WO2018168590A1 - Thermal expansion valve - Google Patents

Thermal expansion valve Download PDF

Info

Publication number
WO2018168590A1
WO2018168590A1 PCT/JP2018/008670 JP2018008670W WO2018168590A1 WO 2018168590 A1 WO2018168590 A1 WO 2018168590A1 JP 2018008670 W JP2018008670 W JP 2018008670W WO 2018168590 A1 WO2018168590 A1 WO 2018168590A1
Authority
WO
WIPO (PCT)
Prior art keywords
body part
low
pressure refrigerant
pressure
temperature
Prior art date
Application number
PCT/JP2018/008670
Other languages
French (fr)
Japanese (ja)
Inventor
宏已 太田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018168590A1 publication Critical patent/WO2018168590A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor

Definitions

  • the present disclosure relates to a temperature type expansion valve applied to a refrigeration cycle apparatus.
  • a box-type temperature expansion valve is known as a refrigerant pressure reducing device applied to a vapor compression refrigeration cycle apparatus.
  • This type of thermal expansion valve includes a body part, a valve body part, an element part, and the like.
  • the body portion forms an outer shell of the temperature type expansion valve and forms a plurality of refrigerant passages and the like therein.
  • the valve body portion is housed inside the body portion, and changes the passage cross-sectional area (that is, the throttle opening) of the throttle passage formed in the body portion.
  • the element part is fixed to the body part and displaces the valve body part.
  • the element portion has a diaphragm that deforms according to the temperature and pressure of the low-pressure refrigerant that flows through the low-pressure refrigerant passage formed in the body portion. Then, the deformation of the diaphragm is transmitted to the valve body part via an operating rod or the like, thereby displacing the valve body part. Therefore, in order to accurately adjust the throttle opening according to the temperature and pressure of the low-pressure refrigerant, it is necessary to appropriately transmit the temperature and pressure of the low-pressure refrigerant to the element portion.
  • Patent Document 1 discloses a temperature type expansion valve including a body portion formed of a resin having a lower thermal conductivity than metal.
  • the temperature type expansion valve of this patent document 1 by adopting a resin body part, the atmospheric temperature is prevented from being transmitted to the element part through the body part, and the temperature of the low-pressure refrigerant is supplied to the element part. Is trying to communicate properly.
  • a dimensional change may occur in the body part due to deterioration over time such as creep. Such a dimensional change may cause a change in the shape of the throttle passage, a change in the relative position between the throttle passage and the element portion, and the like, and may change the flow characteristics of the temperature type expansion valve.
  • a temperature type expansion valve is applied to a vapor compression refrigeration cycle apparatus, and includes a first body part, a second body part, a valve body part, an element part, and a fixing member.
  • the first body part is formed with a throttle passage for depressurizing the high-pressure refrigerant.
  • a low-pressure refrigerant passage for circulating the low-pressure refrigerant is formed.
  • the valve body portion is accommodated in the first body portion and changes the passage cross-sectional area of the throttle passage.
  • the element part displaces the valve body part.
  • the fixing member fixes the first body part and the element part to each other.
  • the element portion displaces the valve body portion according to the temperature and pressure of the low-pressure refrigerant flowing through the low-pressure refrigerant passage.
  • the first body part and the fixing member are made of metal.
  • the second body part is formed of a resin having a lower heat transfer coefficient than the first body part and the fixing member.
  • the second body part is disposed between the element part and the first body part. At least a part of the fixing member is disposed in the low-pressure refrigerant passage.
  • the first body portion and the fixing member are made of metal, the shape of the throttle passage changes due to aging, and the relative position between the throttle passage and the element portion changes. This can be suppressed. Therefore, deterioration of the durability of the temperature type expansion valve can be suppressed.
  • the second body part in which the low-pressure refrigerant passage is formed is formed of resin, the outside air temperature may be transmitted to the low-pressure refrigerant flowing through the low-pressure refrigerant passage, and the second body part may be externally connected via the second body part. It can suppress that temperature is transmitted to an element part.
  • the fixing member since at least a part of the fixing member is disposed in the low-pressure refrigerant passage, at least a part of the fixing member can be brought close to the temperature of the low-pressure refrigerant. Therefore, it can suppress that external temperature will be transmitted to an element part via a 1st body part and a fixing member.
  • the throttle opening degree of the throttle passage can be adjusted with high accuracy according to the temperature and pressure of the low-pressure refrigerant.
  • FIG. 2 is a partial cross-sectional view taken along a line II-II in FIG. It is an external appearance perspective view of a vibration-proof spring. It is a sectional view of a temperature type expansion valve concerning at least one embodiment of this indication. It is sectional drawing of the temperature type expansion valve of the modification of 2nd Embodiment.
  • the temperature type expansion valve 5 according to the present disclosure is applied to a vapor compression refrigeration cycle apparatus 1 used in an air conditioner.
  • the refrigeration cycle apparatus 1 is configured by connecting a compressor 2, a radiator 3, a receiver 4, a temperature expansion valve 5, and an evaporator 6 in an annular shape.
  • the compressor 2 sucks the refrigerant and compresses and discharges the refrigerant until it becomes a high-pressure refrigerant.
  • the radiator 3 is a heat exchanger for radiating heat to exchange heat between the high-pressure refrigerant discharged from the compressor 2 and the outside air, and to dissipate and condense the high-pressure refrigerant.
  • the receiver 4 is a liquid receiver that separates the gas-liquid refrigerant flowing out of the radiator 3 and stores excess liquid refrigerant in the cycle.
  • the temperature type expansion valve 5 is a decompression device that decompresses the high-pressure refrigerant flowing out from the receiver 4 until it becomes a low-pressure refrigerant.
  • the evaporator 6 exchanges heat between the low-pressure refrigerant decompressed by the temperature type expansion valve 5 and the blown air blown into the air-conditioning target space, evaporates the low-pressure liquid refrigerant and exerts an endothermic effect. It is an exchanger.
  • the refrigeration cycle apparatus 1 employs an HFC-based refrigerant (specifically, R134a) as the refrigerant, and a vapor compression subcriticality in which the pressure of the refrigerant discharged from the compressor 2 does not exceed the refrigerant critical pressure. It constitutes the refrigeration cycle. Refrigerating machine oil for lubricating the compressor 2 is mixed in the refrigerant, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • HFC-based refrigerant specifically, R134a
  • a vapor compression subcriticality in which the pressure of the refrigerant discharged from the compressor 2 does not exceed the refrigerant critical pressure. It constitutes the refrigeration cycle.
  • Refrigerating machine oil for lubricating the compressor 2 is mixed in the refrigerant, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • the temperature type expansion valve 5 includes a first body part 51, a second body part 52, a valve body part 53, an element part 54, and the like.
  • the temperature-type expansion valve 5 is formed as a so-called box-type temperature-type expansion valve in which a low-pressure refrigerant passage 50c for detecting the temperature and pressure of the low-pressure refrigerant is formed.
  • the first body portion 51 and the second body portion 52 form an outer shell of the temperature type expansion valve 5 and form a plurality of refrigerant passages and the like therein.
  • the first body portion 51 is formed of a prismatic metal (in this embodiment, aluminum).
  • the first body portion 51 forms a throttle passage 50a, a valve chamber 50b, and the like inside.
  • the throttle passage 50a is a refrigerant passage that functions as an orifice for reducing the pressure of the high-pressure refrigerant flowing out of the receiver 4 until it becomes a low-pressure refrigerant by reducing the cross-sectional area of the refrigerant passage.
  • the throttle passage 50a is formed in a rotating body shape such as a columnar shape or a truncated cone shape.
  • the valve chamber 50b is a space that is disposed on the refrigerant flow upstream side of the throttle passage 50a and accommodates the valve body 53.
  • the valve chamber 50b is formed in a cylindrical shape having a diameter larger than that of the throttle passage 50a.
  • the central axis of the throttle passage 50a and the central axis of the valve chamber 50b are arranged coaxially.
  • the valve body 53 is a spherical valve that changes the passage cross-sectional area of the throttle passage 50a by being displaced in the central axis direction of the throttle passage 50a.
  • the valve chamber 50b accommodates a coil spring 53a that is an elastic member that applies a load on the valve body portion 53 that reduces the passage cross-sectional area of the throttle passage 50a.
  • the first body portion 51 On the outer surface of the first body portion 51, there are opened a high-pressure side inlet 51a through which the high-pressure refrigerant flowing out from the receiver 4 flows into the valve chamber 50b, and an evaporator-side outlet 51b through which the low-pressure refrigerant decompressed in the throttle passage 50a flows out. is doing. Further, the first body portion 51 is formed with an accommodation hole 51c for accommodating the valve body portion 53 and the coil spring 53a in the valve chamber 50b. The accommodation hole 51c is closed by an adjustment screw 53b that adjusts the load of the coil spring 53a.
  • a seal member such as an O-ring is disposed between the first body portion 51 and the adjustment screw 53b, so that the refrigerant does not leak from the gap between the first body portion 51 and the adjustment screw 53b.
  • the second body portion 52 is formed of a prismatic resin (in this embodiment, PPS: polyphenylene sulfide resin). Therefore, the second body part 52 is formed of a member having a lower heat transfer coefficient than that of the first body part 51.
  • the second body portion 52 forms a low-pressure refrigerant passage 50c and the like inside.
  • the second body part 52 is arranged so as to contact the first body part 51.
  • a seal member such as an O-ring is disposed between the first body part 51 and the second body part 52, and the refrigerant does not leak from the gap between the first body part 51 and the second body part 52. .
  • the low-pressure refrigerant passage 50c is a refrigerant passage through which the low-pressure refrigerant that has flowed out of the evaporator 6 flows.
  • the low-pressure refrigerant passage 50c is formed in a cylindrical shape. As shown in FIGS. 1 and 2, the central axis of the low-pressure refrigerant passage 50c and the central axis of the throttle passage 50a are arranged so as to be orthogonal to each other.
  • the low-pressure side inlet 52a Through which the low-pressure refrigerant that has flowed out of the evaporator 6 flows into the low-pressure refrigerant passage 50c, and the low-pressure refrigerant that has circulated through the low-pressure refrigerant passage 50c to the suction side of the compressor 2.
  • a compressor side outlet 52b to be discharged is opened.
  • the second body portion 52 is formed with a mounting hole 52c into which a part of the element portion 54 is fitted.
  • the element portion 54 outputs a driving force for displacing the valve body portion 53.
  • the element portion 54 includes a case 54a, a diaphragm 54b, and the like.
  • the case 54a is formed of a bowl-shaped (cup-shaped) metal (in this embodiment, a stainless alloy).
  • the case 54a has an enclosed space 541 and an introduction space 542 formed therein.
  • the enclosed space 541 is a space in which a temperature-sensitive medium that changes in pressure according to the temperature of the low-pressure refrigerant flowing through the low-pressure refrigerant passage 50c is enclosed.
  • the temperature-sensitive medium is mainly composed of a refrigerant circulating in the cycle.
  • the introduction space 542 is a space for introducing the pressure of the low-pressure refrigerant flowing through the low-pressure refrigerant passage 50c.
  • the diaphragm 54b is disposed inside the case 54a, and divides the inside of the case 54a into an enclosed space 541 and an introduction space 542. In other words, the diaphragm 54b forms an enclosed space 541 together with the case 54a.
  • the diaphragm 54b is formed of a circular thin plate-like metal (SUS304 in this embodiment), and deforms according to the pressure difference between the pressure of the temperature-sensitive medium in the enclosed space 541 and the refrigerant pressure in the introduction space 542. .
  • SUS304 thin plate-like metal
  • the diaphragm 54b is deformed according to the temperature and pressure of the low-pressure refrigerant flowing through the low-pressure refrigerant passage 50c. It is a deformation member to do.
  • the operating rod 54c is connected to the surface of the diaphragm 54b on the introduction space 542 side via a disk-shaped plate member.
  • the actuating rod 54c is formed of a cylindrical metal (in this embodiment, a stainless alloy).
  • the operating rod 54c transmits the deformation of the diaphragm 54b to the valve body 53 and displaces the valve body 53.
  • the operating rod 54c is supported by a vibration-proof spring 54d so as to be slidable in the direction of the central axis of the throttle passage 50a.
  • the anti-vibration spring 54d is formed by bending a plate-like metal (in this embodiment, a stainless alloy) into a cylindrical shape. As shown in FIG. 3, the vibration-proof spring 54d has an annular portion 54e and a plurality of (three in this embodiment) arm portions 54f.
  • the annular portion 54e can elastically change the outer diameter, and is fixed to the first body portion 51 by means such as press fitting. Further, the vibration-proof spring 54d of the present embodiment is fixed to the first body portion 51 so that the center axis of the vibration-proof spring 54d and the center axis of the throttle passage 50a are arranged coaxially.
  • the arm portion 54f is formed by bending the cut and raised portion formed in the annular portion 54e toward the inner peripheral side (that is, the central axis side).
  • the arm portions 54f are arranged at equiangular intervals when viewed from the central axis direction. Then, when the operating rod 54c is inserted into the center portion of the vibration-proof spring 54d, the distal end portion of each arm portion 54f comes into contact with the outer peripheral surface of the operating rod 54c.
  • the vibration isolating spring 54d slides between the arm portion 54f and the operating rod 54c when the valve body 53 is also displaced in the central axis direction of the throttle passage 50a in accordance with the displacement of the operating rod 54c in the central axis direction.
  • a load is generated in a direction to suppress the displacement. Due to this load, it is possible to suppress the valve body portion 53 from vibrating minutely in the axial direction.
  • a thread portion is formed at a portion of the element portion 54 that forms the introduction space 542 side of the case 54a.
  • the screw portion is screwed to a fixing member 55 connected to the first body portion 51.
  • the fixing member 55 of this embodiment is formed integrally with the first body portion 51. Therefore, the fixing member 55 is formed of the same type of metal as the first body portion 51.
  • the fixing member 55 is formed in a cylindrical shape.
  • the fixing member 55 is disposed around the operating rod 54c so as to accommodate the operating rod 54c therein. Further, as shown in FIGS. 1 and 2, the fixing member 55 is disposed so as to penetrate the low-pressure refrigerant passage 50c. In other words, at least a part of the fixing member 55 is disposed in the low-pressure refrigerant passage 50c.
  • the outer peripheral surface of the fixing member 55 is formed with a plurality of pressure equalizing holes 55a (in this embodiment, four at equal angular intervals) that communicate the inside and the outside.
  • a communication passage 55b is formed inside the fixed member 55 for guiding the low-pressure refrigerant flowing in through the pressure equalizing hole 55a to the introduction space 542 side of the element portion 54. Thereby, the low-pressure refrigerant flowing through the low-pressure refrigerant passage 50 c is guided to the introduction space 542.
  • the temperature of the low-pressure refrigerant guided to the introduction space 542 is transmitted to the temperature-sensitive medium in the enclosed space 541 through the diaphragm 54b.
  • the element portion 54 comes into contact with the second body portion 52 by being fixed to the fixing member 55.
  • the second body portion 52 is disposed so as to be sandwiched between the element portion 54 and the first body portion 51.
  • a seal member such as an O-ring is disposed between the element portion 54 and the second body portion 52, and the refrigerant does not leak from the gap between the element portion 54 and the second body portion 52.
  • the manufacturing method of the temperature type expansion valve 5 of this embodiment is demonstrated.
  • the first body part 51, the second body part 52, the valve body part 53, and the element part 54 described above are prepared.
  • the first body portion 51 is prepared in which the fixing member 55 is fixed or integrated.
  • an element portion 54 to which an operating rod 54c is connected is prepared.
  • valve body 53, the coil spring 53a and the like are accommodated in the valve chamber 50b of the first body 51.
  • the accommodation screw 51c of the 1st body part 51 is obstruct
  • the fixing member 55 is fitted into the second body portion 52 so that the fixing member 55 connected to the first body portion 51 passes through the low-pressure refrigerant passage 50c of the second body portion 52 (second body). Part mounting process).
  • the operating rod 54 c of the element portion 54 is inserted into the fixing member 55.
  • the case 54 a of the element portion 54 is screwed to a screw portion formed at the distal end portion of the fixing member 55.
  • a part of the case 54a of the element portion 54 is screwed so as to be fitted into the attachment hole 52c of the second body portion 52 (element portion attachment step).
  • the first body part 51 and the element part 54 are fixed to each other, but also the second body part 52 is sandwiched between the first body part 51 and the element part 54. Therefore, the first body part 51, the second body part 52, and the element part 54 are fixed to each other. Thereafter, the load applied by the coil spring 53a to the valve body 53 is adjusted to an appropriate value by the adjusting screw 53b (load adjusting step). Thereby, the temperature type expansion valve 5 is manufactured.
  • the operation of this embodiment will be described.
  • the high-pressure refrigerant compressed by the compressor 2 flows into the radiator 3.
  • the high-pressure refrigerant dissipates heat to the outside air and condenses.
  • the high-pressure liquid phase refrigerant condensed in the radiator 3 flows into the high-pressure side inlet 51 a of the temperature type expansion valve 5 through the receiver 4. At this time, excess liquid refrigerant in the cycle is stored in the receiver 4.
  • the element portion 54 displaces the valve body portion 53 so that the superheat degree of the refrigerant on the outlet side of the evaporator 6 becomes a predetermined reference superheat degree (5 ° C. in the present embodiment),
  • the passage sectional area of the throttle passage 50a (that is, the throttle opening) is changed.
  • the diaphragm 54b is deformed to expand the enclosing space 541.
  • the valve body 53 is displaced to the side away from the inlet of the throttle passage 50a. In other words, the valve body 53 is displaced to the side that increases the throttle opening of the throttle passage 50a.
  • the pressure equalizing hole 55a of the fixing member 55 and the communication passage 55b are used.
  • the temperature of the refrigerant flowing into the introduction space 542 decreases.
  • the pressure of the temperature-sensitive medium in the enclosed space 541 decreases.
  • the diaphragm 54b is deformed to a side for reducing the enclosed space 541.
  • the operating rod 54c is displaced along with this deformation, the valve body 53 is displaced toward the inlet of the throttle passage 50a due to the load of the coil spring 53a. In other words, the valve body 53 is displaced toward the side where the throttle opening of the throttle passage 50a is decreased.
  • the valve body 53 can be displaced according to the temperature and pressure of the refrigerant flowing out of the evaporator 6. Therefore, in the temperature type expansion valve 5 of the present embodiment, the valve body 53 is displaced so that the superheat degree of the refrigerant flowing out of the evaporator 6 approaches the reference superheat degree.
  • the reference superheat degree can be changed by adjusting the load of the coil spring 53a with the adjusting screw 53b.
  • the low-pressure refrigerant decompressed by the temperature type expansion valve 5 flows out of the evaporator side outlet 51b of the temperature type expansion valve 5 and flows into the evaporator 6.
  • the low-pressure refrigerant that has flowed into the evaporator 6 absorbs heat from the blown air and evaporates. Thereby, blowing air is cooled.
  • the refrigerant that has flowed out of the evaporator 6 flows into the low-pressure refrigerant passage 50 c from the low-pressure side inlet 52 a of the temperature type expansion valve 5.
  • the refrigerant flowing through the low-pressure refrigerant passage 50c flows out of the compressor side outlet 52b, is sucked into the compressor 2, and is compressed again.
  • the refrigeration cycle apparatus 1 of the present embodiment operates as described above and can cool the blown air. Under the present circumstances, according to the temperature type expansion valve 5 of this embodiment, the superheat degree of the evaporator 6 exit side refrigerant
  • coolant can be adjusted to an appropriate value.
  • the refrigerant can be sufficiently evaporated by the evaporator 6 to improve the coefficient of performance (COP) of the cycle, and the occurrence of liquid compression of the compressor 2 can be suppressed.
  • COP coefficient of performance
  • the temperature-sensitive medium in the enclosed space 541 of the element portion 54 is used. It is necessary to appropriately transmit the temperature and pressure of the low-pressure refrigerant that has flowed out of the evaporator 6.
  • the first body portion 51 and the second body portion 52 with a resin having a lower thermal conductivity than metal.
  • the reason is that by forming both the first body part 51 and the second body part 52 with resin, the outside air temperature is transmitted to the temperature sensitive medium via the first body part 51 and the second body part 52. It is because it can suppress.
  • both the first body portion 51 and the second body portion 52 are formed of resin, a dimensional change occurs in the first body portion 51 and the second body portion 52 due to deterioration over time such as creep. There is. Such a dimensional change changes the flow rate characteristic of the temperature type expansion valve 5 and causes the durability of the temperature type expansion valve 5 to deteriorate.
  • the temperature type expansion valve 5 of the present embodiment since the first body portion 51 and the fixing member 55 are made of metal, the shape of the throttle passage 50a changes due to deterioration over time. In addition, it is possible to suppress the relative position between the throttle passage 50a and the element portion 54 from changing. Therefore, deterioration of the durability of the temperature type expansion valve 5 can be suppressed.
  • the second body portion 52 in which the low-pressure refrigerant passage 50c is formed is formed of resin, the outside air temperature is transmitted to the low-pressure refrigerant flowing through the low-pressure refrigerant passage 50c. It is possible to prevent the outside air temperature from being transmitted to the temperature-sensitive medium of the element portion 54 via the second body portion 52.
  • the fixing member 55 since at least a part of the fixing member 55 is disposed in the low-pressure refrigerant passage 50c, at least a part of the fixing member 55 can be brought close to the temperature of the low-pressure refrigerant flowing through the low-pressure refrigerant passage 50c. .
  • At least a part of the transmission path for transmitting the outside air temperature from the first body part 51 to the element part 54 via the fixing member 55 can be brought close to the temperature of the low-pressure refrigerant flowing through the low-pressure refrigerant passage 50c. . Therefore, it is possible to suppress the outside air temperature from being transmitted to the temperature sensitive medium of the element portion 54 through the first body portion 51 and the fixing member 55.
  • the throttle opening can be accurately adjusted according to the temperature and pressure of the refrigerant flowing out from the evaporator 6 without deteriorating durability. .
  • the low pressure refrigerant passage 50c through which the low temperature low pressure refrigerant flows is formed in the second body portion 52 formed of resin. For this reason, the temperature rise of the 2nd body part 52 is few, and the heat resistance requested
  • the second body portion 52 is disposed between the first body portion 51 and the element portion 54. Therefore, by fixing the first body part 51 and the element part 54 via the fixing member 55, the second body part 52 can be sandwiched, and the second body part 52 can be easily fixed.
  • the cylindrical fixing member 55 is employ
  • the pressure equalizing hole 55 a is formed on the cylindrical side surface of the fixing member 55, and the communication path 55 b is formed inside the fixing member 55. Therefore, the refrigerant pressure and the refrigerant temperature in the introduction space 542 can be quickly changed. Then, the temperature of the low-pressure refrigerant can be quickly transmitted to the temperature-sensitive medium in the enclosed space 541. As a result, the throttle opening can be adjusted with higher accuracy.
  • the fixing member 55 of the present embodiment is formed as a separate member with respect to the first body portion 51.
  • the fixing member 55 of this embodiment is formed of the same type of metal as the first body portion 51.
  • the end portion on the opposite side of the element portion 54 is screwed to the first body portion 51.
  • the vibration isolating spring 54d of the present embodiment is disposed in the communication path 55b of the fixing member 55.
  • the low pressure refrigerant passage 50c, the low pressure side inlet 52a, and the compressor side outlet 52b are different in inner diameter from the first embodiment (small in this embodiment). Adopted.
  • the throttle opening can be accurately adjusted according to the temperature and pressure of the refrigerant flowing out of the evaporator 6 without deteriorating durability.
  • the anti-vibration spring 54d is disposed in the communication path 55b, the space in the communication path 55b can be used effectively. Furthermore, as shown in FIG. 5, a plurality of vibration-proof springs 54d (two in the modification shown in FIG. 5) may be arranged in the communication path 55b. According to this, the coaxiality between the central axis of the throttle passage 50a and the central axis of the operating rod 54c can be improved, and the throttle opening can be adjusted with higher accuracy.
  • the second body portion 52 since the second body portion 52 is changed, the inner diameters of the low pressure side inlet 52a and the compressor side outlet 52b are changed without changing the first body portion 51, the element portion 54, and the like. be able to. That is, in the temperature type expansion valve 5, since the first body part 51 and the second body part 52 are formed as separate members, by changing either one of them, it is applied to a wide refrigeration cycle apparatus having different pipe diameters. be able to.
  • the low-pressure refrigerant passage 50c of the present embodiment is formed in a columnar shape, the inflow direction of the refrigerant flowing into the low-pressure side inlet 52a (that is, the axial direction of the opening hole forming the low-pressure side inlet 52a) and the compressor The outflow direction of the refrigerant flowing out from the side outlet 52b (that is, the axial direction of the opening hole forming the compressor side outlet 52b) coincides.
  • the temperature type expansion valve 5 can be applied to a wide range of refrigeration cycle apparatuses having different pipe mounting positions.
  • R134a is employed as the refrigerant
  • the refrigerant is not limited to this.
  • R1234yf, R600a, R410A, R404A, R32, R407C, etc. may be adopted.
  • the main component of the temperature sensitive medium is not limited to R134a.
  • a mixture of a plurality of types of refrigerants may be employed as the temperature sensitive medium, or a refrigerant obtained by adding an inert gas such as helium or nitrogen to the refrigerant may be employed.
  • the first body portion 51 and the second body portion are performed by performing the element portion attaching step after the second body portion attaching step.
  • 52 and the element portion 54 can be easily fixed. Therefore, the order of the steps is not limited to the order disclosed in the above-described embodiment.
  • the valve body housing step may be executed after the element portion mounting step.
  • the fixing member 55 and the first body portion 51 are fixed by screw fastening
  • the fixing mode between the fixing member 55 and the first body portion 51 is not limited to this.
  • the fixing member 55 may be fixed to the first body portion 51 by press fitting, or may be fixed using a joining means such as adhesion or welding.
  • the application of the temperature type expansion valve 5 according to the present disclosure is not limited to the refrigeration cycle apparatus 1 disclosed in the above embodiment.
  • the present invention may be applied to a refrigeration cycle apparatus that constitutes a so-called gas injection cycle in which an intermediate-pressure refrigerant is merged with a refrigerant in a pressure increasing process by a compressor.
  • a refrigeration cycle apparatus that constitutes a so-called gas injection cycle in which an intermediate-pressure refrigerant is merged with a refrigerant in a pressure increasing process by a compressor.
  • it may be used as a high-stage decompression device that decompresses the high-pressure refrigerant until it becomes an intermediate-pressure refrigerant, or as a low-stage decompression device that decompresses the intermediate-pressure refrigerant until it becomes a low-pressure refrigerant.
  • the present invention may be applied to a refrigeration cycle apparatus that constitutes a so-called ejector refrigeration cycle that includes an ejector as a refrigerant decompression apparatus.
  • the refrigerant that flows into the nozzle portion of the ejector may be used as an intermediate pressure reducing device that reduces the pressure until it becomes an intermediate pressure refrigerant.

Abstract

A thermal expansion valve applied to a vapor-compression refrigeration cycle device and having a first body part (51), a second body part (52), a valve body part (53), an element part (54), and a securing member (55). A constriction passage (50a) for reducing the pressure of a high-pressure refrigerant is formed in the first body part. A low-pressure refrigerant passage (50c) through which a low-pressure refrigerant passes is formed in the second body part. The valve body part is housed in the first body part, and changes the passage cross-sectional area of the constriction passage. The element part displaces the valve body part. The securing member secures the first body part and the element part to each other. The element part displaces the valve body part in accordance with the temperature and the pressure of the low-pressure refrigerant passing through the low-pressure refrigerant passage. The second body part is formed of a resin having a lower thermal conductivity than the first body part and the securing member. The second body part is arranged between the element part and the first body part. At least a portion of the securing member is arranged inside the low-pressure refrigerant passage.

Description

温度式膨張弁Thermal expansion valve 関連出願の相互参照Cross-reference of related applications
 本出願は、2017年3月17日に出願された日本特許出願番号2017-052052号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2017-052052 filed on March 17, 2017, the contents of which are incorporated herein by reference.
 本開示は、冷凍サイクル装置に適用される温度式膨張弁に関する。 The present disclosure relates to a temperature type expansion valve applied to a refrigeration cycle apparatus.
 従来、蒸気圧縮式の冷凍サイクル装置に適用される冷媒減圧装置として、ボックス型の温度式膨張弁が知られている。 Conventionally, a box-type temperature expansion valve is known as a refrigerant pressure reducing device applied to a vapor compression refrigeration cycle apparatus.
 この種の温度式膨張弁は、ボデー部、弁体部、エレメント部等を備えている。ボデー部は、温度式膨張弁の外殻を形成するとともに、内部に複数の冷媒通路等を形成するものである。弁体部は、ボデー部の内部に収容されて、ボデー部に形成された絞り通路の通路断面積(すなわち、絞り開度)を変化させるものである。エレメント部は、ボデー部に固定されて、弁体部を変位させるものである。 This type of thermal expansion valve includes a body part, a valve body part, an element part, and the like. The body portion forms an outer shell of the temperature type expansion valve and forms a plurality of refrigerant passages and the like therein. The valve body portion is housed inside the body portion, and changes the passage cross-sectional area (that is, the throttle opening) of the throttle passage formed in the body portion. The element part is fixed to the body part and displaces the valve body part.
 より詳細には、エレメント部は、ボデー部に形成された低圧冷媒通路を流通する低圧冷媒の温度および圧力に応じて変形するダイヤフラムを有している。そして、このダイヤフラムの変形を作動棒等を介して弁体部に伝達することによって、弁体部を変位させる。従って、低圧冷媒の温度および圧力に応じて絞り開度を精度良く調整するためには、エレメント部に低圧冷媒の温度および圧力を適切に伝達する必要がある。 More specifically, the element portion has a diaphragm that deforms according to the temperature and pressure of the low-pressure refrigerant that flows through the low-pressure refrigerant passage formed in the body portion. Then, the deformation of the diaphragm is transmitted to the valve body part via an operating rod or the like, thereby displacing the valve body part. Therefore, in order to accurately adjust the throttle opening according to the temperature and pressure of the low-pressure refrigerant, it is necessary to appropriately transmit the temperature and pressure of the low-pressure refrigerant to the element portion.
 これに対して、特許文献1には、金属よりも熱伝導率の低い樹脂にて形成されたボデー部を備える温度式膨張弁が開示されている。この特許文献1の温度式膨張弁では、樹脂製のボデー部を採用することで、ボデー部を介してエレメント部に雰囲気温度が伝達されてしまうことを抑制して、エレメント部に低圧冷媒の温度を適切に伝達しようとしている。 On the other hand, Patent Document 1 discloses a temperature type expansion valve including a body portion formed of a resin having a lower thermal conductivity than metal. In the temperature type expansion valve of this patent document 1, by adopting a resin body part, the atmospheric temperature is prevented from being transmitted to the element part through the body part, and the temperature of the low-pressure refrigerant is supplied to the element part. Is trying to communicate properly.
特開平11-325308号公報JP 11-325308 A
 しかしながら、特許文献1の温度式膨張弁のように、樹脂で形成されたボデー部を採用すると、クリープ等の経年劣化によってボデー部に寸法変化が生じてしまうことがある。このような寸法変化は、絞り通路の形状の変化や、絞り通路とエレメント部との相対位置の変化等を招くおそれがあり、温度式膨張弁の流量特性を変化させてしまうおそれがある。 However, when a body part formed of resin is employed as in the temperature type expansion valve of Patent Document 1, a dimensional change may occur in the body part due to deterioration over time such as creep. Such a dimensional change may cause a change in the shape of the throttle passage, a change in the relative position between the throttle passage and the element portion, and the like, and may change the flow characteristics of the temperature type expansion valve.
 すなわち、絞り開度を精度良く調整するために、樹脂で形成されたボデー部を採用すると、温度式膨張弁としての耐久性を悪化させてしまうおそれがある。 That is, if a body portion made of resin is used to adjust the throttle opening with high accuracy, the durability as a temperature type expansion valve may be deteriorated.
 本開示は、上記点に鑑み、耐久性の悪化を招くことなく、絞り開度を精度良く調整可能な温度式膨張弁を提供することを目的とする。 In view of the above points, it is an object of the present disclosure to provide a temperature type expansion valve capable of adjusting the throttle opening with high accuracy without causing deterioration of durability.
 本開示の一態様による温度式膨張弁は、蒸気圧縮式の冷凍サイクル装置に適用され、第1ボデー部と、第2ボデー部と、弁体部と、エレメント部と、固定部材と、を備える。第1ボデー部には、高圧冷媒を減圧させる絞り通路が形成される。第2ボデー部には、低圧冷媒を流通させる低圧冷媒通路が形成される。弁体部は、第1ボデー部内に収容されて絞り通路の通路断面積を変化させる。エレメント部は、弁体部を変位させる。固定部材は、第1ボデー部とエレメント部とを互いに固定する。エレメント部は、低圧冷媒通路を流通する低圧冷媒の温度および圧力に応じて弁体部を変位させる。第1ボデー部および固定部材は、金属で形成されている。第2ボデー部は、第1ボデー部および固定部材よりも熱伝達率の低い樹脂で形成されている。第2ボデー部は、エレメント部と第1ボデー部との間に配置されている。固定部材の少なくとも一部は、低圧冷媒通路内に配置されている。 A temperature type expansion valve according to an aspect of the present disclosure is applied to a vapor compression refrigeration cycle apparatus, and includes a first body part, a second body part, a valve body part, an element part, and a fixing member. . The first body part is formed with a throttle passage for depressurizing the high-pressure refrigerant. In the second body part, a low-pressure refrigerant passage for circulating the low-pressure refrigerant is formed. The valve body portion is accommodated in the first body portion and changes the passage cross-sectional area of the throttle passage. The element part displaces the valve body part. The fixing member fixes the first body part and the element part to each other. The element portion displaces the valve body portion according to the temperature and pressure of the low-pressure refrigerant flowing through the low-pressure refrigerant passage. The first body part and the fixing member are made of metal. The second body part is formed of a resin having a lower heat transfer coefficient than the first body part and the fixing member. The second body part is disposed between the element part and the first body part. At least a part of the fixing member is disposed in the low-pressure refrigerant passage.
 これによれば、第1ボデー部と固定部材が金属で形成されているので、経年劣化によって絞り通路の形状が変化してしまうことや、絞り通路とエレメント部との相対位置が変化してしまうことを抑制することができる。従って、温度式膨張弁の耐久性の悪化を抑制することができる。 According to this, since the first body portion and the fixing member are made of metal, the shape of the throttle passage changes due to aging, and the relative position between the throttle passage and the element portion changes. This can be suppressed. Therefore, deterioration of the durability of the temperature type expansion valve can be suppressed.
 さらに、低圧冷媒通路が形成される第2ボデー部が樹脂にて形成されているので、低圧冷媒通路を流通する低圧冷媒に外気温が伝達されてしまうことや、第2ボデー部を介して外気温がエレメント部に伝達されてしまうことを抑制することができる。 Furthermore, since the second body part in which the low-pressure refrigerant passage is formed is formed of resin, the outside air temperature may be transmitted to the low-pressure refrigerant flowing through the low-pressure refrigerant passage, and the second body part may be externally connected via the second body part. It can suppress that temperature is transmitted to an element part.
 これに加えて、固定部材の少なくとも一部が、低圧冷媒通路内に配置されているので、固定部材の少なくとも一部を低圧冷媒の温度に近づけることができる。従って、第1ボデー部および固定部材を介して外気温がエレメント部に伝達されてしまうことを抑制することができる。 In addition, since at least a part of the fixing member is disposed in the low-pressure refrigerant passage, at least a part of the fixing member can be brought close to the temperature of the low-pressure refrigerant. Therefore, it can suppress that external temperature will be transmitted to an element part via a 1st body part and a fixing member.
 その結果、外気温の影響を受けにくく、低圧冷媒の温度および圧力に応じて、絞り通路の絞り開度を精度良く調整することができる。 As a result, the throttle opening degree of the throttle passage can be adjusted with high accuracy according to the temperature and pressure of the low-pressure refrigerant.
 すなわち、この一態様によれば、耐久性の悪化を招くことなく、絞り開度を精度良く調整可能な温度式膨張弁を提供することができる。 That is, according to this one aspect, it is possible to provide a temperature type expansion valve capable of accurately adjusting the throttle opening without causing deterioration in durability.
本開示の少なくともひとつの実施形態に係る温度式膨張弁の断面図である。It is a sectional view of a temperature type expansion valve concerning at least one embodiment of this indication. 図1のII-II断面の一部断面図である。FIG. 2 is a partial cross-sectional view taken along a line II-II in FIG. 防振バネの外観斜視図である。It is an external appearance perspective view of a vibration-proof spring. 本開示の少なくともひとつの実施形態に係る温度式膨張弁の断面図である。It is a sectional view of a temperature type expansion valve concerning at least one embodiment of this indication. 第2実施形態の変形例の温度式膨張弁の断面図である。It is sectional drawing of the temperature type expansion valve of the modification of 2nd Embodiment.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of modes for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each mode, the other modes described above can be applied to the other parts of the configuration. Not only combinations of parts that clearly show that combinations are possible in each embodiment, but also combinations of the embodiments even if they are not explicitly stated unless there is a problem with the combination. Is also possible.
 (第1実施形態)
 以下、図面を用いて、本開示の第1実施形態を説明する。本実施形態では、本開示に係る温度式膨張弁5を、空調装置に用いられる蒸気圧縮式の冷凍サイクル装置1に適用している。冷凍サイクル装置1は、図1に示すように、圧縮機2、放熱器3、レシーバ4、温度式膨張弁5、蒸発器6を環状に接続して構成されたものである。
(First embodiment)
Hereinafter, a first embodiment of the present disclosure will be described with reference to the drawings. In this embodiment, the temperature type expansion valve 5 according to the present disclosure is applied to a vapor compression refrigeration cycle apparatus 1 used in an air conditioner. As shown in FIG. 1, the refrigeration cycle apparatus 1 is configured by connecting a compressor 2, a radiator 3, a receiver 4, a temperature expansion valve 5, and an evaporator 6 in an annular shape.
 圧縮機2は、冷媒を吸入し、高圧冷媒となるまで圧縮して吐出するものである。放熱器3は、圧縮機2から吐出された高圧冷媒と外気とを熱交換させ、高圧冷媒を放熱させて凝縮させる放熱用熱交換器である。レシーバ4は、放熱器3から流出した冷媒の気液を分離して、サイクルの余剰な液冷媒を蓄える受液器である。 The compressor 2 sucks the refrigerant and compresses and discharges the refrigerant until it becomes a high-pressure refrigerant. The radiator 3 is a heat exchanger for radiating heat to exchange heat between the high-pressure refrigerant discharged from the compressor 2 and the outside air, and to dissipate and condense the high-pressure refrigerant. The receiver 4 is a liquid receiver that separates the gas-liquid refrigerant flowing out of the radiator 3 and stores excess liquid refrigerant in the cycle.
 温度式膨張弁5は、レシーバ4から流出した高圧冷媒を低圧冷媒となるまで減圧させる減圧装置である。蒸発器6は、温度式膨張弁5にて減圧された低圧冷媒と空調対象空間へ送風される送風空気とを熱交換させて、低圧の液冷媒を蒸発させて吸熱作用を発揮させる吸熱用熱交換器である。 The temperature type expansion valve 5 is a decompression device that decompresses the high-pressure refrigerant flowing out from the receiver 4 until it becomes a low-pressure refrigerant. The evaporator 6 exchanges heat between the low-pressure refrigerant decompressed by the temperature type expansion valve 5 and the blown air blown into the air-conditioning target space, evaporates the low-pressure liquid refrigerant and exerts an endothermic effect. It is an exchanger.
 冷凍サイクル装置1では、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、圧縮機2から吐出された吐出冷媒の圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。冷媒には圧縮機2を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。 The refrigeration cycle apparatus 1 employs an HFC-based refrigerant (specifically, R134a) as the refrigerant, and a vapor compression subcriticality in which the pressure of the refrigerant discharged from the compressor 2 does not exceed the refrigerant critical pressure. It constitutes the refrigeration cycle. Refrigerating machine oil for lubricating the compressor 2 is mixed in the refrigerant, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
 次に、本実施形態の温度式膨張弁5の詳細構成を説明する。温度式膨張弁5は、第1ボデー部51、第2ボデー部52、弁体部53、エレメント部54等を備えている。温度式膨張弁5は、内部に低圧冷媒の温度および圧力を検知するための低圧冷媒通路50cが形成された、いわゆるボックス型の温度式膨張弁として形成されている。 Next, the detailed configuration of the temperature type expansion valve 5 of the present embodiment will be described. The temperature type expansion valve 5 includes a first body part 51, a second body part 52, a valve body part 53, an element part 54, and the like. The temperature-type expansion valve 5 is formed as a so-called box-type temperature-type expansion valve in which a low-pressure refrigerant passage 50c for detecting the temperature and pressure of the low-pressure refrigerant is formed.
 第1ボデー部51および第2ボデー部52は、温度式膨張弁5の外殻を形成するとともに、内部に複数の冷媒通路等を形成するものである。第1ボデー部51は、角柱状の金属(本実施形態では、アルミニウム)で形成されている。第1ボデー部51は、内部に絞り通路50a、弁室50b等を形成するものである。 The first body portion 51 and the second body portion 52 form an outer shell of the temperature type expansion valve 5 and form a plurality of refrigerant passages and the like therein. The first body portion 51 is formed of a prismatic metal (in this embodiment, aluminum). The first body portion 51 forms a throttle passage 50a, a valve chamber 50b, and the like inside.
 絞り通路50aは、冷媒通路の通路断面積を縮小させることによって、レシーバ4から流出した高圧冷媒を低圧冷媒となるまで減圧させるオリフィスとして機能する冷媒通路である。絞り通路50aは、円柱状あるいは円錐台状等の回転体形状に形成されている。 The throttle passage 50a is a refrigerant passage that functions as an orifice for reducing the pressure of the high-pressure refrigerant flowing out of the receiver 4 until it becomes a low-pressure refrigerant by reducing the cross-sectional area of the refrigerant passage. The throttle passage 50a is formed in a rotating body shape such as a columnar shape or a truncated cone shape.
 弁室50bは、絞り通路50aの冷媒流れ上流側に配置されて、弁体部53を収容する空間である。弁室50bは、絞り通路50aよりも径の大きい円柱状に形成されている。絞り通路50aの中心軸と弁室50bの中心軸は、同軸上に配置されている。 The valve chamber 50b is a space that is disposed on the refrigerant flow upstream side of the throttle passage 50a and accommodates the valve body 53. The valve chamber 50b is formed in a cylindrical shape having a diameter larger than that of the throttle passage 50a. The central axis of the throttle passage 50a and the central axis of the valve chamber 50b are arranged coaxially.
 弁体部53は、絞り通路50aの中心軸方向へ変位することによって、絞り通路50aの通路断面積を変化させる球体弁である。弁室50bの内部には、弁体部53に対して、絞り通路50aの通路断面積を縮小させる側の荷重をかける弾性部材であるコイルバネ53aが収容されている。 The valve body 53 is a spherical valve that changes the passage cross-sectional area of the throttle passage 50a by being displaced in the central axis direction of the throttle passage 50a. The valve chamber 50b accommodates a coil spring 53a that is an elastic member that applies a load on the valve body portion 53 that reduces the passage cross-sectional area of the throttle passage 50a.
 第1ボデー部51の外表面には、レシーバ4から流出した高圧冷媒を弁室50bへ流入させる高圧側入口51a、および絞り通路50aで減圧された低圧冷媒を流出させる蒸発器側出口51bが開口している。さらに、第1ボデー部51には、弁室50bに弁体部53およびコイルバネ53aを収容するための収容穴51cが形成されている。収容穴51cは、コイルバネ53aの荷重を調整する調整ネジ53bによって閉塞されている。 On the outer surface of the first body portion 51, there are opened a high-pressure side inlet 51a through which the high-pressure refrigerant flowing out from the receiver 4 flows into the valve chamber 50b, and an evaporator-side outlet 51b through which the low-pressure refrigerant decompressed in the throttle passage 50a flows out. is doing. Further, the first body portion 51 is formed with an accommodation hole 51c for accommodating the valve body portion 53 and the coil spring 53a in the valve chamber 50b. The accommodation hole 51c is closed by an adjustment screw 53b that adjusts the load of the coil spring 53a.
 第1ボデー部51と調整ネジ53bとの間には、Oリング等のシール部材が配置されており、第1ボデー部51と調整ネジ53bとの隙間から冷媒が漏れることはない。 A seal member such as an O-ring is disposed between the first body portion 51 and the adjustment screw 53b, so that the refrigerant does not leak from the gap between the first body portion 51 and the adjustment screw 53b.
 第2ボデー部52は、角柱状の樹脂(本実施形態では、PPS:ポリフェニレンサルファイド樹脂)で形成されている。従って、第2ボデー部52は、第1ボデー部51よりも熱伝達率の低い部材で形成されている。第2ボデー部52は、内部に低圧冷媒通路50c等を形成するものである。 The second body portion 52 is formed of a prismatic resin (in this embodiment, PPS: polyphenylene sulfide resin). Therefore, the second body part 52 is formed of a member having a lower heat transfer coefficient than that of the first body part 51. The second body portion 52 forms a low-pressure refrigerant passage 50c and the like inside.
 第2ボデー部52は、第1ボデー部51に接触するように配置されている。第1ボデー部51と第2ボデー部52との間には、Oリング等のシール部材が配置されており、第1ボデー部51と第2ボデー部52との隙間から冷媒が漏れることはない。 The second body part 52 is arranged so as to contact the first body part 51. A seal member such as an O-ring is disposed between the first body part 51 and the second body part 52, and the refrigerant does not leak from the gap between the first body part 51 and the second body part 52. .
 低圧冷媒通路50cは、蒸発器6から流出した低圧冷媒を流通させる冷媒通路である。低圧冷媒通路50cは、円柱状に形成されている。図1、図2に示すように、低圧冷媒通路50cの中心軸と絞り通路50aの中心軸は、互いに直交するように配置されている。 The low-pressure refrigerant passage 50c is a refrigerant passage through which the low-pressure refrigerant that has flowed out of the evaporator 6 flows. The low-pressure refrigerant passage 50c is formed in a cylindrical shape. As shown in FIGS. 1 and 2, the central axis of the low-pressure refrigerant passage 50c and the central axis of the throttle passage 50a are arranged so as to be orthogonal to each other.
 第2ボデー部52の外表面には、蒸発器6から流出した低圧冷媒を低圧冷媒通路50cへ流入させる低圧側入口52a、および低圧冷媒通路50cを流通した低圧冷媒を圧縮機2の吸入側へ流出させる圧縮機側出口52bが開口している。さらに、第2ボデー部52には、エレメント部54の一部が嵌め込まれる取付穴52c等が形成されている。 On the outer surface of the second body 52, the low-pressure side inlet 52a through which the low-pressure refrigerant that has flowed out of the evaporator 6 flows into the low-pressure refrigerant passage 50c, and the low-pressure refrigerant that has circulated through the low-pressure refrigerant passage 50c to the suction side of the compressor 2. A compressor side outlet 52b to be discharged is opened. Further, the second body portion 52 is formed with a mounting hole 52c into which a part of the element portion 54 is fitted.
 エレメント部54は、弁体部53を変位させるための駆動力を出力するものである。エレメント部54は、ケース54a、ダイヤフラム54b等を有している。ケース54aは、椀状(カップ状)の金属(本実施形態では、ステンレス合金)で形成されている。ケース54aは、内部に封入空間541および導入空間542を形成している。 The element portion 54 outputs a driving force for displacing the valve body portion 53. The element portion 54 includes a case 54a, a diaphragm 54b, and the like. The case 54a is formed of a bowl-shaped (cup-shaped) metal (in this embodiment, a stainless alloy). The case 54a has an enclosed space 541 and an introduction space 542 formed therein.
 封入空間541は、低圧冷媒通路50cを流通する低圧冷媒の温度に応じて圧力変化する感温媒体が封入された空間である。本実施形態では、感温媒体として、サイクルを循環する冷媒を主成分とするものを採用している。導入空間542は、低圧冷媒通路50cを流通する低圧冷媒の圧力を導入させる空間である。 The enclosed space 541 is a space in which a temperature-sensitive medium that changes in pressure according to the temperature of the low-pressure refrigerant flowing through the low-pressure refrigerant passage 50c is enclosed. In the present embodiment, the temperature-sensitive medium is mainly composed of a refrigerant circulating in the cycle. The introduction space 542 is a space for introducing the pressure of the low-pressure refrigerant flowing through the low-pressure refrigerant passage 50c.
 ダイヤフラム54bは、ケース54aの内部に配置されて、ケース54aの内部を封入空間541および導入空間542に区画している。換言すると、ダイヤフラム54bは、ケース54aとともに、封入空間541を形成している。 The diaphragm 54b is disposed inside the case 54a, and divides the inside of the case 54a into an enclosed space 541 and an introduction space 542. In other words, the diaphragm 54b forms an enclosed space 541 together with the case 54a.
 ダイヤフラム54bは、円形薄板状の金属(本実施形態では、SUS304)で形成されており、封入空間541内の感温媒体の圧力と導入空間542内の冷媒圧力との圧力差に応じて変形する。前述の如く、感温媒体の圧力は、低圧冷媒通路50cを流通する低圧冷媒の温度に応じて変化するので、ダイヤフラム54bは、低圧冷媒通路50cを流通する低圧冷媒の温度および圧力に応じて変形する変形部材である。 The diaphragm 54b is formed of a circular thin plate-like metal (SUS304 in this embodiment), and deforms according to the pressure difference between the pressure of the temperature-sensitive medium in the enclosed space 541 and the refrigerant pressure in the introduction space 542. . As described above, since the pressure of the temperature-sensitive medium changes according to the temperature of the low-pressure refrigerant flowing through the low-pressure refrigerant passage 50c, the diaphragm 54b is deformed according to the temperature and pressure of the low-pressure refrigerant flowing through the low-pressure refrigerant passage 50c. It is a deformation member to do.
 ダイヤフラム54bの導入空間542側の面には、円板状のプレート部材を介して、作動棒54cが連結されている。作動棒54cは、円柱状の金属(本実施形態では、ステンレス合金)で形成されている。作動棒54cは、ダイヤフラム54bの変形を弁体部53へ伝達して、弁体部53を変位させるものである。 The operating rod 54c is connected to the surface of the diaphragm 54b on the introduction space 542 side via a disk-shaped plate member. The actuating rod 54c is formed of a cylindrical metal (in this embodiment, a stainless alloy). The operating rod 54c transmits the deformation of the diaphragm 54b to the valve body 53 and displaces the valve body 53.
 作動棒54cは、防振バネ54dによって、絞り通路50aの中心軸方向へ摺動可能に支持されている。防振バネ54dは板状の金属(本実施形態では、ステンレス合金)を円筒状に湾曲させることによって形成されたものである。防振バネ54dは、図3に示すように、円環状部54e、および複数(本実施形態では3つ)の腕部54fを有している。 The operating rod 54c is supported by a vibration-proof spring 54d so as to be slidable in the direction of the central axis of the throttle passage 50a. The anti-vibration spring 54d is formed by bending a plate-like metal (in this embodiment, a stainless alloy) into a cylindrical shape. As shown in FIG. 3, the vibration-proof spring 54d has an annular portion 54e and a plurality of (three in this embodiment) arm portions 54f.
 円環状部54eは、弾性的に外径を変化させることができ、圧入等の手段によって第1ボデー部51に固定されている。さらに、本実施形態の防振バネ54dは、防振バネ54dの中心軸と絞り通路50aの中心軸が同軸上に配置されるように、第1ボデー部51に固定されている。 The annular portion 54e can elastically change the outer diameter, and is fixed to the first body portion 51 by means such as press fitting. Further, the vibration-proof spring 54d of the present embodiment is fixed to the first body portion 51 so that the center axis of the vibration-proof spring 54d and the center axis of the throttle passage 50a are arranged coaxially.
 腕部54fは、円環状部54eに形成された切り起こし部を内周側(すなわち、中心軸側)へ折り曲げることによって形成されている。腕部54fは、中心軸方向から見たときに等角度間隔に配置されている。そして、作動棒54cを防振バネ54dの中心部へ挿入すると、それぞれの腕部54fの先端部が作動棒54cの外周面に接触する。 The arm portion 54f is formed by bending the cut and raised portion formed in the annular portion 54e toward the inner peripheral side (that is, the central axis side). The arm portions 54f are arranged at equiangular intervals when viewed from the central axis direction. Then, when the operating rod 54c is inserted into the center portion of the vibration-proof spring 54d, the distal end portion of each arm portion 54f comes into contact with the outer peripheral surface of the operating rod 54c.
 このように作動棒54cが、それぞれの腕部54fに接触することによって、作動棒54cの中心軸径方向への変位が規制される。その結果、作動棒54cは、絞り通路50aの中心軸方向へ摺動可能に支持される。 Thus, when the operating rods 54c come into contact with the respective arm portions 54f, the displacement of the operating rods 54c in the central axis radial direction is restricted. As a result, the operating rod 54c is supported so as to be slidable in the central axis direction of the throttle passage 50a.
 さらに、防振バネ54dは、作動棒54cの中心軸方向の変位に伴って、弁体部53も絞り通路50aの中心軸方向へ変位する時に、腕部54fと作動棒54cが摺動することによって、変位を抑制する方向に荷重を発生させる。この荷重により、弁体部53が軸方向に微小振動してしまうことを抑制することができる。 Further, the vibration isolating spring 54d slides between the arm portion 54f and the operating rod 54c when the valve body 53 is also displaced in the central axis direction of the throttle passage 50a in accordance with the displacement of the operating rod 54c in the central axis direction. Thus, a load is generated in a direction to suppress the displacement. Due to this load, it is possible to suppress the valve body portion 53 from vibrating minutely in the axial direction.
 また、エレメント部54のケース54aの導入空間542側を形成する部位には、ネジ部が形成されている。このネジ部は、第1ボデー部51に連結された固定部材55にネジ締結されている。これにより、エレメント部54と第1ボデー部51が互いに固定されている。本実施形態の固定部材55は、第1ボデー部51と一体的に形成されている。従って、固定部材55は、第1ボデー部51と同じ種類の金属で形成されている。 Further, a thread portion is formed at a portion of the element portion 54 that forms the introduction space 542 side of the case 54a. The screw portion is screwed to a fixing member 55 connected to the first body portion 51. Thereby, the element part 54 and the 1st body part 51 are being fixed mutually. The fixing member 55 of this embodiment is formed integrally with the first body portion 51. Therefore, the fixing member 55 is formed of the same type of metal as the first body portion 51.
 固定部材55は、円筒状に形成されている。固定部材55は内部に作動棒54cを収容するように、作動棒54cの周囲に配置されている。さらに、固定部材55は、図1、図2に示すように、低圧冷媒通路50cを貫通するように配置されている。換言すると、固定部材55の少なくとも一部は、低圧冷媒通路50c内に配置されている。 The fixing member 55 is formed in a cylindrical shape. The fixing member 55 is disposed around the operating rod 54c so as to accommodate the operating rod 54c therein. Further, as shown in FIGS. 1 and 2, the fixing member 55 is disposed so as to penetrate the low-pressure refrigerant passage 50c. In other words, at least a part of the fixing member 55 is disposed in the low-pressure refrigerant passage 50c.
 固定部材55の外周面には、その内外を連通させる複数(本実施形態では、等角度間隔に4つ)の均圧穴55aが形成されている。固定部材55の内部には、均圧穴55aを介して流入した低圧冷媒を、エレメント部54の導入空間542側へ導く連通路55bが形成されている。これにより、低圧冷媒通路50cを流通する低圧冷媒が導入空間542へ導かれる。 The outer peripheral surface of the fixing member 55 is formed with a plurality of pressure equalizing holes 55a (in this embodiment, four at equal angular intervals) that communicate the inside and the outside. Inside the fixed member 55, a communication passage 55b is formed for guiding the low-pressure refrigerant flowing in through the pressure equalizing hole 55a to the introduction space 542 side of the element portion 54. Thereby, the low-pressure refrigerant flowing through the low-pressure refrigerant passage 50 c is guided to the introduction space 542.
 そして、導入空間542へ導かれた低圧冷媒の温度が、ダイヤフラム54bを介して、封入空間541内の感温媒体に伝達される。 Then, the temperature of the low-pressure refrigerant guided to the introduction space 542 is transmitted to the temperature-sensitive medium in the enclosed space 541 through the diaphragm 54b.
 さらに、エレメント部54は、固定部材55に固定されることによって、第2ボデー部52に接触する。このため、第2ボデー部52は、エレメント部54と第1ボデー部51との間に挟まれるように配置されている。エレメント部54と第2ボデー部52との間には、Oリング等のシール部材が配置されており、エレメント部54と第2ボデー部52との隙間から冷媒が漏れることはない。 Furthermore, the element portion 54 comes into contact with the second body portion 52 by being fixed to the fixing member 55. For this reason, the second body portion 52 is disposed so as to be sandwiched between the element portion 54 and the first body portion 51. A seal member such as an O-ring is disposed between the element portion 54 and the second body portion 52, and the refrigerant does not leak from the gap between the element portion 54 and the second body portion 52.
 次に、本実施形態の温度式膨張弁5の製造方法について説明する。まず、上述した第1ボデー部51、第2ボデー部52、弁体部53、エレメント部54を用意する。この際、第1ボデー部51として、固定部材55が固定あるいは一体化されているものを用意する。また、エレメント部54として、作動棒54cが連結されているものを用意する。 Next, the manufacturing method of the temperature type expansion valve 5 of this embodiment is demonstrated. First, the first body part 51, the second body part 52, the valve body part 53, and the element part 54 described above are prepared. At this time, the first body portion 51 is prepared in which the fixing member 55 is fixed or integrated. In addition, an element portion 54 to which an operating rod 54c is connected is prepared.
 次に、第1ボデー部51の弁室50b内に、弁体部53、コイルバネ53a等を収容する。その後、調整ネジ53bをネジ止めすることによって、第1ボデー部51の収容穴51cを閉塞する(弁体部収容工程)。 Next, the valve body 53, the coil spring 53a and the like are accommodated in the valve chamber 50b of the first body 51. Then, the accommodation screw 51c of the 1st body part 51 is obstruct | occluded by screwing the adjustment screw 53b (valve body part accommodation process).
 次に、第1ボデー部51に連結された固定部材55が、第2ボデー部52の低圧冷媒通路50c内を貫通するように、第2ボデー部52に固定部材55を嵌め込む(第2ボデー部取付工程)。 Next, the fixing member 55 is fitted into the second body portion 52 so that the fixing member 55 connected to the first body portion 51 passes through the low-pressure refrigerant passage 50c of the second body portion 52 (second body). Part mounting process).
 次に、エレメント部54の作動棒54cを固定部材55の内部に挿入する。そして、エレメント部54のケース54aを、固定部材55の先端部に形成されたネジ部にネジ締結する。この際、エレメント部54のケース54aの一部が、第2ボデー部52の取付穴52cに嵌め込まれるようにネジ止めする(エレメント部取付工程)。 Next, the operating rod 54 c of the element portion 54 is inserted into the fixing member 55. Then, the case 54 a of the element portion 54 is screwed to a screw portion formed at the distal end portion of the fixing member 55. At this time, a part of the case 54a of the element portion 54 is screwed so as to be fitted into the attachment hole 52c of the second body portion 52 (element portion attachment step).
 これにより、第1ボデー部51とエレメント部54が互いに固定されるだけでなく、第2ボデー部52が、第1ボデー部51とエレメント部54との間に挟持される。従って、第1ボデー部51、第2ボデー部52、およびエレメント部54が互いに固定される。その後、調整ネジ53bによって、コイルバネ53aが弁体部53に付勢する荷重を適切な値に調整する(荷重調整工程)。これにより、温度式膨張弁5が製造される。 Thereby, not only the first body part 51 and the element part 54 are fixed to each other, but also the second body part 52 is sandwiched between the first body part 51 and the element part 54. Therefore, the first body part 51, the second body part 52, and the element part 54 are fixed to each other. Thereafter, the load applied by the coil spring 53a to the valve body 53 is adjusted to an appropriate value by the adjusting screw 53b (load adjusting step). Thereby, the temperature type expansion valve 5 is manufactured.
 次に、本実施形態の作動について説明する。圧縮機2が作動すると、圧縮機2にて圧縮された高圧冷媒が放熱器3へ流入する。放熱器3では、高圧冷媒が外気に放熱して凝縮する。放熱器3にて凝縮した高圧液相冷媒は、レシーバ4を介して、温度式膨張弁5の高圧側入口51aへ流入する。この際、サイクルの余剰な液冷媒は、レシーバ4に蓄えられる。 Next, the operation of this embodiment will be described. When the compressor 2 is operated, the high-pressure refrigerant compressed by the compressor 2 flows into the radiator 3. In the radiator 3, the high-pressure refrigerant dissipates heat to the outside air and condenses. The high-pressure liquid phase refrigerant condensed in the radiator 3 flows into the high-pressure side inlet 51 a of the temperature type expansion valve 5 through the receiver 4. At this time, excess liquid refrigerant in the cycle is stored in the receiver 4.
 温度式膨張弁5では、蒸発器6出口側冷媒の過熱度が予め定めた基準過熱度(本実施形態では、5℃)となるように、エレメント部54が弁体部53を変位させて、絞り通路50aの通路断面積(すなわち、絞り開度)を変化させる。 In the temperature type expansion valve 5, the element portion 54 displaces the valve body portion 53 so that the superheat degree of the refrigerant on the outlet side of the evaporator 6 becomes a predetermined reference superheat degree (5 ° C. in the present embodiment), The passage sectional area of the throttle passage 50a (that is, the throttle opening) is changed.
 より具体的には、蒸発器6出口側冷媒の過熱度の上昇に伴って、低圧冷媒通路50cを流通する冷媒の温度(過熱度)が上昇すると、固定部材55の均圧穴55aおよび連通路55bを介して、導入空間542内へ流入する冷媒温度が上昇する。これにより、封入空間541内の感温媒体の圧力が上昇する。 More specifically, when the temperature (superheat degree) of the refrigerant flowing through the low-pressure refrigerant passage 50c rises as the superheat degree of the refrigerant on the outlet side of the evaporator 6 rises, the pressure equalizing hole 55a and the communication passage 55b of the fixing member 55 are increased. As a result, the temperature of the refrigerant flowing into the introduction space 542 rises. As a result, the pressure of the temperature sensitive medium in the enclosed space 541 increases.
 このため、蒸発器6出口側冷媒の過熱度が上昇すると、ダイヤフラム54bが封入空間541を拡大させる側に変形する。この変形に伴って、作動棒54cが変位すると、弁体部53が絞り通路50aの入口部から離れる側へ変位する。換言すると、弁体部53が絞り通路50aの絞り開度を増加させる側へ変位する。 For this reason, when the degree of superheat of the refrigerant on the outlet side of the evaporator 6 increases, the diaphragm 54b is deformed to expand the enclosing space 541. When the operating rod 54c is displaced along with this deformation, the valve body 53 is displaced to the side away from the inlet of the throttle passage 50a. In other words, the valve body 53 is displaced to the side that increases the throttle opening of the throttle passage 50a.
 一方、蒸発器6出口側冷媒の過熱度の低下に伴って、低圧冷媒通路50cを流通する冷媒の温度(過熱度)が低下すると、固定部材55の均圧穴55aおよび連通路55bを介して、導入空間542内へ流入する冷媒温度が低下する。これにより、封入空間541内の感温媒体の圧力が低下する。 On the other hand, when the temperature (superheat degree) of the refrigerant flowing through the low-pressure refrigerant passage 50c is reduced as the superheat degree of the refrigerant on the outlet side of the evaporator 6 is reduced, the pressure equalizing hole 55a of the fixing member 55 and the communication passage 55b are used. The temperature of the refrigerant flowing into the introduction space 542 decreases. Thereby, the pressure of the temperature-sensitive medium in the enclosed space 541 decreases.
 このため、蒸発器6出口側冷媒の過熱度が低下すると、ダイヤフラム54bが封入空間541を縮小させる側に変形する。この変形に伴って、作動棒54cが変位すると、コイルバネ53aの荷重によって、弁体部53が絞り通路50aの入口部へ近づく側へ変位する。換言すると、弁体部53が絞り通路50aの絞り開度を減少させる側へ変位する。 For this reason, when the degree of superheat of the refrigerant on the outlet side of the evaporator 6 is lowered, the diaphragm 54b is deformed to a side for reducing the enclosed space 541. When the operating rod 54c is displaced along with this deformation, the valve body 53 is displaced toward the inlet of the throttle passage 50a due to the load of the coil spring 53a. In other words, the valve body 53 is displaced toward the side where the throttle opening of the throttle passage 50a is decreased.
 つまり、温度式膨張弁5では、蒸発器6から流出した冷媒の温度および圧力に応じて、弁体部53を変位させることができる。そこで、本実施形態の温度式膨張弁5では、蒸発器6から流出した冷媒の過熱度が基準過熱度に近づくように、弁体部53を変位させている。基準過熱度は、調整ネジ53bによって、コイルバネ53aの荷重を調整することで変更することもできる。 That is, in the temperature type expansion valve 5, the valve body 53 can be displaced according to the temperature and pressure of the refrigerant flowing out of the evaporator 6. Therefore, in the temperature type expansion valve 5 of the present embodiment, the valve body 53 is displaced so that the superheat degree of the refrigerant flowing out of the evaporator 6 approaches the reference superheat degree. The reference superheat degree can be changed by adjusting the load of the coil spring 53a with the adjusting screw 53b.
 温度式膨張弁5にて減圧された低圧冷媒は、温度式膨張弁5の蒸発器側出口51bから流出して蒸発器6へ流入する。蒸発器6へ流入した低圧冷媒は、送風空気から吸熱して蒸発する。これにより、送風空気が冷却される。蒸発器6から流出した冷媒は、温度式膨張弁5の低圧側入口52aから低圧冷媒通路50cへ流入する。低圧冷媒通路50cを流通した冷媒は、圧縮機側出口52bから流出して圧縮機2へ吸入され、再び圧縮される。 The low-pressure refrigerant decompressed by the temperature type expansion valve 5 flows out of the evaporator side outlet 51b of the temperature type expansion valve 5 and flows into the evaporator 6. The low-pressure refrigerant that has flowed into the evaporator 6 absorbs heat from the blown air and evaporates. Thereby, blowing air is cooled. The refrigerant that has flowed out of the evaporator 6 flows into the low-pressure refrigerant passage 50 c from the low-pressure side inlet 52 a of the temperature type expansion valve 5. The refrigerant flowing through the low-pressure refrigerant passage 50c flows out of the compressor side outlet 52b, is sucked into the compressor 2, and is compressed again.
 本実施形態の冷凍サイクル装置1は、以上の如く作動して、送風空気を冷却することができる。この際、本実施形態の温度式膨張弁5によれば、蒸発器6出口側冷媒の過熱度を適切な値に調整することができる。これにより、蒸発器6にて冷媒を充分に蒸発させて、サイクルの成績係数(COP)を向上させることができるとともに、圧縮機2の液圧縮の発生を抑制することができる。 The refrigeration cycle apparatus 1 of the present embodiment operates as described above and can cool the blown air. Under the present circumstances, according to the temperature type expansion valve 5 of this embodiment, the superheat degree of the evaporator 6 exit side refrigerant | coolant can be adjusted to an appropriate value. Thus, the refrigerant can be sufficiently evaporated by the evaporator 6 to improve the coefficient of performance (COP) of the cycle, and the occurrence of liquid compression of the compressor 2 can be suppressed.
 ここで、温度式膨張弁5の絞り開度を、蒸発器6から流出した低圧冷媒の温度および圧力に応じて精度良く調整するためには、エレメント部54の封入空間541内の感温媒体に、蒸発器6から流出した低圧冷媒の温度および圧力を適切に伝達する必要がある。 Here, in order to accurately adjust the throttle opening degree of the temperature type expansion valve 5 according to the temperature and pressure of the low-pressure refrigerant flowing out of the evaporator 6, the temperature-sensitive medium in the enclosed space 541 of the element portion 54 is used. It is necessary to appropriately transmit the temperature and pressure of the low-pressure refrigerant that has flowed out of the evaporator 6.
 そこで、例えば、第1ボデー部51および第2ボデー部52を、金属よりも熱伝導率の低い樹脂にて形成することが考えられる。その理由は、第1ボデー部51および第2ボデー部52の双方を樹脂にて形成することで、第1ボデー部51および第2ボデー部52を介して外気温が感温媒体に伝達されてしまうことを抑制することができるからである。 Therefore, for example, it is conceivable to form the first body portion 51 and the second body portion 52 with a resin having a lower thermal conductivity than metal. The reason is that by forming both the first body part 51 and the second body part 52 with resin, the outside air temperature is transmitted to the temperature sensitive medium via the first body part 51 and the second body part 52. It is because it can suppress.
 ところが、第1ボデー部51および第2ボデー部52の双方を樹脂にて形成してしまうと、クリープ等の経年劣化によって第1ボデー部51および第2ボデー部52に寸法変化が生じてしまうことがある。このような寸法変化は、温度式膨張弁5の流量特性を変化させてしまい、温度式膨張弁5の耐久性を悪化させてしまう原因となる。 However, if both the first body portion 51 and the second body portion 52 are formed of resin, a dimensional change occurs in the first body portion 51 and the second body portion 52 due to deterioration over time such as creep. There is. Such a dimensional change changes the flow rate characteristic of the temperature type expansion valve 5 and causes the durability of the temperature type expansion valve 5 to deteriorate.
 これに対して、本実施形態の温度式膨張弁5によれば、第1ボデー部51と固定部材55が金属で形成されているので、経年劣化によって絞り通路50aの形状が変化してしまうことや、絞り通路50aとエレメント部54との相対位置が変化してしまうことを抑制することができる。従って、温度式膨張弁5の耐久性の悪化を抑制することができる。 On the other hand, according to the temperature type expansion valve 5 of the present embodiment, since the first body portion 51 and the fixing member 55 are made of metal, the shape of the throttle passage 50a changes due to deterioration over time. In addition, it is possible to suppress the relative position between the throttle passage 50a and the element portion 54 from changing. Therefore, deterioration of the durability of the temperature type expansion valve 5 can be suppressed.
 さらに、本実施形態の温度式膨張弁5では、低圧冷媒通路50cが形成される第2ボデー部52が樹脂にて形成されているので、低圧冷媒通路50cを流通する低圧冷媒に外気温が伝達されてしまうことや、第2ボデー部52を介して外気温がエレメント部54の感温媒体に伝達されてしまうことを抑制することができる。 Furthermore, in the temperature type expansion valve 5 of the present embodiment, since the second body portion 52 in which the low-pressure refrigerant passage 50c is formed is formed of resin, the outside air temperature is transmitted to the low-pressure refrigerant flowing through the low-pressure refrigerant passage 50c. It is possible to prevent the outside air temperature from being transmitted to the temperature-sensitive medium of the element portion 54 via the second body portion 52.
 これに加えて、固定部材55の少なくとも一部が、低圧冷媒通路50c内に配置されているので、固定部材55の少なくとも一部を低圧冷媒通路50cを流通する低圧冷媒の温度に近づけることができる。 In addition, since at least a part of the fixing member 55 is disposed in the low-pressure refrigerant passage 50c, at least a part of the fixing member 55 can be brought close to the temperature of the low-pressure refrigerant flowing through the low-pressure refrigerant passage 50c. .
 より詳細には、第1ボデー部51から固定部材55を介してエレメント部54へ外気温を伝達する伝達経路の少なくとも一部を、低圧冷媒通路50cを流通する低圧冷媒の温度に近づけることができる。従って、第1ボデー部51および固定部材55を介して外気温がエレメント部54の感温媒体に伝達されてしまうことを抑制することができる。 More specifically, at least a part of the transmission path for transmitting the outside air temperature from the first body part 51 to the element part 54 via the fixing member 55 can be brought close to the temperature of the low-pressure refrigerant flowing through the low-pressure refrigerant passage 50c. . Therefore, it is possible to suppress the outside air temperature from being transmitted to the temperature sensitive medium of the element portion 54 through the first body portion 51 and the fixing member 55.
 その結果、本実施形態の温度式膨張弁5によれば、耐久性の悪化を招くことなく、蒸発器6から流出した冷媒の温度および圧力に応じて絞り開度を精度良く調整することができる。 As a result, according to the temperature type expansion valve 5 of the present embodiment, the throttle opening can be accurately adjusted according to the temperature and pressure of the refrigerant flowing out from the evaporator 6 without deteriorating durability. .
 また、本実施形態の温度式膨張弁5では、樹脂で形成された第2ボデー部52に、低温の低圧冷媒が流通する低圧冷媒通路50cが形成されている。このため、第2ボデー部52の温度上昇が少なく、第2ボデー部52に要求される耐熱性も低くなる。従って、第2ボデー部52として、比較的安価で加工し易い樹脂材料で形成されたものを採用することができる。 Further, in the temperature type expansion valve 5 of the present embodiment, the low pressure refrigerant passage 50c through which the low temperature low pressure refrigerant flows is formed in the second body portion 52 formed of resin. For this reason, the temperature rise of the 2nd body part 52 is few, and the heat resistance requested | required of the 2nd body part 52 also becomes low. Therefore, the second body portion 52 can be formed of a resin material that is relatively inexpensive and easy to process.
 また、本実施形態の温度式膨張弁5では、第2ボデー部52を第1ボデー部51とエレメント部54との間に配置している。従って、固定部材55を介して、第1ボデー部51とエレメント部54を固定することによって、第2ボデー部52を挟持することができ、第2ボデー部52を容易に固定することができる。 Further, in the temperature type expansion valve 5 of the present embodiment, the second body portion 52 is disposed between the first body portion 51 and the element portion 54. Therefore, by fixing the first body part 51 and the element part 54 via the fixing member 55, the second body part 52 can be sandwiched, and the second body part 52 can be easily fixed.
 また、本実施形態の温度式膨張弁5では、筒状の固定部材55を採用して、作動棒54cの外周側に配置している。従って、固定部材55を設けても、温度式膨張弁5全体としての大型化を招くことがない。さらに、固定部材55を、容易に低圧冷媒通路50cを貫通するように配置することができる。 Moreover, in the temperature type expansion valve 5 of this embodiment, the cylindrical fixing member 55 is employ | adopted and arrange | positioned at the outer peripheral side of the action | operation rod 54c. Therefore, even if the fixing member 55 is provided, the size of the temperature expansion valve 5 as a whole is not increased. Furthermore, the fixing member 55 can be easily disposed so as to penetrate the low-pressure refrigerant passage 50c.
 また、本実施形態では、固定部材55の筒状側面に均圧穴55aを形成するとともに、固定部材55の内部に連通路55bを形成している。従って、導入空間542内の冷媒圧力および冷媒温度を速やかに変化させることができる。そして、封入空間541内の感温媒体に低圧冷媒の温度を速やかに伝達することができる。その結果、絞り開度をより一層精度良く調整することができる。 In the present embodiment, the pressure equalizing hole 55 a is formed on the cylindrical side surface of the fixing member 55, and the communication path 55 b is formed inside the fixing member 55. Therefore, the refrigerant pressure and the refrigerant temperature in the introduction space 542 can be quickly changed. Then, the temperature of the low-pressure refrigerant can be quickly transmitted to the temperature-sensitive medium in the enclosed space 541. As a result, the throttle opening can be adjusted with higher accuracy.
 (第2実施形態)
 本実施形態では、第1実施形態に対して、図4に示すように、固定部材55および第2ボデー部52を変更した例を説明する。なお、図4では、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面でも同様である。
(Second Embodiment)
This embodiment demonstrates the example which changed the fixing member 55 and the 2nd body part 52 as shown in FIG. 4 with respect to 1st Embodiment. In FIG. 4, the same or equivalent parts as those in the first embodiment are denoted by the same reference numerals. The same applies to the following drawings.
 本実施形態の固定部材55は、第1ボデー部51に対して別部材で形成されている。本実施形態の固定部材55は、第1ボデー部51と同じ種類の金属で形成されている。本実施形態の固定部材55は、エレメント部54の反対側の端部が第1ボデー部51にネジ締結されている。 The fixing member 55 of the present embodiment is formed as a separate member with respect to the first body portion 51. The fixing member 55 of this embodiment is formed of the same type of metal as the first body portion 51. In the fixing member 55 of the present embodiment, the end portion on the opposite side of the element portion 54 is screwed to the first body portion 51.
 また、本実施形態の防振バネ54dは、固定部材55の連通路55b内に配置されている。また、本実施形態の第2ボデー部52では、低圧冷媒通路50c、低圧側入口52a、および圧縮機側出口52bの内径が、第1実施形態と異なるもの(本実施形態では、小さいもの)を採用している。 Further, the vibration isolating spring 54d of the present embodiment is disposed in the communication path 55b of the fixing member 55. In the second body portion 52 of the present embodiment, the low pressure refrigerant passage 50c, the low pressure side inlet 52a, and the compressor side outlet 52b are different in inner diameter from the first embodiment (small in this embodiment). Adopted.
 その他の構成および作動は、第2実施形態と同様である。従って、本実施形態の温度式膨張弁5においても、耐久性の悪化を招くことなく、蒸発器6から流出した冷媒の温度および圧力に応じて絞り開度を精度良く調整することができる。 Other configurations and operations are the same as those in the second embodiment. Therefore, also in the temperature type expansion valve 5 of the present embodiment, the throttle opening can be accurately adjusted according to the temperature and pressure of the refrigerant flowing out of the evaporator 6 without deteriorating durability.
 また、本実施形態では、連通路55b内に防振バネ54dを配置しているので、連通路55b内の空間を有効に活用することができる。さらに、図5に示すように、連通路55b内に防振バネ54dを複数個(図5に示す変形例では、2個)配置してもよい。これによれば、絞り通路50aの中心軸と作動棒54cの中心軸との同軸度を向上させることができ、絞り開度をより一層精度良く調整することができる。 Further, in the present embodiment, since the anti-vibration spring 54d is disposed in the communication path 55b, the space in the communication path 55b can be used effectively. Furthermore, as shown in FIG. 5, a plurality of vibration-proof springs 54d (two in the modification shown in FIG. 5) may be arranged in the communication path 55b. According to this, the coaxiality between the central axis of the throttle passage 50a and the central axis of the operating rod 54c can be improved, and the throttle opening can be adjusted with higher accuracy.
 また、本実施形態では、第2ボデー部52を変更しているので、第1ボデー部51、エレメント部54等を変更することなく、低圧側入口52aおよび圧縮機側出口52bの内径を変更することができる。つまり、温度式膨張弁5では、第1ボデー部51と第2ボデー部52が別部材で形成されているので、いずれか一方を変更することによって、配管径の異なる幅広い冷凍サイクル装置に適用することができる。 In the present embodiment, since the second body portion 52 is changed, the inner diameters of the low pressure side inlet 52a and the compressor side outlet 52b are changed without changing the first body portion 51, the element portion 54, and the like. be able to. That is, in the temperature type expansion valve 5, since the first body part 51 and the second body part 52 are formed as separate members, by changing either one of them, it is applied to a wide refrigeration cycle apparatus having different pipe diameters. be able to.
 さらに、本実施形態の低圧冷媒通路50cは円柱状に形成されているので、低圧側入口52aへ流入する冷媒の流入方向(すなわち、低圧側入口52aを形成する開口穴の軸線方向)と圧縮機側出口52bから流出する冷媒の流出方向(すなわち、圧縮機側出口52bを形成する開口穴の軸線方向)が一致している。 Furthermore, since the low-pressure refrigerant passage 50c of the present embodiment is formed in a columnar shape, the inflow direction of the refrigerant flowing into the low-pressure side inlet 52a (that is, the axial direction of the opening hole forming the low-pressure side inlet 52a) and the compressor The outflow direction of the refrigerant flowing out from the side outlet 52b (that is, the axial direction of the opening hole forming the compressor side outlet 52b) coincides.
 これに対して、低圧冷媒通路50cを湾曲した形状に形成することで、低圧側入口52aへ流入する冷媒の流入方向と圧縮機側出口52bから流出する冷媒の流出方向とを異なる方向とすることができる。従って、温度式膨張弁5は、配管取付位置の異なる幅広い冷凍サイクル装置に適用することができる。 On the other hand, by forming the low-pressure refrigerant passage 50c into a curved shape, the inflow direction of the refrigerant flowing into the low-pressure side inlet 52a and the outflow direction of the refrigerant flowing out from the compressor-side outlet 52b are made different directions. Can do. Therefore, the temperature type expansion valve 5 can be applied to a wide range of refrigeration cycle apparatuses having different pipe mounting positions.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the above-described embodiment, and various modifications can be made as follows without departing from the spirit of the present disclosure.
 上述の実施形態では、冷凍サイクル装置の冷媒として、冷媒としてR134aを採用した例を説明したが、冷媒はこれに限定されない。例えば、R1234yf、R600a、R410A、R404A、R32、R407C、等を採用してもよい。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。 In the above-described embodiment, the example in which R134a is employed as the refrigerant has been described as the refrigerant of the refrigeration cycle apparatus, but the refrigerant is not limited to this. For example, R1234yf, R600a, R410A, R404A, R32, R407C, etc. may be adopted. Or you may employ | adopt the mixed refrigerant | coolant etc. which mixed multiple types among these refrigerant | coolants.
 従って、感温媒体の主成分もR134aに限定されない。例えば、感温媒体として、複数種の冷媒を混合したものを採用してもよいし、冷媒に、ヘリウムや窒素等の不活性ガスを加えたものを採用してもよい。 Therefore, the main component of the temperature sensitive medium is not limited to R134a. For example, a mixture of a plurality of types of refrigerants may be employed as the temperature sensitive medium, or a refrigerant obtained by adding an inert gas such as helium or nitrogen to the refrigerant may be employed.
 上述の実施形態では、温度式膨張弁5の製造方法の一例を説明したが、第2ボデー部取付工程の後に、エレメント部取付工程を実施することで、第1ボデー部51、第2ボデー部52、およびエレメント部54を容易に固定することができる。従って、各工程の順序は、上述の実施形態に開示した順序に限定されない。例えば、弁体部収容工程は、エレメント部取付工程の後に実行してもよい。 In the above-described embodiment, an example of the manufacturing method of the temperature type expansion valve 5 has been described. However, the first body portion 51 and the second body portion are performed by performing the element portion attaching step after the second body portion attaching step. 52 and the element portion 54 can be easily fixed. Therefore, the order of the steps is not limited to the order disclosed in the above-described embodiment. For example, the valve body housing step may be executed after the element portion mounting step.
 上述の第2実施形態では、固定部材55と第1ボデー部51とをネジ締結によって固定した例を説明したが、固定部材55と第1ボデー部51との固定態様はこれに限定されない。例えば、固定部材55を第1ボデー部51に圧入によって固定してもよいし、接着、溶接等の接合手段を用いて固定してもよい。 In the second embodiment described above, the example in which the fixing member 55 and the first body portion 51 are fixed by screw fastening has been described, but the fixing mode between the fixing member 55 and the first body portion 51 is not limited to this. For example, the fixing member 55 may be fixed to the first body portion 51 by press fitting, or may be fixed using a joining means such as adhesion or welding.
 本開示に係る温度式膨張弁5の適用は、上述の実施形態に開示された冷凍サイクル装置1に限定されない。 The application of the temperature type expansion valve 5 according to the present disclosure is not limited to the refrigeration cycle apparatus 1 disclosed in the above embodiment.
 例えば、圧縮機にて昇圧過程の冷媒に中間圧冷媒を合流させる、いわゆるガスインジェクションサイクルを構成する冷凍サイクル装置に適用してもよい。この場合は、例えば、高圧冷媒を中間圧冷媒となるまで減圧させる高段側減圧装置として用いてもよいし、中間圧冷媒を低圧冷媒となるまで減圧させる低段側減圧装置として用いてもよい。 For example, the present invention may be applied to a refrigeration cycle apparatus that constitutes a so-called gas injection cycle in which an intermediate-pressure refrigerant is merged with a refrigerant in a pressure increasing process by a compressor. In this case, for example, it may be used as a high-stage decompression device that decompresses the high-pressure refrigerant until it becomes an intermediate-pressure refrigerant, or as a low-stage decompression device that decompresses the intermediate-pressure refrigerant until it becomes a low-pressure refrigerant. .
 また、冷媒減圧装置としてエジェクタを備える、いわゆるエジェクタ式冷凍サイクルを構成する冷凍サイクル装置に適用してもよい。この場合は、例えば、エジェクタのノズル部へ流入させる冷媒を中間圧冷媒となるまで減圧させる中間圧減圧装置として用いてもよい。 Further, the present invention may be applied to a refrigeration cycle apparatus that constitutes a so-called ejector refrigeration cycle that includes an ejector as a refrigerant decompression apparatus. In this case, for example, the refrigerant that flows into the nozzle portion of the ejector may be used as an intermediate pressure reducing device that reduces the pressure until it becomes an intermediate pressure refrigerant.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態が本開示に示されているが、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, although various combinations and forms are shown in the present disclosure, other combinations and forms including only one element, more or less than them are also included in the scope and concept of the present disclosure. Is.

Claims (3)

  1.  蒸気圧縮式の冷凍サイクル装置に適用される温度式膨張弁であって、
     高圧冷媒を減圧させる絞り通路(50a)が形成された第1ボデー部(51)と、
     低圧冷媒を流通させる低圧冷媒通路(50c)が形成された第2ボデー部(52)と、
     前記第1ボデー部内に収容されて前記絞り通路の通路断面積を変化させる弁体部(53)と、
     前記弁体部を変位させるエレメント部(54)と、
     前記第1ボデー部と前記エレメント部とを互いに固定する固定部材(55)と、を備え、
     前記エレメント部は、前記低圧冷媒通路を流通する低圧冷媒の温度および圧力に応じて前記弁体部を変位させるものであり、
     前記第1ボデー部および前記固定部材は、金属で形成されており、
     前記第2ボデー部は、前記第1ボデー部および前記固定部材よりも熱伝達率の低い樹脂で形成されており、
     前記第2ボデー部は、前記エレメント部と前記第1ボデー部との間に配置されており、
     前記固定部材の少なくとも一部は、前記低圧冷媒通路内に配置されている温度式膨張弁。
    A temperature type expansion valve applied to a vapor compression refrigeration cycle apparatus,
    A first body part (51) formed with a throttle passage (50a) for depressurizing the high-pressure refrigerant;
    A second body part (52) formed with a low-pressure refrigerant passage (50c) for circulating the low-pressure refrigerant;
    A valve body portion (53) accommodated in the first body portion and changing a cross-sectional area of the throttle passage;
    An element part (54) for displacing the valve body part;
    A fixing member (55) for fixing the first body part and the element part to each other;
    The element portion displaces the valve body portion according to the temperature and pressure of the low-pressure refrigerant flowing through the low-pressure refrigerant passage,
    The first body part and the fixing member are made of metal,
    The second body part is formed of a resin having a lower heat transfer coefficient than the first body part and the fixing member,
    The second body part is disposed between the element part and the first body part,
    A temperature type expansion valve in which at least a part of the fixing member is disposed in the low-pressure refrigerant passage.
  2.  前記エレメント部は、前記低圧冷媒通路を流通する低圧冷媒の温度および圧力に応じて変形する変形部材(54b)、および前記変形部材の変形を前記弁体部に伝達する柱状の作動棒(54c)を有し、
     前記固定部材は、筒状に形成されて前記作動棒の周囲に配置されている請求項1に記載の温度式膨張弁。
    The element portion includes a deformable member (54b) that deforms according to the temperature and pressure of the low-pressure refrigerant that flows through the low-pressure refrigerant passage, and a columnar operating rod (54c) that transmits deformation of the deformable member to the valve body portion. Have
    The temperature type expansion valve according to claim 1, wherein the fixing member is formed in a cylindrical shape and disposed around the operating rod.
  3.  前記固定部材の外周面には内外を連通させる均圧穴(55a)が形成されており、
     前記固定部材の内部には、前記低圧冷媒を前記エレメント部側へ導く連通路(55b)が形成されている請求項2に記載の温度式膨張弁。
    A pressure equalizing hole (55a) for communicating the inside and the outside is formed on the outer peripheral surface of the fixing member,
    The temperature type expansion valve according to claim 2, wherein a communication path (55b) for guiding the low-pressure refrigerant to the element part side is formed inside the fixing member.
PCT/JP2018/008670 2017-03-17 2018-03-07 Thermal expansion valve WO2018168590A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017052052A JP6828532B2 (en) 2017-03-17 2017-03-17 Temperature expansion valve
JP2017-052052 2017-03-17

Publications (1)

Publication Number Publication Date
WO2018168590A1 true WO2018168590A1 (en) 2018-09-20

Family

ID=63523768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008670 WO2018168590A1 (en) 2017-03-17 2018-03-07 Thermal expansion valve

Country Status (2)

Country Link
JP (1) JP6828532B2 (en)
WO (1) WO2018168590A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11754204B2 (en) 2020-07-27 2023-09-12 Hanon Systems Stabilized h-plate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7403148B2 (en) 2019-09-13 2023-12-22 株式会社不二工機 expansion valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989154A (en) * 1995-07-13 1997-03-31 Pacific Ind Co Ltd Temperature-type expansion valve
JPH10300281A (en) * 1997-04-23 1998-11-13 Tgk Co Ltd Expansion valve
JP2003307372A (en) * 2002-04-15 2003-10-31 Tgk Co Ltd Expansion valve
JP2008164207A (en) * 2006-12-27 2008-07-17 Tgk Co Ltd Expansion valve with solenoid valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989154A (en) * 1995-07-13 1997-03-31 Pacific Ind Co Ltd Temperature-type expansion valve
JPH10300281A (en) * 1997-04-23 1998-11-13 Tgk Co Ltd Expansion valve
JP2003307372A (en) * 2002-04-15 2003-10-31 Tgk Co Ltd Expansion valve
JP2008164207A (en) * 2006-12-27 2008-07-17 Tgk Co Ltd Expansion valve with solenoid valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11754204B2 (en) 2020-07-27 2023-09-12 Hanon Systems Stabilized h-plate

Also Published As

Publication number Publication date
JP2018155309A (en) 2018-10-04
JP6828532B2 (en) 2021-02-10

Similar Documents

Publication Publication Date Title
USRE42908E1 (en) Vapor-compression-type refrigerating machine
US6053417A (en) Expansion valve integrated with electromagnetic valve
JP6370269B2 (en) Motorized valve and refrigeration cycle
CN107615204B (en) Pressure reducing valve
WO2017038270A1 (en) Throttling device and refrigeration cycle
WO2018168590A1 (en) Thermal expansion valve
WO2015037207A1 (en) Expansion valve
AU2015416486B2 (en) Air conditioner
JP5440155B2 (en) Decompressor
US10240831B2 (en) Expansion valve
JP6007369B2 (en) Control valve
WO2017038271A1 (en) Throttling device and refrigeration cycle
JP2007298273A (en) Vapor compression type refrigerator
JP2008164239A (en) Pressure regulation valve
JP2006234207A (en) Refrigerating cycle pressure reducing device
JP4676166B2 (en) Safety valve device for refrigeration cycle
WO2019155805A1 (en) Ejector refrigeration cycle, and flow rate adjustment valve
JP4292676B2 (en) Expansion valve
JP2019074204A (en) Joint
WO2015072088A1 (en) Expansion valve
JP2015137815A (en) Expansion valve and vapor compression type refrigeration cycle device
JP2020060308A (en) Expansion valve
JPH0297864A (en) Evaporation pressure regulating valve for cooler device
JP6634624B2 (en) Expansion valve
WO2019077940A1 (en) Joint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18766612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18766612

Country of ref document: EP

Kind code of ref document: A1