WO2018168532A1 - 人工肺の製造方法 - Google Patents

人工肺の製造方法 Download PDF

Info

Publication number
WO2018168532A1
WO2018168532A1 PCT/JP2018/008097 JP2018008097W WO2018168532A1 WO 2018168532 A1 WO2018168532 A1 WO 2018168532A1 JP 2018008097 W JP2018008097 W JP 2018008097W WO 2018168532 A1 WO2018168532 A1 WO 2018168532A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
polymer compound
blood
artificial lung
Prior art date
Application number
PCT/JP2018/008097
Other languages
English (en)
French (fr)
Inventor
崇王 安齊
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2019505883A priority Critical patent/JP6956169B2/ja
Publication of WO2018168532A1 publication Critical patent/WO2018168532A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules

Definitions

  • the present invention relates to a method for producing an artificial lung. More specifically, the present invention relates to a method for producing a hollow fiber membrane oxygenator, particularly a hollow fiber membrane external blood perfusion oxygenator, for removing carbon dioxide in blood and adding oxygen to blood in extracorporeal blood circulation.
  • a hollow fiber membrane oxygenator using a porous membrane is generally widely used as an extracorporeal circulation device or a cardiopulmonary device for assisting circulation in open heart surgery.
  • a membrane oxygenator mainly uses a hollow fiber membrane, and performs blood gas exchange through the hollow fiber membrane.
  • blood flows inside the hollow fiber membrane and gas flows outside the hollow fiber membrane, and conversely, blood flows outside the hollow fiber membrane and gas flows into the hollow fiber.
  • the inner surface or outer surface of the hollow fiber membrane comes into contact with blood, so the inner surface or outer surface of the hollow fiber membrane in contact with blood has an effect on platelet adhesion (adhesion) and activation. There is a risk of giving.
  • an external perfusion type artificial lung in which the outer surface of the hollow fiber membrane is in contact with blood tends to affect the adhesion (adhesion) and activation of the platelet system because it disturbs the blood flow.
  • an alkoxyalkyl (meth) acrylate used as an antithrombotic material, an external perfusion type, utilizing the effect of inhibiting and preventing the adhesion and activation of platelet-based alkoxyalkyl (meth) acrylate.
  • the outer surface or outer surface layer of the hollow fiber membrane is the main component of alkoxyalkyl (meth) acrylate in a mixed solvent of water, methanol and ethanol. It is described that after coating with a coating solution obtained by dissolving the polymer as follows, drying is performed.
  • International Publication No. 2016/143752 includes a technique for coating a hollow fiber membrane with a colloidal solution of a polymer material having antithrombotic properties. Proposed. According to the technique, by adjusting the average particle diameter of the colloid so as to be a specific ratio or more with respect to the diameter of the opening of the hollow fiber membrane, the leakage of plasma components is effective regardless of the perfusion method. An artificial lung that can be controlled automatically is obtained.
  • a technique capable of increasing the coating amount of the antithrombotic polymer material (antithrombotic polymer compound) on the hollow fiber membrane in order to improve the antithrombogenicity is required.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide means capable of increasing the coating amount of the antithrombotic polymer compound on the hollow fiber membrane.
  • the present inventor solved the above problems by adding a water-soluble cationic polymer to the colloidal solution of the antithrombotic polymer compound. It was learned that it was possible to complete the present invention.
  • the object is to provide an artificial gas having a plurality of gas exchange porous hollow fiber membranes having an outer surface, an inner surface that forms a lumen, and an opening that communicates the outer surface and the inner surface.
  • a method for producing a lung which comprises applying a solution containing a colloid of an antithrombotic polymer compound and a water-soluble cationic polymer to either the outer surface or the inner surface. This can be achieved by an artificial lung manufacturing method.
  • FIG. 1 is a cross-sectional view showing one embodiment of a hollow fiber membrane external blood perfusion oxygenator obtained by the production method of the present invention.
  • reference numeral 1 is a hollow fiber membrane external blood perfusion type artificial lung
  • reference numeral 2 is a housing
  • reference numeral 3 is a hollow fiber membrane
  • reference numerals 4 and 5 are partition walls
  • Reference numeral 7 denotes a blood outlet
  • reference numeral 8 denotes a gas inlet
  • reference numeral 9 denotes a gas outlet
  • reference numeral 10 denotes a gas inlet header
  • reference numeral 11 denotes a gas outlet header
  • Reference numeral 12 represents a blood chamber
  • reference numeral 13 represents a gas inflow chamber
  • reference numeral 14 represents a gas outflow chamber.
  • FIG. 2 is an enlarged cross-sectional view of a hollow fiber membrane used in a hollow fiber membrane external blood perfusion oxygenator obtained by the production method of the present invention.
  • reference numeral 3 indicates a hollow fiber membrane;
  • reference numeral 3a indicates an outer surface layer;
  • reference numeral 3a ′ indicates an outer surface;
  • reference numeral 3b indicates an inner layer;
  • reference numeral 3c indicates an inner surface layer;
  • Reference numeral 3d indicates a passage;
  • reference numeral 3e indicates an opening; and reference numeral 18 indicates an antithrombogenic material.
  • FIG. 3 is a cross-sectional view showing another embodiment of a hollow fiber membrane external blood perfusion oxygenator obtained by the production method of the present invention.
  • FIG. 3 is a cross-sectional view showing another embodiment of a hollow fiber membrane external blood perfusion oxygenator obtained by the production method of the present invention.
  • reference numeral 3 denotes a hollow fiber membrane
  • reference numeral 17 denotes a blood chamber
  • reference numeral 17a denotes a blood inflow portion
  • reference numeral 17b denotes a blood chamber
  • reference numeral 17c denotes a second blood chamber
  • 20 is a hollow fiber membrane external blood perfusion type artificial lung
  • 22 is a cylindrical hollow fiber membrane bundle
  • 23 is a housing
  • 24 is a gas inlet
  • 25 and 26 are partition walls
  • Reference numeral 27 denotes a gas outlet
  • reference numeral 28 denotes a blood inlet
  • reference numerals 29a and 29b denote blood outlets
  • reference numeral 31 denotes an inner cylindrical member
  • reference numeral 32 denotes a blood circulation opening
  • Reference numeral 33 denotes an outer cylindrical member
  • reference numeral 35 denotes an inner cylindrical body
  • reference numeral 35a denotes an upper end of the inner cylindrical body 35
  • reference numeral 41 denotes a gas inflow member.
  • FIG. 4 is a cross-sectional view taken along line AA in FIG.
  • reference numeral 3 denotes a hollow fiber membrane
  • reference numeral 17a denotes a blood inflow portion
  • reference numeral 17c denotes a second blood chamber
  • reference numeral 22 denotes a cylindrical hollow fiber membrane bundle
  • reference numerals 29a and 29b denote
  • Reference numeral 31 denotes an inner cylindrical member
  • reference numeral 32 denotes an opening for blood circulation
  • reference numeral 33 denotes an outer cylindrical member
  • reference numeral 35 denotes an inner cylindrical body.
  • FIG. 5 is a front view showing an example of an inner cylindrical member used for a hollow fiber membrane external blood perfusion oxygenator obtained by the production method of the present invention.
  • FIG. 5 is a front view showing an example of an inner cylindrical member used for a hollow fiber membrane external blood perfusion oxygenator obtained by the production method of the present invention.
  • FIG. 6 is a central longitudinal sectional view of the inner cylindrical member shown in FIG. In FIG. 6, the code
  • 7 is a cross-sectional view taken along line BB in FIG. In FIG. 7, reference numeral 31 denotes an inner cylindrical member; reference numeral 32 denotes a blood circulation opening.
  • the present invention provides an artificial lung having a plurality of gas exchange porous hollow fiber membranes including an outer surface, an inner surface that forms a lumen, and an opening that communicates the outer surface and the inner surface.
  • a method for producing an artificial lung comprising applying a solution containing a colloid of an antithrombotic polymer compound and a water-soluble cationic polymer to either the outer surface or the inner surface It relates to the manufacturing method.
  • a means capable of increasing the coating amount of the antithrombotic polymer compound on the hollow fiber membrane is provided.
  • a solution containing colloidal particles of an antithrombotic polymer compound is further referred to as a water-soluble cationic polymer (also referred to simply as “cationic polymer” in the present specification). Included).
  • the artificial lung is manufactured by coating (applying) the solution on the outer surface or inner surface of the hollow fiber membrane.
  • the coating amount of the antithrombotic polymer compound is dramatically improved.
  • the mechanism for exerting the above-described effects by the configuration of the present invention is presumed as follows. The present invention is not limited to the following mechanism.
  • the hollow fiber membrane is coated with a colloidal solution of an antithrombotic polymer compound.
  • the colloidal particles (particle surface) of the antithrombotic polymer compound contained in the colloidal solution are negatively charged.
  • the solution (colloidal solution) according to the present invention further contains a cationic polymer, it is considered that the negative charge of the antithrombotic polymer compound and the positive charge of the cationic polymer attract each other. It is done. That is, it is presumed that the cationic polymer is adsorbed on the surface of the colloidal particles. The positive charge of the cationic polymer serves to adsorb the colloidal particles on the surface of the hollow fiber membrane charged to a negative charge.
  • the cationic polymer adsorbed to the colloidal particles of the antithrombotic polymer compound can also be adsorbed to the colloidal particles of other antithrombotic polymer compounds. Therefore, it is considered that the colloidal particles are easily aggregated as a result of the cross-linking of the colloidal particles of the antithrombotic polymer compound.
  • the solution according to the present invention when used, colloidal particles are easily adsorbed on the surface of the hollow fiber membrane, and further, other colloidal particles are easily aggregated with respect to the colloidal particles adsorbed on the surface of the hollow fiber membrane. It is estimated that the coating amount of the antithrombotic polymer compound is increased. In addition, it is considered that the amount of coating is also increased by adsorbing colloidal particles in an aggregated state in the colloidal solution on the surface of the hollow fiber membrane. Therefore, the artificial lung manufactured by the method according to the present invention is excellent in antithrombogenicity.
  • a hollow fiber membrane external blood perfusion oxygenator will be specifically described as a preferred embodiment, but the oxygenator manufactured by the method of the present invention may be a hollow fiber membrane internal blood perfusion oxygenator. Even in this case, the present invention can be applied by appropriately changing the following embodiments.
  • the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.
  • X to Y indicating a range includes X and Y, and means “X or more and Y or less”. Unless otherwise specified, operations and physical properties are measured under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
  • a solution (colloid solution) containing a colloid of an antithrombotic polymer compound and a water-soluble cationic polymer is applied to the outer surface or inner surface of the hollow fiber membrane.
  • a solution colloid solution
  • a colloid of an antithrombotic polymer compound and a water-soluble cationic polymer is applied to the outer surface or inner surface of the hollow fiber membrane.
  • a solution (colloidal solution) containing a colloid of an antithrombotic polymer compound and a water-soluble cationic polymer is prepared, and the colloidal solution is applied to the outer surface or inner surface of the hollow fiber membrane. Apply (cover) to the surface. Thereafter, if necessary, the coating formed on the outer surface or inner surface of the hollow fiber membrane may be washed for the purpose of removing the water-soluble cationic polymer.
  • a colloidal solution preparation step (2) a colloidal solution coating (coating) step, and (3) a cleaning step will be described.
  • Step of preparing colloidal solution In this step, a colloidal solution to be applied to the outer surface or inner surface of the hollow fiber membrane is prepared.
  • the colloidal solution used in the method according to the present invention includes an antithrombotic polymer compound and a water-soluble cationic polymer.
  • the cationic polymer colloidal particles of the antithrombotic polymer compound are likely to aggregate, and as a result, the coating amount of the antithrombotic polymer compound can be increased.
  • water-soluble cationic polymer contained in the colloidal solution according to the present invention means a polymer compound that is water-soluble and has a cationic group in the molecule.
  • water-soluble means that the solubility in water (25 ° C.) is 0.1 g / 100 mL or more
  • polymer means that having a weight average molecular weight of 1,000 or more. .
  • the water-soluble cationic polymer can be removed by washing with water after coating the hollow fiber membrane with an antithrombotic polymer compound. Therefore, it is possible to suppress the elution of these cationic polymers into the blood by performing sufficient water washing during the production of the artificial lung.
  • the water-soluble cationic polymer according to the present invention is not particularly limited as long as it satisfies the above definition.
  • the cationic group contained in the cationic polymer represents a group capable of generating a cation in water, specifically, a group dissociable into a cation or a group dissociated into a cation. Although it does not restrict
  • the cationic group is preferably an amino group, a quaternary ammonium group, an imino group, a guanidino group or a salt thereof, and particularly preferably an amino group, a guanidino group or a salt thereof. If it is a cationic polymer having these cationic groups, it is easily adsorbed to the antithrombotic polymer compound and facilitates aggregation of colloidal particles. As a result, the coating amount of the antithrombotic polymer compound can be further increased.
  • the cationic group in the cationic polymer may be one kind alone, or two or more kinds in combination.
  • the cationic polymer used in the present invention may be either a natural polymer polymer or a synthetic polymer polymer, or a mixture thereof.
  • the synthetic polymer polymer contains a structural unit derived from a monomer having a cationic group as all or part of the structural unit.
  • the cationic polymer may be either a polymer or a copolymer.
  • the natural polymer polymer may be a polymer obtained by introducing a cationic group into a natural polymer or a modified natural polymer.
  • cationic polymer examples include, for example, polyethyleneimine, polyvinylamine, polyvinylpyridine, polyaminesulfone, polyallylamine, polypyridine, polyamino acid, polyacrylamide, polyamide polyamine, polyaminoalkylacrylamide, polyepoxyamine, polydiallyldimethylammonium.
  • Halides polyvinylbenzyltrimethylammonium halides, polydiacryldimethylammonium halides, polydimethylaminoethyl methacrylate hydrochloride, polycationic peptides and proteins (eg, histone polypeptides, and poly-L-lysine, poly-D-lysine, poly- L, D-lysine, poly-L-arginine, poly-D-arginine, poly-D, L-arginine, poly-L-ol
  • polycationic polysaccharides such as starch and chitosan, and salts and derivatives of these polysaccharides.
  • the cationic polymer is preferably selected from the group consisting of protamine sulfate, protamine, polyethyleneimine, polyallylamine, poly-L-lysine, albumin and gelatin. These cationic polymers tend to promote the aggregation of the colloid of the antithrombotic polymer compound and easily increase the coating amount. Furthermore, the cationic polymer is preferably protamine sulfate or protamine. Since these cationic polymers have good biocompatibility, the water washing step can be omitted or the water washing step can be simplified after the anti-thrombotic polymer compound is coated on the hollow fiber membrane. . Therefore, it is also preferable from the viewpoint of productivity. In addition, the said cationic polymer may be used individually by 1 type, or may mix and use 2 or more types.
  • the weight average molecular weight of the cationic polymer (in the case where the cationic polymer is a protein, the molecular weight) varies depending on the cationic polymer used, but is preferably 1,000 to 1,000,000. 2,000 to 100,000 is more preferable, and 3,000 to 10,000 is particularly preferable. It is preferable that the weight average molecular weight of the cationic polymer (molecular weight when the cationic polymer is a protein) is 1,000 or more, because it promotes aggregation of colloidal particles and easily increases the coating amount.
  • the weight average molecular weight of the cationic polymer (or molecular weight when the cationic polymer is protein) is 1,000,000 or less, the viscosity of the colloidal solution does not become too high, and the coating to the hollow fiber membrane is performed. Becomes easier and the operability is improved.
  • weight average molecular weight (“molecular weight” for proteins) is a value measured by gel permeation chromatography (GPC). Specifically, a polymer to be analyzed is dissolved in a suitable solvent such as THF to prepare a 10 mg / ml solution. With respect to the polymer solution thus prepared, an appropriate solvent such as THF is allowed to flow as a mobile phase, and the GPC of the polymer to be analyzed is measured using polystyrene as a standard substance. After preparing a calibration curve with standard polystyrene, the weight average molecular weight (molecular weight) of the polymer to be analyzed is calculated based on this curve.
  • GPC gel permeation chromatography
  • the solvent used for the preparation of a solution (colloid solution) containing an antithrombotic polymer compound and a cationic polymer dissolves the cationic polymer, and the antithrombotic polymer compound is appropriately dispersed to form a colloid. It is preferable to use a solution capable of preparing a solution. From the viewpoint of more effectively preventing the colloid solution from penetrating to the outer surface or inner surface of the pores of the hollow fiber membrane (the surface on the side where the oxygen-containing gas flows), the solvent preferably contains water.
  • the water is preferably pure water, ion-exchanged water or distilled water, and particularly preferably distilled water.
  • the solvent other than water used for the preparation of the colloidal solution is not particularly limited, but is preferably methanol or acetone in consideration of ease of control such as dispersibility of the antithrombotic polymer compound.
  • Solvents other than water may be used alone or in the form of a mixture of two or more.
  • methanol is preferable in consideration of ease of further control such as dispersibility of the antithrombotic polymer compound. That is, the solvent is preferably composed of water and methanol.
  • the mixing ratio of water and methanol is not particularly limited, but considering the dispersibility of the antithrombotic polymer compound and ease of further control of the average particle size of the colloid, the mixing ratio of water: methanol (mass) Ratio) is preferably 6 to 32: 1, and more preferably 10 to 25: 1. That is, the solvent is preferably composed of water and methanol in a mixing ratio (mass ratio) of 6 to 32: 1, and is composed of water and methanol in a mixing ratio (mass ratio) of 10 to 25: 1. Is more preferable.
  • the order of adding the solvent, the antithrombotic polymer compound and the cationic polymer is not particularly limited, It is preferable to prepare a colloidal solution by the following procedure. That is, an antithrombotic polymer compound is added to a solvent other than water (preferably methanol) to prepare an antithrombotic polymer compound-containing solution. Subsequently, while stirring separately prepared water, On the other hand, it is preferable to prepare a colloid solution by adding the antithrombotic polymer compound-containing solution and further adding a cationic polymer. According to such a method, it is easy to disperse the antithrombotic polymer compound. Further, according to the above method, a colloid having a uniform particle diameter can be formed, and there is an advantage that a uniform film can be easily formed.
  • the addition rate of water to the antithrombotic polymer compound-containing solution is not particularly limited, but it is preferable to add the antithrombotic polymer compound-containing solution to water at a rate of 5 to 100 g / min.
  • the stirring time and the stirring temperature for preparing the colloidal solution are not particularly limited, but from the viewpoint of easily forming a colloid with a uniform particle size and uniformly dispersing the colloid, the solution containing the antithrombotic polymer compound in water. After the addition, stirring for 1 to 30 minutes is preferable, and stirring for 5 to 15 minutes is more preferable. Further, the stirring temperature is preferably 10 to 40 ° C, more preferably 20 to 30 ° C.
  • the cationic polymer may be mixed as it is with the antithrombotic polymer-containing solution or the solution after the antithrombotic polymer-containing solution is added to water, but is dissolved in another solvent in advance. May be mixed in the form of a prepared solution.
  • the other solvent is not particularly limited as long as it can dissolve the cationic polymer, and examples thereof include the same solvents as those used in the colloidal solution.
  • the other solvent may be the same as or different from the solvent of the colloidal solution, but is preferably the same solvent as the solvent of the colloidal solution from the viewpoint of easy preparation of a uniform solution.
  • the concentration of the cationic polymer in the other solvent in this case is not particularly limited, but considering the ease of mixing, the addition amount of the cationic polymer is 100 parts by mass of the other solvent.
  • the amount is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass, and still more preferably 0.5 to 5 parts by mass.
  • the concentration of the antithrombotic polymer compound in the colloidal solution is not particularly limited, but is preferably 0.01% by mass or more from the viewpoint of easily increasing the coating amount.
  • the colloid solution preferably contains the antithrombotic polymer compound at a concentration of 0.05% by mass or more, and particularly preferably contains 0.1% by mass or more.
  • the upper limit of the concentration of the antithrombotic polymer compound in the colloidal solution is not particularly limited, but it is preferably 0.5% by mass or less in consideration of the ease of forming a film and the effect of reducing coat unevenness. 0.4 mass% or less, more preferably 0.35 mass% or less. Moreover, if it is such a range, the fall of the gas exchange capability by the coating film of an antithrombotic polymer compound becoming too thick is also suppressed.
  • the concentration of the antithrombotic polymer compound in the colloidal solution is preferably 0.01 to 0.5% by mass, more preferably 0.05 to 0.4% by mass, and 0.1 to 0%. .35% by mass is particularly preferable.
  • the concentration of the cationic polymer in the colloid solution is not particularly limited, but is preferably 0.001% by mass or more from the viewpoint of facilitating the aggregation of the colloid and easily increasing the coating amount.
  • the coating amount can be increased as the concentration of the cationic polymer is increased.
  • the colloid solution more preferably contains the cationic polymer at a concentration of 0.01% by mass or more, and particularly preferably contains the cationic polymer at a concentration of 0.02% by mass or more.
  • the upper limit of the concentration of the cationic polymer in the colloidal solution is not particularly limited, but is preferably 0.05% by mass or less in consideration of the ease of removal of the cationic polymer, and 0.04% by mass. % Or less is more preferable, and 0.03% by mass or less is particularly preferable. Moreover, if it is such a range, the fall of the gas exchange capability by the coating film of an antithrombotic polymer compound becoming too thick is also suppressed.
  • the concentration of the cationic polymer in the colloidal solution is preferably 0.001 to 0.05% by mass, more preferably 0.01 to 0.04% by mass, and 0.02 to 0.03. A mass% is particularly preferred.
  • the mixing ratio of the antithrombotic polymer compound and the cationic polymer contained in the colloid solution is not particularly limited, but the colloid of the antithrombotic polymer compound is more easily aggregated, and the coating amount is effectively reduced.
  • the mixing ratio (mass ratio) of the antithrombotic polymer compound: cationic polymer is preferably 1: 0.01 to 0.10, and 1: 0.015 to 0.00. It is more preferable that it is 09. Moreover, if it is such a range, the fall of the gas exchange capability by the coating film of an antithrombotic polymer compound becoming too thick is also suppressed.
  • the mixing ratio of the antithrombotic polymer compound and the cationic polymer contained in the colloidal solution may be in the following range. That is, from the viewpoint of easily aggregating the colloid of the antithrombotic polymer compound and easily increasing the coating amount, the mixing ratio (molar ratio) of the antithrombotic polymer compound to the cationic polymer is 1. : 1 to 10 is preferable, and 1: 1.3 to 8 is more preferable. Moreover, if it is such a range, the fall of the gas exchange capability by the coating film of an antithrombotic polymer compound becoming too thick is also suppressed.
  • the antithrombotic polymer compound used in the present invention is a compound that imparts antithrombogenicity to an artificial lung by being applied to a hollow fiber membrane.
  • the antithrombotic polymer compound is distinguished from the cationic polymer described above in that it does not have a cationic group.
  • the weight average molecular weight of the antithrombotic polymer compound is not particularly limited, but is preferably 80,000 or more.
  • the antithrombotic polymer compound is applied to the outer surface or inner surface of the hollow fiber membrane in the form of a colloidal solution. Therefore, from the viewpoint of easy preparation of a desired colloidal solution, the weight average molecular weight of the antithrombotic polymer compound is preferably less than 800,000. By setting it as the said range, it can suppress that the said compound aggregates or precipitates in the solution containing an antithrombotic polymer compound, and can prepare the stable colloidal solution.
  • the weight average molecular weight of the antithrombotic polymer compound is preferably more than 200,000 and less than 800,000, more preferably 210,000 to 600,000, and 220,000 to 500,000. Even more preferably, it is more preferably 230,000-450,000.
  • the content of the polymer having a relatively small molecular weight contained in the coating (coating film) can be reduced. It is presumed that the effect of suppressing / preventing elution into the inside can also be obtained. Therefore, when the weight average molecular weight of the antithrombotic polymer compound is included in the above range, elution of the coating (particularly a low molecular weight polymer) into the blood can be more effectively suppressed / prevented. Moreover, it is preferable also from the point of antithrombogenicity and biocompatibility.
  • the “low molecular weight polymer” means a polymer having a weight average molecular weight of less than 60,000.
  • the measuring method of a weight average molecular weight is as above-mentioned.
  • the antithrombotic polymer compound can be used without particular limitation as long as it has antithrombogenicity and biocompatibility.
  • the antithrombotic polymer compound is represented by the following formula (I):
  • R 3 represents a hydrogen atom or a methyl group
  • R 1 represents an alkylene group having 1 to 4 carbon atoms
  • R 2 represents an alkyl group having 1 to 4 carbon atoms
  • the compound having the structural unit represented by the above formula (I) has antithrombotic biocompatibility (platelet adhesion / adhesion suppression / prevention effect and platelet activation suppression / prevention effect), particularly platelet adhesion. / Excellent anti-adhesion effect.
  • antithrombotic biocompatibility platelet adhesion / adhesion suppression / prevention effect and platelet activation suppression / prevention effect
  • platelet adhesion / adhesion It is possible to produce an artificial lung that is excellent in suppressing and preventing effects.
  • (meth) acrylate means “acrylate and / or methacrylate”. That is, “alkoxyalkyl (meth) acrylate” includes all alkoxyalkyl acrylates, only alkoxyalkyl methacrylates, and all alkoxyalkyl acrylates and alkoxyalkyl methacrylates.
  • R 1 represents an alkylene group having 1 to 4 carbon atoms.
  • the alkylene group having 1 to 4 carbon atoms is not particularly limited, and includes a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, and a propylene group linear or branched alkylene group.
  • an ethylene group and a propylene group are preferable, and an ethylene group is particularly preferable in consideration of further improvement effects of antithrombogenicity and biocompatibility.
  • R 2 represents an alkyl group having 1 to 4 carbon atoms.
  • the alkyl group having 1 to 4 carbon atoms is not particularly limited, and is a straight chain of methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group or There are branched alkyl groups. Among these, a methyl group and an ethyl group are preferable, and a methyl group is particularly preferable in view of further improving effects of antithrombogenicity and biocompatibility.
  • R 3 represents a hydrogen atom or a methyl group.
  • each structural unit may be the same or different. Good.
  • alkoxyalkyl (meth) acrylate examples include methoxymethyl acrylate, methoxyethyl acrylate, methoxypropyl acrylate, ethoxymethyl acrylate, ethoxyethyl acrylate, ethoxypropyl acrylate, ethoxybutyl acrylate, propoxymethyl acrylate, butoxyethyl acrylate, Examples include methoxybutyl acrylate, methoxymethyl methacrylate, methoxyethyl methacrylate, ethoxymethyl methacrylate, ethoxyethyl methacrylate, propoxymethyl methacrylate, and butoxyethyl methacrylate.
  • the antithrombotic polymer compound according to the present invention is preferably polymethoxyethyl acrylate (PMEA).
  • PMEA polymethoxyethyl acrylate
  • the above alkoxyalkyl (meth) acrylates may be used alone or in admixture of two or more.
  • the antithrombotic polymer compound is polymethoxyethyl acrylate (PMEA)
  • its weight average molecular weight is not particularly limited, but is preferably 80,000 or more.
  • the weight average molecular weight of PMEA is preferably less than 800,000. By setting it as the said range, it can suppress that the said compound aggregates or precipitates in the solution containing PMEA, and can prepare the stable colloidal solution.
  • the weight average molecular weight of PMEA is preferably more than 200,000 and less than 800,000, more preferably 210,000 to 600,000, and even more preferably 220,000 to 500,000. 230,000 to 450,000 is particularly preferable.
  • the antithrombotic polymer compound according to the present invention preferably has a constituent unit derived from alkoxyalkyl (meth) acrylate, and is composed of one or more constituent units derived from alkoxyalkyl (meth) acrylate. 1 or 2 or more types of constituent units derived from one or more alkoxyalkyl (meth) acrylates and one or more types copolymerizable with the alkoxyalkyl (meth) acrylates.
  • the polymer (copolymer) comprised from the structural unit (other structural units) derived from a monomer may be sufficient.
  • the structure of the polymer (copolymer) is not particularly limited, and a random copolymer, alternating copolymer Any of a coalescence, a periodic copolymer, and a block copolymer may be sufficient.
  • the terminal of the polymer is not particularly limited and is appropriately defined depending on the type of raw material used, but is usually a hydrogen atom.
  • a monomer that can be copolymerized with an alkoxyalkyl (meth) acrylate when the antithrombotic polymer compound according to the present invention has another structural unit in addition to the structural unit derived from alkoxyalkyl (meth) acrylate
  • the (copolymerizable monomer) is not particularly limited.
  • the copolymerizable monomer those having no hydroxyl group or cationic group in the molecule are preferable.
  • the copolymer may be any of a random copolymer, a block copolymer, and a graft copolymer, and can be synthesized by a known method such as radical polymerization, ionic polymerization, or polymerization using a macromonomer.
  • the ratio of the structural unit derived from the copolymerizable monomer in all the structural units of the copolymer is not particularly limited, but in consideration of antithrombogenicity and biocompatibility, the copolymerizable monomer It is preferable that the structural unit derived from (other structural unit) is more than 0 mol% and 50 mol% or less in all the structural units of the copolymer. If it exceeds 50 mol%, the effect of alkoxyalkyl (meth) acrylate may be reduced.
  • the antithrombotic polymer compound containing the structural unit derived from the alkoxyalkyl (meth) acrylate represented by the above formula (I) can be produced by a known method. Specifically, the following formula (II):
  • one or more monomers (copolymerizable monomers) that can be copolymerized with the alkoxyalkyl (meth) acrylate added as necessary By stirring together with a polymerization initiator in a polymerization solvent to prepare a monomer solution and heating the monomer solution, alkoxyalkyl (meth) acrylate, or alkoxyalkyl (meth) acrylate and, if necessary, A method of (co) polymerizing the added copolymerizable monomer is preferably used.
  • the substituents R 1 , R 2 and R 3 are the same as those defined in the above formula (I), and thus the description thereof is omitted here.
  • the polymerization solvent that can be used in the preparation of the monomer solution is not particularly limited as long as it can dissolve the alkoxyalkyl (meth) acrylate of the formula (II) used and the copolymerizable monomer added as necessary.
  • water alcohols such as methanol, ethanol, propanol and isopropanol, aqueous solvents such as polyethylene glycols; aromatic solvents such as toluene, xylene and tetralin; and halogens such as chloroform, dichloroethane, chlorobenzene, dichlorobenzene and trichlorobenzene System solvents and the like.
  • methanol is preferable in consideration of ease of dissolution of the alkoxyalkyl (meth) acrylate, ease of obtaining the polymer having the weight average molecular weight as described above, and the like.
  • the monomer concentration in the monomer solution is not particularly limited, but the weight average molecular weight of the obtained antithrombotic polymer compound can be increased by setting the concentration relatively high. For this reason, considering the ease of obtaining a polymer having a weight average molecular weight as described above, the monomer concentration in the monomer solution is preferably less than 50% by mass, more preferably 15% by mass. More than 50% by mass. Furthermore, the monomer concentration in the monomer solution is more preferably 20% by mass or more and 48% by mass or less, and particularly preferably 25% by mass or more and 45% by mass or less. In addition, the said monomer density
  • the polymerization initiator is not particularly limited, and a known one may be used.
  • it is a radical polymerization initiator from the viewpoint of excellent polymerization stability.
  • a persulfate such as potassium persulfate (KPS), sodium persulfate, ammonium persulfate; hydrogen peroxide, t-butyl persulfate.
  • Peroxides such as oxide and methyl ethyl ketone peroxide; azobisisobutyronitrile (AIBN), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis (2, 4-dimethylvaleronitrile), 2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] Disulfate dihydrate, 2,2′-azobis (2-methylpropionamidine) dihydrochloride, 2,2′-azobis [N- (2- Ruboxyethyl) -2-methylpropionamidine)] hydrate, 3-hydroxy-1,1-dimethylbutylperoxyneodecanoate, ⁇ -cumylperoxyneodecanoate, 1,1,3,3-tetrabutyl Peroxyneodecanoate, t-butylperoxyn
  • a reducing agent such as sodium sulfite, sodium hydrogen sulfite, or ascorbic acid may be combined with the radical polymerization initiator and used as a redox initiator.
  • the blending amount of the polymerization initiator is 0.0001 to 1 mol with respect to the total amount of monomers (alkoxyalkyl (meth) acrylate and copolymerizable monomer added if necessary; hereinafter the same).
  • % Is preferable 0.001 to 0.8 mol% is more preferable, and 0.01 to 0.5 mol% is particularly preferable.
  • the blending amount of the polymerization initiator is preferably 0.005 to 2 parts by mass, more preferably 100 parts by mass of monomer (the whole when plural types of monomers are used). Is 0.05 to 0.5 parts by mass. With such a blending amount of the polymerization initiator, a polymer having a desired weight average molecular weight can be produced more efficiently.
  • the polymerization initiator may be mixed as it is with the monomer and the polymerization solvent, or may be mixed as it is with the monomer and the polymerization solvent in the form of a solution previously dissolved in another solvent.
  • the other solvent is not particularly limited as long as it can dissolve the polymerization initiator, and examples thereof include the same solvents as the polymerization solvent.
  • the other solvent may be the same as or different from the polymerization solvent, but considering the ease of controlling the polymerization, it is preferable to use the same solvent as the polymerization solvent.
  • the concentration of the polymerization initiator in the other solvent is not particularly limited.
  • the addition amount of the polymerization initiator is preferably relative to 100 parts by mass of the other solvent. Is 0.1 to 10 parts by mass, more preferably 0.15 to 5 parts by mass, and still more preferably 0.2 to 1.8 parts by mass.
  • the monomer solution is heated to (co) polymerize alkoxyalkyl (meth) acrylate or alkoxyalkyl (meth) acrylate and another monomer.
  • the polymerization method for example, known polymerization methods such as radical polymerization, anionic polymerization, and cationic polymerization can be employed, and preferably radical polymerization that is easy to manufacture is used.
  • Polymerization conditions are not particularly limited as long as the above monomers (alkoxyalkyl (meth) acrylate or alkoxyalkyl (meth) acrylate and copolymerizable monomer) can be polymerized.
  • the polymerization temperature is preferably 30 to 60 ° C, more preferably 40 to 55 ° C.
  • the polymerization time is preferably 1 to 24 hours, and preferably 3 to 12 hours. Under such conditions, a polymer having a high molecular weight as described above can be produced more efficiently. In addition, gelation in the polymerization process can be effectively suppressed and prevented, and high production efficiency can be achieved.
  • a chain transfer agent e.g., a polymerization rate adjusting agent, a surfactant, and other additives may be appropriately used in the polymerization.
  • the atmosphere in which the polymerization reaction is performed is not particularly limited, and may be performed in an air atmosphere or an inert gas atmosphere such as nitrogen gas or argon gas. Further, the reaction solution may be stirred during the polymerization reaction.
  • the polymer after polymerization can be purified by a general purification method such as a reprecipitation method, a dialysis method, an ultrafiltration method, or an extraction method.
  • a reprecipitation method such as a reprecipitation method, a dialysis method, an ultrafiltration method, or an extraction method.
  • it is preferable to perform purification by a reprecipitation method because a (co) polymer suitable for the preparation of a colloidal solution can be obtained.
  • ethanol is preferably used as the poor solvent used for reprecipitation.
  • the polymer after purification can be dried by any method such as freeze drying, reduced pressure drying, spray drying, or heat drying. However, from the viewpoint of little influence on the physical properties of the polymer, freeze drying or reduced pressure drying is performed. Is preferred.
  • colloidal solution coating (coating) step Next, the colloidal solution prepared as described above is coated (coated) on the outer surface or inner surface of the hollow fiber membrane. Specifically, after assembling an artificial lung (for example, a structure as shown in FIG. 1 or FIG. 3 described later), the colloidal solution prepared in the above step (1) is contacted (or distributed), The outer surface or inner surface (that is, the blood contact portion) of the hollow fiber membrane is coated with an antithrombotic polymer compound. The colloidal solution may be applied to the hollow fiber membrane before the artificial lung is assembled.
  • the outer surface or inner surface of the hollow fiber membrane is brought into contact with the colloid solution (the colloid solution is circulated to the blood circulation side of the artificial lung), and the anti-thrombogenic property is increased on the outer surface or inner surface of the hollow fiber membrane.
  • the coating amount of the colloid solution on the outer surface or inner surface of the hollow fiber membrane is not particularly limited.
  • a preferred embodiment of the oxygenator manufactured by the method according to the present invention is an external perfusion oxygenator, in which the outer surface of the hollow fiber membrane is coated with an antithrombotic polymer compound. Therefore, in this step, it is preferable to apply a colloidal solution to the outer surface of the hollow fiber membrane in order to produce an artificial lung having the above configuration. That is, in the manufacturing method according to the present invention, the hollow fiber membrane has the inner surface that forms the lumen through which an oxygen-containing gas flows, and the outer surface that comes into contact with blood. A method of applying the colloidal solution is preferable.
  • the coating method of the antithrombotic polymer compound is not particularly limited, but filling, dip coating (dipping method), spraying, spin coating, dripping, blade coating, brush coating, roll coating, air knife coating, curtain coating, Conventionally known methods such as wire bar coating, gravure coating, and mixed solution impregnated sponge coating can be applied. Of these, filling and dip coating (dipping method) are preferred in order to increase the coating amount of the antithrombotic polymer compound.
  • the conditions for forming the coating film of the antithrombotic polymer compound are not particularly limited.
  • the contact time between the colloidal solution and the hollow fiber membrane takes into account the coating amount, the ease of forming the coating film, the effect of reducing coat unevenness, etc. 1 to 5 minutes is preferable, and 1 to 3 minutes is more preferable.
  • the contact temperature between the colloidal solution and the hollow fiber membrane takes into account the coating amount, the ease of forming a coating film, the effect of reducing coat unevenness, etc. 5 to 40 ° C is preferable, and 15 to 30 ° C is more preferable.
  • the colloidal solution is preferably allowed to stand at the time of contact between the colloidal solution and the hollow fiber membrane. By allowing the colloid solution to stand, a sufficient amount of the antithrombotic polymer compound can be coated.
  • the coating film is dried to form a coating (coating film) with the antithrombotic polymer compound according to the present invention on the outer surface or inner surface of the hollow fiber membrane.
  • the drying conditions are such that the coating (coating) with the antithrombotic polymer compound according to the present invention can be formed on the outer surface (and further the outer layer) or the inner surface (and the inner layer) of the hollow fiber membrane.
  • the drying temperature is preferably 5 to 50 ° C, more preferably 15 to 40 ° C.
  • the drying time is preferably 60 to 300 minutes, more preferably 120 to 240 minutes.
  • the coating film may be dried by allowing a gas of preferably 5 to 40 ° C., more preferably 15 to 30 ° C. to flow through the hollow fiber membrane continuously or stepwise.
  • a gas of preferably 5 to 40 ° C., more preferably 15 to 30 ° C. to flow through the hollow fiber membrane continuously or stepwise.
  • the type of gas is not particularly limited as long as it does not affect the coating film and can dry the coating film.
  • Specific examples include air and inert gases such as nitrogen gas and argon gas.
  • the amount of gas flow is not particularly limited as long as the coating film can be sufficiently dried, but is preferably 5 to 150 L, more preferably 30 to 100 L.
  • Washing step is a step of washing the coating with the antithrombotic polymer compound, and is optionally provided.
  • the cationic polymer present in the coating can be removed by washing the coating with the antithrombotic polymer compound.
  • this step may not be provided.
  • the cleaning method is not particularly limited, but a method of immersing and extracting a film made of an antithrombotic polymer compound in a cleaning solvent, a method of pouring a cleaning solvent, or a combination thereof may be used.
  • the washing solvent used at this time is not particularly limited as long as it does not dissolve the coating film made of the antithrombotic polymer compound and can remove impurities including the cationic polymer.
  • the temperature of the washing water is not particularly limited, but is preferably 20 ° C to 100 ° C, more preferably 25 to 80 ° C.
  • the washing time time for bringing the washing solvent into contact with the coating
  • a drying step may be performed after the washing step.
  • the drying method is not particularly limited, and a conventionally known method can be used.
  • the coating amount of the antithrombotic polymer compound on the hollow fiber membrane is preferably 20 mg / m 2 or more, preferably 30 mg / m 2. The above is more preferable. With such a coating amount, an artificial lung excellent in antithrombogenicity can be obtained.
  • the upper limit of the coating amount is not particularly limited, but is preferably 60 mg / m 2 or less.
  • the said coating amount employ
  • the “membrane area” of the hollow fiber membrane refers to the area of the outer surface or the inner surface of the hollow fiber membrane.
  • the “membrane area” is the outside of the hollow fiber membrane.
  • the “membrane area” It refers to the area of the inner surface of the membrane, and is calculated from the product of the inner diameter, the circumferential ratio, the number and the effective length of the hollow fiber membrane.
  • the artificial lung produced by the method of the present invention is coated with a sufficient amount of the antithrombotic polymer material as described above, the antithrombogenicity of the surface side or inner surface side of the hollow fiber membrane is low. improves. Therefore, when the artificial lung is incorporated into the extracorporeal circuit and blood is circulated, the platelet count maintenance rate of the circulating blood is improved.
  • the platelet count maintenance rate after circulating blood for 30 minutes is preferably more than 70%, more preferably 80% or more, and particularly preferably 90% or more (upper limit: 100%).
  • adopts the value measured by the method as described in the following Example.
  • the antithrombotic polymer compound (polymer) coats the outer surface or inner surface by applying a colloidal solution to the outer surface or inner surface of the hollow fiber membrane. It has a configuration. At this time, the cationic polymer contained in the colloidal solution may remain in the coating with the antithrombotic polymer compound. In such a case, it is determined that the oxygenator was manufactured by the method according to the present invention. The presence or absence of the cationic polymer in such a coating can be confirmed by any analytical means.
  • the coating amount of the antithrombotic polymer compound is also within the above coating amount range. It is judged that it was manufactured by the method according to the invention.
  • FIG. 1 is a cross-sectional view of one embodiment of a hollow fiber membrane external blood perfusion oxygenator obtained by the production method of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of a porous hollow fiber membrane for gas exchange used in a hollow fiber membrane external blood perfusion oxygenator obtained by the production method of the present invention.
  • FIG. 3 is a cross-sectional view of another embodiment of the oxygenator obtained by the production method of the present invention.
  • an artificial lung 1 houses a number of porous hollow fiber membranes 3 for gas exchange in a housing 2, blood flows on the outer surface side of the hollow fiber membrane 3, and an oxygen-containing gas is contained inside the hollow fiber membrane 3.
  • the antithrombotic polymer compound 18 is coated on the outer surface (the outer surface 3a ', or the outer surface 3a' and the outer surface layer 3a) of the hollow fiber membrane 3 serving as a blood contact portion. The coating (coating) of the antithrombotic polymer compound 18 is selectively formed on the outer surface 3 a ′ of the hollow fiber membrane 3.
  • the hollow fiber membrane used in the hollow fiber membrane external blood perfusion type artificial lung.
  • blood contacts the outer surface 3a 'side, and an oxygen-containing gas flows through the inner surface 3c' side.
  • a hollow fiber membrane internal blood perfusion oxygenator may be used. Therefore, the hollow fiber membrane may have a configuration opposite to the above configuration, that is, a configuration in which a coating (coating) of the antithrombotic polymer compound 18 is formed on the inner surface 3c ′.
  • “An antithrombotic polymer compound covers the outer surface of the hollow fiber membrane” means that the coating (coating) of the antithrombotic polymer compound is the outer surface of the hollow fiber membrane (the surface on the blood flow side), or It is intended to be formed on the outer surface and outer layer.
  • “the antithrombotic polymer compound coats the outer surface of the hollow fiber membrane” means that the coating (coating) of the antithrombotic polymer compound is on the outer surface of the hollow fiber membrane (the surface on the blood flow side). Intended to be formed.
  • “An antithrombotic polymer compound covers the outer surface layer of the hollow fiber membrane” means that the antithrombotic polymer compound partially penetrates into the outer surface layer of the hollow fiber membrane (near the outer surface of the pores).
  • the anti-thrombotic polymer compound coating may be formed on at least a part of the blood contact portion (outer surface) of the hollow fiber membrane, but the antithrombotic biocompatibility (platelet adhesion / adhesion) From the viewpoints of the suppression / prevention effect and the suppression / prevention effect of platelet activation, it is preferably formed on the entire blood contact portion (outer surface) of the hollow fiber membrane. That is, the antithrombotic polymer compound preferably covers the entire blood contact portion (outer surface) of the artificial lung.
  • the antithrombotic polymer compound may be present in the inner layer 3 b or the inner surface layer 3 c of the hollow fiber membrane 3, but in the inner layer 3 b or the inner surface layer 3 c of the hollow fiber membrane 3. It is preferable that it does not exist substantially.
  • “the antithrombotic polymer compound is not substantially present in the inner layer 3b or the inner surface layer 3c of the hollow fiber membrane 3” means that the inner surface of the hollow fiber membrane (the side on which the oxygen-containing gas flows). This means that no penetration of the antithrombotic polymer compound is observed in the vicinity of the surface).
  • a coating film is formed by applying a colloidal solution of an antithrombotic polymer, so that the antithrombotic polymer compound is applied to the inner layer 3b or the inner surface layer 3c of the hollow fiber membrane 3. Can be in a substantially non-existent form.
  • a hollow fiber membrane type artificial lung 1 includes a housing 2 having a blood inlet 6 and a blood outlet 7 and a number of gas exchange porous hollow fiber membranes 3 housed in the housing 2.
  • the blood chamber 12 is formed in the inside, the gas chamber formed inside the hollow fiber membrane 3, and the gas inlet 8 and the gas outlet 9 communicating with the gas chamber.
  • the hollow fiber membrane oxygenator 1 of the present embodiment includes a cylindrical housing 2, an aggregate of gas exchange hollow fiber membranes 3 housed in the cylindrical housing 2, and a hollow fiber membrane 3. Both ends of the housing 2 are liquid-tightly held in the housing 2, and the inside of the cylindrical housing 2 is partitioned into a blood chamber 12 as a first fluid chamber and a gas chamber as a second fluid chamber.
  • the cylindrical housing 2 is provided with a blood inlet 6 and a blood outlet 7 that communicate with the blood chamber 12.
  • a cap-like gas inflow having a gas inlet 8 that is a second fluid inlet that communicates with a gas chamber that is an internal space of the hollow fiber membrane 3 is provided above the partition wall 4 that is an end of the cylindrical housing 2.
  • a side header 10 is attached. Therefore, the gas inflow chamber 13 is formed by the outer surface of the partition wall 4 and the inner surface of the gas inflow side header 10.
  • the gas inflow chamber 13 communicates with a gas chamber formed by the internal space of the hollow fiber membrane 3.
  • a cap-like gas outflow side header 11 having a gas outflow port 9 provided as a second fluid outflow port provided below the partition wall 5 and communicating with the internal space of the hollow fiber membrane 3 is attached. Therefore, the gas outflow chamber 14 is formed by the outer surface of the partition wall 5 and the inner surface of the gas outflow side header 11.
  • the hollow fiber membrane 3 is a porous membrane made of a hydrophobic polymer material, and the same hollow fiber membrane used for known artificial lungs is used and is not particularly limited. As described above, the hollow fiber membrane (particularly the inner surface of the hollow fiber membrane) is made of a hydrophobic polymer material, so that leakage of plasma components can be suppressed.
  • the inner diameter of the hollow fiber membrane is not particularly limited, but is preferably 50 to 300 ⁇ m.
  • the outer diameter of the hollow fiber membrane is not particularly limited, but is preferably 100 to 400 ⁇ m.
  • the thickness (film thickness) of the hollow fiber membrane is preferably 20 ⁇ m to 100 ⁇ m, more preferably 25 to 80 ⁇ m, still more preferably 25 to 70 ⁇ m, and particularly preferably 25 to 60 ⁇ m.
  • the “thickness (film thickness) of the hollow fiber membrane” means the thickness between the inner surface and the outer surface of the hollow fiber membrane, and the formula: [(outside of the hollow fiber membrane (Diameter) ⁇ (inner diameter of hollow fiber membrane)] / 2.
  • the porosity of the hollow fiber membrane is preferably 5 to 90% by volume, more preferably 10 to 80% by volume, and particularly preferably 30 to 60% by volume.
  • the pore diameter of the hollow fiber membrane (that is, the pore diameter of the opening of the hollow fiber) is preferably 10 nm to 5 ⁇ m, more preferably 50 nm to 1 ⁇ m, and particularly preferably 50 nm to 100 nm.
  • the “diameter of the opening of the hollow fiber membrane” means the opening (in the present embodiment, the outer surface side) of the side coated with the antithrombotic polymer compound (in the present specification,
  • the average diameter of the material may be simply referred to as “pore”. Further, the average diameter of the openings (in the present specification, sometimes simply referred to as “pore diameter” or “pore diameter”) is measured by the method described below.
  • the hollow fiber membrane is imaged with a scanning electron microscope (SEM) on the side coated with the antithrombotic polymer compound (in this embodiment, the outer surface).
  • SEM scanning electron microscope
  • image processing is performed on the obtained SEM image, the hole portion (opening portion) is inverted in white, and the others are inverted in black, and the number of pixels in the white portion is measured.
  • the binarization boundary level is an intermediate value between the difference between the whitest part and the blackest part.
  • the number of pixels of the hole (opening) displayed in white is measured.
  • the hole area is calculated based on the number of pixels of each hole thus determined and the resolution ( ⁇ m / pixel) of the SEM image. From the obtained hole area, the diameter of each hole is calculated by regarding the hole as a circle, and a statistically significant number, for example, the diameter of 500 holes is randomly extracted, and the arithmetic average is expressed as “ The diameter of the opening of the hollow fiber ”.
  • the same material as the hollow fiber membrane used for known artificial lungs can be used.
  • specific examples include polyolefin resins such as polypropylene and polyethylene, and hydrophobic polymer materials such as polysulfone, polyacrylonitrile, polytetrafluoroethylene, and cellulose acetate. Of these, polyolefin resins are preferably used, and polypropylene is more preferable.
  • the method for producing the hollow fiber membrane is not particularly limited, and a known method for producing a hollow fiber membrane can be applied in the same manner or appropriately modified.
  • the hollow fiber membrane is preferably formed by forming micropores in the wall by a stretching method or a solid-liquid phase separation method.
  • the material constituting the cylindrical housing 2 can also be the same material as that used for a known artificial lung housing.
  • Specific examples include hydrophobic synthetic resins such as polycarbonate, acrylic / styrene copolymer, and acrylic / butylene / styrene copolymer.
  • the shape of the housing 2 is not particularly limited, but is preferably, for example, a cylindrical shape and a transparent body. By forming it with a transparent body, the inside can be easily confirmed.
  • the accommodation amount of the hollow fiber membrane in the present embodiment is not particularly limited, and the same amount as that of a known artificial lung can be applied.
  • about 5,000 to 100,000 porous hollow fiber membranes 3 are accommodated in the housing 2 in parallel in the axial direction.
  • the hollow fiber membrane 3 is fixed in a liquid-tight state by the partition walls 4 and 5 with both ends of the hollow fiber membrane 3 being opened at both ends of the housing 2.
  • the partition walls 4 and 5 are made of a potting agent such as polyurethane or silicone rubber. A portion sandwiched between the partition walls 4 and 5 in the housing 2 is partitioned into a gas chamber inside the hollow fiber membrane 3 and a blood chamber 12 outside the hollow fiber membrane 3.
  • a gas inflow side header 10 having a gas inflow port 8 and a gas outflow side header 11 having a gas outflow port 9 are liquid-tightly attached to the housing 2.
  • These headers may be formed of any material, but may be formed of, for example, a hydrophobic synthetic resin used for the housing described above.
  • the header may be attached by any method.
  • the header 2 may be bonded to the housing 2 by fusing using ultrasonic waves, high frequency, induction heating or the like, bonding using an adhesive, or mechanically fitting. Attached to. Further, a tightening ring (not shown) may be used. It is preferable that all the blood contact portions (the inner surface of the housing 2 and the outer surface of the hollow fiber membrane 3) of the hollow fiber membrane-type artificial lung 1 are made of a hydrophobic material.
  • the outer surface 3a ′ of the hollow fiber membrane 3 serving as at least a blood contact portion of the hollow fiber membrane oxygenator 1 (or the outer surface layer 3a in some cases; the same shall apply hereinafter)
  • the thrombotic polymer compound 18 is coated.
  • the antithrombogenic polymer compound is not substantially present in the inner layer 3b or the inner surface layer 3c of the hollow fiber membrane. Since the antithrombotic polymer compound is not substantially present, the hydrophobic property of the inner layer 3b or inner surface layer 3c of the hollow fiber membrane itself is maintained as it is, and leakage of plasma components (leakage) ) Can be effectively prevented.
  • the antithrombogenic polymer compound is not substantially present in both the inner layer 3b and the inner surface layer 3c of the hollow fiber membrane.
  • the hollow fiber membrane 3 includes a passage (inner lumen) 3d that forms a gas chamber at the center.
  • the hollow fiber membrane 3 has an opening 3e that communicates the outer surface 3a 'and the inner surface 3c'.
  • the hollow fiber membrane having such a configuration is such that blood is in contact with the outer surface 3a ′ side coated with the antithrombotic polymer compound 18, and oxygen-containing gas is circulated on the inner surface 3c ′ side. used.
  • the hollow fiber membrane 3 has an inner surface 3c ′ that forms a lumen through which an oxygen-containing gas flows, and an outer surface 3a ′ that contacts blood, and the outer surface 3a ′ A form coated with a film containing the antithrombotic polymer compound according to the present invention (ie, external perfusion type).
  • the coating (coating) of the antithrombotic polymer compound is selectively formed on the outer surface (external perfusion type) of the hollow fiber membrane. For this reason, blood (particularly plasma components) does not easily penetrate into the pores of the hollow fiber membrane or does not penetrate. Therefore, leakage of blood (particularly plasma components) from the hollow fiber membrane can be effectively suppressed / prevented.
  • the inner layer 3b of the hollow fiber membrane and the inner layer 3c of the hollow fiber membrane are: Since the hydrophobic state of the material is maintained, leakage (leakage) of blood (particularly plasma components) can be more effectively suppressed / prevented. Therefore, the artificial lung obtained by the method of the present invention can maintain a high gas exchange capacity over a long period of time.
  • a coating (coating) of the antithrombotic polymer compound can be uniformly formed on the outer surface or inner surface of the hollow fiber membrane. For this reason, there is little adhesion / adhesion and activation of platelets at the blood contact portion of the hollow fiber membrane. It is also possible to suppress / prevent the coating from peeling from the hollow fiber membrane.
  • the coating of the antithrombotic polymer compound according to the present embodiment is formed on the outer surface of the hollow fiber membrane of the artificial lung, but in addition to the outer surface, other components (for example, the entire blood contact portion) May be formed. With this configuration, platelet adhesion / adhesion and activation can be more effectively suppressed / prevented in the entire blood contact portion of the artificial lung. Moreover, since the contact angle of the blood contact surface is lowered, the priming operation is facilitated.
  • the coating of the antithrombotic polymer compound according to the present invention is preferably formed on another constituent member that comes into contact with blood, but the hollow fiber membrane or hollow fiber membrane other than the blood contact portion is formed. The other part (for example, the part buried in the partition wall) may not be coated with the antithrombotic polymer compound. Since such a portion does not come into contact with blood, there is no particular problem even if the antithrombotic polymer compound is not coated.
  • FIG. 3 is a cross-sectional view showing another embodiment of the oxygenator obtained by the method of the present invention.
  • 4 is a cross-sectional view taken along line AA in FIG.
  • an artificial lung (hollow fiber membrane external blood perfusion type artificial lung) 20 includes an inner cylindrical member 31 having a blood circulation opening 32 on its side surface, and a number of gases wound around the outer surface of the inner cylindrical member 31.
  • the housing 23 which accommodates the cylindrical hollow fiber membrane bundle 22 with the inner side cylindrical member 31, and the hollow fiber membrane 3 , Partition walls 25 and 26 for fixing both ends of the cylindrical hollow fiber membrane bundle 22 to the housing, a blood inlet 28 and blood outlets 29a and 29b communicating with the blood chamber 17 formed in the housing 23, and a hollow fiber A gas inlet 24 and a gas outlet 27 communicating with the inside of the membrane 3 are provided.
  • the oxygenator 20 of the present embodiment includes an outer cylindrical member 33 that houses an inner cylindrical member 31, and the cylindrical hollow fiber membrane bundle 22 is an inner cylinder.
  • the housing 23 is housed between the outer cylindrical member 33 and the outer cylindrical member 33, and the housing 23 is blood connected to one of the blood inlet or the blood outlet communicating with the inside of the inner cylindrical member and the inside of the outer cylindrical member. The other of the inlet or the blood outlet.
  • the housing 23 is housed in the outer cylindrical member 33 and the inner cylindrical member 31, and the inner cylindrical body 35 whose front end opens in the inner cylindrical member 31.
  • a blood inlet 28 is formed at one end (lower end) of the inner cylinder 35, and two blood outlets 29 a and 29 b extending outward are formed on the side surface of the outer cylindrical member 33. There may be one or more blood outlets.
  • the cylindrical hollow fiber membrane bundle 22 is wound around the outer surface of the inner cylindrical member 31. That is, the inner cylindrical member 31 is the core of the cylindrical hollow fiber membrane bundle 22.
  • the inner cylindrical body 35 housed inside the inner cylindrical member 31 has a tip that is open near the first partition wall 25.
  • a blood inflow port 28 is formed at the lower end protruding from the inner cylindrical member 31.
  • the inner cylindrical member 35, the inner cylindrical member 31 with the hollow fiber membrane bundle 22 wound around the outer surface, and the outer cylindrical member 33 are arranged substantially concentrically. Then, one end (upper end) of the inner cylindrical member 31 and the one end (upper end) of the outer cylindrical member 33 around which the hollow fiber membrane bundle 22 is wound on the outer surface are concentrically positioned by the first partition wall 25. While being maintained, the space formed between the inside of the inner cylindrical member and the outer cylindrical member 33 and the outer surface of the hollow fiber membrane is in a liquid-tight state that does not communicate with the outside.
  • the partition walls 25 and 26 are formed of a potting agent such as polyurethane or silicone rubber.
  • a chamber 17 is formed.
  • the blood flowing in from the blood inlet 28 flows into the blood inflow portion 17a, rises in the inner cylinder 35 (blood inflow portion 17a), and flows out from the upper end 35a (open end) of the inner cylinder 35. , Flows into the first blood chamber 17b, passes through the opening 32 formed in the inner cylindrical member 31, contacts the hollow fiber membrane, and after gas exchange, flows into the second blood chamber 17c. The blood flows out from the blood outlets 29a and 29b.
  • a gas inflow member 41 having a gas inlet 24 is fixed to one end of the outer cylindrical member 33, and similarly, a gas having a gas outlet 27 is provided to the other end of the outer cylindrical member 33.
  • An outflow member 42 is fixed.
  • the blood inlet 28 of the inner cylindrical body 35 protrudes outside through the gas outflow member 42.
  • the outer cylindrical member 33 is not particularly limited, but a cylindrical body, a polygonal cylinder, an elliptical cross section, or the like can be used. A cylindrical body is preferable.
  • the inner diameter of the outer cylindrical member is not particularly limited and may be the same as the inner diameter of the outer cylindrical member used for a known artificial lung, but is preferably about 32 to 164 mm.
  • the effective length of the outer cylindrical member is not particularly limited, and is the same as the effective length of the outer cylindrical member used for a known artificial lung. However, about 10 to 730 mm is preferable.
  • the shape of the inner cylindrical member 31 is not particularly limited, but for example, a cylindrical body, a polygonal cylinder, an elliptical cross section, or the like can be used. A cylindrical body is preferable.
  • the outer diameter of the inner cylindrical member is not particularly limited, and may be the same as the outer diameter of the inner cylindrical member used for a known artificial lung, but is preferably about 20 to 100 mm.
  • the effective length of the inner cylindrical member (the length of the portion of the total length that is not buried in the partition wall) is not particularly limited, and is the same as the effective length of the inner cylindrical member used for a known artificial lung. However, about 10 to 730 mm is preferable.
  • the inner cylindrical member 31 includes a large number of blood circulation openings 32 on the side surface.
  • the size of the opening 32 is preferably large in total area as long as the necessary strength of the tubular member is maintained.
  • FIG. 5 is a front view
  • FIG. 6 is a central longitudinal sectional view of FIG. 5
  • FIG. 7 is a sectional view taken along the line BB of FIG.
  • an annular arrangement opening in which a plurality of openings 32 (for example, 4 to 24 pieces, 8 pieces in the longitudinal direction in the figure) are provided on the outer peripheral surface of the cylindrical member at equal angular intervals is provided at equal intervals in the axial direction of the cylindrical member
  • a plurality of sets (8 sets / circumference in the figure) are preferable.
  • the opening shape may be a circle, a polygon, an ellipse or the like, but an oval shape as shown in FIG. 5 is preferable.
  • the shape of the inner cylindrical body 35 is not particularly limited, but for example, a cylindrical body, a polygonal cylinder, an elliptical cross section, or the like can be used. A cylindrical body is preferable.
  • the distance between the distal end opening of the inner cylinder 35 and the first partition wall 25 is not particularly limited, and a distance similar to that used for a known artificial lung can be applied, but about 20 to 50 mm is preferable. is there.
  • the inner diameter of the inner cylinder 35 is not particularly limited, and may be the same as the inner diameter of the inner cylinder used for a known artificial lung, but is preferably about 10 to 30 mm.
  • the thickness of the cylindrical hollow fiber membrane bundle 22 is not particularly limited and may be the same as the thickness of the cylindrical hollow fiber membrane bundle used for known artificial lungs, but is preferably 5 to 35 mm, and particularly 10 mm to 28 mm. It is preferable that Further, the filling rate of the hollow fiber membrane to the cylindrical space formed between the outer surface and the inner surface of the cylindrical hollow fiber membrane bundle 22 is not particularly limited, and the filling rate in a known artificial lung is similarly applied. However, it is preferably 40 to 85%, particularly preferably 45 to 80%.
  • the outer diameter of the hollow fiber membrane bundle 22 may be the same as the outer diameter of a hollow fiber membrane bundle used for known artificial lungs, but is preferably 30 to 170 mm, and particularly preferably 70 to 130 mm. As the gas exchange membrane, those described above are used.
  • the hollow fiber membrane bundle 22 is formed by winding a hollow fiber membrane around the inner cylindrical member 31, specifically, by forming a hollow fiber membrane bobbin with the inner cylindrical member 31 as a core, and forming the hollow fiber membrane. Both ends of the bobbin can be formed by cutting both ends of the hollow fiber membrane bobbin together with the inner cylindrical member 31 as the core after fixing with the partition walls. In addition, by this cutting
  • the formation method of a hollow fiber membrane is not limited to the said method, You may use the formation method of other well-known hollow fiber membranes similarly or suitably modified.
  • one or a plurality of hollow fiber membranes are wound around the inner cylindrical member 31 so that the hollow fiber membranes that are substantially parallel and adjacent to each other have a substantially constant interval. Thereby, the drift of blood can be suppressed more effectively.
  • the distance between adjacent hollow fiber membranes of the hollow fiber membrane is not limited to the following, but is preferably 1/10 to 1/1 of the outer diameter of the hollow fiber membrane.
  • the hollow fiber membranes preferably have a distance from adjacent hollow fiber membranes of 30 to 200 ⁇ m.
  • the hollow fiber membrane bundle 22 has one or more (preferably 2 to 16) hollow fiber membranes at the same time, and all the adjacent hollow fiber membranes have a substantially constant interval.
  • n which is the relationship between the number of rotations of the winding rotary body and the number of rewinds of the winder, is not particularly limited, but is usually 1 to 5, and preferably 2 to 4.
  • the oxygenator 20 After blood flows from the inside of the cylindrical hollow fiber membrane bundle 22 and the blood that has passed through the hollow fiber membrane bundle 22 flows to the outside of the hollow fiber membrane bundle 22, although it is of the type that flows out from the oxygenator 20, it is not limited to this. Contrary to the other embodiments described above, blood flows from the outside of the cylindrical hollow fiber membrane bundle 22, and after the blood passing through the hollow fiber membrane bundle 22 flows inside the hollow fiber membrane bundle 22, the oxygenator 20 It may be of a more outflow type.
  • the hollow fiber membrane type artificial lung 20 as shown in FIG. 2, at least the outer surface 3a ′ (and further the outer layer 3a) of the hollow fiber membrane 3 of the hollow fiber membrane type artificial lung 1 is applied to the present invention.
  • the antithrombotic polymer compound 18 is preferably coated.
  • the antithrombotic polymer compound may be present in the inner layer 3b or the inner surface layer 3c of the hollow fiber membrane 3, but is substantially present in the inner layer 3b or the inner surface layer 3c of the hollow fiber membrane.
  • the hollow fiber membrane 3 includes a passage (inner lumen) 3d that forms a gas chamber at the center.
  • the hollow fiber membrane 3 has an opening 3e that communicates the outer surface 3a 'and the inner surface 3c'.
  • preferred forms of the hollow fiber membrane are not particularly limited, but the same form as described in FIG. 1 can be adopted.
  • the hollow fiber membranes 3 are in the form of a so-called bobbin that is in contact with each other and stacked in layers.
  • the coating with the antithrombotic polymer compound is selectively formed uniformly on the outer surface 3a 'of the hollow fiber membrane.
  • the inner layer 3b and the inner surface layer 3c of the hollow fiber membrane are made of a hydrophobic material. Since the sex state is maintained, leakage (leakage) of blood (particularly plasma components) can be more effectively suppressed / prevented.
  • the blood flow path is complicated and has many narrow portions, and is excellent in gas exchange ability.
  • an external blood perfusion type artificial body that is not a bobbin type is used. May be inferior to lungs.
  • the coating of the antithrombotic polymer compound is uniform, platelet adhesion / adhesion and activation at the blood contact portion of the hollow fiber membrane are small. Further, it is possible to suppress / prevent peeling of the coating (particularly the coating uneven portion) from the hollow fiber membrane.
  • the coating of the antithrombotic polymer compound is essentially formed on the outer surface of the hollow fiber membrane of the artificial lung, but in addition to the outer surface, it is formed on other components (for example, the entire blood contact portion). May be.
  • the coating of the antithrombotic polymer compound is formed on another component that comes into contact with blood, but the hollow fiber membrane other than the blood contact portion or other part of the hollow fiber membrane (for example, the portion buried in the partition wall and the contact portion between the hollow fibers may not be coated with the antithrombotic polymer compound. Since such a portion does not come into contact with blood, there is no particular problem even if the antithrombotic polymer compound is not coated.
  • this polymerization initiator solution was added to the monomer solution, and a polymerization reaction was performed at 50 ° C. for 5 hours. After polymerization for a predetermined time, the polymerization solution was dropped into ethanol, and the precipitated polymer (PMEA) was recovered. In addition, it was 420,000 when the weight average molecular weight of the collect
  • Example 1-2 Coating solution having a protamine sulfate concentration of 0.027 mass%
  • the amount of protamine sulfate used was changed, and 11 ml of an aqueous protamine sulfate solution (10 mg / ml aqueous solution) was added.
  • a coating solution (2) was obtained in the same manner as in Example 1-1 except for.
  • the coating liquid (2) was also a solution containing a colloid, like the coating liquid (1).
  • Comparative Example 1-1 No protamine sulfate added A coating liquid (3) was obtained in the same manner as in Example 1-1 except that the aqueous solution of protamine sulfate was not added.
  • the coating liquid (3) was also a solution containing a colloid, like the coating liquid (1).
  • Example 2-1 Porous hollow for gas exchange made of porous polypropylene having an inner diameter of 195 ⁇ m, an outer diameter of 295 ⁇ m, a wall thickness of 50 ⁇ m, a porosity of about 35% by volume, and an outer surface pore diameter (ie, average diameter of openings) of 80 nm
  • the coating liquid (1) prepared in Example 1-1 above is filled into the blood flow path of the artificial lung (a) and left standing at 25 ° C. for 120 seconds, and then the coating liquid is removed to obtain a flow rate of 80 L.
  • the hollow fiber membrane was dried to produce a blood external perfusion type hollow fiber membrane artificial lung (1) having a hollow fiber membrane having a coating formed on the outer surface.
  • the blood external perfusion type hollow fiber artificial lung (1) thus obtained is also referred to as an artificial lung (1).
  • Example 2-2 In Example 2-1 above, except that the coating solution used was changed to the coating solution (2) prepared in Example 1-2 above, blood external perfusion type hollow was obtained in the same manner as in Example 2-1. A thread membrane oxygenator (2) was produced. The blood external perfusion type hollow fiber artificial lung (2) thus obtained is also referred to as an artificial lung (2).
  • Example 2-1 In Example 2-1 above, except that the coating liquid used was changed to the coating liquid (3) prepared in Comparative Example 1-1, the blood external perfusion type hollow was the same as in Example 2-1 above. A thread membrane oxygenator (3) was produced. The blood external perfusion-type hollow fiber artificial lung (3) thus obtained is also referred to as an artificial lung (3).
  • the artificial lungs (1) to (3) were disassembled and the artificial lung membrane was taken out. Among them, 3 g of the artificial lung membrane was filled into a glass tube with a screw cap, 25 ml of acetone was added, and the mixture was stirred for 120 minutes to extract PMEA coated on each artificial lung membrane. The whole amount of the acetone extract was transferred to another glass tube with a screw cap. Acetone was evaporated using a heat block. Ten ml of tetrahydrofuran was added to the glass tube containing the evaporated dry matter to dissolve the evaporated dry matter. The THF solution (standard solution) containing 1 mg / ml PMEA was analyzed using GPC, and the area of the peak corresponding to PMEA was calculated.
  • the evaporated dry solid THF solution (test solution) was analyzed using GPC, and the area of the peak corresponding to PMEA was calculated in the same manner. Thereafter, the amount of PMEA in the test solution was calculated using the following formula 1, and the amount of PMEA coating per 1 m 2 of artificial lung membrane (the area 1 m 2 of the outer surface of the hollow fiber membrane) was calculated using formula 2. The results are shown in Table 1 below.
  • Example 2 Antithrombogenicity test
  • the anti-thrombogenicity of the artificial lung (1) and the artificial lung (3) obtained in Example 2-1 and Comparative Example 2-1 was evaluated according to the following method.
  • Each artificial lung was incorporated into an extracorporeal circuit and filled with 90 ml of fresh pig blood with heparin added and 110 ml of physiological saline.
  • the heparin concentration in the circulating blood was 0.5 u / ml.
  • Circulating blood was circulated at room temperature (25 ° C.) at 500 ml / min.
  • 0.7 ml of a solution obtained by diluting protamine sulfate (100 mg / 10 ml) with physiological saline 100 times was injected into the circulating blood.
  • the artificial lung (1) produced by the method according to the present invention is compared with the artificial lung (3) using a coating solution that does not contain a water-soluble cationic polymer in the coating solution.
  • the antithrombogenicity is significantly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Medical Uses (AREA)
  • External Artificial Organs (AREA)

Abstract

外表面と、内腔を形成する内表面と、前記外表面と前記内表面とを連通する開口部と、を備えた複数のガス交換用多孔質中空糸膜を有する人工肺の製造方法は、抗血栓性高分子化合物のコロイドと、水溶性のカチオン性高分子と、を含む溶液を、前記外表面および前記内表面のいずれか一方に塗布することを含む。本発明によれば、中空糸膜に対する抗血栓性高分子化合物のコート量を増加させることができる手段が提供される。

Description

人工肺の製造方法
 本発明は、人工肺の製造方法に関する。詳しくは、体外血液循環において、血液中の二酸化炭素を除去し、血液中に酸素を添加するための中空糸膜型人工肺、特に中空糸膜外部血液灌流型人工肺の製造方法に関する。
 多孔質膜を使用した中空糸膜型人工肺は、心臓疾患の開心術時における体外循環装置や循環補助用人工心肺装置として、一般に広く使用されている。膜型人工肺は主に中空糸膜を用い、その中空糸膜を介して血液のガス交換を行うものである。人工肺への血液の灌流方式として、中空糸膜の内側に血液を流し、中空糸膜の外側にガスを流す内部灌流方式と、逆に血液を中空糸膜の外側へ流し、ガスを中空糸膜の内側へ流す外部灌流方式とがある。
 中空糸膜型人工肺は、中空糸膜の内表面または外表面が血液と触れるため、血液と接触する中空糸膜の内表面または外表面が血小板系の粘着(付着)や活性化に影響を与える虞がある。特に、中空糸膜の外表面が血液と触れる外部灌流型人工肺は、血液の流れに乱れを発生させるため、血小板系の粘着(付着)や活性化に影響を与えやすい。
 このような課題を考慮して、アルコキシアルキル(メタ)アクリレートの血小板系の粘着や活性化の抑制・防止効果を利用して、従来、アルコキシアルキル(メタ)アクリレートを抗血栓性材料として外部灌流型人工肺用中空糸膜のコーティングに使用していた。例えば、特開平11-114056号公報(米国特許第6495101号明細書に対応)では、中空糸膜の外面または外面層を、水、メタノール及びエタノールの混合溶媒にアルコキシアルキル(メタ)アクリレートを主成分としてなる高分子を溶解してなるコート液でコーティングした後、乾燥させることが記載されている。
 そして、血液循環後の血漿成分の漏出(血漿リーク)を抑制できる技術として、国際公開第2016/143752号には、抗血栓性を有する高分子材料のコロイド溶液によって中空糸膜を被覆する技術が提案されている。当該技術によれば、コロイドの平均粒子径を、中空糸膜の開口部の直径に対して特定の比率以上となるように調節することにより、その灌流方式に関わらず、血漿成分の漏出を効果的に抑制できる人工肺が得られる。
 一方で、患者への負担をさらに軽減する目的から、抗血栓性を向上させるべく、中空糸膜に対する抗血栓性高分子材料(抗血栓性高分子化合物)のコート量を増加させることができる技術が求められている。
 したがって、本発明は、上記事情を鑑みてなされたものであり、中空糸膜に対する抗血栓性高分子化合物のコート量を増加させることができる手段を提供することを目的とする。
 本発明者は、上記の問題を解決すべく、鋭意研究を行った結果、抗血栓性高分子化合物のコロイド溶液中に、さらに水溶性のカチオン性高分子を添加することで、上記課題を解決できることを知得し、本発明を完成させた。
 すなわち、上記目的は、外表面と、内腔を形成する内表面と、前記外表面と前記内表面とを連通する開口部と、を備えた複数のガス交換用多孔質中空糸膜を有する人工肺の製造方法であって、抗血栓性高分子化合物のコロイドと、水溶性のカチオン性高分子と、を含む溶液を、前記外表面および前記内表面のいずれか一方に塗布することを含む、人工肺の製造方法によって達成できる。
図1は、本発明の製造方法により得られる中空糸膜外部血液灌流型人工肺の一実施形態を示す断面図である。図1において、符号1は、中空糸膜外部血液灌流型人工肺を;符号2は、ハウジングを;符号3は、中空糸膜を;符号4,5は、隔壁を;符号6は、血液流入口を;符号7は、血液流出口を;符号8は、ガス流入口を;符号9は、ガス流出口を;符号10は、ガス流入側ヘッダーを;符号11は、ガス流出側ヘッダーを;符号12は、血液室を;符号13は、ガス流入室を;符号14は、ガス流出室を、それぞれ表す。 図2は、本発明の製造方法により得られる中空糸膜外部血液灌流型人工肺に使用される中空糸膜の拡大断面図である。図2において、符号3は、中空糸膜を;符号3aは、外面層を;符号3a’は、外表面を;符号3bは、内部層を;符号3cは、内面層を;符号3c’は、内表面を;符号3dは、通路を;符号3eは、開口部を;符号18は、抗血栓性材料を、それぞれ表す。 図3は、本発明の製造方法により得られる中空糸膜外部血液灌流型人工肺の他の実施形態を示す断面図である。図3において、符号3は、中空糸膜を;符号17は、血液室を;符号17aは、血液流入部を;符号17bは、血液室を;符号17cは、第2の血液室を;符号20は、中空糸膜外部血液灌流型人工肺を;符号22は、筒状中空糸膜束を;符号23は、ハウジングを;符号24は、ガス流入口を;符号25,26は、隔壁を;符号27は、ガス流出口を;符号28は、血液流入口を;符号29a,29bは、血液流出口を;符号31は、内側筒状部材を;符号32は、血液流通用開口を;符号33は、外側筒状部材を;符号35は、内筒体を;符号35aは、内筒体35の上端を;符号41は、ガス流入用部材を、それぞれ表す。 図4は、図3のA-A線断面図である。図4において、符号3は、中空糸膜を;符号17aは、血液流入部を;符号17cは、第2の血液室を;符号22は、筒状中空糸膜束を;符号29a,29bは、血液流出口を;符号31は、内側筒状部材を;符号32は、血液流通用開口を;符号33は、外側筒状部材を;符号35は、内筒体を、それぞれ表す。 図5は、本発明の製造方法により得られる中空糸膜外部血液灌流型人工肺に使用される内側筒状部材の一例を示す正面図である。図5において、符号31は、内側筒状部材を;符号32は、血液流通用開口を、それぞれ表す。 図6は、図5に示した内側筒状部材の中央縦断面図である。図6において、符号31は、内側筒状部材を;符号32は、血液流通用開口を、それぞれ表す。 図7は、図5のB-B線断面図である。図7において、符号31は、内側筒状部材を;符号32は、血液流通用開口を、それぞれ表す。
 本発明は、外表面と、内腔を形成する内表面と、前記外表面と前記内表面とを連通する開口部と、を備えた複数のガス交換用多孔質中空糸膜を有する人工肺の製造方法であって、抗血栓性高分子化合物のコロイドと、水溶性のカチオン性高分子と、を含む溶液を、前記外表面および前記内表面のいずれか一方に塗布することを含む、人工肺の製造方法に関する。本発明の人工肺の製造方法によれば、中空糸膜に対する抗血栓性高分子化合物のコート量を増加させることができる手段が提供される。
 本発明に係る人工肺の製造方法では、抗血栓性高分子化合物のコロイド粒子を含む溶液が、さらに水溶性のカチオン性高分子(本明細書中、単に「カチオン性高分子」とも称することがある)を含む。そして、当該溶液を中空糸膜外表面または内表面に被覆(塗布)することによって人工肺を製造する。当該方法により得られる人工肺は、抗血栓性高分子化合物のコート量が飛躍的に向上する。ここで、本発明の構成による上記作用効果の発揮のメカニズムは以下のように推測される。なお、本発明は下記メカニズムに限定されるものではない。
 国際公開第2016/143752号の技術によれば、抗血栓性高分子化合物のコロイド溶液によって、中空糸膜が被覆される。このとき、コロイド溶液に含まれる抗血栓性高分子化合物のコロイド粒子(粒子表面)は負に帯電していると推測される。ここで、本発明に係る溶液(コロイド溶液)は、さらにカチオン性高分子を含むため、抗血栓性高分子化合物の負電荷と、カチオン性高分子の正電荷とが互いに引きつけ合っていると考えられる。すなわち、コロイド粒子表面に対し、カチオン性高分子が吸着した状態にあると推測される。そして、カチオン性高分子の正電荷は、負電荷に帯電した中空糸膜表面に対し、コロイド粒子を吸着させる役割を果たす。
 一方で、抗血栓性高分子化合物のコロイド粒子に対して吸着したカチオン性高分子は、他の抗血栓性高分子化合物のコロイド粒子にもまた吸着できる。よって、抗血栓性高分子化合物のコロイド粒子が複数架橋されるような形態となる結果、コロイド粒子が凝集しやすくなると考えられる。
 以上より、本発明に係る溶液を用いると、中空糸膜の表面にコロイド粒子が吸着しやすく、さらに、中空糸膜の表面に吸着したコロイド粒子に対し、他のコロイド粒子が凝集しやすくなるため、抗血栓性高分子化合物のコート量が増大すると推測される。加えて、コロイド溶液中で凝集した状態にあるコロイド粒子が、中空糸膜の表面に吸着することによっても、コート量が増大すると考えられる。よって、本発明に係る方法により製造された人工肺は、抗血栓性に優れる。
 以下、本発明の好ましい実施の形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。以下では、好ましい実施形態として、中空糸膜外部血液灌流型人工肺について具体的に説明するが、本発明の方法により製造される人工肺は中空糸膜内部血液灌流型人工肺であってもよく、この場合でも下記実施の形態を適宜変更することによって適用できる。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 本明細書において、範囲を示す「X~Y」は、XおよびYを含み、「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%RHの条件で測定する。
 [人工肺の製造方法]
 本発明に係る人工肺の製造方法では、中空糸膜の外表面または内表面に、抗血栓性高分子化合物のコロイドと、水溶性のカチオン性高分子と、を含む溶液(コロイド溶液)を塗布する。以下では、本発明に係る人工肺の製造方法の好ましい形態について説明する。なお、本発明は、上記溶液で中空糸膜の外表面または内表面を被覆する以外は、下記好ましい形態に限定されない。
 本発明の方法では、まず、抗血栓性高分子化合物のコロイドと、水溶性のカチオン性高分子と、を含む溶液(コロイド溶液)を調製し、当該コロイド溶液を中空糸膜の外表面または内表面に塗布する(被覆させる)。その後、必要に応じて、水溶性のカチオン性高分子の除去を目的とし、中空糸膜の外表面または内表面に形成された被膜を洗浄してもよい。以下では、(1)コロイド溶液の調製工程、(2)コロイド溶液の塗布(被覆)工程、(3)洗浄工程として、それぞれ説明する。
 (1)コロイド溶液の調製工程
 本工程では、中空糸膜の外表面または内表面に塗布するための、コロイド溶液を調製する。
 (コロイド溶液の調製)
 上述のように、本発明に係る方法において用いられるコロイド溶液は、抗血栓性高分子化合物と、水溶性のカチオン性高分子と、を含む。当該カチオン性高分子を含むことにより、抗血栓性高分子化合物のコロイド粒子が凝集しやすくなる結果、抗血栓性高分子化合物のコート量を増やすことができる。
 本発明に係るコロイド溶液に含まれる「水溶性のカチオン性高分子」とは、水溶性であり、かつ、分子内にカチオン性基を有する高分子化合物を意味する。ここで、「水溶性」とは、水(25℃)に対する溶解度が0.1g/100mL以上であることを意味し、「高分子」とは、重量平均分子量が1,000以上のものを指す。
 水溶性のカチオン性高分子は、抗血栓性高分子化合物によって中空糸膜を被覆した後、水洗することにより除去できる。よって、人工肺の製造時に十分な水洗を行うことにより、血液中へこれらのカチオン性高分子が溶出することを抑制することができる。
 本発明に係る水溶性のカチオン性高分子は、上記定義を満たすものであれば特に制限されない。
 カチオン性高分子に含まれるカチオン性基とは、水中においてカチオンを生じうる基を表し、具体的には、カチオンに解離可能な基、もしくはカチオンに解離している基を表す。カチオン性基としては、特に制限されないが、例えば、アミノ基(第一級、第二級、第三級アミノ基)、第四級アンモニウム基、イミノ基、グアニジノ基、アミジノ基、ピリジル基、またはこれらの塩等が挙げられる。なかでも、カチオン性基は、アミノ基、第四級アンモニウム基、イミノ基、グアニジノ基またはこれらの塩であると好ましく、アミノ基、グアニジノ基またはこれらの塩であると特に好ましい。これらのカチオン性基を有するカチオン性高分子であれば、抗血栓性高分子化合物に吸着しやすく、コロイド粒子の凝集を促しやすい。その結果、抗血栓性高分子化合物の、コート量をさらに増加させることができる。なお、カチオン性高分子中のカチオン性基は、1種単独であってもよいし、2種以上の組み合わせであってもよい。
 本発明において用いるカチオン性高分子は、天然高分子系ポリマー、合成高分子系ポリマーのいずれであってもよく、これらを混合して用いてもよい。合成高分子系ポリマーは、カチオン性基を有するモノマーに由来する構成単位を構成単位の全部または一部として含む。カチオン性高分子は、重合体または共重合体のいずれであってもよい。天然高分子系ポリマーは、天然高分子または修飾天然高分子にカチオン性基を導入したものであってもよい。
 カチオン性高分子の具体例としては、例えば、ポリエチレンイミン、ポリビニルアミン、ポリビニルピリジン、ポリアミンスルホン、ポリアリルアミン、ポリピリジン、ポリアミノ酸、ポリアクリルアミド、ポリアミドポリアミン、ポリアミノアルキルアクリルアミド、ポリエポキシアミン、ポリジアリルジメチルアンモニウムハライド、ポリビニルベンジルトリメチルアンモニウムハライド、ポリジアクリルジメチルアンモニウムハライド、ポリジメチルアミノエチルメタクリレート塩酸、ポリカチオン性のペプチドおよびタンパク質(例えば、ヒストンポリペプチド、ならびにポリ-L-リジン、ポリ-D-リジン、ポリ-L,D-リジン、ポリ-L-アルギニン、ポリ-D-アルギニン、ポリ-D,L-アルギニン、ポリ-L-オルニチン、ポリ-D-オルニチン、ポリ-L,D-オルニチンを含む、リジン、アルギニン、オルニチン、およびこれらの組合せを含有するホモポリマーおよびコポリマー等)、ゼラチン、アルブミン、プロタミンおよび硫酸プロタミン、およびカチオン性のデンプンおよびキトサン等のポリカチオン性の多糖類、これらの多糖類の塩ならびに誘導体が挙げられる。
 なかでも、カチオン性高分子は、硫酸プロタミン、プロタミン、ポリエチレンイミン、ポリアリルアミン、ポリ-L-リジン、アルブミンおよびゼラチンからなる群から選択されると好ましい。これらのカチオン性高分子は、抗血栓性高分子化合物のコロイドの凝集を促進しやすく、コート量を増加させやすい。さらに、カチオン性高分子は、硫酸プロタミンまたはプロタミンであると好ましい。これらのカチオン性高分子は、生体適合性も良好であるため、抗血栓性高分子化合物を中空糸膜に被覆した後、水洗工程を省略できるか、または、水洗工程を簡素化することができる。したがって、生産性の観点からも好ましい。なお、上記カチオン性高分子は、1種単独で使用されてもあるいは2種以上を混合して使用してもよい。
 カチオン性高分子の重量平均分子量(カチオン性高分子がタンパク質である場合は、分子量)としては、使用するカチオン性高分子によっても異なるが、1,000~1,000,000であることが好ましく、2,000~100,000であることがより好ましく、3,000~10,000であることが特に好ましい。カチオン性高分子の重量平均分子量(カチオン性高分子がタンパク質である場合は、分子量)が1,000以上であると、コロイド粒子の凝集を促し、コート量が増加しやすいため、好ましい。また、カチオン性高分子の重量平均分子量(カチオン性高分子がタンパク質である場合は、分子量)が1,000,000以下であると、コロイド溶液の粘度が高くなり過ぎず、中空糸膜に対する塗布が容易になり、操作性が向上する。
 本明細書において、「重量平均分子量」(タンパク質については、「分子量」)は、ゲル浸透クロマトグラフィー(Gel Permeation Chromatography、GPC)により測定した値を採用するものとする。具体的には、分析対象となるポリマーをTHF等の適当な溶媒に溶解し10mg/mlの溶液を調製する。このように調製されたポリマー溶液について、移動相としてTHF等の適当な溶媒を流し、標準物質としてポリスチレンを用いて、分析対象となるポリマーのGPCを測定する。標準ポリスチレンで較正曲線を作製した後、この曲線に基づいて分析対象となるポリマーの重量平均分子量(分子量)を算出する。
 抗血栓性高分子化合物およびカチオン性高分子を含む溶液(コロイド溶液)の調製に使用される溶媒は、カチオン性高分子を溶解し、また、抗血栓性高分子化合物を適度に分散させてコロイド溶液を調製することができるものを用いると好ましい。中空糸膜の細孔の外表面または内表面(酸素含有ガスが流れる側の表面)までのコロイド溶液の浸透をより有効に防止する観点から、溶媒が水を含むことが好ましい。ここで、水は、純水、イオン交換水または蒸留水であると好ましく、なかでも、蒸留水であると好ましい。
 また、コロイド溶液の調製に使用される水以外の溶媒は、特に制限されないが、抗血栓性高分子化合物の分散性等の制御のしやすさを考慮すると、メタノール、アセトンであることが好ましい。上記水以外の溶媒は、1種単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。これらのうち、抗血栓性高分子化合物の分散性等のさらなる制御のしやすさを考慮すると、メタノールであることが好ましい。すなわち、溶媒は、水およびメタノールから構成されることが好ましい。ここで、水およびメタノールの混合比は、特に制限されないが、抗血栓性高分子化合物の分散性およびコロイドの平均粒子径のさらなる制御のしやすさを考慮すると、水:メタノールの混合比(質量比)が、6~32:1であることが好ましく、10~25:1であることがより好ましい。すなわち、溶媒は、6~32:1の混合比(質量比)で水およびメタノールから構成されることが好ましく、10~25:1の混合比(質量比)で水およびメタノールから構成されることがより好ましい。
 なお、上記のように、水と水以外の溶媒との混合溶媒を用いてコロイド溶液を調製する際、溶媒、抗血栓性高分子化合物およびカチオン性高分子を添加する順序は特に制限されないが、以下の手順でコロイド溶液を調製すると好ましい。すなわち、抗血栓性高分子化合物を水以外の溶媒(好ましくは、メタノール)に添加して抗血栓性高分子化合物含有溶液を調製し、続いて、別途準備した水を撹拌しながら、この水に対して上記抗血栓性高分子化合物含有溶液を添加し、さらに、カチオン性高分子を添加する方法でコロイド溶液を調製すると好ましい。このような方法によれば、抗血栓性高分子化合物を分散させやすい。また、上記方法によれば、粒子径が均一なコロイドを形成することができ、均一な被膜が形成しやすくなるという利点もある。
 上記方法において、抗血栓性高分子化合物含有溶液に対する水の添加速度は、特に制限されないが、水に対し、上記抗血栓性高分子化合物含有溶液を5~100g/minの速度で添加すると好ましい。
 コロイド溶液を調製する際の撹拌時間や撹拌温度は特に制限されないが、粒子径が均一なコロイドを形成しやすく、コロイドを均一に分散できるという観点から、抗血栓性高分子化合物含有溶液を水に添加した後、1~30分間撹拌すると好ましく、5~15分間撹拌するとより好ましい。また、撹拌温度は、10~40℃であると好ましく、20~30℃であるとより好ましい。
 また、上記方法において、カチオン性高分子は、抗血栓性高分子含有溶液または抗血栓性高分子含有溶液を水に添加した後の溶液とそのまま混合されてもよいが、予め他の溶媒に溶解した溶液の形態で混合されてもよい。後者の場合、他の溶媒としては、カチオン性高分子を溶解できるものであれば特に制限されないが、上記コロイド溶液に用いられる溶媒と同様の溶媒が例示できる。また、他の溶媒は、上記コロイド溶液の溶媒と同じであってもまたは異なってもよいが、均一な溶液を調製しやすいという観点から、上記コロイド溶液の溶媒と同じ溶媒であることが好ましい。また、この場合の他の溶媒におけるカチオン性高分子の濃度は、特に制限されないが、混合のしやすさなどを考慮すると、カチオン性高分子の添加量が、他の溶媒100質量部に対して、好ましくは0.01~20質量部、より好ましくは0.1~10質量部、さらにより好ましくは0.5~5質量部である。
 コロイド溶液中の抗血栓性高分子化合物の濃度は、特に制限されないが、コート量を増加させやすいという観点から、0.01質量%以上であると好ましい。さらに上記観点から、コロイド溶液は、抗血栓性高分子化合物を、0.05質量%以上の濃度で含むとより好ましく、0.1質量%以上の濃度で含むと特に好ましい。一方、コロイド溶液中の抗血栓性高分子化合物の濃度の上限は、特に制限されないが、被膜の形成しやすさ、コートむらの低減効果などを考慮すると、0.5質量%以下であると好ましく、0.4質量%以下であるとより好ましく、0.35質量%以下であると特に好ましい。また、このような範囲であれば、抗血栓性高分子化合物の被膜が厚くなりすぎることによる、ガス交換能の低下も抑制される。
 したがって、コロイド溶液中の抗血栓性高分子化合物の濃度は、0.01~0.5質量%であると好ましく、0.05~0.4質量%であるとより好ましく、0.1~0.35質量%であると特に好ましい。
 また、コロイド溶液中のカチオン性高分子の濃度は、特に制限されないが、コロイドの凝集を促し、コート量を増加させやすいという観点から、0.001質量%以上であると好ましい。カチオン性高分子の濃度が大きいほど、コート量を増加させることができる。さらに上記観点から、コロイド溶液は、カチオン性高分子を、0.01質量%以上の濃度で含むとより好ましく、0.02質量%以上の濃度で含むと特に好ましい。一方、コロイド溶液中のカチオン性高分子の濃度の上限は、特に制限されないが、カチオン性高分子の除去の容易性などを考慮すると、0.05質量%以下であると好ましく、0.04質量%以下であるとより好ましく、0.03質量%以下であると特に好ましい。また、このような範囲であれば、抗血栓性高分子化合物の被膜が厚くなりすぎることによる、ガス交換能の低下も抑制される。
 したがって、コロイド溶液中のカチオン性高分子の濃度は、0.001~0.05質量%であると好ましく、0.01~0.04質量%であるとより好ましく、0.02~0.03質量%であると特に好ましい。
 さらに、コロイド溶液中に含まれる抗血栓性高分子化合物と、カチオン性高分子との混合比は特に制限されないが、抗血栓性高分子化合物のコロイドをより凝集させやすく、コート量を効果的に増加させやすいという観点から、抗血栓性高分子化合物:カチオン性高分子の混合比(質量比)が、1:0.01~0.10であることが好ましく、1:0.015~0.09であることがより好ましい。また、このような範囲であれば、抗血栓性高分子化合物の被膜が厚くなりすぎることによる、ガス交換能の低下も抑制される。
 また、コロイド溶液中に含まれる抗血栓性高分子化合物と、カチオン性高分子との混合比は、以下の範囲であってもよい。すなわち、抗血栓性高分子化合物のコロイドをより凝集させやすく、コート量を効果的に増加させやすいという観点から、抗血栓性高分子化合物:カチオン性高分子の混合比(モル比)が、1:1~10であることが好ましく、1:1.3~8であることがより好ましい。また、このような範囲であれば、抗血栓性高分子化合物の被膜が厚くなりすぎることによる、ガス交換能の低下も抑制される。
 次に、本発明に係るコロイド溶液の調製において用いられる抗血栓性高分子化合物について説明する。
 (抗血栓性高分子化合物およびその製造方法)
 本発明において用いられる抗血栓性高分子化合物は、中空糸膜に塗布されることにより、人工肺に抗血栓性を付与する化合物である。なお、上記で説明したカチオン性高分子に対し、抗血栓性高分子化合物は、カチオン性基を有していない点で区別される。
 ここで、抗血栓性高分子化合物の重量平均分子量は特に制限されないが、好ましくは80,000以上である。本発明に係る人工肺の製造方法において、抗血栓性高分子化合物は、コロイド溶液の形態で中空糸膜の外表面または内表面に塗布される。したがって、所望のコロイド溶液を調製しやすいという観点から、抗血栓性高分子化合物の重量平均分子量は、800,000未満であると好ましい。上記範囲とすることにより、抗血栓性高分子化合物を含む溶液中で、当該化合物が凝集または沈殿することを抑制し、安定したコロイド溶液を調製することができる。さらに、抗血栓性高分子化合物の重量平均分子量は、200,000を超えて800,000未満であると好ましく、210,000~600,000であるとより好ましく、220,000~500,000であるとさらにより好ましく、230,000~450,000であると特に好ましい。
 抗血栓性高分子化合物の分子量を大きくすることによって、被覆(被膜)中に含まれる、分子量が比較的小さい高分子の含有量を低減でき、その結果、比較的分子量が小さい高分子が、血液中へ溶出することを抑制・防止するという効果も得られると推測される。したがって、抗血栓性高分子化合物の重量平均分子量が上記範囲に含まれる場合には、被覆(特に低分子量の高分子)の血液中への溶出を更に有効に抑制・防止できる。また、抗血栓性および生体適合性の点からも好ましい。また、本明細書において、「低分子量の高分子」とは、重量平均分子量が60,000未満の高分子を意味する。なお、重量平均分子量の測定方法は、上記の通りである。
 抗血栓性高分子化合物は、抗血栓性や生体適合性を有するものであれば、特に制限なく用いることができる。なかでも、上記特性に優れるという観点から、抗血栓性高分子化合物は、下記式(I):
Figure JPOXMLDOC01-appb-C000002
ただし、Rは、水素原子またはメチル基を表わし、Rは、炭素数1~4のアルキレン基を表わし、Rは、炭素数1~4のアルキル基を表わす、で示されるアルコキシアルキル(メタ)アクリレート由来の構成単位を有すると好ましい。上記の式(I)で示される構成単位を有する化合物は、抗血栓性生体適合性(血小板の粘着/付着の抑制・防止効果、および血小板の活性化の抑制・防止効果)、特に血小板の粘着/付着の抑制・防止効果に優れる。ゆえに、上記構成単位を有する化合物を用いることにより、抗血栓性生体適合性(血小板の粘着/付着の抑制・防止効果、および血小板の活性化の抑制・防止効果)、特に血小板の粘着/付着の抑制・防止効果に優れた人工肺を製造することが可能となる。
 なお、本明細書において、「(メタ)アクリレート」は「アクリレートおよび/またはメタクリレート」を意味する。すなわち、「アルコキシアルキル(メタ)アクリレート」は、アルコキシアルキルアクリレートのみ、アルコキシアルキルメタクリレートのみ、ならびにアルコキシアルキルアクリレートおよびアルコキシアルキルメタクリレートすべての場合を包含する。
 上記式(I)において、Rは、炭素数1~4のアルキレン基を表わす。ここで、炭素数1~4のアルキレン基としては、特に制限されず、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、プロピレン基の直鎖または分岐鎖のアルキレン基がある。これらのうち、エチレン基、プロピレン基が好ましく、抗血栓性および生体適合性のさらなる向上効果を考慮すると、エチレン基が特に好ましい。Rは、炭素数1~4のアルキル基を表わす。ここで、炭素数1~4のアルキル基としては、特に制限されず、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基の直鎖または分岐鎖のアルキル基がある。これらのうち、メチル基、エチル基が好ましく、抗血栓性および生体適合性のさらなる向上効果を考慮すると、メチル基が特に好ましい。Rは、水素原子またはメチル基を表わす。なお、本発明に係る抗血栓性高分子化合物が2種以上のアルコキシアルキル(メタ)アクリレート由来の構成単位を有する場合には、各構成単位は、同一であってもあるいは異なるものであってもよい。
 アルコキシアルキル(メタ)アクリレートとしては、具体的には、メトキシメチルアクリレート、メトキシエチルアクリレート、メトキシプロピルアクリレート、エトキシメチルアクリレート、エトキシエチルアクリレート、エトキシプロピルアクリレート、エトキシブチルアクリレート、プロポキシメチルアクリレート、ブトキシエチルアクリレート、メトキシブチルアクリレート、メトキシメチルメタクリレート、メトキシエチルメタクリレート、エトキシメチルメタクリレート、エトキシエチルメタクリレート、プロポキシメチルメタクリレート、ブトキシエチルメタクリレート等が挙げられる。これらのうち、抗血栓性および生体適合性のさらなる向上効果の観点から、メトキシエチル(メタ)アクリレート、メトキシブチルアクリレートが好ましく、メトキシエチルアクリレート(MEA)が特に好ましい。すなわち、本発明に係る抗血栓性高分子化合物がポリメトキシエチルアクリレート(PMEA)であることが好ましい。上記アルコキシアルキル(メタ)アクリレートは、単独で使用されてもあるいは2種以上を混合して使用してもよい。
 特に、抗血栓性高分子化合物がポリメトキシエチルアクリレート(PMEA)である場合、その重量平均分子量は特に制限されないが、好ましくは80,000以上である。一方、所望のコロイド溶液を調製しやすいという観点から、PMEAの重量平均分子量は、800,000未満であると好ましい。上記範囲とすることにより、PMEAを含む溶液中で、当該化合物が凝集または沈殿することを抑制し、安定したコロイド溶液を調製することができる。さらに、PMEAの重量平均分子量は、200,000を超えて800,000未満であると好ましく、210,000~600,000であるとより好ましく、220,000~500,000であるとさらにより好ましく、230,000~450,000であると特に好ましい。
 本発明に係る抗血栓性高分子化合物は、アルコキシアルキル(メタ)アクリレート由来の構成単位を有していると好ましく、アルコキシアルキル(メタ)アクリレート由来の構成単位の1種もしくは2種以上から構成される重合体(単独重合体)であってもまたは1種もしくは2種以上のアルコキシアルキル(メタ)アクリレート由来の構成単位および当該アルコキシアルキル(メタ)アクリレートと共重合し得る1種もしくは2種以上の単量体由来の構成単位(他の構成単位)から構成される重合体(共重合体)であってもよい。なお、本発明に係る抗血栓性高分子化合物が2種以上の構成単位から構成される場合には、高分子(共重合体)の構造は特に制限されず、ランダム共重合体、交互共重合体、周期的共重合体、ブロック共重合体のいずれであってもよい。また、重合体の末端は特に制限されず、使用される原料の種類によって適宜規定されるが、通常、水素原子である。
 ここで、本発明に係る抗血栓性高分子化合物がアルコキシアルキル(メタ)アクリレート由来の構成単位に加えて他の構成単位を有する場合の、アルコキシアルキル(メタ)アクリレートと共重合し得る単量体(共重合性単量体)としては、特に制限されない。例えば、メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、2-エチルヘキシルアクリレート、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレート、2-エチルヘキシルメタクリレート、ヘキシルアクリレート、ヘキシルメタクリレート、エチレン、プロピレン、アクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、アミノメチルアクリレート、アミノエチルアクリレート、アミノイソプロピルアクリレート、ジアミノメチルアクリレート、ジアミノエチルアクリレート、ジアミノブチルアクリレート、メタアクリルアミド、N,N-ジメチルメタクリルアミド、N,N-ジエチルメタクリルアミド、アミノメチルメタクリレート、アミノエチルメタクリレート、ジアミノメチルメタクリレート、ジアミノエチルメタクリレート等が挙げられる。これらのうち、共重合性単量体としては、分子内にヒドロキシル基やカチオン性基を有しないものが好ましい。共重合体は、ランダム共重合体、ブロック共重合体、グラフト共重合体のいずれでもよく、ラジカル重合やイオン重合、マクロモノマーを利用した重合等の公知の方法により合成することができる。ここで、共重合体の全構成単位中、共重合性単量体に由来する構成単位の割合は、特に制限されないが、抗血栓性および生体適合性などを考慮すると、共重合性単量体に由来する構成単位(他の構成単位)が、共重合体の全構成単位中、0モル%を超えて50モル%以下であることが好ましい。50モル%を超えると、アルコキシアルキル(メタ)アクリレートによる効果が低下してしまう可能性がある。
 また、上記式(I)で示されるアルコキシアルキル(メタ)アクリレート由来の構成単位を含む抗血栓性高分子化合物は、公知の方法によって製造できる。具体的には、下記式(II):
Figure JPOXMLDOC01-appb-C000003
で示されるアルコキシアルキル(メタ)アクリレート、および必要に応じて添加される上記アルコキシアルキル(メタ)アクリレートと共重合し得る単量体(共重合性単量体)の1種または2種以上とを重合溶媒中で重合開始剤と共に撹拌して、単量体溶液を調製し、上記単量体溶液を加熱することにより、アルコキシアルキル(メタ)アクリレート、またはアルコキシアルキル(メタ)アクリレートおよび必要に応じて添加される共重合性単量体を(共)重合させる方法が好ましく使用される。なお、上記式(II)において、置換基R、RおよびRは、上記式(I)の定義と同様であるため、ここでは説明を省略する。
 上記単量体溶液の調製で使用できる重合溶媒は、用いられる上記式(II)のアルコキシアルキル(メタ)アクリレートおよび必要に応じて添加される共重合性単量体を溶解できるものであれば特に制限されない。例えば、水、メタノール、エタノール、プロパノール、イソプロパノール等のアルコール、ポリエチレングリコール類などの水性溶媒;トルエン、キシレン、テトラリン等の芳香族系溶媒;及びクロロホルム、ジクロロエタン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン系溶媒などが挙げられる。これらのうち、アルコキシアルキル(メタ)アクリレートの溶解しやすさ、上記したような重量平均分子量を有する高分子の得やすさなどを考慮すると、メタノールが好ましい。
 単量体溶液中の単量体濃度は、特に制限されないが、濃度を比較的高く設定することによって、得られる抗血栓性高分子化合物の重量平均分子量を大きくすることができる。このため、上記したような重量平均分子量を有する高分子の得やすさなどを考慮すると、単量体溶液中の単量体濃度は、好ましくは50質量%未満であり、より好ましくは15質量%以上50質量%未満である。さらに、単量体溶液中の単量体濃度は、より好ましくは20質量%以上48質量%以下であり、特に好ましくは25質量%以上45質量%以下である。なお、上記単量体濃度は、単量体を2種以上使用する場合には、これらの単量体の合計濃度を意味する。
 重合開始剤は特に制限されず、公知のものを使用すればよい。好ましくは、重合安定性に優れる点で、ラジカル重合開始剤であり、具体的には、過硫酸カリウム(KPS)、過硫酸ナトリウム、過硫酸アンモニウム等の過硫酸塩;過酸化水素、t-ブチルパーオキシド、メチルエチルケトンパーオキシド等の過酸化物;アゾビスイソブチロニトリル(AIBN)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジスルフェートジハイドレート、2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン)]ハイドレート、3-ヒドロキシ-1,1-ジメチルブチルパーオキシネオデカノエート、α-クミルパーオキシネオデカノエート、1,1,3,3-テトラブチルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ブチルパーオキシネオヘプタノエート、t-ブチルパーオキシピバレート、t-アミルパーオキシネオデカノエート、t-アミルパーオキシピバレート、ジ(2-エチルヘキシル)パーオキシジカーボネート、ジ(セカンダリーブチル)パーオキシジカーボネート、アゾビスシアノ吉草酸等のアゾ化合物が挙げられる。また、例えば、上記ラジカル重合開始剤に、亜硫酸ナトリウム、亜硫酸水素ナトリウム、アスコルビン酸等の還元剤を組み合わせてレドックス系開始剤として用いてもよい。重合開始剤の配合量は、単量体(アルコキシアルキル(メタ)アクリレートおよび必要に応じて添加される共重合性単量体;以下、同様)の合計量に対して、0.0001~1モル%が好ましく、0.001~0.8モル%であるとより好ましく、0.01~0.5モル%であると特に好ましい。または、重合開始剤の配合量は、100質量部の単量体(複数種の単量体を用いる場合は、その全体)に対して、好ましくは0.005~2質量部であり、より好ましくは0.05~0.5質量部である。このような重合開始剤の配合量であれば、所望の重量平均分子量を有する高分子がより効率よく製造できる。
 上記重合開始剤は、単量体および重合溶媒とそのまま混合されてもよいが、予め他の溶媒に溶解した溶液の形態で単量体および重合溶媒とそのまま混合されてもよい。後者の場合、他の溶媒としては、重合開始剤を溶解できるものであれば特に制限されないが、上記重合溶媒と同様の溶媒が例示できる。また、他の溶媒は、上記重合溶媒と同じであってもまたは異なってもよいが、重合の制御のしやすさなどを考慮すると、上記重合溶媒と同じ溶媒であることが好ましい。また、この場合の他の溶媒における重合開始剤の濃度は、特に制限されないが、混合のしやすさなどを考慮すると、重合開始剤の添加量が、他の溶媒100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.15~5質量部、さらにより好ましくは0.2~1.8質量部である。
 次に、上記単量体溶液を加熱することにより、アルコキシアルキル(メタ)アクリレートまたはアルコキシアルキル(メタ)アクリレート及び他の単量体を(共)重合する。ここで、重合方法は、例えば、ラジカル重合、アニオン重合、カチオン重合などの公知の重合方法が採用でき、好ましくは製造が容易なラジカル重合を使用する。
 重合条件は、上記単量体(アルコキシアルキル(メタ)アクリレートまたはアルコキシアルキル(メタ)アクリレート及び共重合性単量体)が重合できる条件であれば特に制限されない。具体的には、重合温度は、好ましくは30~60℃であり、より好ましくは40~55℃である。また、重合時間は、好ましくは1~24時間であり、好ましくは3~12時間である。かような条件であれば、上記したような高分子量の重合体がより効率的に製造できる。また、重合工程におけるゲル化を有効に抑制・防止すると共に、高い製造効率を達成できる。
 また、必要に応じて、連鎖移動剤、重合速度調整剤、界面活性剤、およびその他の添加剤を、重合の際に適宜使用してもよい。
 重合反応を行う雰囲気は特に制限されるものではなく、大気雰囲気下、窒素ガスやアルゴンガス等の不活性ガス雰囲気等で行うこともできる。また、重合反応中は、反応液を攪拌してもよい。
 重合後の重合体は、再沈澱法、透析法、限外濾過法、抽出法など一般的な精製法により精製することができる。コロイド溶液の調製に適した(共)重合体が得られるという理由から、上記の中でも、再沈殿法による精製を行うと好ましい。このとき、再沈殿を行うために用いる貧溶媒としては、エタノールを用いると好ましい。
 精製後の重合体は、凍結乾燥、減圧乾燥、噴霧乾燥、または加熱乾燥等、任意の方法によって乾燥することもできるが、重合体の物性に与える影響が小さいという観点から、凍結乾燥または減圧乾燥が好ましい。
 (2)コロイド溶液の塗布(被覆)工程
 次に、上記の通り調製したコロイド溶液を、中空糸膜の外表面または内表面に塗布(被覆)する。具体的には、人工肺(例えば、後述する図1または図3のような構造のもの)を組み立てた後、上記工程(1)において調製したコロイド溶液を接触させる(または流通させる)ことによって、中空糸膜の外表面または内表面(すなわち、血液接触部)を、抗血栓性高分子化合物で被覆する。また、中空糸膜に対するコロイド溶液の塗布は、人工肺の組立前に行ってもよい。
 本発明では、中空糸膜の外表面または内表面をコロイド溶液と接触させて(コロイド溶液を人工肺の血液流通側へ流通させて)、中空糸膜の外表面または内表面に抗血栓性高分子化合物の塗膜を形成する。ここで、コロイド溶液の中空糸膜の外表面または内表面への塗布量は特に制限されない。
 本発明に係る方法により製造される人工肺の好ましい一実施形態は、外部灌流型人工肺であって、中空糸膜の外表面に抗血栓性高分子化合物が被覆されてなる形態である。よって、本工程において、上記の構成を備えた人工肺を製造するため、コロイド溶液を中空糸膜の外表面に塗布すると好ましい。すなわち、本発明に係る製造方法は、前記中空糸膜が、酸素含有ガスが流れる前記内腔を形成する前記内表面と、血液と接触する前記外表面と、を有し、前記外表面に、前記コロイド溶液を塗布する方法であると好ましい。
 また、抗血栓性高分子化合物の被覆方法は、特に制限されないが、充填、ディップコート(浸漬法)、噴霧、スピンコート、滴下、ブレードコート、刷毛塗り、ロールコート、エアーナイフコート、カーテンコート、ワイヤーバーコート、グラビアコート、混合溶液含浸スポンジコート等、従来公知の方法を適用することができる。なかでも、抗血栓性高分子化合物のコート量を多くするため、充填、ディップコート(浸漬法)が好ましい。
 また、抗血栓性高分子化合物の塗膜の形成条件は、特に制限されない。例えば、コロイド溶液と中空糸膜との接触時間(コロイド溶液の人工肺の血液流通側への流通時間)は、コート量、塗膜の形成しやすさ、コートむらの低減効果などを考慮すると、1~5分が好ましく、1~3分がより好ましい。また、コロイド溶液と中空糸膜との接触温度(コロイド溶液の人工肺の血液流通側への流通温度)は、コート量、塗膜の形成しやすさ、コートむらの低減効果などを考慮すると、5~40℃が好ましく、15~30℃がより好ましい。なお、コロイド溶液と中空糸膜との接触時において、コロイド溶液は静置することが好ましい。コロイド溶液を静置することにより、十分な量の抗血栓性高分子化合物を被覆できる。
 上記コロイド溶液との接触後に、塗膜を乾燥させることによって、本発明に係る抗血栓性高分子化合物による被覆(被膜)を中空糸膜の外表面または内表面に形成する。ここで、乾燥条件は、本発明に係る抗血栓性高分子化合物による被覆(被膜)が中空糸膜の外表面(さらには外面層)、または内表面(さらには内面層)に形成できる条件であれば特に制限されない。具体的には、乾燥温度は、5~50℃が好ましく、15~40℃がより好ましい。また、乾燥時間は、60~300分が好ましく、120~240分がより好ましい。または、好ましくは5~40℃、より好ましくは15~30℃のガスを中空糸膜に連続してまたは段階的に流通させることによって、塗膜を乾燥させてもよい。ここで、ガスの種類は、塗膜に何ら影響を及ぼさず、塗膜を乾燥できるものであれば特に制限されない。具体的には、空気、および窒素ガス、アルゴンガス等の不活性ガスなどが挙げられる。また、ガスの流通量は、塗膜を十分乾燥できる量であれば特に制限されないが、好ましく5~150Lであり、より好ましく30~100Lである。
 (3)洗浄工程
 本工程は、抗血栓性高分子化合物による被膜を洗浄する工程であり、任意で設けられる。本工程において抗血栓性高分子化合物による被膜を洗浄することで、当該被膜中に存在するカチオン性高分子を取り除くことができる。一方で、コロイド溶液に含まれるカチオン性高分子の生体適合性が高い場合には、本工程は設けなくともよい。
 洗浄方法は特に限定されないが、抗血栓性高分子化合物による被膜を洗浄溶媒に浸漬し抽出する方法、洗浄溶媒をかけ流す方法、またはこれらを組合せてもよい。このとき使用される洗浄溶媒は、抗血栓性高分子化合物による被膜を溶解させず、かつ、カチオン性高分子を含む不純物を除去することができるものであれば特に限定されないが、水または温水が好ましく用いられる。洗浄水の温度は特に制限されないが、好ましくは20℃~100℃であり、より好ましくは25~80℃である。また、洗浄時間(洗浄溶媒を被膜に接触させる時間)は特に制限されないが、好ましくは1~10分、より好ましくは2~5分である。上記条件によれば、カチオン性高分子を十分に除去することができる。
 さらに、上記洗浄工程の後、乾燥工程を行ってもよい。乾燥方法は特に限定されず、従来公知の方法を用いることができる。
 [人工肺]
 本発明に係る人工肺の製造方法によれば、中空糸膜の外表面側または内表面側に、十分な量の抗血栓性高分子化合物を被覆することができる。具体的には、本発明の方法により製造される人工肺は、中空糸膜(膜面積)に対する抗血栓性高分子化合物のコート量が、20mg/m以上であると好ましく、30mg/m以上であるとより好ましい。かようなコート量であれば、抗血栓性に優れた人工肺が得られる。一方、コート量の上限は特に制限されないが、60mg/m以下であると好ましい。かようなコート量であれば、抗血栓性高分子化合物の被膜が厚すぎることによるガス交換能の低下が抑制され、ガス交換能にも優れた人工肺が得られる。なお、上記コート量は、下記実施例に記載の方法によって測定される値を採用する。また、本明細書中、中空糸膜の「膜面積」とは、中空糸膜の外表面の面積または内表面の面積をいう。中空糸膜の外表面を抗血栓性高分子化合物で被覆する場合(すなわち、人工肺が血液外部灌流型中空糸膜人工肺である場合)には、「膜面積」は、中空糸膜の外表面の面積をいい、中空糸膜の外径、円周率、本数および有効長の積から算出される。一方、中空糸膜の内表面を抗血栓性高分子化合物で被覆する場合(すなわち、人工肺が血液内部灌流型中空糸膜人工肺である場合)には、「膜面積」とは、中空糸膜の内表面の面積をいい、中空糸膜の内径、円周率、本数および有効長の積から算出される。
 また、本発明の方法により製造される人工肺は、上記の通り、抗血栓性高分子材料が十分な量で被覆されるため、中空糸膜の該表面側または内表面側の抗血栓性が向上する。したがって、当該人工肺を体外循環回路中に組み込み、血液を循環させた際、当該循環血液の血小板数維持率が向上する。具体的には、30分間血液を循環させた後の血小板数維持率が、70%を超えると好ましく、80%以上であるとより好ましく、90%以上であると特に好ましい(上限:100%)。なお、上記血小板数維持率は、下記実施例に記載の方法によって測定される値を採用する。
 本発明に係る方法により製造される人工肺は、中空糸膜の外表面または内表面にコロイド溶液を塗布することにより、抗血栓性高分子化合物(高分子)が外表面または内表面を被覆する構成を有する。このとき、抗血栓性高分子化合物による被膜中に、コロイド溶液中に含まれるカチオン性高分子が残存することがある。このような場合、人工肺が、本発明に係る方法により製造されたことが判断される。このような被膜中のカチオン性高分子の存在の有無は、いかなる分析手段によっても確認されうる。例えば、サイズ排除クロマトグラフィー(SEC:Size Exclusion Chromatography)、SECと多角度光散乱検出器とを組み合わせた方法(SEC-MALS)、元素分析などの方法によって確認することができる。また、抗血栓性高分子化合物による被膜中にカチオン性高分子が残留していない場合であっても、抗血栓性高分子化合物のコート量が、上記コート量の範囲である場合にも、本発明に係る方法により製造されたことが判断される。
 本発明の方法により製造される人工肺の詳細を、図面を参照しながら以下で説明する。
 図1は、本発明の製造方法により得られる中空糸膜外部血液灌流型人工肺の一実施形態の断面図である。図2は、本発明の製造方法により得られる中空糸膜外部血液灌流型人工肺に使用されているガス交換用多孔質中空糸膜の拡大断面図である。図3は、本発明の製造方法により得られる人工肺の他の実施形態の断面図である。
 図1において、人工肺1は、多数のガス交換用多孔質中空糸膜3をハウジング2内に収納し、中空糸膜3の外面側に血液が流れ、中空糸膜3の内部に酸素含有ガスが流れるタイプの人工肺である。そして、図2において、血液接触部となる中空糸膜3の外面(外表面3a’、または外表面3a’および外面層3a)に抗血栓性高分子化合物18が被覆されている。抗血栓性高分子化合物18の被覆(被膜)は、中空糸膜3の外表面3a’に選択的に形成される。図2では、中空糸膜外部血液灌流型人工肺に使用される中空糸膜の外表面3a’に抗血栓性高分子化合物18の被覆(被膜)が形成された形態を示している。かような形態の中空糸膜は、外表面3a’側に血液が接触し、内表面3c’側に酸素含有ガスが流通される。なお、本発明では、上述したように、中空糸膜内部血液灌流型人工肺としてもよい。よって、中空糸膜は、上記形態とは逆の構成、すなわち、内表面3c’に抗血栓性高分子化合物18の被覆(被膜)が形成された形態としてもよい。
 なお、「抗血栓性高分子化合物が中空糸膜の外面を被覆する」とは、抗血栓性高分子化合物の被覆(被膜)が中空糸膜の外表面(血液が流れる側の表面)、または外表面および外面層に形成されることを意図する。一方、「抗血栓性高分子化合物が中空糸膜の外表面を被覆する」とは、抗血栓性高分子化合物の被覆(被膜)が中空糸膜の外表面(血液が流れる側の表面)に形成されることを意図する。また、「抗血栓性高分子化合物が中空糸膜の外面層を被覆する」とは、抗血栓性高分子化合物が一部中空糸膜の外面層(細孔の外表面近傍)内に浸透して被覆(被膜)を形成することを意図する。なお、抗血栓性高分子化合物の被覆(被膜)は、中空糸膜の血液接触部(外表面)の少なくとも一部に形成されればよいが、抗血栓性生体適合性(血小板の粘着/付着の抑制・防止効果、および血小板の活性化の抑制・防止効果)などの観点から、中空糸膜の血液接触部(外表面)全体に形成されることが好ましい。すなわち、抗血栓性高分子化合物は、人工肺の血液接触部(外表面)全体を被覆することが好ましい。
 図2に係る実施形態において、抗血栓性高分子化合物は、中空糸膜3の内部層3bまたは内面層3cに存在してもよいが、中空糸膜3の内部層3bまたは内面層3cには実質的に存在していないことが好ましい。本明細書において、「抗血栓性高分子化合物が中空糸膜3の内部層3bまたは内面層3cには実質的に存在していない」とは、中空糸膜の内面(酸素含有ガスが流れる側の表面)付近に、抗血栓性高分子化合物の浸透が観察されないことを意味する。本発明に係る人工肺の製造方法では、抗血栓性高分子のコロイド溶液を塗布することで被膜を形成するため、抗血栓性高分子化合物が中空糸膜3の内部層3bまたは内面層3cには実質的に存在していない形態とすることができる。
 本実施形態に係る中空糸膜型人工肺1は、血液流入口6と血液流出口7とを有するハウジング2と、ハウジング2内に収納された多数のガス交換用多孔質中空糸膜3からなる中空糸膜束と、中空糸膜束の両端部をハウジング2に液密に支持する一対の隔壁4,5とを有し、隔壁4,5とハウジング2の内面および中空糸膜3の外面間に形成された血液室12と、中空糸膜3の内部に形成されたガス室と、ガス室と連通するガス流入口8およびガス流出口9とを有するものである。
 具体的には、本実施形態の中空糸膜型人工肺1は、筒状ハウジング2と、筒状ハウジング2内に収納されたガス交換用中空糸膜3の集合体と、中空糸膜3の両端部をハウジング2に液密に保持する隔壁4,5とを有し、筒状ハウジング2内は、第1の流体室である血液室12と第2の流体室であるガス室とに区画され、筒状ハウジング2には血液室12と連通する血液流入口6および血液流出口7が設けられている。
 そして、筒状ハウジング2の端部である隔壁4の上方には中空糸膜3の内部空間であるガス室に連通する第2の流体流入口であるガス流入口8を有するキャップ状のガス流入側ヘッダー10が取り付けられている。よって、隔壁4の外面とガス流入側ヘッダー10の内面により、ガス流入室13が形成されている。このガス流入室13は、中空糸膜3の内部空間により形成されるガス室と連通している。
 同様に、隔壁5の下方に設けられ中空糸膜3の内部空間に連通する第2の流体流出口であるガス流出口9を有するキャップ状のガス流出側ヘッダー11が取り付けられている。よって、隔壁5の外面とガス流出側ヘッダー11の内面により、ガス流出室14が形成されている。
 中空糸膜3は、疎水性高分子材料からなる多孔質膜であり、公知の人工肺に使用される中空糸膜と同様のものが使用され、特に制限されない。このように中空糸膜(特に中空糸膜の内面)が疎水性高分子材料からなることにより、血漿成分の漏出を抑制することができる。
 ここで、中空糸膜の内径は、特に制限されないが、好ましくは50~300μmである。中空糸膜の外径は、特に制限されないが、好ましくは100~400μmである。中空糸膜の肉厚(膜厚)は、好ましくは20μm~100μm、より好ましくは25~80μm、さらに好ましくは25~70μm、特に好ましくは25~60μmである。なお、本明細書において、「中空糸膜の肉厚(膜厚)」とは、中空糸膜の内表面と外表面との間の肉厚を意図し、式:[(中空糸膜の外径)-(中空糸膜の内径)]/2で算出される。ここで、中空糸膜の肉厚の下限を上記のようにすることによって、中空糸膜の強度を十分確保できる。また、製造上の手間やコストの点でも満足でき、大量生産の観点からも好ましい。また、中空糸膜の空孔率は、好ましくは5~90体積%、より好ましくは10~80体積%、特に好ましくは30~60体積%である。中空糸膜の細孔径(すなわち、中空糸の開口部の孔径)は、好ましくは10nm~5μm、より好ましくは50nm~1μm、特に好ましくは50nm~100nmである。
 なお、本明細書中、「中空糸膜の開口部の直径」とは、抗血栓性高分子化合物によって被覆される側(本実施形態では、外表面側)の開口部(本明細書中、単に「細孔」とも称することがある)の平均直径を指す。また、開口部の平均直径(本明細書中、単に「孔径」または「細孔径」とも称することがある)は、以下に記載の方法によって測定される。
 まず、走査型電子顕微鏡(SEM)で中空糸膜について、抗血栓性高分子化合物によって被覆される側(本実施形態では、外表面)を撮影する。次に、得られたSEM像について画像処理を行い、孔部分(開口部)を白く、それ以外を黒く反転させ、白い部分のピクセル数を測定する。なお、二値化の境界レベルは、最も白い部分と最も黒い部分の差の中間の値とする。
 続いて、白く表示された孔(開口部)のピクセル数を測定する。このようにして求めた各孔のピクセル数およびSEM像の解像度(μm/ピクセル)に基づいて孔面積を算出する。得られた孔面積から、孔を円形とみなして各孔の直径を算出し、無作為に、統計学的に有意な数、例えば、500個の孔の直径を抽出し、その算術平均を「中空糸の開口部の直径」とする。
 また、多孔質膜に使用される材質としては、公知の人工肺に使用される中空糸膜と同様の材料が使用できる。具体的には、ポリプロピレン、ポリエチレン等のポリオレフィン樹脂、ポリスルホン、ポリアクリロニトリル、ポリテトラフルオロエチレン、セルロースアセテート等の疎水性高分子材料などが挙げられる。これらのうち、ポリオレフィン樹脂が好ましく使用され、ポリプロピレンがより好ましい。中空糸膜の製造方法は、特に制限されず、公知の中空糸膜の製造方法が同様にしてあるいは適宜修飾して適用できる。例えば、中空糸膜は、延伸法または固液相分離法により壁に微細孔が形成されてなることが好ましい。
 筒状ハウジング2を構成する材料もまた、公知の人工肺のハウジングに使用されるのと同様の材料が使用できる。具体的には、ポリカーボネート、アクリル・スチレン共重合体、アクリル・ブチレン・スチレン共重合体などの疎水性合成樹脂が挙げられる。ハウジング2の形状は、特に制限されないが、例えば円筒状であり、透明体であることが好ましい。透明体で形成することにより、内部の確認を容易に行うことができる。
 本実施形態における中空糸膜の収納量は、特に制限されず、公知の人工肺と同様の量が適用できる。例えば、ハウジング2内に、その軸方向に向けて並列に約5,000~100,000本の多孔質中空糸膜3が収納されている。さらに、中空糸膜3は、ハウジング2の両端に中空糸膜3の両端がそれぞれ開口した状態で隔壁4,5により液密状態に固定されている。隔壁4,5は、ポリウレタン、シリコーンゴムなどのポッティング剤で形成される。ハウジング2内の上記隔壁4,5ではさまれた部分は、中空糸膜3の内部側のガス室と中空糸膜3の外側の血液室12とに仕切られている。
 本実施形態では、ガス流入口8を有するガス流入側ヘッダー10およびガス流出口9を有するガス流出側ヘッダー11が、ハウジング2に液密に取り付けられている。これらヘッダーも、いずれの材料で形成されてもよいが、例えば、上述のハウジングに用いられる疎水性合成樹脂により形成されうる。ヘッダーはいずれの方法によって取り付けられてもよいが、例えば、ヘッダーは、超音波、高周波、誘導加熱などを用いた融着、接着剤を用いた接着または機械的に嵌合させることによって、ハウジング2に取り付けられる。また、締め付けリング(図示しない)を用いて行ってもよい。中空糸膜型人工肺1の血液接触部(ハウジング2の内面、中空糸膜3の外面)は、全て疎水性材料により形成されることが好ましい。
 図2に示されるように、この中空糸膜型人工肺1の少なくとも血液接触部となる中空糸膜3の外表面3a’(さらには場合によっては外面層3a;以下、同様)には、抗血栓性高分子化合物18が被覆されている。上述したように、中空糸膜の内部層3bまたは内面層3cには、この抗血栓性高分子化合物が実質的に存在していないことが好ましい。抗血栓性高分子化合物が実質的に存在していないため、中空糸膜の内部層3bまたは内面層3cが膜の基材自身が持つ疎水性の特性がそのまま保持され、血漿成分の漏出(リーク)を有効に防止できる。特に、中空糸膜の内部層3bおよび内面層3c双方に抗血栓性高分子化合物が実質的に存在していないことが好ましい。また、中空糸膜3は、中央にガス室を形成する通路(内腔)3dを備えている。加えて、中空糸膜3は、その外表面3a’と内表面3c’を連通する開口部3eを有している。かような構成を有する中空糸膜は、抗血栓性高分子化合物18によって被覆された外表面3a’側に血液が接触し、一方、内表面3c’側に酸素含有ガスが流通される形態で使用される。本発明における好ましい一実施形態は、中空糸膜3が、酸素含有ガスが流れる内腔を形成する内表面3c’と、血液と接触する外表面3a’と、を有し、外表面3a’が、本発明に係る抗血栓性高分子化合物を含む被膜で被覆される形態(すなわち、外部灌流型)である。
 本実施形態では、抗血栓性高分子化合物の被覆(被膜)は、中空糸膜の外表面(外部灌流型)に選択的に形成される。このため、血液(特に血漿成分)が中空糸膜の細孔内部に浸透しにくいか、または浸透しない。ゆえに、中空糸膜からの血液(特に血漿成分)の漏出を有効に抑制・防止できる。特に抗血栓性高分子化合物が中空糸膜の内部層3bおよび中空糸膜の内面層3cに実質的に存在しない場合には、中空糸膜の内部層3bおよび中空糸膜の内面層3cは、素材の疎水性状態を維持しているため、血液(特に血漿成分)の漏出(リーク)をさらに有効に抑制・防止できる。したがって、本発明の方法により得られる人工肺は、高いガス交換能を長期間にわたって維持できる。
 また、本発明によれば、コロイド溶液を用いることにより、中空糸膜の外表面または内表面に、抗血栓性高分子化合物の被覆(被膜)を均一に形成できる。このため、中空糸膜の血液接触部での血小板の粘着/付着および活性化が少ない。また、被覆が中空糸膜から剥離することも抑制・防止できる。
 本実施形態に係る抗血栓性高分子化合物の被覆は、人工肺の中空糸膜の外表面に必須に形成されるが、外表面に加えて、他の構成部材(例えば、血液接触部全体)に形成されてもよい。当該構成をとることにより、人工肺の血液接触部全体において、血小板の粘着/付着および活性化をさらにより有効に抑制・防止できる。また、血液接触面の接触角が低くなるので、プライミング作業が容易となる。なお、この場合には、本発明に係る抗血栓性高分子化合物の被覆は血液が接触する他の構成部材に形成されることが好ましいが、血液接触部以外の中空糸膜もしくは中空糸膜の他の部分(例えば、隔壁中に埋没する部分)には、抗血栓性高分子化合物が被覆されていなくてもよい。このような部分は、血液と接触しないので、抗血栓性高分子化合物を被覆しなくても特に問題とならない。
 また、本発明の方法により得られる人工肺は、図3に示すようなタイプのものであってもよい。図3は、本発明の方法により得られる人工肺の他の実施形態を示す断面図である。また、図4は、図3のA-A線断面図である。
 図3において、人工肺(中空糸膜外部血液灌流型人工肺)20は、側面に血液流通用開口32を有する内側筒状部材31と、内側筒状部材31の外面に巻き付けられた多数のガス交換用多孔質中空糸膜3からなる筒状中空糸膜束22と、筒状中空糸膜束22を内側筒状部材31とともに収納するハウジング23と、中空糸膜3の両端を開口した状態で、筒状中空糸膜束22の両端部をハウジングに固定する隔壁25,26と、ハウジング23内に形成された血液室17と連通する血液流入口28および血液流出口29a、29bと、中空糸膜3の内部と連通するガス流入口24およびガス流出口27とを有するものである。
 本実施形態の人工肺20は、図3および図4に示されるように、ハウジング23は、内側筒状部材31を収納する外側筒状部材33を備え、筒状中空糸膜束22は内側筒状部材31と外側筒状部材33間に収納されており、さらに、ハウジング23は、内側筒状部材内と連通する血液流入口または血液流出口の一方と、外側筒状部材内部と連通する血液流入口または血液流出口の他方とを備えている。
 具体的には、本実施形態の人工肺20では、ハウジング23は、外側筒状部材33、内側筒状部材31内に収納され、先端が内側筒状部材31内で開口する内筒体35を備える。内筒体35の一端(下端)には、血液流入口28が形成されており、外側筒状部材33の側面には、外方に延びる2つの血液流出口29a,29bが形成されている。なお、血液流出口は、一つであってもまたは複数であってもよい。
 そして、筒状中空糸膜束22は、内側筒状部材31の外面に巻き付けられている。つまり、内側筒状部材31が筒状中空糸膜束22のコアとなっている。内側筒状部材31の内部に収納された内筒体35は、先端部が第1の隔壁25付近にて開口している。また、内側筒状部材31より、突出する下端部に血液流入口28が形成されている。
 そして、内筒体35、中空糸膜束22が外面に巻き付けられた内側筒状部材31、さらに、外側筒状部材33は、それぞれがほぼ同心的に配置されている。そして、中空糸膜束22が外面に巻き付けられた内側筒状部材31の一端(上端)および外側筒状部材33の一端(上端)は、第1の隔壁25により、両者の同心的位置関係が維持されるとともに、内側筒状部材内部および外側筒状部材33と中空糸膜の外面との間により形成される空間が外部と連通しない液密状態となっている。
 また、内筒体35の血液流入口28より若干上方となる部分、中空糸膜束22が外面に巻き付けられた内側筒状部材31の他端(下端)および外側筒状部材33の他端(下端)は、第2の隔壁26により、両者の同心的位置関係が維持されるとともに、内筒体35と内側筒状部材31との間に形成される空間および外側筒状部材33と中空糸膜の外面との間により形成される空間が外部と連通しない液密状態となっている。また、隔壁25,26は、ポリウレタン、シリコーンゴムなどのポッティング剤で形成される。
 よって、本実施形態の人工肺20では、内筒体35の内部により形成される血液流入部17a、内筒体35と内側筒状部材31との間に形成される実質的に筒状空間となっている第1の血液室17b、中空糸膜束22と外側筒状部材33との間に形成される実質的に筒状空間となっている第2の血液室17cを備え、これらにより血液室17が形成されている。
 そして、血液流入口28から流入した血液は、血液流入部17a内に流入し、内筒体35(血液流入部17a)内を上昇し、内筒体35の上端35a(開口端)より流出し、第1の血液室17b内に流入し、内側筒状部材31に形成された開口32を通過して、中空糸膜に接触し、ガス交換がなされた後、第2の血液室17cに流入し、血液流出口29a,29bより流出する。
 また、外側筒状部材33の一端には、ガス流入口24を備えるガス流入用部材41が固定されており、同様に、外側筒状部材33の他端には、ガス流出口27を有するガス流出用部材42が固定されている。なお、内筒体35の血液流入口28は、このガス流出用部材42を貫通して外部に突出している。
 外側筒状部材33としては、特に制限されないが、円筒体、多角筒、断面が楕円状のものなどが使用できる。好ましくは円筒体である。また、外側筒状部材の内径は、特に制限されず、公知の人工肺に使用される外側筒状部材の内径と同様でありうるが、32~164mm程度が好適である。また、外側筒状部材の有効長(全長のうち隔壁に埋もれていない部分の長さ)もまた、特に制限されず、公知の人工肺に使用される外側筒状部材の有効長と同様でありうるが、10~730mm程度が好適である。
 また、内側筒状部材31の形状は、特に制限されないが、例えば、円筒体、多角筒、断面が楕円状のものなどが使用できる。好ましくは円筒体である。また、内側筒状部材の外径は、特に制限されず、公知の人工肺に使用される内側筒状部材の外径と同様でありうるが、20~100mm程度が好適である。また、内側筒状部材の有効長(全長のうち隔壁に埋もれていない部分の長さ)もまた、特に制限されず、公知の人工肺に使用される内側筒状部材の有効長と同様でありうるが、10~730mm程度が好適である。
 内側筒状部材31は、側面に多数の血液流通用開口32を備えている。開口32の大きさは、筒状部材の必要強度を保持する限り、総面積が大きいことが好ましい。このような条件を満足するものとしては、例えば、正面図である図5、図5の中央縦断面図である図6、さらに図5のB-B線断面図である図7に示されるように、開口32を筒状部材の外周面に等角度間隔で複数(例えば、4~24個、図では、長手方向に8個)設けた環状配置開口を、筒状部材の軸方向に等間隔で複数組(図では、8組/周)設けたものが好適である。さらに、開口形状は、丸、多角形、楕円形などでもよいが、図5に示すような、長円形状のものが好適である。
 また、内筒体35の形状は、特に制限されないが、例えば、円筒体、多角筒、断面が楕円状のものなどが使用できる。好ましくは円筒体である。また、内筒体35の先端開口と第1の隔壁25との距離は、特に制限されず、公知の人工肺に使用されるのと同様の距離が適用できるが、20~50mm程度が好適である。また、内筒体35の内径もまた、特に制限されず、公知の人工肺に使用される内筒体の内径と同様でありうるが、10~30mm程度が好適である。
 筒状中空糸膜束22の厚さは、特に制限されず、公知の人工肺に使用される筒状中空糸膜束の厚さと同様でありうるが、5~35mmが好ましく、特に10mm~28mmであることが好ましい。また、筒状中空糸膜束22の外側面と内側面間により形成される筒状空間に対する中空糸膜の充填率もまた、特に制限されず、公知の人工肺における充填率が同様にして適用できるが、40~85%が好ましく、特に45~80%が好ましい。また、中空糸膜束22の外径は、公知の人工肺に使用される中空糸膜束の外径と同様でありうるが、30~170mmが好ましく、特に、70~130mmが好ましい。ガス交換膜としては、上述したものが使用される。
 そして、中空糸膜束22は、内側筒状部材31に中空糸膜を巻き付けること、具体的には、内側筒状部材31をコアとして、中空糸膜ボビンを形成させ、形成された中空糸膜ボビンの両端を、隔壁による固定の後、コアである内側筒状部材31とともに中空糸膜ボビンの両端を切断することにより、形成することができる。なお、この切断により、中空糸膜は、隔壁の外面において開口する。なお、中空糸膜の形成方法は、上記方法に限定されるものではなく、他の公知の中空糸膜の形成方法を同様にしてあるいは適宜修飾して使用してもよい。
 特に、中空糸膜は、1本あるいは複数本同時に、実質的に平行でかつ隣り合う中空糸膜が実質的に一定の間隔となるように内側筒状部材31に巻きつけられることが好ましい。これにより、血液の偏流をより有効に抑制できる。また、中空糸膜は、隣り合う中空糸膜との距離が、以下に制限されないが、中空糸膜の外径の1/10~1/1となっていることが好ましい。さらに、中空糸膜は、隣り合う中空糸膜との距離が、30~200μmであると好ましい。
 さらに、中空糸膜束22は、中空糸膜が、1本あるいは複数本(好ましくは、2~16本)同時に、かつ隣り合うすべての中空糸膜が実質的に一定の間隔となるように内側筒状部材31に巻きつけられることによって、形成されたものであるとともに、中空糸膜を内側筒状部材上に巻き付ける際に、内側筒状部材31を回転させるための回転体と中空糸膜を編み込むためのワインダーとが、下記式(1)の条件で動くことによって内側筒状部材31に巻きつけられることにより形成されたものであることが好ましい。
Figure JPOXMLDOC01-appb-M000004
 上記条件とすることによって、血液偏流の形成をより少ないものとすることができる。このときの巻取り用回転体の回転数とワインダー往復数の関係であるnは、特に制限されないが、通常、1~5であり、好ましくは2~4である。
 なお、上記他の実施形態に係る人工肺では、血液が筒状中空糸膜束22の内側より流入し、中空糸膜束22を通過した血液が中空糸膜束22の外側に流れた後、人工肺20より流出するタイプのものとなっているが、これに限られるものではない。上記他の実施形態とは逆に、血液が筒状中空糸膜束22の外側より流入し、中空糸膜束22を通過した血液が中空糸膜束22の内側に流れた後、人工肺20より流出するタイプのものであってもよい。
 また、中空糸膜型人工肺20においても、図2に示すように、この中空糸膜型人工肺1の少なくとも中空糸膜3の外表面3a’(さらには外面層3a)に、本発明に係る抗血栓性高分子化合物18が被覆されていると好ましい。ここで、抗血栓性高分子化合物は、中空糸膜3の内部層3bまたは内面層3cに存在してもよいが、内部層3bまたは中空糸膜の内面層3cには実質的に存在していないことが好ましい。また、中空糸膜3は、中央にガス室を形成する通路(内腔)3dを備えている。加えて、中空糸膜3は、その外表面3a’と内表面3c’を連通する開口部3eを有している。ここで、中空糸膜の好ましい形態(内径、外径、肉厚、空孔率、細孔の孔径など)は、特に制限されないが、上記図1において記載したものと同様の形態が採用できる。
 本実施形態に係る人工肺20では、中空糸膜3は互いに接触するとともに何重にも積み重ねられたいわゆるボビン状となっている。本実施形態では、抗血栓性高分子化合物による被覆は、均一に中空糸膜の外表面3a’に選択的に形成される。このような構成とすることにより、中空糸膜の内面層3cへの血液(特に血漿成分)の漏出も抑制・防止できる。すなわち、血液接触部である中空糸膜3の外表面3a’(さらには外面層3a)が選択的に抗血栓性高分子化合物により被覆されていることにより、血液(特に血漿成分)の漏出(リーク)を有効に抑制・防止できる。特に本発明に係る抗血栓性高分子化合物が中空糸膜3の内部層3bおよび内面層3cに実質的に存在しない場合には、中空糸膜の内部層3bおよび内面層3cは、素材の疎水性状態を維持しているため、血液(特に血漿成分)の漏出(リーク)をさらに有効に抑制・防止できる。なお、本実施形態では、血液流路が複雑でかつ狭い部分を多く備え、ガス交換能には優れるが、血小板の粘着/付着および活性化の点においては、ボビンタイプでない外部血液灌流型の人工肺より劣る場合がある。しかしながら、上述したように、抗血栓性高分子化合物の被覆が均一であるため、中空糸膜の血液接触部での血小板の粘着/付着および活性化が少ない。また、被覆(特にコートむら部分)が中空糸膜から剥離することも抑制・防止できる。
 また、抗血栓性高分子化合物の被覆は、人工肺の中空糸膜の外表面に必須に形成されるが、外表面に加えて、他の構成部材(例えば、血液接触部全体)に形成されてもよい。当該構成をとることにより、人工肺の血液接触部全体において、血小板の粘着/付着および活性化をさらにより有効に抑制・防止できる。また、血液接触面の接触角が低くなるので、プライミング作業が容易となる。なお、この場合には、抗血栓性高分子化合物の被覆は血液が接触する他の構成部材に形成されることは好ましいが、血液接触部以外の中空糸膜もしくは中空糸膜の他の部分(例えば、隔壁中に埋没する部分、中空糸相互の接触部)には、抗血栓性高分子化合物が被覆されていなくてもよい。このような部分は、血液と接触しないので、抗血栓性高分子化合物を被覆しなくても特に問題とならない。
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、下記実施例において、特記しない限り、操作は室温(25℃)で行われた。また、特記しない限り、「%」および「部」は、それぞれ、「質量%」および「質量部」を意味する。
 [抗血栓性高分子化合物の合成]
 製造例1:重量平均分子量42万のPMEAの合成
 2-メトキシエチルアクリレート(MEA)80g(0.61mol)をメタノール115gに溶解し、四ツ口フラスコに入れ、50℃でNバブリングを1時間行い、モノマー溶液を調製した。別途、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(V-70、和光純薬工業(株)製)0.08gをメタノール5gに溶解して、重合開始剤溶液を調製した。次に、この重合開始剤溶液をモノマー溶液に添加し、50℃で5時間重合反応を行った。所定時間重合後、重合溶液をエタノールに滴下し、析出した重合体(PMEA)を回収した。なお、回収した重合体の重量平均分子量を測定したところ、420,000であった。
 [コート液の調製]
 実施例1-1:硫酸プロタミン濃度0.005質量%のコート液
 上記製造例1で合成したPMEA(重量平均分子量=42万)1.2gを、20gのメタノールに溶解した。別の容器に蒸留水380gを添加し、スターラーで撹拌しながら、上記PMEAのメタノール溶液を20g/minの添加速度で添加した。その後、25℃で10分間撹拌し、白濁したコート液を得た。コート液は、PMEAのコロイドが分散されたコロイド液であった。このコロイド液中へ、硫酸プロタミン水溶液(10mg/mlの水溶液;硫酸プロタミンの分子量=約5,000)を2.2ml添加し、コート液(1)を得た。このとき、コート液(1)の溶媒は、水:メタノールの混合比=17:1(質量比)であり、PMEAの濃度0.3質量%である。
 実施例1-2:硫酸プロタミン濃度0.027質量%のコート液
 上記実施例1-1において、用いた硫酸プロタミンの量を変更し、硫酸プロタミン水溶液(10mg/mlの水溶液)を11ml添加したことを除いては、実施例1-1と同様にしてコート液(2)を得た。上記コート液(2)も、コート液(1)と同様、コロイドを含む溶液であった。このとき、コート液(2)の溶媒は、水:メタノールの混合比=12:1(質量比)であり、PMEAの濃度0.3質量%である。
 比較例1-1:硫酸プロタミン未添加
 上記実施例1-1において、硫酸プロタミン水溶液を添加しなかったことを除いては、実施例1-1と同様にしてコート液(3)を得た。上記コート液(3)も、コート液(1)と同様、コロイドを含む溶液であった。
 [人工肺の作製]
 実施例2-1
 内径が195μm、外径が295μm、肉厚が50μm、空孔率が約35体積%、外表面の孔径(すなわち、開口部の平均直径)が80nmの多孔質ポリプロピレン製のガス交換用多孔質中空糸膜が巻きつけられた、膜面積(中空糸膜の外表面積)が0.5mである血液外部灌流型中空糸膜人工肺(a)を作製した。
 上記実施例1-1において調製したコート液(1)を、この人工肺(a)の血液流路に充填し、25℃で120秒間静置した後、コート液を除去して、80Lの流量の空気を流して、中空糸膜を乾燥して、被覆が外表面に形成された中空糸膜を有する血液外部灌流型中空糸膜人工肺(1)を製造した。なお、このようにして得られた血液外部灌流型中空糸膜人工肺(1)を人工肺(1)とも称する。
 実施例2-2
 上記実施例2-1において、用いたコート液を、上記実施例1-2で調製したコート液(2)に変更したこと以外は、上記実施例2-1と同様にして血液外部灌流型中空糸膜人工肺(2)を製造した。なお、このようにして得られた血液外部灌流型中空糸膜人工肺(2)を人工肺(2)とも称する。
 比較例2-1
 上記実施例2-1において、用いたコート液を、上記比較例1-1で調製したコート液(3)に変更したこと以外は、上記実施例2-1と同様にして血液外部灌流型中空糸膜人工肺(3)を製造した。なお、このようにして得られた血液外部灌流型中空糸膜人工肺(3)を人工肺(3)とも称する。
 [実験1.コート量の定量]
 上記実施例2-1~2-2の人工肺(1)~(2)および比較例2-1の人工肺(3)について、下記方法によって、PMEAのコート量を測定した。
 人工肺(1)~(3)をそれぞれ解体し、人工肺膜を取りだした。そのうち3gの人工肺膜をスクリューキャップ付きガラス管に充填し、アセトンを25ml添加し、120分間撹拌することにより、各人工肺膜にコートされたPMEAを抽出した。アセトン抽出液を別のスクリューキャップ付きガラス管に全量移した。ヒートブロックを用いて、アセトンを蒸発させた。蒸発乾固物が入ったガラス管にテトラヒドロフランを10ml添加し、蒸発乾固物を溶解した。1mg/mlのPMEAを含有するTHF溶液(標準液)についてGPCを用いて分析し、PMEAに相当するピークの面積を算出した。続いて蒸発乾固物THF溶解液(試験液)についてGPCを用いて分析し、同様にPMEAに相当するピークの面積を算出した。その後、下記の式1を用いて試験液中のPMEA量を、式2を用いて人工肺膜1m(中空糸膜の外表面の面積1m)あたりのPMEAコート量をそれぞれ算出した。結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-T000006
 上記表1の結果から、本発明に係る方法により製造された人工肺(1)および(2)は、PMEAのコート量が飛躍的に増大することが確認された。
 [実験2.抗血栓性試験]
 上記実施例2-1および比較例2-1で得られた人工肺(1)および人工肺(3)について、下記方法に従って、抗血栓性を評価した。
 各人工肺を体外循環回路中に組み込み、ヘパリンを添加したブタ新鮮血90mlおよび生理食塩水110mlで充填した。循環血液中のへパリン濃度は、0.5u/mlとした。循環血液を、室温(25℃)、500ml/minで循環させた。循環開始直後に硫酸プロタミン(100mg/10ml)を生理食塩水で100倍希釈した溶液0.7mlを循環血液中に注入した。30分後に、それぞれの血液循環回路から血液をサンプリングし、血小板数を測定、循環開始前の血小板数に対する割合を計算し、血小板数維持率を求めた。血液中の血小板数維持率が高いほど、抗血栓性が高いことを意味する。結果を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000007
 上記表2の結果から、本発明に係る方法により製造された人工肺(1)は、コート液中に水溶性のカチオン性高分子を含有しないコート液を用いた人工肺(3)に比して、抗血栓性が有意に向上していることが分かる。
 本出願は、2017年3月14日に出願された日本特許出願番号第2017-048241号に基づいており、その開示内容は参照され、全体として組み入れられている。

Claims (8)

  1.  外表面と、内腔を形成する内表面と、前記外表面と前記内表面とを連通する開口部と、を備えた複数のガス交換用多孔質中空糸膜を有する人工肺の製造方法であって、
     抗血栓性高分子化合物のコロイドと、水溶性のカチオン性高分子と、を含む溶液を、前記外表面および前記内表面のいずれか一方に塗布することを含む、人工肺の製造方法。
  2.  前記中空糸膜が、酸素含有ガスが流れる前記内腔を形成する前記内表面と、血液と接触する前記外表面と、を有し、
     前記外表面に、前記溶液を塗布する、請求項1に記載の人工肺の製造方法。
  3.  前記水溶性のカチオン性高分子は、硫酸プロタミン、プロタミン、ポリエチレンイミン、ポリアリルアミン、ポリ-L-リジン、アルブミンおよびゼラチンからなる群から選択される、請求項1または2に記載の人工肺の製造方法。
  4.  前記溶液が、前記水溶性のカチオン性高分子を0.001質量%以上含む、請求項1~3のいずれか1項に記載の人工肺の製造方法。
  5.  前記溶液が、前記抗血栓性高分子化合物を0.01質量%以上含む、請求項1~4のいずれか1項に記載の人工肺の製造方法。
  6.  前記溶液が、前記抗血栓性高分子化合物と、前記水溶性のカチオン性高分子とを、1:0.01~0.10の質量比で含む、請求項1~5のいずれか1項に記載の人工肺の製造方法。
  7.  前記抗血栓性高分子化合物は、下記式(I):
    Figure JPOXMLDOC01-appb-C000001
    ただし、Rは、水素原子またはメチル基を表わし、Rは、炭素数1~4のアルキレン基を表わし、Rは、炭素数1~4のアルキル基を表わす、
    で示されるアルコキシアルキル(メタ)アクリレート由来の構成単位を有する、請求項1~6のいずれか1項に記載の人工肺の製造方法。
  8.  前記抗血栓性高分子化合物の重量平均分子量は、200,000を超えて800,000未満である、請求項1~7のいずれか1項に記載の人工肺の製造方法。
PCT/JP2018/008097 2017-03-14 2018-03-02 人工肺の製造方法 WO2018168532A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019505883A JP6956169B2 (ja) 2017-03-14 2018-03-02 人工肺の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-048241 2017-03-14
JP2017048241 2017-03-14

Publications (1)

Publication Number Publication Date
WO2018168532A1 true WO2018168532A1 (ja) 2018-09-20

Family

ID=63522394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008097 WO2018168532A1 (ja) 2017-03-14 2018-03-02 人工肺の製造方法

Country Status (2)

Country Link
JP (1) JP6956169B2 (ja)
WO (1) WO2018168532A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118472A (ja) * 1996-10-15 1998-05-12 Nikkiso Co Ltd 中空糸膜及びその製造方法
JP2010207583A (ja) * 2002-08-21 2010-09-24 Toray Ind Inc 改質基材および改質基材の製造方法
WO2016143752A1 (ja) * 2015-03-10 2016-09-15 テルモ株式会社 人工肺および人工肺の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638851B2 (ja) * 1988-07-11 1994-05-25 テルモ株式会社 医療用材料ならびに医療用器具
JP4848663B2 (ja) * 2005-04-13 2011-12-28 東洋紡績株式会社 中空糸型血液浄化膜への表面改質剤コーティング方法、表面改質剤コート中空糸型血液浄化膜および表面改質剤コート中空糸型血液浄化器
US20150352265A1 (en) * 2013-01-07 2015-12-10 Narayana GARIMELLA Biocompatible coating composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118472A (ja) * 1996-10-15 1998-05-12 Nikkiso Co Ltd 中空糸膜及びその製造方法
JP2010207583A (ja) * 2002-08-21 2010-09-24 Toray Ind Inc 改質基材および改質基材の製造方法
WO2016143752A1 (ja) * 2015-03-10 2016-09-15 テルモ株式会社 人工肺および人工肺の製造方法

Also Published As

Publication number Publication date
JP6956169B2 (ja) 2021-11-02
JPWO2018168532A1 (ja) 2020-01-16

Similar Documents

Publication Publication Date Title
US10758658B2 (en) Artificial lung and method for manufacturing artificial lung
WO2016143751A1 (ja) 人工肺および人工肺の製造方法
CN110314559A (zh) 一种界面聚合复合膜的制备方法
JP5619878B2 (ja) 改良された性能を有する膜
US20150343394A1 (en) Hollow fiber membrane module, method for producing hollow fiber membrane, and method for producing hollow fiber membrane module
US20160339159A1 (en) Hollow fiber membrane module for cleaning platelet suspension
US20230001358A1 (en) Oxygenator and method for manufacturing same
CN105050606A (zh) 人工保存液置换血小板溶液的制造方法
CN109641182A (zh) 多层中空纤维膜
US11779690B2 (en) Oxygenator antithrombotic coating and method of manufacture
WO2018168532A1 (ja) 人工肺の製造方法
JP2015136383A (ja) 中空糸膜外部血液灌流型人工肺
JP7424873B2 (ja) 人工肺およびその製造方法
CN106621837B (zh) 一种亲水改性网络交联物多孔膜及其制备方法
CN109689190A (zh) 具有低血栓形成的基于丙烯腈的膜
JP6956170B2 (ja) 人工肺の製造方法
WO2018168171A1 (ja) 人工肺の製造方法及び人工肺
JP4162931B2 (ja) 人工心肺回路システム
WO2021182100A1 (ja) 人工肺の製造方法
WO2022185962A1 (ja) 人工肺の製造方法
JP2020141901A (ja) 人工肺
CN112588132A (zh) 一种中空纤维膜及其制备方法
JP2021142162A (ja) 人工肺およびその製造方法
CN109689188A (zh) 用于吸附细菌的膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767498

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505883

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18767498

Country of ref document: EP

Kind code of ref document: A1