JPH05118467A - Expansion valve - Google Patents

Expansion valve

Info

Publication number
JPH05118467A
JPH05118467A JP27572091A JP27572091A JPH05118467A JP H05118467 A JPH05118467 A JP H05118467A JP 27572091 A JP27572091 A JP 27572091A JP 27572091 A JP27572091 A JP 27572091A JP H05118467 A JPH05118467 A JP H05118467A
Authority
JP
Japan
Prior art keywords
temperature
expansion valve
bellows
valve body
expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27572091A
Other languages
Japanese (ja)
Inventor
Isao Azeyanagi
功 畔柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP27572091A priority Critical patent/JPH05118467A/en
Publication of JPH05118467A publication Critical patent/JPH05118467A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Fluid-Driven Valves (AREA)

Abstract

PURPOSE:To provide an expansion valve free from the effect of outside air temperature and capable of displaying proper function at all times. CONSTITUTION:A synthetic resin cover 19 of high insulation quality is screwed and fixed above a low pressure coolant passage 17 in an expansion valve body 6, and a bellows 22 is laid within the cover 19. This bellows 22 internally seals pressure response gas. The temperature of a low pressure coolant released from an evaporator 5 is transferred to the bellows 22, thereby adjusting the opening of an expansion orifice 8. The bellows 22 is housed in the expansion valve body 6 and concealed with the cover 19. According to this construction, the bellows 22 becomes free from the effect of outside air temperature, and operates in response only to the temperature of the coolant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、カーエアコン等の冷
凍サイクルに用いられる膨張弁に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an expansion valve used in a refrigerating cycle such as a car air conditioner.

【0002】[0002]

【従来の技術】この種の膨張弁は、コンプレッサ側から
の液冷媒を気液2相冷媒にするためのオリフィスを有
し、その気液2相冷媒をエバポレータ側に送るものであ
る。この場合、膨張弁には、冷房負荷に応じて前記オリ
フィスの開度を調節するための調節機構が設けられる。
そして、従来は、この調節機構として、膨張弁本体に感
温室としてのダイヤフラム室を設けられている。そし
て、このダイヤフラム室にエバポレータの出口側の冷媒
温度を伝達して、ダイヤフラム室内の封入気体を膨張・
収縮させ、それに対応してダイヤフラムを変形させ、そ
の変形量に応じて、オリフィスの開度が調節されるよう
になっていた。すなわち、冷媒温度が高い高負荷のとき
には、ダイヤフラム室内の圧力が高くなって、オリフィ
ス開度が大きくなり、エバポレータに対する冷媒供給量
が増加される。また、冷媒温度が低い低負荷のときに
は、ダイヤフラム室内の圧力が低くなって、オリフィス
開度を小さくなり、冷媒供給量が減少される。
2. Description of the Related Art This type of expansion valve has an orifice for converting a liquid refrigerant from a compressor side into a gas-liquid two-phase refrigerant, and sends the gas-liquid two-phase refrigerant to an evaporator side. In this case, the expansion valve is provided with an adjusting mechanism for adjusting the opening degree of the orifice according to the cooling load.
Then, conventionally, as the adjusting mechanism, a diaphragm chamber as a greenhouse is provided in the expansion valve main body. Then, the refrigerant temperature on the outlet side of the evaporator is transmitted to the diaphragm chamber to expand the enclosed gas in the diaphragm chamber.
The diaphragm is deformed in response to the contraction, and the opening of the orifice is adjusted according to the deformation amount. That is, when the refrigerant temperature is high and the load is high, the pressure in the diaphragm chamber is increased, the opening degree of the orifice is increased, and the refrigerant supply amount to the evaporator is increased. Further, when the refrigerant temperature is low and the load is low, the pressure in the diaphragm chamber becomes low, the orifice opening becomes small, and the refrigerant supply amount is reduced.

【0003】[0003]

【発明が解決しようとする課題】そして、オリフィス開
度を調節に必要な最適の作動量、すなわちダイヤフラム
の十分な変形量を得るためには、ダイヤフラムとして大
径のものが必要である。このため、従来の膨張弁には、
大径のダイヤフラム室が装置されることになる。従っ
て、従来の膨張弁においては、ダイヤフラム室が膨張弁
本体から大きく突出して、膨張弁全体の大形化を招くば
かりでなく、そのダイヤフラム室が外部雰囲気にさらさ
れて、ダイヤフラム室内の温度が外気温の影響を受ける
ことになる。このため、その外部の気温が高い場合には
ダイヤフラム室内の温度が必要以上に高くなって、外気
温のためにオリフィスが開いて必要以上の冷媒が供給さ
れ、スーパーヒートがとれなくなるという不具合が生じ
る。また一方で、外部の気温が低い場合には逆にダイヤ
フラム室内の温度が下がり、最悪の場合はオリフィスが
閉じて冷媒供給がストップされてしまう(冷え込み)現
象が生じるという不具合も生じている。
A diaphragm having a large diameter is required in order to obtain the optimum operation amount necessary for adjusting the orifice opening, that is, a sufficient deformation amount of the diaphragm. Therefore, the conventional expansion valve
A large diameter diaphragm chamber will be installed. Therefore, in the conventional expansion valve, not only does the diaphragm chamber largely protrude from the expansion valve main body, but the size of the entire expansion valve is increased, and the diaphragm chamber is exposed to the external atmosphere, so that the temperature inside the diaphragm chamber is kept outside. It will be affected by the temperature. Therefore, when the outside temperature is high, the temperature inside the diaphragm chamber becomes unnecessarily high, and the orifice opens due to the outside temperature to supply more refrigerant than necessary, causing a problem that superheat cannot be taken. .. On the other hand, when the outside air temperature is low, on the contrary, the temperature inside the diaphragm chamber is lowered, and in the worst case, the orifice is closed and the refrigerant supply is stopped (cooling).

【0004】本発明の目的は、全体の小形化が可能にな
るとともに外気温の影響を受けない構成を有する膨張弁
を提供することにある。
It is an object of the present invention to provide an expansion valve having a structure which can be downsized as a whole and which is not affected by the outside air temperature.

【0005】[0005]

【課題を解決するための手段】本発明の膨張弁は、第1
の発明においては、膨張弁本体内に、コンデンサと連通
して同コンデンサにて凝縮した冷媒が導入される液冷媒
通路と、前記液冷媒通路に対して膨張オリフィスを介し
て連通し、同オリフィスにて断熱膨張された冷媒をエバ
ポレータに供給する霧状冷媒通路と、前記エバポレータ
を通過した冷媒が導入される低圧冷媒通路と、前記膨張
オリフィスの開閉量を調節する弁体と、前記低圧冷媒通
路内にその一部が露出する感温部材と、内部に不活性ガ
スを封入するとともに前記感温部材と接触して感温部材
から伝達される温度変化によって膨張・収縮を行うベロ
ーズと、そのベローズと前記弁体との間に介在され、ベ
ローズの膨張・収縮動作を前記弁体にその開閉量調節動
作として伝達する伝達機構とを設ける。
The expansion valve of the present invention has a first structure.
In the invention, in the expansion valve main body, a liquid refrigerant passage communicating with the condenser and introducing the refrigerant condensed by the condenser is communicated with the liquid refrigerant passage through an expansion orifice, and Atomized refrigerant passage for supplying the refrigerant adiabatically expanded to the evaporator, a low pressure refrigerant passage into which the refrigerant passing through the evaporator is introduced, a valve body for adjusting the opening / closing amount of the expansion orifice, and the low pressure refrigerant passage A part of the temperature sensing member, a bellows which is filled with an inert gas and expands and contracts due to a temperature change transmitted from the temperature sensing member in contact with the temperature sensing member, and the bellows. And a transmission mechanism interposed between the valve body and the expansion / contraction operation of the bellows to the valve body as an opening / closing amount adjusting operation.

【0006】又、第2の発明においては、第1の発明の
膨張弁におけるベローズを膨張弁本体に固定された合成
樹脂製のカバーで覆う。
In the second invention, the bellows in the expansion valve of the first invention is covered with a cover made of synthetic resin fixed to the expansion valve body.

【0007】[0007]

【作用】従って、第1の発明においては、温度変化に応
じてベローズ全体がその軸心方向に伸縮するため、動作
量を大きくすることができ、そのベローズは径の小さな
ものでよい。このため、ベローズを外部に突出すること
なく膨張弁本体の内部に収納でき、全体の小形化を図る
ことができるとともに、外気温の影響をほとんど受けな
い。
Therefore, in the first aspect of the invention, since the entire bellows expands and contracts in the axial direction according to the temperature change, the operation amount can be increased, and the bellows may have a small diameter. Therefore, the bellows can be housed inside the expansion valve body without protruding to the outside, the overall size can be reduced, and the outside temperature is hardly affected.

【0008】又、第2の発明においては、カバーがベロ
ーズと外気との間を遮断するために、外気温からの影響
をいっそう確実に遮断できる。
Further, in the second aspect of the invention, since the cover blocks the bellows from the outside air, the influence from the outside air temperature can be cut off more surely.

【0009】[0009]

【実施例】以下、この発明をカーエアコン用の膨張弁に
具体化した一実施例を図面に従って説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is embodied in an expansion valve for a car air conditioner will be described below with reference to the drawings.

【0010】図1は実施例のカーエアコンの概略を示す
図である。カーエアコンは可変容量コンプレッサ1、コ
ンデンサ2、レシーバ3、ボックス型膨張弁4及びエバ
ポレータ5を備えている。前記ボックス型膨張弁4にお
いて、膨張弁本体6の下部には弁室7が形成され、その
若干上方には膨張オリフィス8を介して前記弁室7と連
通して液冷媒通路9が形成されている。更に、本体6の
前記弁室7の側部には霧状冷媒通路10が形成されてい
る。又、膨張オリフィス8の弁室7側には弁座11が形
成されている。
FIG. 1 is a diagram showing an outline of a car air conditioner of the embodiment. The car air conditioner includes a variable capacity compressor 1, a condenser 2, a receiver 3, a box-type expansion valve 4 and an evaporator 5. In the box-type expansion valve 4, a valve chamber 7 is formed below the expansion valve body 6, and a liquid refrigerant passage 9 is formed slightly above the valve chamber 7 so as to communicate with the valve chamber 7 through an expansion orifice 8. There is. Further, a mist-like refrigerant passage 10 is formed on the side of the valve chamber 7 of the main body 6. A valve seat 11 is formed on the valve chamber 7 side of the expansion orifice 8.

【0011】弁室7内には下方よりキャップを兼ねる調
節ねじ14が螺合し、その調節ねじ14にはコイルばね
15が載置されている。そして、コイルばね15の上端
にはばね座13が支持されている。ばね座13上には球
状の弁体12が前記弁座11と対応するように溶接され
ている。従って、弁体12はコイルばね15の付勢力に
よって弁座11の方向に付勢されるとともに、調節ねじ
14によりコイルばね15の位置が変わると前記付勢力
が変更される。尚、調節ねじ14にはOリング16が設
けられ、弁室7内の気密が保たれている。
An adjusting screw 14 also serving as a cap is screwed into the valve chamber 7 from below, and a coil spring 15 is mounted on the adjusting screw 14. The spring seat 13 is supported on the upper end of the coil spring 15. A spherical valve body 12 is welded on the spring seat 13 so as to correspond to the valve seat 11. Therefore, the valve body 12 is biased toward the valve seat 11 by the biasing force of the coil spring 15, and the biasing force is changed when the position of the coil spring 15 is changed by the adjusting screw 14. An O-ring 16 is provided on the adjusting screw 14 to keep the valve chamber 7 airtight.

【0012】又、前記膨張弁本体6における通路9,1
0の上方位置には低圧冷媒通路17が貫通形成されてい
る。そして、低圧冷媒通路17の一端は車両のエンジン
にて駆動されるコンプレッサ1に接続され、そのコンプ
レッサ1はコンデンサ2とレシーバ3を介して前記液冷
媒通路9に接続されている。又、霧状冷媒通路10は車
室内のエバポレータ5と接続され、このエバポレータ5
は前記低圧冷媒通路17の他端と接続されている。
Further, the passages 9 and 1 in the expansion valve body 6 are
A low-pressure refrigerant passage 17 is formed at a position above 0. One end of the low-pressure refrigerant passage 17 is connected to the compressor 1 driven by the vehicle engine, and the compressor 1 is connected to the liquid refrigerant passage 9 via the condenser 2 and the receiver 3. The atomized refrigerant passage 10 is connected to the evaporator 5 in the vehicle compartment.
Is connected to the other end of the low-pressure refrigerant passage 17.

【0013】一方、前記膨張弁本体6の上部にはねじを
有する収容孔18が形成され、その収容孔18内には合
成樹脂製のカバー19がパッキン20を介して気密を保
った状態で螺合している。カバー19はハウジング室2
1を形成し、そのハウジング室21内には、感温室を構
成するとともに内部に圧力応答性を有するガスを予め封
入した銅等の金属製のベローズ22が配設されている。
このベローズ22は内圧と内圧の差圧により伸縮量を変
化させる。尚、ベローズ22内には活性炭粒が収納さ
れ、不活性ガスは低温時に活性炭に吸着される。
On the other hand, a housing hole 18 having a screw is formed in the upper portion of the expansion valve body 6, and a synthetic resin cover 19 is screwed into the housing hole 18 via a packing 20 while keeping airtightness. It fits. The cover 19 is the housing chamber 2
1, a bellows 22 made of a metal such as copper, which constitutes a greenhouse and is filled with a gas having a pressure response in advance, is disposed in the housing chamber 21.
The bellows 22 changes the expansion / contraction amount according to the internal pressure and the differential pressure between the internal pressures. The bellows 22 contains activated carbon particles, and the inert gas is adsorbed by the activated carbon at low temperature.

【0014】前記収容孔18内底部はプランジャ孔23
aを介して前記低圧冷媒通路17と連通している。又、
低圧冷媒通路17の下側において本体6には前記プラン
ジャ孔23aと対向するように別のプランジャ孔23b
が形成されている。又、プランジャ孔23bの下側に
は、より小径のロッド孔24が連続して形成されてお
り、このロッド孔24は前記液冷媒通路9と連通してい
る。そして、プランジャ孔23b内にはアルミニウム製
の感温棒25が上下動可能に嵌挿され、その上端部が低
圧冷媒通路17を通過するとともに、前記プランジャ孔
23a内に遊嵌されている。感温棒25の上端にはヘッ
ド部25aが形成され、そののヘッド部25aは前記ベ
ローズ22の下面に当接している。尚、低圧冷媒通路1
7と冷媒通路9,10とは感温棒25に装着されたOリ
ング26にてシール状態(気密)が保たれている。
The bottom of the accommodation hole 18 is a plunger hole 23.
It communicates with the low-pressure refrigerant passage 17 via a. or,
On the lower side of the low-pressure refrigerant passage 17, another plunger hole 23b is formed in the body 6 so as to face the plunger hole 23a.
Are formed. Further, a rod hole 24 having a smaller diameter is continuously formed below the plunger hole 23b, and the rod hole 24 communicates with the liquid refrigerant passage 9. An aluminum temperature sensing rod 25 is vertically movably fitted in the plunger hole 23b, and its upper end passes through the low pressure refrigerant passage 17 and is loosely fitted in the plunger hole 23a. A head portion 25a is formed at the upper end of the temperature sensitive rod 25, and the head portion 25a is in contact with the lower surface of the bellows 22. The low-pressure refrigerant passage 1
The 7 and the refrigerant passages 9 and 10 are kept in a sealed state (airtightness) by an O-ring 26 attached to the temperature sensitive rod 25.

【0015】又、前記ロッド孔24内にはステンレス製
の作動棒27が上下動可能に配設され、その作動棒27
の上端は前記感温棒25に当接し、中間部は前記液冷媒
通路9内に露出し、下端は前記膨張オリフィス10内に
おいて前記弁体12に当接している。従って、感温棒2
5は弁体12、作動棒27を介してコイルばね15の付
勢力によりベローズ22の下面に圧接されている。前記
ベローズ22はヘッド部25aとカバー19の内底面と
の間に挟持され、カバー19の周壁及び本体6には接し
ていない。又、ベローズ22の伸縮に伴い、感温棒2
5、作動棒27を介して弁体12が上下動し、この感温
棒25、作動棒27によりベローズ22と弁体12との
間に伝達機構が構成されている。
An operating rod 27 made of stainless steel is provided in the rod hole 24 so as to be movable up and down.
Has an upper end abutting the temperature sensitive rod 25, an intermediate portion exposed in the liquid refrigerant passage 9, and a lower end abutting the valve body 12 in the expansion orifice 10. Therefore, the temperature sensitive rod 2
5 is pressed against the lower surface of the bellows 22 by the urging force of the coil spring 15 via the valve body 12 and the actuation rod 27. The bellows 22 is sandwiched between the head portion 25a and the inner bottom surface of the cover 19, and is not in contact with the peripheral wall of the cover 19 or the main body 6. Also, as the bellows 22 expands and contracts, the temperature sensitive rod 2
5, the valve body 12 moves up and down via the operating rod 27, and the temperature sensing rod 25 and the operating rod 27 constitute a transmission mechanism between the bellows 22 and the valve body 12.

【0016】次に、このように構成した膨張弁4の作用
を説明する。前記コンプレッサ1から吐出された高圧縮
冷媒はコンデンサ2にて凝縮された後、レシーバ3、膨
張弁4の液冷媒通路9に至り、膨張オリフィス8で断熱
膨張して気液2相冷媒となり弁室7内に導入される。さ
らに、この冷媒は弁室7内から霧状冷媒通路10を経
て、エバポレータ5内に導入され気化してガス冷媒とな
る。このときエバポレータ5が冷却されて車室内が冷却
される。さらに、エバポレータ5から排出されたガス冷
媒は低圧冷媒通路17を通過して再び前記コンプレッサ
1に戻る。
Next, the operation of the expansion valve 4 thus constructed will be described. The highly compressed refrigerant discharged from the compressor 1 is condensed by the condenser 2, reaches the liquid refrigerant passage 9 of the receiver 3 and the expansion valve 4, and is adiabatically expanded by the expansion orifice 8 to become a gas-liquid two-phase refrigerant to be a valve chamber. Introduced in 7. Further, this refrigerant is introduced from the inside of the valve chamber 7 through the atomized refrigerant passage 10 into the evaporator 5 and vaporized to become a gas refrigerant. At this time, the evaporator 5 is cooled and the vehicle compartment is cooled. Further, the gas refrigerant discharged from the evaporator 5 passes through the low pressure refrigerant passage 17 and returns to the compressor 1 again.

【0017】一方、感温棒25はばね座13、弁体12
および作動棒27を介して圧縮コイルばね15にて常に
上方に付勢され、ベローズ22の下面に圧接されてい
る。従って、弁座11に対する弁体12の位置(膨張オ
リフィス8の開度)は、圧縮コイルばね15の付勢力及
びハウジング室21内の冷媒圧力と、ベローズ部22内
のガス圧とが釣り合った位置に保たれる。尚、ハウジン
グ室21内の冷媒圧力はエバポレータ5の蒸発圧力であ
る。
On the other hand, the temperature sensitive rod 25 includes the spring seat 13 and the valve body 12.
Further, the compression coil spring 15 is always urged upward through the actuating rod 27 and pressed against the lower surface of the bellows 22. Therefore, the position of the valve body 12 with respect to the valve seat 11 (the opening degree of the expansion orifice 8) is a position where the biasing force of the compression coil spring 15 and the refrigerant pressure in the housing chamber 21 and the gas pressure in the bellows portion 22 are balanced. Kept in. The refrigerant pressure inside the housing chamber 21 is the evaporation pressure of the evaporator 5.

【0018】そして、低圧冷媒通路17内には感温棒2
5の一部が露出しているため、低圧冷媒通路17内を通
過するガス冷媒の熱は熱伝導率の高いアルミニウム製の
感温棒25を介してベローズ22に伝達され、ベローズ
22内の不活性ガスが膨張・収縮される。従って、ベロ
ーズ22の伸縮はエバポレータ5出口側の冷媒温度に応
じて追従する。
The temperature sensitive rod 2 is placed in the low pressure refrigerant passage 17.
Since part of No. 5 is exposed, the heat of the gas refrigerant passing through the low-pressure refrigerant passage 17 is transferred to the bellows 22 via the temperature sensitive rod 25 made of aluminum having a high thermal conductivity, and the heat inside the bellows 22 is lost. The active gas is expanded and contracted. Therefore, the expansion and contraction of the bellows 22 follows the temperature of the refrigerant on the outlet side of the evaporator 5.

【0019】すなわち、車室内の温度が上昇し低圧冷媒
通路17に流入する冷媒の温度も上昇すると、感温棒2
5、ハウジング室21を介して伝熱を受けたベローズ2
2の不活性ガスが膨張しベローズ22が伸張する。この
伸張が感温棒25、作動棒27に伝えられ膨張オリフィ
ス8の開度が大きくなり、エパポレータ5の入口に向か
う冷媒量が増加する。
That is, when the temperature inside the passenger compartment rises and the temperature of the refrigerant flowing into the low pressure refrigerant passage 17 also rises, the temperature sensitive rod 2
5, bellows 2 which has received heat transfer through the housing chamber 21
The inert gas 2 expands and the bellows 22 expands. This extension is transmitted to the temperature sensitive rod 25 and the actuation rod 27, and the opening degree of the expansion orifice 8 increases, so that the amount of the refrigerant flowing toward the inlet of the evaporator 5 increases.

【0020】又、車室内温度が低下し、低圧冷媒通路1
7を通る冷媒の温度も低下すると、ベローズ22のガス
圧も低下し弁体12、作動棒27及び感温棒25がベロ
ーズ22の収縮分だけコイルばね15の付勢力により上
方へ移動して膨張オリフィス8の開度が小さくなり、エ
バポレータ5の入口に向う冷媒量が減少する。
Further, the temperature inside the passenger compartment decreases, and the low pressure refrigerant passage 1
When the temperature of the refrigerant passing through 7 also decreases, the gas pressure of the bellows 22 also decreases, and the valve body 12, the operating rod 27 and the temperature sensitive rod 25 move upward by the urging force of the coil spring 15 by the amount of contraction of the bellows 22 and expand. The opening degree of the orifice 8 is reduced, and the amount of the refrigerant toward the inlet of the evaporator 5 is reduced.

【0021】このようにして、冷房負荷の大小にともな
うベローズ22の伸縮量に応じて膨張オリフィス8の開
度が調節されエバポレータ5に供給される冷媒量が調整
される。
In this way, the opening of the expansion orifice 8 is adjusted according to the expansion and contraction amount of the bellows 22 depending on the cooling load, and the amount of refrigerant supplied to the evaporator 5 is adjusted.

【0022】この場合、この膨張弁においては、冷媒温
度の変動にともない、ベローズ22の全体がその軸心方
向に伸縮する。このため、ベローズ22が小径で小形の
ものであっても、十分な伸縮作動量を得ることができ
る。従って、実施例のようにベローズ22を膨張弁本体
6から突出しないように同本体6内に収納することがで
きる。このため、従来とは異なり、膨張弁全体の小形化
を図ることができるばかりでなく、ベローズ22が外気
にさらされないため、外気温の影響を受けることがほと
んどなく、ベローズ22は冷媒温度の変動に正確に追従
して伸縮し、正確な冷媒量制御が可能となる。
In this case, in this expansion valve, the entire bellows 22 expands and contracts in the axial direction thereof as the refrigerant temperature changes. Therefore, even if the bellows 22 has a small diameter and a small size, a sufficient expansion / contraction amount can be obtained. Therefore, the bellows 22 can be housed in the expansion valve body 6 so as not to project from the expansion valve body 6 as in the embodiment. Therefore, unlike the conventional case, not only the expansion valve can be downsized, but also the bellows 22 is not exposed to the outside air, so that the bellows 22 is hardly affected by the outside air temperature, and the bellows 22 does not fluctuate in the refrigerant temperature. And expands and contracts accurately to enable accurate control of the refrigerant amount.

【0023】加えて、実施例のように、ベローズ22を
カバー19により覆えば、しかもそのカバー19が合成
樹脂であるならば、ベローズ22と外気とが遮断され、
よりいっそう外気温の影響を低減できる。しかも、実施
例においては、ベローズ22がカバー19の周壁や膨張
弁本体6に接することなく、そのベローズ22は上下両
端においてカバー19及び感温棒25に接しているのみ
である。従って、膨張弁本体6の温度がベローズ22に
伝達されることはなく、ベローズ22が本体6を介して
外気温の影響を受けることはない。また、実施例のよう
に、ベローズ22内の不活性ガスを活性炭の吸着させれ
ば、不活性ガスの温度変化が活性炭の温度変化をともな
って行われる。すなわち、不活性ガスのみが単独で温度
変化することはなく、不活性ガスはその温度変化に若干
の時間を要する。このため、ベローズ22の形状変化が
冷媒温度の変動に対して適度に遅れ、これにより冷凍サ
イクル全体のハンチングを防止できる。
In addition, if the bellows 22 is covered with the cover 19 as in the embodiment, and the cover 19 is made of synthetic resin, the bellows 22 and the outside air are shut off,
The influence of the outside temperature can be further reduced. Moreover, in the embodiment, the bellows 22 is not in contact with the peripheral wall of the cover 19 or the expansion valve body 6, but the bellows 22 is only in contact with the cover 19 and the temperature sensitive rod 25 at the upper and lower ends. Therefore, the temperature of the expansion valve body 6 is not transmitted to the bellows 22, and the bellows 22 is not affected by the outside air temperature via the body 6. Further, when the inert gas in the bellows 22 is adsorbed by the activated carbon as in the embodiment, the temperature change of the inert gas is accompanied by the temperature change of the activated carbon. That is, the temperature of the inert gas alone does not change, and the temperature of the inert gas requires some time. For this reason, the shape change of the bellows 22 is appropriately delayed with respect to the change of the refrigerant temperature, whereby hunting of the entire refrigeration cycle can be prevented.

【0024】尚、この発明は上記実施例に限定されるも
のではなく、上記実施例では低圧冷媒通路も一体化され
たボックス型膨張弁について述べたが、例えば、この低
圧冷媒通路を持たない種類の膨張弁に用いてもよい。
The present invention is not limited to the above embodiment, but the above embodiment describes the box type expansion valve in which the low pressure refrigerant passage is also integrated. However, for example, a type without this low pressure refrigerant passage It may be used for the expansion valve.

【0025】[0025]

【発明の効果】以上、実施例において例示したように、
第1の発明においては、感温室をベローズで構成したこ
とにより、全体の小形化が可能になるとともに、外気温
の影響を避けて、正確な冷媒量調節を行い得るという効
果を発揮する。
As described above in the embodiments,
In the first aspect of the present invention, since the greenhouse is made up of bellows, the entire size can be reduced, and the effect of the outside air temperature can be avoided and the amount of refrigerant can be accurately adjusted.

【0026】また、第2発明においては、ベローズをカ
バーにより覆ったので、外気温からの影響をいっそう確
実に避けることができるという効果を発揮する。
Further, in the second aspect of the invention, since the bellows is covered with the cover, it is possible to more reliably avoid the influence of the outside temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例のカーエアコンの概略を示す図である。FIG. 1 is a diagram showing an outline of a car air conditioner of an embodiment.

【符号の説明】[Explanation of symbols]

2…コンデンサ、5…エバポレータ、6…膨張弁本体、
8…膨張オリフィス、9…液冷媒通路、10…霧状冷媒
通路、12…弁体、17…低圧冷媒通路、19…カバ
ー、22…ベローズ。
2 ... condenser, 5 ... evaporator, 6 ... expansion valve body,
8 ... Expansion orifice, 9 ... Liquid refrigerant passage, 10 ... Atomized refrigerant passage, 12 ... Valve body, 17 ... Low pressure refrigerant passage, 19 ... Cover, 22 ... Bellows.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 膨張弁本体内に形成され、コンデンサと
連通して同コンデンサにて凝縮した冷媒が導入される液
冷媒通路と、 前記膨張弁本体内に形成され、前記液冷媒通路に対して
膨張オリフィスを介して連通し、同オリフィスにて断熱
膨張された冷媒をエバポレータに供給する霧状冷媒通路
と、 前記膨張オリフィスの開閉量を調節する弁体と、 前記膨張弁本体内に形成され、前記エバポレータを通過
した冷媒が導入される低圧冷媒通路と、 その低圧冷媒通路内に設けられた感温部材とその感温部
材と接触した状態で前記膨張弁本体に設けられ、感温部
材から伝達される温度変化によって膨張・収縮を行う感
温室と、 その感温室と前記弁体との間に介在され、感温室の膨張
・収縮動作を前記弁体にその開閉量調節動作として伝達
する伝達機構とよりなる膨張弁において、 前記感温室を不活性ガスを充填したベローズにより構成
したことを特徴とする膨張弁。
1. A liquid refrigerant passage formed in the expansion valve main body and communicating with a condenser to introduce a refrigerant condensed by the condenser; and a liquid refrigerant passage formed in the expansion valve main body with respect to the liquid refrigerant passage. A mist-like refrigerant passage that communicates through an expansion orifice and supplies a refrigerant adiabatically expanded by the orifice to an evaporator, a valve body that adjusts the opening / closing amount of the expansion orifice, and is formed in the expansion valve body, A low-pressure refrigerant passage into which the refrigerant that has passed through the evaporator is introduced, a temperature-sensing member provided in the low-pressure refrigerant passage, and the expansion valve body provided in contact with the temperature-sensing member and transmitted from the temperature-sensing member. A temperature-sensitive greenhouse that expands and contracts according to a temperature change, and a transmitter that is interposed between the temperature-sensitive greenhouse and the valve body and that transmits the expansion and contraction operation of the temperature-sensitive greenhouse to the valve body as the opening and closing amount adjusting operation. When the more becomes the expansion valve, the expansion valve, characterized by being configured by the sense greenhouse bellows filled with an inert gas.
【請求項2】 ベローズは膨張弁本体に固定されたカバ
ーにより覆われている請求項1に記載の膨張弁。
2. The expansion valve according to claim 1, wherein the bellows is covered with a cover fixed to the expansion valve body.
JP27572091A 1991-10-23 1991-10-23 Expansion valve Pending JPH05118467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27572091A JPH05118467A (en) 1991-10-23 1991-10-23 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27572091A JPH05118467A (en) 1991-10-23 1991-10-23 Expansion valve

Publications (1)

Publication Number Publication Date
JPH05118467A true JPH05118467A (en) 1993-05-14

Family

ID=17559443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27572091A Pending JPH05118467A (en) 1991-10-23 1991-10-23 Expansion valve

Country Status (1)

Country Link
JP (1) JPH05118467A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102102958B1 (en) * 2018-10-11 2020-04-21 한국과학기술원 Thermal expansion valve, and cryocooling system including the expansion valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102102958B1 (en) * 2018-10-11 2020-04-21 한국과학기술원 Thermal expansion valve, and cryocooling system including the expansion valve

Similar Documents

Publication Publication Date Title
US5005370A (en) Thermal expansion valve
JPH0989420A (en) Receiver tank with expansion valve
JP3637651B2 (en) Thermal expansion valve
JP3130246B2 (en) Thermal expansion valve
US20080011363A1 (en) Pressure Control Valve
KR20060056255A (en) Expansion device
US7434419B2 (en) Pressure control valve for refrigeration cycle
US4632305A (en) Expansion valve
JP2002054861A (en) Thermostatic expansion valve
JP2002054860A (en) Thermostatic expansion valve
JP2003074741A (en) Expansion valve with pressure detecting function
JP2000320706A (en) Thermal expansion valve
JP2000310461A (en) Thermostatic refrigerant expansion valve
JPH05118467A (en) Expansion valve
JPH05118711A (en) Expansion valve
US4236669A (en) Thermostatic expansion valve with lead-lag compensation
JP3146722B2 (en) Expansion valve
JP2006292185A (en) Expansion device and refrigerating cycle
JP3987983B2 (en) Thermal expansion valve
JP2001153499A (en) Control valve for refrigerating cycle
US3696628A (en) Thermostatic expansion valve for refrigeration system
JPH0338600Y2 (en)
JP3879503B2 (en) Expansion valve
JPH06241620A (en) Control valve for refrigerating cycle
JP4039069B2 (en) Expansion valve