WO2018169177A1 - 냉장고 - Google Patents

냉장고 Download PDF

Info

Publication number
WO2018169177A1
WO2018169177A1 PCT/KR2017/015742 KR2017015742W WO2018169177A1 WO 2018169177 A1 WO2018169177 A1 WO 2018169177A1 KR 2017015742 W KR2017015742 W KR 2017015742W WO 2018169177 A1 WO2018169177 A1 WO 2018169177A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
refrigerator
cabinet
fan
heat dissipation
Prior art date
Application number
PCT/KR2017/015742
Other languages
English (en)
French (fr)
Inventor
설혜연
오민규
최지훈
임형근
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to AU2017403917A priority Critical patent/AU2017403917B2/en
Priority to CN201780088361.8A priority patent/CN110402362A/zh
Priority to EP17900695.2A priority patent/EP3598041B1/en
Publication of WO2018169177A1 publication Critical patent/WO2018169177A1/ko
Priority to US16/570,473 priority patent/US11280526B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/10Arrangements for mounting in particular locations, e.g. for built-in type, for corner type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D15/00Devices not covered by group F25D11/00 or F25D13/00, e.g. non-self-contained movable devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/006General constructional features for mounting refrigerating machinery components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/062Walls defining a cabinet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/065Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves
    • F25D25/024Slidable shelves
    • F25D25/025Drawers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D27/00Lighting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/023Mounting details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • F25B2321/0251Removal of heat by a gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/063Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation with air guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/068Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans
    • F25D2317/0681Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0026Details for cooling refrigerating machinery characterised by the incoming air flow
    • F25D2323/00264Details for cooling refrigerating machinery characterised by the incoming air flow through the front bottom part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0026Details for cooling refrigerating machinery characterised by the incoming air flow
    • F25D2323/00265Details for cooling refrigerating machinery characterised by the incoming air flow through the front top part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0027Details for cooling refrigerating machinery characterised by the out-flowing air
    • F25D2323/00274Details for cooling refrigerating machinery characterised by the out-flowing air from the front bottom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0027Details for cooling refrigerating machinery characterised by the out-flowing air
    • F25D2323/00275Details for cooling refrigerating machinery characterised by the out-flowing air from the front top
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/36Visual displays

Definitions

  • the present invention relates to a refrigerator having a thermoelectric module and exhibiting high refrigeration performance with low noise.
  • thermoelectric element refers to a device that implements heat absorption and heat generation using the Peltier Effect.
  • the Peltier effect refers to the effect that when a voltage is applied to both ends of the device, an endothermic phenomenon occurs on one side and an exothermic phenomenon occurs on the opposite side depending on the direction of the current.
  • This thermoelectric element may be used in a refrigerator instead of a refrigeration cycle device.
  • a refrigerator forms a food storage space capable of blocking heat penetrating from the outside by cabinets and doors filled with insulation material inside, and is collected outside the food storage space with an evaporator that absorbs heat inside the food storage space. It is provided with a refrigerating device composed of a heat dissipating device for discharging the heat, maintaining the food storage space in a low temperature temperature area difficult to survive and multiply the microorganisms, and stores the stored food without altering for a long time.
  • the refrigerator is formed by being divided into a refrigerating chamber for storing food in a temperature zone of an image zero and a freezing chamber for storing food in a temperature region of zero temperature, and according to an arrangement of the refrigerating chamber and a freezing chamber, Top Freezer Refrigerator with Lower Refrigerator, Bottom Freezer Refrigerator with Lower Freezer and Upper Refrigerator, and Side by Side Refrigerator with Left Freezer and Right Refrigerator do.
  • the refrigerator includes a plurality of shelves and drawers in the food storage space in order for the user to conveniently load or withdraw the food stored in the food storage space.
  • a built-in refrigerator refers to a refrigerator embedded in furniture or walls since the first building. While a conventional refrigerator is installed in an open space, a built-in refrigerator is embedded in furniture or a wall. Therefore, built-in refrigerators are more vulnerable to heat dissipation than ordinary refrigerators.
  • a bigger problem is that the air discharged to the rear of the refrigerator does not rise and can be re-sucked into the machine room.
  • the left and right sides of the refrigerator are shielded, such as a built-in refrigerator, hot air is highly likely to be resorbed into the machine room.
  • the built-in refrigerator is smaller than the conventional refrigerator, it can not be excluded that the hot air discharged to the rear of the refrigerator is directed to the user's face on the upper surface of the built-in refrigerator.
  • the machine room may be considered to form an air vent on the machine room to allow air to enter through the air vent, and to discharge it through the machine room.
  • the air discharged through the machine room rises due to natural convection, which further promotes re-suction into the inside of the refrigerator through the vents.
  • One object of the present invention is to propose a refrigerator having a structure in which a storage chamber is cooled by a thermoelectric module and a heat dissipation flow can be formed using a fan provided in the thermoelectric module.
  • the present invention is to provide a heat dissipation structure suitable for a built-in refrigerator.
  • Another object of the present invention is to propose a refrigerator having a structure capable of preventing hot air discharged from the refrigerator from being re-inhaled back into the refrigerator by separating the intake and discharge ports of the air for radiating away from each other.
  • Another object of the present invention is to improve the problem that the air discharged for heat dissipation toward the user's face.
  • Another object of the present invention is to propose a refrigerator having a structure that can provide a visual and auditory sense to the user without being exposed to the outside by installing the audio-visual module together in the heat dissipation structure.
  • a refrigerator includes an inner case forming a storage compartment of 200L or less, an outer case formed to surround the inner case, and the inner case and the out A cabinet having a heat insulating material disposed between the cases; A thermoelectric module installed on a rear wall of the storage chamber to cool the storage chamber; A support installed on a bottom of the cabinet to support the cabinet; And a heat dissipation cover coupled to the rear of the out case, wherein the heat dissipation cover is configured to guide the air sucked by the second fan from the top to the bottom, and the support supports the air sucked through the second fan.
  • the cabinet is spaced apart from the floor to be discharged to the front of the cabinet through the lower side of the cabinet.
  • the thermoelectric module may include a thermoelectric element including a heat absorbing portion and a heat radiating portion facing in opposite directions; A first heat sink disposed in contact with the heat absorbing portion and configured to exchange heat with the storage compartment; A first fan installed to face the first heat sink and generating wind to promote heat exchange of the first heat sink; A second heat sink disposed in contact with the heat dissipation unit and configured to exchange heat with an outer region of the out case; Installed to be visually exposed to the outside through the heat dissipation cover to face the second heat sink, and to suck air outside the heat dissipation cover into the heat dissipation cover to promote heat exchange of the second heat sink. 2 pans; And a heat insulating material formed to surround the edge of the thermoelectric element and installed between the first heat sink and the second heat sink.
  • the second fan is disposed above the center of the heat dissipation cover to suck air through the upper portion of the heat dissipation cover.
  • the heat dissipation cover may include: a main plate spaced apart from a rear surface of the outer case to form a flow path that guides the flow of air between the rear surface of the outer case; And an edge portion protruding from the edge of the main plate toward the out case and coupled to the out case.
  • the main plate has an opening at a position facing the second fan, and the second fan is installed to be visually exposed to the outside of the heat dissipation cover through the opening.
  • the main plate has an inclined portion around the opening, and the inclined portion is formed to be inclined away from the rear surface of the outer case as it is closer to the opening.
  • the heat dissipation cover has at least one ventilation hole around the opening.
  • the heat dissipation cover may include: a first guide part protruding from the main plate toward the out case under the opening and extending in a vertical direction to guide the air sucked by the second fan from the top to the bottom; And a second guide part protruding between the cabinet and the bottom from the lower end of the first guide part to guide the air guided by the first guide part to be discharged toward the front of the cabinet through the lower side of the cabinet.
  • the second heat sink may include: a base configured to make surface contact with the thermoelectric element; And a plurality of fins protruding from the base toward the second fan and spaced apart from each other, wherein the plurality of fins are arranged along a longitudinal direction to flow air sucked by the second fan from top to bottom. Extending and spaced apart from each other along the transverse direction.
  • the second fan is formed of an axial fan which is formed to cause wind along the axial direction
  • the left and right sides and the rear of the refrigerator are surrounded by a shielding film, and the refrigerator protrudes from the heat dissipation cover toward the shielding film disposed at the rear of the refrigerator to separate the heat dissipation cover from the shielding film disposed at the rear of the refrigerator. It includes.
  • the heat dissipation cover includes an accommodating portion configured to accommodate the stopper, and the stopper is inserted into or withdrawn from the accommodating portion by rotation or linear movement.
  • the second fan is formed of an axial fan formed to cause wind along the axial direction, and the left and right sides and the rear of the refrigerator are wrapped by a shielding film
  • the heat dissipation cover is A main plate spaced apart from a rear surface of the out case to form a flow path that guides the flow of air between the rear surface of the outer case; And an edge portion protruding from the edge of the main plate toward the cabinet and coupled to the cabinet, wherein the main plate has a first portion having an opening at a position facing the second fan; And a second part disposed at one side of the first part and protruding more toward the shielding film than the first part so as to separate the first part from the shielding film disposed behind the refrigerator.
  • the support may include a pier that is spaced apart from the floor and supports the cabinet; Ribs connected to two different portions of the pier to reinforce the strength of the support; And a discharge hole formed in the pier to allow air to be discharged from the lower side of the cabinet to the front of the cabinet.
  • the bottom of the cabinet is divided into a front portion, a rear portion, and an intermediate portion between the front portion and the rear portion, and the support is formed so that the empty space under the front portion, the support portion is the middle portion and the Support the back part.
  • the front of the support is equipped with an audiovisual module that is formed to provide at least one of light and sound.
  • the support includes a discharge port formed to discharge air from the lower side of the cabinet to the front of the cabinet, the discharge port is formed in at least one of one side and the other side of the audio-visual module.
  • the audio-visual module is provided with two spaced apart from each other, the discharge port, the main discharge port formed between the two audio-visual module; And a sub discharge hole formed above or below the audiovisual module to have a smaller size than the main discharge hole.
  • the air flowing continuously through the upper side of the refrigerator and the rear of the refrigerator may be introduced into the heat dissipation cover through the heat dissipation cover disposed behind the cabinet.
  • Air introduced into the heat dissipation cover cools the second heat sink. Air can then be guided by the heat dissipation cover and flow from top to bottom, and can be discharged to the front of the cabinet through the bottom of the cabinet.
  • Fins of the second heat sink as well as the heat dissipation cover are arranged to guide the air from the top to the bottom, so that the air flow direction can be set in one direction.
  • the inlet and the outlet are spaced apart from each other even along the longitudinal direction, and in the horizontal direction. They are also spaced apart from each other. Such a spaced structure may prevent the air discharged through the lower side of the cabinet from being sucked back into the heat dissipation cover again.
  • the air is not discharged to the lower side of the cabinet, so that the air does not face the user's face.
  • the audio-visual module is installed on a support provided to form a heat dissipation structure to discharge the air to the front can provide a visual and auditory sense to the user without being visually exposed to the user.
  • the present invention proposed a heat dissipation structure suitable for a built-in refrigerator, but further proposed a structure of the refrigerator further having a vent. Therefore, this heat dissipation structure can be used for general refrigerators, not built-in structures.
  • thermoelectric module 1 is a conceptual diagram illustrating an embodiment of a refrigerator having a thermoelectric module.
  • thermoelectric module 2 is an exploded perspective view of a thermoelectric module.
  • thermoelectric module 3 is a conceptual diagram of a built-in refrigerator having a thermoelectric module.
  • FIG. 4 is a cross-sectional view for describing a heat dissipation structure of a refrigerator.
  • 5 to 7 are conceptual views for explaining a heat radiation structure of the refrigerator.
  • FIG. 8A is a front view illustrating an example of a support for supporting a cabinet.
  • 8B is a front view illustrating another example of the support for supporting the cabinet.
  • Figure 8c is a front view showing another example of the support for supporting the cabinet.
  • thermoelectric module 9 is a conceptual view illustrating another embodiment of a refrigerator having a thermoelectric module.
  • FIG. 10 is a conceptual view illustrating another embodiment of a refrigerator having a thermoelectric module.
  • FIG. 11 is a conceptual view illustrating an inner side of a heat dissipation cover illustrated in FIG. 10.
  • thermoelectric module 12 is a conceptual view illustrating another embodiment of a refrigerator having a thermoelectric module.
  • thermoelectric module 1 is a conceptual diagram illustrating an embodiment of a refrigerator having a thermoelectric module.
  • the refrigerator 100 of the present invention is configured to simultaneously perform the functions of a small side table and the refrigerator 100.
  • a side table refers to a small table that is originally used by the bedside or on the side of the kitchen.
  • the side table is made so that a stand or the like can be placed on the upper surface thereof, and an accessory can be stored therein.
  • the refrigerator 100 of the present invention is made so that food and the like can be stored at a low temperature therein, while maintaining the original function of the side table where a stand or the like can be placed.
  • the cabinet 110 (cabinet) is formed by the inner case 111, the out case 112, and the heat insulating material 113.
  • the inner case 111 is installed inside the outer case 112, and forms a storage compartment 120 capable of storing food at a low temperature. Since the size of the refrigerator 100 may be limited in order to use the refrigerator 100 as a side table, the size of the storage compartment 120 formed by the inner case 111 should also be limited to about 200L or less.
  • the outer case 112 is formed to surround the inner case 111 and forms an appearance of a collapsing shape.
  • the outer case 112 forms the top and bottom and left and right sides of the refrigerator 100.
  • the exterior of the refrigerator 100 is formed by a door 130, and the exterior of the refrigerator 100 is formed by a heat dissipation cover described later.
  • the upper surface of the outer case 112 is preferably formed flat so that you can put a prop, such as a stand.
  • the heat insulating material 113 is arrange
  • the door 130 is mounted to the front of the cabinet 110.
  • the door 130 forms the exterior of the refrigerator 100 together with the cabinet 110.
  • the door 130 is configured to open and close the storage compartment 120 by a slide movement.
  • the door 130 may be provided with two or more 131, 132 in the refrigerator 100, and as shown in FIG. 1, each door 130 may be disposed along the vertical direction.
  • a drawer 140 may be installed in the storage room 120 to efficiently utilize space.
  • the drawer 140 forms a food storage area in the storage compartment 120.
  • the drawer 140 is coupled to the door 130 and is formed to be withdrawn from the storage chamber 120 according to the slide movement of the door 130.
  • Two drawers 141 and 142 may be disposed along the up and down direction similarly to the door 130.
  • One drawer 141, 142 is coupled to one door 131, 132. Accordingly, whenever the doors 131 and 132 slide, the drawers 141 and 142 coupled to the doors 131 and 132 are moved along the doors 131 and 132. Can be withdrawn from.
  • the refrigerator 100 operates 24 hours unlike other home appliances. Therefore, if the refrigerator 100 is placed next to the bed, the noise and vibration in the refrigerator 100 is transmitted to the person who sleeps in the bed, especially at night time, thereby disturbing sleep. In particular, noises and vibrations generated from a refrigerator embedded in a building or furniture, such as a built-in refrigerator, are likely to be transmitted to a person by wall or furniture. Therefore, in order for the refrigerator 100 to be arranged next to the bed to simultaneously perform the functions of the side table and the refrigerator 100, the low noise and low vibration performance of the refrigerator 100 must be sufficiently secured.
  • thermoelectric module 150 If a refrigeration cycle apparatus including a compressor is used for cooling the storage compartment 120 of the refrigerator 100, it is difficult to fundamentally block noise and vibration generated from the compressor. Therefore, in order to ensure low noise and low vibration performance, the refrigeration cycle apparatus should be used only in a limited manner, and the refrigerator 100 of the present invention cools the storage compartment 120 using the thermoelectric module 150.
  • the thermoelectric module 150 is installed on the rear wall 111a of the storage chamber 120 to cool the storage chamber 120.
  • the thermoelectric module 150 includes a thermoelectric device, and the thermoelectric device refers to a device that implements cooling and heat generation using the Peltier effect.
  • the storage chamber 120 may be cooled by operating the thermoelectric element.
  • the heat generating side In order to sufficiently cool the heat absorbing side of the thermoelectric element, the heat generating side should be smoothly generated. If the temperature difference between the heat absorbing side and the heat generating side is constant, the lower the temperature on the heat generating side may also lower the temperature on the heat absorbing side.
  • the present invention proposes a refrigerator 100 including a heat dissipation cover 160 and a support 170 for smooth heat dissipation on the heating side.
  • the heat dissipation cover 160 is coupled to the back of the outer case 112.
  • the heat dissipation cover 160 may be provided with a stopper 163.
  • the support 170 is installed on the bottom of the cabinet 110 to support the cabinet (110).
  • the cooler for cooling the storage compartment 120 is implemented as a refrigeration cycle device including a compressor, a condenser, an expander, and an evaporator, it is difficult to fundamentally block vibrations and noise generated from the compressor.
  • the installation place of the refrigerator such as a cosmetic refrigerator, is not limited to the kitchen but is expanded to the living room or the bedroom, etc., if noise and vibration are not blocked at the source, it causes great inconvenience to the refrigerator user.
  • thermoelectric elements do not generate noise and vibration unlike compressors. Therefore, if the thermoelectric element is applied to the refrigerator 100, even if the refrigerator is installed in a space other than the kitchen, it is possible to solve the problem of noise and vibration.
  • thermoelectric element is smaller in size than the refrigeration cycle apparatus, the refrigerator 100 to which the thermoelectric element is applied may have a smaller size than the refrigerator having the refrigeration cycle apparatus. For this reason, a thermoelectric element is more advantageous than the refrigeration cycle device in the built-in refrigerator 100.
  • thermoelectric module 150 is an exploded perspective view of the thermoelectric module 150.
  • the thermoelectric module 150 includes a thermoelectric element 151, a first heat sink 152, a first fan 153, a second heat sink 155, a second fan 156, and a heat insulator 157. .
  • the thermoelectric module 150 operates between the first and second regions which are separated from each other, and absorbs heat in one region and radiates heat in the other region.
  • the first area and the second area refer to areas that are spatially separated from each other by a boundary. If the thermoelectric module 150 is applied to the refrigerator (100 of FIG. 1), the first region corresponds to one of the storage compartment and the outside of the refrigerator, and the second region corresponds to the other.
  • thermoelectric element 151 is formed by forming a PN junction with a P-type semiconductor and an N-type semiconductor, and connecting a plurality of PN junctions in series.
  • the thermoelectric element 151 includes a heat absorbing portion 151a and a heat radiating portion 151b facing in opposite directions.
  • the heat absorbing portion 151a and the heat dissipating portion 151b may be formed in a shape capable of surface contact. Accordingly, the heat absorbing portion 151a may be referred to as a heat absorbing surface, and the heat radiating portion 151b may be referred to as a heat radiating surface.
  • the heat absorbing portion 151a and the heat dissipating portion 151b may be generically named as the first and second portions, or may be named as the first and second surfaces. This nomenclature is for convenience of description only and does not limit the scope of the invention.
  • the first heat sink 152 is disposed to contact the heat absorbing part 151a of the thermoelectric element 151.
  • the first heat sink 152 is configured to heat exchange with the first region.
  • the first region corresponds to a storage compartment of the refrigerator (120 of FIG. 1), and the heat exchange target of the first heat sink 152 is air inside the storage compartment.
  • the first fan 153 is installed to face the first heat sink 152 and generates wind to promote heat exchange of the first heat sink 152. Since heat exchange is a natural phenomenon, even without the first fan 153, the first heat sink 152 may exchange heat with air in the storage compartment. However, as the thermoelectric module 150 includes the first fan 153, heat exchange of the first heat sink 152 may be further promoted.
  • the first fan 153 may be wrapped by the cover 154.
  • the cover 154 may include a portion other than the portion 154a surrounding the first fan 153.
  • a plurality of holes 154b may be formed in the portion 154a surrounding the first fan 153 to allow air in the storage compartment to pass through the cover 154.
  • the cover 154 may have a structure that can be fixed to the rear wall (111a of FIG. 1) of the storage compartment.
  • a cover 154 includes a portion 154c extending from both sides of a portion 154a surrounding the first fan 153, and a screw fastening hole that can be screwed into the extending portion 154c ( The structure in which 154e is formed is shown.
  • the cover 154 since the screw 159c is inserted into a portion surrounding the first fan 153, the cover 154 may be additionally fixed to the rear wall by the screw 159c. Holes 154b and 154d through which air can pass may be formed in the portion 154a surrounding the first fan 153 and the extending portion 154c.
  • the second heat sink 155 is disposed to contact the heat radiating part 151b of the thermoelectric element 151.
  • the second heat sink 155 is configured to heat exchange with the second region.
  • the second area corresponds to a space between the outer case 112 of FIG. 1 and the heat dissipation cover, or corresponds to an outer space of the refrigerator 100 of FIG. 1.
  • the heat exchange target of the second heat sink 155 is air outside the outer case.
  • the second fan 156 is installed to face the second heat sink 155 and generates wind to promote heat exchange of the second heat sink 155.
  • the second fan 156 promotes heat exchange of the second heat sink 155 is the same as the first fan 153 promotes heat exchange of the first heat sink 152.
  • the first fan 153 and the second fan 156 may be formed as an axial fan.
  • An axial fan corresponds to one type of fan, and is formed to cause wind along the rotation axis of the fan. Since the first fan 153 is disposed to face the first heat sink 152, and the second fan 156 is disposed to face the second heat sink 155, the first fan 153 and the second fan are arranged to face each other.
  • the fan 156 is preferably formed of an axial fan. This is because the wind generated in the first fan 153 may be directly supplied to the first heat sink 152, and the wind generated in the second fan 156 may be directly supplied to the second heat sink 155. .
  • the second fan 156 may optionally have a shroud 156c.
  • the shroud 156c is made to guide the wind.
  • the shroud 156c may be configured to surround the vanes 156b at a position spaced apart from the vanes 156b as shown in FIG. 2.
  • a screw fastening hole 156d may be formed in the shroud 156c to fix the second fan 156.
  • the first heat sink 152 and the first fan 153 correspond to the heat absorbing side of the thermoelectric module 150.
  • the second heat sink 155 and the second fan 156 correspond to the heat generating side of the thermoelectric module 150.
  • At least one of the first heat sink 152 and the second heat sink 155 includes a base 152a, 155a and fins 152b, 155b, respectively.
  • the first heat sink 152 and the second heat sink 155 will be described on the premise that both of the bases 152a and 155a and the fins 152b and 155b are included.
  • the bases 152a and 155a are in surface contact with the thermoelectric element 151.
  • the base 152a of the first heat sink 152 is in surface contact with the heat absorbing portion 151a of the thermoelectric element 151, and the base 155a of the second heat sink 155 is a heat radiating portion of the thermoelectric element 151.
  • the bases 152a and 155a and the thermoelectric element 151 may be in surface contact with each other.
  • a thermal grease or a thermal compound may be used to increase thermal conductivity by filling a minute gap between the bases 152a and 155a and the thermoelectric element 151.
  • Fins 152b and 155b protrude from base 152a and 155a to exchange heat with air in the first region or air in the second region. Since the first region corresponds to the storage chamber 120 (FIG. 1) and the second region corresponds to the outside of the refrigerator 100 (FIG. 1), the fins 152b of the first heat sink 152 may correspond to the storage chamber (FIG. 1).
  • the heat exchanger 120 is configured to exchange heat with the air, and the fins 155b of the second heat sink 155 are configured to exchange heat with external air of the refrigerator (100 of FIG. 1).
  • the pins 152b and 155b are spaced apart from each other. This is because the heat exchange area may increase as the fins 152b and 155b are spaced apart from each other. If the fins 152b and 155b are stuck together, there will be no heat exchange area between the fins 152b and 155b, but between the fins 152b and 155b since the fins 152b and 155b are spaced apart from each other. There may also be a heat exchange area in between. Since the thermal conductivity increases as the heat transfer area increases, the area of the fins exposed to the first and second areas should be increased to improve the heat transfer performance of the heat sink.
  • the thermal conductivity of the second heat sink 155 corresponding to the heat generating side should be larger than that of the first heat sink 152. This is because sufficient heat absorption is achieved at the heat absorbing portion 151a only when heat is radiated more quickly at the heat radiating portion 151b of the thermoelectric element 151. This is due to the fact that the thermoelectric element 151 is not a simple heat conductor, but an endotherm is made by applying a voltage, and the heat is radiated from the other side. Therefore, sufficient heat dissipation must be made in the heat dissipation unit 151b of the thermoelectric element 151 so that sufficient cooling can be realized in the heat absorbing unit 151a.
  • the heat exchange area of the second heat sink 155 is larger than that of the first heat sink 152.
  • the heat exchange area must be large. Assuming that all heat exchange areas of the first heat sink 152 are all used for heat exchange, the heat exchange area of the second heat sink 155 is three times or more than the heat exchange area of the first heat sink 152. desirable.
  • the air volume and the wind speed formed by the second fan 156 are preferably larger than the air volume and the wind speed formed by the first fan 153.
  • the second heat sink 155 requires a larger heat exchange area than the first heat sink 152.
  • the area of the base 155a and fins 155b of the second heat sink 155 is larger than those 152a and 152b of the first heat sink 152.
  • the second heat sink 155 may be provided with a heat pipe 155c to quickly distribute the heat transferred to the base 155a of the second heat sink 155 to the fins.
  • the heat pipe 155c is configured to receive a heat transfer fluid therein, one end of the heat pipe 155c penetrates the base 155a and the other end penetrates the fins 155b.
  • the heat pipe 155c is a device that transfers heat from the base 155a to the fins 155b through evaporation of the heat transfer fluid contained therein. Without the heat pipe 155c, heat exchange would be concentrated only in the adjacent fins 155b of the base 155a. This is because heat is not sufficiently distributed to the pins 155b which are far from the base 155a.
  • heat exchange may be performed at all the fins 155b of the second heat sink 155. This is because the heat of the base 155a can be evenly distributed to the pins 155b disposed relatively far from the base 155a.
  • the base 155a of the second heat sink 155 may be formed of two layers (two layers) 155a1 and 155a2 to embed the heat pipe 155c.
  • the first layer 155a1 of the base 155a surrounds one side of the heat pipe 155c
  • the second layer 155a2 surrounds the other side of the heat pipe 155c, and has two layers 155a1 and 155a2. May be arranged to face each other.
  • the first layer 155a1 may be disposed to be in contact with the heat dissipation unit 151b of the thermoelectric element 151 and may have the same or similar size as the thermoelectric element 151.
  • the second layer 155a2 is connected to the pins 155b, and the pins 155b protrude from the second layer 155a2.
  • the second layer 155a2 may have a larger size than the first layer 155a1.
  • One end of the heat pipe 155c is disposed between the first layer 155a1 and the second layer 155a2.
  • the heat insulator 157 is installed between the first heat sink 152 and the second heat sink 155.
  • the heat insulator 157 is formed to surround the edge of the thermoelectric element 151.
  • a hole 157a may be formed in the heat insulating material 157, and a thermoelectric element 151 may be disposed in the hole 157a.
  • thermoelectric element module 150 is a device that realizes cooling of the storage chamber (120 of FIG. 1) through endothermic and heat dissipation formed at one side and the other side of the thermoelectric element 151, but is not a simple thermal conductor. Therefore, it is not preferable that heat of the first heat sink 152 is directly transferred to the second heat sink 155. This is because if the temperature difference between the first heat sink 152 and the second heat sink 155 is reduced due to direct heat transfer, the performance of the thermoelectric element 151 is reduced. In order to prevent this phenomenon, the insulation 157 is configured to block direct heat transfer between the first heat sink 152 and the second heat sink 155.
  • the fastening plate 158 is disposed between the first heat sink 152 and the heat insulator 157 or between the second heat sink 155 and the heat insulator 157.
  • the fastening plate 158 is for fixing the first heat sink 152 and the second heat sink 155, and the first heat sink 152 and the second heat sink 155 are screwed to each other by the fastening plate ( 158 may be screwed into.
  • the fastening plate 158 may be formed to surround the edge of the thermoelectric element 151 together with the heat insulating material 157.
  • the fastening plate 158 has a hole 158a corresponding to the thermoelectric element 151 like the heat insulating material 157, and the thermoelectric element 151 may be disposed in the hole 158a.
  • the fastening plate 158 is not an essential configuration of the thermoelectric module 150, and may be replaced with another configuration capable of fixing the first heat sink 152 and the second heat sink 155.
  • a plurality of screw fastening holes 158b and 158c for fixing the first heat sink 152 and the second heat sink 155 may be formed in the fastening plate 158.
  • the first heat sink 152 and the heat insulating material 157 are formed with screw fastening holes 152c and 157b corresponding to the fastening plate 158, and the screws 159a are formed by the three screw fastening holes 152c, 157b and 158b. ) May be sequentially inserted to fix the first heat sink 152 to the fastening plate 158.
  • a screw fastening hole 155d corresponding to the fastening plate 158 is formed in the second heat sink 155, and a screw 159b is sequentially inserted into the two screw fastening holes 158c and 155d so that the second heat sink is provided. 155 may be fixed to the fastening plate 158.
  • the fastening plate 158 may include a recess 158d configured to receive one side of the heat pipe 155c.
  • the recess 158d may be formed to correspond to the heat pipe 155c and partially wrap. Even though the second heat sink 155 includes the heat pipe 155c, since the fastening plate 158 includes the recessed portion 158d, the second heat sink 155 may be in close contact with the fastening plate 158. And, the overall thickness of the thermoelectric module 150 can be made thinner.
  • At least one of the first fan 153 and the second fan 156 described above includes hubs 153a and 156a and vanes 153b and 156b. Hubs 153a and 156a are coupled to a central axis of rotation (not shown). Vanes 153b and 156b are radially installed around the hubs 153a and 156a.
  • the axial fans 153 and 156 are separated from the centrifugal fan.
  • the axial flow fans 153 and 156 are formed to cause wind in the rotation axis direction, and air enters the rotation axis direction of the axial flow fans 153 and 156 and exits in the rotation axis direction.
  • the centrifugal fan is formed to cause wind in the centrifugal direction (or circumferential direction), and air enters the centrifugal direction in the direction of the rotation axis of the centrifugal fan.
  • thermoelectric module 3 is a conceptual diagram of a built-in refrigerator 100 having a thermoelectric module.
  • the built-in refrigerator 100 refers to the refrigerator 100 embedded in an inner wall of a building or furniture.
  • Built-in refrigerator 100 has the advantage that it can be efficiently utilized because it is designed or designed with buildings or furniture.
  • the built-in refrigerator 100 has a disadvantage in that repair or replacement is difficult.
  • the refrigerator 100 of the present invention includes a thermoelectric module, and the thermoelectric module has a very small size as compared with the refrigeration cycle apparatus. Therefore, the refrigerator 100 having a thermoelectric module is suitable to be implemented as a built-in refrigerator 100. In FIG. 3, the refrigerator 100 is embedded in the furniture.
  • the refrigerator 100 When the refrigerator 100 is surrounded by the shielding film as described above, the refrigerator 100 naturally has a structure vulnerable to heat radiation. Unless a separate cooling system is provided, the heat dissipation side of the thermoelectric element module is cooled by natural convection of air. By the way, if the flow of air to be supplied to the thermoelectric element is blocked by the shielding film, not only is the heat dissipation side of the thermoelectric element not sufficiently radiated, but also the cooling performance of the thermoelectric element is reduced.
  • the present invention is to solve such a technical problem, the following describes the heat dissipation structure of the present invention.
  • FIG. 4 is a cross-sectional view for describing a heat dissipation structure of the refrigerator 100.
  • 5 to 7 are conceptual diagrams for describing a heat dissipation structure of the refrigerator 100.
  • the refrigerator 100 of the present invention is formed to suck air into the rear surface and discharge the air to the front of the cabinet 110 through the lower side of the cabinet 110.
  • I denotes air introduced between the shielding film of the furniture 10 and the cabinet 110
  • O denotes air discharged to the lower side of the cabinet 110.
  • the second fan 156 sucks air outside the heat dissipation cover 160 into the heat dissipation cover 160 to promote heat exchange of the second heat sink 155. Since the second fan 156 is installed to be visually exposed to the outside through the heat dissipation cover 160, when the second fan 156 is rotated, air is sucked into the heat dissipation cover 160. The air sucked into the heat dissipation cover 160 exchanges heat with the second heat sink 155, and receives heat from the second heat sink 155 to become hot. Accordingly, heat dissipation of the second heat sink 155 is performed.
  • the second fan 156 is disposed above the center of the heat dissipation cover 160 to suck air through the upper portion of the heat dissipation cover 160.
  • the lower part of the heat dissipation cover 160 is the lower one of the two drawers 141 and 142. It is disposed at a height corresponding to 141.
  • the upper portion of the heat dissipation cover 160 is disposed at a height corresponding to the upper drawer 142.
  • the second fan 156 Since the second fan 156 is disposed above the center of the heat dissipation cover 160, the second fan 156 is disposed at a position facing the upper drawer 142. Accordingly, air is sucked into the heat dissipation cover 160 through the top of the heat dissipation cover 160.
  • the heat dissipation cover 160 is formed to guide the air sucked by the second fan 156 from the top to the bottom.
  • the heat dissipation cover 160 is formed to block the upper and left and right sides of the opening in which the second fan 156 is installed. Accordingly, the air sucked into the heat dissipation cover 160 by the second fan 156 is naturally guided from the top to the bottom.
  • the heat dissipation cover 160 includes a main plate 161 and an edge portion 162.
  • the main plate 161 is disposed to be spaced apart from the rear surface of the out case 112. Accordingly, a flow path that guides the flow of air is formed between the rear surface of the outer case 112 and the main plate 161.
  • the main plate 161 has an opening at a position facing the second fan 156.
  • the second fan 156 is installed to be visually exposed to the outside of the heat dissipation cover 160 through the opening.
  • the edge portion 162 protrudes from the edge of the main plate 161 toward the outer case 112 and is coupled to the outer case 112.
  • An edge portion 162 is formed at an upper end, a left end, and a right end of the main plate 161, respectively. Since the edge portion 162 serves to shield a flow path through which air enters or leaks, the air introduced into the heat dissipation cover 160 by the second fan 156 may be separated from the rear surface of the outer case 112. It is guided from top to bottom along the flow path between the main plates 161.
  • the support 170 is sucked through the second fan 156 to guide the air guided by the heat dissipation cover 160 to the front of the cabinet 110 through the lower side of the cabinet 110.
  • the cabinet 110 is spaced apart from the floor to be discharged.
  • the floor may mean a floor on which the refrigerator 100 is installed.
  • the floor may mean a partition of the furniture.
  • a flow path through which air can be discharged is formed between the cabinet 110 and the floor. Accordingly, air may be discharged toward the front of the cabinet 110 through the lower side of the cabinet 110.
  • the support 170 includes a pier 171, a rib 172, and discharge ports 173a and 173b. See FIG. 6 for a detailed structure of the support 170.
  • the pier 171 spaces the cabinet 110 from the floor and is formed to support the cabinet 110. In the support 170, if the upper part touches the bottom of the cabinet 110 along the vertical direction and the lower part touches the bottom, the parts correspond to the pier 171.
  • the rib 172 is connected to two different portions of the pier 171 to reinforce the strength of the support 170.
  • the rib 172 may have a lattice structure.
  • the discharge ports 173a and 173b are formed in the pier 171 to discharge air from the lower side of the cabinet 110 to the front of the cabinet 110.
  • the discharge holes 173a and 173b may be divided into main discharge holes 173a and sub discharge holes 173b according to sizes.
  • the large discharge port 173a corresponds to the main discharge port 173a
  • the small discharge port 173b corresponds to the sub discharge port 173b.
  • the pier 171 supports the cabinet 110, air may be discharged through the discharge holes 173a and 173b formed in the pier 171.
  • the ribs 172 are formed to compensate for the decrease in the strength of the support 170 by the discharge ports 173a and 173b.
  • the suction port refers to an opening in which the second fan 156 is installed.
  • the air inlets and the discharge ports 173a and 173b are spaced apart from each other before and after the refrigerator 100.
  • the air inlets and the discharge ports 173a and 173b are disposed on the upper and lower sides of the refrigerator 100. Spaced apart from each other along the direction.
  • the air inlets and the air outlets 173a and 173b are spaced apart from each other, according to the structure of the present invention, it is possible to prevent the air discharged from the refrigerator 100 from being re-intakeed into the air inlet again. In addition, when the air is discharged through the lower side of the cabinet 110, it is possible to prevent the hot air is transferred to the face of the user.
  • This heat dissipation structure is suitable for the built-in refrigerator (100).
  • the air introduced through the upper side of the cabinet 110 is sucked into the heat dissipation cover 160 and discharged to the lower side of the cabinet 110, as shown in FIG. Even if it is completely wrapped, there is no problem with the air flow.
  • the main plate 161 of the heat dissipation cover 160 In order to intake air, the main plate 161 of the heat dissipation cover 160 should be spaced apart from a shielding film such as furniture. This is because air may not be sucked into the heat dissipation cover 160 when the main plate 161 is in close contact with the shielding film.
  • the refrigerator 100 includes a stopper 163 to separate the main plate 161 from the shielding film.
  • the stopper 163 protrudes from the heat dissipation cover 160 toward the shielding film disposed at the rear of the refrigerator 100 to separate the heat dissipation cover 160 from the shielding film disposed at the rear of the refrigerator 100. Since the heat dissipation cover 160 is spaced apart from the shielding film by the stopper 163, air may be sucked through the space between the heat dissipation cover 160 and the shielding film.
  • the heat dissipation cover 160 may include an accommodating part 164 formed to accommodate the stopper 163.
  • the heat dissipation cover 160 includes a hinge 165, and the stopper 163 is connected to the hinge 165. Accordingly, the stopper 163 may be inserted into or withdrawn from the housing 164 by rotation.
  • the elastic member 166 is coupled to the stopper 163 to support the stopper 163. The stopper 163 may be inserted into or withdrawn from the housing 164 by linear movement.
  • the refrigerator 100 may have at least one of A and B structures.
  • I and O shown in FIG. 4 are interchanged.
  • the second fan 156 should be rotated in the opposite direction. Air is sucked into the lower side of the cabinet 110, and air is discharged behind the heat dissipation cover 160.
  • the bottom of the cabinet 110 may be divided into a front portion F, a rear portion R, and an intermediate portion M between the front portion F and the rear portion R according to a position.
  • the support 170 is formed to support the middle portion M and the rear portion R so that an empty space is formed below the front portion F.
  • This structure is to prevent the visual exposure of the audiovisual module installed in the support (170).
  • the audio-visual module will be described with reference to FIGS. 8A to 8C illustrating the structure of the support 170.
  • 8A is a front view illustrating an example of the support 170 supporting the cabinet.
  • 8B is a front view illustrating another example of the support 270 that supports the cabinet.
  • 8C is a front view illustrating another example of the support 370 supporting the cabinet.
  • Audiovisual modules 174a and 174b and 274a and 274b and 374a and 374b are mounted on a front surface of the supports 170 and 270 and 370. Audio and audio modules 174a and 174b are provided. 274a, 274b and 374a and 374b include light emitting elements 174a and 274a and 374a for providing light or speakers 174b and 274b and 374b for providing sound. 173b) 273a and 273b and 373a and 373b are formed in at least one of one side and side of the audiovisual modules 174a and 174b and 274a and 274b and 374a and 374b.
  • main discharge holes 173a and 273a are formed at both sides of the light emitting elements 174a and 274a and the speakers 174b and 274b. Comparing FIG. 8A and FIG. 8B, it can be seen that the main discharge hole 273a shown in FIG. 8B is completely opened to the bottom and has an expanded size than the main discharge hole 173a of FIG. 8A. Sub-discharge holes 173b and 273b having smaller sizes than the main discharge holes 173a and 273a are formed under the light emitting elements 174a and 274a and the speakers 174b and 274b.
  • 8C is a front view illustrating another example of the support 170 that supports the cabinet 110.
  • Two light emitting elements 374a and two speakers 374b are provided.
  • the two light emitting elements 374a are spaced apart from each other, and the two speakers 374b are also spaced apart from each other.
  • the main discharge port 373a is formed between the two light emitting elements 374a and between the two speakers 374b.
  • the sub discharge holes 373b are formed to have a smaller size than the main discharge holes 373a above or below the light emitting devices 374a and the speakers 374b.
  • a sub discharge hole 373b is provided under the light emitting devices 374a and the speakers 374b.
  • the supports 170, 270, 370 support the middle portion (M in FIG. 6) and the rear portion (R in FIG. 6) of the bottom of the cabinet (110 in FIG. 6), the supports 170, 270 ( The front surface of 370 is disposed below the middle portion. Therefore, the audiovisual modules 174a and 174b and 274a and 274b and 374a and 374b installed in front of the support 170 are visually hidden by the user. However, light or sound provided from the audiovisual modules 174a and 174b and 274a and 274b and 374a and 374b may be transmitted to the user through the lower side of the cabinet 110.
  • the built-in refrigerator 100 is surrounded by a shielding film, it may be difficult to provide light or sound to the user. However, if light or sound can be transmitted to the user through the bottom of the cabinet 110, there is an advantage that the limitation is not limited by the shielding structure.
  • FIG. 9 is a conceptual view illustrating another embodiment of a refrigerator 400 having a thermoelectric module.
  • the main plate 461 has an inclined portion 467 around an opening in which the second fan 456 is disposed.
  • the inclined portion 467 forms an inclined away from the rear surface of the outer case 412 as it approaches the opening.
  • the inclined portion 467 increases the suction flow rate and the flow rate of the air sucked into the second fan 456, and guides the flow of the air to smoothly suck the air into the second fan 456.
  • the refrigerator 400 of the embodiment shown in FIG. 9 has experimentally greater cooling performance. This is because the temperature of the heat absorbing part obtained in the thermoelectric element module is lowered by the smooth heat dissipation.
  • the inclined portion 467 may form an inclined away from the rear surface of the out case 412. In this case, since the flow path of air sucked into the second fan 456 is naturally secured, the refrigerator 400 may not include the stopper 463.
  • FIG. 10 is a conceptual view illustrating another embodiment of a refrigerator 500 having a thermoelectric module.
  • FIG. 11 is a conceptual view illustrating the inside of the heat dissipation cover 560 shown in FIG. 10.
  • the heat dissipation cover 560 has guide parts 568a and 568b for guiding the flow of air.
  • the first guide part 568a protrudes from the main plate 561 toward the out case 512 under the opening in which the second fan 556 is installed.
  • the first guide part 568a extends along the vertical direction to guide the air sucked by the second fan 556 from the top to the bottom.
  • the second guide part 568b is provided at the lower end of the first guide part 568a to guide the air guided by the first guide part 568a to be discharged toward the front of the cabinet 510 through the lower side of the cabinet 510. It protrudes between the cabinet 510 and the floor.
  • the second guide portion 568b extends forward.
  • the air guided from the top to the bottom by the first guide part 568a is again guided to the front of the cabinet 510 by the second guide part 568b. And it is discharged to the front of the cabinet 510 through the discharge port of the support 570.
  • the plurality of fins 555b of the second heat sink 555 extend in the vertical direction so that the air sucked by the second fan 556 flows from the top to the bottom. Spaced apart from each other. Accordingly, a vertical flow path is formed between the plurality of fins 555b. Air can be guided from top to bottom along this flow path. This structure can also be confirmed in FIG.
  • the main plate 551 may be divided into a first portion 551a and a second portion 551b.
  • the first portion 551a has an opening in which the second fan 556 is installed at a position facing the second fan 556.
  • the second portion 551b is disposed at one side of the first portion 551a, and separates the shielding film from the first portion 551a so as to separate the first portion 551a from the shielding film disposed at the rear of the refrigerator 500. More protrudes toward you. Since the second part 551b protrudes more than the first part 551a, a flow path for intake of air may naturally be formed between the first part 551a and the shielding film. Therefore, the refrigerator 500 may not be provided with a stopper.
  • FIG. 12 is a conceptual view illustrating another embodiment of a refrigerator 600 having a thermoelectric module.
  • the heat dissipation cover 560 may further have at least one vent hole 669a, 669b, and 669b ′ around the opening where the second fan 656 is installed.
  • a structure is suitable for a structure in which all sides of the refrigerator 600 are not shielded since there is a risk of resorption.
  • the ventilation openings 669a are formed at the left and right sides of the opening, the hot air is lifted due to natural convection after being discharged through the ventilation openings, so there is little fear of re-suction. This is because the four sides of the refrigerator 600 are not shielded.
  • vent holes 669b and 669b ' are formed at the left and right sides and the upper and lower sides of the opening, respectively.
  • air can be discharged at a high flow rate. The higher the flow rate of the discharged air, the lower the chance of resorption.
  • the refrigerator described above is not limited to the configuration and method of the above-described embodiments, but the embodiments may be configured by selectively combining all or some of the embodiments so that various modifications can be made.
  • the present invention can be used in the industrial field related to the refrigerator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

본 발명의 냉장고는, 이너 케이스, 아웃 케이스, 및 단열재를 구비하는 캐비닛; 상기 저장실의 후벽에 설치되어 상기 저장실을 냉각하도록 이루어지는 열전소자모듈; 상기 캐비닛을 지지하도록 상기 캐비닛의 저면에 설치되는 지지대; 및 상기 아웃 케이스의 뒤에 결합되는 방열 커버를 포함하며, 상기 방열 커버는 상기 제2 팬에 의해 흡입된 공기를 위에서 아래 방향으로 가이드 하도록 형성되며, 상기 지지대는 상기 제2 팬을 통해 흡입된 공기를 상기 캐비닛의 하측을 통해 상기 캐비닛의 전방으로 토출되게 하도록 상기 캐비닛을 바닥으로부터 이격시킨다.

Description

냉장고
본 발명은 열전소자모듈을 구비하여 저소음으로 높은 냉장 성능을 나타내는 냉장고에 관한 것이다.
열전소자는 펠티어 효과(Peltier Effect)를 이용하여 흡열과 발열을 구현하는 소자를 가리킨다. 펠티어 효과는 소자의 양 단에 전압을 인가하면, 전류의 방향에 따라 한쪽 면에서는 흡열 현상이 발생하고, 반대쪽 면에서는 발열 현상이 일어나는 효과를 가리킨다. 이 열전소자는 냉동사이클 장치 대신 냉장고에 이용될 수 있다.
일반적으로 냉장고는 내부에 단열재로 충전된 캐비닛과 도어에 의해, 외부에서 침투하는 열을 차단 가능한 식품 저장공간을 형성하고, 상기 식품 저장공간 내부의 열을 흡수하는 증발기와 상기 식품저장공간 외부로 수집된 열을 배출하는 방열장치로 구성된 냉동장치를 구비하여, 상기 식품 저장공간을 미생물의 생존 및 증식이 어려운 저온의 온도영역으로 유지하여, 저장된 식품을 장기간 변질 없이 보관하는 장치이다.
상기 냉장고는 영상(above zero)의 온도영역으로 식품을 저장하는 냉장실과 영하(below zero)의 온도영역으로 식품을 저장하는 냉동실로 분리하여 형성되고, 상기 냉장실과 냉동실의 배치에 따라, 상부 냉동실과 하부 냉장실을 배치한 탑 프리저(Top Freezer) 냉장고와 하부 냉동실과 상부 냉장실을 배치한 바텀 프리저(Bottom Freezer) 냉장고, 그리고 좌측 냉동실과 우측 냉장실로 배치한 사이드 바이 사이드(Side by side) 냉장고 등으로 분류된다.
그리고, 사용자가 상기 식품 저장공간에 저장된 식품을 편리하게 적치하거나, 인출하기 위해, 냉장고는 다수개의 선반과 서랍 등을 상기 식품 저장공간 내부에 구비한다.
한편, 빌트인 냉장고란 처음 건물을 지을 때부터 가구나 벽 등에 매립한 냉장고를 가리킨다. 일반적인 냉장고가 개방된 공간에 설치됨에 반해, 빌트인 냉장고는 가구나 벽 등에 매립된다. 따라서 빌트인 냉장고는 일반적인 냉장고에 비해 방열에 취약하다.
대한민국 등록특허공보 제10-0569935호(2006.04.04.)에는 빌트인 냉장고의 방열 구조의 일 예가 개시되어 있다. 상기 특허문헌에 따르면 기계실에서 냉장고의 바닥면을 통해 공기가 흡입되고, 이 공기는 다시 냉장고의 후방으로 토출된다. 냉장고의 후방으로 토출된 공기는 자연 대류에 의해 상승하게 된다.
그러나 기계실은 일반적으로 냉장고의 하단에 설치되기 때문에, 냉장고의 후방으로 토출된 뜨거운 공기가 냉장고의 후면 전체에 영향을 미치게 된다. 자연 대류에 의해 상승하는 공기가 지속적으로 냉장고의 후면 전체의 영역과 만나기 때문이다. 이로 인해 냉장고에서 필요로 하는 단열 부하 및 성능에 악영향을 끼칠 우려가 있다.
더욱 큰 문제는 냉장고의 후방으로 토출된 공기가 상승하지 못하고 기계실로 재흡입 될 수 있다는 것이다. 특히 빌트인 냉장고와 같이 냉장고의 좌우측면이 차폐된 경우에는 뜨거운 공기가 기계실로 재흡입될 가능성이 매우 높다.
또한 빌트인 냉장고는 일반적인 냉장고에 비해 크기가 작은데, 냉장고의 후방으로 토출된 뜨거운 공기가 빌트인 냉장고의 상면을 타고 사용자의 얼굴로 향하게 되는 것을 배제할 수 없다.
상기 특허문헌과 달리 기계실의 위에 통풍구를 형성하여 상기 통풍부를 통해 공기가 유입되게 하고, 기계실을 통해 배출하는 것을 고려해 볼 수 있다. 그러나 이 경우에는 기계실을 통해 배출된 공기가 자연대류로 인해 상승하면서 통풍구를 통해 냉장고의 내측으로 재흡입 되는 것을 더욱 촉진시키게 된다.
본 발명의 일 목적은 열전소자모듈에 의해 저장실의 냉각이 이루어지고, 상기 열전소자모듈에 구비되는 팬을 이용하여 방열 유동을 형성할 수 있는 구조의 냉장고를 제안하기 위한 것이다. 특히 본 발명은 빌트인 냉장고에 적합한 방열 구조를 제공하기 위한 것이다.
본 발명의 다른 일 목적은 방열을 위한 공기의 흡입구와 토출구를 서로 멀리 이격시켜 냉장고에서 토출된 뜨거운 공기가 다시 냉장고로 재흡입되는 것을 방지할 수 있는 구조의 냉장고를 제안하기 위한 것이다.
본 발명의 또 다른 일 목적은 방열을 위해 토출된 공기가 사용자의 얼굴을 향하게 되는 문제를 개선하기 위한 것이다.
본 발명의 또 다른 일 목적은 상기 방열 구조에 시청각 모듈을 함께 설치하여 외부로 노출되지 않으면서 사용자에게 시각 및 청각적인 감각을 제공할 수 있는 구조의 냉장고를 제안하기 위한 것이다.
이와 같은 본 발명의 일 목적을 달성하기 위하여 본 발명의 일 실시예에 따르는 냉장고는, 200L 이하의 저장실을 형성하는 이너 케이스, 상기 이너 케이스를 감싸도록 형성되는 아웃 케이스, 및 상기 이너 케이스와 상기 아웃 케이스의 사이에 배치되는 단열재를 구비하는 캐비닛; 상기 저장실의 후벽에 설치되어 상기 저장실을 냉각하도록 이루어지는 열전소자모듈; 상기 캐비닛을 지지하도록 상기 캐비닛의 저면에 설치되는 지지대; 및 상기 아웃 케이스의 뒤에 결합되는 방열 커버를 포함하며, 상기 방열 커버는 상기 제2 팬에 의해 흡입된 공기를 위에서 아래 방향으로 가이드 하도록 형성되며, 상기 지지대는 상기 제2 팬을 통해 흡입된 공기를 상기 캐비닛의 하측을 통해 상기 캐비닛의 전방으로 토출되게 하도록 상기 캐비닛을 바닥으로부터 이격시킨다.
상기 열전소자모듈은, 서로 반대 방향을 향하는 흡열부와 방열부를 구비하는 열전소자; 상기 흡열부와 접촉하도록 배치되고, 상기 저장실과 열 교환 하도록 이루어지는 제1 히트 싱크; 상기 제1 히트 싱크를 마주보도록 설치되며, 상기 제1 히트 싱크의 열 교환을 촉진하도록 바람을 일으키는 제1 팬; 상기 방열부와 접촉하도록 배치되고, 상기 아웃 케이스의 외부 영역과 열 교환 하도록 이루어지는 제2 히트 싱크; 상기 방열 커버를 통해 외부에 시각적으로 노출되게 설치되어 상기 제2 히트 싱크를 마주보며, 상기 제2 히트 싱크의 열 교환을 촉진하도록 상기 방열 커버의 외측의 공기를 상기 방열 커버의 내측으로 흡입하는 제2 팬; 및 상기 열전소자의 테두리를 감싸도록 형성되고, 상기 제1 히트 싱크와 상기 제2 히트 싱크 사이에 설치되는 단열재를 포함한다.
본 발명과 관련한 일 예에 따르면, 상기 제2 팬은 상기 방열 커버의 상부를 통해 공기를 흡입하도록 상기 방열 커버의 중심보다 상측에 배치된다.
본 발명과 관련한 다른 일 예에 따르면, 상기 방열 커버는, 상기 아웃 케이스의 후면과의 사이에 공기의 흐름을 가이드 하는 유로를 형성하도록 상기 아웃 케이스의 후면으로부터 이격되게 배치되는 메인 플레이트; 및 상기 메인 플레이트의 테두리로부터 상기 아웃 케이스를 향해 돌출되어 상기 아웃 케이스에 결합되는 테두리부를 포함한다.
상기 메인 플레이트는 상기 제2 팬을 마주보는 위치에 개구부를 구비하고, 상기 제2 팬은 상기 개구부를 통해 상기 방열 커버의 외측에 시각적으로 노출되게 설치된다.
상기 메인 플레이트는 상기 개구부의 둘레에 경사부를 구비하고, 상기 경사부는 상기 개구부에 가까워질수록 상기 아웃 케이스의 후면으로부터 멀어지는 경사를 형성된다.
상기 방열 커버는 상기 개구부의 주변에 적어도 하나의 통풍구를 갖는다.
상기 방열 커버는, 상기 개구부의 아래에 상기 메인 플레이트로부터 상기 아웃 케이스를 향해 돌출되고, 상기 제2 팬에 의해 흡입된 공기를 위에서 아래 방향으로 가이드 하도록 세로 방향을 따라 연장되는 제1 가이드부; 및 상기 제1 가이드부에 의해 가이드 된 공기를 상기 캐비닛의 하측을 통해 상기 캐비닛의 전방으로 토출되게 가이드 하도록 상기 제1 가이드부의 하단에서 상기 캐비닛과 상기 바닥 사이로 돌출되는 제2 가이드부를 포함한다.
본 발명과 관련한 다른 일 예에 따르면, 상기 제2 히트 싱크는, 상기 열전소자와 면 접촉하도록 이루어지는 베이스; 및 상기 베이스로부터 상기 제2 팬을 향해 돌출되고, 서로 이격되게 배치되는 복수의 핀을 포함하고, 상기 복수의 핀은 상기 제2 팬에 의해 흡입된 공기를 위에서 아래로 흐르게 하도록, 세로 방향을 따라 연장되며 가로 방향을 따라 서로 이격되게 배열된다.
본 발명과 관련한 다른 일 예에 따르면, 상기 제2 팬은 축 방향을 따라 바람을 일으키도록 형성되는 축류팬으로 형성되고,
상기 냉장고의 좌우측면과 후면은 차폐막에 의해 감싸이며, 상기 냉장고는 상기 방열 커버를 상기 냉장고의 후방에 배치되는 차폐막으로부터 이격시키도록 상기 방열 커버로부터 상기 냉장고의 후방에 배치되는 차폐막을 향해 돌출되는 스토퍼를 포함한다.
상기 방열 커버는 상기 스토퍼를 수납 가능하게 형성되는 수납부를 구비하고, 상기 스토퍼는 회전 또는 선형 이동에 의해 상기 수납부에 삽입되거나 상기 수납부로부터 인출된다.
본 발명과 관련한 다른 일 예에 따르면, 상기 제2 팬은 축 방향을 따라 바람을 일으키도록 형성되는 축류팬으로 형성되고, 상기 냉장고의 좌우측면과 후면은 차폐막에 의해 감싸이며, 상기 방열 커버는, 상기 아웃 케이스의 후면과의 사이에 공기의 흐름을 가이드 하는 유로를 형성하도록 상기 아웃 케이스의 후면으로부터 이격되게 배치되는 메인 플레이트; 및 상기 메인 플레이트의 테두리로부터 상기 캐비닛을 향해 돌출되어 상기 캐비닛에 결합되는 테두리부를 포함하고, 상기 메인 플레이트는, 상기 제2 팬을 마주보는 위치에 개구부를 구비하는 제1 부분; 및 상기 제1 부분의 일측에 배치되며, 상기 제1 부분을 상기 냉장고의 후방에 배치되는 차폐막으로부터 이격시키도록 상기 제1 부분보다 상기 차폐막을 향해 더 많이 돌출되는 제2 부분을 포함한다.
본 발명과 관련한 다른 일 예에 따르면, 상기 지지대는, 상기 캐비닛을 상기 바닥으로부터 이격시키며, 상기 캐비닛을 지지하도록 형성되는 교각부; 상기 지지대의 강도를 보강하도록 상기 교각부의 서로 다른 두 부분에 연결되는 리브; 상기 캐비닛의 하측에서 상기 캐비닛의 전방으로 공기를 토출되게 하도록 상기 교각부에 형성되는 토출구를 포함한다.
본 발명과 관련한 다른 일 예에 따르면, 상기 캐비닛의 저면은 앞부분, 뒷부분 및 상기 앞부분과 상기 뒷부분 사이의 중간부로 구분되고, 상기 앞부분의 아래에 빈 공간이 형성되도록, 상기 지지대는 상기 중간부와 상기 뒷부분을 지지한다.
상기 지지대의 전면에는 빛과 음향 중 적어도 하나를 제공하도록 형성되는 시청각 모듈이 장착된다.
상기 지지대는 상기 캐비닛의 하측에서 상기 캐비닛의 전방으로 공기를 토출되게 하도록 형성되는 토출구를 포함하고, 상기 토출구는 상기 시청각 모듈의 일측과 타측 중 적어도 한 곳에 형성된다.
상기 토출구는, 상기 시청각 모듈의 양측에 형성되는 메인 토출구; 및 상기 시청각 모듈의 아래에 상기 메인 토출구보다 작은 크기로 형성되는 서브 토출구를 포함한다.
상기 시청각 모듈은 두 개가 서로 이격되게 구비되고, 상기 토출구는, 상기 두 개의 시청각 모듈 사이에 형성되는 메인 토출구; 및 상기 시청각 모듈의 위 또는 아래에 상기 메인 토출구보다 작은 크기로 형성되는 서브 토출구를 포함한다.
상기와 같은 구성의 본 발명에 의하면, 냉장고의 상측과 냉장고의 후방을 연속적으로 흐르는 공기가 캐비닛의 뒤에 배치되는 방열 커버를 통해 방열 커버의 내측으로 유입될 수 있다. 방열 커버의 내측으로 유입된 공기는 제2 히트 싱크를 냉각하게 된다. 이어서 공기는 방열 커버에 의해 가이드 되어 위에서 아래 방향으로 흐르고, 캐비닛의 하측을 통해 캐비닛의 전방으로 토출될 수 있다. 방열 커버뿐만 아니라 제2 히트 싱크의 핀들도 공기를 위에서 아래 방향으로 가이드 하도록 배열되므로, 공기의 유동 방향을 한 방향으로 설정할 수 있다.
공기가 제2 팬에 의해 흡입되므로 제2 팬이 설치되는 개구부를 흡입구라 하고 캐비닛의 하측을 토출구라고 한다면, 본 발명의 구성은 흡입구와 토출구가 세로 방향을 따라서도 서로 멀리 이격되어 있으며, 가로 방향을 따라서도 서로 멀리 이격되어 있다. 이러한 이격 구조는 캐비닛의 하측을 통해 토출된 공기가 다시 방열 커버의 내측으로 재흡입되는 것을 방지할 수 있다.
특히 냉장고가 주로 바닥에 설치된다는 점을 고려하면 캐비닛의 하측으로 공기가 토출된다는 것으로부터 공기가 사용자의 얼굴을 향하지 않는다는 효과를 얻을 수 있다.
또한 본 발명은, 공기를 전방으로 토출되게 하는 방열 구조를 형성하기 위해 구비되는 지지대에 시청각 모듈이 설치되어 사용자에게 시각적으로 노출되지 않으면서도 사용자에게 시각 및 청각적인 감각을 제공할 수 있다.
또한 본 발명은, 빌트인 냉장고에 적합한 방열 구조를 제안하였지만, 통풍구를 추가로 갖는 냉장고의 구조를 추가 제안하였다. 따라서 이 방열 구조는 빌트인 구조가 아닌 일반적인 냉장고에도 활용될 수 있다.
도 1은 열전소자모듈을 구비하는 냉장고의 일 실시예를 보인 개념도다.
도 2는 열전소자모듈의 분해 사시도다.
도 3은 열전소자모듈을 구비하는 빌트인 냉장고의 개념도다.
도 4는 냉장고의 방열 구조를 설명하기 위한 단면도다.
도 5 내지 도 7은 냉장고의 방열 구조를 설명하기 위한 개념도들이다.
도 8a는 캐비닛을 지지하는 지지대의 일 예를 보인 정면도다.
도 8b는 캐비닛을 지지하는 지지대의 다른 일 예를 보인 정면도다.
도 8c는 캐비닛을 지지하는 지지대의 또 다른 일 예를 보인 정면도다.
도 9는 열전소자모듈을 구비하는 냉장고의 다른 실시예를 보인 개념도다.
도 10은 열전소자모듈을 구비하는 냉장고의 또 다른 실시예를 보인 개념도다.
도 11은 도 10에 도시된 방열 커버의 내측을 보이 개념도다.
도 12는 열전소자모듈을 구비하는 냉장고의 또 다른 실시예를 보인 개념도다.
이하, 본 발명에 관련된 냉장고에 대하여 도면을 참조하여 보다 상세하게 설명한다. 본 명세서에서는 서로 다른 실시예라도 동일, 유사한 구성에 대해서는 동일, 유사한 참조번호를 부여하고, 그 설명은 처음 설명으로 갈음한다. 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
도 1은 열전소자모듈을 구비하는 냉장고의 일 실시예를 보인 개념도다.
본 발명의 냉장고(100)는 협탁(small side table)과 냉장고(100)의 기능을 동시에 수행하도록 이루어진다. 협탁은 본래 침대 옆이나 주방의 한 켠에 두고 사용하는 작은 탁자를 가리킨다. 협탁은 그 윗면에 스탠드 등을 올려 놓을 수 있도록 이루어지고, 그 내부에는 소품을 수납할 수 있도록 이루어진다. 본 발명의 냉장고(100)는 스탠드 등을 올려 놓을 수 있는 협탁 본래의 기능을 그대로 유지하면서, 그 내부에 식품 등을 저온으로 보관할 수 있도록 이루어진다.
캐비닛(110)(cabinet)은 이너 케이스(111), 아웃 케이스(112) 및 단열재(113)에 의해 형성된다.
이너 케이스(111)는 아웃 케이스(112)의 내측에 설치되며, 식품을 저온으로 저장할 수 있는 저장실(120)을 형성한다. 냉장고(100)가 협탁으로 사용되기 위해서는 냉장고(100)의 크기가 제한적일 수 밖에 없으므로, 이너 케이스(111)에 의해 형성되는 저장실(120)의 크기도 약 200L 이하로 제한되어야 한다.
아웃 케이스(112)는 이너 케이스(111)를 감싸도록 형성되며, 협탁 형상의 외관을 형성한다. 아웃 케이스(112)는 냉장고(100)의 상하면과 좌우측면의 외관을 형성한다. 참고로 냉장고(100)의 전면의 외관은 도어(door)(130)에 의해 형성되며, 후면의 외관은 후술하는 방열 커버에 의해 형성된다. 아웃 케이스(112)의 윗면은 스탠드 등의 소품을 올려 놓을 수 있도록 평평하게 형성되는 것이 바람직하다.
단열재(113)는 이너 케이스(111)와 아웃 케이스(112)의 사이에 배치된다. 단열재(113)는 일반적으로 단열재(113)는 폴리우레탄 폼(polyurethane foam)으로 형성된다. 단열재(113)는 상대적으로 뜨거운 외부로부터 상대적으로 찬 저장실(120)로 열이 전달되는 것을 억제하도록 이루어진다.
도어(130)는 캐비닛(110)의 전면부에 장착된다. 도어(130)는 캐비닛(110)과 함께 냉장고(100)의 외관을 형성된다. 도어(130)는 슬라이드 이동에 의해 저장실(120)을 개폐하도록 이루어진다. 도어(130)는 냉장고(100)에 두 개(131, 132) 이상 구비될 수 있으며, 도 1에 도시된 바와 같이 각각의 도어(130)는 상하 방향을 따라 배치될 수 있다.
저장실(120)에는 공간의 효율적이 활용을 위한 드로워(drawer)(140)가 설치될 수 있다. 드로워(140)는 저장실(120) 내에서 식품 보관 영역을 형성하게 되다. 드로워(140)는 도어(130)에 결합되고, 도어(130)의 슬라이드 이동을 따라 저장실(120)로부터 인출 가능하게 형성된다.
두 개의 드로워(141, 142)가 도어(130)와 마찬가지로 상하 방향을 따라 배치될 수 있다. 하나의 도어(131)(132)마다 하나씩의 드로워(141)(142)가 결합된다. 이에 따라 각각의 도어(131)(132)를 슬라이드 이동시킬 때마다 각 도어(131)(132)에 결합된 드로워(141)(142)가 도어(131)(132)를 따라 저장실(120)로부터 인출될 수 있다.
냉장고(100)는 가정 내의 다른 가전 제품과 달리 24시간 내내 작동한다. 따라서 침대 옆에 냉장고(100)가 놓여진다면, 특히 밤 시간에 냉장고(100)에서 소음과 진동이 침대에서 잠을 자는 사람에게 전달되게 되어 수면을 방해하게 된다. 특히 빌트인 냉장고와 같이 건축물이나 가구에 매립된 냉장고에서 발생하는 소음과 진동은 벽이나 가구를 타고 사람에게 전달될 가능성이 크다. 그러므로 냉장고(100)가 침대 옆에 배치되어 협탁과 냉장고(100)의 기능을 동시에 수행하기 위해서는, 냉장고(100)의 저소음 및 저진동 성능이 충분히 확보되어야 한다.
만약 냉장고(100)의 저장실(120)을 냉각하는 용도로 압축기를 포함하는 냉동사이클 장치가 사용된다면, 압축기에서 발생하는 소음과 진동을 원천적으로 차단하기 어렵다. 따라서 저소음 및 저진동 성능 확보를 위해 냉동사이클 장치는 제한적으로만 사용되어야 하며, 본 발명의 냉장고(100)는 열전소자모듈(150)을 이용하여 저장실(120)을 냉각한다.
열전소자모듈(150)은 저장실(120)의 후벽(111a)에 설치되어 저장실(120)을 냉각하도록 이루어진다. 열전소자모듈(150)은 열전소자를 포함하며, 열전소자는 펠티어 효과를 이용하여 냉각과 발열을 구현하는 소자를 가리킨다. 열전소자의 흡열측이 저장실(120)을 향하도록 배치되고 열전소자의 발열측이 냉장고(100)의 외부를 향하도록 배치되면, 열전소자의 작동을 통해 저장실(120)을 냉각할 수 있게 된다.
열전소자의 흡열측에서 냉각이 충분히 이루어지기 위해서는 발열측에서 발열이 원활하게 이루어져야 한다. 흡열측과 발열측의 온도차가 일정하다면, 발열측의 온도가 낮을수록 흡열측의 온도도 낮아질 수 있기 때문이다. 본 발명에서는 발열측의 원활한 방열을 위해 방열 커버(160)와 지지대(170)를 포함하는 냉장고(100)를 제안한다.
방열 커버(160)는 아웃 케이스(112)의 뒤에 결합된다. 방열 커버(160)에는 스토퍼(163)가 구비될 수 있다. 그리고 지지대(170)는 캐비닛(110)을 지지하도록 캐비닛(110)의 저면에 설치된다.
방열 커버(160)와 지지대(170)의 세부 구조에 대하여는 후술한다.
저장실(120)을 냉각하는 냉각기가 압축기, 응축기, 팽창기, 증발기 등으로 이루어진 냉동사이클 장치로 구현되면, 압축기에서 발생되는 진동과 소음을 원천적으로 차단하기 어렵다. 특히 최근에는 화장품 냉장고 등과 같이 냉장고의 설치 장소가 주방으로만 한정되지 않고 거실이나 침실 등으로 확장되고 있는데, 소음과 진동이 원천적으로 차단되지 못한다면 냉장고 사용자에게 큰 불편을 일으키게 된다.
열전소자를 냉장고(100)에 적용하면 냉동사이클 장치 없이도 저장실을 냉각할 수 있다. 특히 열전소자는 압축기와 달리 소음과 진동을 발생시키지 않는다. 따라서, 열전소자가 냉장고(100)에 적용된다면 주방 이외의 공간에 냉장고를 설치하더라도 소음과 진동의 문제를 해결할 수 있다.
열전소자는 냉동사이클 장치에 비해 크기가 작기 때문에 열전소자를 적용한 냉장고(100)는 냉동사이클 장치를 갖는 냉장고에 비해 작은 크기를 가질 수 있다. 이로 인해 빌트인(built-in) 냉장고(100)에는 냉동사이클 장치보다 열전소자가 유리하다.
도 2는 열전소자모듈(150)의 분해 사시도다.
열전소자모듈(150)은 열전소자(151), 제1 히트 싱크(152), 제1 팬(153), 제2 히트 싱크(155), 제2 팬(156) 및 단열재(157)를 포함한다. 열전소자모듈(150)은 서로 구분되는 제1 영역과 제2 영역 사이에서 작동하여, 어느 한 영역에서 흡열하고 다른 한 영역에서 방열하도록 이루어진다.
제1 영역과 제2 영역은 경계에 의해 공간적으로 서로 구분되는 영역들을 가리킨다. 열전소자모듈(150)이 냉장고(도 1의 100)에 적용된다면, 제1 영역은 저장실과 냉장고의 외부 중 어느 하나에 해당하고, 제2 영역은 다른 하나에 해당한다.
열전소자(151)는 P형 반도체와 N형 반도체로 PN 접합을 형성하고, 다수의 PN 접합을 직렬로 연결하여 형성된다.
열전소자(151)는 서로 반대 방향을 향하는 흡열부(151a)와 방열부(151b)를 구비한다. 효과적인 열 전달을 위해서는 흡열부(151a)와 방열부(151b)가 면 접촉 가능한 형상으로 이루어지는 것이 바람직하다. 따라서 흡열부(151a)는 흡열면으로, 방열부(151b)는 방열면으로 명명될 수 있다. 또한 흡열부(151a)와 방열부(151b)를 일반화하여 제1부분과 제2부분으로 명명하거나 제1면과 제2면으로 명명할 수 있다. 이러한 명명법은 설명의 편의를 위한 것일 뿐, 발명의 범위를 제한하는 것은 아니다.
제1 히트 싱크(152)는 열전소자(151)의 흡열부(151a)와 접촉하도록 배치된다. 제1 히트 싱크(152)는 제1 영역과 열 교환 하도록 이루어진다. 제1 영역은 냉장고의 저장실(도 1의 120)에 해당하며, 제1 히트 싱크(152)의 열 교환 대상은 저장실 내부의 공기다.
제1 팬(153)은 제1 히트 싱크(152)를 마주보도록 설치되며, 제1 히트 싱크(152)의 열 교환을 촉진하도록 바람을 일으킨다. 열 교환은 자연 현상이기 때문에 제1 팬(153)이 없더라도 제1 히트 싱크(152)는 저장실의 공기와 열 교환 가능하다. 그러나 열전소자모듈(150)이 제1 팬(153)을 포함함에 따라 제1 히트 싱크(152)의 열 교환이 더욱 촉진될 수 있다.
제1 팬(153)은 커버(154)에 의해 감싸일 수 있다. 커버(154)는 제1 팬(153)을 감싸는 부분(154a) 외에 다른 부분을 포함할 수 있다. 제1 팬(153)을 감싸는 부분(154a)에는 저장실 내부의 공기가 상기 커버(154)를 통과할 수 있도록 다수의 홀(154b)이 형성될 수 있다.
또한 커버(154)는 저장실의 후벽(도 1의 111a)에 고정될 수 있는 구조를 가질 수 있다. 일 예로 도 2에는 커버(154)가 제1 팬(153)을 감싸는 부분(154a)의 양측에서 연장되는 부분(154c)을 구비하고, 상기 연장되는 부분(154c)에 나사 삽입 가능한 나사 체결공(154e)이 형성되는 구조가 도시되어 있다. 아울러 제1 팬(153)을 감싸는 부분에 나사(159c)가 삽입되어 있으므로, 커버(154)는 나사(159c)에 의해 후벽에 추가 고정될 수 있다. 상기 제1 팬(153)을 감싸는 부분(154a)과 상기 연장되는 부분(154c)에 공기가 통과할 수 있는 모두 홀(154b)(154d)이 형성될 수 있다.
제2 히트 싱크(155)는 열전소자(151)의 방열부(151b)와 접촉하도록 배치된다. 제2 히트 싱크(155)는 제2 영역과 열 교환 하도록 이루어진다. 제2 영역은 아웃 케이스(도 1의 112)와 방열 커버 사이의 공간에 해당하거나 또는 냉장고(도 1의 100)의 외부 공간에 해당한다. 제2 히트 싱크(155)의 열 교환 대상은 아웃 케이스 외부의 공기다.
제2 팬(156)은 제2 히트 싱크(155)를 마주보도록 설치되며, 제2 히트 싱크(155)의 열 교환을 촉진하도록 바람을 일으킨다. 제2 팬(156)이 제2 히트 싱크(155)의 열 교환을 촉진하는 것은 제1 팬(153)이 제1 히트 싱크(152)의 열 교환을 촉진하는 것과 동일하다.
제1 팬(153)과 제2 팬(156)은 축류팬으로 형성될 수 있다. 축류팬은 팬의 한 종류에 해당하며, 팬의 회전축 방향을 따라 바람을 일으키도록 형성된다. 제1 팬(153)은 제1 히트 싱크(152)와 마주보도록 배치되고, 제2 팬(156)은 제2 히트 싱크(155)와 마주보도록 배치되기 때문에, 제1 팬(153)과 제2 팬(156)이 축류팬으로 형성되는 것이 바람직하다. 그래야 제1 팬(153)에서 발생된 바람이 제1 히트 싱크(152)로 직접 공급되고, 제2 팬(156)에서 발생된 바람이 제2 히트 싱크(155)로 직접 공급될 수 있기 때문이다.
제2 팬(156)은 선택적으로 슈라우드(156c)를 구비할 수 있다. 슈라우드(156c)는 바람을 가이드 하도록 이루어진다. 예를 들어 슈라우드(156c)는 도 2에 도시된 바와 같이 베인들(156b)로부터 이격된 위치에서 베인들(156b)을 감싸도록 이루어질 수 있다. 추가로 슈라우드(156c)에는 제2 팬(156)의 고정을 위한 나사 체결공(156d)이 형성될 수 있다.
제1 히트 싱크(152)와 제1 팬(153)은 열전소자모듈(150)의 흡열측에 해당한다. 그리고 제2 히트 싱크(155)와 제2 팬(156)은 열전소자모듈(150)의 발열측에 해당한다.
제1 히트 싱크(152)와 제2 히트 싱크(155) 중 적어도 하나는 각각 베이스(152a)(155a)와 핀들(fins)(152b)(155b)을 포함한다. 이하에서는 제1 히트 싱크(152)와 제2 히트 싱크(155)가 모두 베이스(152a)(155a)와 핀들(152b)(155b)을 포함하는 것을 전제로 설명한다.
베이스(152a)(155a)는 열전소자(151)와 면 접촉하도록 이루어진다. 제1 히트 싱크(152)의 베이스(152a)는 열전소자(151)의 흡열부(151a)와 면 접촉하고, 제2 히트 싱크(155)의 베이스(155a)는 열전소자(151)의 방열부(151b)와 면 접촉한다.
열 전달 면적이 커질수록 열전도율이 증가하므로, 베이스(152a)(155a)와 열전소자(151)는 서로 면 접촉하는 것이 이상적이다. 또한 베이스(152a)(155a)와 열전소자(151) 사이에 미세한 간극을 채워 열전도율을 증가시키기 위해 열전도체(thermal grease 또는 thermal compound)가 이용될 수 있다.
핀들(152b)(155b)은 제1 영역의 공기 또는 제2 영역의 공기와 열 교환 하도록 베이스(152a)(155a)로부터 돌출된다. 제1 영역은 저장실(도 1의 120)에 해당하고, 제2 영역은 냉장고(도 1의 100)의 외부에 해당하므로, 제1 히트 싱크(152)의 핀들(152b)은 저장실(도 1의 120)의 공기와 열 교환 하도록 이루어지고, 제2 히트 싱크(155)의 핀들(155b)은 냉장고(도 1의 100)의 외부 공기와 열 교환 하도록 이루어진다.
핀들(152b)(155b)은 서로 이격되게 배치된다. 핀들(152b)(155b)이 서로 이격됨에 따라 열 교환 면적이 증가할 수 있기 때문이다. 핀들(152b)(155b)이 만약 서로 붙어 있다면 핀들(152b)(155b) 사이에 열 교환 면적이 존재하지 않을 것이나, 핀들(152b)(155b)이 서로 이격되어 있으므로 핀들(152b)(155b) 사이사이에도 열 교환 면적이 존재할 수 있다. 열 전달 면적이 커질수록 열전도율이 증가하므로, 히트 싱크의 열 전달 성능을 향상시키기 위해서는 제1 영역과 제2 영역에 노출되는 핀들의 면적이 커져야 한다.
또한, 흡열측에 해당하는 제1 히트 싱크(152)의 충분한 냉각 효과를 구현하기 위해서는 발열측에 해당하는 제2 히트 싱크(155)의 열전도율이 제1 히트 싱크(152)에 비해 커야 한다. 열전소자(151)의 방열부(151b)에서 더욱 신속하게 방열이 이루어져야 흡열부(151a)에서 충분한 흡열이 이루어지기 때문이다. 이것은 열전소자(151)가 단순한 열전도체가 아니라 전압을 인가함에 따라 일측에서 흡열이 이루어지고, 타측에서 방열이 이루어지는 소자라는 것에서 기인한다. 따라서 열전소자(151)의 방열부(151b)에서 더욱 강한 방열이 이루어져야 흡열부(151a)에서 충분한 냉각이 구현될 수 있다.
이러한 점을 고려할 때 제1 히트 싱크(152)에서 흡열이 이루어지고 제2 히트 싱크(155)에서 방열이 이루어진다면, 제1 히트 싱크(152)의 열 교환 면적보다 제2 히트 싱크(155)의 열 교환 면적이 커야 한다. 제1 히트 싱크(152)의 모든 열 교환 면적이 모두 열 교환에 이용된다고 가정하면, 제2 히트 싱크(155)의 열 교환 면적이 제1 히트 싱크(152)의 열 교환 면적보다 3배 이상인 것이 바람직하다.
이러한 원리는 제1 팬(153)과 제2 팬(156)에도 동일하게 적용된다. 흡열 측에 충분한 냉각 효과를 구현하기 위해서 제2 팬(156)에 의해 형성되는 풍량과 풍속은 제1 팬(153)에 의해 형성되는 풍량과 풍속보다 큰 것이 바람직하다.
제2 히트 싱크(155)는 제1 히트 싱크(152)에 비해 더 큰 열 교환 면적을 필요로 한다. 따라서, 제2 히트 싱크(155)의 베이스(155a)와 핀들(155b)의 면적이 제1 히트 싱크(152)의 그것들(152a)(152b)보다 더욱 크다. 나아가 제2 히트 싱크(155)의 베이스(155a)로 전달된 열을 핀들에 신속하게 분배하기 위해 제2 히트 싱크(155)는 히트 파이프(155c)를 구비할 수 있다.
히트 파이프(155c)는 내부에 열 전달 유체를 수용하도록 이루어지며, 히트 파이프(155c)의 일단은 베이스(155a)를 관통하고 타단은 핀들(155b)을 관통한다. 히트 파이프(155c)는 내부에 수용된 열 전달 유체의 증발을 통해 열을 베이스(155a)에서 핀들(155b)로 전달하는 장치다. 히트 파이프(155c)가 없다면, 베이스(155a)의 인접한 핀들(155b)에서만 열 교환이 집중될 것이다. 베이스(155a)로부터 멀리 존재하는 핀들(155b)에는 열이 충분히 분배되지 않기 때문이다.
그러나 히트 파이프(155c)가 존재함에 따라 제2 히트 싱크(155)의 모든 핀들(155b)에서 열 교환이 이루어질 수 있다. 베이스(155a)의 열이 베이스(155a)로부터 상대적으로 멀리 배치된 핀들(155b)에도 골고루 분배될 수 있기 때문이다.
제2 히트 싱크(155)의 베이스(155a)는 히트 파이프(155c)를 내장하기 위해 두 겹(두 레이어)(155a1, 155a2)으로 형성될 수 있다. 베이스(155a)의 제1 레이어(155a1)는 히트 파이프(155c)의 일 측을 감싸고 제2 레이어(155a2)는 히트 파이프(155c)의 타 측을 감싸도록 이루어지며, 두 겹(155a1, 155a2)은 서로 마주보도록 배치될 수 있다.
제1 레이어(155a1)는 열전소자(151)의 방열부(151b)와 접촉하도록 배치되며, 열전소자(151)와 동일 내지 유사한 크기를 가질 수 있다. 제2 레이어(155a2)는 핀들(155b)과 연결되며, 핀들(155b)은 제2 레이어(155a2)로부터 돌출된다. 제2 레이어(155a2)는 제1 레이어(155a1)보다 큰 크기를 가질 수 있다. 그리고 히트 파이프(155c)의 일단은 제1 레이어(155a1)와 제2 레이어(155a2) 사이에 배치된다.
단열재(157)는 제1 히트 싱크(152)와 제2 히트 싱크(155) 사이에 설치된다. 단열재(157)는 열전소자(151)의 테두리를 감싸도록 형성된다. 예를 들어 도 2에 도시된 바와 같이 단열재(157)에는 구멍(157a)이 형성되고, 구멍(157a)에 열전소자(151)가 배치될 수 있다.
앞서 설명한 바와 같이 열전소자모듈(150)은 열전소자(151)의 일측과 타측에서 이루어지는 흡열과 방열을 통해 저장실(도 1의 120)의 냉각을 구현하는 소자이지 단순한 열전도체가 아니다. 따라서 제1 히트 싱크(152)의 열이 제2 히트 싱크(155)로 직접 전달되는 것은 바람직하지 못하다. 직접적인 열 전달로 인해 제1 히트 싱크(152)와 제2 히트 싱크(155) 간의 온도차가 줄어들면, 열전소자(151)의 성능을 저하시키는 원인이 되기 때문이다. 이러한 현상을 방지하기 위해 단열재(157)는 제1 히트 싱크(152)와 제2 히트 싱크(155) 간의 직접적인 열 전달을 차단하도록 이루어진다.
체결 플레이트(158)는 제1 히트 싱크(152)와 단열재(157) 사이에 배치되거나 제2 히트 싱크(155)와 단열재(157) 사이에 배치된다. 체결 플레이트(158)는 제1 히트 싱크(152)와 제2 히트 싱크(155)의 고정을 위한 것으로, 제1 히트 싱크(152)와 제2 히트 싱크(155)는 나사에 의해 상기 체결 플레이트(158)에 나사 결합될 수 있다.
체결 플레이트(158)는 단열재(157)와 함께 열전소자(151)의 테두리를 감싸도록 형성될 수 있다. 체결 플레이트(158)는 단열재(157)와 마찬가지로 열전소자(151)에 대응되는 구멍(158a)을 구비하고, 상기 구멍(158a)에 열전소자(151)가 배치될 수 있다. 다만, 체결 플레이트(158)는 열전소자모듈(150)의 필수적인 구성은 아니고, 제1 히트 싱크(152)와 제2 히트 싱크(155)를 고정할 수 있는 다른 구성으로 대체 가능하다.
체결 플레이트(158)에는 제1 히트 싱크(152)와 제2 히트 싱크(155)의 고정을 위한 다수의 나사 체결공(158b)(158c)이 형성될 수 있다. 제1 히트 싱크(152)와 단열재(157)에는 체결 플레이트(158)에 대응되는 나사 체결공(152c)(157b)이 형성되며, 나사(159a)가 상기 세 나사 체결공(152c, 157b, 158b)에 순차적으로 삽입되어 제1 히트 싱크(152)를 체결 플레이트(158)에 고정시킬 수 있다. 제2 히트 싱크(155)에도 체결 플레이트(158)에 대응되는 나사 체결공(155d)이 형성되며, 나사(159b)가 상기 두 나사 체결공(158c, 155d)에 순차적으로 삽입되어 제2 히트 싱크(155)를 체결 플레이트(158)에 고정시킬 수 있다.
체결 플레이트(158)에는 히트 파이프(155c)의 일측을 수용하도록 이루어지는 리세스부(158d)가 형성될 수 있다. 리세스부(158d)는 히트 파이프(155c)에 대응되게 형성되며 부분적으로 감싸도록 이루어질 수 있다. 제2 히트 싱크(155)가 히트 파이프(155c)를 구비하더라도, 체결 플레이트(158)가 리세스부(158d)를 구비하므로, 제2 히트 싱크(155)가 체결 플레이트(158)에 밀착될 수 있으며, 열전소자모듈(150)의 전체 두께를 더 얇게 만들 수 있다.
앞서 설명된 제1 팬(153)과 제2 팬(156) 중 적어도 하나는 허브(153a)(156a)와 베인들(153b)(156b)을 구비한다. 허브(153a)(156a)는 회전 중심축(미도시)에 결합된다. 베인들(vanes)(153b)(156b)은 허브(153a)(156a)의 둘레에 방사형으로 설치된다.
축류팬(153)(156)은 원심팬으로부터 구분된다. 축류팬(153)(156)은 회전축 방향으로 바람을 일으키도록 형성되며, 축류팬(153)(156)의 회전축 방향으로 공기가 들어와서 회전축 방향으로 나간다. 이에 반해 원심팬은 원심 방향(또는 원주 방향)으로 바람을 일으키도록 형성되며, 원심팬의 회전축 방향으로 공기가 들어와 원심 방향으로 나간다.
도 3은 열전소자모듈을 구비하는 빌트인 냉장고(100)의 개념도다.
빌트인 냉장고(100)는 건축물의 내벽이나 가구 등에 매립된 냉장고(100)를 가리킨다. 빌트인 냉장고(100)는 건축물이나 가구와 함께 설계 또는 디자인 되기 때문에 공간을 효율적으로 활용할 수 있다는 장점을 갖는다. 이에 반해 빌트인 냉장고(100)는 수리나 교체가 어렵다는 단점을 갖는다.
본 발명의 냉장고(100)는 열전소자모듈을 구비하며, 열전소자모듈은 냉동사이클 장치에 비해 매우 작은 크기를 갖는다. 따라서 열전소자모듈을 갖는 냉장고(100)는 빌트인 냉장고(100)로 구현되기에 적합하다. 도 3에는 가구에 냉장고(100)가 매립되어 있다.
벽이나 가구에 매립된 빌트인 냉장고(100)는 사방이 차폐막에 의해 막혀있다. 도 3에서도 수납장의 한 칸에 냉장고(100)가 매립되어 있으며, 수납장의 격벽에 의해 냉장고(100)가 막혀있음을 알 수 있다. 수납장의 격벽이 상기 차폐막에 해당한다.
이와 같이 냉장고(100)가 차폐막에 의해 감싸여 있으면, 자연스럽게 냉장고(100)는 방열에 취약한 구조를 갖는다. 별도의 냉각 시스템을 갖추지 않는 한, 열전소자모듈의 방열측은 공기의 자연 대류에 의해 냉각이 된다. 그런데 열전소자모듈로 공급되어야 할 공기의 흐름이 차폐막에 의해 막힌다면, 열전소자모듈의 방열측이 충분히 방열되기 어려울뿐만 아니라, 열전소자모듈의 냉각 성능도 저하되게 된다.
본 발명은 이러한 기술적 과제를 해결하기 위한 것으로, 이하에서는 본 발명의 방열 구조에 대하여 설명한다.
도 4는 냉장고(100)의 방열 구조를 설명하기 위한 단면도다. 도 5 내지 도 7은 냉장고(100)의 방열 구조를 설명하기 위한 개념도들이다.
본 발명의 냉장고(100)는 후면으로 공기를 흡입하여 캐비닛(110)의 하측을 통해 캐비닛(110)의 전방으로 공기를 토출하도록 형성된다. 도 4에서 I는 가구(10) 등의 차폐막과 캐비닛(110) 사이로 인입되는 공기를 의미하고, O는 캐비닛(110)의 하측으로 토출되는 공기를 의미한다.
제2 팬(156)은 제2 히트 싱크(155)의 열 교환을 촉진하도록 방열 커버(160)의 외측의 공기를 방열 커버(160)의 내측으로 흡입한다. 제2 팬(156)은 방열 커버(160)를 통해 외부에 시각적으로 노출되게 설치되므로, 제2 팬(156)이 회전하게 되면 공기가 방열 커버(160)의 내측으로 흡입된다. 방열 커버(160)의 내부로 흡입된 공기는 제2 히트 싱크(155)와 열교환하게 되고, 제2 히트 싱크(155)로부터 열을 전달받아 뜨거워진다. 이에 따라 제2 히트 싱크(155)의 방열이 이루어진다.
제2 팬(156)은 방열 커버(160)의 상부를 통해 공기를 흡입하도록 방열 커버(160)의 중심보다 상측에 배치된다. 예를 들어 도 4에서 방열 커버(160)의 중심을 기준으로 방열 커버(160)를 하부와 상부로 구분하면, 방열 커버(160)의 하부는 두 드로워(141, 142) 중 아래쪽의 드로워(141)와 대응되는 높이에 배치된다. 그리고 방열 커버(160)의 상부는 위쪽 드로워(142)와 대응되는 높이에 배치된다. 제2 팬(156)은 방열 커버(160)의 중심보다 상측에 배치되기 때문에 위쪽 드로워(142)를 마주보는 위치에 배치된다. 이에 따라 공기는 방열 커버(160)의 상부를 통해 방열 커버(160)의 내측으로 흡입된다.
방열 커버(160)는 제2 팬(156)에 의해 흡입된 공기를 위에서 아래 방향으로 가이드 하도록 형성된다. 방열 커버(160)는 제2 팬(156)이 설치되는 개구부의 상측과 좌우측을 막도록 형성된다. 이에 따라 제2 팬(156)에 의해 방열 커버(160)의 내측으로 흡입된 공기는 자연스럽게 위에서 아래 방향으로 가이드 된다.
도 5를 참조하면, 방열 커버(160)는 메인 플레이트(161)와 테두리부(162)를 포함한다.
메인 플레이트(161)는 아웃 케이스(112)의 후면으로부터 이격되게 배치된다. 이에 따라 아웃 케이스(112)의 후면과 메인 플레이트(161) 사이에는 공기의 흐름을 가이드 하는 유로가 형성된다. 메인 플레이트(161)는 제2 팬(156)을 마주보는 위치에 개구부를 구비한다. 그리고 제2 팬(156)은 개구부를 통해 방열 커버(160)의 외측에 시각적으로 노출되게 설치된다.
테두리부(162)는 메인 플레이트(161)의 테두리로부터 아웃 케이스(112)를 향해 돌출되어 아웃 케이스(112)에 결합된다. 메인 플레이트(161)의 상단부, 좌측단부 및 우측단부에 각각 테두리부(162)가 형성된다. 테두리부(162)는 공기가 들어오거나 공기가 새어나갈 유로를 차폐하는 역할을 하므로, 제2 팬(156)에 의해 방열 커버(160)의 내측으로 유입된 공기는 아웃 케이스(112)의 후면과 메인 플레이트(161) 사이의 유로를 따라 위에서 아래 방향으로 가이드 된다.
도 4 내지 도 7을 참조하면, 지지대(170)는 제2 팬(156)을 통해 흡입되어 방열 커버(160)에 의해 가이드 된 공기를 캐비닛(110)의 하측을 통해 캐비닛(110)의 전방으로 토출되게 하도록 캐비닛(110)을 바닥으로부터 이격시킨다. 여기서 바닥이란 냉장고(100)가 설치되는 바닥을 의미할 수 있다. 예를 들어 냉장고(100)가 가구에 매립된다면, 바닥이란 가구의 격벽을 의미할 수 있다. 지지대(170)에 의해 캐비닛(110)이 바닥으로부터 이격됨에 따라 캐비닛(110)과 바닥 사이에는 공기가 토출될 수 있는 유로가 형성된다. 이에 따라 공기는 캐비닛(110)의 하측을 통해 캐비닛(110)의 전방으로 토출될 수 있다.
지지대(170)는 교각부(171), 리브(172), 토출구(173a, 173b)를 포함한다. 지지대(170)의 세부 구조는 도 6을 참조한다.
교각부(171)는 캐비닛(110)을 바닥으로부터 이격시키며, 캐비닛(110)을 지지하도록 형성된다. 지지대(170)에서 수직 방향을 따라 상단이 캐비닛(110)의 저면에 닿고, 하단이 바닥에 닿는 부분들이 있다면 그 부분들은 모두 교각부(171)에 해당한다.
리브(172)는 지지대(170)의 강도를 보강하도록 교각부(171)의 서로 다른 두 부분에 연결된다. 리브(172)는 격자형 구조를 가질 수 있다.
토출구(173a, 173b)는 캐비닛(110)의 하측에서 캐비닛(110)의 전방으로 공기를 토출되게 하도록 교각부(171)에 형성된다. 토출구(173a, 173b)는 크기에 따라 메인 토출구(173a)와 서브 토출구(173b)로 구분될 수 있다. 크기가 큰 토출구(173a)는 메인 토출구(173a)에 해당하고, 크기가 작은 토출구(173b)는 서브 토출구(173b)에 해당한다.
교각부(171)가 캐비닛(110)을 지지하면서도 교각부(171)에 형성된 토출구(173a, 173b)를 통해 공기가 토출될 수 있다. 또한 토출구(173a, 173b)에 의해 지지대(170)의 강도가 저하되는 것을 보완하도록 리브(172)가 형성되는 것이다.
이상에서 설명한 바와 같이 본 발명에서는 공기의 흡입구와 토출구(173a, 173b)가 서로 멀리 떨어져 있다. 여기서 흡입구란 제2 팬(156)이 설치되는 개구부를 가리킨다.
방열 커버(160)의 상부로부터 공기가 흡입되고 캐비닛(110)의 하측을 통해 공기가 토출되기 때문에, 공기의 흡입구와 토출구(173a, 173b)가 냉장고(100)의 앞뒤로 서로 이격되어 있다. 또한 캐비닛(110)의 뒤에 배치된 방열 커버(160)를 통해 공기가 유입되고 캐비닛(110)의 전방으로 공기가 토출되기 때문에, 공기의 흡입구와 토출구(173a, 173b)가 냉장고(100)의 상하 방향을 따라 서로 이격되어 있다.
공기의 흡입구와 토출구(173a, 173b)가 서로 멀리 이격되어 있기 때문에, 본 발명의 구조에 의하면 냉장고(100)로부터 토출된 공기가 다시 흡입구로 재흡입 되는 것을 방지할 수 있다. 또한 캐비닛(110)의 하측을 통해 공기가 토출되면, 사용자의 얼굴로 뜨거운 공기가 전달되는 것을 방지할 수 있다.
이러한 방열 구조는 빌트인 냉장고(100)에 적합하다. 도 4와 같이 캐비닛(110)의 상측을 통해 유입된 공기를 방열 커버(160) 내측으로 흡입하고, 다시 캐비닛(110)의 하측으로 토출시키게 되면, 설령 캐비닛(110)의 좌우측면이 차폐막에 의해 완전히 감싸이게 되더라도 공기 유동에 문제가 없기 때문이다.
공기의 흡입을 위해서는 방열 커버(160)의 메인 플레이트(161)가 가구 등의 차폐막으로부터 이격되어 있어야 한다. 메인 플레이트(161)가 차폐막에 밀착되면 공기가 방열 커버(160)의 내측으로 흡입될 수 없기 때문이다. 메인 플레이트(161)를 차폐막으로부터 이격시키기 위해 냉장고(100)는 스토퍼(163)를 포함한다.
스토퍼(163)는 방열 커버(160)를 냉장고(100)의 후방에 배치되는 차폐막으로부터 이격시키도록 방열 커버(160)로부터 냉장고(100)의 후방에 배치되는 차폐막을 향해 돌출된다. 스토퍼(163)에 의해 방열 커버(160)가 차폐막으로부터 이격되기 때문에, 방열 커버(160)와 차폐막 사이의 공간을 통해 공기가 흡입될 수 있다.
도 5를 참조하면, 방열 커버(160)는 스토퍼(163)를 수납 가능하게 형성되는 수납부(164)를 구비한다. A를 참조하면 방열 커버(160)는 힌지(165)를 구비하며, 스토퍼(163)는 힌지(165)에 연결된다. 따라서, 스토퍼(163)는 회전에 의해 수납부(164)에 삽입되거나 수납부(164)로부터 인출될 수 있다. B를 참조하면 스토퍼(163)에 탄성 부재(166)가 결합되어 스토퍼(163)를 지지한다. 스토퍼(163)는 선형 이동에 의해 수납부(164)에 삽입되거나 수납부(164)로부터 인출될 수 있다. 냉장고(100)는 A와 B중 적어도 하나의 구조를 가질 수 있다.
도 4에 도시된 I와 O가 서로 바뀌는 것도 고려할 수 있다. 이 경우에는 제2 팬(156)이 반대 방향으로 회전되어야 한다. 캐비닛(110)의 하측으로 공기가 흡입되고, 방열 커버(160)의 뒤로 공기가 토출된다.
도 6을 참조하면, 캐비닛(110)의 저면은 위치에 따라 앞부분(F), 뒷부분(R), 및 앞부분(F)과 뒷부분(R) 사이의 중간부(M)로 구분될 수 있다. 앞부분(F)의 아래에 빈 공간이 형성되도록 지지대(170)는 중간부(M)와 뒷부분(R)을 지지하도록 형성된다.
이러한 구조는 상기 지지대(170)에 설치되는 시청각 모듈의 시각적인 노출을 방지하기 위한 것이다. 시청각 모듈에 대하여는 지지대(170)의 구조를 보인 도 8a 내지 도 8c를 참조하여 설명한다.
도 8a는 캐비닛을 지지하는 지지대(170)의 일 예를 보인 정면도다. 도 8b는 캐비닛을 지지하는 지지대(270)의 다른 일 예를 보인 정면도다. 도 8c는 캐비닛을 지지하는 지지대(370)의 또 다른 일 예를 보인 정면도다.
지지대(170)(270(370)의 전면에는 빛과 음향 중 적어도 하나를 제공하도록 형성되는 시청각 모듈(174a, 174b)(274a, 274b)(374a, 374b)이 장착된다. 시청각 모듈(174a, 174b)(274a, 274b)(374a, 374b)은 빛을 제공하는 발광 소자(174a)(274a)(374a) 또는 음향을 제공하는 스피커(174b)(274b)(374b)를 포함한다. 토출구(173a, 173b)(273a, 273b)(373a, 373b)는 시청각 모듈(174a, 174b)(274a, 274b)(374a, 374b)의 일측과 측 중 적어도 한 곳에 형성된다.
도 8a와 도 8b를 참조하면, 발광 소자(174a)(274a)와 스피커(174b)(274b)의 양측에 메인 토출구(173a)(273a)가 형성된다. 도 8a와 도 8b를 비교하면 도 8b에 도시된 메인 토출구(273a)가 바닥까지 완전히 개방되어 도 8a의 메인 토출구(173a)보다 확장된 크기를 갖는다는 것을 알 수 있다. 그리고 발광 소자(174a)(274a)와 스피커(174b)(274b)의 아래에는 메인 토출구(173a)(273a)보다 작은 크기의 서브 토출구(173b)(273b)가 형성된다.
도 8c는 캐비닛(110)을 지지하는 지지대(170)의 다른 일 예를 보인 정면도다.
발광 소자(374a)와 스피커(374b)는 각각 두 개씩 구비된다. 두 발광 소자(374a)들은 서로 이격되게 배치되고, 두 스피커(374b)들도 서로 이격되게 배치된다. 메인 토출구(373a)는 두 개의 발광 소자(374a)들 사이 그리고 두 개의 스피커(374b)들 사이에 형성된다. 그리고 서브 토출구(373b)는 발광 소자들(374a)이나 스피커(374b)들의 위 또는 아래에 메인 토출구(373a)보다 작은 크기로 형성된다. 도 8c에서는 발광 소자(374a)들과 스피커(374b)들의 아래에 서브 토출구(373b)가 구비된 구성을 보이고 있다.
지지대(170)(270)(370)는 캐비닛(도 6의 110)의 저면 중 중간부(도 6의 M)와 뒷부분(도 6의 R)을 지지하기 때문에, 지지대(170)(270)(370)의 전면은 중간부의 아래에 배치된다. 따라서 지지대(170)의 전면에 설치된 시청각 모듈(174a, 174b)(274a, 274b)(374a, 374b)은 사용자에게 시각적으로 가려지게 된다. 그러나 시청각 모듈(174a, 174b)(274a, 274b)(374a, 374b)에서 제공되는 빛이나 음향은 캐비닛(110)의 하측을 통해 사용자에게 전달될 수 있다.
빌트인 냉장고(100)의 경우 차폐막에 의해 감싸이기 때문에, 사용자에게 빛이나 음향을 제공하기 어려운 경우가 있다. 그러나 캐비닛(110)의 저면을 통해 빛이나 음향이 사용자에게 전달될 수 있으면, 차폐 구조에 의한 제한을 받지 않는다는 장점이 있다.
이하에서는 본 발명의 다른 실시예에 대하여 설명한다.
도 9는 열전소자모듈을 구비하는 냉장고(400)의 다른 실시예를 보인 개념도다.
메인 플레이트(461)는 제2 팬(456)이 배치되는 개구부의 둘레에 경사부(467)를 구비한다. 경사부(467)는 개구부에 가까워질수록 아웃 케이스(412)의 후면으로부터 멀어지는 경사를 형성한다. 경사부(467)는 제2 팬(456)으로 흡입되는 공기의 흡입 유속과 유량을 증가시키게 되며, 공기의 유동을 가이드 하여 공기를 제2 팬(456)으로 더욱 원활하게 흡입되게 한다.
도 9의 구조를 앞서 도 5에서 설명한 구조와 비교하면, 도 9에 도시된 실시예의 냉장고(400)가 실험적으로 더 큰 냉각 성능을 갖는다. 원활한 방열에 의해 열전소자모듈에서 얻을 수 있는 흡열부의 온도가 더 낮아지기 때문이다.
도 9와는 달리 경사부(467)가 개구부에 가까워질수록 아웃 케이스(412)의 후면으로부터 멀어지는 경사를 형성할 수도 있다. 이 경우에는 제2 팬(456)으로 흡입되는 공기의 유로가 자연스럽게 확보되기 때문에, 냉장고(400)가 스토퍼(463)를 구비하지 않아도 무방하다.
도 10은 열전소자모듈을 구비하는 냉장고(500)의 또 다른 실시예를 보인 개념도다. 도 11은 도 10에 도시된 방열 커버(560)의 내측을 보이 개념도다.
방열 커버(560)는 공기의 흐름을 가이드 하기 위한 가이드부(568a, 568b)를 갖는다.
제1 가이드부(568a)는 제2 팬(556)이 설치되는 개구부의 아래에 메인 플레이트(561)로부터 아웃 케이스(512)를 향해 돌출된다. 그리고 제1 가이드부(568a)는 제2 팬(556)에 의해 흡입된 공기를 위에서 아래 방향으로 가이드 하도록 세로 방향을 따라 연장된다.
제2 가이드부(568b)는 제1 가이드부(568a)에 의해 가이드 된 공기를 캐비닛(510)의 하측을 통해 캐비닛(510)의 전방으로 토출되게 가이드 하도록 제1 가이드부(568a)의 하단에서 캐비닛(510)과 바닥 사이로 돌출된다. 제2 가이드부(568b)는 전방으로 연장된다.
제1 가이드부(568a)에 의해 위에서 아래 방향으로 가이드 된 공기는 다시 제2 가이드부(568b)에 의해 캐비닛(510)의 전방으로 가이드 된다. 그리고 지지대(570)의 토출구를 통해 캐비닛(510)의 전방으로 토출된다.
한편 도 11을 참조하면 제2 히트 싱크(555)에 구비되는 복수의 핀(555b)들은 제2 팬(556)에 의해 흡입된 공기를 위에서 아래로 흐르게 하도록 세로 방향으로 연장되며, 가로 방향을 따라 서로 이격되게 배열된다. 이에 따라 복수의 핀(555b)들 사이에는 세로 방향의 유로가 형성된다. 공기는 이 유로를 따라 위에서 아래 방향으로 가이드 될 수 있다. 이러한 구조는 도 1에서도 확인할 수 있다.
메인 플레이트(551)는 제1 부분(551a)과 제2 부분(551b)으로 구분될 수 있다.
제1 부분(551a)은 제2 팬(556)을 마주보는 위치에 제2 팬(556)이 설치되는 개구부를 구비한다.
*제2 부분(551b)은 제1 부분(551a)의 일측에 배치되며, 제1 부분(551a)을 냉장고(500)의 후방에 배치되는 차폐막으로부터 이격시키도록 제1 부분(551a)보다 차폐막을 향해 더 많이 돌출된다. 제2 부분(551b)이 제1 부분(551a)보다 더 많이 돌출되기 때문에, 제1 부분(551a)과 차폐막 사이에는 공기의 흡입을 위한 유로가 자연스럽게 형성될 수 있다. 따라서 냉장고(500)가 스토퍼를 구비하지 않아도 무방하다.
도 12는 열전소자모듈을 구비하는 냉장고(600)의 또 다른 실시예를 보인 개념도다.
방열 커버(560)는 제2 팬(656)이 설치되는 개구부의 주변에 적어도 하나의 통풍구(669a, 669b, 669b’)를 추가로 가질 수 있다. 다만, 이러한 구조는 재흡입의 우려가 있으므로 냉장고(600)의 사방이 차폐되지 않는 구조에 적합하다.
개구부의 좌우측에 통풍구(669a)가 형성되면, 뜨거운 공기가 통풍구를 통해 토출된 이후에 자연 대류로 인해 상승하게 되므로 재흡입의 우려가 적다. 냉장고(600)의 사방이 차폐되지 않았기 때문이다.
개구부의 좌우측과 상하측에 각각 통풍구(669b, 669b’)가 형성되면, 빠른 유속으로 공기를 토출할 수 있다. 토출되는 공기의 유속이 빠르면 재흡입의 가능성이 낮아진다.
이상에서 설명된 냉장고는 상기 설명된 실시예들의 구성과 방법에 한정되는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.
본 발명은 냉장고와 관련된 산업 분야에 이용될 수 있다.

Claims (17)

  1. 200L 이하의 저장실을 형성하는 이너 케이스, 상기 이너 케이스를 감싸도록 형성되는 아웃 케이스, 및 상기 이너 케이스와 상기 아웃 케이스의 사이에 배치되는 단열재를 구비하는 캐비닛;
    상기 저장실의 후벽에 설치되어 상기 저장실을 냉각하도록 이루어지는 열전소자모듈;
    상기 캐비닛을 지지하도록 상기 캐비닛의 저면에 설치되는 지지대; 및
    상기 아웃 케이스의 뒤에 결합되는 방열 커버를 포함하며,
    상기 열전소자모듈은,
    서로 반대 방향을 향하는 흡열부와 방열부를 구비하는 열전소자;
    상기 흡열부와 접촉하도록 배치되고, 상기 저장실과 열 교환 하도록 이루어지는 제1 히트 싱크;
    상기 제1 히트 싱크를 마주보도록 설치되며, 상기 제1 히트 싱크의 열 교환을 촉진하도록 바람을 일으키는 제1 팬;
    상기 방열부와 접촉하도록 배치되고, 상기 아웃 케이스의 외부 영역과 열 교환 하도록 이루어지는 제2 히트 싱크;
    상기 방열 커버를 통해 외부에 시각적으로 노출되게 설치되어 상기 제2 히트 싱크를 마주보며, 상기 제2 히트 싱크의 열 교환을 촉진하도록 상기 방열 커버의 외측의 공기를 상기 방열 커버의 내측으로 흡입하는 제2 팬; 및
    상기 열전소자의 테두리를 감싸도록 형성되고, 상기 제1 히트 싱크와 상기 제2 히트 싱크 사이에 설치되는 단열재를 포함하며,
    상기 방열 커버는 상기 제2 팬에 의해 흡입된 공기를 위에서 아래 방향으로 가이드 하도록 형성되며,
    상기 지지대는 상기 제2 팬을 통해 흡입된 공기를 상기 캐비닛의 하측을 통해 상기 캐비닛의 전방으로 토출되게 하도록 상기 캐비닛을 바닥으로부터 이격시키는 것을 특징으로 하는 냉장고.
  2. 제1항에 있어서,
    상기 제2 팬은 상기 방열 커버의 상부를 통해 공기를 흡입하도록 상기 방열 커버의 중심보다 상측에 배치되는 것을 특징으로 하는 냉장고.
  3. 제1항에 있어서,
    상기 방열 커버는,
    상기 아웃 케이스의 후면과의 사이에 공기의 흐름을 가이드 하는 유로를 형성하도록 상기 아웃 케이스의 후면으로부터 이격되게 배치되는 메인 플레이트; 및
    상기 메인 플레이트의 테두리로부터 상기 아웃 케이스를 향해 돌출되어 상기 아웃 케이스에 결합되는 테두리부를 포함하는 것을 특징으로 하는 냉장고.
  4. 제3항에 있어서,
    상기 메인 플레이트는 상기 제2 팬을 마주보는 위치에 개구부를 구비하고,
    상기 제2 팬은 상기 개구부를 통해 상기 방열 커버의 외측에 시각적으로 노출되게 설치되는 것을 특징으로 하는 냉장고.
  5. 제4항에 있어서,
    상기 메인 플레이트는 상기 개구부의 둘레에 경사부를 구비하고,
    상기 경사부는 상기 개구부에 가까워질수록 상기 아웃 케이스의 후면으로부터 멀어지는 경사를 형성하는 것을 특징으로 하는 냉장고.
  6. 제4항에 있어서,
    상기 방열 커버는 상기 개구부의 주변에 적어도 하나의 통풍구를 갖는 것을 특징으로 하는 냉장고.
  7. 제4항에 있어서,
    상기 방열 커버는,
    상기 개구부의 아래에 상기 메인 플레이트로부터 상기 아웃 케이스를 향해 돌출되고, 상기 제2 팬에 의해 흡입된 공기를 위에서 아래 방향으로 가이드 하도록 세로 방향을 따라 연장되는 제1 가이드부; 및
    상기 제1 가이드부에 의해 가이드 된 공기를 상기 캐비닛의 하측을 통해 상기 캐비닛의 전방으로 토출되게 가이드 하도록 상기 제1 가이드부의 하단에서 상기 캐비닛과 상기 바닥 사이로 돌출되는 제2 가이드부를 포함하는 것을 특징으로 하는 냉장고.
  8. 제1항에 있어서,
    상기 제2 히트 싱크는,
    상기 열전소자와 면 접촉하도록 이루어지는 베이스; 및
    상기 베이스로부터 상기 제2 팬을 향해 돌출되고, 서로 이격되게 배치되는 복수의 핀을 포함하고,
    상기 복수의 핀은 상기 제2 팬에 의해 흡입된 공기를 위에서 아래로 흐르게 하도록, 세로 방향을 따라 연장되며 가로 방향을 따라 서로 이격되게 배열되는 것을 특징으로 하는 냉장고.
  9. 제1항에 있어서,
    상기 제2 팬은 축 방향을 따라 바람을 일으키도록 형성되는 축류팬으로 형성되고,
    상기 냉장고의 좌우측면과 후면은 차폐막에 의해 감싸이며,
    상기 냉장고는 상기 방열 커버를 상기 냉장고의 후방에 배치되는 차폐막으로부터 이격시키도록 상기 방열 커버로부터 상기 냉장고의 후방에 배치되는 차폐막을 향해 돌출되는 스토퍼를 포함하는 것을 특징으로 하는 냉장고.
  10. 제9항에 있어서,
    상기 방열 커버는 상기 스토퍼를 수납 가능하게 형성되는 수납부를 구비하고,
    상기 스토퍼는 회전 또는 선형 이동에 의해 상기 수납부에 삽입되거나 상기 수납부로부터 인출되는 것을 특징으로 하는 냉장고.
  11. 제1항에 있어서,
    상기 제2 팬은 축 방향을 따라 바람을 일으키도록 형성되는 축류팬으로 형성되고,
    상기 냉장고의 좌우측면과 후면은 차폐막에 의해 감싸이며,
    상기 방열 커버는,
    상기 아웃 케이스의 후면과의 사이에 공기의 흐름을 가이드 하는 유로를 형성하도록 상기 아웃 케이스의 후면으로부터 이격되게 배치되는 메인 플레이트; 및
    상기 메인 플레이트의 테두리로부터 상기 캐비닛을 향해 돌출되어 상기 캐비닛에 결합되는 테두리부를 포함하고,
    상기 메인 플레이트는,
    상기 제2 팬을 마주보는 위치에 개구부를 구비하는 제1 부분; 및
    상기 제1 부분의 일측에 배치되며, 상기 제1 부분을 상기 냉장고의 후방에 배치되는 차폐막으로부터 이격시키도록 상기 제1 부분보다 상기 차폐막을 향해 더 많이 돌출되는 제2 부분을 포함하는 것을 특징으로 하는 냉장고.
  12. 제1항에 있어서,
    상기 지지대는,
    상기 캐비닛을 상기 바닥으로부터 이격시키며, 상기 캐비닛을 지지하도록 형성되는 교각부;
    상기 지지대의 강도를 보강하도록 상기 교각부의 서로 다른 두 부분에 연결되는 리브; 및
    상기 캐비닛의 하측에서 상기 캐비닛의 전방으로 공기를 토출되게 하도록 상기 교각부에 형성되는 토출구를 포함하는 것을 특징으로 하는 냉장고.
  13. 제1항에 있어서,
    상기 캐비닛의 저면은 앞부분, 뒷부분 및 상기 앞부분과 상기 뒷부분 사이의 중간부로 구분되고,
    상기 앞부분의 아래에 빈 공간이 형성되도록, 상기 지지대는 상기 중간부와 상기 뒷부분을 지지하는 것을 특징으로 하는 냉장고.
  14. 제13항에 있어서,
    상기 지지대의 전면에는 빛과 음향 중 적어도 하나를 제공하도록 형성되는 시청각 모듈이 장착되는 것을 특징으로 하는 냉장고.
  15. 제14항에 있어서,
    상기 지지대는 상기 캐비닛의 하측에서 상기 캐비닛의 전방으로 공기를 토출되게 하도록 형성되는 토출구를 포함하고,
    상기 토출구는 상기 시청각 모듈의 일측과 타측 중 적어도 한 곳에 형성되는 것을 특징으로 하는 냉장고.
  16. 제15항에 있어서,
    상기 토출구는,
    상기 시청각 모듈의 양측에 형성되는 메인 토출구; 및
    상기 시청각 모듈의 아래에 상기 메인 토출구보다 작은 크기로 형성되는 서브 토출구를 포함하는 것을 특징으로 하는 냉장고.
  17. 제15항에 있어서,
    상기 시청각 모듈은 두 개가 서로 이격되게 구비되고,
    상기 토출구는,
    상기 두 개의 시청각 모듈 사이에 형성되는 메인 토출구; 및
    상기 시청각 모듈의 위 또는 아래에 상기 메인 토출구보다 작은 크기로 형성되는 서브 토출구를 포함하는 것을 특징으로 하는 냉장고.
PCT/KR2017/015742 2017-03-13 2017-12-29 냉장고 WO2018169177A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2017403917A AU2017403917B2 (en) 2017-03-13 2017-12-29 Refrigerator
CN201780088361.8A CN110402362A (zh) 2017-03-13 2017-12-29 冰箱
EP17900695.2A EP3598041B1 (en) 2017-03-13 2017-12-29 Refrigerator
US16/570,473 US11280526B2 (en) 2017-03-13 2019-09-13 Refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170031316A KR102279484B1 (ko) 2017-03-13 2017-03-13 냉장고
KR10-2017-0031316 2017-03-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/570,473 Continuation US11280526B2 (en) 2017-03-13 2019-09-13 Refrigerator

Publications (1)

Publication Number Publication Date
WO2018169177A1 true WO2018169177A1 (ko) 2018-09-20

Family

ID=63523191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015742 WO2018169177A1 (ko) 2017-03-13 2017-12-29 냉장고

Country Status (6)

Country Link
US (1) US11280526B2 (ko)
EP (1) EP3598041B1 (ko)
KR (2) KR102279484B1 (ko)
CN (1) CN110402362A (ko)
AU (1) AU2017403917B2 (ko)
WO (1) WO2018169177A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10663218B2 (en) * 2017-11-17 2020-05-26 Omnicell, Inc. Dispensing system with temperature controlled drawers
US11536506B2 (en) * 2018-09-12 2022-12-27 Omnicell, Inc. Temperature controlled dispense drawer
KR102429243B1 (ko) * 2018-03-13 2022-08-05 엘지전자 주식회사 냉장고
CN112097429A (zh) * 2020-08-27 2020-12-18 浙江先导热电科技股份有限公司 一种化妆品冰箱
KR102561266B1 (ko) * 2021-06-01 2023-07-27 원성역 콜드체인 보냉박스에 도킹가능한 대류형 냉각모듈

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218095A (ja) * 1994-01-31 1995-08-18 Aisin Seiki Co Ltd 保冷庫の放熱構造
US5522216A (en) * 1994-01-12 1996-06-04 Marlow Industries, Inc. Thermoelectric refrigerator
JPH09313270A (ja) * 1996-05-30 1997-12-09 Toto Ltd 保冷庫及び保冷庫を組み込んだ流し台
JP2000205736A (ja) * 1999-01-08 2000-07-28 Matsushita Electric Ind Co Ltd 冷蔵庫上方の放熱装置
KR100569935B1 (ko) 2003-12-01 2006-04-10 엘지전자 주식회사 빌트인 냉장고의 방열장치
JP2009008359A (ja) * 2007-06-29 2009-01-15 Cleanup Corp システムキッチン用保冷庫

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3078682A (en) * 1961-05-29 1963-02-26 Gen Motors Corp Thermoelectric refrigerating apparatus
FR1347414A (fr) * 1963-01-29 1963-12-27 Borg Warner Réfrigérateur thermo-électrique
US6612116B2 (en) * 1999-02-26 2003-09-02 Maytag Corporation Thermoelectric temperature controlled refrigerator food storage compartment
CN1690610A (zh) * 2004-04-28 2005-11-02 乐金电子(天津)电器有限公司 嵌入式冰箱的除霜水散热装置
JP2006153336A (ja) * 2004-11-26 2006-06-15 Matsushita Electric Ind Co Ltd システムキッチン組み込み式冷蔵庫
US20130327064A1 (en) * 2012-06-08 2013-12-12 Thomas C. Stein End table with concealed built-in refrigerator
CN202719823U (zh) * 2012-06-25 2013-02-06 中山市维诺电器有限公司 一种具有前散热风道的电子冰箱或酒柜
US20160366919A1 (en) * 2015-06-16 2016-12-22 Stephen Kyle van Someren Greve Systems and methods for preservation of perishable substances
WO2018183731A1 (en) * 2017-03-29 2018-10-04 Rockwell Collins, Inc. Liquid chilled galley bar unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522216A (en) * 1994-01-12 1996-06-04 Marlow Industries, Inc. Thermoelectric refrigerator
JPH07218095A (ja) * 1994-01-31 1995-08-18 Aisin Seiki Co Ltd 保冷庫の放熱構造
JPH09313270A (ja) * 1996-05-30 1997-12-09 Toto Ltd 保冷庫及び保冷庫を組み込んだ流し台
JP2000205736A (ja) * 1999-01-08 2000-07-28 Matsushita Electric Ind Co Ltd 冷蔵庫上方の放熱装置
KR100569935B1 (ko) 2003-12-01 2006-04-10 엘지전자 주식회사 빌트인 냉장고의 방열장치
JP2009008359A (ja) * 2007-06-29 2009-01-15 Cleanup Corp システムキッチン用保冷庫

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3598041A4

Also Published As

Publication number Publication date
AU2017403917A1 (en) 2019-09-26
US20200003462A1 (en) 2020-01-02
EP3598041B1 (en) 2023-04-19
US11280526B2 (en) 2022-03-22
EP3598041A4 (en) 2021-01-06
EP3598041A1 (en) 2020-01-22
AU2017403917B2 (en) 2021-05-06
CN110402362A (zh) 2019-11-01
KR20210091095A (ko) 2021-07-21
KR102396153B1 (ko) 2022-05-10
KR20180104485A (ko) 2018-09-21
KR102279484B1 (ko) 2021-07-20

Similar Documents

Publication Publication Date Title
WO2018169177A1 (ko) 냉장고
WO2018164400A1 (en) Display device
EP2627956A2 (en) Refrigerator
EP3371529A1 (en) Refrigerator
JP3303588B2 (ja) 制御盤
WO2019177304A1 (ko) 냉장고
JP2009027817A (ja) 配電盤
WO2018174432A1 (ko) 냉장고
US11076501B2 (en) Apparatus for cooling electronic circuitry
JP2008084916A (ja) 冷却装置
WO2015160227A1 (en) Refrigerator
AU2018215768B2 (en) Refrigerator for vehicle and vehicle
WO2021157983A1 (en) Refrigerator
WO2021096301A1 (ko) 냉장고
WO2020027462A1 (en) Refrigerator
WO2022108123A1 (ko) 냉장고
US6339212B1 (en) Cooking appliance having controls cooled by natural convection and method of cooling the same
KR100212600B1 (ko) 반도체 ic 시험 장치용 일체형 밀폐 케이스 냉각 장치
JP2010007982A (ja) 冷却ユニット
JPH05259674A (ja) 電気装置筺体の冷却構造
JPH02155408A (ja) ガス絶縁キュービクルの冷却装置
WO2023136415A1 (en) Portable refrigerator and main refrigerator having the same
CN215733060U (zh) 一种多功能电子工程控制柜
WO2022108391A1 (ko) 냉장고
US11711904B2 (en) Apparatus for cooling electronic circuitry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017403917

Country of ref document: AU

Date of ref document: 20171229

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017900695

Country of ref document: EP

Effective date: 20191014