JPH0989154A - Temperature-type expansion valve - Google Patents

Temperature-type expansion valve

Info

Publication number
JPH0989154A
JPH0989154A JP8122435A JP12243596A JPH0989154A JP H0989154 A JPH0989154 A JP H0989154A JP 8122435 A JP8122435 A JP 8122435A JP 12243596 A JP12243596 A JP 12243596A JP H0989154 A JPH0989154 A JP H0989154A
Authority
JP
Japan
Prior art keywords
temperature
valve
valve body
flow path
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8122435A
Other languages
Japanese (ja)
Other versions
JP3130246B2 (en
Inventor
Satoru Okada
悟 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Industrial Co Ltd
Taiheiyo Kogyo KK
Original Assignee
Pacific Industrial Co Ltd
Taiheiyo Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Industrial Co Ltd, Taiheiyo Kogyo KK filed Critical Pacific Industrial Co Ltd
Priority to JP08122435A priority Critical patent/JP3130246B2/en
Priority to EP96119717A priority patent/EP0846927B1/en
Publication of JPH0989154A publication Critical patent/JPH0989154A/en
Application granted granted Critical
Publication of JP3130246B2 publication Critical patent/JP3130246B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/05Cost reduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/221Preventing leaks from developing

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To more precisely control the opening of an expansion oriffice depending on the temperature of low-pressure refrigerant, by decreasing the effect of the atmospheric temperature in relation to a temperature sensing bar of the expansion valve. SOLUTION: In a temperature-type expansion valve, a valve main body 41 is formed of resin, and the valve main body 41 is provided with a throttle mechanism 46 composed of an orifice 47 and a valve element 48 formed of metallic members, and an operating rod 69 for operating the valve element 48, and a control mechanism 54 for controlling the throttle mechanism 46 according to the temperature of refrigerant to be fed out from an evaporator 5 toward a compressor 1. Moreover, the valve main body 41 and the control mechanism 54 are fixed by caulking. A metallic collar 71 is arranged on an attaching hole part 70 of the valve main body 41 in relation to a pipe attaching flange. A temperature sensing rod 65 is held by two-point supporting of a first slide hole 63 and a second slide hole 64.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、エアコンの冷凍サ
イクルに用いられる温度式膨張弁に係り、この冷凍サイ
クルの蒸発器5から圧縮機1に向かって送り出される冷
媒の温度に応答して、蒸発器5に入る冷媒の量を自動的
に制御するための温度式膨張弁に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature type expansion valve used in a refrigerating cycle of an air conditioner, which evaporates in response to the temperature of a refrigerant sent from an evaporator 5 of the refrigerating cycle toward a compressor 1. The present invention relates to a thermal expansion valve for automatically controlling the amount of refrigerant entering the container 5.

【0002】[0002]

【従来の技術】図6は、従来の温度式膨張弁4を自動車
用空調装置の冷凍サイクルに組み込んだ状態を示す縦断
面図を示すもので、この自動車用空調装置は、圧縮機
1、凝縮器2、レシーバー3、膨張弁4及び蒸発器5を
備えている。圧縮機1は、電磁クラッチ(図示せず)を
介して自動車エンジンの回転力を受けて駆動する。凝縮
器2は、圧縮機1にて断熱圧縮された高温高圧のガス状
冷媒を車室外の空気との熱交換により凝縮し液冷媒とす
る。レシーバー3は、凝縮器2にて冷却された液冷媒を
一時貯留すると共に冷媒中の水分や塵埃を取り除くドラ
イヤ(図示せず)を内蔵している。膨張弁4は、この液
冷媒を断熱膨張して低温低圧の霧状冷媒とする。蒸発器
5は、車室内へ送られる空気との熱交換によってこの霧
状冷媒を気化させる。
2. Description of the Related Art FIG. 6 is a vertical cross-sectional view showing a state in which a conventional temperature type expansion valve 4 is incorporated in a refrigeration cycle of an automobile air conditioner. It is equipped with a vessel 2, a receiver 3, an expansion valve 4 and an evaporator 5. The compressor 1 is driven by receiving the rotational force of an automobile engine via an electromagnetic clutch (not shown). The condenser 2 condenses the high-temperature and high-pressure gaseous refrigerant adiabatically compressed by the compressor 1 by exchanging heat with air outside the vehicle compartment to form a liquid refrigerant. The receiver 3 has a built-in dryer (not shown) for temporarily storing the liquid refrigerant cooled by the condenser 2 and removing moisture and dust in the refrigerant. The expansion valve 4 adiabatically expands the liquid refrigerant into a low-temperature and low-pressure mist refrigerant. The evaporator 5 vaporizes the mist refrigerant by heat exchange with air sent into the vehicle interior.

【0003】従来の膨張弁4は、図6に示すように、直
方体の金属製の弁本体6内に、凝縮器2の出口と連通す
る第一の流路7と、蒸発器の入口と連通する第二の流路
8と、蒸発器5の出口と圧縮機1の入り口側とを連通す
る第三の流路9とを備えている。絞り機構13は、前記
第一の流路7の奥部に配置され、オリフィス25、弁体
27、及び圧縮コイルばね29を有している。前記オリ
フィス25は、第一の流路と第二の流路とを連通させる
ために弁本体6に形成され、弁室12内に開口する入口
を有しており、その入口の周囲には弁座26が形成され
ている。前記弁体26は、圧縮コイルばね29により弁
座26に向かって付勢されており、この弁体27は弁座
26に当接することによりオリフィス25を閉鎖し、弁
座26から離間することによりオリフィス25を開放す
るようになっている。
As shown in FIG. 6, a conventional expansion valve 4 has a rectangular parallelepiped metal valve body 6 in which a first flow path 7 communicating with an outlet of a condenser 2 and an inlet of an evaporator are communicated with each other. And a third flow passage 9 that connects the outlet of the evaporator 5 and the inlet of the compressor 1 to each other. The throttling mechanism 13 is arranged in the inner part of the first flow path 7 and has an orifice 25, a valve body 27, and a compression coil spring 29. The orifice 25 is formed in the valve body 6 for communicating the first flow path and the second flow path, and has an inlet opening into the valve chamber 12, and a valve is provided around the inlet. A seat 26 is formed. The valve body 26 is biased toward the valve seat 26 by a compression coil spring 29. The valve body 27 abuts the valve seat 26 to close the orifice 25 and separate from the valve seat 26. The orifice 25 is opened.

【0004】また、前記第三の流路9の右方は前記圧縮
機1に接続され、圧縮機1は前記凝縮器2とレシーバー
3を介して前記第一の流路7に接続されている。また、
前記第三の流路9の左方は前記蒸発器5に接続され、蒸
発器5は前記第二の流路8と接続されている。
The right side of the third flow passage 9 is connected to the compressor 1, and the compressor 1 is connected to the first flow passage 7 via the condenser 2 and the receiver 3. . Also,
The left side of the third flow path 9 is connected to the evaporator 5, and the evaporator 5 is connected to the second flow path 8.

【0005】一方、弁本体6の上部には、上蓋16と、
下蓋18と、該上蓋16と下蓋18とに挟持されたステ
ンレス製の薄板よりなるダイヤフラム17とで構成され
た制御機構14が、パッキン20を介して気密的に弁本
体6の均圧室11の上部へねじ止めするとともに、ねじ
部18bに接着剤を塗布してねじの緩みを防止してい
る。
On the other hand, on the upper portion of the valve body 6, an upper lid 16 and
A control mechanism 14 including a lower lid 18 and a diaphragm 17 made of a stainless steel thin plate sandwiched between the upper lid 16 and the lower lid 18 includes a pressure equalizing chamber of the valve body 6 in an airtight manner via a packing 20. The screw is fastened to the upper portion of 11 and an adhesive is applied to the screw portion 18b to prevent the screw from loosening.

【0006】また、上蓋16とダイヤフラム16とで形
成される感熱室10には、飽和蒸気ガスが封入されてい
る。該感熱室10への飽和蒸気ガスの封入は、上蓋16
にろう付けで一体的に接続されたパイプ33より前記飽
和蒸気ガスを管熱室10に充填し、その後パイプの先端
より少し内方を潰して仮の気密状態にした後、パイプ3
3の先端をはんだ等で恒久的に封止している。
A saturated vapor gas is filled in the heat sensitive chamber 10 formed by the upper lid 16 and the diaphragm 16. The saturated vapor gas is sealed in the heat sensitive chamber 10 by the upper lid 16
The pipe steam chamber 10 is filled with the saturated vapor gas from the pipe 33 integrally connected by brazing, and then the inner side of the pipe is crushed slightly to make a temporary airtight state.
The tip of 3 is permanently sealed with solder or the like.

【0007】また、前記感温棒21は、その中央部が第
三の流路9を直角方向に貫通し、該第三の流路9を流れ
る冷媒の温度をディッシュ部22を介してダイヤフラム
17上部の感熱室10に伝達するとともに、該感熱室1
0における飽和蒸気ガスの熱膨張や熱収縮をダイヤフラ
ム17、感温棒21、作動棒24を介して弁体27に伝
達する構成になっている。
The central portion of the temperature sensitive rod 21 penetrates the third flow passage 9 at a right angle, and the temperature of the refrigerant flowing in the third flow passage 9 is passed through the dish portion 22 to the diaphragm 17. The heat-sensitive chamber 1 is transmitted to the heat-sensitive chamber 10 on the upper side.
The thermal expansion and contraction of the saturated vapor gas at 0 are transmitted to the valve body 27 via the diaphragm 17, the temperature sensitive rod 21, and the operating rod 24.

【0008】また、前記感温棒21の上部のディッシュ
部22は前記下蓋18の筒状ねじ部内壁と第二の流路8
と第三の流路9との間に形成された摺動孔32とで摺動
自在に保持されている。
Further, the dish portion 22 at the upper portion of the temperature sensitive rod 21 has an inner wall of the cylindrical screw portion of the lower lid 18 and the second flow path 8.
And a slide hole 32 formed between the third flow path 9 and the third flow path 9 are slidably held.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、このよ
うに構成されている従来の膨張弁にあっては、下記のよ
うな問題点があった。 (1)従来の膨張弁4の弁本体6は金属製材料により形
成されているため、熱伝導率が良い。このため、膨張弁
4の周囲の温度が弁本体6を介して均圧室11内のガス
状冷媒に伝達され易い。通常、膨張弁は自動車のエンジ
ンルーム内に配置されるが、エンジンルーム内の温度は
エンジンの発熱等の影響を受けて高温となる。従って、
均圧室11内の冷媒の温度が感温棒21等を介して感熱
室10内の飽和ガスに伝達されたとき、その感熱室10
内の飽和ガスの温度が、第3の流路44を流れる冷媒の
温度よりも高くなる。その結果、弁体27によるオリフ
ィス25の開放量が正確に制御されず、蒸発器5に導入
される冷媒の流量が正確に調整されなくなる。また、弁
体27が頻繁に開放及び閉鎖動作されて、蒸発器5から
車室内に送られる空気の温度が短時間で頻繁に変動する
現象も発生する。
However, the conventional expansion valve having such a structure has the following problems. (1) Since the valve body 6 of the conventional expansion valve 4 is made of a metallic material, it has good thermal conductivity. Therefore, the temperature around the expansion valve 4 is easily transmitted to the gaseous refrigerant in the pressure equalizing chamber 11 via the valve body 6. Normally, the expansion valve is arranged in the engine room of an automobile, but the temperature in the engine room becomes high due to the heat generation of the engine. Therefore,
When the temperature of the refrigerant in the pressure equalizing chamber 11 is transferred to the saturated gas in the heat sensitive chamber 10 via the temperature sensitive rod 21 or the like, the heat sensitive chamber 10
The temperature of the saturated gas inside becomes higher than the temperature of the refrigerant flowing through the third flow path 44. As a result, the opening amount of the orifice 25 by the valve body 27 is not accurately controlled, and the flow rate of the refrigerant introduced into the evaporator 5 cannot be adjusted accurately. In addition, the valve body 27 is frequently opened and closed, and the temperature of the air sent from the evaporator 5 into the vehicle compartment frequently changes in a short time.

【0010】(2)第1の流路7内に導入された高温で
且つ高圧の液状冷媒は、オリフィス25を通過するのに
伴い低温で且つ低圧の霧状冷媒となって第2の流路8内
に導入される。しかし、金属製の弁本体6は熱伝導率が
良いので、第1の流路7内の高温の液状冷媒と第2の流
路8内の低温の霧状冷媒との間における熱の伝導を十分
に遮断することができない。その結果、熱エネルギーの
ロスが生じ、空調装置における冷房効率が低下する。
(2) The high-temperature and high-pressure liquid refrigerant introduced into the first flow path 7 becomes a low-temperature and low-pressure atomized refrigerant as it passes through the orifice 25, and becomes the second flow path. Introduced in 8. However, since the metal valve body 6 has a good thermal conductivity, heat conduction between the high temperature liquid refrigerant in the first flow path 7 and the low temperature atomized refrigerant in the second flow path 8 is prevented. I can't block it enough. As a result, heat energy is lost, and the cooling efficiency of the air conditioner decreases.

【0011】(3)金属製の弁本体6は重量が重い。膨
張弁4は第1〜第3の流路7〜9に接続される配管によ
って支持されることが多いが、膨張弁4が重いと、振動
により配管に大きな負荷が加わって、配管が損傷する可
能性が高くなるだけでなく加工コストが非常に高くな
る。このため、弁本体6を合成樹脂にて成形するのが望
ましいが、合成樹脂は金属より低強度であるため、弁体
27が合成樹脂製の弁座26に当接する動作が繰り返さ
れると、弁座26が損傷する可能性がある。弁本体6を
金属で形成した場合には、オリフィス25の入口の周囲
に弁体27と同サイズの鋼球を押し当てることにより弁
座26を成形するのが普通である。このように弁座26
を成形した場合には、弁体27が弁座26に接触したと
きに両者間に隙間を生じることはない。しかし、弁本体
6を合成樹脂で成形した場合には、弁座26を上記のよ
うな方法で成形することができないため、弁体27が弁
座26に接触したとき両者間に隙間が生じ、冷媒を確実
に遮断することができない。
(3) The metal valve body 6 is heavy. The expansion valve 4 is often supported by pipes connected to the first to third flow paths 7 to 9, but when the expansion valve 4 is heavy, a large load is applied to the pipes due to vibration, and the pipes are damaged. Not only is it more likely, but the processing costs are much higher. For this reason, it is desirable to mold the valve body 6 with a synthetic resin. However, since the synthetic resin has a lower strength than metal, when the operation in which the valve body 27 abuts on the synthetic resin valve seat 26 is repeated, Seat 26 may be damaged. When the valve body 6 is made of metal, the valve seat 26 is usually formed by pressing a steel ball having the same size as the valve body 27 around the entrance of the orifice 25. Thus, the valve seat 26
In the case of molding, when the valve body 27 comes into contact with the valve seat 26, no gap is formed between the two. However, when the valve body 6 is formed of synthetic resin, the valve seat 26 cannot be formed by the above-described method, so when the valve body 27 comes into contact with the valve seat 26, a gap occurs between the two. The refrigerant cannot be shut off reliably.

【0012】(4)制御機構14は、下蓋18の取付筒
18aに形成された雄ねじ18bを均圧室11の内周面
に形成された雌ねじに螺着することにより、弁本体6に
取り付けられている。下蓋18はプレス加工にて安価に
形成できるが、取付筒18aの雄ねじ18bは切削加工
により形成する必要があり、その切削加工に要するコス
トが高くなる。加えて、取付筒18aの雄ねじ18bの
緩みを防止するために接着剤を使用する必要があり、制
御機構14の取付作業が面倒になる。
(4) The control mechanism 14 is mounted on the valve body 6 by screwing the male screw 18b formed on the mounting cylinder 18a of the lower lid 18 onto the female screw formed on the inner peripheral surface of the pressure equalizing chamber 11. Has been. Although the lower lid 18 can be formed at a low cost by press working, the male screw 18b of the mounting cylinder 18a needs to be formed by cutting, which increases the cost required for the cutting. In addition, it is necessary to use an adhesive in order to prevent the male screw 18b of the mounting cylinder 18a from loosening, which makes the mounting work of the control mechanism 14 troublesome.

【0013】(5)感温棒21の下端部は、弁本体6に
形成された摺動孔32によって支持されていたが、感温
棒21の上端部は、弁本体6に対してねじ止めされた下
蓋18の取付筒18aの内周面によって支持されてい
る。言い変えれば、感温棒21の下端部が弁本体6に直
接支持されているのに対し、感温棒21の上端部は弁本
体6に取付筒18aを介して間接的に支持されている。
弁本体6に直接形成された摺動孔32と、弁本体6にね
じ止めされた取付筒18aとを同心軸上に正確に位置さ
せることは困難である。このため、感温棒21の動きが
スムーズでなくなり、弁体27の動作に支障を生じる。
感温棒21は、例えば円柱状をなす金属製材料を切削加
工することにより形成される。しかし、感温棒21はそ
の上端にディッシュ部22を一体的に有しており、外径
が部分的に大きく異なる。このため、感温棒21におけ
る外径の小さい部分の切削加工に際しては、材料の切削
量が非常に大きくなってしまい、材料が無駄になる。
(5) The lower end of the temperature sensitive rod 21 was supported by the sliding hole 32 formed in the valve body 6, but the upper end of the temperature sensitive rod 21 was screwed to the valve body 6. The lower cover 18 is supported by the inner peripheral surface of the mounting cylinder 18a. In other words, the lower end of the temperature sensitive rod 21 is directly supported by the valve body 6, while the upper end of the temperature sensitive rod 21 is indirectly supported by the valve body 6 via the mounting cylinder 18a. .
It is difficult to accurately position the sliding hole 32 formed directly in the valve body 6 and the mounting cylinder 18a screwed to the valve body 6 on the concentric axis. Therefore, the movement of the temperature sensitive rod 21 is not smooth, and the operation of the valve body 27 is hindered.
The temperature sensitive rod 21 is formed by cutting a cylindrical metal material, for example. However, the temperature-sensitive rod 21 integrally has the dish portion 22 at the upper end thereof, and the outer diameter thereof is largely different. Therefore, when cutting a portion of the temperature-sensitive rod 21 having a small outer diameter, the amount of material cut becomes very large, and the material is wasted.

【0014】(6)制御機構14の感温室10内に飽和
蒸気ガスを充填する際に使用されるパイプ33は、上蓋
16の上方へ大きく突出している。このため、膨張弁を
冷凍サイクルの回路に取り付ける際に、このパイプ33
がエンジンルーム内の部品に当たって変形し、最悪の場
合にはパイプ33が破損して感熱室10の飽和蒸気ガス
が漏れる。これを防止するため、エンジンルーム内に膨
張弁4を配置するための大きなスペースを確保する必要
が生じる。感熱室10内に飽和蒸気ガスを封入する際に
は、上蓋16にろう付けされたパイプ33を洗浄した後
に飽和蒸気ガスの充填を行い、この後パイプ33の端部
を潰して仮の気密保持を行い、加えて封止用のはんだ付
け作業を行わ必要がある。このような封入作業は自動化
が困難であり、製造コストも非常に高くなる。
(6) The pipe 33 used when the saturated greenhouse gas in the greenhouse 10 of the control mechanism 14 is filled with the pipe 33 projects largely above the upper lid 16. Therefore, when the expansion valve is attached to the circuit of the refrigeration cycle, the pipe 33
Is deformed by hitting a component in the engine room, and in the worst case, the pipe 33 is damaged and saturated vapor gas in the heat-sensitive chamber 10 leaks. In order to prevent this, it is necessary to secure a large space for disposing the expansion valve 4 in the engine room. When the saturated vapor gas is sealed in the heat-sensitive chamber 10, the pipe 33 brazed to the upper lid 16 is washed and then filled with the saturated vapor gas, and then the end portion of the pipe 33 is crushed to temporarily maintain airtightness. In addition, it is necessary to perform soldering work for sealing. Such encapsulation work is difficult to automate and the manufacturing cost is very high.

【0015】[0015]

【課題を解決するための手段】本発明の目的は、膨張弁
の感温棒65に対する雰囲気温度の影響を極力少なくし
低圧冷媒の温度に依存してより正確に膨張オリフィスの
開度を制御することができるように弁本体41を樹脂で
成形することにより、弁体によるオリフィスの開放量を
正確に制御することが可能で、しかも軽量な温度式膨張
弁を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to minimize the influence of the ambient temperature on the temperature sensitive rod 65 of the expansion valve and to control the opening degree of the expansion orifice more accurately depending on the temperature of the low pressure refrigerant. By molding the valve body 41 with resin so that the temperature can be increased, it is possible to accurately control the opening amount of the orifice by the valve body and to provide a lightweight thermal expansion valve.

【0016】また、本発明は、絞り機構46のオリフィ
ス部47aを、金属部材47のインサート成形によって
形成させることにより、弁座50が損傷することがな
く、しかも弁体が弁座に接触したときに両者間に隙間が
生じることがない温度式膨張弁を提供するものである。
Further, according to the present invention, since the orifice portion 47a of the throttle mechanism 46 is formed by insert molding of the metal member 47, the valve seat 50 is not damaged and when the valve body comes into contact with the valve seat. Further, the present invention provides a thermal expansion valve in which no gap is generated between the two.

【0017】また、本発明は、膨張弁の配管部品取付穴
70に金属製のカラー71を取り付けることにより、膨
張弁本体41が配管取付フランジへ取り付けられた時
に、樹脂製の膨張弁40が高温の雰囲気に曝され、熱に
よる永久歪みが生じるのを防止する温度式膨張弁を提供
するものである。
Further, according to the present invention, the metal collar 71 is attached to the pipe component mounting hole 70 of the expansion valve, so that when the expansion valve main body 41 is attached to the pipe mounting flange, the resin expansion valve 40 has a high temperature. The present invention provides a thermal expansion valve that is prevented from being permanently deformed by heat when exposed to the atmosphere.

【0018】また、本発明は、制御機構54をかしめに
て弁本体41に固着することにより、取付けが容易且つ
確実に取り付けることができる温度式膨張弁を提供する
ものである。
The present invention also provides a thermal expansion valve which can be easily and surely mounted by fixing the control mechanism 54 to the valve body 41 by caulking.

【0019】また、本発明は、感温棒65の支持を第三
の流路44の上下に設けられた第一の摺動孔63と第二
の摺動孔64による二点支持により摺動可能に保持する
ことにより、感温棒65の動きがスムーズに行える温度
式膨張弁を提供するものである。
Further, according to the present invention, the temperature sensitive rod 65 is supported by two-point support by a first sliding hole 63 and a second sliding hole 64 provided above and below the third flow path 44. By holding it as much as possible, the temperature type expansion valve is provided in which the movement of the temperature sensitive rod 65 can be performed smoothly.

【0020】また、本発明は、上蓋55に形成した孔5
5aら該感熱室61へガスを封入するとともに鋼球62
をスポット溶接にて密封することにより、飽和蒸気ガス
を感熱室61内に容易且つ確実に封入することができ、
しかもコンパクトな温度式膨張弁を提供するものであ
る。
Further, according to the present invention, the hole 5 formed in the upper lid 55
5a and the like, the gas is sealed in the heat sensitive chamber 61, and the steel ball 62
By sealing with the spot welding, saturated vapor gas can be easily and surely enclosed in the heat-sensitive chamber 61,
Moreover, it provides a compact thermal expansion valve.

【0021】すなわち、本発明の第1は、弁本体41
と、蒸発器5に送り出す冷媒の流量を調整するための絞
り機構46と、蒸発器5から圧縮機1に向かって送り出
される冷媒の温度に応じて絞り機構46を制御する制御
機構54とを備え、前記弁本体41は、冷媒を導入する
ための第一の流路42と、導入された冷媒を蒸発器に送
り出すための第二の流路43と、蒸発器5から圧縮機1
に向かって送り出される冷媒を通過させるための第三の
流路44とを備え、前記絞り機構46は、第一の流路4
2と第二の流路43とを連通させるオリフィス47a
と、そのオリフィス47aの開放量を調整するための弁
体48とを有し、前記制御機構54は、ガスを封入した
感熱室61と、その感熱室61内の圧力に応じて変位す
るダイヤフラム57とを有し、前記第三の流路44を流
れる冷媒の温度を感熱室61内のガスに伝達し且つ、ダ
イヤフラム57の変位を弁体48に伝達する伝達部材を
備えた温度式膨張弁において、前記弁本体41を樹脂で
成形するとともに前記絞り機構46のオリフィス47a
を金属部材47のインサート成形により形成したことを
特徴とする温度式膨張弁である。
That is, the first aspect of the present invention is the valve body 41.
And a throttle mechanism 46 for adjusting the flow rate of the refrigerant sent to the evaporator 5, and a control mechanism 54 for controlling the throttle mechanism 46 according to the temperature of the refrigerant sent from the evaporator 5 toward the compressor 1. The valve body 41 includes a first flow path 42 for introducing the refrigerant, a second flow path 43 for sending the introduced refrigerant to the evaporator, and the evaporator 1 to the compressor 1
And a third flow path 44 for passing the refrigerant sent toward the first flow path 4.
Orifice 47a which connects 2 and the 2nd flow path 43
And a valve body 48 for adjusting the opening amount of the orifice 47a. The control mechanism 54 includes a heat-sensitive chamber 61 in which a gas is sealed and a diaphragm 57 that is displaced according to the pressure in the heat-sensitive chamber 61. In a thermal expansion valve having a transmission member for transmitting the temperature of the refrigerant flowing through the third flow passage 44 to the gas in the heat-sensitive chamber 61 and transmitting the displacement of the diaphragm 57 to the valve body 48. , The valve body 41 is made of resin, and the orifice 47a of the throttle mechanism 46 is formed.
Is formed by insert molding of a metal member 47.

【0022】また、本発明の第2は、請求項1記載の温
度式膨張弁において、弁本体41と制御機構54との連
結手段として、弁本体41の上端部にフランジ41aを
形成し、該フランジ41aの上面に制御機構54を配置
し、フランジ41aと制御機構54とを筒状の止め金具
60をかしめることにより一体的に固定したことを特徴
とする温度式膨張弁である。
A second aspect of the present invention is the thermal expansion valve according to the first aspect, wherein a flange 41a is formed at the upper end of the valve body 41 as a connecting means between the valve body 41 and the control mechanism 54. The temperature type expansion valve is characterized in that a control mechanism 54 is arranged on the upper surface of the flange 41a, and the flange 41a and the control mechanism 54 are integrally fixed by caulking a tubular stopper 60.

【0023】また、本発明の第3は、請求項1記載の温
度式膨張弁において、弁本体41の配管取付フランジへ
の取付穴部70に金属製のカラー71を配置したことを
特徴とする温度式膨張弁である。
A third aspect of the present invention is characterized in that, in the temperature type expansion valve according to the first aspect, a metal collar 71 is arranged in a mounting hole portion 70 of the valve body 41 to the pipe mounting flange. It is a thermal expansion valve.

【0024】また、本発明の第4は、請求項1、請求項
2および請求項3記載の温度式膨張弁において、制御機
構54のダイヤフラム57の変位を絞り機構46へ伝達
する感温棒65が第三の流路44の上下に設けられた第
一の摺動孔63と第二の摺動孔64の二点支持により保
持されていることを特徴とする温度式膨張弁である。
A fourth aspect of the present invention is a temperature-sensing rod 65 for transmitting displacement of a diaphragm 57 of a control mechanism 54 to a throttle mechanism 46 in the temperature type expansion valve according to the first, second and third aspects. Is held by two-point support of a first sliding hole 63 and a second sliding hole 64 provided above and below the third flow path 44, respectively.

【0025】また、本発明の第5は、請求項1または2
記載の温度式膨張弁において、制御機構54の感熱室6
1への飽和蒸気ガスの封止手段として、上蓋55に形成
した孔55aから該感熱室61へガスを封入した後この
孔55aを鋼球62にて閉鎖し、スポット溶接にて密封
したことを特徴とする温度式膨張弁である。
The fifth aspect of the present invention is defined by claim 1 or 2.
In the thermal expansion valve described, the heat-sensitive chamber 6 of the control mechanism 54.
As a means for sealing the saturated vapor gas into 1, the gas is sealed from the hole 55a formed in the upper lid 55 into the heat-sensitive chamber 61, and then the hole 55a is closed by a steel ball 62 and sealed by spot welding. It is a characteristic thermal expansion valve.

【0026】また、本発明の第6は、請求項1、請求項
2、請求項3または請求項4記載の温度式膨張弁におい
て、弁本体41の樹脂が、ポリフェニレンサルファイド
樹脂であることを特徴とする温度式膨張弁である。
A sixth aspect of the present invention is characterized in that in the thermal expansion valve according to claim 1, claim 2, claim 3 or claim 4, the resin of the valve body 41 is a polyphenylene sulfide resin. Is a temperature type expansion valve.

【0027】[0027]

【発明の実施の形態】以下に、本発明の実施の形態を図
面に基づいて説明する。なお、従来技術の膨張弁と同じ
部品については詳細な説明を省くと共に同一の符号を用
いている。図1は、本発明の温度式膨張弁40を自動車
用空調装置の冷凍サイクルに組み込んだ状態を示す縦断
右側面図であり、図2は、図1の正面図である。この温
度式膨張弁40は、樹脂製の弁本体41と、該弁本体4
1と一体成形される絞り機構46と制御機構54とによ
り構成されている。なお、前記弁本体41の樹脂として
は、耐冷媒・冷凍機油性及び、耐破壊圧強度、耐クリー
プ性、耐熱性に優れたポリフェニレンサルファイド樹脂
が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. The same parts as those of the conventional expansion valve are not described in detail, and are denoted by the same reference numerals. FIG. 1 is a vertical cross-sectional right side view showing a state in which the thermal expansion valve 40 of the present invention is incorporated in a refrigeration cycle of an automobile air conditioner, and FIG. 2 is a front view of FIG. The thermal expansion valve 40 includes a valve body 41 made of resin and a valve body 4
The drawing mechanism 46 and the control mechanism 54 are integrally formed with each other. The resin of the valve body 41 is preferably a polyphenylene sulfide resin having excellent resistance to refrigerant and refrigerating machine oil, resistance to crush pressure, resistance to creep, and heat resistance.

【0028】樹脂製の弁本体41には、レシーバー3を
介して凝縮器2の出口と連通する第一の流路42と、蒸
発器5の出口と連通する第二の流路43と、蒸発器5の
出口と圧縮機1の入口とを連通させる第三の流路44と
が形成されている。また、前記第一の流路42奥部の弁
本体41中心部には弁室45が形成されている。なお、
この弁室45については従来品と全く同じである。
The resin valve main body 41 has a first flow path 42 communicating with the outlet of the condenser 2 via the receiver 3, a second flow path 43 communicating with the outlet of the evaporator 5, and an evaporator. A third flow path 44 that connects the outlet of the container 5 and the inlet of the compressor 1 is formed. A valve chamber 45 is formed in the center of the valve body 41 at the inner part of the first flow path 42. In addition,
The valve chamber 45 is exactly the same as the conventional product.

【0029】絞り機構46は、冷媒を断熱膨張させるた
めのものであり、オリフィスを備えた金属部材47、弁
体48及び圧縮コイルばね49を備えている。そして、
前記金属部材47はアルミニウムよりなり、第一の流路
42と第二の流路43との間に位置するように弁本体4
1にインサート成形により固定されている。また、オリ
フィスの弁室45側には、弁座50が形成されている。
The throttling mechanism 46 is for adiabatically expanding the refrigerant, and is provided with a metal member 47 having an orifice, a valve body 48 and a compression coil spring 49. And
The metal member 47 is made of aluminum and is disposed between the first flow path 42 and the second flow path 43 so that the valve body 4 can be positioned between the first flow path 42 and the second flow path 43.
1 is fixed by insert molding. A valve seat 50 is formed on the valve chamber 45 side of the orifice.

【0030】キャップを兼ねる調整ねじ51は、弁本体
41の下端部に螺着され、圧縮コイルばね49は、弁室
45内において調整ねじ51の上面に取り付けられてい
る。球状の弁体48は、ばね座52を介して圧縮コイル
ばね49の上端に取り付けられ、該圧縮コイルばね49
により弁座50に向かって付勢されている。また、球状
の弁体48は、前記オリフィス47a下面の弁座50に
離接してオリフィス47aを開閉するようになってい
る。なお、前記調整ねじ51にはOリング53が設けら
れ、弁室45内の気密が保たれている。
The adjusting screw 51 which also serves as a cap is screwed to the lower end of the valve body 41, and the compression coil spring 49 is attached to the upper surface of the adjusting screw 51 in the valve chamber 45. The spherical valve body 48 is attached to the upper end of a compression coil spring 49 via a spring seat 52, and the compression coil spring 49
Is urged toward the valve seat 50. Further, the spherical valve element 48 is configured to open and close the orifice 47a by contacting and separating from the valve seat 50 on the lower surface of the orifice 47a. An O-ring 53 is provided on the adjusting screw 51 to keep the valve chamber 45 airtight.

【0031】制御機構54は、弁本体41の上部に装着
されるものであり、該制御機構54は、第一のカバーと
しての上蓋55と、第二のカバーとしての下蓋56と、
両蓋55、56間に挟持されたステンレス製の薄板より
なるダイヤフラム57とを有している。上蓋55及び下
蓋56は、両者間にダイヤフラム57を挾んだ状態で、
それらの外周部を溶接することにより、一体的に固定さ
れている。
The control mechanism 54 is mounted on the upper portion of the valve body 41, and the control mechanism 54 includes an upper lid 55 as a first cover and a lower lid 56 as a second cover.
It has a diaphragm 57 made of a stainless steel thin plate sandwiched between both lids 55 and 56. The upper lid 55 and the lower lid 56, with the diaphragm 57 sandwiched between them,
They are fixed integrally by welding their outer peripheral portions.

【0032】弁本体41の上端部中央には、均圧室58
が開口して形成され、弁本体41の上端外周部にはフラ
ンジ41aが形成されている。そして、このフランジ4
1a上部に、制御機構54の下蓋56がパッキン59を
介して重ね弁本体41のフランジ41aとともに制御機
構54の外周部とを覆うようにかぶせた円筒状の止め金
具60の上下部をかしめることにより両者は固定されて
いる。なお、この実施例では、円筒状の止め金具60に
よりかしめが行われているが、図1に二点鎖線で示すよ
うに、ドーム状にプレス加工された止め金具60を用い
て、上蓋55にを上方から覆うようにしてもよい。
A pressure equalizing chamber 58 is provided at the center of the upper end of the valve body 41.
Is formed by opening, and a flange 41a is formed on the outer peripheral portion of the upper end of the valve body 41. And this flange 4
The lower lid 56 of the control mechanism 54 is caulked on the upper portion 1a so as to cover the flange 41a of the stack valve main body 41 and the outer peripheral portion of the control mechanism 54 via the packing 59 so as to cover the upper and lower portions. Both are fixed by this. In this embodiment, the caulking is performed by the cylindrical stopper 60, but as shown by the chain double-dashed line in FIG. 1, the stopper 60 pressed into a dome shape is used to cover the upper lid 55. May be covered from above.

【0033】また、弁本体41には、図2に示すよう
に、膨張弁の配管部品取付穴70に金属製のカラー71
が取り付けられており、膨張弁本体41が図示しない配
管取付フランジへ取り付けられた時に、樹脂製の膨張弁
40が高温の雰囲気に曝され、熱による永久歪みが生じ
ないようになっている。
Further, in the valve body 41, as shown in FIG. 2, a metal collar 71 is provided in the piping part mounting hole 70 of the expansion valve.
When the expansion valve main body 41 is attached to a pipe mounting flange (not shown), the resin expansion valve 40 is exposed to a high temperature atmosphere so that permanent set due to heat does not occur.

【0034】前記制御機構54においては、上蓋55と
ダイヤフラム57の間に感熱室61が形成され、この感
熱室61には例えば、HFC−134a等の飽和蒸気ガ
スが上蓋55中央部に明けられた孔55aより封入さ
れ、該孔55aに鋼球62をスポット溶接で一体的に固
定することにより、外部と気密的に遮断されている。
In the control mechanism 54, a heat sensitive chamber 61 is formed between the upper lid 55 and the diaphragm 57, and a saturated vapor gas such as HFC-134a is exposed in the central portion of the upper lid 55 in the heat sensitive chamber 61. It is sealed from the hole 55a, and the steel ball 62 is integrally fixed to the hole 55a by spot welding so as to be hermetically shielded from the outside.

【0035】前記飽和蒸気ガスの封止方法は、一般的に
は該飽和蒸気ガスに満たされたチャンバー内でスポット
溶接することにより封入される。弁本体41には上端部
に均圧室58が形成されており、その下部に第三の流路
44を有するもので、この第三の流路44の上方中心部
に上下方向に向かって第一の摺動孔63が形成されてお
り、この第一の摺動孔63は感温棒65の軸部66が挿
通された状態においても、図3に示す如く前記均圧室5
8に冷媒が導入するように連通している。
The saturated vapor gas sealing method is generally sealed by spot welding in a chamber filled with the saturated vapor gas. A pressure equalizing chamber 58 is formed in the upper end portion of the valve body 41, and has a third flow passage 44 in the lower portion thereof. One sliding hole 63 is formed, and even when the shaft portion 66 of the temperature sensing rod 65 is inserted into the first sliding hole 63, as shown in FIG.
8 communicates so that the refrigerant is introduced.

【0036】また、この第三の流路44の下方中心部に
は第二の摺動孔64が形成され、この第二の摺動孔64
の下端と前記第二の流路43の奥部との間には、作動棒
69用の孔68が同芯軸上に形成されている。
A second sliding hole 64 is formed in the lower center portion of the third flow path 44, and the second sliding hole 64 is formed.
A hole 68 for the operating rod 69 is formed on the concentric shaft between the lower end of the second flow path 43 and the lower end of the second flow path 43.

【0037】感温棒65は、軸部66とディッシュ67
とかなり、第一の摺動孔63と第二の摺動孔64に上下
動可能に挿通支持されており、この感温棒65のディッ
シュ部67は均圧室58に配置されてダイヤフラム57
の下面に当接している。
The temperature sensitive rod 65 includes a shaft portion 66 and a dish 67.
The first sliding hole 63 and the second sliding hole 64 are inserted through and supported by the first sliding hole 63 so as to be vertically movable. The dish portion 67 of the temperature sensitive rod 65 is disposed in the pressure equalizing chamber 58 and the diaphragm 57.
Abuts the underside of.

【0038】さらに、第三の流路44と第二の流路43
の奥部とは感温棒65下端部に装着されたOリングにて
気密に保持されている。前記作動棒69用の孔68の内
部には作動棒69が上下動可能に配接され、この作動棒
69の上端は前記感温棒65の下端面に当接し、中間部
は前記第二の流路43の奥部を横切って前記オリフィス
47a内に挿入され、その下端は前記弁体48に当接し
ている。
Further, the third channel 44 and the second channel 43
The inner portion of the temperature sensitive rod 65 is hermetically held by an O-ring attached to the lower end portion of the temperature sensitive rod 65. The actuating rod 69 is vertically movably mounted inside the hole 68 for the actuating rod 69, the upper end of the actuating rod 69 abuts on the lower end surface of the temperature sensitive rod 65, and the intermediate portion thereof has the second portion. It is inserted into the orifice 47a across the inner part of the flow path 43, and its lower end is in contact with the valve body 48.

【0039】[0039]

【作動】次に、上記構成における本実施例の作動につき
図1に基づいて説明する。冷凍サイクルの圧縮機1にて
断熱圧縮された高温高圧のガス状冷媒は、凝縮器2にて
凝縮され液冷媒になった後、レシーバー3を介して膨張
弁40の第一の流路42を通り弁室45内に導入され
る。さらに、この液冷媒はオリフィス47aを通過し、
この時断熱膨張されて低温の霧状冷媒となり第二の流路
43に導入される。そして、この冷媒は第二の流路43
を経て、蒸発器5に導入されて気化しガス状冷媒とな
る。さらに、蒸発器5から排出されたガス状冷媒は第三
の流路44を経て再び前記圧縮機1に戻る。
Next, the operation of this embodiment in the above configuration will be described with reference to FIG. The high-temperature high-pressure gaseous refrigerant adiabatically compressed by the compressor 1 of the refrigeration cycle is condensed by the condenser 2 into a liquid refrigerant, and then flows through the first flow path 42 of the expansion valve 40 via the receiver 3. It is introduced into the passage valve chamber 45. Further, this liquid refrigerant passes through the orifice 47a,
At this time, it is adiabatically expanded into a low-temperature atomized refrigerant and introduced into the second flow path 43. Then, this refrigerant flows through the second flow path 43.
Then, it is introduced into the evaporator 5 and vaporized to become a gaseous refrigerant. Further, the gaseous refrigerant discharged from the evaporator 5 returns to the compressor 1 again through the third flow path 44.

【0040】一方、感温棒65は、圧縮コイルばね49
によりばね座52、弁体48および作動棒69を介して
常に上方に付勢されている。したがって、オリフイス4
7aの開度を決定する弁座50に対する弁体48の位置
は、圧縮コイルばね49の付勢力および均圧室58内の
冷媒圧と、感熱室61内のガス圧とが釣り合った位置に
保たれる。なお、均圧室58内の冷媒圧力は、蒸発器5
にて蒸発したガス圧力である。
On the other hand, the temperature sensitive rod 65 is a compression coil spring 49.
Thus, it is constantly urged upward through the spring seat 52, the valve element 48, and the operating rod 69. Therefore, orifice 4
The position of the valve body 48 with respect to the valve seat 50 that determines the opening of the valve 7a is maintained at a position where the urging force of the compression coil spring 49, the refrigerant pressure in the pressure equalizing chamber 58, and the gas pressure in the heat sensitive chamber 61 are balanced. Dripping. The pressure of the refrigerant in the pressure equalizing chamber 58 is controlled by the evaporator 5.
Is the gas pressure evaporated.

【0041】そして、第三の流路43内を通過するガス
状冷媒は、図1および図3に示すごとく、第一の摺動孔
63の溝63aを介して均圧室58に入る。これによ
り、冷媒の熱は感温棒65の軸部66からディッシュ6
7へと伝わりダイヤフラム57を介して感熱室61内の
飽和蒸気ガスに伝熱される。つまり、蒸発器5の出口側
の冷媒の温度に応じて感熱室61内の圧力が変化する。
この感熱室61内の圧力変化によるダイヤフラム57の
上下動が感温棒65と作動棒69を介して弁体48に伝
わり、この弁体48が開閉制御されて蒸発器5出口の冷
媒のスーパーヒートが一定となるようにスーパーヒート
制御されている。
Then, the gaseous refrigerant passing through the third flow path 43 enters the pressure equalizing chamber 58 through the groove 63a of the first sliding hole 63, as shown in FIGS. Thus, the heat of the refrigerant is transferred from the shaft portion 66 of the temperature sensing rod 65 to the dish 6.
The heat is transmitted to the saturated steam gas in the heat-sensitive chamber 61 through the diaphragm 57. That is, the pressure in the heat-sensitive chamber 61 changes according to the temperature of the refrigerant at the outlet side of the evaporator 5.
The vertical movement of the diaphragm 57 due to the pressure change in the heat-sensitive chamber 61 is transmitted to the valve body 48 via the temperature-sensing rod 65 and the operating rod 69, and the valve body 48 is controlled to open and close to superheat the refrigerant at the outlet of the evaporator 5. Is superheat controlled so that is constant.

【0042】[0042]

【発明の効果】上述のように構成した本発明の膨張弁に
おいては、弁本体41ポリフェニレンサルファイド樹脂
により形成されており、アルミ等の金属製の従来の弁本
体6に比較し、熱伝導率が約1/150となっている。
このため、膨張弁40の周囲の高い温度が圧力室58内
のガス状冷媒に伝達され難く、均圧室58内の冷媒温度
は第三の流路44を流れる冷媒の温度とほぼ同じにな
る。従って、均圧室58内の冷媒の温度が感温棒65等
を介して感熱室61内の飽和蒸気ガスに伝達されたと
き、その感熱室61内の飽和蒸気ガスの温度は、第三の
流路44を流れる冷媒の温度とほぼ同じになる。つま
り、第三の流路44を流れる冷媒の温度が、感熱室61
内の飽和蒸気ガスに正確に伝達される。その結果、弁体
48によるオリフィス47aの開放量が正確に制御さ
れ、蒸発器5に導入される冷媒の流量が正確に調整され
る。
In the expansion valve of the present invention constructed as described above, the valve body 41 is made of polyphenylene sulfide resin and has a thermal conductivity higher than that of the conventional valve body 6 made of metal such as aluminum. It is about 1/150.
Therefore, the high temperature around the expansion valve 40 is difficult to be transmitted to the gaseous refrigerant in the pressure chamber 58, and the temperature of the refrigerant in the pressure equalizing chamber 58 becomes almost the same as the temperature of the refrigerant flowing in the third flow path 44. . Therefore, when the temperature of the refrigerant in the pressure equalizing chamber 58 is transferred to the saturated vapor gas in the heat sensitive chamber 61 via the temperature sensitive rod 65 or the like, the temperature of the saturated vapor gas in the heat sensitive chamber 61 becomes the third value. The temperature of the refrigerant flowing through the flow path 44 becomes almost the same. That is, the temperature of the coolant flowing through the third flow path 44 is
Accurately transferred to the saturated vapor gas inside. As a result, the opening amount of the orifice 47a by the valve body 48 is accurately controlled, and the flow rate of the refrigerant introduced into the evaporator 5 is accurately adjusted.

【0043】図4は、本実施例の膨張弁40を周囲温度
T1 がほぼ75°の環境下で使用したときの、凝縮器2
の出口での圧力P1 、蒸発器5の入口での圧力P2 、蒸
発器5の出口での圧力P3 及び蒸発器5から車室内に送
られる空気の温度T2 の変化の状態をそれぞれ示すグラ
フである。又、図5は、従来の膨張弁4を周囲温度T1
がほぼ75°の環境下で使用したときの、凝縮器2の出
口での圧力P1 、蒸発器5の入口での圧力P2 、蒸発器
5の出口での圧力P3 及び蒸発器5から車室内に送られ
る空気の温度T2 の変化の状態をそれぞれ示すグラフで
ある。
FIG. 4 shows the condenser 2 when the expansion valve 40 of this embodiment is used in an environment where the ambient temperature T1 is about 75 °.
2 is a graph showing changes in the pressure P1 at the outlet of the vehicle, the pressure P2 at the inlet of the evaporator 5, the pressure P3 at the outlet of the evaporator 5 and the temperature T2 of the air sent from the evaporator 5 into the vehicle compartment. . In addition, FIG. 5 shows that the conventional expansion valve 4 has an ambient temperature T1.
When used in an environment of about 75 °, the pressure P1 at the outlet of the condenser 2, the pressure P2 at the inlet of the evaporator 5, the pressure P3 at the outlet of the evaporator 5 and the inside of the vehicle from the evaporator 5 6 is a graph showing the state of changes in the temperature T2 of the air sent.

【0044】図5から明らかなように、従来の膨張弁4
をほぼ75°という高温の環境下で使用した場合には、
凝縮器2の出口での圧力P1 、蒸発器5の入口での圧力
P2及び蒸発器5の出口での圧力P3 及び蒸発器5から
車室内に送られる空気の温度T2 が頻繁に変動する。こ
れは、感熱室10内の飽和蒸気ガスの温度が第三の流路
9を流れる冷媒の温度より高くなるために、弁体48が
頻繁に開放及び閉鎖動作されることを示している。
As is apparent from FIG. 5, the conventional expansion valve 4
When used in a high temperature environment of approximately 75 °,
The pressure P1 at the outlet of the condenser 2, the pressure P2 at the inlet of the evaporator 5, the pressure P3 at the outlet of the evaporator 5, and the temperature T2 of the air sent from the evaporator 5 into the passenger compartment frequently fluctuate. This indicates that the temperature of the saturated vapor gas in the heat sensitive chamber 10 becomes higher than the temperature of the refrigerant flowing through the third flow passage 9, so that the valve body 48 is frequently opened and closed.

【0045】これに対して、図4に示すように、本実施
例の膨張弁40を使用した場合には、周囲温度T1 がほ
ぼ75°という高温の環境下であっても、各P1 〜P3
及び車室内に送られる空気の温度T2 が安定する。
On the other hand, as shown in FIG. 4, when the expansion valve 40 of the present embodiment is used, even if the ambient temperature T1 is in the high temperature environment of about 75.degree.
And the temperature T2 of the air sent into the passenger compartment is stabilized.

【0046】また、弁本体41を樹脂にしたことにより
重量がアルミ性の従来の金属製本体に比較し約1/2と
軽くなっている。このため、第一〜第三の流路42〜4
4に接続される配管が振動により破損する恐れがない。
加えて、加工コストが非常に安くなる。さらに、オリフ
ィス47aは、金属部材47のインサート成形により形
成したことにより、弁体48の開閉作動によりオリフィ
ス47aが破損する恐れがなく、弁座50を従来の金属
製のものと同様に弁座成形することができるため、オリ
フィス全閉時において冷媒が洩れるといった不具合がな
くなる。
Further, since the valve body 41 is made of resin, its weight is about 1/2 that of the conventional metal body made of aluminum. Therefore, the first to third flow paths 42 to 4
There is no risk that the pipe connected to 4 will be damaged by vibration.
In addition, the processing cost is very low. Further, since the orifice 47a is formed by insert molding of the metal member 47, there is no risk of the orifice 47a being damaged by the opening / closing operation of the valve body 48, and the valve seat 50 is formed by molding the valve seat in the same manner as a conventional metal seat. Therefore, there is no problem such as refrigerant leakage when the orifice is fully closed.

【0047】また、弁本体41と制御機構54との連結
に,筒状止め金具60によるかしめ方法を採用したこと
により、ねじ加工不要となり非常に安価にできるととも
に、ねじの緩みを防止する接着剤の塗布が不必要とな
り、確実且つ恒久的に接続することが可能になる。
Further, by adopting the caulking method using the tubular stopper 60 for connecting the valve main body 41 and the control mechanism 54, screw processing is not required and the cost can be reduced very much. Is unnecessary, and it becomes possible to make a reliable and permanent connection.

【0048】また、感温棒65を、弁本体41上部の均
圧室58と第三の流路44を直交方向に貫通する第一の
摺動孔63と、該第三の流路44の下部に前記第一の摺
動孔63と同芯軸上に形成された第二の摺動孔64の二
点支持により摺動可能に保持されているため、感温棒6
5の動きがスムーズになるとともに、感温棒65自体に
おいても上部のディッシュ部67と該感温棒65の軸部
66とを別体として、両者をかしめ等により一体化でき
るため、材料の歩留りが良くなる。また、ディッシュ部
67と感温棒65とを互いに異なる金属材料で形成する
ことができる。このようにすれば、感温棒65による熱
電動の具合をきめ細かく調整することが可能になる。こ
の場合感温棒65をステンレスで形成し、ディッシュ部
67をアルミニウム又は黄銅で形成することが好まし
い。
Further, the temperature sensing rod 65 has a first sliding hole 63 penetrating the pressure equalizing chamber 58 in the upper part of the valve body 41 and the third flow passage 44 in the orthogonal direction, and the third flow passage 44. Since the first sliding hole 63 and the second sliding hole 64 formed on the same axis as the first sliding hole 63 are slidably held in the lower portion, the temperature sensitive rod 6
In addition to smoothing the movement of 5, the upper portion of the temperature-sensitive rod 65 itself and the shaft portion 66 of the temperature-sensitive rod 65 can be formed separately by caulking, so that the material yield can be improved. Will get better. Further, the dish portion 67 and the temperature sensitive rod 65 can be formed of different metal materials. By doing so, it becomes possible to finely adjust the thermoelectric state by the temperature sensitive rod 65. In this case, it is preferable that the temperature sensitive rod 65 is made of stainless steel and the dish portion 67 is made of aluminum or brass.

【0049】また、感熱室61への飽和蒸気ガス封止方
法については、制御機構46の上蓋55に形成した孔5
5aから該感熱室61へガスを封入するとともに鋼球6
2にて前記孔55aを封鎖し、スポット溶接等により密
封したことにより非常にコンパクトになる。また、上蓋
55の孔55aの封止に際し、鋼球62を使用したこと
により組み付け時の方向規制がないため自動化がし易
い。
Regarding the method of sealing the saturated vapor gas in the heat-sensitive chamber 61, the hole 5 formed in the upper lid 55 of the control mechanism 46 is used.
5a is filled with gas from the heat-sensitive chamber 61 and the steel ball 6
By closing the hole 55a at 2 and sealing it by spot welding or the like, it becomes very compact. Further, when the hole 55a of the upper lid 55 is sealed, since the steel ball 62 is used, there is no direction regulation at the time of assembling, which facilitates automation.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の膨張弁を自動車用空調装置の冷凍サ
イクルに組み込んだ状態を示す縦断側面図。
FIG. 1 is a vertical sectional side view showing a state in which an expansion valve of the present invention is incorporated in a refrigeration cycle of an automotive air conditioner.

【図2】 図1の正面図。FIG. 2 is a front view of FIG. 1;

【図3】 図1のA−A線における拡大断面図。FIG. 3 is an enlarged cross-sectional view taken along the line AA of FIG.

【図4】 本実施例の膨張弁を使用した時の、凝縮器出
口での圧力、蒸発器の入口での圧力、蒸発器出口での圧
力及び蒸発器から車室内に送られる空気温度の変化の状
態をそれぞれ示すグラフ。
FIG. 4 shows changes in pressure at the outlet of the condenser, pressure at the inlet of the evaporator, pressure at the outlet of the evaporator, and temperature of air sent from the evaporator into the passenger compartment when the expansion valve of the present embodiment is used. Graphs showing the respective states.

【図5】 従来の膨張弁を使用した時の、凝縮器出口で
の圧力、蒸発器の入口での圧力、蒸発器出口での圧力及
び蒸発器から車室内に送られる空気温度の変化の状態を
それぞれ示すグラフ。
FIG. 5 shows the state of changes in the pressure at the condenser outlet, the pressure at the evaporator inlet, the pressure at the evaporator outlet, and the temperature of the air sent from the evaporator to the passenger compartment when a conventional expansion valve is used. Graph showing each.

【図6】 従来の膨張弁を自動車用空調装置の冷凍サイ
クルに組み込んだ状態を示す縦断側面図。
FIG. 6 is a vertical sectional side view showing a state in which a conventional expansion valve is incorporated in a refrigeration cycle of an automobile air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器、 3
レシーバー、40 膨張弁、 5 蒸発器、
41 弁本体、41a フランジ、
42 第一の流路、 43 第二の流路、44 第
三の流路、 45 弁室、 46 絞り
機構、47 金属部材、 47a オリフィス、
48 弁体、49 圧縮コイルばね、 50 弁
座、 51 調整ねじ、52 ばね座、
53 Oリング、 54 制御機構、55
上蓋、 55a 孔、 56
下蓋、57 ダイヤフラム、 58 均圧室、
59 パッキン、60 止め金具、 61
感熱室、 62 鋼球、63 第一の摺動孔、
64 第二の摺動孔、 65 感温棒、66 軸
部、 67 ディッシュ部、 68 孔、
69 作動棒、 70 取付孔部、 7
1 カラー。
1 compressor 2 condenser, 3
Receiver, 40 expansion valve, 5 evaporator,
41 valve body, 41a flange,
42 first flow path, 43 second flow path, 44 third flow path, 45 valve chamber, 46 throttle mechanism, 47 metal member, 47a orifice,
48 valve body, 49 compression coil spring, 50 valve seat, 51 adjusting screw, 52 spring seat,
53 O-ring, 54 control mechanism, 55
Top lid, 55a hole, 56
Lower lid, 57 diaphragm, 58 pressure equalizing chamber,
59 packing, 60 stopper, 61
Heat sensitive chamber, 62 steel ball, 63 first sliding hole,
64 second sliding hole, 65 temperature sensitive rod, 66 shaft part, 67 dish part, 68 hole,
69 actuating rod, 70 mounting hole, 7
1 color.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】弁本体41と、蒸発器5に送り出す冷媒の
流量を調整するための絞り機構46と、蒸発器5から圧
縮機1に向かって送り出される冷媒の温度に応じて絞り
機構46を制御する制御機構54とを備え、前記弁本体
41は、冷媒を導入するための第一の流路42と、導入
された冷媒を蒸発器に送り出すための第二の流路43
と、蒸発器5から圧縮機1に向かって送り出される冷媒
を通過させるための第三の流路44とを備え、前記絞り
機構46は、第一の流路42と第二の流路43とを連通
させるオリフィス47aと、そのオリフィス47aの開
放量を調整するための弁体48とを有し、前記制御機構
54は、ガスを封入した感熱室61と、その感熱室61
内の圧力に応じて変位するダイヤフラム57とを有し、
前記第三の流路44を流れる冷媒の温度を感熱室61内
のガスに伝達し且つ、ダイヤフラム57の変位を弁体4
8に伝達する伝達部材を備えた温度式膨張弁において、 前記弁本体41を樹脂で成形するとともに前記絞り機構
46のオリフィス47aを金属部材47のインサート成
形により形成したことを特徴とする温度式膨張弁。
A throttle mechanism for adjusting a flow rate of the refrigerant sent to the evaporator; and a throttle mechanism in accordance with the temperature of the refrigerant sent from the evaporator toward the compressor. The valve body 41 includes a first flow path 42 for introducing the refrigerant, and a second flow path 43 for sending out the introduced refrigerant to the evaporator.
And a third flow path 44 for allowing the refrigerant sent from the evaporator 5 toward the compressor 1 to pass therethrough. The throttle mechanism 46 includes a first flow path 42 and a second flow path 43. And a valve element 48 for adjusting the opening amount of the orifice 47a. The control mechanism 54 includes a thermosensitive chamber 61 filled with gas, and a thermosensitive chamber 61.
Having a diaphragm 57 that is displaced in accordance with the internal pressure,
The temperature of the refrigerant flowing through the third flow path 44 is transmitted to the gas in the heat-sensitive chamber 61, and the displacement of the diaphragm 57 is transmitted to the valve body 4.
In the thermal expansion valve having a transmission member for transmitting to the No. 8, the valve body 41 is molded with resin, and the orifice 47a of the throttle mechanism 46 is formed by insert molding of the metal member 47. valve.
【請求項2】弁本体41と制御機構54との連結手段と
して、弁本体41の上端部にフランジ41aを形成し、
該フランジ41aの上面に制御機構54を配置し、フラ
ンジ41aと制御機構54とを筒状の止め金具60をか
しめることにより一体的に固定したことを特徴とする請
求項1記載の温度式膨張弁。
2. A flange 41a is formed at the upper end of the valve body 41 as a connecting means between the valve body 41 and the control mechanism 54,
2. The thermal expansion according to claim 1, wherein a control mechanism 54 is arranged on the upper surface of the flange 41a, and the flange 41a and the control mechanism 54 are integrally fixed by caulking a tubular stopper 60. valve.
【請求項3】弁本体41の配管取付フランジへの取付穴
部70に金属製のカラー71を配置したことを特徴とす
る請求項1記載の温度式膨張弁。
3. The thermal expansion valve according to claim 1, wherein a metal collar 71 is arranged in a mounting hole portion 70 of the valve body 41 to the pipe mounting flange.
【請求項4】制御機構54のダイヤフラム57の変位を
絞り機構46へ伝達する感温棒65が第三の流路44の
上下に設けられた第一の摺動孔63と第二の摺動孔64
の二点支持により保持されていることを特徴とする請求
項1、請求項2および請求項3記載の温度式膨張弁。
4. A temperature sensitive rod 65 for transmitting the displacement of the diaphragm 57 of the control mechanism 54 to the diaphragm mechanism 46, and a first sliding hole 63 and a second sliding hole provided above and below the third flow path 44. Hole 64
The temperature expansion valve according to claim 1, 2 or 3, wherein the temperature expansion valve is held by the two-point support.
【請求項5】制御機構54の感熱室61への飽和蒸気ガ
スの封止手段として、上蓋55に形成した孔55aから
該感熱室61へガスを封入した後この孔55aを鋼球6
2にて閉鎖し、スポット溶接にて密封したことを特徴と
する請求項1、請求項2および請求項3記載の温度式膨
張弁。
5. As a means for sealing the saturated vapor gas in the heat-sensitive chamber 61 of the control mechanism 54, after sealing the gas into the heat-sensitive chamber 61 from a hole 55a formed in the upper lid 55, the hole 55a is filled with the steel ball 6.
2. The temperature type expansion valve according to claim 1, wherein the temperature type expansion valve is closed at 2 and sealed by spot welding.
【請求項6】弁本体41の樹脂が、ポリフェニレンサル
ファイド樹脂であることを特徴とする請求項1、請求項
2、請求項3および請求項4記載の温度式膨張弁。
6. The temperature type expansion valve according to claim 1, wherein the resin of the valve body 41 is a polyphenylene sulfide resin.
JP08122435A 1995-07-13 1996-04-18 Thermal expansion valve Expired - Fee Related JP3130246B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP08122435A JP3130246B2 (en) 1995-07-13 1996-04-18 Thermal expansion valve
EP96119717A EP0846927B1 (en) 1995-07-13 1996-12-09 Thermal type expansion valve

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP20175495 1995-07-13
JP7-201754 1995-07-13
JP08122435A JP3130246B2 (en) 1995-07-13 1996-04-18 Thermal expansion valve
EP96119717A EP0846927B1 (en) 1995-07-13 1996-12-09 Thermal type expansion valve

Publications (2)

Publication Number Publication Date
JPH0989154A true JPH0989154A (en) 1997-03-31
JP3130246B2 JP3130246B2 (en) 2001-01-31

Family

ID=27237471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08122435A Expired - Fee Related JP3130246B2 (en) 1995-07-13 1996-04-18 Thermal expansion valve

Country Status (2)

Country Link
EP (1) EP0846927B1 (en)
JP (1) JP3130246B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0936424A2 (en) * 1998-02-10 1999-08-18 Fujikoki Corporation Expansion valve
JP2001183032A (en) * 1999-12-24 2001-07-06 Denso Corp Temperature type expansion valve
JP2006258283A (en) * 2005-02-18 2006-09-28 Denso Corp Fluid control valve and solenoid valve
WO2018168590A1 (en) * 2017-03-17 2018-09-20 株式会社デンソー Thermal expansion valve
JP2020076520A (en) * 2018-11-06 2020-05-21 株式会社鷺宮製作所 Temperature type expansion valve
JP2022152982A (en) * 2021-03-29 2022-10-12 株式会社不二工機 Power element and expansion valve using the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4034883B2 (en) * 1998-07-08 2008-01-16 サンデン株式会社 Automatic temperature expansion valve
JP4153133B2 (en) * 1999-05-11 2008-09-17 株式会社不二工機 Expansion valve
JP2001116401A (en) 1999-10-15 2001-04-27 Tgk Co Ltd Expansion valve
JP3751505B2 (en) 2000-06-07 2006-03-01 株式会社テージーケー Vacuum chamber forming method for control valve for variable capacity compressor
JP2002350010A (en) * 2001-05-29 2002-12-04 Fuji Koki Corp Expansion valve
JP4041334B2 (en) * 2002-04-08 2008-01-30 株式会社不二工機 Expansion valve and refrigeration cycle
AU2003286479A1 (en) * 2002-10-18 2004-05-04 Parker-Hannifin Corporation Refrigeration expansion valve with thermal mass power element
DE102006020457A1 (en) * 2006-04-28 2007-11-15 Otto Egelhof Gmbh & Co. Kg Thermal head for expansion valves has a chamber partly limited by a metal side and impervious to substances to be filled with a gas sensitive to temperatures
JP2012013217A (en) * 2010-06-29 2012-01-19 Tgk Co Ltd Expansion valve
KR101967738B1 (en) * 2017-06-01 2019-04-10 이경환 Motorized bed with reinforcement structure
KR101994946B1 (en) * 2019-01-31 2019-07-01 이경환 Motorized bed with reinforcement structure

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2605050A (en) * 1946-12-13 1952-07-29 Alco Valve Co Self-equalizing thermal valve
US3388864A (en) * 1966-09-23 1968-06-18 Thomas E. Noakes Cartridge type expansion valve
DE2658721A1 (en) * 1976-12-24 1978-07-06 Braukmann Armaturen SAFETY VALVE
US4819443A (en) * 1987-06-30 1989-04-11 Fujikoki America, Inc. Expansion valve
ES2100972T3 (en) * 1991-05-14 1997-07-01 T G K Co Ltd EXPANSION VALVE.
DE9209398U1 (en) * 1992-07-13 1993-08-12 Karl Rafeld KG Spritzgußwerk, Elektronik und Formenbau, 87640 Biessenhofen Shut-off valve for pipelines
JP3079120B2 (en) * 1993-03-17 2000-08-21 株式会社テージーケー Automatic expansion valve
JP3207716B2 (en) * 1994-12-22 2001-09-10 株式会社不二工機 Temperature expansion valve
JPH08334280A (en) * 1995-04-07 1996-12-17 Fuji Koki Seisakusho:Kk Expansion valve and refrigerating system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0936424A2 (en) * 1998-02-10 1999-08-18 Fujikoki Corporation Expansion valve
EP0936424A3 (en) * 1998-02-10 1999-11-24 Fujikoki Corporation Expansion valve
US6293472B1 (en) 1998-02-10 2001-09-25 Fujikoki Corporation Expansion valve
US6450413B2 (en) 1998-02-10 2002-09-17 Fujikoki Corporation Expansion valve
JP2001183032A (en) * 1999-12-24 2001-07-06 Denso Corp Temperature type expansion valve
JP2006258283A (en) * 2005-02-18 2006-09-28 Denso Corp Fluid control valve and solenoid valve
WO2018168590A1 (en) * 2017-03-17 2018-09-20 株式会社デンソー Thermal expansion valve
JP2018155309A (en) * 2017-03-17 2018-10-04 株式会社デンソー Thermostatic expansion valve
JP2020076520A (en) * 2018-11-06 2020-05-21 株式会社鷺宮製作所 Temperature type expansion valve
JP2022152982A (en) * 2021-03-29 2022-10-12 株式会社不二工機 Power element and expansion valve using the same

Also Published As

Publication number Publication date
JP3130246B2 (en) 2001-01-31
EP0846927A1 (en) 1998-06-10
EP0846927B1 (en) 2000-04-19

Similar Documents

Publication Publication Date Title
JP3130246B2 (en) Thermal expansion valve
KR100378536B1 (en) Receiver tank with expansion valve
KR100196729B1 (en) Temperature type expansion valve
JP3637651B2 (en) Thermal expansion valve
US6134900A (en) Supercritical refrigerating system
EP0892226B1 (en) Pressure control valve for refrigerating system
JPH1016542A (en) Receiver having expansion mechanism
US6868684B2 (en) Block valve with integral refrigerant lines
US20070107462A1 (en) Pressure control valve for refrigeration cycle
JP2002054860A (en) Thermostatic expansion valve
US6848624B2 (en) Refrigeration expansion valve with thermal mass power element
EP1209426B1 (en) Expansion valve
JP2005008091A (en) Expansion valve
JP3987983B2 (en) Thermal expansion valve
JP2006292185A (en) Expansion device and refrigerating cycle
JP2004345376A (en) Expansion valve for vehicle
JP2005029042A (en) Air-conditioner for vehicle
JP4039069B2 (en) Expansion valve
JPH05118711A (en) Expansion valve
JPH10288423A (en) Temperature type expansion valve
JPH0626741A (en) Expansion valve
JPH05118467A (en) Expansion valve
JP2000310352A (en) Temperature type expansion valve and its manufacture
JPH06241620A (en) Control valve for refrigerating cycle
JPH10231950A (en) Temperature type expansion valve

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees