-modified particles in a state dispersed in the liquid, but in this case, it is necessary to perform a devolatilization treatment after kneading, and the aggregated particles are dispersed in the primary particles in advance. It is preferable to add it after. In addition, after kneading the surface-modified particles and the resin in advance, when adding components other than the resin (thermoplastic resin) that were not previously added and further melt-kneading them, they are added all at once and kneaded. Alternatively, it may be kneaded by adding in stages.

分散工程で溶融混練法を利用する場合には、不活性ガスである窒素、ヘリウム、ネオン、アルゴン、クリプトン及びキセノンの中から選択される一種のガス又は二種以上の混合ガスの雰囲気下で混合を行うことが好ましい。ただし、炭酸ガス、エチレンガス及び水素ガス等の一般的なガスであっても、混練される物質に対する反応性を有さないガスであれば、上述した不活性ガスと混合して用いてもよい。   When using the melt-kneading method in the dispersion step, mixing is performed in an atmosphere of one kind of gas selected from the inert gases nitrogen, helium, neon, argon, krypton, and xenon, or two or more kinds of mixed gases. It is preferable to carry out. However, even general gases such as carbon dioxide, ethylene gas, and hydrogen gas may be used by mixing with the above-described inert gas as long as they are not reactive to the material to be kneaded. .

分散工程で溶融混練法を利用する場合には、溶融混練装置における反応系内において、残留する酸素を極力排除することが好ましく、具体的には、反応系内における酸素量は1%以下であることが好ましく、0.2%以下であることがより好ましい。これは、酸素による酸化反応によって樹脂が劣化するとともに、着色が発生しやすいためである。   When using the melt-kneading method in the dispersion step, it is preferable to eliminate residual oxygen as much as possible in the reaction system in the melt-kneading apparatus. Specifically, the amount of oxygen in the reaction system is 1% or less. It is preferable that it is 0.2% or less. This is because the resin is deteriorated by the oxidation reaction with oxygen, and coloring is easily generated.

溶融混練法に適用可能な装置としては、ラボプラストミル、ブラベンダー、バンバリーミキサー、ニーダー及びロール等のような密閉式混練装置又はバッチ式混練装置を挙げることができる。また、溶融混練法に用いられる装置としては、単軸押出機や、二軸押出機等のように連続式の溶融混練装置を用いることも可能である。押出機等の連続式の溶融混練装置を用いる場合においては、段階的に添加する成分をシリンダーの中途部から添加することも可能である。   As an apparatus applicable to the melt kneading method, a closed kneading apparatus or a batch kneading apparatus such as a lab plast mill, a Brabender, a Banbury mixer, a kneader, and a roll can be exemplified. As an apparatus used for the melt kneading method, a continuous melt kneading apparatus such as a single screw extruder or a twin screw extruder can be used. In the case of using a continuous melt-kneading apparatus such as an extruder, it is possible to add components to be added in stages from the middle of the cylinder.

混合物の分散装置としては、ビーズミル分散機、超音波分散機、高速攪拌型分散機及び高圧分散機等の各種分散処理機が適用可能であるが、ビーズミル分散機を好適に用いることができる。ビーズミル分散機で使用されるビーズとしては、ジルコニアビーズや、ガラスビーズ等が挙げられるが、ジルコニアビーズが好適に用いられる。また、使用されるビーズの径寸法は小さい方が好ましく、直径が0.001〜0.1mmの範囲内であることがより好ましい。   As a dispersion apparatus for the mixture, various dispersion treatment machines such as a bead mill disperser, an ultrasonic disperser, a high-speed stirring disperser, and a high-pressure disperser can be applied, and a bead mill disperser can be preferably used. Examples of the beads used in the bead mill disperser include zirconia beads and glass beads. Zirconia beads are preferably used. Moreover, it is preferable that the diameter of the beads used is small, and it is more preferable that the diameter is in the range of 0.001 to 0.1 mm.

なお、複合材料の作製工程においては、必要に応じて各種添加剤を単独で又は組合わせて添加してもよい。   In the composite material production step, various additives may be added alone or in combination as necessary.

添加剤としては、酸化防止剤、耐光安定剤、熱安定剤、耐候安定剤、紫外線吸収剤及び近赤外線吸収剤等の安定剤、滑剤や可塑剤等の樹脂改良剤、軟質重合体やアルコール性化合物等の白濁防止剤、染料や顔料等の着色剤、その他帯電防止剤や、難燃剤等が挙げられる。   Additives include antioxidants, light stabilizers, heat stabilizers, weathering stabilizers, stabilizers such as UV absorbers and near infrared absorbers, resin modifiers such as lubricants and plasticizers, soft polymers and alcoholic agents. Examples thereof include white turbidity inhibitors such as compounds, colorants such as dyes and pigments, other antistatic agents, and flame retardants.

これらの添加剤のうち、酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤及びイオウ系酸化防止剤等が挙げられる。これらの酸化防止剤を配合することにより、透明性や耐熱性等を低下させることなく、成型時の酸化劣化等によるレンズの着色や強度低下を防止することができる。   Among these additives, examples of the antioxidant include a phenol-based antioxidant, a phosphorus-based antioxidant, and a sulfur-based antioxidant. By blending these antioxidants, it is possible to prevent lens coloring and strength reduction due to oxidative degradation during molding without reducing transparency, heat resistance, and the like.

また、これらの酸化防止剤は、それぞれ単独で、あるいは2種以上を組合わせて用いることが可能であって、その配合量は、本発明の目的を損なわない範囲で適宜選択されるが、複合材料100質量部に対して0.001〜20質量部の範囲内であることが好ましく、0.01〜10質量部の範囲内であることがより好ましい。   These antioxidants can be used alone or in combination of two or more, and the blending amount thereof is appropriately selected within a range not impairing the object of the present invention. It is preferably in the range of 0.001 to 20 parts by mass, more preferably in the range of 0.01 to 10 parts by mass with respect to 100 parts by mass of the material.

フェノール系酸化防止剤としては、従来公知のものが適用可能であり、例えば、特開昭63−179953号公報に記載の2−t−ブチル−6−(3−t−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェニルアクリレート、2,4−ジ−t−アミル−6−(1−(3,5−ジ−t−アミル−2−ヒドロキシフェニル)エチル)フェニルアクリレート等や、特開平1−168643号公報に記載のオクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート等のアクリレート系化合物や、2,2′−メチレン−ビス(4−メチル−6−t−ブチルフェノール)、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、テトラキス(メチレン−3−(3′,5′−ジ−t−ブチル−4′−ヒドロキシフェニルプロピオネート))メタン、すなわち、ペンタエリスリメチル−テトラキス(3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニルプロピオネート))、トリエチレングリコールビス(3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート)等のアルキル置換フェノール系化合物や、6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−2,4−ビスオクチルチオ−1,3,5−トリアジン、4−ビスオクチルチオ−1,3,5−トリアジン、2−オクチルチオ−4,6−ビス−(3,5−ジ−t−ブチル−4−オキシアニリノ)−1,3,5−トリアジン等のトリアジン基含有フェノール系化合物等が挙げられる。   As the phenolic antioxidant, conventionally known ones can be applied. For example, 2-t-butyl-6- (3-t-butyl-2-hydroxy- described in JP-A No. 63-179953). 5-methylbenzyl) -4-methylphenyl acrylate, 2,4-di-t-amyl-6- (1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl) phenyl acrylate, etc. Acrylate compounds such as octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate described in JP-A-1-168463, and 2,2′-methylene-bis (4-methyl) -6-tert-butylphenol), 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-to (3,5-di-t-butyl-4-hydroxybenzyl) benzene, tetrakis (methylene-3- (3 ', 5'-di-t-butyl-4'-hydroxyphenylpropionate)) methane, , Pentaerythrmethyl-tetrakis (3- (3,5-di-t-butyl-4-hydroxyphenylpropionate)), triethylene glycol bis (3- (3-t-butyl-4-hydroxy-5- Alkyl-substituted phenolic compounds such as methylphenyl) propionate), 6- (4-hydroxy-3,5-di-t-butylanilino) -2,4-bisoctylthio-1,3,5-triazine, 4- Bisoctylthio-1,3,5-triazine, 2-octylthio-4,6-bis- (3,5-di-t-butyl-4-oxyanilino) -1,3 - triazine group-containing phenol compounds such as triazine.

リン系酸化防止剤としては、一般の樹脂工業において通常使用される物であれば、特に限定されるものではなく、例えば、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、10−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド等のモノホスファイト系化合物や、4,4′−ブチリデン−ビス(3−メチル−6−t−ブチルフェニル−ジ−トリデシルホスファイト)、4,4′−イソプロピリデン−ビス(フェニル−ジ−アルキル(C12〜C15)ホスファイト)等のジホスファイト系化合物等が挙げられる。これらの中でも、モノホスファイト系化合物が好ましく、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト等が特に好ましい。   The phosphorus-based antioxidant is not particularly limited as long as it is a substance that is usually used in the general resin industry. For example, triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris ( Nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite, 10- (3,5-di-t-butyl-4-hydroxybenzyl)- Monophosphite compounds such as 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, and 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di- Tridecyl phosphite), 4,4'-isopropylidene-bis (phenyl-di-alkyl (C12-C 5) phosphite) diphosphite compounds such as and the like. Among these, monophosphite compounds are preferable, and tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite and the like are particularly preferable.

イオウ系酸化防止剤としては、例えば、ジラウリル3,3−チオジプロピオネート、ジミリスチル3,3′−チオジプロピピオネート、ジステアリル3,3−チオジプロピオネート、ラウリルステアリル3,3−チオジプロピオネート、ペンタエリスリトール−テトラキス−(β−ラウリル−チオ−プロピオネート)、3,9−ビス(2−ドデシルチオエチル)−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン等が挙げられる。   Examples of the sulfur-based antioxidant include dilauryl 3,3-thiodipropionate, dimyristyl 3,3′-thiodipropionate, distearyl 3,3-thiodipropionate, lauryl stearyl 3,3-thiodiprote. Pionate, pentaerythritol-tetrakis- (β-lauryl-thio-propionate), 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane, etc. Can be mentioned.

さらに、上述したフェノール系、リン酸系及びイオウ系酸化防止剤の他に、ジフェニルアミン誘導体等のアミン系酸化防止剤や、ニッケル又は亜鉛のチオカルバメート等も酸化防止剤として適用可能である。   Furthermore, in addition to the above-mentioned phenol-based, phosphoric acid-based and sulfur-based antioxidants, amine-based antioxidants such as diphenylamine derivatives, nickel or zinc thiocarbamates, and the like are also applicable as antioxidants.

また、上述した添加剤のうち、白濁防止剤としては、ガラス転移温度における最低温度が30℃以下である化合物群が配合されていてもよい。これにより、透明性、耐熱性及び機械的強度等の諸特性の低下を抑制して、長時間に渡る高温高湿度の環境下における白濁の発生を防止することができる。   Of the additives described above, a compound group having a minimum glass transition temperature of 30 ° C. or less may be blended as the cloudiness inhibitor. Thereby, it is possible to prevent the occurrence of white turbidity in an environment of high temperature and high humidity over a long period of time by suppressing deterioration of various properties such as transparency, heat resistance and mechanical strength.

また、上述した添加剤のうち、耐光安定剤としては、ベンゾフェノン系耐光安定剤、ベンゾトリアゾール系耐光安定剤及びヒンダードアミン系耐光安定剤等が挙げられるが、レンズの透明性や耐着色性等の観点から、ヒンダードアミン系耐光安定剤(以下「HALS」とする)を用いることが好ましい。このようなHALSとしては、低分子量のものから中分子量、高分子量のものを適宜選択することができる。ただし、複合材料から成型体を作製する場合には、低分子量又は中分子量のHALSが用いられることが好ましく、特に膜状の成型体を作製する場合には、高分子量のHALSを用いることが好ましい。   Among the additives described above, examples of the light-resistant stabilizer include benzophenone-based light-resistant stabilizer, benzotriazole-based light-resistant stabilizer, hindered amine-based light-resistant stabilizer, and the like. Therefore, it is preferable to use a hindered amine light resistance stabilizer (hereinafter referred to as “HALS”). As such HALS, those having a low molecular weight, medium molecular weight and high molecular weight can be appropriately selected. However, when producing a molded body from a composite material, it is preferable to use a low molecular weight or medium molecular weight HALS, and particularly when producing a film-shaped molded body, it is preferable to use a high molecular weight HALS. .

比較的分子量の小さいHALSとしては、LA−77(旭電化製)、Tinuvin765(CSC製)、Tinuvin123(CSC製)、Tinuvin440(CSC製)、Tinuvin144(CSC製)、HostavinN20(ヘキスト製)等が挙げられる。   Examples of HALS having a relatively low molecular weight include LA-77 (manufactured by Asahi Denka), Tinuvin 765 (manufactured by CSC), Tinuvin 123 (manufactured by CSC), Tinuvin 440 (manufactured by CSC), Tinvin 144 (manufactured by CSC), Hostavin N20 (manufactured by Hoechst) and the like. It is done.

中程度の分子量のHALSとしては、LA−57(旭電化製)、LA−52(旭電化製)、LA−67(旭電化製)、LA−62(旭電化製)等が挙げられる。   Examples of the medium molecular weight HALS include LA-57 (Asahi Denka), LA-52 (Asahi Denka), LA-67 (Asahi Denka), LA-62 (Asahi Denka) and the like.

分子量の大きいHALSとしては、LA−68(旭電化製)、LA−63(旭電化製)、HostavinN30(ヘキスト製)、Chimassorb944(CSC製)、Chimassorb2020(CSC製)、Chimassorb119(CSC製)、Tinuvin622(CSC製)、CyasorbUV−3346(Cytec製)、CyasorbUV−3529(Cytec製)、Uvasil299(GLC製)等が挙げられる。   As HALS having a large molecular weight, LA-68 (manufactured by Asahi Denka), LA-63 (manufactured by Asahi Denka), Hostavin N30 (manufactured by Hoechst), Chimassorb 944 (manufactured by CSC), Chimassorb2020 (manufactured by CSC), Chimassorb119 (manufactured by CSC), Tinv6, 22 (Manufactured by CSC), CyasorbUV-3346 (manufactured by Cytec), CyasorbUV-3529 (manufactured by Cytec), Uvasil 299 (manufactured by GLC) and the like.

さらに成型時、押出時の加工助剤として、各種の滑剤や、フッ素エラストマーを若干配合することも好ましい。
(4)複合材料の性質
以上のようにして製造される複合材料の光線透過率は、3mm厚の場合に405nmの光に対して50%以上であるのが好ましく、より好ましくは70%以上であるのがより好ましく、85%以上であるのが更に好ましい。
Furthermore, it is also preferable to mix some lubricants and fluorine elastomers as processing aids during molding and extrusion.
(4) Properties of the composite material The light transmittance of the composite material produced as described above is preferably 50% or more, more preferably 70% or more with respect to 405 nm light when the thickness is 3 mm. More preferably, it is more preferably 85% or more.

また、複合材料のアッベ数については、表面修飾粒子や樹脂の選択で種々の値が選択可能であるが、異常分散性を得られる粒子を用いることが好ましい。この場合には、複合材料を色消しに有効に用いることができ、その価値が高まる場合がある。   As for the Abbe number of the composite material, various values can be selected by selecting the surface-modified particles and the resin, but it is preferable to use particles capable of obtaining anomalous dispersion. In this case, the composite material can be effectively used for achromatization, and its value may increase.

また、複合材料の吸水率は、温度80℃,相対湿度90%の環境下で2%以下であることが好ましく、1%以下であることがさらに好ましく、0.5%以下であることが最も好ましい。   The water absorption rate of the composite material is preferably 2% or less, more preferably 1% or less, and most preferably 0.5% or less in an environment of a temperature of 80 ° C. and a relative humidity of 90%. preferable.

なお、本実施の形態においては、特に記載のない限り、吸水率を質量%で表す。また、吸水率の測定は、あらかじめ乾燥させた複合材料を、特定の高温高湿条件化で一定時間以上保存した時の質量変化から測定することが可能である。本実施の形態においては、乾燥したときに含有されている水分量をカールフィッシャー法で測定し、その後の吸水後に質量変化を測定することで、より正確に吸水率を算出している。   In the present embodiment, the water absorption rate is expressed in mass% unless otherwise specified. Further, the water absorption rate can be measured from a change in mass when a previously dried composite material is stored for a certain time or longer under specific high temperature and high humidity conditions. In the present embodiment, the moisture content is calculated more accurately by measuring the amount of water contained when dried by the Karl Fischer method and measuring the change in mass after the subsequent water absorption.

また、複合材料はAMES試験において陰性であることが好ましい。これは、AMES試験において陽性であると、使用者の健康の阻害、環境負荷の増大、材料安定性の低減等のおそれがあるからである。
(5)光学素子の製造方法や適用例
(5.1)光学素子の製造方法
上記の通り得られる複合材料を成型することで、本発明に係る光学素子を製造することができる。成型方法としては、特に限定されるものではないが、成型物における低複屈折性、機械強度及び寸法精度等の特性の観点から、溶融成型法が好ましい。溶融成型法としては、例えば、プレス成型、押し出し成型、射出成型等が挙げられる。生産性の観点から、当該溶融成型法として射出成型を適用するのが好ましい。また、光硬化性樹脂で成型物を構成する場合、注型重合などを用いることが可能である。
The composite material is preferably negative in the AMES test. This is because a positive result in the AMES test may impair the health of the user, increase the environmental load, reduce the material stability, and the like.
(5) Optical Element Manufacturing Method and Application Examples (5.1) Optical Element Manufacturing Method The optical element according to the present invention can be manufactured by molding the composite material obtained as described above. Although it does not specifically limit as a shaping | molding method, From a viewpoint of characteristics, such as the low birefringence in a molding, mechanical strength, and a dimensional accuracy, a melt molding method is preferable. Examples of the melt molding method include press molding, extrusion molding, and injection molding. From the viewpoint of productivity, it is preferable to apply injection molding as the melt molding method. Moreover, when forming a molding with a photocurable resin, cast polymerization etc. can be used.

成型条件は使用目的又は成型方法に応じて適宜選択されるが、例えば、射出成型における複合材料の温度としては、成型時に適度な流動性を樹脂に付与して成型品のヒケや歪みを防止し、樹脂の熱分解によるシルバーストリークの発生を防止し、更に、成型物の黄変を効果的に防止するなどの観点から、150℃〜400℃の範囲内であることが好ましく、200℃〜350℃の範囲内であることがより好ましく、200℃〜330℃の範囲内であることが特に好ましい。   Molding conditions are appropriately selected according to the purpose of use or molding method. For example, as the temperature of the composite material in injection molding, appropriate fluidity is imparted to the resin during molding to prevent sink marks and distortion of the molded product. From the viewpoints of preventing the occurrence of silver streak due to thermal decomposition of the resin and effectively preventing yellowing of the molded product, it is preferably in the range of 150 ° C to 400 ° C, and 200 ° C to 350 ° C. It is more preferable to be within the range of ° C, and it is particularly preferable to be within the range of 200 ° C to 330 ° C.

成型法として射出成型を用いる場合には、炭酸ガスを可塑剤として用いる成型法や、金型を誘導加熱して転写性を向上させる方法など、一般的な手法はすべて適用可能である。   When injection molding is used as the molding method, all general methods such as a molding method using carbon dioxide gas as a plasticizer and a method of improving transferability by induction heating of a mold are applicable.

当該成型物は、球状、棒状、板状、円柱状、筒状、チューブ状、繊維状、フィルム又はシート形状等の種々の形態で使用することが可能であり、低複屈折性、透明性、機械強度、耐熱性及び低吸水性等に優れるため、各種光学部品への適用が可能である。
(5.2)光学素子の適用例
本発明に係る光学素子の光学部品への適用例としては、光学レンズや光学プリズムが挙げられ、その具体例としては、カメラの撮像系レンズ;顕微鏡、内視鏡、望遠鏡レンズ等のレンズ;眼鏡レンズ等の全光線透過型レンズ;CD、CD−ROM、WORM(追記型光ディスク)、MO(書き変え可能な光ディスク;光磁気ディスク)、MD(ミニディスク)、DVD(デジタルビデオディスク)等の光ディスクのピックアップレンズ;レーザビームプリンターのfθレンズ、センサー用レンズ等のレーザ走査系レンズ;カメラのファインダー系のプリズムレンズ等が挙げられる。
The molded product can be used in various forms such as a spherical shape, a rod shape, a plate shape, a cylindrical shape, a tubular shape, a tubular shape, a fibrous shape, a film or a sheet shape, and has low birefringence, transparency, Since it is excellent in mechanical strength, heat resistance, low water absorption, etc., it can be applied to various optical components.
(5.2) Application Example of Optical Element Examples of application of the optical element according to the present invention to an optical component include an optical lens and an optical prism, and specific examples thereof include an imaging system lens of a camera; Lenses such as endoscopes and telescope lenses; all light transmission lenses such as spectacle lenses; CDs, CD-ROMs, WORMs (recordable optical disks), MOs (rewritable optical disks; magneto-optical disks), MDs (minidisks) And pickup lenses for optical disks such as DVDs (digital video disks); laser scanning system lenses such as fθ lenses and sensor lenses for laser beam printers; prism lenses for camera viewfinder systems.

その他の光学用途としては、液晶ディスプレイなどの導光板;偏光フィルム、位相差フィルム、光拡散フィルム等の光学フィルム;光拡散板;光カード;液晶表示素子基板等が挙げられる。   Other optical applications include light guide plates such as liquid crystal displays; optical films such as polarizing films, retardation films and light diffusion films; light diffusion plates; optical cards; liquid crystal display element substrates.

その他、本発明に係る光学素子は、各種のフィルターやグレーティング、光ファイバー、平板光導波路などとしても好適に用いられる。   In addition, the optical element according to the present invention is also suitably used as various filters, gratings, optical fibers, flat optical waveguides, and the like.

上述した成型物の中でも、低複屈折性が要求されるピックアップレンズや、レーザ走査系レンズ等の光学素子として好適に用いられる。   Among the above-described molded products, it is suitably used as an optical element such as a pickup lens that requires low birefringence or a laser scanning lens.

以下、図1を参照しながら、本発明に係る光学素子が対物レンズ7として用いられた光ピックアップ装置1について説明する。   Hereinafter, an optical pickup device 1 in which an optical element according to the present invention is used as an objective lens 7 will be described with reference to FIG.

図1は、光ピックアップ装置1の内部構造を示す模式図である。   FIG. 1 is a schematic diagram showing the internal structure of the optical pickup device 1.

光ピックアップ装置1には、図1に示すように、光源である半導体レーザ発振器2が具備されている。この半導体レーザ発振器2から出射される青色光の光軸上には、半導体レーザ発振器2から離間する方向に向かって、コリメータ3、ビームスプリッタ4、1/4波長板5、絞り6、対物レンズ7が順次配設されている。   As shown in FIG. 1, the optical pickup device 1 includes a semiconductor laser oscillator 2 as a light source. On the optical axis of the blue light emitted from the semiconductor laser oscillator 2, a collimator 3, a beam splitter 4, a quarter wavelength plate 5, a diaphragm 6, and an objective lens 7 are arranged in a direction away from the semiconductor laser oscillator 2. Are sequentially arranged.

ビームスプリッタ4と近接した位置であって、上述した青色光の光軸と直交する方向には、2組のレンズからなるセンサーレンズ群8、センサー9が順次配設されている。   A sensor lens group 8 and a sensor 9 composed of two sets of lenses are sequentially arranged at a position close to the beam splitter 4 and in a direction perpendicular to the optical axis of the blue light described above.

光学素子である対物レンズ7は、光ディスクDに対向した位置に配置されるものであって、半導体レーザ発振器2から出射された青色光を、光ディスクDの一面上に集光するようになっている。このような対物レンズ7には、2次元アクチュエータ10が具備されており、この2次元アクチュエータ10の動作により、対物レンズ7は、光軸上を移動自在となっている。   The objective lens 7 that is an optical element is disposed at a position facing the optical disc D, and condenses the blue light emitted from the semiconductor laser oscillator 2 on one surface of the optical disc D. . Such an objective lens 7 is provided with a two-dimensional actuator 10, and the objective lens 7 is movable on the optical axis by the operation of the two-dimensional actuator 10.

次に、光ピックアップ装置1の作用について説明する。   Next, the operation of the optical pickup device 1 will be described.

光ピックアップ装置1は、光ディスクDへの情報の記録動作時や、光ディスクDに記録された情報の再生動作時に、半導体レーザ発振器2から青色光を出射する。出射された青色光は、図1に示すように、光線L1となって、コリメータ3を透過して無限平行光にコリメートされた後、ビームスプリッタ4を透過して、1/4波長板5を透過する。さらに、絞り6及び対物レンズ7を透過した後、光ディスクDの保護基板D1を介して情報記録面D2に集光スポットを形成する。   The optical pickup device 1 emits blue light from the semiconductor laser oscillator 2 at the time of recording information on the optical disc D or at the time of reproducing information recorded on the optical disc D. As shown in FIG. 1, the emitted blue light becomes a light beam L1, is collimated to infinite parallel light through the collimator 3, and then passes through the beam splitter 4 to pass through the quarter-wave plate 5. To Penetrate. Further, after passing through the diaphragm 6 and the objective lens 7, a condensing spot is formed on the information recording surface D2 via the protective substrate D1 of the optical disc D.

集光スポットを形成した光は、光ディスクDの情報記録面D2で情報ピットによって変調され、情報記録面D2によって反射される。そして、この反射光は、光線L2となって、対物レンズ7及び絞り6を順次透過した後、1/4波長板5によって偏光方向が変更され、ビームスプリッタ4で反射する。その後、センサーレンズ群8を透過して非点収差が与えられ、センサー9で受光されて、最終的には、センサー9によって光電変換されることによって電気的な信号となる。   The light that forms the condensed spot is modulated by the information pits on the information recording surface D2 of the optical disc D and reflected by the information recording surface D2. Then, the reflected light becomes a light beam L 2, is sequentially transmitted through the objective lens 7 and the diaphragm 6, is changed in polarization direction by the quarter wavelength plate 5, and is reflected by the beam splitter 4. After that, astigmatism is given through the sensor lens group 8, received by the sensor 9, and finally converted into an electric signal by being photoelectrically converted by the sensor 9.

以後、このような動作が繰り返し行われ、光ディスクDに対する情報の記録動作や、光ディスクDに記録された情報の再生動作が完了する。   Thereafter, such an operation is repeatedly performed, and the operation of recording information on the optical disc D and the operation of reproducing information recorded on the optical disc D are completed.

なお、光ディスクDにおける保護基板D1の厚さ寸法及び情報ピットの大きさにより、対物レンズ7に要求される開口数NAも異なる。本実施形態においては、高密度な光ディスクDであり、その開口数は0.85に設定されている。   Note that the numerical aperture NA required for the objective lens 7 varies depending on the thickness dimension of the protective substrate D1 and the size of the information pit in the optical disk D. In the present embodiment, the optical disc D is a high density, and its numerical aperture is set to 0.85.

(1)試料の作製
(1.1)表面修飾剤の作製
(1.1.1)表面修飾剤1の作製
0.3リットルの四つ口セパラブルフラスコに滴下装置、温度計、窒素ガス導入管、撹拌装置及び還流冷却管を設置し、当該フラスコに脱水したイソプロピルアルコール20gを仕込んで約80℃で加熱した。メタクリル酸10g、メチルメタクリレート50g、2−メチル2−アダマンチルメタクリレート40g、N,N′−アゾビスイソバレロニトリル2g、イソプロピルアルコール20gを混合して均一とした溶液を、そのフラスコ中に2時間かけて滴下し、同温度にて5時間反応させた。その後イソプロピルアルコール60gを添加して冷却し、50質量%の分散剤溶液を得た。当該分散剤溶液を「表面修飾剤1」とした。
(1.1.2)表面修飾剤2の作製
0.3リットルの四つ口セパラブルフラスコに滴下装置、温度計、窒素ガス導入管、撹拌装置及び還流冷却管を設置し、脱水したメチルエチルケトン20gを仕込んで約80℃で加熱した。シランカップリング剤(信越化学製KBE−502)20g、メチルメタクリレート40g、2−メチル2−アダマンチルメタクリレート40g、N,N′−アゾビスイソバレロニトリル2g、イソプロピルアルコール20gを混合して均一とした溶液を、そのフラスコ中に2時間かけて滴下し、同温度にて5時間反応させた。その後、真空乾燥で溶媒を除去して白色粉体を得た。当該白色粉体を「表面修飾剤2」とした。
(1.2)複合材料,試料の作製
(1.2.1)複合材料1,試料1の作製
ZrO粒子(住友大阪セメント製,1次粒径3nm,10質量%)の水分散液100gに対し、酢酸100gを加えてよく攪拌した。さらに、陰イオン交換樹脂(オルガノ製アンバーライトIRA402BL OH AG)を適量用いて処理し、塩素イオンのみを除去した後、2メトキシエタノール100gを加えさらによく攪拌した。
(1) Preparation of sample (1.1) Preparation of surface modifier (1.1.1) Preparation of surface modifier 1 Dropper, thermometer, nitrogen gas introduction into a 0.3 liter four-necked separable flask A tube, a stirring device and a reflux condenser were installed, and 20 g of dehydrated isopropyl alcohol was charged into the flask and heated at about 80 ° C. A homogeneous solution of 10 g of methacrylic acid, 50 g of methyl methacrylate, 40 g of 2-methyl 2-adamantyl methacrylate, 2 g of N, N'-azobisisovaleronitrile and 20 g of isopropyl alcohol was added to the flask over 2 hours. The solution was added dropwise and reacted at the same temperature for 5 hours. Thereafter, 60 g of isopropyl alcohol was added and cooled to obtain a 50 mass% dispersant solution. The dispersant solution was designated as “Surface modifier 1”.
(1.1.2) Preparation of surface modifier 2 A 0.3 liter four-necked separable flask was equipped with a dropping device, thermometer, nitrogen gas inlet tube, stirring device and reflux condenser, and 20 g of dehydrated methyl ethyl ketone And heated at about 80 ° C. A uniform solution obtained by mixing 20 g of a silane coupling agent (KBE-502 manufactured by Shin-Etsu Chemical Co., Ltd.), 40 g of methyl methacrylate, 40 g of 2-methyl 2-adamantyl methacrylate, 2 g of N, N′-azobisisovaleronitrile, and 20 g of isopropyl alcohol. Was dropped into the flask over 2 hours and reacted at the same temperature for 5 hours. Thereafter, the solvent was removed by vacuum drying to obtain a white powder. The white powder was designated as “Surface modifier 2”.
(1.2) Preparation of composite material and sample (1.2.1) Preparation of composite material 1 and sample 1 100 g of an aqueous dispersion of ZrO 2 particles (manufactured by Sumitomo Osaka Cement, primary particle size 3 nm, 10 mass%) On the other hand, 100 g of acetic acid was added and stirred well. Further, after treating with an appropriate amount of anion exchange resin (Amberlite IRA402BL OH AG manufactured by Organo) to remove only chlorine ions, 100 g of 2 methoxyethanol was added and further stirred.

ここに1−アダマンタンカルボン酸を3g添加してよく攪拌した後、窒素下の100度で10時間乾燥させ、白色粉体を得た。当該白色粉体を、シクロオレフィン樹脂(三菱レーヨン製アクリペットMF)5gと溶融混練し、複合材料1を得た。当該複合材料1を射出成型することで3mm厚の成型体を作製し、当該成型体を「試料1」とした。
(1.2.2)複合材料2,試料2の作製
上記複合材料1,試料1の作製において、上記1−アダマンタンカルボン酸に代えてオレイン酸を0.3g用いた。それ以外は上記複合材料1,試料1の作製と同様にして複合材料2を得た。当該複合材料2を射出成型することで3mm厚の成型体を作製し、当該成型体を「試料2」とした。
(1.2.3)複合材料3,試料3の作製
アルミナ(大明化学製アルミナTM−300)50gをエタノール1000g中に加え、ウルトラアペックスミル(寿技研製)で0.05mmビーズを用いて周速6m/secで30分間分散した。得られたスラリーを、上記表面修飾剤1を10g含む液20gと混合して乾燥させた。得られたアルミナ粒子を、上記複合材料1,試料1の作製と同様にシクロオレフィン樹脂(三井化学製APEL5014)と溶融混練して複合材料3を得た。当該複合材料3を射出成型することで3mm厚の成型体を作製し、当該成型体を「試料3」とした。
(1.2.4)複合材料4,試料4の作製
上記試料3の作製において、上記表面修飾剤1を10g含む液20gの代わりに、変性シクロオレフィン樹脂(Ticona製TOPAS TMG MAH2050)を10g含むキシレン溶液20gを用いた。それ以外は上記複合材料3,試料3の作製と同様にして複合材料4を得た。当該複合材料4を射出成型することで3mm厚の成型体を作製し、当該成型体を「試料4」とした。
(1.2.5)複合材料5,試料5の作製
撹拌機、滴下ロート、温度計を備えた反応容器に対し、溶媒としての2−プロパノール(IPA)40mlと、塩基性触媒としての5%テトラメチルアンモニウムヒドロキシド水溶液(TMAH水溶液)を装入した。滴下ロートに、15mlのIPAと12.69gの3−メタクリロキシプロピルトリメトキシシラン(MTMS:東レ・ダウコーニング・シリコン株式会社製SZ−6300)とを入れ、反応容器を撹拌しながら、室温でMTMSのIPA溶液を30分かけて滴下した。
3 g of 1-adamantanecarboxylic acid was added and stirred well, and then dried at 100 ° C. for 10 hours under nitrogen to obtain a white powder. The white powder was melt-kneaded with 5 g of cycloolefin resin (Acrypet MF manufactured by Mitsubishi Rayon) to obtain a composite material 1. The composite material 1 was injection-molded to produce a 3 mm-thick molded body, and the molded body was designated as “Sample 1”.
(1.2.2) Preparation of composite material 2 and sample 2 In preparation of the composite material 1 and sample 1, 0.3 g of oleic acid was used instead of the 1-adamantanecarboxylic acid. Otherwise, composite material 2 was obtained in the same manner as composite material 1 and sample 1 described above. The composite material 2 was injection-molded to produce a 3 mm-thick molded body, and the molded body was designated as “Sample 2”.
(1.2.3) Preparation of composite material 3 and sample 3 50 g of alumina (Alumina TM-300, manufactured by Daimei Chemical Co., Ltd.) was added to 1000 g of ethanol, and 0.05 mm bead was used with an ultra apex mill (manufactured by Kotogiken). Dispersed for 30 minutes at a speed of 6 m / sec. The obtained slurry was mixed with 20 g of a liquid containing 10 g of the surface modifier 1 and dried. The obtained alumina particles were melt-kneaded with a cycloolefin resin (APEL5014 manufactured by Mitsui Chemicals) in the same manner as in the preparation of the composite material 1 and sample 1 to obtain a composite material 3. The composite material 3 was injection molded to produce a 3 mm-thick molded body, and the molded body was designated as “Sample 3”.
(1.2.4) Preparation of Composite Material 4 and Sample 4 In the preparation of Sample 3 above, 10 g of modified cycloolefin resin (TOPAS TMG MAH2050 manufactured by Ticona) was included instead of 20 g of the liquid containing 10 g of the surface modifier 1. 20 g of xylene solution was used. Otherwise, composite material 4 was obtained in the same manner as composite material 3 and sample 3. The composite material 4 was injection-molded to produce a 3 mm-thick molded body, and the molded body was designated as “Sample 4”.
(1.2.5) Preparation of Composite Material 5 and Sample 5 For a reaction vessel equipped with a stirrer, a dropping funnel and a thermometer, 40 ml of 2-propanol (IPA) as a solvent and 5% as a basic catalyst A tetramethylammonium hydroxide aqueous solution (TMAH aqueous solution) was charged. In a dropping funnel, 15 ml of IPA and 12.69 g of 3-methacryloxypropyltrimethoxysilane (MTMS: SZ-6300 manufactured by Toray Dow Corning Silicon Co., Ltd.) were placed, and the MTMS was stirred at room temperature while stirring the reaction vessel. The IPA solution was added dropwise over 30 minutes.

MTMSのIPA溶液の滴下終了後、加熱することなく2時間撹拌した。その後、減圧下で溶媒を除去し、トルエン50mlを溶解させた。反応溶液を飽和食塩水で中性になるまで水洗した後、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別して濃縮することで加水分解生成物(シルセスキオキサン)を8.6g得た。このシルセスキオキサンは種々の有機溶剤に可溶な無色の粘性液体であった。   After completion of the dropwise addition of the MTMS IPA solution, the mixture was stirred for 2 hours without heating. Thereafter, the solvent was removed under reduced pressure, and 50 ml of toluene was dissolved. The reaction solution was washed with saturated brine until neutral, and then dehydrated with anhydrous magnesium sulfate. Anhydrous magnesium sulfate was filtered off and concentrated to obtain 8.6 g of a hydrolysis product (silsesquioxane). This silsesquioxane was a colorless viscous liquid soluble in various organic solvents.

次に、撹拌機、ディンスターク、冷却管を備えた反応容器に対し、上記操作を数回繰り返して得られたシルセスキオキサンのうち20.65gとトルエン82mlと10%TMAH水溶液3.0gとを入れ、徐々に加熱して水を留去した。更に130℃まで加熱しトルエンを還流温度で再縮合反応を行った。このときの反応溶液の温度は108℃であった。トルエン還流後に2時間撹拌し、その経過後を反応終了時とした。反応溶液を飽和食塩水で中性になるまで水洗した後、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別して濃縮することで目的物であるかご型シルセスキオキサン(混合物)を18.77g得た。得られたかご型シルセスキオキサンは種々の有機溶剤に可溶な無色の粘性液体であった。   Next, 20.65 g of silsesquioxane obtained by repeating the above operation several times against a reaction vessel equipped with a stirrer, a Dinsterk, and a cooling tube, 82 ml of toluene, and 3.0 g of 10% TMAH aqueous solution, And gradually heated to distill off water. Further, the mixture was heated to 130 ° C., and toluene was recondensed at the reflux temperature. The temperature of the reaction solution at this time was 108 ° C. The mixture was stirred for 2 hours after refluxing toluene, and the time after that was regarded as the end of the reaction. The reaction solution was washed with saturated brine until neutral, and then dehydrated with anhydrous magnesium sulfate. The anhydrous magnesium sulfate was filtered off and concentrated to obtain 18.77 g of the target basket-type silsesquioxane (mixture). The resulting cage-type silsesquioxane was a colorless viscous liquid soluble in various organic solvents.

上記で得た篭型シリコン樹脂(メタクリロイル基を全てのケイ素原子上に有している。)を24質量部と、トリメチロールプロパントリアクリレートを10質量部と、ジシクロペンタニルジアクリレートを60質量部と、ウレタンアクリレートオリゴマー1を5質量部と、光重合開始剤としての1−ヒドロキシシクロヘキシルフェニルケトンを2.5質量部と、上記表面修飾剤2を1部と、シリカ粉末(日本アエロジル製A300)を50部とを混合し、透明なシリコン樹脂組成物(複合材料5)を得た。当該複合材料5を、厚さ3mmになるように金型中に流し込み、30W/cmの高圧水銀ランプを用い、20000mJ/cmの積算露光量で硬化させ、所定の厚みとしたシート状のシリコン樹脂成型体を得た。当該シリコン樹脂成型体を「試料5」とした。
(1.2.6)複合材料6,試料6の作製
上記複合材料5,試料5の作製において、表面修飾剤2を1部用いた代わりに、カップリング剤(東レダウコーニング製SZ6187)を1部用いた。それ以外は上記複合材料5,試料5の作製と同様に複合材料6を作製して成型し、当該成型体を「試料6」とした。
(1.2.7)複合材料7,試料7の作製
ZrO粒子(住友大阪セメント製,1次粒径3nm,10質量%)の水分散液100gに対し、酢酸100gを加えてよく攪拌した。さらに、2−メトキシエタノール100gを加えさらによく攪拌した。100℃で水を留去した後、上記表面修飾剤2を5g加え更に1時間加熱還流後、乾燥して溶媒を除去し表面処理済ZrO粒子を得た。
24 parts by mass of the cage-shaped silicon resin obtained above (having methacryloyl groups on all silicon atoms), 10 parts by mass of trimethylolpropane triacrylate, and 60 parts by mass of dicyclopentanyl diacrylate Part, 5 parts by mass of urethane acrylate oligomer 1, 2.5 parts by mass of 1-hydroxycyclohexyl phenyl ketone as a photopolymerization initiator, 1 part of the surface modifier 2, silica powder (A300 manufactured by Nippon Aerosil Co., Ltd.) ) Was mixed with 50 parts to obtain a transparent silicone resin composition (composite material 5). The composite material 5 is poured into a mold so as to have a thickness of 3 mm, and is cured with a cumulative exposure amount of 20000 mJ / cm 2 using a 30 W / cm high-pressure mercury lamp to obtain a sheet-like silicon having a predetermined thickness. A resin molded body was obtained. The silicon resin molding was designated as “Sample 5”.
(1.2.6) Preparation of composite material 6 and sample 6 In preparation of the composite material 5 and sample 5, instead of using 1 part of the surface modifier 2, 1 coupling agent (SZ6187 manufactured by Toray Dow Corning) was used. Used. Otherwise, composite material 6 was prepared and molded in the same manner as composite material 5 and sample 5, and the molded body was designated as “sample 6”.
(1.2.7) Preparation of composite material 7 and sample 7 To 100 g of an aqueous dispersion of ZrO 2 particles (manufactured by Sumitomo Osaka Cement, primary particle size 3 nm, 10 mass%), 100 g of acetic acid was added and stirred well. . Further, 100 g of 2-methoxyethanol was added and further stirred. After distilling off water at 100 ° C., 5 g of the surface modifier 2 was added, and the mixture was further heated under reflux for 1 hour, and then dried to remove the solvent to obtain surface-treated ZrO 2 particles.

熱硬化性モノマーとして特開2002−193883号公報に従って作製した1−アダマンチルメタクリレート10g、無機微粒子として上記表面処理済ZrO粒子を15g、酸化防止剤としてフェノール系酸化防止剤(チバ・スペシャルティ・ケミカルズ社製,Irganox1010)を0.1g、及びラジカル重合開始剤として1,1−(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン(日本油脂社製,パーヘキサ3M-95)0.05g、を混合後、卓上型3本ロール式ミル(RM−1、(株)入江商会)を用いて分散した。得られた分散物を、厚さ3mmの型の中に流し込んだ後に、120℃で1時間オーブン中にて硬化を行い、試料7を作製した。
(1.2.8)複合材料8,試料8の作製
試料7の作製において、表面修飾剤2に代わり等量のシランカップリング剤(信越化学製KBE−502)を用いた以外は同様にして試料8を作製した。
(2)試料1〜8の物性測定
(2.1)光線透過率の測定
東京電色(株)製TURBIDITY METER T−2600DAを用いて、波長405nmの光に対する光線透過率を試料1〜6ごとに測定した。透過率の測定はASTM D 1003に準拠した方法で行った。その測定結果を下記表2に示す。
(2.2)屈折率の測定
自動屈折計(カルニュー光学工業製KPR−200)を用いて、波長588nmの光に対する23℃での屈折率を試料1〜8ごとに測定した。その測定結果を下記表2に示す。
(2.3)ガラス転移温度の測定
示差走査熱量測定装置(セイコー電子DSC320)を用いて、各試料1〜8のガラス転移温度(Tg)を測定した。その測定結果を下記表2に示す。
10 g of 1-adamantyl methacrylate prepared according to JP-A-2002-193883 as a thermosetting monomer, 15 g of the above surface-treated ZrO 2 particles as inorganic fine particles, and a phenolic antioxidant (Ciba Specialty Chemicals Co., Ltd.) as an antioxidant Manufactured by Irganox 1010) and 0.05 g of 1,1- (t-butylperoxy) -3,3,5-trimethylcyclohexane (manufactured by NOF Corporation, Perhexa 3M-95) as a radical polymerization initiator, Were mixed using a desktop three-roll mill (RM-1, Irie Shokai Co., Ltd.). The obtained dispersion was poured into a mold having a thickness of 3 mm, and then cured in an oven at 120 ° C. for 1 hour to prepare Sample 7.
(1.2.8) Preparation of Composite Material 8 and Sample 8 In the preparation of Sample 7, the same procedure except that an equivalent amount of a silane coupling agent (KBE-502 manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of the surface modifier 2. Sample 8 was prepared.
(2) Measurement of physical properties of samples 1 to 8 (2.1) Measurement of light transmittance Using TURBIDITY METER T-2600DA manufactured by Tokyo Denshoku Co., Ltd., the light transmittance for light with a wavelength of 405 nm is measured for each sample 1 to 6. Measured. The transmittance was measured by a method based on ASTM D 1003. The measurement results are shown in Table 2 below.
(2.2) Measurement of Refractive Index Using an automatic refractometer (KPR-200, manufactured by Kalnew Optical Industry), the refractive index at 23 ° C. with respect to light having a wavelength of 588 nm was measured for each sample 1-8. The measurement results are shown in Table 2 below.
(2.3) Measurement of glass transition temperature The glass transition temperature (Tg) of each sample 1-8 was measured using the differential scanning calorimeter (Seiko Electronics DSC320). The measurement results are shown in Table 2 below.

なお、試料5,7については、Tgが300℃以上であり測定できなかった。   Samples 5 and 7 could not be measured because Tg was 300 ° C. or higher.

(3)まとめ
表2に示す通り、試料1,3,5,7と試料2,4,6,8とを見比べると、試料1,3,5,7は試料2,4,6,8に比べて、光線透過率,屈折率,ガラス転移温度の観点のいずれにおいても優れている。以上から、アダマンチル基を有する化合物で無機粒子を表面修飾することが有用であることがわかる。
(3) Summary As shown in Table 2, comparing Samples 1, 3, 5, and 7 with Samples 2, 4, 6, and 8, Samples 1, 3, 5, and 7 are replaced with Samples 2, 4, 6, and 8, respectively. In comparison, it is excellent in all of the viewpoints of light transmittance, refractive index, and glass transition temperature. From the above, it can be seen that it is useful to surface-modify inorganic particles with a compound having an adamantyl group.

Claims (6)

樹脂と無機粒子との複合材料であって、
前記無機粒子がアダマンチル基を有する化合物で表面修飾されていることを特徴とする複合材料。
A composite material of resin and inorganic particles,
A composite material, wherein the inorganic particles are surface-modified with a compound having an adamantyl group.
前記アダマンチル基を有する化合物が、アダマンチル基とカルボキシル基又は水酸基とを結合した化合物であることを特徴とする請求の範囲第1項に記載の複合材料。   The composite material according to claim 1, wherein the compound having an adamantyl group is a compound in which an adamantyl group and a carboxyl group or a hydroxyl group are bonded. 前記アダマンチル基を有する化合物が、アダマンチル基を有するモノマーとアダマンチル基を有しないモノマーとを共重合した化合物であることを特徴とする請求の範囲第1項に記載の複合材料。   The composite material according to claim 1, wherein the compound having an adamantyl group is a compound obtained by copolymerizing a monomer having an adamantyl group and a monomer having no adamantyl group. 前記アダマンチル基を有する化合物が、アダマンチル基をシランカップリング剤の官能基に導入した化合物であることを特徴とする請求の範囲第1項に記載の複合材料。   The composite material according to claim 1, wherein the compound having an adamantyl group is a compound in which an adamantyl group is introduced into a functional group of a silane coupling agent. 前記樹脂がシクロオレフィン樹脂であることを特徴とする請求の範囲第1項〜第4項のいずれか一項に記載の複合材料。   The composite material according to any one of claims 1 to 4, wherein the resin is a cycloolefin resin. 請求の範囲第1項〜第5項のいずれか一項に記載の複合材料を用いて成型されたことを特徴とする光学素子。   An optical element formed by using the composite material according to any one of claims 1 to 5.
JP2008527739A 2006-08-04 2007-07-30 Composite material and optical element Pending JPWO2008015999A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006212958 2006-08-04
JP2006212958 2006-08-04
PCT/JP2007/064869 WO2008015999A1 (en) 2006-08-04 2007-07-30 Composite material and optical element

Publications (1)

Publication Number Publication Date
JPWO2008015999A1 true JPWO2008015999A1 (en) 2009-12-24

Family

ID=38997175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008527739A Pending JPWO2008015999A1 (en) 2006-08-04 2007-07-30 Composite material and optical element

Country Status (2)

Country Link
JP (1) JPWO2008015999A1 (en)
WO (1) WO2008015999A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2298822B1 (en) * 2008-07-03 2013-02-27 Showa Denko K.K. Hardening composition and resultant hardened material
KR101203301B1 (en) 2008-12-16 2012-11-21 쇼와 덴코 가부시키가이샤 Hardening composition and hardened product of same
JP2012002978A (en) * 2010-06-16 2012-01-05 Asahi Glass Co Ltd Method for manufacturing curable material, curable material, and optical member
JP6674145B2 (en) * 2014-03-28 2020-04-01 日本ゼオン株式会社 Resin composition, resin molding and optical component
CN115594946B (en) * 2022-10-28 2024-06-04 江苏鸿佳电子科技有限公司 Composite material for LED packaging and preparation method thereof
JP7537485B2 (en) 2022-11-24 2024-08-21 味の素株式会社 Resin composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011122A (en) * 1999-06-29 2001-01-16 Nec Corp Transparent resin material for optical use
JP4485717B2 (en) * 2001-09-04 2010-06-23 三井化学株式会社 Thermoplastic material composition and optical component comprising the same
JP2006089412A (en) * 2004-09-24 2006-04-06 Idemitsu Kosan Co Ltd Adamantane derivative, method for producing the same and photosensitive material for photoresist
JP2007238922A (en) * 2006-02-09 2007-09-20 Nippon Shokubai Co Ltd Polymer-coated particle and additive for plastic

Also Published As

Publication number Publication date
WO2008015999A1 (en) 2008-02-07

Similar Documents

Publication Publication Date Title
JP4384636B2 (en) Polyester resin composition and optical material
JP4908781B2 (en) Polyester resin composition and optical component
JPWO2008015999A1 (en) Composite material and optical element
JP2008001895A (en) Optical plastic material and optical element
JP2019035015A (en) Methacrylic resin composition for optical member, molded body, and optical member
JP5163640B2 (en) Optical organic / inorganic composite material and optical element
WO2008065862A1 (en) Plastic optical device material, plastic optical device made of the same, and optical pickup device
JP2007231237A (en) Organic-inorganic composite material, optical element, and method for producing organic-inorganic composite material
JP2006299183A (en) Non-aqueous fine particle dispersion and thermoplastic composite material and optical element
JP2019035016A (en) Methacrylic resin composition, molded body, and optical member
EP3570076B1 (en) Cured product, and optical element, diffractive optical element, optical apparatus, and imaging device using the cured product
JP2008280443A (en) Method for producing composite resin material, composite resin material, and optical element
JP2006299032A (en) Thermoplastic resin composition and optical element
JP2020152792A (en) Thermoplastic resin composition
JP4860644B2 (en) Plastic lens
JP5119850B2 (en) Method for producing composite resin composition
JP2008015199A (en) Resin composition for optical material, and optical element
JP2007137984A (en) Composite material and optical element
JP2009221350A (en) Resin composition, its production method, and optical element using the same
JP2005202056A (en) Optical resin lens
JP2008074923A (en) Inorganic material for optical use, method for preparing the same, resin material for optical use and optical element by using the same
JP5257046B2 (en) Alicyclic hydrocarbon random copolymer, process for producing the same, resin composition, and molded article
JP2007139971A (en) Optical element and method for manufacturing same
JPWO2007102299A1 (en) Optical element
JP2007197606A (en) Resin material for optics, optical element, and method for producing resin material for optics