WO2008015999A1 - Composite material and optical element - Google Patents

Composite material and optical element Download PDF

Info

Publication number
WO2008015999A1
WO2008015999A1 PCT/JP2007/064869 JP2007064869W WO2008015999A1 WO 2008015999 A1 WO2008015999 A1 WO 2008015999A1 JP 2007064869 W JP2007064869 W JP 2007064869W WO 2008015999 A1 WO2008015999 A1 WO 2008015999A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
resin
compound
adamantyl group
oxide
Prior art date
Application number
PCT/JP2007/064869
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroaki Ando
Shinichi Kurakata
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Priority to JP2008527739A priority Critical patent/JPWO2008015999A1/en
Publication of WO2008015999A1 publication Critical patent/WO2008015999A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/008Mountings, adjusting means, or light-tight connections, for optical elements with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation

Definitions

  • the present invention relates to a composite material and an optical element that are suitably used as a lens, a filter, a grading, an optical fiber, a flat optical waveguide, and the like.
  • An optical pickup device includes an optical element unit that irradiates an optical information recording medium with light having a predetermined wavelength emitted from a light source and receives reflected light by a light receiving element.
  • the optical element unit includes these optical element units. It has an optical element such as a lens for condensing light by a light receiving element or a reflection layer of an optical information recording medium.
  • plastic material it is preferable to apply a plastic material to the optical element of the optical pickup device described above in that it can be manufactured at low cost by means such as injection molding.
  • plastics that can be applied to optical elements copolymers of cyclic olefin and ⁇ -olefin are known (see Patent Document 1).
  • Substances containing cyclic olefin have a stable refractive index due to changes in humidity. Although the properties are excellent, it is difficult to obtain the desired effect due to the stability of the refractive index due to temperature changes.
  • Patent Document 2 It can be expected that the stability of the refractive index can be improved by suppressing linear expansion with a composite material in which a resin and inorganic particles are mixed (see Patent Document 2).
  • Patent Document 2 it has been proposed to use it as fine particles of composite oxides with other metals in order to compensate for the low refractive index, which is a drawback of silica particles that can be achieved only by suppressing the linear expansion coefficient.
  • the use of an oxide having a high hygroscopic property may significantly reduce the moisture resistance as a composite material, that is, the refractive index, depending on the humidity.
  • Patent Document 1 JP 2002-105131 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-146042
  • An object of the present invention is to provide a composite material and an optical element that suppress a decrease in refractive index while maintaining a constant light transmittance and are excellent in heat resistance.
  • the first aspect of the present invention provides:
  • a composite material of resin and inorganic particles A composite material of resin and inorganic particles,
  • the inorganic particles are surface-modified with a compound having an adamantyl group.
  • the compound having an adamantyl group may be a compound in which an adamantyl group and a carboxyl group or a hydroxyl group are combined, and a monomer having an adamantyl group and an adamantyl group are not included! /, A monomer. It may be a copolymerized compound! /, Or a compound in which an adamantyl group is introduced into a functional group of a silane coupling agent.
  • the resin is preferably a cycloolefin resin.
  • the second aspect of the present invention is:
  • the composite material contains (1) a resin and (2) inorganic particles.
  • thermoplastic resin thermosetting resin
  • photo-curing resin etc.
  • the resin is a thermoplastic resin in terms of workability as an optical element and molding cycle time.
  • a cyclic olefin resin from the viewpoint of low hygroscopicity, which is more preferably an acrylic resin, a cyclic olefin resin, a polycarbonate resin, a polyester resin, a polyether resin, a polyamide resin or a polyimide resin.
  • examples of the resin include compounds described in JP-A-2003-73559 and the like, and preferred compounds are shown in Table 1 below. Of these resins, those having a moisture absorption rate of 0.5% or less are preferred, and those having a moisture absorption rate of 0.2% or less are more preferred.
  • the inorganic * insulator is not particularly limited, and it is possible to achieve the objective of having a small rate of change in the refractive index with temperature of the resulting composite material (hereinafter referred to as I dn / dT I).
  • Medium power of particles can be selected arbitrarily.
  • oxide fine particles, metal salt fine particles, semiconductor fine particles, and the like are preferably used. From these, those that do not cause absorption, light emission, fluorescence, or the like in the wavelength region used as an optical element are appropriately selected. It's preferable to use it.
  • the metal constituting the metal oxide is Li, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Nb, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Ta, Hf, W, Ir, Tl, Pb, Bi, and rare earth metals
  • a metal oxide which is one or more metals selected from the above can be used.
  • silicon dioxide silicon dioxide
  • titanium oxide zinc oxide
  • aluminum oxide alumina
  • zirconium oxide Hafnium oxide
  • niobium oxide tantalum oxide
  • magnesium oxide calcium oxide
  • strontium oxide barium oxide
  • indium oxide indium oxide
  • tin oxide lead oxide
  • double oxides of these oxides lithium niobate and niobium Potassium acid
  • lithium tantalate aluminum '' Magnesium oxide (MgAl O)
  • rare earth oxides can also be used as the oxide fine particles. Specifically, scandium oxide, yttrium oxide, lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, and sulfur oxide. Examples also include pium, gadolinium oxide, terbium oxide, dysprosium oxide, holmium oxide, erbium oxide, thulium oxide, ytterbium oxide, and lutetium oxide.
  • examples of the metal salt fine particles include carbonates, phosphates, sulfates, and the like, specifically, calcium carbonate, aluminum phosphate, and the like.
  • inorganic particles described above one kind of inorganic particles may be used, or a plurality of kinds of inorganic particles may be used in combination. By using a plurality of types of inorganic particles having different properties, the required extraordinary life can be further improved.
  • the average particle size of the inorganic particles is preferably lnm or more and lOOnm or less, more preferably lnm or more and 40nm or less. This is because when the average particle size is less than 1 nm, it is difficult to disperse the inorganic particles and the desired performance may not be obtained. Therefore, the average particle size is preferably 1 nm or more. On the other hand, if the average particle size exceeds lOOnm, The average particle diameter is preferably lOOnm or less, because the composite material is turbid and the transparency is lowered and the light transmittance may be less than 70%.
  • the average particle diameter refers to a volume average value of diameters (sphere converted particle diameters) when each particle is converted into a sphere having the same volume.
  • the inorganic particles are surface-modified with a compound having an adamantyl group!
  • a compound having an adamantyl group has, as one property, a high melting point and a high glass transition temperature, and is difficult to lower the glass transition temperature of the composite material when mixed with a resin.
  • a compound having an adamantyl group has advantages such as low moisture absorption and low heat absorption from the short wavelength region to the ultraviolet region, and is excellent in heat resistance. Sometimes, the physical properties of an optical element molded with the composite material are hardly deteriorated.
  • a compound having an adamantyl group has a weak intermolecular force when it exists on the surface of inorganic particles, and is particularly easily dispersed in a cycloolefin resin.
  • a compound having an adamantyl group is difficult to lower the refractive index of the composite material when mixed with a resin having a relatively high refractive index.
  • the compound having an adamantyl group includes (2.2.1) a compound in which an adamantyl group and a carboxy group or a hydroxyl group are bonded, (2.2.2) a monomer having an adamantyl group, and other monomers. And (2.2.3) compounds in which an adamantyl group is introduced into a functional group of a silane coupling agent.
  • the compound is a compound in which an adamantane ring represented by the following formula (1) is bonded to a carboxyl group or a hydroxyl group.
  • the compound can be obtained, for example, by copolymerizing the compounds of the above formulas (2) to (; 11) with a silane coupling agent having a reactive group.
  • a silane coupling agent having a reactive group examples include a coupling agent having a polymerizable group and mercaptopropyldimethoxysilane.
  • the manufacturing method of the composite material includes (3.1) a surface modification step of surface-modifying the inorganic particles with the compound having an adamantyl group described in each item of the above “(2. 2. 1 2. 2. 3)”. (3.2) A dispersion step of dispersing the inorganic particles in the resin after the surface modification step. (3.1) Surface modification process
  • a method of adding a surface modifier (compound having an adamantyl group) to the inorganic particle dispersion and heating and drying, or a solution of the surface modifier on the dried inorganic particle powder The method of spraying and heating, drying and processing is mentioned.
  • various dispersers and mixers are used to perform uniform surface treatment. It is preferable.
  • inorganic particles surface-modified with a compound having an adamantyl group (hereinafter referred to as “surface-modified particles”) and a resin (particularly a thermoplastic resin) are mixed to disperse the surface-modified particles in the resin.
  • surface-modified particles a compound having an adamantyl group
  • resin particularly a thermoplastic resin
  • a melt-kneading method it is preferable to use a melt-kneading method from the viewpoint of reducing the amount of volatile substances used.
  • the surface-modified particles and the resin may be added together and kneaded together! /, Or may be added in stages and kneaded. Les.
  • a method of dividing addition a method in which one component is added in several times, a method in which one component is added at a time and other components are added stepwise, or a method in which these are combined is used. be able to.
  • the addition of the surface-modified particles can be performed in a powder or agglomerated state. It is possible to add the surface-modified particles in a state of being dispersed in the liquid, but in this case, it is necessary to perform a devolatilization treatment after kneading, and the aggregated particles are dispersed into primary particles in advance. It is preferable to add after making it.
  • one kind of gas selected from the inert gases nitrogen, helium, neon, argon, krypton, and xenon, or a mixture of two or more kinds of gases is used. It is preferable to perform mixing in an atmosphere. However, even general gases such as carbon dioxide, ethylene gas, and hydrogen gas are not reactive to the material to be kneaded! /, If mixed with the inert gas described above, the gas is used. Otherwise!
  • the melt-kneading method is used in the dispersion step, it is preferable to eliminate residual oxygen as much as possible in the reaction system in the melt-kneading apparatus.
  • the oxygen content is preferably 1% or less, and more preferably 0.2% or less. This is because the resin is deteriorated by the oxidation reaction with oxygen and coloration is likely to occur.
  • melt-kneading method examples include Laboplast Mill, Brabender, and Banbury. It is possible to cite closed kneaders or batch kneaders such as a mixer, kneader and roll.
  • a continuous melt kneading apparatus such as a single screw extruder or a twin screw extruder can be used.
  • a continuous melt-kneading apparatus such as an extruder, it is possible to add the components to be added step by step from the middle of the cylinder.
  • various dispersion treatment machines such as a bead mill disperser, an ultrasonic disperser, a high-speed stirring disperser, and a high-pressure disperser are applicable. it can.
  • force S such as dinoreconia beads and glass beads, and zirconia beads are preferably used.
  • the diameter of the beads to be used is smaller, and the preferred diameter is in the range of 0.001 to 0.1 mm.
  • additives include antioxidants, light stabilizers, heat stabilizers, weathering stabilizers, stabilizers such as ultraviolet absorbers and near infrared absorbers, resin modifiers such as lubricants and plasticizers, and soft polymers.
  • anti-clouding agents such as alcoholic compounds, coloring agents such as dyes and pigments, other antistatic agents, flame retardants and the like.
  • antioxidants examples include phenolic antioxidants, phosphorus antioxidants, and phenolic antioxidants. By blending these antioxidants, it is possible to prevent the coloring and strength of the lens from being deteriorated due to oxidative deterioration during molding without reducing transparency and heat resistance.
  • antioxidants can be used alone or in combination of two or more, and the blending amount thereof is appropriately selected within a range not impairing the object of the present invention. However, it is preferably within a range of 0.00;! To 20 parts by mass with respect to 100 parts by mass of the composite material, more preferably within a range of 0.01 to 10 parts by mass.
  • phenolic antioxidant conventionally known ones can be applied.
  • 2-t-butyl-6- (3-t-butyl-2-hydroxyl-5 described in JP-B 63-179953 Methylbenzyl) 4 methylphenyl acrylate, 2, 4 di-t-amino -6-(1-(3,5-di-amino-amino-2-hydroxyphenenole) ethenole) phenyl acrylate, etc.
  • octadecinole described in JP-A-1-168643 3- (3, 5 Di-tert-butyl-4-hydroxyphenyl) propionate and other compounds such as 2,2'-methylene bis (4-methyl-6-tert-butylphenol), 1, 1, 3 tris (2 methyl 4-hydroxyl 5-t-butylphenolino) butane, 1, 3, 5 Trimethylolene 2, 4, 6 tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene,
  • the phosphorus antioxidant is not particularly limited as long as it is a substance that is usually used in the general resin industry.
  • triphenyl phosphite diphenylisodecyl phosphite, phenyl diisodecyl phosphite.
  • tris (noyulphenyl) phosphite tris (dinoylphenyl) phosphite, and tris (2,4 di-tert-butylphenyl) phosphite are particularly preferred.
  • iow antioxidants include dilauryl 3,3 thiodipropionate, dimyristinole 3,3'-thiodipropionate, distearyl 3,3-thiodipropionate. , Lauryl stearyl 3, 3—thiodipropionate, pentaerythritol tetrakisto (/ 3 lauryl thiopropionate), 3, 9 bis (2 dodecylthioethyl) 2, 4, 8, 10—tetraoxaspiro [5, 5] Undecane.
  • amine-based antioxidants such as diphenylamine derivatives, nickel or zinc thiocarbamate, etc. can also be applied as antioxidants. It is.
  • a compound group having a minimum temperature at the glass transition temperature of 30 ° C or less may be blended as an anti-turbidity agent.
  • an anti-turbidity agent it is possible to prevent the occurrence of white turbidity in an environment of high temperature and high humidity for a long time by suppressing deterioration of various properties such as transparency, heat resistance and mechanical strength.
  • examples of the light resistance stabilizer include benzophenone light resistance stabilizer, benzotriazole light resistance stabilizer, hindered amine light resistance stabilizer, and the like. From the viewpoint of properties and the like, it is preferable to use a hindered amine light-resistant stabilizer (hereinafter referred to as “HALS”). As such HALS, those having a low molecular weight, medium molecular weight and high molecular weight can be appropriately selected. However, it is preferable to use low molecular weight or medium molecular weight HALS when forming a molded body from a composite material. Particularly when preparing a film-shaped molded body, high molecular weight HALS may be used. preferable.
  • HALS hindered amine light-resistant stabilizer
  • HALS with a relatively low molecular weight includes LA-77 (Asahi Denka), Tinuvin765 (CSC), Tinuvinl23 (CSC), Tinuvin440 (CSC), Tinuvinl44 (CSC), HostavinN20 (Hoechst) Manufactured) and the like.
  • Examples of medium molecular weight HALS include LA-57 (Asahi Denka), LA-52 (Asahi Denka), LA-67 (Asahi Denka), LA-62 (Asahi Denka), and the like. It is done.
  • HALS with a high molecular weight includes LA-68 (Asahi Denka), LA-63 (Asahi Denka), Ho stavinN30 (Hoechst), Chimassorb944 (CSC), Chimassorb2020 (CSC), Chimassorbl l9 (CSC), Tinuvin622 (CSC), CyasorbUV-3346 (Cytec), CyasorbUV-3529 (Cytec), Uvasil299 (GLC), etc.
  • the light transmittance of the composite material produced as described above is preferably 50% or more, more preferably 70% or more, with respect to 405 nm light when the thickness is 3 mm. More preferably, it is 85% or more.
  • the Abbe number of the composite material can be selected by selecting the surface-modified particles and the resin, it is preferable to use particles that can obtain anomalous dispersion.
  • the composite material can be effectively used for achromatization, and its value may increase.
  • the water absorption rate of the composite material is preferably 2% or less, more preferably 1% or less in an environment of a temperature of 80 ° C and a relative humidity of 90%, more preferably 0.5%. It is most preferable that
  • the water absorption is expressed in mass% unless otherwise specified.
  • the water absorption rate can be measured from a change in mass when a pre-dried composite material is stored for a certain period of time under specific high temperature and high humidity conditions.
  • the water absorption rate is calculated more accurately by measuring the amount of water contained when dried by the Karl Fischer method and measuring the mass change after the subsequent water absorption.
  • the composite material is preferably negative in the AMES test! /. This is because a positive result in the AMES test may impair the user's health, increase the environmental burden, and reduce the material stability.
  • the molding method is not particularly limited, but the melt molding method is preferable from the viewpoint of characteristics such as low birefringence, mechanical strength and dimensional accuracy in the molded product.
  • the melt molding method include press molding, extrusion molding, and injection molding. From the viewpoint of productivity, it is preferable to apply injection molding as the melt molding method.
  • injection molding as the melt molding method.
  • the molding condition is a force that is appropriately selected according to the purpose of use or molding method.
  • the temperature of the composite material in injection molding an appropriate fluidity is imparted to the resin at the time of molding to reduce the distortion of the molded product. It is preferable that the temperature is in the range of 150 ° C to 400 ° C from the viewpoints of preventing silver streaks due to thermal decomposition of the resin and effectively preventing yellowing of the molded product. More preferably, it is within the range of 200 ° C to 350 ° C, and particularly preferably within the range of 200 ° C to 330 ° C.
  • the molded product can be used in various forms such as a spherical shape, a rod shape, a plate shape, a cylindrical shape, a tubular shape, a tubular shape, a fibrous shape, a film shape or a sheet shape, and has a low birefringence, Since it is excellent in transparency, mechanical strength, heat resistance, low water absorption, etc., it can be applied to various optical components.
  • Examples of application of the optical element according to the present invention to an optical component include an optical lens and an optical prism, and specific examples thereof include an imaging system lens of a camera; a lens such as a microscope, an endoscope, and a telescope lens; Optically transmissive lenses such as eyeglass lenses; CD, CD-ROM, WORM (write-once optical disc), MO (rewritable optical disc; magneto-optical disc), MD (mini-beam printer f ⁇ lens, sensor lens, etc.
  • optical applications include light guide plates such as liquid crystal displays; optical films such as polarizing films, retardation films and light diffusion films; light diffusion plates; optical cards; liquid crystal display element substrates.
  • optical element according to the present invention is also suitably used as various filters, gratings, optical fibers, flat optical waveguides, and the like.
  • the optical pickup device 1 in which the optical element according to the present invention is used as the objective lens 7 will be described with reference to FIG.
  • FIG. 1 is a schematic diagram showing the internal structure of the optical pickup device 1.
  • the optical pickup device 1 includes a semiconductor laser oscillator 2 that is a light source.
  • the collimator 3, the beam splitter 4, the quarter-wave plate 5, the diaphragm 6, and the objective lens are directed in a direction away from the semiconductor laser oscillator 2. 7 are sequentially arranged.
  • a sensor lens group 8 and a sensor 9 each including two sets of lenses are sequentially disposed in a position close to the beam splitter 4 and in a direction perpendicular to the optical axis of the blue light described above.
  • the objective lens 7 as an optical element is disposed at a position facing the optical disc D, and condenses the blue light emitted from the semiconductor laser oscillator 2 on one surface of the optical disc D. It is summer.
  • Such an objective lens 7 is provided with a two-dimensional actuator 10, and the objective lens 7 is movable on the optical axis by the operation of the two-dimensional actuator 10.
  • the optical pickup device 1 emits blue light from the semiconductor laser oscillator 2 at the time of recording information on the optical disc D or at the time of reproducing information recorded on the optical disc D. As shown in FIG. 1, the emitted blue light becomes a light beam L1, which is transmitted through the collimator 3 and collimated into infinite parallel light. Transparent. Further, after passing through the aperture 6 and the objective lens 7, a condensing spot is formed on the information recording surface D2 via the protective substrate D1 of the optical disc D.
  • the light that forms the focused spot is modulated by the information pits on the information recording surface D2 of the optical disc D and reflected by the information recording surface D2. Then, the reflected light becomes a light beam L 2, is sequentially transmitted through the objective lens 7 and the diaphragm 6, is changed in polarization direction by the quarter-wave plate 5, and is reflected by the beam splitter 4. After that, astigmatism is given through the sensor lens group 8 and received by the sensor 9, and finally converted into an electric signal by being photoelectrically converted by the sensor 9.
  • the numerical aperture NA required for the objective lens 7 varies depending on the thickness dimension of the protective substrate D1 and the size of the information pit in the optical disc D. In this embodiment, it is a high-density optical disc D, and its numerical aperture is set to 0.85.
  • a dropping device, thermometer, nitrogen gas inlet tube, stirring device and reflux condenser were installed in a three-liter four-separable flask, and dehydrated isopropyl alcohol 2 Og was charged in the flask to about 80.
  • C heated with C. Mix uniformly with 10 g of methacrylolic acid, 50 g of methinoremethacrylate, 2 g of 2-methyl-2-adamantyl methacrylate, 2 g of N, N'-azobisisovaleronitryl and 20 g of isopropyl alcohol.
  • the obtained solution was dropped into the flask over 2 hours and reacted at the same temperature for 5 hours. Thereafter, 60 g of isopropyl alcohol was added and cooled to obtain a 50% by mass dispersant solution. This dispersant solution was designated as “Surface modifier 1”.
  • a dripping device, thermometer, nitrogen gas inlet tube, stirring device and reflux condenser were installed in a three-liter four-separable flask, charged with 20 g of dehydrated methyl ethyl ketone and heated at about 80 ° C. did.
  • Silane coupling agent (Shin-Etsu Chemical KBE-502) 20g, methyl methacrylate 40g, 2-methyl 2-adamantyl methacrylate 40g, N, N'-azobisisovaleronitrile 2g, isopropyl alcohol 20g
  • the homogenized solution was dropped into the flask over 2 hours and reacted at the same temperature for 5 hours. Thereafter, the solvent was removed by vacuum drying to obtain a white powder.
  • the white powder was designated as “Surface modifier 2”.
  • anion exchange resin organo amber Light IRA402BL OH AG
  • anion exchange resin organic amber Light IRA402BL OH AG
  • Example 1 3 g of 1-adamantanecarboxylic acid was added thereto and stirred well, followed by drying at 100 ° C. for 10 hours under nitrogen to obtain a white powder.
  • the white powder was melt-kneaded with 5 g of cycloolefin resin (Mitsubishi Rayon Ataripet MF) to obtain composite material 1.
  • the composite material 1 was injection molded to produce a 3 mm thick molded body, and the molded body was designated as “Sample 1”.
  • composite material 2 was obtained in the same manner as composite material 1 and sample 1.
  • the composite material 2 was injection-molded to produce a 3 mm-thick molded body, and the molded body was designated as “Sample 2”.
  • alumina Alumina TM-300 manufactured by Daimei Chemical Co., Ltd.
  • the obtained slurry was mixed with 20 g of a liquid containing 10 g of the surface modifier 1 and dried.
  • the obtained alumina particles were melt-kneaded with a cycloolefin resin (APEL5014 manufactured by Mitsui Chemicals) in the same manner as in preparation of the composite material 1 and sample 1 to obtain composite material 3.
  • the composite material 3 was injection-molded to produce a 3 mm-thick molded body, and the molded body was designated as “Sample 3”.
  • IPA 2-propanol
  • TMAH aqueous solution tetramethylammonium hydroxide aqueous solution
  • silsesquioxane was obtained by filtering off anhydrous magnesium sulfate and concentrating. This silsesquioxane was a colorless viscous liquid soluble in various organic solvents.
  • the reaction solution was washed with saturated Japanese brine until neutral, and then dehydrated with anhydrous magnesium sulfate.
  • the anhydrous magnesium sulfate was filtered and concentrated to obtain 18.77 g of the target cage-type silsesquioxane (mixture).
  • the cage-type silsesquioxane obtained was a colorless viscous liquid soluble in various organic solvents.
  • a transparent silicone resin composition (composite material) is prepared by mixing 2.5 parts by mass of hydroxycyclohexyl phenyl ketone, 1 part of the above surface modifier 2 and 50 parts of silica powder (A300 from Nippon Aerosil). 5) obtained.
  • the composite material 5 is poured into a mold so as to have a thickness of 3 mm, and cured using a 30 W / cm high-pressure mercury lamp at a cumulative exposure of 20000 mj / cm 2 to obtain a sheet-like shape having a predetermined thickness.
  • a silicon resin molding was obtained.
  • the silicon resin molding was designated as “Sample 5”.
  • Sample 8 was prepared in the same manner as in the preparation of Sample 7, except that an equivalent amount of a silane coupling agent (KBE-502 manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of the surface modifier 2.
  • a silane coupling agent KBE-502 manufactured by Shin-Etsu Chemical Co., Ltd.
  • Samples 5 and 7 had a Tg of 300 C or more and could not be measured.

Abstract

Provided is an optical element which suppresses deterioration of a refractive index while maintaining light transmittance constant and has excellent heat resistance. An objective lens as the optical element is provided by molding a composite material. The composite material is composed of a resin and inorganic particles, and the inorganic particles are surface-modified with a compound having an adamantyl group.

Description

明 細 書  Specification
複合材料及び光学素子  Composite material and optical element
技術分野  Technical field
[0001] 本発明は、レンズ、フィルター、グレーデイング、光ファイバ一、平板光導波路等とし て好適に用いられる複合材料及び光学素子に関する。  The present invention relates to a composite material and an optical element that are suitably used as a lens, a filter, a grading, an optical fiber, a flat optical waveguide, and the like.
背景技術  Background art
[0002] MO、 CD、 DVD, HD— DVD、ブルーレイディスク等の光情報記録媒体に対して 、情報の読み取りや、記録を行うプレーヤー、レコーダー及びドライブ等の情報機器 には、光ピックアップ装置が備えられている。光ピックアップ装置には、光源から発し た所定波長の光を光情報記録媒体に照射し、反射した光を受光素子で受光する光 学素子ユニットが具備されており、この光学素子ユニットは、これらの光を光情報記録 媒体の反射層ゃ受光素子で集光させるためのレンズ等の光学素子を有している。  [0002] MO, CD, DVD, HD—Information equipment such as players, recorders and drives for reading and recording information on optical information recording media such as DVDs and Blu-ray discs is equipped with an optical pickup device. It has been. An optical pickup device includes an optical element unit that irradiates an optical information recording medium with light having a predetermined wavelength emitted from a light source and receives reflected light by a light receiving element. The optical element unit includes these optical element units. It has an optical element such as a lens for condensing light by a light receiving element or a reflection layer of an optical information recording medium.
[0003] 上述した光ピックアップ装置の光学素子は、射出成型等の手段により安価に作製 できる等の点で、プラスチック材料を適用することが好ましい。光学素子に適用可能 なプラスチックとしては、環状ォレフィンと α—ォレフインの共重合体等が知られてい る(特許文献 1参照)が、環状ォレフィンが含有された物質は、湿度変化による屈折率 の安定性は優れているものの、温度変化による屈折率の安定性は所望の効果を得る ことが困難であった。  [0003] It is preferable to apply a plastic material to the optical element of the optical pickup device described above in that it can be manufactured at low cost by means such as injection molding. As plastics that can be applied to optical elements, copolymers of cyclic olefin and α-olefin are known (see Patent Document 1). Substances containing cyclic olefin have a stable refractive index due to changes in humidity. Although the properties are excellent, it is difficult to obtain the desired effect due to the stability of the refractive index due to temperature changes.
[0004] 屈折率の安定性は、樹脂と無機粒子とを混合した複合材料により線膨張を抑制す ることで向上できることが期待できる(特許文献 2参照)。特許文献 2に開示された技 術では、線膨張率の抑制だけでなぐシリカ粒子の欠点である低屈折率を補うため、 他の金属との複合酸化物の微粒子として用いることが提案されている。しかし、この 手法では、吸湿性に富む酸化物の使用で、複合材料としての耐湿性、すなわち屈折 率が湿度に依存して顕著に低下する可能性がある。  [0004] It can be expected that the stability of the refractive index can be improved by suppressing linear expansion with a composite material in which a resin and inorganic particles are mixed (see Patent Document 2). In the technology disclosed in Patent Document 2, it has been proposed to use it as fine particles of composite oxides with other metals in order to compensate for the low refractive index, which is a drawback of silica particles that can be achieved only by suppressing the linear expansion coefficient. . However, in this method, the use of an oxide having a high hygroscopic property may significantly reduce the moisture resistance as a composite material, that is, the refractive index, depending on the humidity.
特許文献 1:特開 2002— 105131号公報  Patent Document 1: JP 2002-105131 A
特許文献 2:特開 2005— 146042号公報  Patent Document 2: Japanese Patent Laid-Open No. 2005-146042
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0005] そこで、無機粒子の吸湿性を減じる手法として、無機粒子の表面をシランカップリン グ剤ゃ各種有機物で処理することが考えられる。しかし、複合材料の光線透過率を 向上させるために無機粒子の粒子径を小さくすると、無機粒子の表面積が大きくなる ことでその表面処理に必要な処理材料が多くなるとともに、樹脂中に拡散する量が増 えることが多い。カップリング剤の副生成物としてのシリコンオイルや、表面処理剤とし ての有機物として頻繁に用いられる脂肪酸等は屈折率を低下させ、樹脂の耐熱性を 損なう。 [0005] Therefore, as a technique for reducing the hygroscopicity of the inorganic particles, it is conceivable to treat the surface of the inorganic particles with a silane coupling agent or various organic substances. However, if the particle size of the inorganic particles is reduced in order to improve the light transmittance of the composite material, the surface area of the inorganic particles increases, so that the amount of treatment material required for the surface treatment increases and the amount of diffusion into the resin. Often increases. Silicon oil as a by-product of the coupling agent and fatty acids frequently used as organic substances as the surface treatment agent lower the refractive index and impair the heat resistance of the resin.
[0006] 本発明の目的は、一定の光線透過率を維持しながら屈折率の低下を抑えかつ耐 熱性に優れた複合材料及び光学素子を提供することを目的とする。  [0006] An object of the present invention is to provide a composite material and an optical element that suppress a decrease in refractive index while maintaining a constant light transmittance and are excellent in heat resistance.
課題を解決するための手段  Means for solving the problem
[0007] 上記の目的を達成するための、本発明の第 1の形態は、  [0007] In order to achieve the above object, the first aspect of the present invention provides:
樹脂と無機粒子との複合材料であって、  A composite material of resin and inorganic particles,
前記無機粒子がァダマンチル基を有する化合物で表面修飾されていることを特徴 としている。  The inorganic particles are surface-modified with a compound having an adamantyl group.
[0008] 上記複合材料においては、 [0008] In the composite material,
前記ァダマンチル基を有する化合物が、ァダマンチル基とカルボキシル基又は水 酸基とを結合した化合物であってもよレ、し、ァダマンチル基を有するモノマーとァダマ ンチル基を有しな!/、モノマーとを共重合した化合物であってもよ!/、し、ァダマンチル 基をシランカップリング剤の官能基に導入した化合物であってもよい。  The compound having an adamantyl group may be a compound in which an adamantyl group and a carboxyl group or a hydroxyl group are combined, and a monomer having an adamantyl group and an adamantyl group are not included! /, A monomer. It may be a copolymerized compound! /, Or a compound in which an adamantyl group is introduced into a functional group of a silane coupling agent.
[0009] 上記複合材料においては、 [0009] In the composite material,
前記樹脂がシクロォレフイン樹脂であるのが好ましい。  The resin is preferably a cycloolefin resin.
[0010] 本発明の第 2の形態は、 [0010] The second aspect of the present invention is:
第 1の形態の複合材料を用いて成型された光学素子である。  An optical element molded using the composite material of the first form.
発明の効果  The invention's effect
[0011] 本発明によれば、一定の光線透過率を維持しながら屈折率の低下を抑えかつ耐熱 性に優れた複合材料及び光学素子を提供することができる(下記実施例参照)。 図面の簡単な説明 [0011] According to the present invention, it is possible to provide a composite material and an optical element that suppress a decrease in refractive index while maintaining a constant light transmittance and are excellent in heat resistance (see Examples below). Brief Description of Drawings
園 1]光ピックアップ装置の内部構造を示す模式図である。  1] A schematic diagram showing the internal structure of the optical pickup device.
符号の説明  Explanation of symbols
1 光ピックアップ装置  1 Optical pickup device
2 半導体レーザ発振器  2 Semiconductor laser oscillator
3 コリメータ  3 Collimator
4 ビームスプリッタ  4 Beam splitter
5 1/4波長板  5 1/4 wave plate
6 絞り  6 Aperture
7 対物レンズ (光学素子)  7 Objective lens (optical element)
8 センサーレンズ群  8 Sensor lens group
9 センサー  9 Sensor
10 2次元ァクチユエータ  10 Two-dimensional actuator
D 光ディスク  D Optical disc
D1 保護基板  D1 Protection board
D2 情報記録面  D2 Information recording surface
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、本発明を実施するための最良の形態について図面を用いて説明する。ただ し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の 限定が付されている力 S、発明の範囲を以下の実施形態及び図示例に限定するもの ではない。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. However, the embodiment described below has various technically preferable limitations S for carrying out the present invention, and the scope of the invention is not limited to the following embodiment and illustrated examples. .
[0015] まず始めに、本発明に係る複合材料について説明する。  [0015] First, the composite material according to the present invention will be described.
[0016] 当該複合材料には、(1)樹脂と(2)無機粒子とが含有されている。以下、(1)樹脂と  [0016] The composite material contains (1) a resin and (2) inorganic particles. (1) Resin and
(2)無機粒子とについてそれぞれ説明し、その後に(3)複合材料の製造方法、(4) 複合材料の性質及び(5)光学素子の製造方法やその適用例についてそれぞれ説 明する。  (2) Inorganic particles will be described, followed by (3) Composite material manufacturing methods, (4) Composite material properties, and (5) Optical element manufacturing methods and application examples.
(1)樹脂  (1) Resin
樹脂としては、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂などが適用可能であ る。光学材料として一般的に用いられる透明樹脂であれば、特に限定されるものでは ないが、光学素子としての加工性、成型サイクルタイムの関係で、当該樹脂は熱可塑 性樹脂であることが好ましぐアクリル樹脂、環状ォレフィン樹脂、ポリカーボネート樹 脂、ポリエステル樹脂、ポリエーテル樹脂、ポリアミド樹脂又はポリイミド樹脂であること がより好ましぐ吸湿性が低い観点で、特に環状ォレフィン樹脂であることが好ましい 。例えば、当該樹脂として、特開 2003— 73559号公報等に記載の化合物を挙げる ことができ、その好ましい化合物を下記表 1に示す。これらの樹脂のうち、吸湿率が 0 . 5%以下であるものが好ましぐ 0. 2%以下であるものが更に好ましい。 As the resin, thermoplastic resin, thermosetting resin, photo-curing resin, etc. are applicable. The Although it is not particularly limited as long as it is a transparent resin that is generally used as an optical material, it is preferable that the resin is a thermoplastic resin in terms of workability as an optical element and molding cycle time. It is more preferably a cyclic olefin resin from the viewpoint of low hygroscopicity, which is more preferably an acrylic resin, a cyclic olefin resin, a polycarbonate resin, a polyester resin, a polyether resin, a polyamide resin or a polyimide resin. Examples of the resin include compounds described in JP-A-2003-73559 and the like, and preferred compounds are shown in Table 1 below. Of these resins, those having a moisture absorption rate of 0.5% or less are preferred, and those having a moisture absorption rate of 0.2% or less are more preferred.
[表 1] [table 1]
Figure imgf000006_0001
Figure imgf000006_0001
(2)無機粒子  (2) Inorganic particles
(2. 1)無機粒子 (2.1) Inorganic particles
当該無機 *ϊ子は、特に限定されるものではなぐ得られる複合材料の温度による屈 折率の変化率(以後、 I dn/dT Iとする。)が小さいという目的を達成可能とする無 機粒子の中力 任意に選択することができる。 The inorganic * insulator is not particularly limited, and it is possible to achieve the objective of having a small rate of change in the refractive index with temperature of the resulting composite material (hereinafter referred to as I dn / dT I). Medium power of particles can be selected arbitrarily.
[0019] 具体的には酸化物微粒子、金属塩微粒子、半導体微粒子などが好ましく用いられ 、この中から、光学素子として使用する波長領域において吸収、発光、蛍光等が生じ なレ、ものを適宜選択して使用することが好ましレ、。  Specifically, oxide fine particles, metal salt fine particles, semiconductor fine particles, and the like are preferably used. From these, those that do not cause absorption, light emission, fluorescence, or the like in the wavelength region used as an optical element are appropriately selected. It's preferable to use it.
[0020] 酸化物微粒子としては、金属酸化物を構成する金属が、 Li、 Na、 Mg、 Al、 Si、 K、 Ca、 Sc、 Ti、 V、 Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Zn、 Rb、 Sr、 Y、 Nb、 Zr、 Mo、 Ag、 C d、 In、 Sn、 Sb、 Cs、 Ba、 La、 Ta、 Hf、 W、 Ir、 Tl、 Pb、 Bi及び希土類金属からなる 群より選ばれる 1種または 2種以上の金属である金属酸化物を用いることができ、具 体的には、例えば、二酸化ケイ素(シリカ)、酸化チタン、酸化亜鉛、酸化アルミニウム (アルミナ)、酸化ジルコニウム、酸化ハフニウム、酸化ニオブ、酸化タンタル、酸化マ グネシゥム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化インジウム、酸 化錫、酸化鉛、これら酸化物より構成される複酸化物であるニオブ酸リチウム、ニオブ 酸カリウム、タンタル酸リチウム、アルミニウム 'マグネシウム酸化物(MgAl O )等が  [0020] As oxide fine particles, the metal constituting the metal oxide is Li, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Nb, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Ta, Hf, W, Ir, Tl, Pb, Bi, and rare earth metals A metal oxide which is one or more metals selected from the above can be used. Specifically, for example, silicon dioxide (silica), titanium oxide, zinc oxide, aluminum oxide (alumina), zirconium oxide , Hafnium oxide, niobium oxide, tantalum oxide, magnesium oxide, calcium oxide, strontium oxide, barium oxide, indium oxide, tin oxide, lead oxide, and the double oxides of these oxides, lithium niobate and niobium Potassium acid, lithium tantalate, aluminum '' Magnesium oxide (MgAl O), etc.
2 4 挙げられる。  2 4
[0021] また、酸化物微粒子として、希土類酸化物を用いることもでき、具体的には、酸化ス カンジゥム、酸化イットリウム、酸化ランタン、酸化セリウム、酸化プラセオジム、酸化ネ オジム、酸化サマリウム、酸化ユウ口ピウム、酸化ガドリニウム、酸化テルビウム、酸化 ジスプロシウム、酸化ホルミウム、酸化エルビウム、酸化ツリウム、酸化イッテルビウム、 酸化ルテチウム等も挙げられる。  [0021] In addition, rare earth oxides can also be used as the oxide fine particles. Specifically, scandium oxide, yttrium oxide, lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, and sulfur oxide. Examples also include pium, gadolinium oxide, terbium oxide, dysprosium oxide, holmium oxide, erbium oxide, thulium oxide, ytterbium oxide, and lutetium oxide.
[0022] さらに、金属塩微粒子としては、炭酸塩、リン酸塩、硫酸塩などが挙げられ、具体的 には炭酸カルシウム、リン酸アルミニウム等が挙げられる。  [0022] Furthermore, examples of the metal salt fine particles include carbonates, phosphates, sulfates, and the like, specifically, calcium carbonate, aluminum phosphate, and the like.
[0023] 上述した無機粒子は、 1種類の無機粒子を用いてもよく、また複数種類の無機粒子 を併用してもよい。異なる性質を有する複数種類の無機粒子を用いることで、必要と される特十生を更に ¾]串よく向上させることもできる。  [0023] As the inorganic particles described above, one kind of inorganic particles may be used, or a plurality of kinds of inorganic particles may be used in combination. By using a plurality of types of inorganic particles having different properties, the required extraordinary life can be further improved.
[0024] 無機粒子の平均粒子径は、 lnm以上、 lOOnm以下であることが好ましぐ lnm以 上、 40nm以下であることがより好ましい。これは、平均粒子径が lnm未満の場合、 無機粒子の分散が困難になり所望の性能が得られないおそれがあるため、平均粒子 径は lnm以上であることが好ましい。一方、平均粒子径が lOOnmを超える場合、得 られる複合材料が濁るなどして透明性が低下し、光線透過率が 70%未満となるおそ れがあること力も、平均粒子径は lOOnm以下であることが好ましい。 [0024] The average particle size of the inorganic particles is preferably lnm or more and lOOnm or less, more preferably lnm or more and 40nm or less. This is because when the average particle size is less than 1 nm, it is difficult to disperse the inorganic particles and the desired performance may not be obtained. Therefore, the average particle size is preferably 1 nm or more. On the other hand, if the average particle size exceeds lOOnm, The average particle diameter is preferably lOOnm or less, because the composite material is turbid and the transparency is lowered and the light transmittance may be less than 70%.
[0025] ここで、平均粒子径とは、各粒子を同体積の球に換算した時の直径(球換算粒径) の体積平均値をいう。  [0025] Here, the average particle diameter refers to a volume average value of diameters (sphere converted particle diameters) when each particle is converted into a sphere having the same volume.
(2. 2)ァダマンチル基を有する化合物  (2.2) Compound having adamantyl group
上記無機粒子は、ァダマンチル基を有する化合物で表面修飾されて!/、る。  The inorganic particles are surface-modified with a compound having an adamantyl group!
[0026] ァダマンチル基を有する化合物は、一の性質として、融点やガラス転移温度が高く 、樹脂と混合されたとき当該複合材料のガラス転移温度を低下させにくい。他の性質 として、ァダマンチル基を有する化合物は、短波長領域から紫外線領域に至るまで の光吸収が少なぐ吸湿率も低ぐ耐熱性にも優れる等の利点を有し、樹脂と混合さ れたとき当該複合材料で成型した光学素子の物性を劣化させにくい。他の性質とし て、ァダマンチル基を有する化合物は、無機粒子の表面に存在すると分子間力が弱 ぐ特にシクロォレフイン樹脂中で分散し易い。他の性質として、ァダマンチル基を有 する化合物は、比較的屈折率が高ぐ樹脂と混合されたとき当該複合材料の屈折率 を低下させ難い。  [0026] A compound having an adamantyl group has, as one property, a high melting point and a high glass transition temperature, and is difficult to lower the glass transition temperature of the composite material when mixed with a resin. As another property, a compound having an adamantyl group has advantages such as low moisture absorption and low heat absorption from the short wavelength region to the ultraviolet region, and is excellent in heat resistance. Sometimes, the physical properties of an optical element molded with the composite material are hardly deteriorated. As another property, a compound having an adamantyl group has a weak intermolecular force when it exists on the surface of inorganic particles, and is particularly easily dispersed in a cycloolefin resin. As another property, a compound having an adamantyl group is difficult to lower the refractive index of the composite material when mixed with a resin having a relatively high refractive index.
[0027] 当該ァダマンチル基を有する化合物としては、(2. 2. 1)ァダマンチル基とカルボキ シル基又は水酸基とを結合した化合物、(2. 2. 2)ァダマンチル基を有するモノマー とその他のモノマーとを共重合した化合物及び(2. 2. 3)ァダマンチル基をシラン力 ップリング剤の官能基に導入した化合物が挙げられる。  [0027] The compound having an adamantyl group includes (2.2.1) a compound in which an adamantyl group and a carboxy group or a hydroxyl group are bonded, (2.2.2) a monomer having an adamantyl group, and other monomers. And (2.2.3) compounds in which an adamantyl group is introduced into a functional group of a silane coupling agent.
(2. 2. 1)ァダマンチル基とカルボキシル基又は水酸基とを結合した化合物  (2. 2. 1) Compound in which adamantyl group and carboxyl group or hydroxyl group are bonded
当該化合物は、下記式(1)のァダマンタン環とカルボキシル基又は水酸基とを結合 した化合物である。  The compound is a compound in which an adamantane ring represented by the following formula (1) is bonded to a carboxyl group or a hydroxyl group.
[0028] [化 1]
Figure imgf000008_0001
[0028] [Chemical 1]
Figure imgf000008_0001
(1)  (1)
(2. 2. 2)ァダマンチル基を有するモノマーとその他のモノマー(ァダマンチル基を有 しな!/、モノマー)とを共重合した化合物 ァダマンチル基を有するモノマーとしては、下記式(2)〜(; 11)の化合物等が挙げら れる。これら二重結合を含む官能基の他、エポキシやイソシァネート、ァミノ基とァダ マンチル基を有する化合物等から得られる重合物が適用可能である。 (2. 2. 2) A compound obtained by copolymerizing a monomer having an adamantyl group and another monomer (not having an adamantyl group! /, Monomer) Examples of the monomer having an adamantyl group include compounds represented by the following formulas (2) to (; 11). In addition to these functional groups containing a double bond, polymers obtained from epoxies, isocyanates, compounds having an amino group and an adamantyl group, and the like are applicable.
[化 2] [Chemical 2]
Figure imgf000009_0001
Figure imgf000009_0001
(7) (8) (7) (8)
Figure imgf000009_0002
Figure imgf000009_0002
(2. 2. 3)ァダマンチル基 '剤の官能基に導入した化合物 (2. 2. 3) Adamantyl group 'A compound introduced into the functional group of the agent
当該化合物は、例えば上記式(2)〜(; 11)の化合物を、反応性基を有するシラン力 ップリング剤と共重合することで得ることができる。重合性基を有するカップリング剤と メルカプトプロピルジメトキシシラン等が挙げられる。  The compound can be obtained, for example, by copolymerizing the compounds of the above formulas (2) to (; 11) with a silane coupling agent having a reactive group. Examples include a coupling agent having a polymerizable group and mercaptopropyldimethoxysilane.
(3)複合材料の製造方法 (3) Manufacturing method of composite material
複合材料の製造方法は、 (3. 1)無機粒子を上記「(2. 2. 1 2. 2. 3)」の各項 目で説明したァダマンチル基を有する化合物で表面修飾する表面修飾工程と、 (3. 2)表面修飾工程後に当該無機粒子を樹脂に分散させる分散工程と、を備えている。 (3. 1)表面修飾工程  The manufacturing method of the composite material includes (3.1) a surface modification step of surface-modifying the inorganic particles with the compound having an adamantyl group described in each item of the above “(2. 2. 1 2. 2. 3)”. (3.2) A dispersion step of dispersing the inorganic particles in the resin after the surface modification step. (3.1) Surface modification process
表面修飾工程では、無機粒子の分散液中に表面修飾剤(ァダマンチル基を有する 化合物)を添加し、加熱、乾燥処理を行い処理する方法や、乾燥した無機粒子の粉 体に表面修飾剤の溶液を噴霧して加熱、乾燥して処理する方法などが挙げられる。 上記の手法においては、各種分散機やミキサーなどを使用し、均一な表面処理を行 うことが好ましい。 In the surface modification step, a method of adding a surface modifier (compound having an adamantyl group) to the inorganic particle dispersion and heating and drying, or a solution of the surface modifier on the dried inorganic particle powder The method of spraying and heating, drying and processing is mentioned. In the above method, various dispersers and mixers are used to perform uniform surface treatment. It is preferable.
(3. 2)分散工程  (3.2) Dispersion process
当該分散工程では、ァダマンチル基を有する化合物で表面修飾された無機粒子( 以下「表面修飾粒子」という。)と樹脂 (特に熱可塑性樹脂)とを混合して、表面修飾 粒子を樹脂に分散させる。表面修飾粒子と樹脂との混合方法としては、揮発性物質 の使用量を低減させる観点から、溶融混練法を利用することが好ましレ、。  In the dispersion step, inorganic particles surface-modified with a compound having an adamantyl group (hereinafter referred to as “surface-modified particles”) and a resin (particularly a thermoplastic resin) are mixed to disperse the surface-modified particles in the resin. As a method for mixing the surface-modified particles and the resin, it is preferable to use a melt-kneading method from the viewpoint of reducing the amount of volatile substances used.
[0032] 分散工程で溶融混練法を利用する場合には、表面修飾粒子と樹脂とを一括で添 カロし混練してもよ!/、し、段階的に分割添加して混練してもょレ、。  [0032] When the melt-kneading method is used in the dispersion step, the surface-modified particles and the resin may be added together and kneaded together! /, Or may be added in stages and kneaded. Les.
[0033] 分割添加する方法としては、一成分を数回に分けて添加する方法や、一成分を一 括で添加し、他の成分を段階的に添加する方法、これらを組合せた方法を用いること ができる。表面修飾粒子の添加は、粉体又は凝集状態のまま行うことが可能である。 表面修飾粒子を液中に分散させた状態で添加することも可能であるが、この場合に は、混練後に脱揮処理を行うことが必要であり、また、予め凝集粒子を一次粒子に分 散させた後に添加することが好ましい。また、表面修飾粒子と樹脂とを予め混練した 後、樹脂(熱可塑性樹脂)以外の成分で予め添加しなかった成分を添加して更に溶 融混練する際も、これらを一括で添加して混練してもよいし、段階的に分割添加して 混練してもよい。  [0033] As a method of dividing addition, a method in which one component is added in several times, a method in which one component is added at a time and other components are added stepwise, or a method in which these are combined is used. be able to. The addition of the surface-modified particles can be performed in a powder or agglomerated state. It is possible to add the surface-modified particles in a state of being dispersed in the liquid, but in this case, it is necessary to perform a devolatilization treatment after kneading, and the aggregated particles are dispersed into primary particles in advance. It is preferable to add after making it. In addition, after kneading the surface-modified particles and the resin in advance, when adding components other than the resin (thermoplastic resin) that were not previously added and further melt-kneading them, they are added all at once and kneaded. Alternatively, it may be added in stages and kneaded.
[0034] 分散工程で溶融混練法を利用する場合には、不活性ガスである窒素、ヘリウム、ネ オン、アルゴン、クリプトン及びキセノンの中から選択される一種のガス又は二種以上 の混合ガスの雰囲気下で混合を行うことが好ましい。ただし、炭酸ガス、エチレンガス 及び水素ガス等の一般的なガスであっても、混練される物質に対する反応性を有さ な!/、ガスであれば、上述した不活性ガスと混合して用いてもよ!/、。  [0034] When the melt-kneading method is used in the dispersion step, one kind of gas selected from the inert gases nitrogen, helium, neon, argon, krypton, and xenon, or a mixture of two or more kinds of gases is used. It is preferable to perform mixing in an atmosphere. However, even general gases such as carbon dioxide, ethylene gas, and hydrogen gas are not reactive to the material to be kneaded! /, If mixed with the inert gas described above, the gas is used. Anyway!
[0035] 分散工程で溶融混練法を利用する場合には、溶融混練装置における反応系内に おいて、残留する酸素を極力排除することが好ましぐ具体的には、反応系内におけ る酸素量は 1 %以下であることが好ましぐ 0. 2%以下であることがより好ましい。これ は、酸素による酸化反応によって樹脂が劣化するとともに、着色が発生しやすいため である。  [0035] When the melt-kneading method is used in the dispersion step, it is preferable to eliminate residual oxygen as much as possible in the reaction system in the melt-kneading apparatus. Specifically, in the reaction system The oxygen content is preferably 1% or less, and more preferably 0.2% or less. This is because the resin is deteriorated by the oxidation reaction with oxygen and coloration is likely to occur.
[0036] 溶融混練法に適用可能な装置としては、ラボプラストミル、ブラベンダー、バンバリ 一ミキサー、ニーダー及びロール等のような密閉式混練装置又はバッチ式混練装置 を挙げること力 Sできる。また、溶融混練法に用いられる装置としては、単軸押出機や、 二軸押出機等のように連続式の溶融混練装置を用いることも可能である。押出機等 の連続式の溶融混練装置を用いる場合におレ、ては、段階的に添加する成分をシリン ダ一の中途部から添加することも可能である。 [0036] Examples of apparatuses applicable to the melt-kneading method include Laboplast Mill, Brabender, and Banbury. It is possible to cite closed kneaders or batch kneaders such as a mixer, kneader and roll. As an apparatus used for the melt kneading method, a continuous melt kneading apparatus such as a single screw extruder or a twin screw extruder can be used. When using a continuous melt-kneading apparatus such as an extruder, it is possible to add the components to be added step by step from the middle of the cylinder.
[0037] 混合物の分散装置としては、ビーズミル分散機、超音波分散機、高速攪拌型分散 機及び高圧分散機等の各種分散処理機が適用可能であるが、ビーズミル分散機を 好適に用いること力できる。ビーズミル分散機で使用されるビーズとしては、ジノレコニ ァビーズや、ガラスビーズ等が挙げられる力 S、ジルコユアビーズが好適に用いられる。 また、使用されるビーズの径寸法は小さい方が好ましぐ直径が 0. 001 -0. 1mmの 範囲内であることがより好ましい。  [0037] As a dispersion apparatus for the mixture, various dispersion treatment machines such as a bead mill disperser, an ultrasonic disperser, a high-speed stirring disperser, and a high-pressure disperser are applicable. it can. As the beads used in the bead mill disperser, force S, such as dinoreconia beads and glass beads, and zirconia beads are preferably used. Further, it is more preferable that the diameter of the beads to be used is smaller, and the preferred diameter is in the range of 0.001 to 0.1 mm.
[0038] なお、複合材料の作製工程におレ、ては、必要に応じて各種添加剤を単独で又は 組合わせて添加してもよ!/、。  [0038] In the composite material production process, various additives may be added alone or in combination as required.
[0039] 添加剤としては、酸化防止剤、耐光安定剤、熱安定剤、耐候安定剤、紫外線吸収 剤及び近赤外線吸収剤等の安定剤、滑剤や可塑剤等の樹脂改良剤、軟質重合体 やアルコール性化合物等の白濁防止剤、染料や顔料等の着色剤、その他帯電防止 剤や、難燃剤等が挙げられる。  [0039] Examples of additives include antioxidants, light stabilizers, heat stabilizers, weathering stabilizers, stabilizers such as ultraviolet absorbers and near infrared absorbers, resin modifiers such as lubricants and plasticizers, and soft polymers. And anti-clouding agents such as alcoholic compounds, coloring agents such as dyes and pigments, other antistatic agents, flame retardants and the like.
[0040] これらの添加剤のうち、酸化防止剤としては、フエノール系酸化防止剤、リン系酸化 防止剤及びィォゥ系酸化防止剤等が挙げられる。これらの酸化防止剤を配合するこ とにより、透明性や耐熱性等を低下させることなぐ成型時の酸化劣化等によるレンズ の着色や強度低下を防止することができる。  [0040] Among these additives, examples of the antioxidant include phenolic antioxidants, phosphorus antioxidants, and phenolic antioxidants. By blending these antioxidants, it is possible to prevent the coloring and strength of the lens from being deteriorated due to oxidative deterioration during molding without reducing transparency and heat resistance.
[0041] また、これらの酸化防止剤は、それぞれ単独で、あるいは 2種以上を組合わせて用 いることが可能であって、その配合量は、本発明の目的を損なわない範囲で適宜選 択されるが、複合材料 100質量部に対して 0. 00;!〜 20質量部の範囲内であること が好ましぐ 0. 01〜; 10質量部の範囲内であることがより好ましい。  [0041] Further, these antioxidants can be used alone or in combination of two or more, and the blending amount thereof is appropriately selected within a range not impairing the object of the present invention. However, it is preferably within a range of 0.00;! To 20 parts by mass with respect to 100 parts by mass of the composite material, more preferably within a range of 0.01 to 10 parts by mass.
[0042] フエノール系酸化防止剤としては、従来公知のものが適用可能であり、例えば、特 開昭 63— 179953号公報に記載の 2—t ブチルー 6—(3— t ブチルー 2 ヒドロ キシ一 5 メチルベンジル) 4 メチルフエニルアタリレート、 2, 4 ジ一 t アミノレ - 6 - ( 1 - (3, 5—ジ一 t アミノレ一 2—ヒドロキシフエ二ノレ)ェチノレ)フエニルアタリレ ート等や、特開平; 1— 168643号公報に記載のォクタデシノレ一 3— (3, 5 ジ一 t— ブチルー 4ーヒドロキシフエニル)プロピオネート等のアタリレート系化合物や、 2, 2' ーメチレン ビス(4ーメチルー 6— t ブチルフエノール)、 1 , 1 , 3 トリス(2 メチ ノレ一 4 ヒドロキシ一 5— t ブチルフエ二ノレ)ブタン、 1 , 3, 5 トリメチノレー 2, 4, 6 ートリス(3, 5—ジ tーブチルー 4ーヒドロキシベンジル)ベンゼン、テトラキス(メチレ ン一 3— (3' , 5' —ジ一 t ブチノレ一 一ヒドロキシフエニルプロピオネート))メタ ン、すなわち、ペンタエリスリメチルーテトラキス(3— (3, 5—ジ tーブチルー 4ーヒド ロキシフエニルプロピオネート))、トリエチレングリコールビス(3—(3— t ブチルー 4 ーヒドロキシ 5—メチルフエニル)プロピオネート)等のアルキル置換フエノール系化 合物や、 6—(4ーヒドロキシ 3, 5 ジ tーブチルァニリノ) 2, 4 ビスオタチル チォ 1 , 3, 5 トリァジン、 4 ビスォクチルチオ 1 , 3, 5 トリァジン、 2 ォクチ ルチオ一4, 6—ビス一 (3, 5—ジ一tーブチルー 4ーォキシァニリノ)一 1 , 3, 5—トリ ァジン等のトリアジン基含有フエノール系化合物等が挙げられる。 [0042] As the phenolic antioxidant, conventionally known ones can be applied. For example, 2-t-butyl-6- (3-t-butyl-2-hydroxyl-5 described in JP-B 63-179953 Methylbenzyl) 4 methylphenyl acrylate, 2, 4 di-t-amino -6-(1-(3,5-di-amino-amino-2-hydroxyphenenole) ethenole) phenyl acrylate, etc., and octadecinole described in JP-A-1-168643 3- (3, 5 Di-tert-butyl-4-hydroxyphenyl) propionate and other compounds such as 2,2'-methylene bis (4-methyl-6-tert-butylphenol), 1, 1, 3 tris (2 methyl 4-hydroxyl 5-t-butylphenolino) butane, 1, 3, 5 Trimethylolene 2, 4, 6 tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, tetrakis (methylene 3- (3 ', 5' — Di-butynol-mono-hydroxyphenyl propionate)) methane, ie, pentaerythrimethyl-tetrakis (3- (3,5-di-tert-butyl-4-hydroxyphenyl propionate)), triethylene glycol Alkyl-substituted phenolic compounds such as bis (3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate) and 6- (4-hydroxy-3,5-di-tert-butylanilino) 2,4 bis-octylthio 1, 3, 5 Triazine group-containing phenolic compounds such as triazine, 4 bisoctylthio 1, 3, 5 triazine, 2 octylthio-1,4,6-bis- (3,5-di-tert-butyl-4-oxyanilino) -1,3,5-5-triazine Etc.
[0043] リン系酸化防止剤としては、一般の樹脂工業において通常使用される物であれば、 特に限定されるものではなぐ例えば、トリフエニルホスファイト、ジフエ二ルイソデシル ホスファイト、フエニルジイソデシルホスフアイト、トリス(ノユルフェ二ノレ)ホスファイト、ト リス(ジノユルフェ二ノレ)ホスファイト、トリス(2, 4 ジ一 t ブチルフエ二ノレ)ホスフアイ ト、 10— (3, 5 ジ tーブチルー 4ーヒドロキシベンジル) 9, 10 ジヒドロー 9 ォキサ 10—ホスファフェナントレン 10—オキサイド等のモノホスファイト系化合物 や、 4, A' ーブチリデンービス(3—メチルー 6— t ブチルフエ二ルージートリデシル ホスファイト)、 4, A' —イソプロピリデン一ビス(フエ二ル一ジ一アルキル(C 12〜C 1 5)ホスファイト)等のジホスファイト系化合物等が挙げられる。これらの中でも、モノホ スフアイト系化合物が好ましぐトリス(ノユルフェニル)ホスファイト、トリス(ジノユルフェ ニル)ホスファイト、トリス(2, 4 ジ一 t ブチルフエニル)ホスファイト等が特に好まし い。 [0043] The phosphorus antioxidant is not particularly limited as long as it is a substance that is usually used in the general resin industry. For example, triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite. , Tris (Noyulfeninore) phosphite, Tris (Dinoyurfeninole) phosphite, Tris (2,4 di-tert-butylphenol) phosphite, 10— (3,5 Di-tert-butyl-4-hydroxybenzyl) 9 , 10 Dihydro-9 oxa 10-phosphaphenanthrene 10-oxide and other monophosphite compounds, 4, A'-butylidenebis (3-methyl-6-t butylphenol tridecyl phosphite), 4, A '— Diphosphite systems such as isopropylidene monobis (phenyl didialkyl (C 12-C 15 phosphite)) Compounds, and the like. Of these, tris (noyulphenyl) phosphite, tris (dinoylphenyl) phosphite, and tris (2,4 di-tert-butylphenyl) phosphite are particularly preferred.
[0044] ィォゥ系酸化防止剤としては、例えば、ジラウリル 3, 3 チォジプロピオネート、ジミ リスチノレ 3, 3' —チォジプロピピオネート、ジステアリル 3, 3—チォジプロピオネート 、ラウリルステアリル 3, 3—チォジプロピオネート、ペンタエリスリトールーテトラキスー ( /3 ラウリル チォープロピオネート)、 3, 9 ビス(2 ドデシルチオェチル) 2, 4, 8, 10—テトラオキサスピロ [5, 5]ゥンデカン等が挙げられる。 [0044] Examples of iow antioxidants include dilauryl 3,3 thiodipropionate, dimyristinole 3,3'-thiodipropionate, distearyl 3,3-thiodipropionate. , Lauryl stearyl 3, 3—thiodipropionate, pentaerythritol tetrakisto (/ 3 lauryl thiopropionate), 3, 9 bis (2 dodecylthioethyl) 2, 4, 8, 10—tetraoxaspiro [5, 5] Undecane.
[0045] さらに、上述したフエノール系、リン酸系及びィォゥ系酸化防止剤の他に、ジフエ二 ルァミン誘導体等のアミン系酸化防止剤や、ニッケル又は亜鉛のチォカルバメート等 も酸化防止剤として適用可能である。  [0045] Further, in addition to the above-mentioned phenol-based, phosphoric acid-based and xio-based antioxidants, amine-based antioxidants such as diphenylamine derivatives, nickel or zinc thiocarbamate, etc. can also be applied as antioxidants. It is.
[0046] また、上述した添加剤のうち、白濁防止剤としては、ガラス転移温度における最低 温度が 30°C以下である化合物群が配合されていてもよい。これにより、透明性、耐熱 性及び機械的強度等の諸特性の低下を抑制して、長時間に渡る高温高湿度の環境 下における白濁の発生を防止することができる。  [0046] In addition, among the additives described above, a compound group having a minimum temperature at the glass transition temperature of 30 ° C or less may be blended as an anti-turbidity agent. As a result, it is possible to prevent the occurrence of white turbidity in an environment of high temperature and high humidity for a long time by suppressing deterioration of various properties such as transparency, heat resistance and mechanical strength.
[0047] また、上述した添加剤のうち、耐光安定剤としては、ベンゾフヱノン系耐光安定剤、 ベンゾトリアゾール系耐光安定剤及びヒンダードアミン系耐光安定剤等が挙げられる 力 S、レンズの透明性ゃ耐着色性等の観点から、ヒンダードアミン系耐光安定剤(以下 「HALS」とする)を用いることが好ましい。このような HALSとしては、低分子量のもの から中分子量、高分子量のものを適宜選択することができる。ただし、複合材料から 成型体を作製する場合には、低分子量又は中分子量の HALSが用いられることが 好ましぐ特に膜状の成型体を作製する場合には、高分子量の HALSを用いること が好ましい。  [0047] Among the additives described above, examples of the light resistance stabilizer include benzophenone light resistance stabilizer, benzotriazole light resistance stabilizer, hindered amine light resistance stabilizer, and the like. From the viewpoint of properties and the like, it is preferable to use a hindered amine light-resistant stabilizer (hereinafter referred to as “HALS”). As such HALS, those having a low molecular weight, medium molecular weight and high molecular weight can be appropriately selected. However, it is preferable to use low molecular weight or medium molecular weight HALS when forming a molded body from a composite material. Particularly when preparing a film-shaped molded body, high molecular weight HALS may be used. preferable.
[0048] 比較的分子量の小さい HALSとしては、 LA— 77 (旭電化製)、 Tinuvin765 (CS C製)、 Tinuvinl23 (CSC製)、 Tinuvin440 (CSC製)、 Tinuvinl44 (CSC製)、 HostavinN20 (へキスト製)等が挙げられる。  [0048] HALS with a relatively low molecular weight includes LA-77 (Asahi Denka), Tinuvin765 (CSC), Tinuvinl23 (CSC), Tinuvin440 (CSC), Tinuvinl44 (CSC), HostavinN20 (Hoechst) Manufactured) and the like.
[0049] 中程度の分子量の HALSとしては、 LA— 57 (旭電化製)、 LA— 52 (旭電化製)、 LA— 67 (旭電化製)、 LA— 62 (旭電化製)等が挙げられる。  [0049] Examples of medium molecular weight HALS include LA-57 (Asahi Denka), LA-52 (Asahi Denka), LA-67 (Asahi Denka), LA-62 (Asahi Denka), and the like. It is done.
[0050] 分子量の大きい HALSとしては、 LA— 68 (旭電化製)、 LA— 63 (旭電化製)、 Ho stavinN30 (へキスト製)、 Chimassorb944 (CSC製)、 Chimassorb2020 (CSC 製)、 Chimassorbl l9 (CSC製)、 Tinuvin622 (CSC製)、 CyasorbUV—3346 ( Cytec製)、 CyasorbUV— 3529 (Cytec製)、 Uvasil299 (GLC製)等が挙げられ [0051] さらに成型時、押出時の加工助剤として、各種の滑剤や、フッ素エラストマ一を若干 酉己合することも好ましい。 [0050] HALS with a high molecular weight includes LA-68 (Asahi Denka), LA-63 (Asahi Denka), Ho stavinN30 (Hoechst), Chimassorb944 (CSC), Chimassorb2020 (CSC), Chimassorbl l9 (CSC), Tinuvin622 (CSC), CyasorbUV-3346 (Cytec), CyasorbUV-3529 (Cytec), Uvasil299 (GLC), etc. [0051] Further, it is also preferable to slightly combine various lubricants and fluorine elastomer as processing aids during molding and extrusion.
(4)複合材料の性質  (4) Properties of composite materials
以上のようにして製造される複合材料の光線透過率は、 3mm厚の場合に 405nm の光に対して 50%以上であるのが好ましぐより好ましくは 70%以上であるのがより 好ましぐ 85%以上であるのが更に好ましい。  The light transmittance of the composite material produced as described above is preferably 50% or more, more preferably 70% or more, with respect to 405 nm light when the thickness is 3 mm. More preferably, it is 85% or more.
[0052] また、複合材料のアッベ数につ!/、ては、表面修飾粒子や樹脂の選択で種々の値が 選択可能であるが、異常分散性を得られる粒子を用いることが好ましい。この場合に は、複合材料を色消しに有効に用いることができ、その価値が高まる場合がある。  [0052] Although various values can be selected for the Abbe number of the composite material by selecting the surface-modified particles and the resin, it is preferable to use particles that can obtain anomalous dispersion. In this case, the composite material can be effectively used for achromatization, and its value may increase.
[0053] また、複合材料の吸水率は、温度 80°C,相対湿度 90%の環境下で 2%以下である ことが好ましぐ 1 %以下であることがさらに好ましぐ 0. 5%以下であることが最も好ま しい。  [0053] The water absorption rate of the composite material is preferably 2% or less, more preferably 1% or less in an environment of a temperature of 80 ° C and a relative humidity of 90%, more preferably 0.5%. It is most preferable that
[0054] なお、本実施の形態においては、特に記載のない限り、吸水率を質量%で表す。ま た、吸水率の測定は、あらかじめ乾燥させた複合材料を、特定の高温高湿条件化で 一定時間以上保存した時の質量変化から測定することが可能である。本実施の形態 においては、乾燥したときに含有されている水分量をカールフィッシャー法で測定し 、その後の吸水後に質量変化を測定することで、より正確に吸水率を算出している。  [0054] In the present embodiment, the water absorption is expressed in mass% unless otherwise specified. In addition, the water absorption rate can be measured from a change in mass when a pre-dried composite material is stored for a certain period of time under specific high temperature and high humidity conditions. In the present embodiment, the water absorption rate is calculated more accurately by measuring the amount of water contained when dried by the Karl Fischer method and measuring the mass change after the subsequent water absorption.
[0055] また、複合材料は AMES試験にお!/、て陰性であることが好まし!/、。これは、 AMES 試験において陽性であると、使用者の健康の阻害、環境負荷の増大、材料安定性の 低減等のおそれがあるからである。  [0055] The composite material is preferably negative in the AMES test! /. This is because a positive result in the AMES test may impair the user's health, increase the environmental burden, and reduce the material stability.
(5)光学素子の製造方法や適用例  (5) Optical element manufacturing methods and application examples
(5. 1)光学素子の製造方法  (5.1) Optical element manufacturing method
上記の通り得られる複合材料を成型することで、本発明に係る光学素子を製造する こと力 Sできる。成型方法としては、特に限定されるものではないが、成型物における低 複屈折性、機械強度及び寸法精度等の特性の観点から、溶融成型法が好ましい。 溶融成型法としては、例えば、プレス成型、押し出し成型、射出成型等が挙げられる 。生産性の観点から、当該溶融成型法として射出成型を適用するのが好ましい。また 、光硬化性樹脂で成型物を構成する場合、注型重合などを用いることが可能である。 [0056] 成型条件は使用目的又は成型方法に応じて適宜選択される力 例えば、射出成型 における複合材料の温度としては、成型時に適度な流動性を樹脂に付与して成型品 のヒケゃ歪みを防止し、樹脂の熱分解によるシルバーストリークの発生を防止し、更 に、成型物の黄変を効果的に防止するなどの観点から、 150°C〜400°Cの範囲内で あることカ好ましく、 200°C〜350°Cの範囲内であることカより好ましく、 200°C〜330 °Cの範囲内であることが特に好ましい。 By molding the composite material obtained as described above, it is possible to manufacture the optical element according to the present invention. The molding method is not particularly limited, but the melt molding method is preferable from the viewpoint of characteristics such as low birefringence, mechanical strength and dimensional accuracy in the molded product. Examples of the melt molding method include press molding, extrusion molding, and injection molding. From the viewpoint of productivity, it is preferable to apply injection molding as the melt molding method. In addition, in the case of forming a molded product with a photocurable resin, cast polymerization or the like can be used. [0056] The molding condition is a force that is appropriately selected according to the purpose of use or molding method. For example, as the temperature of the composite material in injection molding, an appropriate fluidity is imparted to the resin at the time of molding to reduce the distortion of the molded product. It is preferable that the temperature is in the range of 150 ° C to 400 ° C from the viewpoints of preventing silver streaks due to thermal decomposition of the resin and effectively preventing yellowing of the molded product. More preferably, it is within the range of 200 ° C to 350 ° C, and particularly preferably within the range of 200 ° C to 330 ° C.
[0057] 成型法として射出成型を用いる場合には、炭酸ガスを可塑剤として用いる成型法や 、金型を誘導加熱して転写性を向上させる方法など、一般的な手法はすべて適用可 能である。  [0057] When injection molding is used as a molding method, all general methods such as a molding method using carbon dioxide gas as a plasticizer and a method of improving transferability by induction heating of a mold can be applied. is there.
[0058] 当該成型物は、球状、棒状、板状、円柱状、筒状、チューブ状、繊維状、フィルム 又はシート形状等の種々の形態で使用することが可能であり、低複屈折性、透明性、 機械強度、耐熱性及び低吸水性等に優れるため、各種光学部品への適用が可能で ある。  [0058] The molded product can be used in various forms such as a spherical shape, a rod shape, a plate shape, a cylindrical shape, a tubular shape, a tubular shape, a fibrous shape, a film shape or a sheet shape, and has a low birefringence, Since it is excellent in transparency, mechanical strength, heat resistance, low water absorption, etc., it can be applied to various optical components.
(5. 2)光学素子の適用例  (5.2) Application examples of optical elements
本発明に係る光学素子の光学部品への適用例としては、光学レンズや光学プリズ ムが挙げられ、その具体例としては、カメラの撮像系レンズ;顕微鏡、内視鏡、望遠鏡 レンズ等のレンズ;眼鏡レンズ等の全光線透過型レンズ; CD、 CD-ROM, WORM (追記型光ディスク)、 MO (書き変え可能な光ディスク;光磁気ディスク)、 MD (ミニデ ビームプリンターの f Θレンズ、センサー用レンズ等のレーザ走査系レンズ;カメラのフ アインダ一系のプリズムレンズ等が挙げられる。  Examples of application of the optical element according to the present invention to an optical component include an optical lens and an optical prism, and specific examples thereof include an imaging system lens of a camera; a lens such as a microscope, an endoscope, and a telescope lens; Optically transmissive lenses such as eyeglass lenses; CD, CD-ROM, WORM (write-once optical disc), MO (rewritable optical disc; magneto-optical disc), MD (mini-beam printer fΘ lens, sensor lens, etc. A laser scanning system lens; a prism lens of a camera lens system, and the like.
[0059] その他の光学用途としては、液晶ディスプレイなどの導光板;偏光フィルム、位相差 フィルム、光拡散フィルム等の光学フィルム;光拡散板;光カード;液晶表示素子基板 等が挙げられる。 [0059] Other optical applications include light guide plates such as liquid crystal displays; optical films such as polarizing films, retardation films and light diffusion films; light diffusion plates; optical cards; liquid crystal display element substrates.
[0060] その他、本発明に係る光学素子は、各種のフィルターやグレーティング、光ファイバ 一、平板光導波路などとしても好適に用いられる。  In addition, the optical element according to the present invention is also suitably used as various filters, gratings, optical fibers, flat optical waveguides, and the like.
[0061] 上述した成型物の中でも、低複屈折性が要求されるピックアップレンズや、レーザ 走査系レンズ等の光学素子として好適に用いられる。 [0062] 以下、図 1を参照しながら、本発明に係る光学素子が対物レンズ 7として用いられた 光ピックアップ装置 1につレ、て説明する。 [0061] Among the above-described molded products, it is suitably used as an optical element such as a pickup lens or a laser scanning lens that requires low birefringence. Hereinafter, the optical pickup device 1 in which the optical element according to the present invention is used as the objective lens 7 will be described with reference to FIG.
[0063] 図 1は、光ピックアップ装置 1の内部構造を示す模式図である。  FIG. 1 is a schematic diagram showing the internal structure of the optical pickup device 1.
[0064] 光ピックアップ装置 1には、図 1に示すように、光源である半導体レーザ発振器 2が 具備されている。この半導体レーザ発振器 2から出射される青色光の光軸上には、半 導体レーザ発振器 2から離間する方向に向かって、コリメータ 3、ビームスプリッタ 4、 1 /4波長板 5、絞り 6、対物レンズ 7が順次配設されている。  As shown in FIG. 1, the optical pickup device 1 includes a semiconductor laser oscillator 2 that is a light source. On the optical axis of the blue light emitted from the semiconductor laser oscillator 2, the collimator 3, the beam splitter 4, the quarter-wave plate 5, the diaphragm 6, and the objective lens are directed in a direction away from the semiconductor laser oscillator 2. 7 are sequentially arranged.
[0065] ビームスプリッタ 4と近接した位置であって、上述した青色光の光軸と直交する方向 には、 2組のレンズからなるセンサーレンズ群 8、センサー 9が順次配設されている。  [0065] A sensor lens group 8 and a sensor 9 each including two sets of lenses are sequentially disposed in a position close to the beam splitter 4 and in a direction perpendicular to the optical axis of the blue light described above.
[0066] 光学素子である対物レンズ 7は、光ディスク Dに対向した位置に配置されるものであ つて、半導体レーザ発振器 2から出射された青色光を、光ディスク Dの一面上に集光 するようになつている。このような対物レンズ 7には、 2次元ァクチユエータ 10が具備さ れており、この 2次元ァクチユエータ 10の動作により、対物レンズ 7は、光軸上を移動 自在となっている。  [0066] The objective lens 7 as an optical element is disposed at a position facing the optical disc D, and condenses the blue light emitted from the semiconductor laser oscillator 2 on one surface of the optical disc D. It is summer. Such an objective lens 7 is provided with a two-dimensional actuator 10, and the objective lens 7 is movable on the optical axis by the operation of the two-dimensional actuator 10.
[0067] 次に、光ピックアップ装置 1の作用について説明する。  Next, the operation of the optical pickup device 1 will be described.
[0068] 光ピックアップ装置 1は、光ディスク Dへの情報の記録動作時や、光ディスク Dに記 録された情報の再生動作時に、半導体レーザ発振器 2から青色光を出射する。出射 された青色光は、図 1に示すように、光線 L1となって、コリメータ 3を透過して無限平 行光にコリメートされた後、ビームスプリッタ 4を透過して、 1/4波長板 5を透過する。 さらに、絞り 6及び対物レンズ 7を透過した後、光ディスク Dの保護基板 D1を介して情 報記録面 D2に集光スポットを形成する。  The optical pickup device 1 emits blue light from the semiconductor laser oscillator 2 at the time of recording information on the optical disc D or at the time of reproducing information recorded on the optical disc D. As shown in FIG. 1, the emitted blue light becomes a light beam L1, which is transmitted through the collimator 3 and collimated into infinite parallel light. Transparent. Further, after passing through the aperture 6 and the objective lens 7, a condensing spot is formed on the information recording surface D2 via the protective substrate D1 of the optical disc D.
[0069] 集光スポットを形成した光は、光ディスク Dの情報記録面 D2で情報ピットによって変 調され、情報記録面 D2によって反射される。そして、この反射光は、光線 L2となって 、対物レンズ 7及び絞り 6を順次透過した後、 1/4波長板 5によって偏光方向が変更 され、ビームスプリッタ 4で反射する。その後、センサーレンズ群 8を透過して非点収 差が与えられ、センサー 9で受光されて、最終的には、センサー 9によって光電変換 されることによって電気的な信号となる。  [0069] The light that forms the focused spot is modulated by the information pits on the information recording surface D2 of the optical disc D and reflected by the information recording surface D2. Then, the reflected light becomes a light beam L 2, is sequentially transmitted through the objective lens 7 and the diaphragm 6, is changed in polarization direction by the quarter-wave plate 5, and is reflected by the beam splitter 4. After that, astigmatism is given through the sensor lens group 8 and received by the sensor 9, and finally converted into an electric signal by being photoelectrically converted by the sensor 9.
[0070] 以後、このような動作が繰り返し行われ、光ディスク Dに対する情報の記録動作や、 光ディスク Dに記録された情報の再生動作が完了する。 [0070] Thereafter, such an operation is repeatedly performed to record information on the optical disc D, The reproduction operation of the information recorded on the optical disc D is completed.
[0071] なお、光ディスク Dにおける保護基板 D1の厚さ寸法及び情報ピットの大きさにより、 対物レンズ 7に要求される開口数 NAも異なる。本実施形態においては、高密度な光 ディスク Dであり、その開口数は 0. 85に設定されている。 Note that the numerical aperture NA required for the objective lens 7 varies depending on the thickness dimension of the protective substrate D1 and the size of the information pit in the optical disc D. In this embodiment, it is a high-density optical disc D, and its numerical aperture is set to 0.85.
実施例  Example
[0072] (1)試料の作製 [0072] (1) Preparation of sample
(1. 1)表面修飾剤の作製  (1. 1) Preparation of surface modifier
(1. 1. 1)表面修飾剤 1の作製  (1. 1. 1) Preparation of surface modifier 1
0. 3リットルの四つロセパラブルフラスコに滴下装置、温度計、窒素ガス導入管、撹 拌装置及び還流冷却管を設置し、当該フラスコに脱水したイソプロピルアルコール 2 Ogを仕込んで約 80。Cでカロ熱した。メタクリノレ酸 10g、メチノレメタクリレー卜 50g、 2—メ チル 2—ァダマンチルメタタリレート 40g、 N, N' —ァゾビスイソバレロ二トリル 2g、ィ ソプロピルアルコール 20gを混合して均一とした溶液を、そのフラスコ中に 2時間かけ て滴下し、同温度にて 5時間反応させた。その後イソプロピルアルコール 60gを添カロ して冷却し、 50質量%の分散剤溶液を得た。当該分散剤溶液を「表面修飾剤 1」とし た。  0. A dropping device, thermometer, nitrogen gas inlet tube, stirring device and reflux condenser were installed in a three-liter four-separable flask, and dehydrated isopropyl alcohol 2 Og was charged in the flask to about 80. C heated with C. Mix uniformly with 10 g of methacrylolic acid, 50 g of methinoremethacrylate, 2 g of 2-methyl-2-adamantyl methacrylate, 2 g of N, N'-azobisisovaleronitryl and 20 g of isopropyl alcohol. The obtained solution was dropped into the flask over 2 hours and reacted at the same temperature for 5 hours. Thereafter, 60 g of isopropyl alcohol was added and cooled to obtain a 50% by mass dispersant solution. This dispersant solution was designated as “Surface modifier 1”.
(1. 1. 2)表面修飾剤 2の作製  (1. 1. 2) Preparation of surface modifier 2
0. 3リットルの四つロセパラブルフラスコに滴下装置、温度計、窒素ガス導入管、撹 拌装置及び還流冷却管を設置し、脱水したメチルェチルケトン 20gを仕込んで約 80 °Cで加熱した。シランカップリング剤(信越化学製 KBE— 502) 20g、メチルメタクリレ ート 40g、 2—メチル 2—ァダマンチルメタタリレート 40g、 N, N' —ァゾビスイソバレ ロニトリル 2g、イソプロピルアルコール 20gを混合して均一とした溶液を、そのフラスコ 中に 2時間かけて滴下し、同温度にて 5時間反応させた。その後、真空乾燥で溶媒を 除去して白色粉体を得た。当該白色粉体を「表面修飾剤 2」とした。  0. A dripping device, thermometer, nitrogen gas inlet tube, stirring device and reflux condenser were installed in a three-liter four-separable flask, charged with 20 g of dehydrated methyl ethyl ketone and heated at about 80 ° C. did. Silane coupling agent (Shin-Etsu Chemical KBE-502) 20g, methyl methacrylate 40g, 2-methyl 2-adamantyl methacrylate 40g, N, N'-azobisisovaleronitrile 2g, isopropyl alcohol 20g The homogenized solution was dropped into the flask over 2 hours and reacted at the same temperature for 5 hours. Thereafter, the solvent was removed by vacuum drying to obtain a white powder. The white powder was designated as “Surface modifier 2”.
(1. 2)複合材料,試料の作製  (1.2) Preparation of composite materials and samples
(1. 2. 1)複合材料 1 ,試料 1の作製  (1.2.1) Preparation of composite material 1 and sample 1
ZrO粒子(住友大阪セメント製, 1次粒径 3nm, 10質量%)の水分散液 100gに対 For 100g of aqueous dispersion of ZrO particles (Sumitomo Osaka Cement, primary particle size 3nm, 10% by mass)
2 2
し、酢酸 100gを加えてよく攪拌した。さらに、陰イオン交換樹脂 (オルガノ製アンバー ライト IRA402BL OH AG)を適量用いて処理し、塩素イオンのみを除去した後、 2 メトキシエタノール 100gを加えさらによく攪拌した。 Then, 100 g of acetic acid was added and stirred well. In addition, anion exchange resin (organo amber Light IRA402BL OH AG) was treated with an appropriate amount to remove only chloride ions, and then 100 g of 2 methoxyethanol was added and further stirred.
ここに 1—ァダマンタンカルボン酸を 3g添加してよく攪拌した後、窒素下の 100度で 10時間乾燥させ、白色粉体を得た。当該白色粉体を、シクロォレフイン樹脂(三菱レ 一ヨン製アタリペット MF) 5gと溶融混練し、複合材料 1を得た。当該複合材料 1を射 出成型することで 3mm厚の成型体を作製し、当該成型体を「試料 1」とした。  3 g of 1-adamantanecarboxylic acid was added thereto and stirred well, followed by drying at 100 ° C. for 10 hours under nitrogen to obtain a white powder. The white powder was melt-kneaded with 5 g of cycloolefin resin (Mitsubishi Rayon Ataripet MF) to obtain composite material 1. The composite material 1 was injection molded to produce a 3 mm thick molded body, and the molded body was designated as “Sample 1”.
(1. 2. 2)複合材料 2,試料 2の作製 (1.2.2) Preparation of composite material 2 and sample 2
上記複合材料 1 ,試料 1の作製において、上記 1ーァダマンタンカルボン酸に代え てォレイン酸を 0. 3g用いた。それ以外は上記複合材料 1 ,試料 1の作製と同様にし て複合材料 2を得た。当該複合材料 2を射出成型することで 3mm厚の成型体を作製 し、当該成型体を「試料 2」とした。  In preparation of the composite material 1 and sample 1, 0.3 g of oleic acid was used instead of the 1-adamantanecarboxylic acid. Otherwise, composite material 2 was obtained in the same manner as composite material 1 and sample 1. The composite material 2 was injection-molded to produce a 3 mm-thick molded body, and the molded body was designated as “Sample 2”.
(1. 2. 3)複合材料 3,試料 3の作製 (1. 2. 3) Preparation of composite material 3, sample 3
アルミナ(大明化学製アルミナ TM— 300) 50gをエタノール 1000g中にカロえ、ウル トラァペックスミル(寿技研製)で 0. 05mmビーズを用いて周速 6m/secで 30分間 分散した。得られたスラリーを、上記表面修飾剤 1を 10g含む液 20gと混合して乾燥さ せた。得られたアルミナ粒子を、上記複合材料 1 ,試料 1の作製と同様にシクロォレフ イン樹脂(三井化学製 APEL5014)と溶融混練して複合材料 3を得た。当該複合材 料 3を射出成型することで 3mm厚の成型体を作製し、当該成型体を「試料 3」とした。  50 g of alumina (Alumina TM-300 manufactured by Daimei Chemical Co., Ltd.) was placed in 1000 g of ethanol. The obtained slurry was mixed with 20 g of a liquid containing 10 g of the surface modifier 1 and dried. The obtained alumina particles were melt-kneaded with a cycloolefin resin (APEL5014 manufactured by Mitsui Chemicals) in the same manner as in preparation of the composite material 1 and sample 1 to obtain composite material 3. The composite material 3 was injection-molded to produce a 3 mm-thick molded body, and the molded body was designated as “Sample 3”.
(1. 2. 4)複合材料 4,試料 4の作製 (1. 2. 4) Preparation of composite material 4, sample 4
上記試料 3の作製において、上記表面修飾剤 1を 10g含む液 20gの代わりに、変性 シクロォレフィン樹脂(Ticona製 TOPAS TMG MAH2050)を 10g含むキシレン 溶液 20gを用いた。それ以外は上記複合材料 3,試料 3の作製と同様にして複合材 料 4を得た。当該複合材料 4を射出成型することで 3mm厚の成型体を作製し、当該 成型体を「試料 4」とした。  In the preparation of Sample 3, 20 g of a xylene solution containing 10 g of a modified cycloolefin resin (TOPAS TMG MAH2050 manufactured by Ticona) was used instead of 20 g of the solution containing 10 g of the surface modifier 1. Otherwise, composite material 4 was obtained in the same manner as in preparation of composite material 3 and sample 3 above. The composite material 4 was injection-molded to produce a 3 mm-thick molded body, and the molded body was designated as “Sample 4”.
(1. 2. 5)複合材料 5,試料 5の作製 (1. 2. 5) Preparation of composite material 5 and sample 5
撹拌機、滴下ロート、温度計を備えた反応容器に対し、溶媒としての 2—プロパノー ル(IPA) 40mlと、塩基性触媒としての 5%テトラメチルアンモニゥムヒドロキシド水溶 液(TMAH水溶液)を装入した。滴下ロートに、 15mlの IPAと 12. 69gの 3—メタタリ ロキシプロピルトリメトキシシラン(MTMS :東レ.ダウコーユング.シリコン株式会社製 SZ— 6300)とを入れ、反応容器を撹拌しながら、室温で MTMSの IPA溶液を 30分 かけて滴下した。 To a reaction vessel equipped with a stirrer, dropping funnel and thermometer, 40 ml of 2-propanol (IPA) as a solvent and 5% tetramethylammonium hydroxide aqueous solution (TMAH aqueous solution) as a basic catalyst I was charged. In a dropping funnel, 15 ml of IPA and 12. 69 g of 3—Metatali Roxypropyltrimethoxysilane (MTMS: SZ-6300 manufactured by Toray Dow Cowing Silicon Co., Ltd.) was added, and an IPA solution of MTMS was added dropwise at room temperature over 30 minutes while stirring the reaction vessel.
[0074] MTMSの IPA溶液の滴下終了後、加熱することなく 2時間撹拌した。その後、減圧 下で溶媒を除去し、トルエン 50mlを溶解させた。反応溶液を飽和食塩水で中性にな るまで水洗した後、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別 して濃縮することで加水分解生成物(シルセスキォキサン)を 8. 6g得た。このシルセ スキォキサンは種々の有機溶剤に可溶な無色の粘性液体であった。  [0074] After completion of the dropwise addition of the MTMS IPA solution, the mixture was stirred for 2 hours without heating. Thereafter, the solvent was removed under reduced pressure, and 50 ml of toluene was dissolved. The reaction solution was washed with saturated brine until neutral, and then dehydrated with anhydrous magnesium sulfate. 8.6 g of hydrolyzed product (silsesquioxane) was obtained by filtering off anhydrous magnesium sulfate and concentrating. This silsesquioxane was a colorless viscous liquid soluble in various organic solvents.
[0075] 次に、撹拌機、ディンスターク、冷却管を備えた反応容器に対し、上記操作を数回 繰り返して得られたシルセスキォキサンのうち 20· 65gとトルエン 82mlと 10%TMA H水溶液 3. 0gとを入れ、徐々に加熱して水を留去した。更に 130°Cまで加熱しトル ェンを還流温度で再縮合反応を行った。このときの反応溶液の温度は 108°Cであつ た。トルエン還流後に 2時間撹拌し、その経過後を反応終了時とした。反応溶液を飽 和食塩水で中性になるまで水洗した後、無水硫酸マグネシウムで脱水した。無水硫 酸マグネシウムをろ別して濃縮することで目的物であるかご型シルセスキォキサン( 混合物)を 18. 77g得た。得られたかご型シルセスキォキサンは種々の有機溶剤に 可溶な無色の粘性液体であった。  [0075] Next, 20 · 65 g of silsesquioxane obtained by repeating the above operation several times for a reaction vessel equipped with a stirrer, a Din Stark, and a cooling tube, 82 ml of toluene, and 10% TMA H aqueous solution. 3. 0 g was added and heated gradually to distill off the water. The mixture was further heated to 130 ° C and the toluene was recondensed at the reflux temperature. The temperature of the reaction solution at this time was 108 ° C. The mixture was stirred for 2 hours after refluxing toluene, and the time after that was regarded as the end of the reaction. The reaction solution was washed with saturated Japanese brine until neutral, and then dehydrated with anhydrous magnesium sulfate. The anhydrous magnesium sulfate was filtered and concentrated to obtain 18.77 g of the target cage-type silsesquioxane (mixture). The cage-type silsesquioxane obtained was a colorless viscous liquid soluble in various organic solvents.
[0076] 上記で得た篕型シリコン樹脂 (メタクリロイル基を全てのケィ素原子上に有している。  [0076] Saddle-type silicon resin obtained above (having methacryloyl groups on all the key atoms)
)を 24質量部と、トリメチロールプロパントリアタリレートを 10質量部と、ジシクロペンタ ニルジアタリレートを 60質量部と、ウレタンアタリレートオリゴマー 1を 5質量部と、光重 合開始剤としての 1ーヒドロキシシクロへキシルフェニルケトンを 2. 5質量部と、上記 表面修飾剤 2を 1部と、シリカ粉末(日本ァエロジル製 A300)を 50部とを混合し、透 明なシリコン樹脂組成物 (複合材料 5)を得た。当該複合材料 5を、厚さ 3mmになるよ うに金型中に流し込み、 30W/cmの高圧水銀ランプを用い、 20000mj/cm2の積 算露光量で硬化させ、所定の厚みとしたシート状のシリコン樹脂成型体を得た。当該 シリコン樹脂成型体を「試料 5」とした。 ) 24 parts by weight, 10 parts by weight of trimethylolpropane tritalylate, 60 parts by weight of dicyclopentanyldiatalate, 5 parts by weight of urethane acrylate oligomer 1, and 1- A transparent silicone resin composition (composite material) is prepared by mixing 2.5 parts by mass of hydroxycyclohexyl phenyl ketone, 1 part of the above surface modifier 2 and 50 parts of silica powder (A300 from Nippon Aerosil). 5) obtained. The composite material 5 is poured into a mold so as to have a thickness of 3 mm, and cured using a 30 W / cm high-pressure mercury lamp at a cumulative exposure of 20000 mj / cm 2 to obtain a sheet-like shape having a predetermined thickness. A silicon resin molding was obtained. The silicon resin molding was designated as “Sample 5”.
(1. 2. 6)複合材料 6,試料 6の作製  (1. 2. 6) Preparation of composite material 6, sample 6
上記複合材料 5,試料 5の作製において、表面修飾剤 2を 1部用いた代わりに、カツ プリング剤(東レダウコーユング製 SZ6187)を 1部用いた。それ以外は上記複合材 料 5,試料 5の作製と同様に複合材料 6を作製して成型し、当該成型体を「試料 6」と した。 Instead of using 1 part of surface modifier 2 in the preparation of composite material 5 and sample 5, cut One part of a pulling agent (SZ6187 manufactured by Toray Dow Coung) was used. Otherwise, composite material 6 was prepared and molded in the same manner as composite material 5 and sample 5, and the molded product was designated as “sample 6”.
(1. 2. 7)複合材料 7,試料 7の作製  (1. 2. 7) Preparation of composite material 7, sample 7
ZrO粒子(住友大阪セメント製, 1次粒径 3nm, 10質量%)の水分散液 100gに対 For 100g of aqueous dispersion of ZrO particles (Sumitomo Osaka Cement, primary particle size 3nm, 10% by mass)
2 2
し、酢酸 100gを加えてよく攪拌した。さらに、 2—メトキシエタノール 100gを加えさら によく攪拌した。 100°Cで水を留去した後、上記表面修飾剤 2を 5g加え更に 1時間加 熱還流後、乾燥して溶媒を除去し表面処理済 ZrO粒子を得た。 Then, 100 g of acetic acid was added and stirred well. Further, 100 g of 2-methoxyethanol was added and further stirred. After distilling off water at 100 ° C., 5 g of the surface modifier 2 was added, and the mixture was further heated under reflux for 1 hour, followed by drying to remove the solvent and obtain surface-treated ZrO particles.
2  2
熱硬化性モノマーとして特開 2002— 193883号公報に従って作製した 1—ァダマ ンチルメタタリレート 10g、無機微粒子として上記表面処理済 ZrO粒子を 15g、酸化  10 g of 1-adamantyl methacrylate prepared according to JP 2002-193883 as a thermosetting monomer, 15 g of the surface-treated ZrO particles as inorganic fine particles, oxidized
2  2
防止剤としてフエノール系酸化防止剤(チノ 'スペシャルティ'ケミカルズ社製, Irgan oxlOlO)を 0. lg、及びラジカル重合開始剤として 1 , 1一(t ブチルパーォキシ) 3, 3, 5 トリメチルシクロへキサン(日本油脂社製,パーへキサ 3Μ-95) 0· 05g、を 混合後、卓上型 3本ロール式ミル (RM— 1、(株)入江商会)を用いて分散した。得ら れた分散物を、厚さ 3mmの型の中に流し込んだ後に、 120°Cで 1時間オーブン中に て硬化を行い、試料 7を作製した。 0.1 lg of phenolic antioxidant (Chino 'Specialty' Chemicals, Irgan oxlOlO) as an inhibitor, and 1, 1 (t-butylperoxy) 3, 3, 5 trimethylcyclohexane (Japan) After mixing with Ogre Co., Ltd., Perhexa 3Μ-95) 0 · 05g, it was dispersed using a desktop type three-roll mill (RM-1, Irie Shokai Co., Ltd.). The obtained dispersion was poured into a 3 mm thick mold and cured in an oven at 120 ° C. for 1 hour to prepare Sample 7.
(1. 2. 8)複合材料 8,試料 8の作製 (1. 2. 8) Preparation of composite material 8 and sample 8
試料 7の作製において、表面修飾剤 2に代わり等量のシランカップリング剤 (信越化 学製 KBE— 502)を用いた以外は同様にして試料 8を作製した。  Sample 8 was prepared in the same manner as in the preparation of Sample 7, except that an equivalent amount of a silane coupling agent (KBE-502 manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of the surface modifier 2.
(2)試料 1〜8の物性測定 (2) Physical property measurement of samples 1-8
(2. 1)光線透過率の測定 (2.1) Measurement of light transmittance
東京電色(株)製 TURBIDITY METER T— 2600DAを用いて、波長 405nm の光に対する光線透過率を試料 1〜6ごとに測定した。透過率の測定は ASTM D 1003に準拠した方法で行った。その測定結果を下記表 2に示す。  Using a TURBIDITY METER T-2600DA manufactured by Tokyo Denshoku Co., Ltd., the light transmittance with respect to light having a wavelength of 405 nm was measured for each of the samples 1 to 6. The transmittance was measured by a method based on ASTM D 1003. The measurement results are shown in Table 2 below.
(2. 2)屈折率の測定 (2.2) Refractive index measurement
自動屈折計(カルニユー光学工業製 KPR— 200)を用いて、波長 588nmの光に対 する 23°Cでの屈折率を試料 1〜8ごとに測定した。その測定結果を下記表 2に示す。  Using an automatic refractometer (KPR-200, manufactured by Carneux Optical Industry), the refractive index at 23 ° C for light having a wavelength of 588 nm was measured for each of samples 1 to 8. The measurement results are shown in Table 2 below.
(2. 3)ガラス転移温度の測定 示差走査熱量測定装置 (セイコー電子 DSC320)を用いて、各試料 1 8のガラス 転移温度 (Tg)を測定した。その測定結果を下記表 2に示す。 (2.3) Measurement of glass transition temperature The glass transition temperature (Tg) of each sample 18 was measured using a differential scanning calorimeter (Seiko Electronics DSC320). The measurement results are shown in Table 2 below.
[0078] なお、試料 5, 7については、 Tgが 300 C以上であり測定できな力 た [0078] Samples 5 and 7 had a Tg of 300 C or more and could not be measured.
[0079] [表 2] [0079] [Table 2]
Figure imgf000021_0001
(3)まとめ
Figure imgf000021_0001
(3) Summary
表 2に示す通り、試料 1 , 3, 5, 7と試料 2, 4, 6, 8とを見 匕べると、試料 1 , 3, 5, 7 は試料 2, 4, 6, 8に比べて、光線透過率,屈折率,ガラス転移温度の観点のいずれ においても優れている。以上から、ァダマンチル基を有する化合物で無機粒子を表 面修飾することが有用であることがわかる。  As shown in Table 2, when looking at Samples 1, 3, 5, 7 and Samples 2, 4, 6, 8, Samples 1, 3, 5, 7 are compared to Samples 2, 4, 6, 8 In terms of light transmittance, refractive index, and glass transition temperature, it is excellent. From the above, it can be seen that it is useful to modify the surface of inorganic particles with a compound having an adamantyl group.

Claims

請求の範囲 The scope of the claims
[1] 樹脂と無機粒子との複合材料であって、 [1] A composite material of resin and inorganic particles,
前記無機粒子がァダマンチル基を有する化合物で表面修飾されていることを特徴 とする複合材料。  A composite material, wherein the inorganic particles are surface-modified with a compound having an adamantyl group.
[2] 前記ァダマンチル基を有する化合物が、ァダマンチル基とカルボキシル基又は水 酸基とを結合した化合物であることを特徴とする請求の範囲第 1項に記載の複合材 料。  [2] The composite material according to claim 1, wherein the compound having an adamantyl group is a compound in which an adamantyl group and a carboxyl group or a hydroxyl group are bonded.
[3] 前記ァダマンチル基を有する化合物が、ァダマンチル基を有するモノマーとァダマ ンチル基を有しないモノマーとを共重合した化合物であることを特徴とする請求の範 囲第 1項に記載の複合材料。  [3] The composite material according to claim 1, wherein the compound having an adamantyl group is a compound obtained by copolymerizing a monomer having an adamantyl group and a monomer having no adamantyl group.
[4] 前記ァダマンチル基を有する化合物が、ァダマンチル基をシランカップリング剤の 官能基に導入した化合物であることを特徴とする請求の範囲第 1項に記載の複合材 料。 [4] The composite material according to claim 1, wherein the compound having an adamantyl group is a compound in which an adamantyl group is introduced into a functional group of a silane coupling agent.
[5] 前記樹脂がシクロォレフイン樹脂であることを特徴とする請求の範囲第 1項〜第 4項 の!/、ずれか一項に記載の複合材料。  [5] The composite material according to any one of claims 1 to 4, wherein the resin is a cycloolefin resin.
[6] 請求の範囲第 1項〜第 5項のいずれか一項に記載の複合材料を用いて成型された ことを特徴とする光学素子。 [6] An optical element formed by using the composite material according to any one of claims 1 to 5.
PCT/JP2007/064869 2006-08-04 2007-07-30 Composite material and optical element WO2008015999A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008527739A JPWO2008015999A1 (en) 2006-08-04 2007-07-30 Composite material and optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-212958 2006-08-04
JP2006212958 2006-08-04

Publications (1)

Publication Number Publication Date
WO2008015999A1 true WO2008015999A1 (en) 2008-02-07

Family

ID=38997175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064869 WO2008015999A1 (en) 2006-08-04 2007-07-30 Composite material and optical element

Country Status (2)

Country Link
JP (1) JPWO2008015999A1 (en)
WO (1) WO2008015999A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001875A1 (en) * 2008-07-03 2010-01-07 昭和電工株式会社 Hardening composition and resultant hardened material
JP2012002978A (en) * 2010-06-16 2012-01-05 Asahi Glass Co Ltd Method for manufacturing curable material, curable material, and optical member
US8349934B2 (en) 2008-12-16 2013-01-08 Showa Denko K.K. Hardening composition and hardened product thereof
WO2015146925A1 (en) * 2014-03-28 2015-10-01 日本ゼオン株式会社 Resin composition, resin molded article, and optical component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011122A (en) * 1999-06-29 2001-01-16 Nec Corp Transparent resin material for optical use
JP2003073559A (en) * 2001-09-04 2003-03-12 Mitsui Chemicals Inc Thermoplastic material composition, and optical component constituted by including the same
WO2006033359A1 (en) * 2004-09-24 2006-03-30 Idemitsu Kosan Co., Ltd. Adamantane derivative, process for producing the same, and photosensitive material for photoresist
JP2007238922A (en) * 2006-02-09 2007-09-20 Nippon Shokubai Co Ltd Polymer-coated particle and additive for plastic

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011122A (en) * 1999-06-29 2001-01-16 Nec Corp Transparent resin material for optical use
JP2003073559A (en) * 2001-09-04 2003-03-12 Mitsui Chemicals Inc Thermoplastic material composition, and optical component constituted by including the same
WO2006033359A1 (en) * 2004-09-24 2006-03-30 Idemitsu Kosan Co., Ltd. Adamantane derivative, process for producing the same, and photosensitive material for photoresist
JP2007238922A (en) * 2006-02-09 2007-09-20 Nippon Shokubai Co Ltd Polymer-coated particle and additive for plastic

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001875A1 (en) * 2008-07-03 2010-01-07 昭和電工株式会社 Hardening composition and resultant hardened material
CN102076723A (en) * 2008-07-03 2011-05-25 昭和电工株式会社 Hardening composition and resultant hardened material
JP5466640B2 (en) * 2008-07-03 2014-04-09 昭和電工株式会社 Curable composition and cured product thereof
US8349934B2 (en) 2008-12-16 2013-01-08 Showa Denko K.K. Hardening composition and hardened product thereof
JP2012002978A (en) * 2010-06-16 2012-01-05 Asahi Glass Co Ltd Method for manufacturing curable material, curable material, and optical member
WO2015146925A1 (en) * 2014-03-28 2015-10-01 日本ゼオン株式会社 Resin composition, resin molded article, and optical component
JPWO2015146925A1 (en) * 2014-03-28 2017-04-13 日本ゼオン株式会社 Resin composition, resin molded body, and optical component
US10030123B2 (en) 2014-03-28 2018-07-24 Zeon Corporation Resin composition, resin molded article, and optical component

Also Published As

Publication number Publication date
JPWO2008015999A1 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP4384636B2 (en) Polyester resin composition and optical material
JP2010097194A (en) Optical material and optical element
JP2010097195A (en) Optical material and optical element
JP2008001895A (en) Optical plastic material and optical element
JP2012227190A (en) Curable resin composition for nanoimprint
WO2008015999A1 (en) Composite material and optical element
JP2007231237A (en) Organic-inorganic composite material, optical element, and method for producing organic-inorganic composite material
JP2019035015A (en) Methacrylic resin composition for optical member, molded body, and optical member
JPWO2008117656A1 (en) Optical organic / inorganic composite material and optical element
JP2006299183A (en) Non-aqueous fine particle dispersion and thermoplastic composite material and optical element
EP3570076B1 (en) Cured product, and optical element, diffractive optical element, optical apparatus, and imaging device using the cured product
JP2019035016A (en) Methacrylic resin composition, molded body, and optical member
JP2020152792A (en) Thermoplastic resin composition
JP2011116928A (en) Low birefringent transparent resin composition
KR101524893B1 (en) Alicyclic hydrocarbon random copolymer, method for producing the same, resin composition and molded article
JP2003270401A (en) Optical molding
JP2008280443A (en) Method for producing composite resin material, composite resin material, and optical element
JP2006299032A (en) Thermoplastic resin composition and optical element
JP5119850B2 (en) Method for producing composite resin composition
KR20100113517A (en) Low birefringent thermoplastic lenses and compositions useful in preparing such lenses
JP2007137984A (en) Composite material and optical element
JP2008015199A (en) Resin composition for optical material, and optical element
JP2019035017A (en) Method for producing methacrylic resin
JP5257046B2 (en) Alicyclic hydrocarbon random copolymer, process for producing the same, resin composition, and molded article
JP2009221350A (en) Resin composition, its production method, and optical element using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791554

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008527739

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07791554

Country of ref document: EP

Kind code of ref document: A1