JP3987983B2 - Thermal expansion valve - Google Patents

Thermal expansion valve Download PDF

Info

Publication number
JP3987983B2
JP3987983B2 JP28129298A JP28129298A JP3987983B2 JP 3987983 B2 JP3987983 B2 JP 3987983B2 JP 28129298 A JP28129298 A JP 28129298A JP 28129298 A JP28129298 A JP 28129298A JP 3987983 B2 JP3987983 B2 JP 3987983B2
Authority
JP
Japan
Prior art keywords
valve
valve body
valve stem
stem
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28129298A
Other languages
Japanese (ja)
Other versions
JP2000111208A (en
Inventor
典秀 河地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Denso Corp
Original Assignee
Fujikoki Corp
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp, Denso Corp filed Critical Fujikoki Corp
Priority to JP28129298A priority Critical patent/JP3987983B2/en
Publication of JP2000111208A publication Critical patent/JP2000111208A/en
Application granted granted Critical
Publication of JP3987983B2 publication Critical patent/JP3987983B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Description

【0001】
【発明の属する技術分野】
本発明は自動車用空調装置等における冷凍サイクルの温度式膨張弁に関するもので、特に、異音防止のための弁体周辺の構造の改良に関する。
【0002】
【従来の技術】
一般に、冷凍サイクルの膨張弁は、蒸発器の熱負荷変動に対応して蒸発器出口での冷媒の過熱度を所定値に維持するために、蒸発器出口の冷媒温度を感知して作動する感温エレメント部により、弁棒を介して弁体を変位(弁開度を変化)させて、サイクル冷媒流量を調整している。
【0003】
そして、このような膨張弁においては、弁開度の変化に伴う瞬間的な圧力変動に弁棒や弁体が追従して微振動し、異音が発生することが知られている。
そこで、特開平9−257341号公報に記載の膨張弁では、図5に示すように、本体ケース90に形成した孔部91に弁棒92を摺動自在に挿入し、弁棒92の弁体93と当接する側の面に円錐状の凹部94を設け、かつ凹部94を弁棒92の中心軸に対して偏心させて形成している。そして、開弁状態では、凹部94によって弁体93を弁棒92中心軸から偏心させるようにしている。
【0004】
このように、弁体93と弁棒92を偏心させたことにより、弁棒92にはばね96の力によってモーメントが発生し、弁棒92は孔部91の内周壁面に押しつけられる。これにより、弁棒92がその軸方向へ変位する際の孔部91での摺動抵抗が増大して、瞬間的な圧力変動に対して弁棒92が追従しなくなり、弁棒92および弁体93の微振動が防止される。
【0005】
また、特開平8−145505号公報に記載の膨張弁では、弁棒を孔部に摺動自在に挿入し、弁棒をその中心軸に対して垂直方向に付勢するばねを新規に設けて、弁棒を孔部の内周壁面に押しつけるようにしている。これにより、弁棒変位時の摺動抵抗を増大させ、瞬間的な圧力変動に対して弁棒が追従しないようにして、弁棒および弁体の微振動を防止するようにしている。
【0006】
【発明が解決しようとする課題】
以上のように、いずれの公報に記載のものでも弁体の微振動による異音の発生防止に効果があるが、前者の従来弁では、微小開弁時および閉弁時に、弁体93が弁棒92の中心軸に近づいてモーメントは小さくなるものの、弁体93が凹部94の斜面部分にかかっているため、弁棒92はその中心軸に対して斜め方向の力を受けて孔部91の内周壁面に押しつけられる。従って、微小開弁域での弁棒92の摺動抵抗も大となり、閉弁する際と再び開弁する際の弁体付勢力の差(以下、微小開弁域のヒステリシスと言う)が大きくなるという問題がある。
【0007】
一方、後者の従来弁では、弁棒をその中心軸に対して垂直方向に付勢するためのばねを新規に設けなければならない。また、そのばねによって、弁棒は常時中心軸に対して垂直方向に付勢されており、従って微小開弁域を含む全域でヒステリシスが大きくなってしまうという問題がある。
本発明は上記の点に鑑みてなされたもので、新規に部品を追加することなく、弁棒および弁体の微振動による異音発生を防止可能で、しかも微小開弁域のヒステリシスを従来弁よりも小さくすることを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、請求項1ないし3に記載の発明では、弁座面(45a)に対向する弁体(43)をばね手段(63)によって閉弁方向に付勢し、ばね手段(63)が組付けられた支持部材(44)に弁体(43)を固着し、蒸発器(5)の出口側冷媒の温度に応動する感温エレメント部(4B)の付勢力を、孔部(51a)に摺動自在に挿入された弁棒(46)を介して弁体(43)に伝える温度式膨張弁において、弁座面(45a)と弁棒(46)を同軸に配置し、弁体(43)が弁座面(45a)から離れた状態において、弁体(43)が弁棒(46)の中心軸に対して偏心するように位置決めして、弁体(43)を支持部材(44)に固着している。
【0009】
これによれば、弁体(43)が弁座面(45a)から離れた状態(開弁状態)では弁体(43)が弁棒(46)の中心軸に対して偏心することにより、開弁状態ではばね手段(63)によって弁棒(46)にモーメントが発生し、それによって孔部(51a)の内周壁面に押しつけられる。従って、特開平8−145505号公報の弁のように新規にばねを追加することなく、従来と同様に弁棒(46)変位時の摺動抵抗を増大させて、瞬間的な圧力変動に対して弁棒(46)が追従しないようにし、弁棒(46)および弁体(43)の微振動による異音の発生を防止することができる。
【0010】
一方、弁座面(45a)と弁棒(46)を同軸に配置したことにより、微小開弁域では弁体(43)は弁座面(45a)に案内されて弁棒(46)の中心軸に近づくため、弁棒(46)に対するモーメントは小さくなる。しかも、特開平9−257341号公報の弁のように凹部を設ける必要がないので、微小開弁域で弁棒(46)をその中心軸に対して斜め方向に押す力も殆ど発生しない。
【0011】
従って、微小開弁域では、弁棒(46)を孔部(51a)に押しつける力が非常に小さくなって、弁棒(46)の摺動抵抗が小さくなり、微小開弁域でのヒステリシスを従来弁よりも小さくすることができる。
請求項2に記載の発明のように、弁棒(46)における弁体(43)側の端部(46a)を、弁棒(46)の中心軸に対して垂直な平面にすることにより、微小開弁域で弁棒(46)を斜め方向に押す力を一層小さくするこができる。
【0012】
また、請求項3に記載の発明では、ばね手段(63)としてコイルばねを用い、このコイルばね(63)を弁棒(46)と同軸に配置している。
これによれば、支持部材(44)に対する弁体(43)の固着位置を変更するのみで、殆どコストアップを伴うことなく実施可能である。
なお、上記各手段の括弧内の符号は、後述する実施形態記載の具体的手段との対応関係を示すものである。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図に基づいて説明する。
図1は自動車用空調装置の冷凍サイクルに本発明膨張弁を適用した一実施形態を示し、図中、1は自動車のエンジンルーム内に配置される圧縮機であって、この圧縮機1は自動車エンジン(図示せず)により駆動されて、冷媒を圧縮、吐出するものである。圧縮機1の吐出冷媒ガスは、エンジンルーム内の凝縮器2にて冷却され、凝縮する。この凝縮冷媒は、受液器3内にて気液を分離され、液冷媒が受液器3内に溜まる。
【0014】
4は冷凍サイクルの減圧手段をなす温度式膨張弁で、自動車用空調装置の冷却ユニット部に備えられている蒸発器5出口部の冷媒の過熱度が予め設定した所定値となるように弁開度を調整して、冷媒流量を調整するものである。膨張弁4および蒸発器5は通常、自動車の車室内に設置される。
次に、膨張弁4の具体的構造を詳述すると、40は膨張弁4の本体ケースで、アルミニュウム等の金属で略直方体状に成形されている。この本体ケース40の下方部右側には冷凍サイクルの受液器3からの液冷媒が流入する冷媒入口41が開口している。
【0015】
この冷媒入口41は本体ケース40の下方中央部に形成された弁体収容室42に連通しており、この室42内には、膨張弁4の球状の弁体43、及びこの弁体43がスポット溶接等にて固着された支持部材44が収容されている。45は冷媒入口41からの液冷媒を減圧する絞り通路で、この絞り通路45の開度を弁体43により調整するようになっている。また、絞り通路45のうち、球状の弁体43に対向する部位には、円錐状の弁座面45aが形成されている。本例では、上記した絞り通路45および弁体43により膨張弁4の弁体機構部4Aが構成されている。
【0016】
46は段付き円柱状の弁棒で、図で下方側の小径軸部46bが絞り通路45の中心部を貫通し、弁棒46の下端部46aは、弁棒46の中心軸に対して垂直な平面に形成されて球状の弁体43に当接している。弁棒46を摺動自在に案内するための孔部51aが本体ケース40(案内部材)に形成され、弁棒46の図で上方側の大径軸部46cが孔部51aに挿入されている。そして、弁棒46と弁座面45aを同軸にするために、孔部51aと弁座面45aとが同軸に形成されている。
【0017】
47は絞り通路45を通過して減圧された低温、低圧の気液2相冷媒が流れる冷媒流出通路で、本体ケース40の上下方向の略中間部位に形成されており、この冷媒流出通路47は蒸発器5の冷媒入口部に接続される。
48は蒸発器5にて蒸発したガス冷媒が流れる蒸発器出口側通路で、本例では、本体ケース40の上方部において左右方向に円筒状に貫通するように形成されている。この蒸発器出口側通路48の入口端(図1の左端)は蒸発器5の冷媒出口部に接続され、出口端(図1の右端)は圧縮機1の吸入口に接続される。
【0018】
49は膨張弁4の感温棒で、変位伝達部材としての役割も兼ねるものであり、アルミニュウム等の熱伝導の良好な金属にて円柱状に形成されている。この感温棒49は蒸発器出口側通路48を貫通して配設され、蒸発器5で蒸発した過熱ガス冷媒の温度を感知する感温手段をなすものである。すなわち、感温棒49は前記過熱ガス冷媒の流れ中に位置することにより、過熱ガス冷媒の熱が伝導され、過熱ガス冷媒の温度を感知するものである。
【0019】
この感温棒49の具体的形態について説明すると、蒸発器出口側通路48を貫通する小径の軸部49aと、この小径軸部49aの端部に結合され、後述のダイヤフラム52に当接するダイヤフラムストッパ部49bとから構成されている。このダイヤフラムストッパ部49bは、感温棒49の上端部側(ダイヤフラム52側端部)から円板状に外径を拡大した形状に一体成形されている。
【0020】
なお、感温棒49の外周面には、弁作動のハンチング抑制のために、熱伝達遅延部材64が圧入固定等により装着されている。この熱伝達遅延部材64は、感温棒49を構成するアルミニュウムよりも熱伝導率が十分低い材質(具体的には、樹脂)にて成形されている。
次に、膨張弁4の弁体43を作動させる弁体駆動部4Bについて説明すると、弁体43に当接された弁棒46の上端は感温棒49の下端面に当接しており、この感温棒49の小径軸部49aの下端部近傍の外周溝部にはシール用のOリング50が配設され、本体ケース40の孔部51に対して感温棒49は気密に、かつ摺動可能に嵌合している。
【0021】
感温棒49の上端部に形成されたダイヤフラムストッパ部49bは本体ケース40の最上部の外面側に配置されたダイヤフラム52に当接している。従って、このダイヤフラム52が上下方向に変位すると、この変位に応じて円柱状感温棒49、弁棒46を介して弁体43も変位するようになっている。本例では、弁棒46と感温棒49とにより変位伝達部材が構成されている。
【0022】
ダイヤフラム52の外周縁部は、上下のケース部材53、54の間に挟持されて支持されている。このケース部材53、54はステンレス(SUS304)等の金属材で構成され、溶接、ろう付け等により一体に接合されている。下側のケース部材54は本体ケース40の最上部にねじ止めにて固定されており、このねじ止め固定部はゴム製の弾性シール材(パッキン)55にて気密になっている。そして、ケース部材53、54内の空間はダイヤフラム52により上側室(56と下側室57に仕切られている。
【0023】
上側室56には冷媒充填用のキャピラリチューブ56aが接合されているが、このチューブ56aの先端は閉塞されているので、上側室56は密封空間である。この上側室56の内部には冷凍サイクル内の循環冷媒と同種の冷媒ガスが充填されており、この封入ガスは感温棒49の感知した蒸発器出口の過熱ガス冷媒温度が金属製ダイヤフラム52を介して伝導され、この過熱ガス冷媒温度に応じた圧力変化を示す。
【0024】
従って、ダイヤフラム52は弾性に富み、かつ熱伝導が良好で、強靱な材質にて形成することが好ましく、例えばステンレス(SUS304)等の金属からなる。
一方、下側室57は、感温棒49のダイヤフラムストッパ部49bの周囲の空隙、この空隙の下方部に形成される圧力導入用の空間58および環状連通路59を通して、蒸発器出口側通路48に連通しており、この蒸発器出口側通路48の冷媒圧力が下側室57内に導入される。すなわち、下側室57内の圧力は通路48と略同一の圧力となる。
【0025】
本体ケース40の最下部には、球状弁体43の支持機構4Cが設けられており、この支持機構4Cについて以下説明すると、本体ケース40の最下部には外部に開口したねじ穴部60が設けられており、このねじ穴部60に調整プラグ61がねじ止め固定されており、この調整プラグ61はその外周部にシール用のOリング62が装着されており、これによりねじ穴部60との間を気密にシールしている。
【0026】
63はコイルばね(ばね手段)であり、その一端は調整プラグ61のばね案内部61aにより弁棒46と同軸になるように位置決め支持され、他端は支持部材44のばね案内部44aに支持されている。従って、調整プラグ61の締めつけ位置の調整により、コイルばね63の取付荷重を調整できる。
図2に示すように、支持部材44には弁体43が固着される円錐状の取付部44bが形成され、この取付部44bは支持部材44のばね案内部44aに対して偏心して形成されている。コイルばね63は弁棒46と同軸に位置決め支持されているため、図2のように弁体43が弁座面45aから離れた状態では、コイルばね63、ばね案内部44aおよび弁棒46は同軸になっている。
【0027】
従って、ばね案内部44aに対して偏心した取付部44bに固着された弁体43は、弁体43が弁座面45aから離れた状態では、弁棒46の中心軸に対して偏心して配置(位置決め)されることになる。弁棒46の小径軸部46bの径は例えば1.6mmで、弁体43の弁棒46に対する偏心量aは0.5mm程度が望ましい。
【0028】
なお、作動中に弁体43が弁棒46の端部46aから外れないように、弁体43の図2で左右方向の移動範囲が弁座面45aによって規制されている。
次に、上記構成において作動を説明する。いま、図1の冷凍サイクルにおいて圧縮機1が作動し、サイクル内に冷媒が循環していると、膨張弁4の弁体駆動部4Bにおいて、ダイヤフラム52の上側室56内の封入ガスに、感温棒49、金属製ダイヤフラム52を介して、通路48内の蒸発器出口の過熱ガス冷媒温度が伝導されるので、上側室56内の圧力は通路48の過熱ガス冷媒温度に応じた圧力となり、一方、ダイヤフラム52の下側室57内の圧力は通路48の冷媒圧力となる。
【0029】
従って、この両室56、57内の圧力差と、弁体43を上方へ押圧するばね63の取り付け荷重とのバランスで、弁体43が変位することになる。そして、通路48の過熱ガス冷媒温度が下がると上側室56内の圧力が下がり、弁体43が弁座面45a側に変位して絞り通路45の開度が減少し、冷媒流量が減少する。一方、通路48の過熱ガス冷媒温度が上がると上側室56内の圧力が上がり、弁体43が弁座面45aから離れる方向に変位して絞り通路45の開度が増加し、冷媒流量が増加する。このような冷媒流量の自動調整作用により、蒸発器5出口のガス冷媒の過熱度が所定値に維持される。
【0030】
ところで、開弁時には、弁体43は弁棒46中心軸に対して偏心しているため、弁棒46はばね63の力によるモーメントによって孔部51aの内周壁面に押しつけられる。従って、弁棒46が変位する際には孔部51aでの摺動抵抗が増大し、弁開度の変化に伴う瞬間的な圧力変動に対して弁棒46は追従しなくなり、それによって弁棒46および弁体43の微振動が防止される。
【0031】
一方、微小開弁域では弁体43は弁棒46と同軸の弁座面45aに案内されて弁棒46の中心軸に近づくため、弁棒46に対するモーメントは小さくなる。そして、図3に示す閉弁時には、弁体43は弁座面45aに案内されてさらに弁棒46の中心軸に近づくため、弁棒46に対するモーメントは殆ど発生しなくなる。また、弁棒46における弁体43側の端部46aを弁棒46の中心軸に対して垂直な平面にしたことから、弁棒46をその中心軸に対して斜め方向に押す力も殆ど発生しなくなる。
【0032】
従って、微小開弁域では、弁棒46を孔部51aに押しつける力が非常に小さくなって、弁棒46の摺動抵抗が小さくなり、微小開弁域でのヒステリシスを従来弁よりも小さくすることができる。
なお、閉弁状態では、弁体43が弁棒46の中心軸側に変位するのに伴って、コイルばね63の弁体43側端部が弁棒46の径方向に変位し、コイルばね63はやや曲がった状態になっている。そして、開弁時には、閉弁状態で曲がっていたコイルばね63が元に戻る(弁棒46と同軸になる)ことにより、弁体43は弁棒46中心軸から偏心した位置に復帰する。
【0033】
図4(A)は本実施形態のヒステリシス評価試験の結果を示し、図4(B)は図5の従来弁の試験結果を示す。なお、上側室56の圧力を2kgf/cm2G一定に保ち、下側室57の圧力を変化させて試験を行った。図から明らかなように、本実施形態の微小開弁域でのヒステリシスbは、従来弁のヒステリシスbの1/3程度に小さくなっている。これにより、蒸発器5出口のガス冷媒の過熱度の変化に対する、膨張弁の応答性を向上させることができる。
【0034】
なお、上述の実施形態では、支持部材44のばね案内部44aと取付部44bとを偏心させたが、それらを同軸にしてもよい。その場合、調整プラグ61のばね案内部61aを弁棒46の中心軸に対して偏心させて、ばね63、支持部材44および弁体43を弁棒46の中心軸に対して偏心させて配置する。
また、上述の実施形態では、キャピラリチューブ56aを上側室56への冷媒充填用として用いているが、蒸発器出口の冷媒温度を感知する感温筒を感温棒49の代わりに設け、この感温筒を上側室56に接続する手段としてキャピラリチューブ56aを用いる膨張弁も周知であり、このタイプの膨張弁に本発明を適用してもよい。
【図面の簡単な説明】
【図1】本発明の一実施形態による膨張弁断面構造を含む冷凍サイクル図である。
【図2】図1の膨張弁の開弁状態を示す要部の拡大断面図である。
【図3】図1の膨張弁の閉弁状態を示す要部の拡大断面図である。
【図4】(A)は本発明になる膨張弁の特性を示すグラフ、(B)は従来膨張弁の特性を示すグラフである。
【図5】従来の膨張弁の要部の断面図である。
【符号の説明】
4…膨張弁、4B…感温エレメント部、5…蒸発器、
40…本体ケース(案内部材)、43…弁体、44…支持部材、
45…絞り通路、45a…弁座面、46…弁棒、46a…端部、
51a…孔部、63…コイルばね(ばね手段)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a temperature expansion valve for a refrigeration cycle in an automotive air conditioner or the like, and more particularly to an improvement in the structure around a valve body for preventing abnormal noise.
[0002]
[Prior art]
In general, the expansion valve of the refrigeration cycle senses the refrigerant temperature at the evaporator outlet and operates in order to maintain the superheat degree of the refrigerant at the evaporator outlet at a predetermined value in response to fluctuations in the heat load of the evaporator. The valve element is displaced (the valve opening degree is changed) via the valve rod by the temperature element portion, thereby adjusting the cycle refrigerant flow rate.
[0003]
In such an expansion valve, it is known that the valve rod and the valve body follow a momentary pressure fluctuation accompanying a change in the valve opening degree and slightly vibrate to generate abnormal noise.
Therefore, in the expansion valve described in Japanese Patent Laid-Open No. 9-257341, as shown in FIG. 5, a valve rod 92 is slidably inserted into a hole 91 formed in the main body case 90, and the valve body of the valve rod 92 is obtained. A conical recess 94 is provided on the surface in contact with 93, and the recess 94 is formed eccentric to the central axis of the valve stem 92. In the open state, the valve element 93 is eccentric from the central axis of the valve stem 92 by the recess 94.
[0004]
As described above, when the valve body 93 and the valve stem 92 are eccentric, a moment is generated in the valve stem 92 by the force of the spring 96, and the valve stem 92 is pressed against the inner peripheral wall surface of the hole 91. As a result, the sliding resistance in the hole 91 when the valve stem 92 is displaced in the axial direction is increased, and the valve stem 92 does not follow the instantaneous pressure fluctuation. The slight vibration of 93 is prevented.
[0005]
Further, in the expansion valve described in Japanese Patent Application Laid-Open No. 8-145505, a valve spring is slidably inserted into the hole, and a spring for urging the valve rod in a direction perpendicular to its central axis is newly provided. The valve rod is pressed against the inner peripheral wall surface of the hole. This increases the sliding resistance when the valve stem is displaced, prevents the valve stem from following instantaneous pressure fluctuations, and prevents fine vibrations of the valve stem and the valve body.
[0006]
[Problems to be solved by the invention]
As described above, any of the publications described in any of the above publications is effective in preventing the generation of abnormal noise due to slight vibration of the valve body. However, in the former conventional valve, the valve body 93 is not used when the valve is opened or closed. Although the moment decreases as it approaches the central axis of the rod 92, the valve body 93 is applied to the inclined surface portion of the recess 94. Pressed against the inner wall. Accordingly, the sliding resistance of the valve stem 92 in the minute valve opening region also becomes large, and the difference in the valve body urging force between the valve closing and the valve opening again (hereinafter referred to as hysteresis in the minute valve opening region) is large. There is a problem of becoming.
[0007]
On the other hand, in the latter conventional valve, a spring for urging the valve stem in the direction perpendicular to its central axis must be newly provided. Moreover, the valve rod is always urged in the direction perpendicular to the central axis by the spring, and therefore there is a problem that the hysteresis increases in the entire region including the minute valve opening region.
The present invention has been made in view of the above points, and it is possible to prevent the generation of noise due to slight vibrations of the valve stem and the valve body without adding new parts, and the hysteresis of the minute valve opening region is prevented from the conventional valve. The purpose is to make it smaller.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, according to the invention described in claims 1 to 3, the valve body (43) facing the valve seat surface (45a) is urged in the valve closing direction by the spring means (63), and the spring means ( 63) is attached to the support member (44) to which the valve body (43) is fixed, and the urging force of the temperature sensitive element portion (4B) that responds to the temperature of the refrigerant on the outlet side of the evaporator (5) In the temperature type expansion valve that transmits to the valve body (43) via the valve rod (46) slidably inserted in (51a), the valve seat surface (45a) and the valve rod (46) are arranged coaxially, In a state where the valve body (43) is separated from the valve seat surface (45a), the valve body (43) is positioned so as to be eccentric with respect to the central axis of the valve rod (46) to support the valve body (43). It is fixed to the member (44).
[0009]
According to this, when the valve body (43) is separated from the valve seat surface (45a) (valve open state), the valve body (43) is eccentric with respect to the central axis of the valve stem (46), thereby opening the valve body (43). In the valve state, a moment is generated in the valve stem (46) by the spring means (63), and is thereby pressed against the inner peripheral wall surface of the hole (51a). Therefore, without adding a new spring as in the valve of Japanese Patent Laid-Open No. 8-145505, the sliding resistance when the valve stem (46) is displaced is increased as in the conventional case, so that instantaneous pressure fluctuations are prevented. Thus, the valve stem (46) is prevented from following, and generation of abnormal noise due to slight vibration of the valve stem (46) and the valve body (43) can be prevented.
[0010]
On the other hand, since the valve seat surface (45a) and the valve stem (46) are arranged coaxially, the valve element (43) is guided by the valve seat surface (45a) in the minute valve opening region and the center of the valve stem (46). As it approaches the axis, the moment on the valve stem (46) is reduced. In addition, unlike the valve disclosed in Japanese Patent Laid-Open No. 9-257341, it is not necessary to provide a recess, so that almost no force is generated to push the valve rod (46) obliquely with respect to the central axis in the minute valve opening region.
[0011]
Therefore, in the minute valve opening region, the force pressing the valve stem (46) against the hole (51a) becomes very small, the sliding resistance of the valve stem (46) becomes small, and the hysteresis in the minute valve opening region is reduced. It can be made smaller than a conventional valve.
As in the invention described in claim 2, by making the end (46a) on the valve body (43) side of the valve stem (46) into a plane perpendicular to the central axis of the valve stem (46), The force pushing the valve stem (46) in the oblique direction in the minute valve opening region can be further reduced.
[0012]
In the invention described in claim 3, a coil spring is used as the spring means (63), and the coil spring (63) is arranged coaxially with the valve stem (46).
According to this, it can be carried out with almost no cost increase, only by changing the fixing position of the valve body (43) with respect to the support member (44).
In addition, the code | symbol in the bracket | parenthesis of each said means shows a corresponding relationship with the specific means of embodiment description later mentioned.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an embodiment in which the expansion valve of the present invention is applied to a refrigeration cycle of an automobile air conditioner. In the figure, reference numeral 1 denotes a compressor disposed in the engine room of the automobile, and the compressor 1 is an automobile. Driven by an engine (not shown), the refrigerant is compressed and discharged. The refrigerant gas discharged from the compressor 1 is cooled and condensed by the condenser 2 in the engine room. The condensed refrigerant is separated into gas and liquid in the liquid receiver 3, and the liquid refrigerant accumulates in the liquid receiver 3.
[0014]
4 is a temperature type expansion valve that serves as a decompression unit for the refrigeration cycle, and is opened so that the degree of superheat of the refrigerant at the outlet of the evaporator 5 provided in the cooling unit of the automotive air conditioner becomes a predetermined value. The refrigerant flow rate is adjusted by adjusting the degree. The expansion valve 4 and the evaporator 5 are usually installed in a vehicle cabin.
Next, the specific structure of the expansion valve 4 will be described in detail. Reference numeral 40 denotes a main body case of the expansion valve 4, which is formed in a substantially rectangular parallelepiped shape from a metal such as aluminum. A refrigerant inlet 41 into which liquid refrigerant from the receiver 3 of the refrigeration cycle flows is opened on the right side of the lower part of the main body case 40.
[0015]
The refrigerant inlet 41 communicates with a valve body accommodating chamber 42 formed in the lower central portion of the main body case 40, and the spherical valve body 43 of the expansion valve 4 and the valve body 43 are contained in the chamber 42. A support member 44 fixed by spot welding or the like is accommodated. A throttle passage 45 depressurizes the liquid refrigerant from the refrigerant inlet 41. The opening degree of the throttle passage 45 is adjusted by the valve body 43. A conical valve seat surface 45 a is formed in a portion of the throttle passage 45 facing the spherical valve body 43. In this example, the above-described throttle passage 45 and valve body 43 constitute a valve body mechanism portion 4A of the expansion valve 4.
[0016]
Reference numeral 46 denotes a stepped cylindrical valve rod. In the drawing, a small-diameter shaft portion 46 b on the lower side penetrates the central portion of the throttle passage 45, and a lower end portion 46 a of the valve rod 46 is perpendicular to the central axis of the valve rod 46. It is formed in a flat surface and is in contact with the spherical valve body 43. A hole 51a for slidably guiding the valve stem 46 is formed in the main body case 40 (guide member), and a large-diameter shaft portion 46c on the upper side in the drawing of the valve stem 46 is inserted into the hole 51a. . In order to make the valve stem 46 and the valve seat surface 45a coaxial, the hole 51a and the valve seat surface 45a are formed coaxially.
[0017]
Reference numeral 47 denotes a refrigerant outflow passage through which the low-temperature, low-pressure gas-liquid two-phase refrigerant decompressed through the throttle passage 45 flows. The refrigerant outflow passage 47 is formed at a substantially intermediate portion in the vertical direction of the main body case 40. Connected to the refrigerant inlet of the evaporator 5.
Reference numeral 48 denotes an evaporator outlet side passage through which the gas refrigerant evaporated in the evaporator 5 flows, and in this example, is formed so as to penetrate in a cylindrical shape in the left-right direction in the upper part of the main body case 40. The inlet end (left end in FIG. 1) of the evaporator outlet side passage 48 is connected to the refrigerant outlet portion of the evaporator 5, and the outlet end (right end in FIG. 1) is connected to the suction port of the compressor 1.
[0018]
Reference numeral 49 denotes a temperature sensing rod of the expansion valve 4, which also serves as a displacement transmission member, and is formed in a cylindrical shape with a metal having good heat conduction such as aluminum. The temperature sensing rod 49 is disposed through the evaporator outlet side passage 48 and serves as a temperature sensing means for sensing the temperature of the superheated gas refrigerant evaporated by the evaporator 5. That is, the temperature sensing rod 49 is positioned in the flow of the superheated gas refrigerant, so that the heat of the superheated gas refrigerant is conducted and senses the temperature of the superheated gas refrigerant.
[0019]
A specific form of the temperature sensing rod 49 will be described. A small-diameter shaft portion 49a that penetrates the evaporator outlet side passage 48, and a diaphragm stopper that is coupled to an end portion of the small-diameter shaft portion 49a and abuts on a diaphragm 52 described later. Part 49b. The diaphragm stopper portion 49b is integrally formed in a disk-like shape whose outer diameter is enlarged from the upper end side (the end portion on the diaphragm 52 side) of the temperature sensing rod 49.
[0020]
A heat transfer delay member 64 is attached to the outer peripheral surface of the temperature sensing rod 49 by press fitting or the like in order to suppress hunting of the valve operation. The heat transfer delay member 64 is formed of a material (specifically, a resin) having a sufficiently lower thermal conductivity than aluminum constituting the temperature sensing rod 49.
Next, the valve body drive unit 4B that operates the valve body 43 of the expansion valve 4 will be described. The upper end of the valve rod 46 in contact with the valve body 43 is in contact with the lower end surface of the temperature sensing rod 49. An O-ring 50 for sealing is disposed in the outer peripheral groove near the lower end of the small-diameter shaft portion 49 a of the temperature sensing rod 49, and the temperature sensing rod 49 is airtight and slides with respect to the hole 51 of the main body case 40. It is possible to fit.
[0021]
A diaphragm stopper portion 49 b formed at the upper end portion of the temperature sensing rod 49 is in contact with a diaphragm 52 disposed on the outermost surface side of the uppermost portion of the main body case 40. Accordingly, when the diaphragm 52 is displaced in the vertical direction, the valve body 43 is also displaced through the cylindrical temperature sensing rod 49 and the valve rod 46 in accordance with the displacement. In this example, the valve rod 46 and the temperature sensing rod 49 constitute a displacement transmission member.
[0022]
The outer peripheral edge of the diaphragm 52 is sandwiched and supported between the upper and lower case members 53 and 54. The case members 53 and 54 are made of a metal material such as stainless steel (SUS304) and are integrally joined by welding, brazing, or the like. The lower case member 54 is fixed to the uppermost portion of the main body case 40 with screws, and this screw fixing portion is hermetically sealed with a rubber elastic seal material (packing) 55. The space in the case members 53 and 54 is partitioned by the diaphragm 52 into an upper chamber (56 and a lower chamber 57).
[0023]
A capillary tube 56a for refrigerant filling is joined to the upper chamber 56. Since the tip of the tube 56a is closed, the upper chamber 56 is a sealed space. The upper chamber 56 is filled with the same kind of refrigerant gas as the circulating refrigerant in the refrigeration cycle, and the temperature of the superheated gas refrigerant at the outlet of the evaporator sensed by the temperature sensing rod 49 is reduced by the metal diaphragm 52. The pressure change according to this superheated gas refrigerant temperature is shown.
[0024]
Therefore, the diaphragm 52 is preferably made of a tough material having high elasticity and good heat conduction, and is made of a metal such as stainless steel (SUS304).
On the other hand, the lower chamber 57 is connected to the evaporator outlet side passage 48 through the gap around the diaphragm stopper portion 49b of the temperature sensing rod 49, the pressure introduction space 58 formed in the lower portion of the gap and the annular communication passage 59. The refrigerant pressure in the evaporator outlet side passage 48 is introduced into the lower chamber 57. That is, the pressure in the lower chamber 57 is substantially the same as that of the passage 48.
[0025]
A support mechanism 4C for the spherical valve element 43 is provided at the lowermost part of the main body case 40. The support mechanism 4C will be described below. A screw hole portion 60 opened to the outside is provided at the lowermost part of the main body case 40. The adjustment plug 61 is fixed to the screw hole 60 with a screw, and an O-ring 62 for sealing is attached to the outer periphery of the adjustment plug 61. The space is hermetically sealed.
[0026]
Reference numeral 63 denotes a coil spring (spring means), one end of which is positioned and supported so as to be coaxial with the valve stem 46 by the spring guide 61a of the adjustment plug 61, and the other end is supported by the spring guide 44a of the support member 44. ing. Therefore, the mounting load of the coil spring 63 can be adjusted by adjusting the tightening position of the adjustment plug 61.
As shown in FIG. 2, the support member 44 is formed with a conical mounting portion 44 b to which the valve body 43 is fixed, and this mounting portion 44 b is formed eccentrically with respect to the spring guide portion 44 a of the support member 44. Yes. Since the coil spring 63 is positioned and supported coaxially with the valve stem 46, the coil spring 63, the spring guide 44a and the valve stem 46 are coaxial when the valve body 43 is separated from the valve seat surface 45a as shown in FIG. It has become.
[0027]
Therefore, the valve body 43 fixed to the mounting portion 44b that is eccentric with respect to the spring guide portion 44a is arranged eccentrically with respect to the central axis of the valve stem 46 when the valve body 43 is separated from the valve seat surface 45a ( Positioning). The diameter of the small-diameter shaft portion 46b of the valve rod 46 is, for example, 1.6 mm, and the eccentric amount a of the valve body 43 with respect to the valve rod 46 is preferably about 0.5 mm.
[0028]
Note that the range of movement of the valve body 43 in the left-right direction in FIG. 2 is restricted by the valve seat surface 45a so that the valve body 43 does not come off from the end 46a of the valve stem 46 during operation.
Next, the operation in the above configuration will be described. Now, when the compressor 1 is operated in the refrigeration cycle of FIG. 1 and the refrigerant circulates in the cycle, the valve body drive unit 4B of the expansion valve 4 is sensitive to the enclosed gas in the upper chamber 56 of the diaphragm 52. Since the superheated gas refrigerant temperature at the evaporator outlet in the passage 48 is conducted through the hot rod 49 and the metal diaphragm 52, the pressure in the upper chamber 56 becomes a pressure corresponding to the superheated gas refrigerant temperature in the passage 48, On the other hand, the pressure in the lower chamber 57 of the diaphragm 52 becomes the refrigerant pressure in the passage 48.
[0029]
Therefore, the valve body 43 is displaced by a balance between the pressure difference in the chambers 56 and 57 and the mounting load of the spring 63 that presses the valve body 43 upward. When the temperature of the superheated gas refrigerant in the passage 48 decreases, the pressure in the upper chamber 56 decreases, the valve body 43 is displaced toward the valve seat surface 45a, the opening degree of the throttle passage 45 decreases, and the refrigerant flow rate decreases. On the other hand, when the temperature of the superheated gas refrigerant in the passage 48 rises, the pressure in the upper chamber 56 rises, the valve body 43 is displaced away from the valve seat surface 45a, the opening degree of the throttle passage 45 increases, and the refrigerant flow rate increases. To do. By such an automatic adjustment operation of the refrigerant flow rate, the degree of superheat of the gas refrigerant at the outlet of the evaporator 5 is maintained at a predetermined value.
[0030]
By the way, when the valve is opened, since the valve body 43 is eccentric with respect to the central axis of the valve rod 46, the valve rod 46 is pressed against the inner peripheral wall surface of the hole 51a by the moment by the force of the spring 63. Therefore, when the valve stem 46 is displaced, the sliding resistance in the hole 51a increases, and the valve stem 46 does not follow the instantaneous pressure fluctuation accompanying the change in the valve opening, thereby the valve stem. The slight vibration of 46 and the valve body 43 is prevented.
[0031]
On the other hand, in the minute valve opening region, the valve body 43 is guided by the valve seat surface 45a coaxial with the valve stem 46 and approaches the central axis of the valve stem 46, so that the moment with respect to the valve stem 46 becomes small. When the valve is closed as shown in FIG. 3, the valve element 43 is guided by the valve seat surface 45a and further approaches the central axis of the valve stem 46, so that almost no moment is generated with respect to the valve stem 46. Further, since the end 46a on the valve body 43 side of the valve stem 46 is made a plane perpendicular to the central axis of the valve stem 46, almost a force for pushing the valve stem 46 in an oblique direction with respect to the central axis is also generated. Disappear.
[0032]
Therefore, in the minute valve opening region, the force for pressing the valve rod 46 against the hole 51a becomes very small, the sliding resistance of the valve rod 46 becomes small, and the hysteresis in the minute valve opening region is made smaller than that of the conventional valve. be able to.
In the valve-closed state, as the valve body 43 is displaced toward the central axis of the valve stem 46, the end of the coil spring 63 on the valve body 43 side is displaced in the radial direction of the valve stem 46, and the coil spring 63 Slightly bent. When the valve is opened, the valve spring 43 returns to a position eccentric from the central axis of the valve stem 46 by returning the coil spring 63 bent in the closed state to the original state (coaxial with the valve stem 46).
[0033]
FIG. 4A shows the result of the hysteresis evaluation test of this embodiment, and FIG. 4B shows the test result of the conventional valve of FIG. Note that the test was performed by keeping the pressure in the upper chamber 56 constant at 2 kgf / cm 2 G and changing the pressure in the lower chamber 57. As is apparent from the figure, the hysteresis b in the minute valve opening region of the present embodiment is about 1/3 of the hysteresis b of the conventional valve. Thereby, the responsiveness of the expansion valve to the change in the degree of superheat of the gas refrigerant at the outlet of the evaporator 5 can be improved.
[0034]
In the above-described embodiment, the spring guide portion 44a and the attachment portion 44b of the support member 44 are eccentric, but they may be coaxial. In that case, the spring guide 61 a of the adjustment plug 61 is eccentric with respect to the central axis of the valve stem 46, and the spring 63, the support member 44 and the valve element 43 are eccentric with respect to the central axis of the valve stem 46. .
In the above-described embodiment, the capillary tube 56a is used for charging the refrigerant into the upper chamber 56. However, a temperature sensing cylinder for sensing the refrigerant temperature at the outlet of the evaporator is provided in place of the temperature sensing rod 49. An expansion valve using a capillary tube 56a as means for connecting the warm cylinder to the upper chamber 56 is also well known, and the present invention may be applied to this type of expansion valve.
[Brief description of the drawings]
FIG. 1 is a refrigeration cycle diagram including an expansion valve cross-sectional structure according to an embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view of a main part showing a state in which the expansion valve of FIG. 1 is open.
FIG. 3 is an enlarged cross-sectional view of a main part showing a closed state of the expansion valve of FIG. 1;
4A is a graph showing characteristics of an expansion valve according to the present invention, and FIG. 4B is a graph showing characteristics of a conventional expansion valve.
FIG. 5 is a cross-sectional view of a main part of a conventional expansion valve.
[Explanation of symbols]
4 ... expansion valve, 4B ... temperature sensitive element, 5 ... evaporator,
40 ... Main body case (guide member), 43 ... Valve body, 44 ... Support member,
45 ... throttle passage, 45a ... valve seat surface, 46 ... valve stem, 46a ... end,
51a ... hole, 63 ... coil spring (spring means).

Claims (3)

サイクル高圧側からの冷媒を減圧、膨張させる絞り通路(45)と、
この絞り通路(45)に設けた弁座面(45a)と、
この弁座面(45a)に対向して配置されて、前記絞り通路(45)の開度を調整する弁体(43)と、
この弁体(43)を閉弁方向に付勢するばね手段(63)と、
一端に前記弁体(43)が固着され、他端に前記ばね手段(63)が組付けられた支持部材(44)と、
蒸発器(5)の出口側冷媒の温度に応じて前記弁体(43)を開弁方向に付勢する力が変化する感温エレメント部(4B)と、
一端が前記弁体(43)に当接して前記感温エレメント部(4B)の付勢力を前記弁体(43)に伝える弁棒(46)と、
この弁棒(46)を摺動自在に案内する孔部(51a)を有する案内部材(40)とを備え、
前記感温エレメント部(4B)の付勢力に応じて前記弁棒(46)がその軸方向に変位すると共に、前記弁棒(46)と共に前記弁体(43)が変位する温度式膨張弁において、
前記弁座面(45a)と前記弁棒(46)を同軸に配置し、
前記弁体(43)が前記弁座面(45a)から離れた状態において、前記弁体(43)が前記弁棒(46)の中心軸に対して偏心するように位置決めして、前記弁体(43)を前記支持部材(44)に固着したことを特徴とする温度式膨張弁。
A throttle passage (45) for depressurizing and expanding the refrigerant from the cycle high pressure side;
A valve seat surface (45a) provided in the throttle passage (45);
A valve body (43) disposed opposite to the valve seat surface (45a) to adjust the opening of the throttle passage (45);
Spring means (63) for urging the valve body (43) in the valve closing direction;
A support member (44) in which the valve body (43) is fixed to one end and the spring means (63) is assembled to the other end;
A temperature-sensitive element portion (4B) in which a force for urging the valve body (43) in the valve opening direction changes according to the temperature of the outlet side refrigerant of the evaporator (5);
A valve rod (46) having one end abutting against the valve body (43) and transmitting the urging force of the temperature sensing element portion (4B) to the valve body (43);
A guide member (40) having a hole (51a) for slidably guiding the valve stem (46),
In the temperature type expansion valve in which the valve stem (46) is displaced in the axial direction according to the urging force of the temperature sensitive element portion (4B), and the valve body (43) is displaced together with the valve stem (46). ,
The valve seat surface (45a) and the valve stem (46) are arranged coaxially,
In a state where the valve body (43) is separated from the valve seat surface (45a), the valve body (43) is positioned so as to be eccentric with respect to the central axis of the valve stem (46), and the valve body A temperature type expansion valve characterized in that (43) is fixed to the support member (44).
前記弁棒(46)における前記弁体(43)に当接する側の端部(46a)を、前記弁棒(46)の中心軸に対して垂直な平面にしたことを特徴とする請求項1に記載の温度式膨張弁。The end (46a) of the valve stem (46) on the side in contact with the valve body (43) is a plane perpendicular to the central axis of the valve stem (46). The temperature type expansion valve described in 1. 前記ばね手段(63)はコイルばねであり、このコイルばね(63)は前記弁棒(46)と同軸に配置されていることを特徴とする請求項1または2に記載の温度式膨張弁。The temperature type expansion valve according to claim 1 or 2, wherein the spring means (63) is a coil spring, and the coil spring (63) is arranged coaxially with the valve stem (46).
JP28129298A 1998-10-02 1998-10-02 Thermal expansion valve Expired - Fee Related JP3987983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28129298A JP3987983B2 (en) 1998-10-02 1998-10-02 Thermal expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28129298A JP3987983B2 (en) 1998-10-02 1998-10-02 Thermal expansion valve

Publications (2)

Publication Number Publication Date
JP2000111208A JP2000111208A (en) 2000-04-18
JP3987983B2 true JP3987983B2 (en) 2007-10-10

Family

ID=17637042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28129298A Expired - Fee Related JP3987983B2 (en) 1998-10-02 1998-10-02 Thermal expansion valve

Country Status (1)

Country Link
JP (1) JP3987983B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4077308B2 (en) * 2002-12-20 2008-04-16 株式会社不二工機 Expansion valve
JP4375412B2 (en) 2007-02-19 2009-12-02 株式会社デンソー Evaporator unit
JP2011133157A (en) * 2009-12-24 2011-07-07 Fuji Koki Corp Expansion valve
JP2017026191A (en) * 2015-07-17 2017-02-02 株式会社鷺宮製作所 Temperature expansion valve and refrigeration cycle
JP6754121B2 (en) * 2017-08-23 2020-09-09 株式会社不二工機 Expansion valve

Also Published As

Publication number Publication date
JP2000111208A (en) 2000-04-18

Similar Documents

Publication Publication Date Title
JP3637651B2 (en) Thermal expansion valve
JP3116995B2 (en) Thermal expansion valve
EP1691149A2 (en) Expansion valve for refrigerating cycle
JP2004270966A (en) Vapor compression type refrigerator
JPH0571860B2 (en)
JP3130246B2 (en) Thermal expansion valve
KR100196729B1 (en) Temperature type expansion valve
JP2002054860A (en) Thermostatic expansion valve
JP3987983B2 (en) Thermal expansion valve
JP4069548B2 (en) Control valve
JP2001241812A (en) Expansion valve
JP2000310461A (en) Thermostatic refrigerant expansion valve
JP3943843B2 (en) Soundproof cover for expansion valve
JP2003065634A (en) Expansion valve
JP5369259B2 (en) Expansion valve
JP2002061989A (en) Expansion valve for air conditioner
JP3952598B2 (en) Expansion valve
JP3996429B2 (en) Expansion valve
US6550262B2 (en) Expansion valve unit
JPH0338600Y2 (en)
JP2001153499A (en) Control valve for refrigerating cycle
JPH0979703A (en) Thermo-sensitive expansion valve
JP3661280B2 (en) Thermal expansion valve
JPH11294905A (en) Temperature type expansion valve
JP2018004234A (en) Expansion valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees