WO2018168440A1 - 液晶素子及びその製造方法 - Google Patents

液晶素子及びその製造方法 Download PDF

Info

Publication number
WO2018168440A1
WO2018168440A1 PCT/JP2018/007183 JP2018007183W WO2018168440A1 WO 2018168440 A1 WO2018168440 A1 WO 2018168440A1 JP 2018007183 W JP2018007183 W JP 2018007183W WO 2018168440 A1 WO2018168440 A1 WO 2018168440A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
base material
substrate
group
polymer
Prior art date
Application number
PCT/JP2018/007183
Other languages
English (en)
French (fr)
Inventor
孝人 加藤
幸志 樫下
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to CN201880014550.5A priority Critical patent/CN110352382A/zh
Publication of WO2018168440A1 publication Critical patent/WO2018168440A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device

Definitions

  • the present disclosure relates to a liquid crystal element and a manufacturing method thereof.
  • liquid crystal elements are used in a wide range of applications from small devices such as mobile phones, smartphones, and tablet PCs to large screen liquid crystal display elements such as liquid crystal televisions.
  • Liquid crystal elements include TN, STN, and VA type liquid crystal display elements with vertical electric field type liquid crystal cells, as well as IPS (In-Plane Switching) type and FFS (Fringe Field Switching) type horizontal electric field methods.
  • the liquid crystal display element is known (for example, see Patent Document 1).
  • an electrode pair (a common electrode and a pixel electrode) is provided on one of a pair of substrates.
  • a horizontal electric field type liquid crystal element by forming an electric field between a common electrode and a pixel electrode, liquid crystal molecules aligned in the horizontal direction rotate in the horizontal direction. Thereby, transmission of incident light is controlled. For this reason, the horizontal electric field liquid crystal element has a wider viewing angle characteristic and can display with higher quality than the vertical electric field liquid crystal element.
  • the FFS type liquid crystal element which is one of the transverse electric field type liquid crystal elements, is a liquid crystal element that controls light transmission by applying a fringe electric field to homogeneously aligned liquid crystal molecules.
  • a common electrode is provided on one substrate surface, and a pixel electrode is provided on the surface of the common electrode via an insulating film.
  • an electric field fringe electric field
  • the electric field is directed to the common electrode on both sides of the pixel electrode, and not only the liquid crystal molecules existing between the pixel electrodes but also the liquid crystal molecules on the pixel electrode. Turn. For this reason, according to the FFS type liquid crystal element, there is an advantage that a wider viewing angle and a high contrast can be realized.
  • liquid crystal elements it is desired to improve flexibility and impact resistance as well as to reduce the weight and thickness with increasing versatility.
  • characteristics such as flexibility can be improved in an FFS type liquid crystal element capable of realizing a wide viewing angle and high contrast, it can be said that it leads to further expansion of application and quality improvement of the liquid crystal element.
  • the present disclosure has been made in view of the above problems, and has as its main purpose to provide an FFS type liquid crystal element that has good flexibility and impact resistance, is light and thin, and has good liquid crystal alignment. .
  • This disclosure employs the following means in order to solve the above problems.
  • a liquid crystal comprising: a first base material; a second base material disposed opposite to the first base material; and a liquid crystal layer disposed between the first base material and the second base material.
  • at least one of the first base material and the second base material is a base material made of a resin, and the common electrode provided on the first base material and the first base material
  • a liquid crystal comprising: a pixel electrode disposed on the common electrode via an insulating film; and a liquid crystal alignment film formed on at least one of the first base material and the second base material and adjacent to the liquid crystal layer.
  • a method for producing a liquid crystal element comprising: a first base material; a second base material disposed opposite to the first base material; and a liquid crystal layer disposed between the pair of base materials, At least one of the first base material and the second base material is a base material made of resin, and is disposed on the first base material via a common electrode and an insulating film on the common electrode.
  • the flexibility and impact resistance are good, the weight and thickness are thin, and the liquid crystal orientation is good.
  • a good FFS type liquid crystal element can be obtained.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an FFS type liquid crystal display element.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of the FFS type liquid crystal display element of the second embodiment.
  • FIG. 3 is a schematic plan view of the pixel electrode.
  • FIG. 4 is a schematic plan view of the pixel electrode.
  • the liquid crystal element is embodied in the FFS type liquid crystal display element 10. As shown in FIG. 1, the liquid crystal display element 10 is disposed between a pair of base materials including a first base material 11 and a second base material 12, and the first base material 11 and the second base material 12. And a liquid crystal layer 13.
  • the first substrate 11 and the second substrate 12 are transparent substrates, and at least one of the first substrate 11 and the second substrate 12 is a film substrate made of a resin.
  • the first substrate 11 is a glass substrate
  • the second substrate 12 is a film substrate made of resin.
  • the liquid crystal can be protected while obtaining the effects of weight reduction and thickness reduction.
  • the resin constituting the film base include silicon, polyethylene terephthalate, polybutylene terephthalate, polyethersulfone, polycarbonate, polypropylene, polyvinyl chloride, aromatic polyamide, polyamideimide, polyimide, triacetylcellulose (TAC), poly Examples include materials such as methyl methacrylate.
  • the first base material 11 is provided with a scanning line, a common wiring, and a signal line (not shown), and a common electrode that is a surface electrode connected to the common wiring in a region partitioned by the scanning line and the common wiring. 14 is provided.
  • a comb-like pixel electrode 16 is disposed on the common electrode 14 in the first base material 11 via an insulating film 15.
  • An electrode pair is constructed by the common electrode 14 and the pixel electrode 16.
  • the common electrode 14 and the pixel electrode 16 are, for example, a NESA film (registered trademark of PPG, USA) made of tin oxide (SnO 2 ), an ITO film made of indium oxide-tin oxide (In 2 O 3 —SnO 2 ), or a carbon material.
  • a TFT (not shown) as a switching element is disposed in the vicinity of the position where the scanning line and the signal line intersect, and voltage application to and release from the common electrode 14 and the pixel electrode 16 are controlled by driving the TFT.
  • the second substrate 12 is provided with a color filter 17 and an overcoat film 18.
  • a liquid crystal alignment film 21 is formed on the surface of the pixel electrode 16 in the first substrate 11 and the slit 19 between the pixel electrodes 16, and the liquid crystal alignment is formed on the surface of the overcoat film 18 in the second substrate 12.
  • a film 22 is formed.
  • the liquid crystal alignment films 21 and 22 are organic thin films that regulate the alignment orientation of the liquid crystal molecules in the liquid crystal layer 13, and in this embodiment, the liquid crystal alignment films 21 and 22 are formed using a polymer composition including a polymer having a photoalignment group. A photo-alignment film.
  • the first base material 11 and the second base material 12 are arranged with a predetermined gap (cell gap) through a spacer (not shown).
  • the spacer include a columnar spacer and a bead spacer.
  • the spacer structure described in Japanese Patent Application No. 2016-196723 can be applied from the viewpoint of adhesion to the substrate.
  • the first base material 11 and the second base material 12 are bonded to each other through a sealing material.
  • a liquid crystal layer 13 is formed by filling a liquid crystal composition in a space surrounded by the first base material 11, the second base material 12, and the sealing material.
  • Polarizing plates 23 and 24 are arranged on the outer sides of the first substrate 11 and the second substrate 12, respectively.
  • a terminal region is provided on the outer edge of the first substrate 11, and the liquid crystal display element 10 is driven by connecting a driver IC or the like for driving the liquid crystal to the terminal region.
  • the polymer component contained in the liquid crystal aligning agent is not particularly limited, and examples thereof include a polymer of a monomer having a polymerizable unsaturated bond (hereinafter also referred to as “polymer PAc”), polysiloxane, and polyamic acid.
  • polymer PAc a polymer of a monomer having a polymerizable unsaturated bond
  • polysiloxane polysiloxane
  • polyamic acid Polyimide, polyamic acid ester, polyamide, polyester, cellulose derivative, polyacetal, polystyrene derivative, poly (styrene-phenylmaleimide) derivative, and the like.
  • the polymer component of the liquid crystal aligning agent the resistance when the screen of the liquid crystal display element 10 is pressed with a finger or a touch pen (hereinafter also referred to as “finger pressing resistance”) can be sufficiently improved,
  • the polymer PAc is contained in that a liquid crystal alignment film excellent in coating property to the substrate can be obtained even when the post-baking temperature is lowered.
  • a film base material is applied to the base material of the liquid crystal display element 10
  • a thinner and lighter device can be realized and the portability is excellent.
  • the flexibility of the display area is increased, and the finger pressing resistance is reduced.
  • the polymer PAc as the polymer component of the liquid crystal alignment films 21 and 22, it is possible to obtain the liquid crystal display element 10 having good finger pressing resistance while ensuring the liquid crystal alignment.
  • Polymer PAc As a polymerizable unsaturated bond which the monomer which comprises polymer PAc has, a (meth) acryloyl group, a vinyl group, a styrene group (vinylphenyl group), a maleimide group etc. are mentioned, for example.
  • the monomer having a polymerizable unsaturated bond include, for example, (meth) acrylic compounds such as unsaturated carboxylic acid, unsaturated carboxylic acid ester, and unsaturated polyvalent carboxylic acid anhydride; styrene, methyl Aromatic vinyl compounds such as styrene and divinylbenzene; Conjugated diene compounds such as 1,3-butadiene and 2-methyl-1,3-butadiene; Maleimide compounds such as N-methylmaleimide, N-cyclohexylmaleimide and N-phenylmaleimide , Etc.
  • the monomer which has a polymerizable group unsaturated bond can be used individually by 1 type or in combination of 2 or more types.
  • poly (meth) acrylate a monomer polymer containing at least a (meth) acrylic compound in that the coating property on the film substrate is good and a liquid crystal element showing good liquid crystal orientation is obtained.
  • poly (meth) acrylate a monomer polymer containing at least a (meth) acrylic compound in that the coating property on the film substrate is good and a liquid crystal element showing good liquid crystal orientation.
  • poly (meth) acrylate for example, because it has higher solubility in low-boiling solvents than polyimide resins, it can reduce film thickness unevenness, coating unevenness, and pinholes in the obtained coating film, and achieve uniform liquid crystal alignment. This is preferable in that a film can be obtained.
  • poly (meth) acrylate includes polyacrylate and polymethacrylate.
  • the poly (meth) acrylate may be a polymer composed only of a (meth) acrylic compound or may be a polymer composed of a (meth) acrylic compound and another monomer.
  • the poly (meth) acrylate preferably has 20% by mass or more of a structural unit derived from a (meth) acrylic compound, more preferably 30% by mass or more, still more preferably 40% by mass or more, and 50 It is particularly preferable to have at least mass%.
  • the (meth) acrylic compound used in the polymerization of poly (meth) acrylate is not particularly limited. Specific examples thereof include unsaturated carboxylic acids such as (meth) acrylic acid, ⁇ -ethylacrylic acid, maleic acid, fumaric acid, itaconic acid, vinylbenzoic acid and the like; Examples of unsaturated carboxylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, allyl (meth) acrylate, cyclohexyl (meth) acrylate, (Meth) acrylic acid tricyclo [5.2.1.0 2,6 ] dec-8-yl, (meth) acrylic acid dicyclopentanyl, (meth) acrylic acid benzyl, (meth) acrylic acid-2-ethylhexyl , Lauryl (meth) acrylate, trimethoxysilylpropyl (meth
  • the (meth) acrylic compound used for the polymerization is a (meth) acrylic compound having an epoxy group from the viewpoint of improving the liquid crystal orientation and electrical properties of the obtained liquid crystal element and the adhesion of the liquid crystal alignment film to the substrate. It is preferable to include a compound.
  • the ratio of the (meth) acrylic compound having an epoxy group is preferably 1% by mass or more, more preferably 5% by mass or more, based on the total amount of monomers used for polymerization. More preferably, it is at least mass%.
  • a monomer other than the (meth) acrylic compound (hereinafter also referred to as “other monomer”) may be used.
  • other monomers include conjugated diene compounds, aromatic vinyl compounds, maleimide compounds, and the like.
  • an aromatic vinyl compound as another monomer in order to sufficiently secure the finger-pushing resistance of the obtained liquid crystal element.
  • the polymer PAc is a copolymer of a (meth) acrylic compound and an aromatic vinyl compound
  • the proportion of the aromatic vinyl compound used is the total amount of monomers used for the synthesis of poly (meth) acrylate.
  • the content is preferably 1 to 80% by mass, more preferably 2 to 70% by mass, and still more preferably 5 to 60% by mass.
  • the polymerization reaction using the (meth) acrylic compound is preferably performed by radical polymerization.
  • the polymerization initiator used in the polymerization reaction include 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (4 Azo compounds such as -methoxy-2,4-dimethylvaleronitrile); organic peroxides such as benzoyl peroxide, lauroyl peroxide, t-butylperoxypivalate, 1,1'-bis (t-butylperoxy) cyclohexane; Hydrogen oxide; a redox initiator composed of these peroxides and a reducing agent can be used.
  • polymerization initiators can be used alone or in combination of two or more.
  • the amount of the polymerization initiator used is preferably 0.01 to 50 parts by mass, more preferably 0.1 to 40 parts by mass with respect to 100 parts by mass of the monomers used in the reaction.
  • the polymerization reaction of the (meth) acrylic compound is preferably performed in an organic solvent.
  • the organic solvent used in the reaction include alcohols, ethers, ketones, amides, esters, hydrocarbon compounds, and the like. Among these, it is preferable to use at least one selected from the group consisting of alcohols and ethers, and it is more preferable to use partial ethers of polyhydric alcohols. Preferred examples thereof include diethylene glycol methyl ethyl ether and propylene glycol monomethyl ether acetate.
  • an organic solvent these can be used individually by 1 type or in combination of 2 or more types.
  • the reaction temperature is preferably 30 to 120 ° C., more preferably 60 to 110 ° C.
  • the reaction time is preferably 1 to 36 hours, more preferably 2 to 24 hours.
  • the amount of organic solvent used (a) is such that the total amount (b) of monomers used in the reaction is 0.1 to 50% by mass with respect to the total amount (a + b) of the reaction solution. An amount is preferred.
  • the reaction solution containing poly (meth) acrylate may be used for the preparation of the liquid crystal alignment agent as it is, or may be used for the preparation of the liquid crystal alignment agent after isolating the poly (meth) acrylate contained in the reaction solution. Good.
  • the polystyrene-equivalent number average molecular weight (Mn) measured by gel permeation chromatography (GPC) improves the liquid crystal alignment of the liquid crystal alignment film to be formed, and the liquid crystal alignment From the viewpoint of ensuring stability over time, it is preferably 250 to 500,000, more preferably 500 to 100,000, and still more preferably 1,000 to 50,000.
  • the content ratio of the poly (meth) acrylate in the liquid crystal aligning agent is 3% by mass or more based on the total amount of the polymer components of the liquid crystal aligning agent, from the viewpoint of sufficiently obtaining the effect of improving the finger pressing resistance of the obtained liquid crystal element. It is preferable that About the minimum of the said content rate, More preferably, it is 5 mass% or more, More preferably, it is 20 mass% or more, Most preferably, it is 50 mass% or more.
  • the upper limit is preferably 99% by mass or less, more preferably 95% by mass or less, and still more preferably 90% by mass when an effect of improving various properties by a polymer different from poly (meth) acrylate is obtained. % Or less.
  • poly (meth) acrylate may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Polyamic acid, polyamic acid ester and polyimide Polyamic acid, polyamic acid ester, and polyimide can be synthesized according to a conventionally known method.
  • polyamic acid can be obtained by reacting tetracarboxylic dianhydride and diamine.
  • the polyamic acid ester can be obtained, for example, by a method of reacting a polyamic acid with an esterifying agent (for example, methanol, ethanol, N, N-dimethylformamide diethyl acetal, etc.).
  • an esterifying agent for example, methanol, ethanol, N, N-dimethylformamide diethyl acetal, etc.
  • Polyimide can be obtained, for example, by dehydrating and ring-closing polyamic acid to imidize.
  • the imidation ratio of polyimide is preferably 20 to 95%, more preferably 30 to 90%. This imidation ratio represents the ratio of the number of imide ring structures to the total of the number of polyimide amic acid structures and the number of imide ring structures in percentage.
  • tetracarboxylic acid used in the polymerization examples include aliphatic tetracarboxylic dianhydrides such as butanetetracarboxylic dianhydride and ethylenediaminetetraacetic acid dianhydride; 1,2,3,4-cyclobutanetetracarboxylic dianhydride Anhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 5- (2,5-dioxotetrahydrofuran- 3-yl) -3a, 4,5,9b-tetrahydronaphtho [1,2-c] furan-1,3-dione, 5- (2,5-dioxotetrahydrofuran-3-yl) -8-methyl- 3a, 4,5,9b-tetrahydronaphtho [1,2-c] furan-1,3-dione
  • diamine used in the polymerization examples include aliphatic diamines such as ethylenediamine and tetramethylenediamine; alicyclic diamines such as p-cyclohexanediamine and 4,4′-methylenebis (cyclohexylamine); hexadecanoxydiaminobenzene.
  • the weight average molecular weight (Mw) in terms of polystyrene measured by GPC is preferably 1,000 to 500,000, more preferably 2,000 to 300,000.
  • the molecular weight distribution (Mw / Mn) is preferably 7 or less, more preferably 5 or less.
  • the polyamic acid, polyamic acid ester, and polyimide which are contained in the liquid crystal aligning agent may be only one kind, or may be a combination of two or more kinds.
  • the liquid crystal aligning agent used for forming the liquid crystal alignment films 21 and 22 can obtain the liquid crystal display element 10 having high weather resistance while maintaining the liquid crystal alignment property, the coating property on the film substrate, and the finger pressing resistance.
  • silane compound it is particularly preferable that polysiloxane is included in that the effect of improving the weather resistance of the liquid crystal display element 10 is higher and the liquid crystal orientation can be improved even when the post-baking temperature is further lowered.
  • a silane compound in that the adhesion to the substrate can be further increased.
  • Polysiloxane can be obtained, for example, by hydrolyzing and condensing a hydrolyzable silane compound.
  • hydrolyzable silane compound examples include tetraalkoxysilane compounds such as tetramethoxysilane and tetraethoxysilane; alkyl groups or aryl groups such as methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, and dimethyldiethoxysilane.
  • alkoxysilane compounds Containing alkoxysilane compounds; Sulfur-containing alkoxysilane compounds such as 3-mercaptopropyltriethoxysilane and mercaptomethyltriethoxysilane; Glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, 2-glycidoxyethyltrimethoxysilane, 2-glycidoxyethyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycid Epoxy group-containing alkoxysilane compounds such as xylpropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane; Unsaturated bond-containing alkoxysilane compounds such as 3- (meth) acryloxypropyltrimethoxysilane, 3- (me
  • the above hydrolysis / condensation reaction is carried out by reacting one or more of the above hydrolyzable silane compounds with water, preferably in the presence of an appropriate catalyst and an organic solvent.
  • the amount of water used is preferably 1 to 30 mol with respect to 1 mol of the hydrolyzable silane compound (total amount).
  • the catalyst to be used include acids, alkali metal compounds, organic bases, titanium compounds, zirconium compounds and the like.
  • the amount of catalyst used varies depending on the type of catalyst, reaction conditions such as temperature, and should be set appropriately. For example, the amount is preferably 0.01 to 3 times the total amount of the silane compound.
  • the organic solvent to be used include hydrocarbons, ketones, esters, ethers, alcohols, and the like. Among these, it is preferable to use a water-insoluble or slightly water-soluble organic solvent.
  • the organic solvent is used in an amount of preferably 10 to 10,000 parts by mass with respect to 100 parts by mass in total of the silane compounds used in the reaction.
  • the above hydrolysis / condensation reaction is preferably carried out by heating with, for example, an oil bath. At that time, the heating temperature is preferably 130 ° C. or less, and the heating time is preferably 0.5 to 12 hours.
  • the organic solvent layer separated from the reaction solution is dried with a desiccant as necessary, and then the solvent is removed to obtain the target polysiloxane.
  • the method for synthesizing the polysiloxane is not limited to the hydrolysis / condensation reaction described above.
  • the polysiloxane may be synthesized by a method in which a hydrolyzable silane compound is reacted in the presence of oxalic acid and alcohol.
  • the liquid crystal aligning agent may contain polysiloxane having a functional group such as a photo-aligning group or a pretilt angle imparting group in the side chain.
  • the polysiloxane having a functional group is obtained by, for example, synthesizing a polysiloxane having an epoxy group in a side chain by polymerization using an epoxy group-containing hydrolyzable silane compound as at least a part of the raw material, It can be obtained by reacting a polysiloxane having a functional group with a carboxylic acid having a functional group.
  • a polymerization method using a hydrolyzable silane compound having a functional group as a monomer may be employed.
  • the reaction between the epoxy group-containing polysiloxane and the carboxylic acid is preferably performed in the presence of a catalyst and an organic solvent.
  • the proportion of the carboxylic acid used is preferably 5 mol% or more, more preferably 10 to 80 mol%, based on the epoxy group of the epoxy group-containing polysiloxane.
  • a catalyst a well-known compound etc. can be used as what is called a hardening accelerator which accelerates
  • the ratio of the catalyst used is preferably 100 parts by mass or less with respect to 100 parts by mass of the epoxy group-containing polysiloxane.
  • the organic solvent to be used include 2-butanone, 2-hexanone, methyl isobutyl ketone, cyclopentanone, cyclohexanone and butyl acetate.
  • the organic solvent is preferably used in such a ratio that the solid content concentration is 5 to 50% by mass.
  • the reaction temperature in the above reaction is preferably 0 to 200 ° C., and the reaction time is preferably 0.1 to 50 hours. After the completion of the reaction, the organic solvent layer separated from the reaction solution is dried with a desiccant as necessary, and then the solvent is removed to obtain a polysiloxane having a functional group.
  • the polystyrene-reduced weight average molecular weight measured by gel permeation chromatography is preferably 500 to 1,000,000, more preferably 1,000 to 100,000. More preferably, it is 1,000 to 50,000.
  • polysiloxane may be used individually by 1 type and may be used in combination of 2 or more type.
  • the silane compound contained in the liquid crystal aligning agent is an organosilicon compound having a carbon-silicon bond, and examples thereof include hydrolyzable silane compounds exemplified as silane compounds used for the synthesis of polysiloxane.
  • the silane compound preferably has an alkoxysilyl group, more preferably an alkoxysilane compound having at least one functional group selected from the group consisting of an epoxy group, an amino group, and a thiol group, and particularly an epoxy group-containing alkoxysilane compound. preferable.
  • a silane compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the silicon-containing compound in the liquid crystal aligning agent can be appropriately selected according to the compound to be used.
  • the content of polysiloxane in the liquid crystal aligning agent is a polymer component in the liquid crystal aligning agent from the viewpoint of sufficiently increasing the weather resistance of the liquid crystal display element 10 to be obtained.
  • the total amount is preferably 1% by mass or more, more preferably 2% by mass or more, and still more preferably 5% by mass or more.
  • the upper limit value of the content ratio of the polysiloxane is preferably 97% by mass or less, and more preferably 90% by mass or less, from the viewpoint of suppressing reduction in finger pressing resistance in the liquid crystal display element 10.
  • the compounding ratio when mix
  • it is preferably 0.5 parts by mass or more, more preferably 1 to 30 parts by mass with respect to 100 parts by mass of the total amount of the polymer.
  • a silicon containing compound only polysiloxane may be used, only a silane compound may be used, and polysiloxane and a silane compound may be used together.
  • the polymer component of the liquid crystal alignment films 21 and 22 is at least one polymer selected from the group consisting of poly (meth) acrylate and polysiloxane (hereinafter referred to as “polymer” in that the effect of suppressing poor initial alignment of liquid crystals is high.
  • Q polymer
  • the polymer Q is, for example, a cycloolefin polymer (hereinafter also referred to as “COP”) or triacetyl cellulose (hereinafter also referred to as “TAC”) that is generally used as a film base material, as compared with, for example, a polyimide resin.
  • COP cycloolefin polymer
  • TAC triacetyl cellulose
  • the initial alignment defect of the liquid crystal can be suppressed by heating at the time of post baking at the time of manufacturing the liquid crystal element.
  • the content ratio of the polymer Q is preferably 10% by mass or more, more preferably 20% by mass or more, and more preferably 30% by mass or more, with respect to the total amount of the polymer components contained in the liquid crystal aligning agent. More preferably.
  • the polymer Q can be used individually by 1 type or in combination of 2 or more types.
  • the liquid crystal aligning agent used for formation of the liquid crystal aligning films 21 and 22 contains the polymer which has a photo-alignment group.
  • the base material is a film base material
  • rubbing scraping is likely to occur when a rubbing treatment is performed on a coating film formed using a liquid crystal aligning agent, and there is a concern that the liquid crystal orientation deteriorates and the product yield decreases.
  • the “photo-alignable group” means a functional group that imparts anisotropy to the film by a photoisomerization reaction, a photodimerization reaction, a photolysis reaction, or a photofleece rearrangement reaction by light irradiation.
  • Specific examples of the photo-alignment group include an azobenzene-containing group containing azobenzene or a derivative thereof as a basic skeleton, a cinnamic acid structure-containing group containing a cinnamic acid or a derivative thereof as a basic skeleton, or a chalcone containing a chalcone or a derivative thereof as a basic skeleton.
  • a benzophenone-containing group containing benzophenone or a derivative thereof as a basic skeleton a coumarin-containing group containing coumarin or a derivative thereof as a basic skeleton, and a cyclobutane-containing structure containing cyclobutane or a derivative thereof as a basic skeleton.
  • a cinnamic acid structure-containing group is preferable in terms of high sensitivity to light, and examples thereof include a group having a partial structure represented by the following formula (1).
  • R is an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or a fluorine-containing alkyl having 1 to 10 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom.
  • a is 2 or more, a plurality of The Rs in each may be the same or different. “*” Represents a bond.
  • one of the two bonds “*” is preferably bonded to a group represented by the following formula (4).
  • the liquid crystal orientation of the obtained liquid crystal element can be improved, which is preferable.
  • R 11 is a phenylene group, a biphenylene group, a terphenylene group, a cyclohexylene group, or a bicyclohexylene group, and an alkyl group having 1 to 20 carbon atoms or 1 to 20 carbon atoms in the ring portion.
  • Diyl group oxygen atom, sulfur atom, —CH ⁇ CH—, —NH—, —COO— or —OCO—, and when bonded to the carbonyl group in formula (1), a single bond, carbon Numbers 1-3 Kanjiiru group, an oxygen atom, a sulfur atom or -NH-. "*" Indicates a bond.)
  • the photo-alignment group may be contained in the polymer PAc, but may be contained in a polymer different from the polymer PAc.
  • the main skeleton of such a polymer include polyamic acid, polyamic acid ester, polyimide, polysiloxane, and polyamide. From the viewpoint of ensuring the reliability and weather resistance of the liquid crystal display element 10, polysiloxane can be preferably used as the polymer having a photoalignment group.
  • the method for synthesizing the polymer having a photoalignable group is not particularly limited, and may be appropriately selected according to the main skeleton of the polymer.
  • the method (2) is preferable in that the introduction efficiency into the side chain is high.
  • the content ratio of the polymer having a photo-alignable group is determined using the liquid crystal aligning agent. From the viewpoint of imparting sufficient alignment ability to the formed coating film by irradiation, it is preferably 1% by mass or more with respect to the total amount of the polymer components in the liquid crystal aligning agent, and is 5 to 99% by mass. More preferably.
  • the liquid crystal aligning agent preferably contains a compound having a crosslinkable group (hereinafter also referred to as a crosslinking agent).
  • the crosslinkable group is a group capable of forming a covalent bond between the same or different molecules by light or heat.
  • a (meth) acryloyl group a group having a vinyl group (alkenyl group, vinylphenyl group, etc.), an ethynyl group
  • examples thereof include an epoxy group (oxiranyl group, oxetanyl group), a carboxyl group, and a (protected) isocyanate group.
  • the number of crosslinkable groups possessed by the crosslinking agent may be one or more. In view of sufficiently increasing the reliability of the liquid crystal element, the number is preferably 2 or more, and more preferably 2 to 6.
  • crosslinking agent examples include allyl group-containing compounds such as diallyl phthalate; Ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, pentaerythritol tri (meth) acrylate, ditrimethylolpropane tetra (meth) Acrylate, pentaerythritol tetra (meth) acrylate, trimethylolpropane (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ethylene glycol tri (meth) acrylate, polyether (meta ) Acrylate, ethoxylated bisphenol A di (meth) acrylate, tricyclodecane dimethanol di
  • the blending ratio of the cross-linking agent is preferably 0.5 with respect to 100 parts by mass of the polymer component used for the preparation of the liquid crystal aligning agent in that the effect of improving the liquid crystal aligning property and the finger pressing resistance can be sufficiently obtained. It is at least part by mass, more preferably 1 to 40 parts by mass, still more preferably 5 to 30 parts by mass.
  • a crosslinking agent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the components contained in the liquid crystal aligning agent include, for example, antioxidants, metal chelate compounds, curing accelerators, surfactants, fillers, dispersants, photosensitizers, and the like.
  • the blending ratio of these components can be appropriately selected according to each compound as long as the effects of the present disclosure are not impaired.
  • the liquid crystal aligning agent is prepared as a liquid composition in which a polymer component and other components used as necessary are preferably dissolved in an appropriate organic solvent.
  • organic solvent include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 1,2-dimethyl-2-imidazolidinone, ⁇ -butyrolactone, ⁇ -butyrolactam, and N, N-dimethylformamide.
  • the organic solvent used has a content ratio of at least one solvent selected from the group consisting of N-methyl-2-pyrrolidone, ⁇ -butyrolactone and N-ethyl-2-pyrrolidone in the liquid crystal aligning agent. It is preferable that it is 40 mass% or less with respect to the whole quantity of the solvent contained in. By setting it as the said range, when forming a liquid crystal aligning film in the base material which consists of resin, it is preferable at the point which can lower
  • the content is more preferably 35% by mass or less, still more preferably 30% by mass or less, and particularly preferably 1 to 30% by mass.
  • the solvent component is at least one selected from the group consisting of compounds represented by the following formulas (E-1) to (E-5), and has a boiling point of 180 ° C. or less at 1 atm. It is preferable to use a solvent (hereinafter also referred to as “specific solvent”). By using these specific solvents, it is possible to obtain a liquid crystal element having good coating properties and excellent liquid crystal alignment and finger-pushing resistance even when heating during film formation is performed at a low temperature (for example, 180 ° C. or lower). It is preferable at the point which can do.
  • R 41 is an alkyl group having 1 to 4 carbon atoms or CH 3 CO—
  • R 42 is an alkanediyl group having 1 to 4 carbon atoms or — (R 47 —O).
  • r—R 48 — (wherein R 47 and R 48 are each independently an alkanediyl group having 2 or 3 carbon atoms, and r is an integer of 1 to 4), and R 43 is a hydrogen atom Or an alkyl group having 1 to 4 carbon atoms.)
  • R 44 is an alkanediyl group having 1 to 4 carbon atoms.
  • R 45 and R 46 are each independently an alkyl group having 1 to 8 carbon atoms.
  • R 49 is a hydrogen atom or a hydroxyl group
  • R 50 is a hydrocarbon group having 1 to 9 carbon atoms when R 49 is a hydrogen atom
  • R 49 is a hydroxyl group.
  • R 51 and R 52 are each independently a monovalent hydrocarbon group having 1 to 6 carbon atoms or a monovalent group having an oxygen atom between the carbon-carbon bonds.
  • Specific examples of the specific solvent include, for example, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diethylene glycol methyl ethyl ether, 3-methoxy-1-butanol, ethylene glycol monomethyl as the compound represented by the above formula (E-1).
  • Ether ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol-n-butyl ether (butyl cellosolve), ethylene glycol dimethyl ether, ethylene glycol ethyl ether acetate, diethylene glycol dimethyl ether, etc .
  • Examples of the compound represented by the formula (E-2) include cyclobutanone, cyclopentanone, and cyclohexanone
  • Examples of the compound represented by the above formula (E-3) include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-i-butyl ketone, methyl-n-pentyl ketone, ethyl- n-butylketone, methyl-n-hexylketone, di-i-butylketone, trimethylnonanone, cyclopen
  • the use ratio of the specific solvent is preferably 30% by mass or more, more preferably 50% by mass or more, and more preferably 70% by mass or more with respect to the total amount of the solvents used for preparing the liquid crystal aligning agent. More preferably, it is particularly preferably 80% by mass or more.
  • the organic solvent used for the preparation of the liquid crystal aligning agent preferably includes a compound having a boiling point of 150 ° C. or less at 1 atm, preferably 40% by mass or more, and more than 50% by mass with respect to the total amount of the solvent. More preferably, it is more preferably 70% by mass or more.
  • the solid content concentration in the liquid crystal aligning agent (the ratio of the total mass of components other than the solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc. It is in the range of 1 to 10% by mass.
  • the solid content concentration is less than 1% by mass, the film thickness of the coating film becomes too small, and it becomes difficult to obtain a good liquid crystal alignment film.
  • the solid content concentration exceeds 10% by mass, it is difficult to obtain a good liquid crystal alignment film because the film thickness is excessive, and the viscosity of the liquid crystal aligning agent increases and the applicability decreases. There is a tendency.
  • the liquid crystal element (liquid crystal display element 10) includes a liquid crystal alignment film 21, a process A for forming liquid crystal alignment films 21 and 22 by applying a liquid crystal alignment agent to the surfaces of the first base material 11 and the second base material 12. , 22 are arranged so that the liquid crystal alignment films 21 and 22 face each other through the liquid crystal layer 13 to construct a liquid crystal cell. Manufactured by the method.
  • the liquid crystal aligning agent is applied to each surface of the first base material 11 and the second base material 12, for example, an offset printing method, a flexographic printing method, a spin coating method, a roll coater method, an ink jet method, a bar coater method, or the like. This is performed by a known coating method.
  • preheating is preferably performed for the purpose of preventing dripping of the applied liquid crystal aligning agent.
  • the pre-baking temperature is set according to the type of substrate, but is preferably 140 ° C. or lower, more preferably 120 ° C. or lower, and further preferably 100 ° C. or lower.
  • the lower limit of the pre-bake temperature is preferably 30 ° C or higher, and more preferably 40 ° C or higher.
  • the prebake time is preferably 0.25 to 10 minutes.
  • the firing temperature (post-bake temperature) at this time is preferably 150 ° C. or lower, more preferably 140 ° C. or lower, and more preferably 110 ° C. or lower, for thermal protection of the substrate made of resin. Particularly preferred.
  • the post-bake temperature is set to a low temperature of 150 ° C. or less.
  • the post-bake time is preferably 5 to 200 minutes, more preferably 10 to 120 minutes.
  • film formation may be performed by a high temperature process.
  • the post-bake temperature is preferably 150 to 300 ° C., more preferably 170 to 250 ° C.
  • the post-bake time is preferably 5 to 200 minutes, more preferably 10 to 100 minutes.
  • the liquid crystal element is a color liquid crystal display element
  • a known pigment or dye can be used as the colorant for the color filter.
  • the dye is relatively weak to heat, and the use of the dye may be restricted when the post-baking temperature needs to be increased.
  • the solubility in a low boiling point solvent can be improved, thereby reducing the post-baking temperature. be able to.
  • lowering the post-baking temperature it is possible to apply a dye as a colorant for a color filter, which is preferable in terms of widening the range of selection of materials.
  • a resin film having a small retardation is preferably used from the viewpoint of suppressing the contrast and viewing angle change of the liquid crystal element.
  • the value of retardation ( ⁇ n ⁇ d (where ⁇ n is the difference in bending rate and d is the film thickness) is preferably 20 nm or less, more preferably 10 nm or less.
  • An in-cell polarizing plate may be used on the film substrate side.
  • the liquid crystal aligning ability is imparted to the coating film formed using the liquid crystal aligning agent by the alignment treatment.
  • the photo-alignment process which irradiates a polarized or non-polarized radiation with respect to a coating film is performed.
  • the coating film can be irradiated with light such as ultraviolet rays and visible rays including light having a wavelength of 150 to 800 nm.
  • the radiation may be polarized or non-polarized, or may be irradiated in combination.
  • the exposure method is not particularly limited, and examples thereof include a method of irradiating linearly polarized light from a direction perpendicular to the substrate surface or an oblique direction, and a method of irradiating non-polarized light from an oblique direction.
  • a light source to be used for example, a low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used.
  • Ultraviolet rays in a preferable wavelength region can be obtained by means of using a light source in combination with, for example, a filter or a diffraction grating.
  • the dose of radiation is preferably 10 ⁇ 50,000J / m 2, more preferably 20 ⁇ 10,000J / m 2.
  • Light irradiation for photo-alignment treatment is a method of irradiating the coating film after the post-baking process, a method of irradiating the coating film after the pre-baking process and before the post-baking process, a pre-baking process and a post-baking process. In at least one of the methods, it can be carried out by a method of irradiating the coating film during heating.
  • the substrate surface is washed with, for example, water, an organic solvent (for example, methanol, isopropyl alcohol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, or the like) or a mixture thereof. You may perform the process to heat and the process to heat a board
  • an organic solvent for example, methanol, isopropyl alcohol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, or the like
  • Step B a first base material 11 and a second base material 12 each having a liquid crystal alignment film formed thereon are prepared, and the two liquid crystal alignment films 21 and 22 face each other so as to face each other.
  • a liquid crystal cell is manufactured by disposing the liquid crystal layer 13. Specifically, the peripheral portions of the first base material 11 and the second base material 12 are bonded together with a sealing agent, and the liquid crystal composition is injected and filled into the cell gap defined by the base material surface and the sealing agent.
  • a method of sealing the injection hole a sealant is applied to the peripheral portion of one substrate on the liquid crystal alignment film side, and a liquid crystal composition is dropped at predetermined positions on the liquid crystal alignment film surface, and then the liquid crystal
  • the sealing agent is cured (ODF method).
  • the sealing agent for example, an epoxy resin containing a curing agent and aluminum oxide spheres as a spacer can be used.
  • the liquid crystal include nematic liquid crystals and smectic liquid crystals. Among them, nematic liquid crystals are preferable.
  • a polarizing plate is bonded to the outer surface of the liquid crystal cell as necessary to obtain the liquid crystal display element 10.
  • the polarizing plate include a polarizing plate comprising a polarizing film called an “H film” in which iodine is absorbed while stretching and orientation of polyvinyl alcohol is sandwiched between cellulose acetate protective films, or a polarizing plate made of the H film itself.
  • the liquid crystal display element 10 can be effectively applied to various applications, such as watches, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, digital cameras, mobile phones, smartphones, various monitors, It can be used for various display devices such as liquid crystal televisions and information displays. Further, the liquid crystal element can be used not only as the liquid crystal display element 10 but also as, for example, a light control film or a retardation film.
  • the liquid crystal display element 10 of this embodiment is shown in FIG.
  • the first base material 11 on which the common electrode 14 and the pixel electrode 16 are disposed is a base material made of resin
  • the second base material 12 on which the color filter 17 is disposed is a glass base material. Also in the liquid crystal display element 10 having this configuration, it is possible to reduce the weight of the liquid crystal display element 10 while ensuring the resistance to finger pressing.
  • the third embodiment will be described focusing on differences from the first embodiment.
  • the liquid crystal alignment film 21 on the first base material 11 side and the liquid crystal alignment film 22 on the second base material 12 side are formed using liquid crystal aligning agents having different compositions. ing.
  • Examples of the first alignment agent used for forming the liquid crystal alignment film 21 on the first base material 11 side and the second alignment agent used for forming the liquid crystal alignment film 22 on the second base material 12 side include the following (1) to The aspect of (3) is mentioned.
  • (2) The 1st aligning agent and the 2nd aligning agent contain the polymer A and the polymer B as a polymer component, and the compounding ratio of these polymers A and the polymer B is the 1st aligning agent and the 1st.
  • a different aspect between the two alignment agents are mentioned.
  • (3) A mode in which the main skeleton of the polymer contained as the polymer component is different between the first alignment agent and the second alignment agent.
  • a high temperature process is applied during film formation, while for film substrates, sufficient coating properties and finger pressing resistance are ensured, and low temperature processes are performed during film formation.
  • (3) is preferable.
  • at least one selected from the group consisting of a polyamic acid, a polyamic acid ester and a polyimide is used as the liquid crystal aligning agent (in this embodiment, the first aligning agent) formed on the surface of the glass substrate.
  • a polymer composition containing the polymer component is used, and a liquid crystal aligning agent (second aligning agent in the present embodiment) formed on the surface of the film substrate is a polymer composition containing the polymer PAc as the polymer component.
  • a liquid crystal aligning agent second aligning agent in the present embodiment
  • the post-bake temperature is preferably 80 to 300 ° C., more preferably 120 to 250 ° C.
  • the post-bake time is preferably 5 to 200 minutes, more preferably 10 to 100 minutes. In this case, in the liquid crystal display element 10 of FIG.
  • the liquid crystal alignment film 21 formed on the 1st base material 11 which is a glass base material is chosen from the group which consists of a polyamic acid, a polyamic acid ester, and a polyimide as a polymer component.
  • the liquid crystal alignment film 22 formed on the second substrate 12 that is a resin film substrate contains at least one polymer PAc as a polymer component.
  • the liquid crystal alignment films 21 and 22 are photo-alignment films, but the liquid crystal alignment ability is rubbed by a rubbing process in which the coating film is rubbed in a certain direction with a roll wound with a cloth made of nylon, rayon, cotton or the like. May be given.
  • one of the first base material 11 and the second base material 12 is a base material made of resin, but both the first base material 11 and the second base material 12 are base materials made of resin. Good.
  • the liquid crystal alignment film is formed on both the first base material 11 and the second base material 12, but the liquid crystal alignment film is formed only on one of the first base material 11 and the second base material 12. It is good also as composition to do.
  • the weight average molecular weight Mw, number average molecular weight Mn and epoxy equivalent of the polymer, and the solution viscosity of the polymer solution were measured by the following methods.
  • the required amounts of raw material compounds and polymers used in the following examples were ensured by repeating the synthesis on the synthesis scale shown in the following synthesis examples as necessary.
  • Mw and Mn are polystyrene equivalent values measured by GPC under the following conditions.
  • Epoxy equivalent The epoxy equivalent was measured by the hydrochloric acid-methyl ethyl ketone method described in JIS C 2105.
  • Solution viscosity of polymer solution The solution viscosity (mPa ⁇ s) of the polymer solution was measured at 25 ° C. using an E-type rotational viscometer.
  • polymer (PAA-1) polyamic acid
  • PAA-1 polyamic acid
  • the obtained polymer (PAA-1) was prepared to be 10% by mass with NMP, and the viscosity of this solution was measured to be 80 mPa ⁇ s. Further, when this polymer solution was allowed to stand at 20 ° C. for 3 days, it did not gel and the storage stability was good.
  • PAA-2 a polyamic acid (hereinafter referred to as polymer (PAA-2)) solution was obtained.
  • the viscosity of the obtained polymer (PAA-2) solution was measured and found to be 370 mPa ⁇ s. Further, when this polymer solution was allowed to stand at 20 ° C. for 3 days, it did not gel and the storage stability was good.
  • the precipitated solid was collected, stirred and washed twice in isopropanol, and vacuum dried at 60 ° C. to obtain a white powder polyamic acid ester (PAE-1).
  • the number average molecular weight Mn of this polymer was 19,000, and the molecular weight distribution Mw / Mn was 1.5.
  • the operation of concentrating the reaction solution and diluting with butyl acetate was repeated twice to distill off triethylamine and water to obtain a polymer solution containing an epoxy group-containing polyorganosiloxane (SEp-1).
  • SEp-1 an epoxy group-containing polyorganosiloxane
  • the polyorganosiloxane (SEp-1) had an Mw of 11,000 and an epoxy equivalent of 200 g / mol.
  • Preparation Example 1 As a polymer component, a solution containing the polymer (S-1) obtained in Synthesis Example 5 was obtained in an amount corresponding to 20 parts by mass in terms of the polymer (S-1), and obtained in Synthesis Example 8. The solution containing the polymer (Pac-1) was mixed with an amount corresponding to 80 parts by mass in terms of the polymer (Pac-1), and 5 parts by mass of the compound (add-1), and a solvent was added thereto.
  • the numerical value of the compounding quantity of the polymer and additive of Table 1 shows the compounding ratio (mass part) of each compound with respect to a total of 100 mass parts of the polymer component used for preparation of a liquid crystal aligning agent.
  • the numerical value of the amount of the solvent indicates the compounding ratio (mass ratio) of each compound with respect to the total amount of the solvent used for the preparation of the liquid crystal aligning agent.
  • abbreviations are as follows.
  • Add-1 Trimellitic anhydride (compound represented by the above formula (Add-1))
  • Add-2 Compound represented by the above formula (Add-2)
  • Add-3 3-glycidoxypropyltrimethoxysilane (compound represented by the above formula (Add-3))
  • Add-4 N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ -t-butoxycarbonyl-L-histidine (solvent)
  • PGME Propylene glycol monomethyl ether
  • PGMEA Propylene glycol monomethyl ether acetate
  • NMP N-methyl-2-pyrrolidone BC
  • Butyl cellosolve BA N-butyl acetate MEK
  • Methyl ethyl ketone GBL Methyl ethyl ketone GBL; ⁇ -butyrolactone
  • Example 1 FFS type liquid crystal display element by photo-alignment
  • the liquid crystal aligning agent (A-1) prepared above was applied onto a COP film base material using a slit coater and heated at 120 ° C. for 2 minutes to obtain an average film A coating film having a thickness of 0.1 ⁇ m was formed. By observing this coating film visually or with a microscope having a magnification of 10 times, the presence or absence of coating unevenness and defects (pinholes) on the coating film surface was examined. The evaluation is “excellent” when no coating unevenness on the coating surface is visually observed and no defect per 1 cm 2 is observed even with a microscope, and the coating unevenness on the coating surface is observed by visual inspection.
  • FFS type liquid crystal display element 10 shown in FIG. 1 was produced. First, a glass substrate (first surface) having an electrode pair on one side of which a common electrode 14 having no pattern, a silicon nitride film as an insulating layer 15, and a pixel electrode 16 patterned in a comb shape are formed in this order. A pair of a base material 11) and a COP film base material (second base material 12) which is a counter substrate on which no electrode is provided, the surface of the first base material 11 having a transparent electrode, and the second substrate 12 The liquid crystal aligning agent (A-1) prepared above was applied to one surface using a spinner.
  • each surface of these coatings was irradiated with polarized ultraviolet rays of 300 mJ / cm 2 containing a 254 nm emission line from the normal direction of the substrate using a Hg—Xe lamp and a Grand Taylor prism. Thereafter, the glass substrate is heated (post-baked) at 230 ° C. for 15 minutes in an oven with nitrogen inside, and the COP film substrate is 15 minutes at 120 ° C. in an oven with nitrogen inside. Heated (post-baked). Thereby, a liquid crystal alignment film having an average film thickness of 0.1 ⁇ m was formed on each substrate.
  • 3 and 4 are schematic plan views of the pixel electrode 16 used here. 4 is an enlarged view of a portion C1 surrounded by a dotted line in FIG.
  • a substrate having a pixel electrode 16 having an electrode line width d1 of 4 ⁇ m and a distance d2 between the electrodes of 6 ⁇ m was used.
  • the pixel electrode 16 as shown in FIG. 3, four systems of drive electrodes of electrode A, electrode B, electrode C, and electrode D were used.
  • the common electrode 14 functions as an electrode that acts on all of the four drive electrodes, and each of the four drive electrode regions serves as a pixel region.
  • the light irradiation treatment on the coating film is performed by setting the direction of the polarization plane so that the direction of the line segment projected onto the substrate with the polarization plane of polarized ultraviolet light becomes the direction of the double-headed arrow in FIG. Was performed by irradiating polarized ultraviolet rays.
  • a photocurable epoxy acrylic resin adhesive containing an aluminum oxide spacer having a diameter of 3.5 ⁇ m was applied to the outer edge of the coating film forming substrate having an electrode structure, and then liquid crystal “MLC-6221” (manufactured by Merck) was applied. The required amount was dropped. At this time, the liquid crystal was dropped at a plurality of locations on the coating film forming substrate. The total amount of liquid crystal dropped is 0.98 to 1.0 times the volume obtained by multiplying the area where the adhesive is applied and the spacer diameter, and the amount dropped at one point is 0.2 to 1.0 g. Adjusted between.
  • the substrate on which the liquid crystal was dropped was placed in a vacuum laminating apparatus, and a film substrate on which a coating film was formed was placed on the opposite side of the substrate, and then laminating was performed under vacuum.
  • the adhesive portion was cured using 365 nm UV light, and then annealed in an oven at 120 ° C. for 2 minutes to produce a liquid crystal cell.
  • the FFS type liquid crystal display element 10 was manufactured by sticking a polarizing plate on both outer surfaces of the substrate.
  • one of the polarizing plates is stuck so that the polarization direction thereof is parallel to the direction of projection of the polarization plane of the polarized ultraviolet light of the liquid crystal alignment film onto the substrate surface, and the other one has the polarization direction first.
  • the polarizing plate was stuck so as to be orthogonal to the polarization direction of the polarizing plate.
  • Example 3 Using the liquid crystal aligning agents (A-2) to (A-5) shown in Table 2 below, liquid crystal display elements were produced and evaluated in the same manner as in Example 1. In Example 5, a liquid crystal alignment film was formed only on the first substrate 11. The evaluation results of each example are shown in Table 2.
  • Example 2 FFS type liquid crystal display element by rubbing alignment
  • the liquid crystal aligning agent (A-1) obtained in Preparation Example 1 was applied onto a substrate made of an ARTON film (ARTON manufactured by JSR) using a spinner, and 80 ° C. After performing pre-baking for 1 minute on the hot plate, the coating film having an average film thickness of 0.1 ⁇ m was formed by heating (post-baking) for 1 hour in an oven at 120 ° C. in which the inside of the chamber was purged with nitrogen.
  • the obtained coating film was rubbed twice with a rubbing machine having a roll wrapped with a cotton cloth at a roll rotation speed of 1,000 rpm, a stage moving speed of 20 cm / sec, and a hair foot indentation length of 0.4 mm. Carried out. Foreign matter (a piece of coating film) due to rubbing scraping on the obtained substrate was observed with an optical microscope, and the number of foreign matters in a 500 ⁇ m ⁇ 500 ⁇ m region was measured. In the evaluation, the rubbing resistance was “good” when the number of foreign matters was 19 or less, and the rubbing resistance “bad” when the number was 20 or more. As a result, no foreign matter was observed, and the rubbing resistance of this coating film was judged to be “good”.
  • the ARTON film used for the substrate had the performance of a biaxial retardation film.
  • a liquid crystal aligning agent (A-1) was applied to each surface of the same pair of base materials used in the above with a spinner to form a coating film.
  • this coating film was pre-baked for 1 minute on a hot plate at 80 ° C., and then heated (post-baked) at 120 ° C. for 2 hours in an oven in which the inside of the chamber was replaced with nitrogen, and the average film thickness was 0.1 ⁇ m.
  • a coating film was formed.
  • a rubbing process was performed with cotton under the same conditions as in the above to obtain a liquid crystal alignment film.
  • a photocurable epoxy acrylic resin adhesive containing an aluminum oxide spacer having a diameter of 3.5 ⁇ m was applied to the outer edge of the coating film forming substrate having an electrode structure, and then liquid crystal “MLC-6221” (manufactured by Merck) was applied. The required amount was dropped. At this time, the liquid crystal was dropped at a plurality of locations on the coating film forming substrate. The total amount of liquid crystal dropped is 0.98 to 1.0 times the volume obtained by multiplying the area where the adhesive is applied and the spacer diameter, and the amount dropped at one point is 0.2 to 1.0 g. Adjusted between.
  • the substrate on which the liquid crystal was dropped was placed in a vacuum laminating apparatus, and a film substrate on which a coating film was formed was placed on the opposite side of the substrate, and then laminating was performed under vacuum.
  • the adhesive portion was cured using 365 nm UV light, and then annealed in an oven at 120 ° C. for 2 minutes to produce a liquid crystal cell.
  • a polarizing plate (not shown) was bonded to both outer surfaces of the substrate so that the polarization directions of the two polarizing plates were orthogonal to each other, thereby producing a liquid crystal display element 10.
  • Example 8 FFS type liquid crystal display element by rubbing alignment
  • the obtained coating film was rubbed twice with a rubbing machine having a roll wrapped with a cotton cloth at a roll rotation speed of 1,000 rpm, a stage moving speed of 20 cm / sec, and a hair foot indentation length of 0.4 mm.
  • the foreign matter (a piece of the coating film) due to rubbing scraping on the obtained substrate was observed with an optical microscope, and the rubbing resistance was evaluated in the same manner as in Example 2. As a result, 15 foreign particles / 0.25 mm 2 were confirmed, and the rubbing resistance of this coating film was judged to be “good”.
  • Example 3 Manufacture of FFS type liquid crystal display element by rubbing process 2. of Example 2 except that liquid crystal aligning agent (A-6) prepared above was used. The FFS type liquid crystal display element 10 was produced in the same manner as described above. 4). Evaluation of liquid crystal orientation 3. For the FFS type liquid crystal display device manufactured in the above step 3, the above-mentioned Example 1-3. The liquid crystal orientation was evaluated in the same manner as described above. As a result, this liquid crystal display element had “good” liquid crystal alignment. 5). Evaluation of finger push resistance 3. For the FFS type liquid crystal display device manufactured in 1 above, 4. The finger press resistance was evaluated in the same manner. As a result, in this liquid crystal display element, abnormal domains and light leakage were observed, and it was determined that the finger pressing resistance was “bad”. [Example 9] Using the liquid crystal aligning agent (A-7), the liquid crystal display element was manufactured and evaluated (coating property, liquid crystal aligning property and finger pressing resistance) in the same manner as in Example 2. The evaluation results are shown in Table 2.
  • Example 1 which a liquid crystal alignment film was formed by photo-alignment treatment using a liquid crystal aligning agent containing poly (meth) acrylate on the film substrate, the post-baking temperature was set to a low temperature of 120 ° C. In some cases, there was almost no coating unevenness, and the coating property was “excellent” or “good”.
  • the liquid crystal display elements of Examples 1, 3, and 4 were also excellent in liquid crystal alignment and finger push resistance, and in Examples 1 and 3, both were evaluated as “good”.
  • Example 2 which formed the liquid crystal aligning film by the rubbing process using the liquid crystal aligning agent containing poly (meth) acrylate has favorable rubbing resistance, and the liquid crystal aligning property of the obtained liquid crystal display element and finger pushing Resistance was also good.
  • Example 5 in which the liquid crystal alignment film was not formed on the film substrate side and Example 6 using the liquid crystal aligning agent containing the polyamic acid ester, the finger pressing resistance was evaluated as “good”. Property and liquid crystal alignment were evaluated as “good”. About Example 7 and 8 using the liquid crystal aligning agent containing a polyamic acid, finger-push tolerance was "poor” and coating property was not so favorable, but liquid crystal orientation was evaluated by "good”. there were.
  • Example 9 in which the liquid crystal alignment film was formed with the liquid crystal aligning agent (A-7) containing a large amount of the specific solvent as the solvent component, the coating property was “good” even when the post-baking temperature was lowered to 120 ° C. It was. In addition, the liquid crystal orientation and finger pressing resistance were also evaluated as “good”.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)

Abstract

液晶表示素子10は、第1基材11と、第1基材11に対向配置された第2基材12と、第1基材11と第2基材12との間に配置された液晶層13と、を備える。第1基材11及び第2基材12のうち少なくとも一方は、樹脂からなる基材である。液晶表示素子10は、第1基材11上に設けられた共通電極14と、第1基材11において共通電極14上に絶縁膜15を介して配置された画素電極16と、第1基材11及び第2基材12の少なくとも一方の表面上に形成され、液晶層13に隣接する液晶配向膜と、を備える。

Description

液晶素子及びその製造方法 関連出願の相互参照
 本出願は、2017年3月17日に出願された日本出願番号2017-52456号に基づくもので、ここにその記載内容を援用する。
 本開示は、液晶素子及びその製造方法に関する。
 近年、液晶素子は、携帯電話やスマートフォン、タブレットPC等の小型デバイスから液晶テレビ等の大画面の液晶表示素子まで幅広い用途で使用されている。液晶素子としては、TN型、STN型、VA型などの縦電界方式の液晶セルを有する液晶表示素子のほか、IPS(In-Plane Switching)型やFFS(Fringe Field Switching)型などの横電界方式の液晶表示素子が知られている(例えば、特許文献1参照)。
 横電界方式の液晶素子には、一対の基板における一方の基板に電極対(共通電極及び画素電極)が設けられている。横電界方式の液晶素子では、共通電極と画素電極との間に電界を形成することにより、水平方向に配向していた液晶分子が水平方向に旋回する。これにより、入射光の透過が制御される。このため、横電界方式の液晶素子は、縦電界方式の液晶素子に比べて、より広い視野角特性を有し、また高品位な表示が可能である。
 横電界方式の液晶素子の一つであるFFS型液晶素子は、ホモジニアス配向させた液晶分子にフリンジ電界を印加することによって光の透過を制御する方式の液晶素子である。FFS型液晶素子には、一方の基板表面に共通電極が設けられており、この共通電極の表面に絶縁膜を介して画素電極が設けられている。共通電極と画素電極との間に電界(フリンジ電界)が形成されると、画素電極の両側において電界が共通電極に向かい、画素電極間に存在する液晶分子だけでなく画素電極上の液晶分子が旋回する。このため、FFS型液晶素子によれば、より広い視野角及び高コントラストを実現できるというメリットがある。
特開2016-142945号公報
 液晶素子としては、その多用途化に伴い、フレキシブル性や耐衝撃性を改善でき、かつ軽量化及び薄型化を図ることが望まれている。特に、広視野角及び高コントラストを実現可能なFFS型液晶素子においてフレキシブル性等の特性を改善できれば、液晶素子の更なる用途拡大や品質向上にも繋がるといえる。
 本開示は上記課題に鑑みなされたものであり、フレキシブル性及び耐衝撃性が良好であるとともに、軽量かつ薄型であり、液晶配向性が良好なFFS型液晶素子を提供することを主たる目的とする。
 本開示は、上記課題を解決するために、以下の手段を採用した。
[1] 第1基材と、前記第1基材に対向配置された第2基材と、前記第1基材と前記第2基材との間に配置された液晶層と、を備える液晶素子であって、前記第1基材及び前記第2基材のうち少なくとも一方は、樹脂からなる基材であり、前記第1基材上に設けられた共通電極と、前記第1基材において前記共通電極上に絶縁膜を介して配置された画素電極と、前記第1基材及び前記第2基材の少なくとも一方に形成され、前記液晶層に隣接する液晶配向膜と、を備える、液晶素子。
[2] 第1基材と、前記第1基材に対向配置された第2基材と、前記一対の基材間に配置された液晶層と、を備える液晶素子の製造方法であって、前記第1基材及び前記第2基材のうち少なくとも一方は、樹脂からなる基材であり、前記第1基材上に、共通電極と、前記共通電極上に絶縁膜を介して配置された画素電極とが設けられており、前記第1基材及び前記第2基材の少なくとも一方に液晶配向剤を塗布して液晶配向膜を形成する工程と、前記液晶配向膜の形成後、前記第1基材及び前記第2基材を、前記液晶層を介して対向配置して液晶セルを構築する工程と、を含む、液晶素子の製造方法。
 上記構成によれば、第1基材及び第2基材のうち少なくとも一方を樹脂からなる基材としたため、フレキシブル性及び耐衝撃性が良好であり、軽量かつ薄型であり、しかも液晶配向性が良好なFFS型液晶素子を得ることができる。
図1は、FFS型液晶表示素子の概略構成を示す断面図である。 図2は、第2実施形態のFFS型液晶表示素子の概略構成を示す断面図である。 図3は、画素電極の平面模式図である。 図4は、画素電極の平面模式図である。
(第1実施形態)
<液晶素子>
 以下、第1実施形態について図面を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。
 本実施形態では、液晶素子をFFS型の液晶表示素子10に具体化している。液晶表示素子10は、図1に示すように、第1基材11及び第2基材12からなる一対の基材と、第1基材11と第2基材12との間に配置された液晶層13と、を備えている。
 第1基材11及び第2基材12は透明基材であり、第1基材11及び第2基材12の少なくとも一方は、樹脂からなるフィルム基材である。本実施形態では、第1基材11はガラス基材であり、第2基材12は樹脂からなるフィルム基材である。この場合、軽量化及び薄型化の効果を得つつ、液晶の保護を図ることができる点で好適である。フィルム基材を構成する樹脂としては、例えば、シリコン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリカーボネート、ポリプロピレン、ポリ塩化ビニル、芳香族ポリアミド、ポリアミドイミド、ポリイミド、トリアセチルセルロース(TAC)、ポリメチルメタクリレート等の材料が挙げられる。
 第1基材11には、走査線、コモン配線及び信号線(図示略)が設けられており、走査線及びコモン配線によって区画された領域に、コモン配線に接続された面電極である共通電極14が設けられている。また、第1基材11において共通電極14の上には、絶縁膜15を介して、櫛歯状の画素電極16が配置されている。共通電極14及び画素電極16によって電極対が構築されている。共通電極14及び画素電極16は、例えば酸化スズ(SnO)からなるNESA膜(米国PPG社登録商標)、酸化インジウム-酸化スズ(In-SnO)からなるITO膜、又は炭素材料からなる透明導電膜である。走査線と信号線とが交差する位置の近傍には、スイッチング素子としてのTFT(図示略)が配置されており、TFTの駆動によって共通電極14及び画素電極16への電圧印加及び解除が制御される。
 第2基材12には、カラーフィルタ17及びオーバーコート膜18が設けられている。第1基材11における画素電極16と、画素電極16間のスリット19の表面上には液晶配向膜21が形成されており、第2基材12におけるオーバーコート膜18の表面上には液晶配向膜22が形成されている。液晶配向膜21,22は、液晶層13中の液晶分子の配向方位を規制する有機薄膜であり、本実施形態では、光配向性基を有する重合体を含む重合体組成物を用いて形成されてなる光配向膜である。
 第1基材11と第2基材12とは、図示しないスペーサーを介して所定の間隙(セルギャップ)をあけて配置されている。スペーサーとしては、柱状スペーサー、ビーズスペーサ等が挙げられる。また、スペーサーとしては、基材に対する密着性の観点から、特願2016-196723号に記載のスペーサー構造(図1や図2に記載のデュアルスペーサー)を適用することもできる。第1基材11と第2基材12とは、互いの周縁部がシール材を介して貼り合わされている。これら第1基材11、第2基材12及びシール材によって囲まれた空間に液晶組成物が充填されることにより液晶層13が形成されている。
 第1基板11及び第2基板12のそれぞれの外側には偏光板23,24が配置されている。第1基板11の外縁部には端子領域が設けられており、端子領域に、液晶を駆動するためのドライバIC等が接続されることによって液晶表示素子10が駆動される。
<液晶配向剤>
 次に、液晶配向膜21,22の形成に用いる液晶配向剤について説明する。液晶配向剤に含有される重合体成分は、特に限定されず、例えば、重合性不飽和結合を有する単量体の重合体(以下、「重合体PAc」ともいう。)、ポリシロキサン、ポリアミック酸、ポリイミド、ポリアミック酸エステル、ポリアミド、ポリエステル、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン-フェニルマレイミド)誘導体等が挙げられる。これらのうち、液晶配向性及びラビング耐性が良好である点で、重合体PAc、ポリアミック酸、ポリイミド及びポリアミック酸エステルよりなる群から選ばれる少なくとも一種を含んでいることが好ましい。
 液晶配向剤の重合体成分としては、これらの中でも、液晶表示素子10の画面を指やタッチペン等で押圧したときの耐性(以下、「指押し耐性」ともいう。)を十分に改善できる点、及びポストベーク温度を低温にした場合にも基材に対する塗工性に優れた液晶配向膜を得ることができる点で、重合体PAcを含むことが好ましい。液晶表示素子10の基材にフィルム基材を適用した場合、より薄く軽いデバイスを実現でき携帯性に優れる反面、表示領域の柔軟性が増し、指押し耐性が低下してしまう。この点、液晶配向膜21,22の重合体成分として重合体PAcを用いることにより、液晶配向性を担保しつつ、指押し耐性が良好な液晶表示素子10を得ることができる。
(重合体PAc)
 重合体PAcを構成する単量体が有する重合性不飽和結合としては、例えば(メタ)アクリロイル基、ビニル基、スチレン基(ビニルフェニル基)、マレイミド基などが挙げられる。これら重合性不飽和結合を有する単量体の具体例としては、例えば、不飽和カルボン酸、不飽和カルボン酸エステル、不飽和多価カルボン酸無水物等の(メタ)アクリル系化合物;スチレン、メチルスチレン、ジビニルベンゼン等の芳香族ビニル化合物;1,3-ブタジエン、2-メチル-1,3-ブタジエン等の共役ジエン化合物;N-メチルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド等のマレイミド化合物、等が挙げられる。なお、重合性基不飽和結合を有する単量体は、1種を単独で又は2種以上を組み合わせて使用することができる。
 重合体PAcとしては、フィルム基材に対する塗工性が良好である点、及び良好な液晶配向性を示す液晶素子が得られる点において、(メタ)アクリル系化合物を少なくとも含む単量体の重合体(以下、「ポリ(メタ)アクリレート」ともいう。)であることが好ましい。ポリ(メタ)アクリレートによれば、例えばポリイミド系樹脂に比べて低沸点溶媒に対する溶解性が高いことにより、得られる塗膜において膜厚ムラや塗工ムラ、ピンホールを少なくでき、均質な液晶配向膜を得ることができる点で好ましい。また、膜形成時において低温焼成が可能であり、カラーフィルタ用の着色剤として染料を用いた場合にも変色を抑制することができ、染料の適用が可能である点で好ましい。なお、本明細書において「ポリ(メタ)アクリレート」は、ポリアクリレート及びポリメタクリレートを含む意味である。
 ポリ(メタ)アクリレートは、(メタ)アクリル系化合物のみからなる重合体であってもよく、(メタ)アクリル系化合物と他の単量体とからなる重合体であってもよい。ポリ(メタ)アクリレートは、(メタ)アクリル系化合物に由来する構造単位を、20質量%以上有することが好ましく、30質量%以上有することがより好ましく、40質量%以上有することがさらに好ましく、50質量%以上有することが特に好ましい。
 ポリ(メタ)アクリレートの重合に際して使用する(メタ)アクリル系化合物は、特に限定されない。その具体例としては、不飽和カルボン酸として、例えば(メタ)アクリル酸、α-エチルアクリル酸、マレイン酸、フマル酸、イタコン酸、ビニル安息香酸等を;
不飽和カルボン酸エステルとして、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸アリル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸トリシクロ[5.2.1.02,6]デカ-8-イル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸トリメトキシシリルプロピル、(メタ)アクリル酸2,2,2-トリフルオロエチル、(メタ)アクリル酸2,2,3,3,3-ペンタフルオロプロピル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸-N,N-ジメチルアミノエチル、(メタ)アクリル酸メトキシポリエチレングリコール、(メタ)アクリル酸テトラヒドロフルフリル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸3,4-エポキシシクロヘキシルメチル、(メタ)アクリル酸3,4-エポキシブチル、アクリル酸4-ヒドロキシブチルグリシジルエーテル等を;
不飽和多価カルボン酸無水物として、例えば無水マレイン酸、無水イタコン酸、シス-1,2,3,4-テトラヒドロフタル酸無水物等を、それぞれ挙げることができる。なお、(メタ)アクリル系化合物は、これらの一種を単独で又は2種以上を組み合わせて使用することができる。
 重合に使用する(メタ)アクリル系化合物は、得られる液晶素子の液晶配向性及び電気特性、並びに基材に対する液晶配向膜の接着性を良好にする観点から、エポキシ基を有する(メタ)アクリル系化合物を含むことが好ましい。エポキシ基を有する(メタ)アクリル系化合物の比率は、重合に使用する単量体の全体量に対して、1質量%以上とすることが好ましく、5質量%以上とすることがより好ましく、10質量%以上とすることがさらに好ましい。
 ポリ(メタ)アクリレートの重合に際しては、(メタ)アクリル系化合物以外の単量体(以下、「他の単量体」ともいう。)を使用してもよい。他の単量体としては、共役ジエン化合物、芳香族ビニル化合物、マレイミド化合物等が挙げられる。これらのうち、得られる液晶素子の指押し耐性を十分に確保する上で、他の単量体として芳香族ビニル化合物を用いることが好ましい。重合体PAcを(メタ)アクリル系化合物と芳香族ビニル化合物との共重合体とする場合、芳香族ビニル化合物の使用割合は、ポリ(メタ)アクリレートの合成に使用する単量体の全体量に対して、1~80質量%とすることが好ましく、2~70質量%とすることがより好ましく、5~60質量%とすることがさらに好ましい。
 (メタ)アクリル系化合物を用いた重合反応は、ラジカル重合により行うことが好ましい。当該重合反応に際して使用する重合開始剤としては、例えば2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等のアゾ化合物;ベンゾイルペルオキシド、ラウロイルペルオキシド、t-ブチルペルオキシピバレート、1,1’-ビス(t-ブチルペルオキシ)シクロヘキサン等の有機過酸化物;過酸化水素;これらの過酸化物と還元剤とからなるレドックス型開始剤等が挙げられる。これらの中でもアゾ化合物が好ましい。重合開始剤は、これらを一種単独で又は2種以上を組み合わせて使用することができる。重合開始剤の使用割合は、反応に使用する単量体の合計100質量部に対して、好ましくは0.01~50質量部であり、より好ましくは0.1~40質量部である。
 (メタ)アクリル系化合物の重合反応は、好ましくは有機溶媒中において行われる。当該反応に使用する有機溶媒としては、例えばアルコール、エーテル、ケトン、アミド、エステル、炭化水素化合物などが挙げられる。これらの中でもアルコール及びエーテルよりなる群から選ばれる少なくとも一種を使用することが好ましく、多価アルコールの部分エーテルを使用することがより好ましい。その好ましい具体例としては、例えばジエチレングリコールメチルエチルエーテル、プロピレングリコールモノメチルエーテルアセテートなどを挙げることができる。なお、有機溶媒としては、これらを一種単独で又は2種以上組み合わせて使用することができる。
 (メタ)アクリル系化合物の重合反応に際し、反応温度は、30~120℃とすることが好ましく、60~110℃とすることがより好ましい。反応時間は、1~36時間とすることが好ましく、2~24時間とすることがより好ましい。また、有機溶媒の使用量(a)は、反応に使用する単量体の合計量(b)が、反応溶液の全体量(a+b)に対して、0.1~50質量%になるような量にすることが好ましい。ポリ(メタ)アクリレートを含有する反応溶液は、そのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリ(メタ)アクリレートを単離したうえで液晶配向剤の調製に供してもよい。
 ポリ(メタ)アクリレートにつき、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の数平均分子量(Mn)は、形成される液晶配向膜の液晶配向性を良好にするとともに、その液晶配向性の経時的安定性を確保する観点から、250~500,000であることが好ましく、500~100,000であることがより好ましく、1,000~50,000であることがさらに好ましい。
 液晶配向剤中のポリ(メタ)アクリレートの含有割合は、得られる液晶素子の指押し耐性の改善効果を十分に得る観点から、液晶配向剤の重合体成分の合計量に対して3質量%以上であることが好ましい。当該含有割合の下限について、より好ましくは5質量%以上であり、さらに好ましくは20質量%以上であり、特に好ましくは50質量%以上である。また、上限については、ポリ(メタ)アクリレートとは異なる重合体による各種特性の改善効果を得る場合、好ましくは99質量%以下であり、より好ましくは95質量%以下であり、さらに好ましくは90質量%以下である。なお、ポリ(メタ)アクリレートは、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
(ポリアミック酸、ポリアミック酸エステル及びポリイミド)
 ポリアミック酸、ポリアミック酸エステル及びポリイミドは、従来公知の方法に従って合成することができる。例えば、ポリアミック酸は、テトラカルボン酸二無水物とジアミンとを反応させることにより得ることができる。ポリアミック酸エステルは、例えばポリアミック酸とエステル化剤(例えばメタノールやエタノール、N,N-ジメチルホルムアミドジエチルアセタール等)とを反応させる方法等により得ることができる。ポリイミドは、例えばポリアミック酸を脱水閉環してイミド化することにより得ることができる。ポリイミドは、そのイミド化率が20~95%であることが好ましく、30~90%であることがより好ましい。このイミド化率は、ポリイミドのアミック酸構造の数とイミド環構造の数との合計に対するイミド環構造の数の占める割合を百分率で表したものである。
 重合に使用するテトラカルボン酸としては、例えば、ブタンテトラカルボン酸二無水物、エチレンジアミン四酢酸二無水物等の脂肪族テトラカルボン酸二無水物;1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-8-メチル-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物、シクロペンタンテトラカルボン酸二無水物、シクロヘキサンテトラカルボン酸二無水物等の脂環式テトラカルボン酸二無水物;ピロメリット酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、p-フェニレンビス(トリメリット酸モノエステル無水物)、エチレングリコールビス(アンヒドロトリメリテート)、1,3-プロピレングリコールビス(アンヒドロトリメリテート)等の芳香族テトラカルボン酸二無水物、等を挙げることができるほか、特開2010-97188号公報に記載のテトラカルボン酸二無水物を用いることができる。
 上記重合に使用するジアミンとしては、例えば、エチレンジアミン、テトラメチレンジアミン等の脂肪族ジアミン;p-シクロヘキサンジアミン、4,4’-メチレンビス(シクロヘキシルアミン)等の脂環式ジアミン;ヘキサデカノキシジアミノベンゼン、コレスタニルオキシジアミノベンゼン、ジアミノ安息香酸コレスタニル、ジアミノ安息香酸コレステリル、ジアミノ安息香酸ラノスタニル、3,6-ビス(4-アミノベンゾイルオキシ)コレスタン、3,6-ビス(4-アミノフェノキシ)コレスタン、1,1-ビス(4-((アミノフェニル)メチル)フェニル)-4-ブチルシクロヘキサン、2,5-ジアミノ-N,N-ジアリルアニリン等の側鎖型の芳香族ジアミン;p-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルアミン、4-アミノフェニル-4’-アミノベンゾエート、4,4’-ジアミノアゾベンゼン、3,5-ジアミノ安息香酸、1,5-ビス(4-アミノフェノキシ)ペンタン、ビス[2-(4-アミノフェニル)エチル]ヘキサン二酸、ビス(4-アミノフェニル)アミン、N,N-ビス(4-アミノフェニル)メチルアミン、N,N’-ビス(4-アミノフェニル)-ベンジジン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、4,4’-ジアミノジフェニルエーテル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4’-(フェニレンジイソプロピリデン)ビスアニリン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4-(4-アミノフェノキシカルボニル)-1-(4-アミノフェニル)ピペリジン、4,4’-[4,4’-プロパン-1,3-ジイルビス(ピペリジン-1,4-ジイル)]ジアニリン等の非側鎖型の芳香族ジアミン;1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサン等のジアミノオルガノシロキサン、等を挙げることができるほか、特開2010-97188号公報に記載のジアミンを用いることができる。
 液晶配向剤に含有させるポリアミック酸、ポリアミック酸エステル及びポリイミドにつき、GPCにより測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは1,000~500,000であり、より好ましくは2,000~300,000である。分子量分布(Mw/Mn)は、好ましくは7以下であり、より好ましくは5以下である。なお、液晶配向剤に含有させるポリアミック酸、ポリアミック酸エステル及びポリイミドは、1種のみでもよく、又は2種以上を組み合わせてもよい。
(ケイ素含有化合物)
 液晶配向膜21,22の形成に用いる液晶配向剤は、液晶配向性やフィルム基材に対する塗工性、指押し耐性を損なわないようにしつつ、耐候性の高い液晶表示素子10を得ることができる点で、シラン化合物及びポリシロキサンよりなる群から選ばれる少なくとも一種の化合物(以下、「ケイ素含有化合物」ともいう。)を含有することが好ましい。これらのうち、液晶表示素子10の耐候性の改善効果がより高く、かつポストベーク温度の更なる低温化を図った場合にも液晶配向性を良好にできる点でポリシロキサンを含むことが特に好ましく、基材に対する密着性をより高くできる点でシラン化合物を含有することが好ましい。
(ポリシロキサン)
 ポリシロキサンは、例えば加水分解性のシラン化合物を加水分解・縮合することにより得ることができる。加水分解性シラン化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン等のテトラアルコキシシラン化合物;メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメチルジエトキシシラン等のアルキル基又はアリール基含有アルコキシシラン化合物;
3-メルカプトプロピルトリエトキシシラン、メルカプトメチルトリエトキシシラン等の硫黄含有アルコキシシラン化合物;
グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、2-グリシドキシエチルトリメトキシシラン、2-グリシドキシエチルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ基含有アルコキシシラン化合物;
3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン、ビニルトリエトキシシラン等の不飽和結合含有アルコキシシラン化合物;
3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-メチルカルボニルオキシエチル-N’-トリメトキシシリルプロピルエチレンジアミン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン等の窒素含有アルコキシシラン化合物;
トリメトキシシリルプロピルコハク酸無水物等の酸無水物基含有アルコキシシラン化合物;などを挙げることができる。加水分解性シラン化合物は、これらの1種を単独で又は2種以上を組み合わせて使用することができる。なお、「(メタ)アクリロ」は、「アクリロ」及び「メタクリロ」を含む意味である。
 上記の加水分解・縮合反応は、上記の如き加水分解性シラン化合物の1種又は2種以上と水とを、好ましくは適当な触媒及び有機溶媒の存在下で反応させることにより行う。反応に際し、水の使用割合は、加水分解性シラン化合物(合計量)1モルに対して、好ましくは1~30モルである。使用する触媒としては、例えば酸、アルカリ金属化合物、有機塩基、チタン化合物、ジルコニウム化合物などを挙げることができる。触媒の使用量は、触媒の種類、温度などの反応条件などにより異なり、適宜に設定されるべきであるが、例えばシラン化合物の合計量に対して、好ましくは0.01~3倍モルである。使用する有機溶媒としては、例えば炭化水素、ケトン、エステル、エーテル、アルコールなどが挙げられ、これらのうち、非水溶性又は難水溶性の有機溶媒を用いることが好ましい。有機溶媒の使用割合は、反応に使用するシラン化合物の合計100質量部に対して、好ましくは10~10,000質量部である。
 上記の加水分解・縮合反応は、例えば油浴などにより加熱して実施することが好ましい。その際、加熱温度は130℃以下とすることが好ましく、加熱時間は0.5~12時間とすることが好ましい。反応終了後において、反応液から分取した有機溶媒層を、必要に応じて乾燥剤で乾燥した後、溶媒を除去することにより、目的とするポリシロキサンが得られる。なお、ポリシロキサンの合成方法は上記の加水分解・縮合反応に限らず、例えば加水分解性シラン化合物をシュウ酸及びアルコールの存在下で反応させる方法などにより行ってもよい。
 液晶配向剤に、光配向性基やプレチルト角付与基等の機能性基を側鎖に有するポリシロキサンを含有させてもよい。機能性基を有するポリシロキサンは、例えば、原料の少なくとも一部に、エポキシ基含有の加水分解性シラン化合物を用いた重合により、エポキシ基を側鎖に有するポリシロキサンを合成し、次いでエポキシ基を有するポリシロキサンと、機能性基を有するカルボン酸とを反応させることにより得ることができる。あるいは、機能性基を有する加水分解性のシラン化合物をモノマーに用いた重合による方法を採用してもよい。
 エポキシ基含有ポリシロキサンとカルボン酸との反応は、好ましくは触媒及び有機溶媒の存在下で行われる。カルボン酸の使用割合は、エポキシ基含有ポリシロキサンが有するエポキシ基に対して、好ましくは5モル%以上、より好ましくは10~80モル%である。上記触媒としては、例えば有機塩基、エポキシ化合物の反応を促進するいわゆる硬化促進剤として公知の化合物などを用いることができる。触媒の使用割合は、エポキシ基含有ポリシロキサン100質量部に対して、好ましくは100質量部以下である。
 使用する有機溶媒の好ましい具体例としては、2-ブタノン、2-ヘキサノン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン及び酢酸ブチル等が挙げられる。有機溶媒は、固形分濃度が5~50質量%となる割合で使用することが好ましい。上記反応における反応温度は、好ましくは0~200℃であり、反応時間は、好ましくは0.1~50時間である。反応終了後においては、反応液から分取した有機溶媒層を、必要に応じて乾燥剤で乾燥した後、溶媒を除去することにより、機能性基を有するポリシロキサンを得ることができる。
 ポリシロキサンにつき、ゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量は、500~1,000,000であることが好ましく、1,000~100,000であることがより好ましく、1,000~50,000であることがさらに好ましい。なお、ポリシロキサンは1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
(シラン化合物)
 液晶配向剤中に含有させるシラン化合物は、炭素-ケイ素結合を有する有機ケイ素化合物であり、ポリシロキサンの合成に使用するシラン化合物として例示した加水分解性シラン化合物などが挙げられる。当該シラン化合物は、アルコキシシリル基を有することが好ましく、エポキシ基、アミノ基及びチオール基よりなる群から選ばれる少なくとも一種の官能基を有するアルコキシシラン化合物がより好ましく、エポキシ基含有アルコキシシラン化合物が特に好ましい。なお、シラン化合物は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 液晶配向剤中のケイ素含有化合物は、使用する化合物に応じて適宜選択することができる。例えば、ケイ素含有化合物としてポリシロキサンを含有させる場合、液晶配向剤中のポリシロキサンの含有割合は、得られる液晶表示素子10の耐候性を十分に高くする観点から、液晶配向剤中の重合体成分の合計量に対して、1質量%以上とすることが好ましく、2質量%以上とすることがより好ましく、5質量%以上とすることがさらに好ましい。また、ポリシロキサンの含有割合の上限値は、液晶表示素子10における指押し耐性の低下を抑制する観点から、97質量%以下とすることが好ましく、90質量%以下とすることがより好ましい。
 また、ケイ素含有化合物としてシラン化合物を液晶配向剤に配合する場合、その配合割合は、指押し耐性の低下を抑制しつつ、基材に対する密着性及び液晶表示素子10の耐候性の改善効果を十分に得る観点から、重合体の合計100質量部に対して、0.5質量部以上とすることが好ましく、1~30質量部とすることがより好ましい。なお、ケイ素含有化合物としては、ポリシロキサンのみを用いてもよく、シラン化合物のみを用いてもよく、ポリシロキサンとシラン化合物とを併用してもよい。
 液晶配向膜21,22の重合体成分は、液晶の初期配向不良の抑制効果が高い点で、ポリ(メタ)アクリレート及びポリシロキサンよりなる群から選ばれる少なくとも一種の重合体(以下、「重合体Q」ともいう。)であることが好ましい。重合体Qは、例えばポリイミド系樹脂に比べて、フィルム基材の材料に通常使用されるシクロオレフィンポリマー(以下、「COP」ともいう。)やトリアセチルセルロース(以下、「TAC」ともいう。)に係る樹脂に近い線膨張係数(温度上昇により物体の長さや体積が増加するときの割合)を示す。よって、液晶素子の製造時におけるポストベーク時の加熱によっても液晶の初期配向不良を抑制でき好適である。
 重合体Qの含有割合は、液晶配向剤中に含まれる重合体成分の合計量に対して、10質量%以上とすることが好ましく、20質量%以上とすることがより好ましく、30質量%以上とすることがさらに好ましい。なお、重合体Qは、1種を単独で又は2種以上を組み合わせて使用することができる。
(光配向性基を有する重合体)
 液晶配向膜21,22の形成に用いる液晶配向剤は、光配向性基を有する重合体を含有していることが好ましい。基材をフィルム基材とする場合、液晶配向剤を用いて形成した塗膜にラビング処理を行う際にラビング削れが生じやすくなり、液晶配向性の低下や製品歩留まりの低下が懸念される。この点に鑑み、液晶配向膜21,22を光配向膜とし、液晶配向不良及び製品歩留まりの抑制を図ることが好ましい。
 ここで、「光配向性基」とは、光照射による光異性化反応や光二量化反応、光分解反応、光フリース転位反応によって膜に異方性を付与する官能基を意味する。光配向性基の具体例としては、例えばアゾベンゼン又はその誘導体を基本骨格として含むアゾベンゼン含有基、桂皮酸又はその誘導体を基本骨格として含む桂皮酸構造含有基、カルコン又はその誘導体を基本骨格として含むカルコン含有基、ベンゾフェノン又はその誘導体を基本骨格として含むベンゾフェノン含有基、クマリン又はその誘導体を基本骨格として含むクマリン含有基、シクロブタン又はその誘導体を基本骨格として含むシクロブタン含有構造等が挙げられる。これらのうち、光に対する感度が高い点で、桂皮酸構造含有基が好ましく、例えば、下記式(1)で表される部分構造を有する基等が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(式(1)中、Rは、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、少なくとも1個の水素原子がフッ素原子で置換された炭素数1~10のフッ素含有アルキル基、少なくとも1個の水素原子がフッ素原子で置換された炭素数1~10のフッ素含有アルコキシ基、又はフッ素原子である。aは0~4の整数である。aが2以上の場合、複数のRは同一でも異なっていてもよい。「*」は結合手を示す。)
 上記式(1)で表される部分構造において、2つの結合手「*」の一方は、下記式(4)で表される基に結合していることが好ましい。この場合、得られる液晶素子の液晶配向性を高めることができ好適である。
Figure JPOXMLDOC01-appb-C000002
(式(4)中、R11は、フェニレン基、ビフェニレン基、ターフェニレン基、シクロヘキシレン基又はビシクロヘキシレン基であり、環部分に、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、少なくとも1個の水素原子がフッ素原子又はシアノ基で置換された炭素数1~20の置換アルキル基、少なくとも1個の水素原子がフッ素原子又はシアノ基で置換された炭素数1~20の置換アルコキシ基、フッ素原子又はシアノ基を有していてもよい。R12は、式(1)中のベンゼン環に結合している場合には、単結合、炭素数1~3のアルカンジイル基、酸素原子、硫黄原子、-CH=CH-、-NH-、-COO-又は-OCO-であり、式(1)中のカルボニル基に結合している場合には、単結合、炭素数1~3のアルカンジイル基、酸素原子、硫黄原子又は-NH-である。「*」は結合手を示す。)
 光配向性基は、重合体PAcが有していてもよいが、重合体PAcとは異なる重合体が有していても構わない。かかる重合体の主骨格としては、例えば、ポリアミック酸、ポリアミック酸エステル、ポリイミド、ポリシロキサン、ポリアミド等が挙げられる。液晶表示素子10の信頼性及び耐候性を確保する観点で、光配向性基を有する重合体としてはポリシロキサンを好ましく用いることができる。
 光配向性基を有する重合体を合成する方法は特に制限されず、重合体の主骨格に応じて適宜選択すればよい。具体例としては、(1)光配向性基を有するモノマーを用いて重合する方法、(2)第1の官能基(例えばエポキシ基など)を側鎖に有する重合体を合成し、次いで第1の官能基と反応し得る第2の官能基(例えばカルボキシル基など)及び光配向性基を有する反応性化合物と、第1の官能基を有する重合体とを反応させる方法、等が挙げられる。光配向性基を有する重合体がポリシロキサンの場合、側鎖への導入効率が高い点で、(2)の方法によることが好ましい。
 液晶配向剤が、光配向性基を有する重合体と、光配向性基を有さない重合体とを含有する場合、光配向性基を有する重合体の含有割合は、液晶配向剤を用いて形成した塗膜に対し放射線照射によって十分な配向能を付与する観点から、液晶配向剤中の重合体成分の合計量に対して、1質量%以上とすることが好ましく、5~99質量%とすることがより好ましい。
(架橋剤)
 液晶配向剤は、架橋性基を有する化合物(以下、架橋剤ともいう。)を含有することが好ましい。架橋性基は、光や熱によって同一又は異なる分子間に共有結合を形成可能な基であり、例えば(メタ)アクリロイル基、ビニル基を有する基(アルケニル基、ビニルフェニル基など)、エチニル基、エポキシ基(オキシラニル基、オキセタニル基)、カルボキシル基、(保護)イソシアネート基等が挙げられる。これらの中でも、反応性が高い点で、(メタ)アクリロイル基が特に好ましい。架橋剤が有する架橋性基の数は、1個でも複数個でもよい。液晶素子の信頼性を十分に高くする点で、好ましくは2個以上であり、2~6個がより好ましい。
 架橋剤の具体例としては、例えば、フタル酸ジアリルなどのアリル基含有化合物;
エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパン(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エチレングリコールトリ(メタ)アクリレート、ポリエーテル(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、2-メチル-1,8-オクタンジオールジ(メタ)アクリレート等の(メタ)アクリル系化合物;
マレイン酸、イタコン酸、トリメリット酸、テトラカルボン酸、シス-1,2,3,4-テトラヒドロフタル酸、エチレングリコールビストリメート、プロピレングリコールビストリメート、4,4’-オキシジフタル酸、トリメリット酸無水物等のカルボン酸;
エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ビス(4-ヒドロキシフェニル)プロパンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタン、N,N-ジグリシジル-ベンジルアミン、N,N-ジグリシジル-アミノメチルシクロヘキサン、N,N-ジグリシジル-シクロヘキシルアミン等のエポキシ化合物;
トリレンジイソシアネート、ヘキサメチレンジイソシアネート、ジフェニルメチレンジイソシアネート等の多価イソシアネートを保護基で保護した(保護)イソシアネート化合物、などが挙げられる。架橋剤としては、これらの中でも、多官能(メタ)アクリレート化合物が好ましい。
 架橋剤の配合割合は、液晶配向性及び指押し耐性の改善効果を十分に得ることができる点で、液晶配向剤の調製に使用する重合体成分100質量部に対して、好ましくは0.5質量部以上、より好ましくは1~40質量部、さらに好ましくは5~30質量部である。なお、架橋剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 液晶配向剤に含有される成分としては、上記のほか、例えば、酸化防止剤、金属キレート化合物、硬化促進剤、界面活性剤、充填剤、分散剤、光増感剤などが挙げられる。これらの成分の配合割合は、本開示の効果を損なわない範囲で、各化合物に応じて適宜選択することができる。
(溶剤)
 液晶配向剤は、重合体成分及び必要に応じて使用されるその他の成分が、好ましくは適当な有機溶媒中に溶解してなる液状の組成物として調製される。使用する有機溶媒としては、例えばN-メチル-2-ピロリドン、N-エチル-2-ピロリドン、1,2-ジメチル-2-イミダゾリジノン、γ-ブチロラクトン、γ-ブチロラクタム、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノメチルエーテル、乳酸ブチル、酢酸ブチル、メチルメトキシプロピオネ-ト、エチルエトキシプロピオネ-ト、エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコール-n-プロピルエーテル、エチレングリコール-i-プロピルエーテル、エチレングリコール-n-ブチルエーテル(ブチルセロソルブ)、エチレングリコールジメチルエーテル、エチレングリコールエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジイソブチルケトン、イソアミルプロピオネート、イソアミルイソブチレート、ジイソペンチルエーテル、エチレンカーボネート、プロピレンカーボネート等を挙げることができる。これらは、単独で又は2種以上を混合して使用することができる。
 使用する有機溶媒は、液晶配向剤中における、N-メチル-2-ピロリドン、γ-ブチロラクトン及びN-エチル-2-ピロリドンよりなる群から選ばれる少なくとも一種の溶剤の含有割合が、液晶配向剤中に含まれる溶剤の全量に対して40質量%以下であることが好ましい。上記範囲とすることにより、樹脂からなる基材に液晶配向膜を形成する際にポストベーク温度をより低温化することができる点で好ましい。当該含有割合は、より好ましくは35質量%以下、さらに好ましくは30質量%以下であり、特に好ましくは1~30質量%である。
 溶剤成分としては、下記式(E-1)~式(E-5)のそれぞれで表される化合物よりなる群から選ばれる少なくとも一種であって、かつ1気圧での沸点が180℃以下である溶剤(以下、「特定溶剤」ともいう。)を使用することが好ましい。これら特定溶剤を用いることにより、膜形成時の加熱を低温(例えば180℃以下)で行った場合にも塗工性が良好であり、液晶配向性及び指押し耐性に優れた液晶素子を得ることができる点で好ましい。
(式(E-1)中、R41は、炭素数1~4のアルキル基又はCHCO-であり、R42は、炭素数1~4のアルカンジイル基又は-(R47-O)r-R48-(ただし、R47及びR48は、それぞれ独立に炭素数2又は3のアルカンジイル基であり、rは1~4の整数である。)であり、R43は、水素原子又は炭素数1~4のアルキル基である。)
Figure JPOXMLDOC01-appb-C000004
(式(E-2)中、R44は、炭素数1~4のアルカンジイル基である。)
Figure JPOXMLDOC01-appb-C000005
(式(E-3)中、R45及びR46は、それぞれ独立に炭素数1~8のアルキル基である。)
Figure JPOXMLDOC01-appb-C000006
(式(E-4)中、R49は、水素原子又は水酸基であり、R50は、R49が水素原子の場合、炭素数1~9の炭化水素基であり、R49が水酸基の場合、炭素数1~9の2価の炭化水素基又は当該炭素-炭素結合間に酸素原子を有する2価の基である。)
Figure JPOXMLDOC01-appb-C000007
(式(E-5)中、R51及びR52は、それぞれ独立に炭素数1~6の1価の炭化水素基又は当該炭素-炭素結合間に酸素原子を有する1価の基である。)
 特定溶剤の具体例としては、上記式(E-1)で表される化合物として、例えばプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールメチルエチルエーテル、3-メトキシ-1-ブタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコール-n-ブチルエーテル(ブチルセロソルブ)、エチレングリコールジメチルエーテル、エチレングリコールエチルエーテルアセテート、ジエチレングリコールジメチルエーテル等を;
上記式(E-2)で表される化合物として、例えばシクロブタノン、シクロペンタノン、シクロヘキサノンを;
上記式(E-3)で表される化合物として、例えばアセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-i-ブチルケトン、メチル-n-ペンチルケトン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-i-ブチルケトン、トリメチルノナノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン、2,4-ペンタンジオン、アセトニルアセトン、ジイソブチルケトン等を;
上記式(E-4)で表される化合物として、例えばメタノール、エタノール、プロパノール、ブタノール、ペンタノール、3-メトキシブタノール、ヘキサノール、ヘプタノール、オクタノール、フルフリルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、3,3,5-トリメチルシクロヘキサノール、ベンジルアルコール、ジアセトンアルコール等のモノアルコールや、エチレングリコール、1,2-プロピレングリコール、1,3-ブチレングリコール、2,4-ペンタンジオール等の多価アルコールを;
上記式(E-5)で表される化合物として、例えば多価アルコールの部分エステル(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノ-2-エチルブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノプロピルエーテル等の多価アルコールの部分エステル)、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸n-ブチル、酢酸i-ブチル、酢酸t-ブチル、酢酸3-メトキシブチル、酢酸2-エチルヘキシル、アセト酢酸メチル、アセト酢酸エチル、酢酸エチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n-ブチル、シュウ酸ジ-n-ブチル、乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル、マロン酸ジエチル、フタル酸ジメチル等を、それぞれ挙げることができる。なお、特定溶剤としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 特定溶剤の使用割合は、液晶配向剤の調製に使用する溶剤の合計量に対して、30質量%以上とすることが好ましく、50質量%以上とすることがより好ましく、70質量%以上とすることがさらに好ましく、80質量%以上とすることが特に好ましい。
 液晶配向剤の調製に使用する有機溶媒は、中でも、沸点が1気圧において150℃以下である化合物を、溶剤の合計量に対して40質量%以上含むことが好ましく、50質量%以上含むことがより好ましく、70質量%以上含むことがさらに好ましい。
 液晶配向剤における固形分濃度(液晶配向剤の溶媒以外の成分の合計質量が液晶配向剤の全質量に占める割合)は、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは1~10質量%の範囲である。固形分濃度が1質量%未満である場合には、塗膜の膜厚が過小となって良好な液晶配向膜が得にくくなる。一方、固形分濃度が10質量%を超える場合には、塗膜の膜厚が過大となって良好な液晶配向膜が得にくく、また、液晶配向剤の粘性が増大して塗布性が低下する傾向にある。
<液晶素子の製造方法>
 次に、液晶素子の製造方法について説明する。液晶素子(液晶表示素子10)は、第1基材11及び第2基材12のそれぞれの表面に液晶配向剤を塗布して液晶配向膜21,22を形成する工程Aと、液晶配向膜21,22が形成された第1基材11及び第2基材12を、液晶層13を介して液晶配向膜21,22が対向するように配置して液晶セルを構築する工程Bと、を含む方法により製造される。
(工程A)
 液晶配向剤の塗布は、第1基材11及び第2基材12のそれぞれの表面に対し、例えばオフセット印刷法、フレキソ印刷法、スピンコート法、ロールコーター法、インクジェット法、バーコーター法などの公知の塗布方法により行う。液晶配向剤を塗布した後には、塗布した液晶配向剤の液垂れ防止などの目的で、好ましくは予備加熱(プレベーク)が実施される。プレベーク温度は、基材の種類に応じて設定されるが、140℃以下とすることが好ましく、120℃以下とすることがより好ましく、100℃以下とすることがさらに好ましい。プレベーク温度の下限は、30℃以上とすることが好ましく、40℃以上とすることがより好ましい。プレベーク時間は、好ましくは0.25~10分である。
 その後、溶剤を完全に除去し、必要に応じて架橋反応を促進させることを目的として焼成(ポストベーク)工程が実施されることが好ましい。このときの焼成温度(ポストベーク温度)は、樹脂からなる基材の熱保護のために、150℃以下とすることが好ましく、140℃以下とすることがより好ましく、110℃以下とすることが特に好ましい。このとき、液晶配向剤の重合体成分の少なくとも一部をポリ(メタ)アクリレートとすることにより、ポストベーク温度を150℃以下の低温にした場合にも、均質な配向膜を得ることができ、液晶素子の液晶配向性及び指押し耐性を担保することができる点で好ましい。ポストベーク時間は、好ましくは5~200分であり、より好ましくは10~120分である。ガラス基材に対しては、膜形成を高温プロセスにより行ってもよい。この場合、ポストベーク温度を、150~300℃とすることが好ましく、170~250℃とすることがより好ましい。ポストベーク時間は、好ましくは5~200分、より好ましくは10~100分である。
 液晶素子がカラー液晶表示素子である場合、カラーフィルタ用の着色剤としては、公知の顔料、染料を用いることができる。ここで、染料は熱に比較的弱く、ポストベーク温度を高温にする必要がある場合には染料の使用が制限されることがある。この点、液晶配向剤の重合体成分の少なくとも一部をポリ(メタ)アクリレートとすることにより、低沸点溶剤への溶解性を改善することができ、これにより、ポストベーク温度の低温化を図ることができる。また、ポストベーク温度の低温化により、カラーフィルタ用の着色剤として染料の適用が可能となり、材料の選択の幅が広がる点でも好ましい。
 フィルム基材としては、液晶素子のコントラスト及び視野角変化を抑制する観点から、リタデーションが小さい樹脂フィルムが好ましく用いられる。リタデーション(Δn・d(ただし、Δnは屈曲率差、dはフィルム厚さ)の値は、好ましくは20nm以下であり、より好ましくは10nm以下である。また、フィルム基材のリタデーションが高い場合に、フィルム基材側にインセル(In-Cell)偏光板を使用してもよい。
 液晶配向剤を用いて形成した塗膜には、配向処理によって液晶配向能が付与される。本実施形態では、塗膜に対して偏光又は非偏光の放射線を照射する光配向処理を行う。
 光配向処理において、塗膜に対する光照射は、例えば150~800nmの波長の光を含む紫外線及び可視光線などの放射線を用いることができる。放射線は偏光であっても非偏光であってもよく、又はこれらを組み合わせて照射してもよい。露光方法は特に制限されず、例えば、直線偏光を基材面に垂直な方向又は斜め方向から照射する方法、非偏光を斜め方向から照射する方法などが挙げられる。
 使用する光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマレーザーなどを使用することができる。好ましい波長領域の紫外線は、光源を、例えばフィルター、回折格子などと併用する手段などにより得ることができる。放射線の照射量は、好ましくは10~50,000J/mであり、より好ましくは20~10,000J/mである。
 光配向処理のための光照射は、ポストベーク工程後の塗膜に対して照射する方法、プレベーク工程後であってポストベーク工程前の塗膜に対して照射する方法、プレベーク工程及びポストベーク工程の少なくともいずれかにおいて、加熱中に塗膜に対して照射する方法、などにより行うことができる。配向能付与のための光照射後において、基板表面を例えば水、有機溶媒(例えば、メタノール、イソプロピルアルコール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル等)又はこれらの混合物を用いて洗浄する処理や、基板を加熱する処理を行ってもよい。
(工程B)
 工程Bでは、液晶配向膜がそれぞれ形成された第1基材11及び第2基材12を準備し、互いの液晶配向膜21,22が相対するように対向配置した2枚の基材間に液晶層13を配置して液晶セルを製造する。具体的には、第1基材11と第2基材12とのそれぞれの周辺部をシール剤によって貼り合わせ、基材表面及びシール剤により区画されたセルギャップ内に液晶組成物を注入充填した後、注入孔を封止する方法;一方の基材の液晶配向膜側の周辺部にシール剤を塗布し、さらに液晶配向膜面上の所定の数箇所に液晶組成物を滴下した後、液晶配向膜が対向するように他方の基材を貼り合わせるとともに液晶を基材の全面に押し広げ、その後シール剤を硬化する方法(ODF方式)、などが挙げられる。シール剤としては、例えば硬化剤及びスペーサーとしての酸化アルミニウム球を含有するエポキシ樹脂などを用いることができる。液晶としては、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましい。
 続いて、必要に応じて液晶セルの外側表面に偏光板を貼り合わせ、液晶表示素子10とする。偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板が挙げられる。
 液晶表示素子10は種々の用途に有効に適用することができ、例えば、時計、携帯型ゲーム、ワープロ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、スマートフォン、各種モニタ、液晶テレビ、インフォメーションディスプレイなどの各種表示装置に用いることができる。また、液晶素子は、液晶表示素子10だけでなく、例えば調光フィルムや位相差フィルムとして用いることもできる。
(第2実施形態)
 次に、第2実施形態について第1実施形態との相違点を中心に説明する。本実施形態の液晶表示素子10を図2に示す。液晶表示素子10は、共通電極14及び画素電極16が配置された第1基材11が樹脂からなる基材であり、カラーフィルタ17が配置された第2基材12がガラス基材である。この構成の液晶表示素子10においても、指押し耐性を確保しつつ、液晶表示素子10の軽量化を図ることができる。
(第3実施形態)
 次に、第3実施形態について第1実施形態との相違点を中心に説明する。第3実施形態の液晶表示素子10は、第1基材11側の液晶配向膜21と、第2基材12側の液晶配向膜22とが、組成が互いに異なる液晶配向剤を用いて形成されている。
 第1基材11側の液晶配向膜21の形成に用いる第1配向剤、及び第2基材12側の液晶配向膜22の形成に用いる第2配向剤としては、例えば以下の(1)~(3)の態様が挙げられる。
(1)重合体成分として含有される重合体の主骨格が第1配向剤と第2配向剤とで同じであり、重合体の側鎖構造が異なる態様。
(2)第1配向剤と第2配向剤とが、重合体成分として重合体Aと重合体Bとを含有し、それら重合体Aと重合体Bとの配合割合が第1配向剤と第2配向剤とで異なる態様。
(3)重合体成分として含有される重合体の主骨格が、第1配向剤と第2配向剤とで異なる態様。
 これらのうち、ガラス基材に対しては、膜形成時に高温プロセスを適用する一方で、フィルム基材に対しては、塗工性及び指押し耐性を十分に確保し、かつ膜形成時に低温プロセスの適用を可能する観点から、(3)とすることが好ましい。(3)の具体例としては、ガラス基材の表面上に形成する液晶配向剤(本実施形態では第1配向剤)を、ポリアミック酸、ポリアミック酸エステル及びポリイミドよりなる群から選ばれる少なくとも一種を重合体成分として含む重合体組成物とし、フィルム基材の表面上に形成する液晶配向剤(本実施形態では第2配向剤)を、重合体PAcを重合体成分として含む重合体組成物とする態様が好ましい。膜形成を高温プロセスにより行う場合、ポストベーク温度は、好ましくは80~300℃であり、より好ましくは120~250℃である。ポストベーク時間は、好ましくは5~200分であり、より好ましくは10~100分である。この場合、図1の液晶表示素子10において、ガラス基材である第1基材11上に形成された液晶配向膜21は、重合体成分としてポリアミック酸、ポリアミック酸エステル及びポリイミドよりなる群から選ばれる少なくとも一種を含み、樹脂フィルム基材である第2基材12上に形成された液晶配向膜22は、重合体成分として重合体PAcを含む。
(他の実施形態)
 ・上記実施形態では、液晶配向膜21,22を光配向膜としたが、例えばナイロン、レーヨン、コットンなどの繊維からなる布を巻き付けたロールで塗膜を一定方向に擦るラビング処理によって液晶配向能を付与してもよい。
 ・上記実施形態では、第1基材11及び第2基材12の一方を樹脂からなる基材としたが、第1基材11及び第2基材12の両方を樹脂からなる基材としてもよい。
 ・上記実施形態では、第1基材11及び第2基材12の両方に液晶配向膜を形成したが、第1基材11及び第2基材12のいずれか一方のみに液晶配向膜を形成する構成としてもよい。
 ・フィルム基材としては、フィルム基材の位相差により視野角補償を図る観点から、リタデーションが大きい樹脂フィルム(例えば、Δn・d>20)を用いてもよい。
 以下、実施例により更に具体的に説明するが、本開示はこれらの実施例に限定されるものではない。
 以下の例において、重合体の重量平均分子量Mw、数平均分子量Mn及びエポキシ当量、並びに重合体溶液の溶液粘度は以下の方法により測定した。以下の例で用いた原料化合物及び重合体の必要量は、下記の合成例に示す合成スケールでの合成を必要に応じて繰り返すことにより確保した。
[重合体の重量平均分子量Mw及び数平均分子量Mn]
 Mw及びMnは、以下の条件におけるGPCにより測定したポリスチレン換算値である。
 カラム:東ソー(株)製、TSKgelGRCXLII
 溶剤:テトラヒドロフラン、又はリチウムブロミド及びリン酸含有のN,N-ジメチルホルムアミド溶液
 温度:40℃
 圧力:68kgf/cm
[エポキシ当量]
 エポキシ当量は、JIS C 2105に記載の塩酸-メチルエチルケトン法により測定した。
[重合体溶液の溶液粘度]
 重合体溶液の溶液粘度(mPa・s)は、E型回転粘度計を用いて25℃で測定した。
 以下の例で使用した化合物の略称と構造式との関係は以下のとおりである。なお、以下では便宜上、「式(X)で表される化合物」を単に「化合物(X)」と示す。
(カルボン酸)
Figure JPOXMLDOC01-appb-C000008
(添加剤)
Figure JPOXMLDOC01-appb-C000009
<ポリアミック酸の合成>
[合成例1-1]
 テトラカルボン酸二無水物として1,2,3,4-シクロブタンテトラカルボン酸二無水物136.7g(合成に使用したジアミン100モル部に対して90モル部)、ジアミンとして2,2’-ジメチル-4,4’-ジアミノビフェニル163.3gをNMP1700gに溶解させ、40℃で3時間反応させた。次いで、反応混合物を大過剰のメタノール中に注ぎ、反応生成物を沈澱させた。回収した沈殿物をメタノールで洗浄した後、減圧下40℃において15時間乾燥することにより、ポリアミック酸(以下、重合体(PAA-1)とする。)を290g得た。得られた重合体(PAA-1)をNMPにて10質量%となるように調製し、この溶液の粘度を測定したところ80mPa・sであった。また、この重合体溶液を20℃において3日間静置したところ、ゲル化することはなく、保存安定性は良好であった。
[合成例1-2]
 テトラカルボン酸二無水物として1,2,3,4-シクロブタンテトラカルボン酸二無水物23.7g(合成に使用したジアミン100モル部に対して46.5モル部)及びピロメリット酸二無水物26.4g(合成に使用したジアミン100モル部に対して46.5モル部)、並びにジアミンとしてビス[2-(4-アミノフェニル)エチル]ヘキサン二酸99.9gをプロピレングリコールモノメチルエーテル850gに溶解させ、40℃で6時間反応させた。これにより、ポリアミック酸(以下、重合体(PAA-2)とする。)溶液を得た。得られた重合体(PAA-2)溶液の粘度を測定したところ370mPa・sであった。また、この重合体溶液を20℃において3日間静置したところ、ゲル化することはなく、保存安定性は良好であった。
<ポリアミック酸エステルの合成>
[合成例2]
 まず、国際公開第2010/092989号の実施例4に記載の方法に従い、下記式(DE-1)で表される化合物を合成するとともに、国際公開第2010/092989号の実施例47に記載の方法に従い、下記式(DC-1)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000010
 次いで、窒素導入管及び温度計を備えた50mL三口フラスコに、パラフェニレンジアミンを1.08g(10.0mmol)、NMPを16.0g入れ、約10℃に冷却し、ジアミン溶液を調製した。ここに、化合物(DC-1)を3.12g(9.6mmol)、ピリジン1.90g(21.6mmol)及びγ-ブチルラクトン16.0gに予め溶解させて調製した酸クロライド溶液を加え、窒素気流下、室温で4時間反応させた。得られた重合溶液をγ-ブチルラクトンにより希釈し、脱イオン水中に撹拌しながらゆっくり注ぎ凝固させた。沈殿した固体を回収し、イソプロパノール中で撹拌洗浄を2回繰り返し、60℃で真空乾燥し、白色粉末のポリアミック酸エステル(PAE-1)を得た。この重合体の数平均分子量Mnは19,000、分子量分布Mw/Mnは1.5であった。
<エポキシ基含有ポリシロキサンの合成>
[合成例3]
 撹拌機、温度計、滴下漏斗及び還流冷却管を備えた反応容器に、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン70.5g、テトラエトキシシラン14.9g、エタノール85.4g及びトリエチルアミン8.8gを仕込み、室温で混合した。次いで、脱イオン水70.5gを滴下漏斗より30分かけて滴下した後、還流下で攪拌しつつ、80℃で2時間反応させた。反応溶液を濃縮し、酢酸ブチルで希釈する操作を2 回繰り返すことにより、トリエチルアミン及び水を留去し、エポキシ基含有ポリオルガノシロキサン(SEp-1)を含む重合体溶液を得た。H-NMR分析を行ったところ、反応中にエポキシ基の副反応が起こっていないことが確認された。このポリオルガノシロキサン(SEp-1)のMwは11,000、エポキシ当量は200g/モルであった。
[合成例4]
 撹拌機、温度計、滴下漏斗及び還流冷却管を備えた反応容器に、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン100.0g、メチルイソブチルケトン500g及びトリエチルアミン10.0gを仕込み、室温で混合した。次いで、脱イオン水100gを滴下漏斗より30分かけて滴下した後、還流下で混合しつつ、80℃で6時間反応させた。反応終了後、有機層を取り出し、0.2質量%硝酸アンモニウム水溶液により洗浄後の水が中性になるまで洗浄したのち、減圧下で溶媒及び水を留去することにより、エポキシ基含有ポリオルガノシロキサン(SEp-2)を粘調な透明液体として得た。このポリオルガノシロキサン(SEp-2)について、H-NMR分析を行ったところ、反応中にエポキシ基の副反応が起こっていないことが確認された。合成例4で得られたポリオルガノシロキサン(SEp-2)の重量平均分子量(Mw)は2,200であり、エポキシ当量は186g/モルであった。
<機能性基を有するポリシロキサンの合成>
[合成例5]
 100mLの三口フラスコに、合成例3で得たエポキシ基含有ポリオルガノシロキサン(SEp-1)11.3g、酢酸n-ブチル13.3g、上記式(CA-1)で表される桂皮酸誘導体1.7g(ポリオルガノシロキサン(SEp-1)が有するエポキシ基100モル部に対して32モル部)、アクリロイル基含有カルボン酸(アロニックスM-5300、東亜合成(株)製)0.54g(ポリオルガノシロキサン(SEp-1)が有するエポキシ基100モル部に対して8モル部)、及びテトラブチルアンモニウムブロミド0.9gを仕込み、80℃で12時間撹拌した。反応終了後、酢酸n-ブチルをさらに20g追加し、この溶液を3回水洗した後、酢酸n-ブチルをさらに20g追加し、固形分濃度10重量%となるように溶媒を留去した。これにより、光配向性ポリオルガノシロキサンである重合体(S-1)を含有する固形分濃度10質量%の酢酸n-ブチル溶液を得た。重合体(S-1)の重量平均分子量Mwは18,000であった。
[合成例6]
 100mLの三口フラスコに、合成例4で得たエポキシ基含有ポリオルガノシロキサン(SEp-2)8g、シクロペンタノン27.5g、上記式(CA-2)で表される桂皮酸誘導体2.5g(エポキシ基100モル部に対して60モル部)及びテトラブチルアンモニウムブロミド0.1gを仕込み、100℃で12時間撹拌した。反応終了後、シクロヘキサノン30gを追加し、この溶液を6回分液洗浄により水洗した後、N-メチル-2-ピロリドンをさらに100g追加し、固形分濃度10質量%となるように溶媒を留去した。これにより、ポリオルガノシロキサンである重合体(S-2)を含有する固形分濃度10質量%のNMP溶液を得た。重合体(S-2)の重量平均分子量Mwは12,000であった。
<ポリ(メタ)アクリレートの合成>
[合成例7]
 冷却管及び攪拌機を備えたフラスコに、重合開始剤として2,2’-アゾビス(イソブチロニトリル)1質量部、及び溶媒としてジエチレングリコールメチルエチルエーテル180質量部を仕込んだ。続いて、3,4-エポキシシクロヘキシルメチルメタアクリレート80質量部及び3-メチル-3-オキセタニルメチルメタクリレート20質量部を加え、窒素置換した後、緩やかに攪拌を始めた。溶液温度を80℃に上昇させ、この温度を5時間保持し、エポキシ基含有ポリメタクリレートである重合体(PAc-0)を含む重合体溶液を得た。なお、重合体溶液の固形分濃度の測定結果から算出された反応終了後のモノマー消費率(反応コンバージョン)は、99%であった。また、得られた重合体のMnは16,000であった。
[合成例8]
 合成例7で得られたエポキシ基含有ポリメタクリレート(PAc-0)100質量部、アクリロイル基含有カルボン酸(アロニックスM-5300、東亜合成(株)製)30質量部、触媒としてテトラブチルアンモニウムブロマイド10質量部、溶媒としてプロピレングリコールモノメチルエーテルアセテート150質量部を仕込み、窒素雰囲気下90℃で12時間撹拌した。反応終了後、プロピレングリコールモノメチルエーテルアセテート100質量部で希釈し、3回水洗した。この溶液を濃縮し、酢酸ブチルで希釈する操作を2回繰り返し、アクリロイル基含有ポリメタクリレートである重合体(Pac-1)を含む重合体溶液を得た。得られた重合体のMnは20,000であった。
[合成例9]
 冷却管及び攪拌機を備えたフラスコに、2,2’-アゾビス-イソブチロニトリル1.2質量部及びプロピレングリコール-1-モノメチルエーテル-2-アセタート200質量部を仕込んだ。引き続きメタクリル酸グリシジル80質量部及びスチレン20質量部を仕込み、窒素置換した後ゆるやかに撹拌を始めた。溶液温度を95℃に上昇させ、この温度を5時間保持し、重合体(Pac-2)を含む重合体溶液を得た。なお、重合体溶液の固形分濃度の測定結果から算出された反応終了後のモノマー消費率(反応コンバージョン)は99%であった。
<液晶配向剤の調製>
[調製例1]
 重合体成分として、合成例5で得た重合体(S-1)を含有する溶液を、重合体(S-1)に換算して20質量部に相当する量、及び、合成例8で得た重合体(Pac-1)を含有する溶液を、重合体(Pac-1)に換算して80質量部に相当する量、並びに化合物(add-1)を5質量部混合し、これに溶媒として、酢酸n-ブチル(BA)、メチルエチルケトン(MEK)及びプロピレングリコールモノメチルエーテルアセテート(PGMEA)を加えて溶解し、固形分濃度が4.0質量%、各溶媒の質量比がBA:MEK:PGMEA=60:25:15となるように調製した。この溶液を孔径0.2μmのフィルターで濾過することにより液晶配向剤(A-1)を調製した。
[調製例2~7]
 使用する重合体、架橋剤及び溶剤の種類及び配合量を下記表1に記載のとおり変更した以外は調製例1と同様にして液晶配向剤(A-2)~(A-7)をそれぞれ調製した。
Figure JPOXMLDOC01-appb-T000011
 なお、表1中の重合体及び添加剤の配合量の数値は、液晶配向剤の調製に使用した重合体成分の合計100質量部に対する各化合物の配合割合(質量部)を示す。溶剤の配合量の数値は、液晶配向剤の調製に使用した溶剤の全体量に対する各化合物の配合割合(質量比)を示す。表1中、略号は以下の通りである。
(添加剤)
Add-1:トリメリット酸無水物(上記式(Add-1)で表される化合物)
Add-2:上記式(Add-2)で表される化合物
Add-3:3-グリシドキシプロピルトリメトキシシラン(上記式(Add-3)で表される化合物)
Add-4:N-α-(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジン
(溶剤)
 PGME:プロピレングリコールモノメチルエーテル
 PGMEA:プロピレングリコールモノメチルエーテルアセテート
 NMP:N-メチル-2-ピロリドン
 BC;ブチルセロソルブ
 BA;酢酸n-ブチル
 MEK;メチルエチルケトン
 GBL;γ-ブチロラクトン
[実施例1:光配向によるFFS型液晶表示素子]
1.フィルム基材への塗工性の評価
 上記で調製した液晶配向剤(A-1)を、COPフィルム基材上にスリットコーターを用いて塗布し、120℃で2分間加熱することで、平均膜厚0.1μmの塗膜を形成した。この塗膜を目視及び倍率10倍の顕微鏡で観察することにより、塗膜表面の塗工ムラ及び欠陥(ピンホール)の有無を調べた。評価は、目視によって塗工表面の塗工ムラが観察されず、かつ顕微鏡によっても1cmあたりの欠陥が観察されなかった場合を「優良」、目視によっては塗工表面の塗工ムラが観察されなかったが、顕微鏡によって観察された1cmあたりの欠陥の個数が1個以上4個以下であった場合を「良好」、目視によっては塗工表面の塗工ムラが観察されなかったが、顕微鏡によって観察された1cmあたりの欠陥の個数が5個以上9個以下であった場合を「可」、目視によっては塗工表面の塗工ムラが観察されなかったが、顕微鏡によって観察された1cmあたりの欠陥の個数が10個以上であった場合、又は目視によって塗工表面の塗工ムラが視認された場合を「不良」とした。その結果、本実施例では、塗工表面の塗工ムラ及び欠陥ともに観察されず、塗工性は「優良」と判断された。なお、基材に用いたCOPフィルムのリタデーションは4nmであった。
2.光配向法によるFFS型液晶表示素子の製造
 図1に示すFFS型液晶表示素子10を作製した。先ず、パターンを有さない共通電極14、絶縁層15としての窒化ケイ素膜、及び櫛歯状にパターニングされた画素電極16がこの順で形成された電極対を片面に有するガラス基材(第1基材11)と、電極が設けられていない対向基板であるCOPフィルム基材(第2基材12)とを一対とし、第1基材11の透明電極を有する面と、第2基板12の一方の面とに、それぞれ上記で調製した液晶配向剤(A-1)を、スピンナーを用いて塗布した。次いで、これを120℃のホットプレートで2分間プレベークを行うことで塗膜を形成した。次いで、これら塗膜の各表面に、Hg-Xeランプ及びグランテーラープリズムを用いて、254nmの輝線を含む偏光紫外線300mJ/cmを基板法線方向から照射した。その後、ガラス基材を、庫内を窒素置換したオーブン中で230℃にて15分間加熱(ポストベーク)し、COPフィルム基材を、庫内を窒素置換したオーブン中で120℃にて15分間加熱(ポストベーク)した。これにより、平均膜厚0.1μmの液晶配向膜を各基板上に形成した。
 ここで使用した画素電極16の平面模式図を図3及び図4に示す。なお、図4は、図3中に点線で囲った部分C1の拡大図である。本実施例では、電極の線幅d1が4μm、電極間の距離d2が6μmの画素電極16を有する基板を使用した。なお、画素電極16としては、図3に示すように、電極A、電極B、電極C及び電極Dの4系統の駆動電極を用いた。この場合、共通電極14は、4系統の駆動電極のすべてに作用する電極として働き、4系統の駆動電極の領域のそれぞれが画素領域となる。また、塗膜に対する光照射処理は、偏光紫外線の偏光面を基板に投影した線分の方向が図4中の両頭矢印の方向となるように偏光面方向を設定したうえで、基板法線方向から偏光紫外線を照射することにより行った。
 次に、電極構造を有する塗膜形成基板の外縁に、直径3.5μmの酸化アルミニウムスペーサー入り光硬化性エポキシアクリル樹脂系接着剤を塗布した後、液晶「MLC-6221」(メルク社製)を必要量滴下した。この際、液晶は、塗膜形成基板上の複数箇所に滴下した。また、液晶の滴下総量は、接着剤を塗布した面積とスペーサー直径との掛け算にて求まる体積に対して0.98倍~1.0倍とし、一点の滴下量は0.2~1.0gの間で調節した。次いで、液晶を滴下した基板を真空貼り合わせ装置内に設置し、その基板の対向側に、塗膜形成されたフィルム基板を設置した上で、真空下にて貼り合わせを実施した。貼り合わせ完了後、365nmのUV光を用いて接着剤部分を硬化させた上で、120℃のオーブンで2分間、アニーリングを実施することで液晶セルを製造した。
 次に、基板の外側両面に偏光板を貼り合わせることにより、FFS型液晶表示素子10を製造した。このとき、偏光板のうちの1枚は、その偏光方向が液晶配向膜の偏光紫外線の偏光面の基板面への射影方向と平行となるように貼付し、もう1枚はその偏光方向が先の偏光板の偏光方向と直交するように貼付した。
3.液晶配向性の評価
 上記2.で製造したFFS型液晶表示素子につき、5Vの電圧をON・OFF(印加・解除)したときの明暗の変化における異常ドメインの有無を、顕微鏡によって倍率50倍で観察した。評価は、異常ドメインが観察されなかった場合を液晶配向性「良好」とし、異常ドメインが観察された場合を液晶配向性「不良」とした。その結果、この液晶表示素子では液晶配向性は「良好」であった。
4.指押し耐性の評価
 上記2.で製造したFFS型液晶表示素子につき、プッシュプルゲージを用いて、先端が平坦な圧子を液晶表示素子面に垂直に押し当て、緩衝用ゴムを介して2kgf/cmの圧力を荷重が均一にかかるようにした。この操作を10回繰り返し、指押し耐性の評価を行った。評価は、上記「3.液晶配向性の評価」と同様に顕微鏡観察をすることで行い、異常ドメイン及び光漏れが観察されなかった場合を指押し耐性「良好」、異常ドメインは観察されないが、光漏れが観察された場合を指押し耐性「可」、異常ドメインが観察された場合を指押し耐性「不良」と判断した。その結果、この液晶表示素子では異常ドメイン及び光漏れのいずれも観察されず、指押し耐性は「良好」と判断された。
[実施例3~7]
 下記表2に示す液晶配向剤(A-2)~(A-5)をそれぞれ用いて、実施例1と同様に液晶表示素子の製造及び評価を行った。なお、実施例5については、第1基板11についてのみ液晶配向膜を形成した。各実施例の評価結果を表2に示した。
[実施例2:ラビング配向によるFFS型液晶表示素子]
1.塗膜形成フィルム基板のラビング耐性の評価
 調製例1で得られた液晶配向剤(A-1)を、スピンナーを用いてARTONフィルム(JSR社製ARTON)からなる基材上に塗布し、80℃のホットプレートで1分間プレベークを行った後、庫内を窒素置換した120℃のオーブンで1時間加熱(ポストベーク)することにより、平均膜厚0.1μmの塗膜を形成した。
 次いで、得られた塗膜に対し、コットン布を巻き付けたロールを有するラビングマシーンにより、ロール回転数1,000rpm、ステージ移動速度20cm/秒、毛足押し込み長さ0.4mmでラビング処理を2回実施した。得られた基板上のラビング削れによる異物(塗膜の欠片)を光学顕微鏡にて観察し、500μm×500μmの領域内の異物数を計測した。評価は、異物の数が19個以下の場合をラビング耐性「良好」、20個以上の場合をラビング耐性「不良」として行った。その結果、異物は観察されず、この塗膜のラビング耐性は、「良好」と判断された。なお、基材に用いたARTONフィルムは2軸性位相差フィルムの性能を有していた。
2.ラビング処理によるFFS型液晶表示素子の製造
 先ず、上記実施例1の2.で使用したものと同じ一対の基材の各表面に、それぞれ液晶配向剤(A-1)を、スピンナーを用いて塗布して塗膜を形成した。次いで、この塗膜を80℃のホットプレートで1分間プレベークを行った後、庫内を窒素置換したオーブン中で120℃にて2時間加熱(ポストベーク)して、平均膜厚0.1μmの塗膜を形成した。次いで、一対の基板上に形成した塗膜の各表面に、上記1.と同じ条件でコットンにてラビング処理を実施し、液晶配向膜とした。
 次に、電極構造を有する塗膜形成基板の外縁に、直径3.5μmの酸化アルミニウムスペーサー入り光硬化性エポキシアクリル樹脂系接着剤を塗布した後、液晶「MLC-6221」(メルク社製)を必要量滴下した。この際、液晶は、塗膜形成基板上の複数箇所に滴下した。また、液晶の滴下総量は、接着剤を塗布した面積とスペーサー直径との掛け算にて求まる体積に対して0.98倍~1.0倍とし、一点の滴下量は0.2~1.0gの間で調節した。次いで、液晶を滴下した基板を真空貼り合わせ装置内に設置し、その基板の対向側に、塗膜形成されたフィルム基板を設置した上で、真空下にて貼り合わせを実施した。貼り合わせ完了後、365nmのUV光を用いて接着剤部分を硬化させた上で、120℃のオーブンで2分間、アニーリングを実施することで液晶セルを製造した。次いで、基板の外側両面に偏光板(図示略)を2枚の偏光板の偏光方向が互いに直交するように貼り合わせることにより液晶表示素子10を作製した。
3.液晶配向性の評価
 上記2.で製造したFFS型液晶表示素子につき、上記実施例1の3.と同様にして液晶配向性の評価を行った。その結果、この液晶表示素子では液晶配向性「良好」であった。
4.指押し耐性の評価
 上記2.で製造したFFS型液晶表示素子につき、上記実施例1の4.と同様にして指押し耐性を評価した。その結果、この液晶表示素子では、異常ドメイン及び光漏れが観察されず、指押し耐性「良好」と判断された。
[実施例8:ラビング配向によるFFS型液晶表示素子]
1.フィルム基材への塗工性の評価
 液晶配向剤(A-6)を用いて、上記実施例1と同様にしてフィルム基材への塗工性の評価を行った。その結果、塗膜表面の塗工ムラが目視で観察され、「不良」と判断された。また、120℃で2分間の加熱条件では、塗膜表面にべとつきがあり、溶媒が乾燥しきれていないと推察された。
2.塗膜形成フィルム基板のラビング耐性の評価
 120℃で2分間の加熱条件では溶媒が乾燥しきれていないと判断されたため、スピンナーを用いて液晶配向剤(A-6)をPETフィルム基板に塗布し、80℃のホットプレートで1分間プレベークを行った後、庫内を窒素置換した150℃のオーブンで1時間加熱(ポストベーク)することにより、平均膜厚0.1μmの塗膜を形成した。次いで、得られた塗膜に対し、コットン布を巻き付けたロールを有するラビングマシーンにより、ロール回転数1,000rpm、ステージ移動速度20cm/秒、毛足押し込み長さ0.4mmでラビング処理を2回実施し、得られた基板上のラビング削れによる異物(塗膜の欠片)を光学顕微鏡にて観察し、実施例2と同様にしてラビング耐性を評価した。その結果、異物は15個/0.25mm確認され、この塗膜のラビング耐性は、「良好」と判断された。
3.ラビング処理によるFFS型液晶表示素子の製造
 上記で調製した液晶配向剤(A-6)を用いた以外は実施例2の2.と同様にしてFFS型液晶表示素子10を作製した。
4.液晶配向性の評価
 上記3.で製造したFFS型液晶表示素子につき、上記実施例1の3.と同様にして液晶配向性の評価を行った。その結果、この液晶表示素子では液晶配向性「良好」であった。
5.指押し耐性の評価
 上記3.で製造したFFS型液晶表示素子につき、上記実施例1の4.と同様にして指押し耐性を評価した。その結果、この液晶表示素子では、異常ドメイン及び光漏れが観察され、指押し耐性「不良」と判断された。
[実施例9]
 液晶配向剤(A-7)を用いて、実施例2と同様に液晶表示素子の製造及び評価(塗工性、液晶配向性及び指押し耐性)を行った。評価結果を表2に示した。
Figure JPOXMLDOC01-appb-T000012
 フィルム基材に対して、ポリ(メタ)アクリレートを含有する液晶配向剤を用いて光配向処理により液晶配向膜を形成した実施例1,3,4では、ポストベーク温度を120℃の低温にした場合にも塗工ムラが殆どなく、塗工性が「優良」又は「良好」であった。また、実施例1,3,4の液晶表示素子は、液晶配向性及び指押し耐性についても優れており、特に実施例1,3では共に「良好」の評価であった。
 また、ポリ(メタ)アクリレートを含有する液晶配向剤を用いてラビング処理により液晶配向膜を形成した実施例2は、ラビング耐性が良好であり、得られた液晶表示素子の液晶配向性及び指押し耐性についても良好であった。
 フィルム基材側に液晶配向膜を形成しなかった実施例5、及びポリアミック酸エステルを含有する液晶配向剤を用いた実施例6については、指押し耐性は「可」の評価であり、塗工性及び液晶配向性は「良好」の評価であった。
 ポリアミック酸を含有する液晶配向剤を用いた実施例7,8については、指押し耐性が「不良」であり、塗工性もさほど良好ではなかったが、液晶配向性は「良好」の評価であった。溶剤成分として特定溶剤を多く含む液晶配向剤(A-7)により液晶配向膜を形成した実施例9は、ポストベーク温度を120℃の低温にした場合にも塗工性が「良好」であった。また、液晶配向性及び指押し耐性についても「良好」の評価であった。
 本開示は、実施形態に準拠して記述されたが、本開示は上記実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
 10…液晶表示素子、11…第1基板、12…第2基板、13…液晶層、14…共通電極、16…画素電極、21,22…液晶配向膜

Claims (12)

  1.  第1基材と、前記第1基材に対向配置された第2基材と、前記第1基材と前記第2基材との間に配置された液晶層と、を備える液晶素子であって、
     前記第1基材及び前記第2基材のうち少なくとも一方は、樹脂からなる基材であり、
     前記第1基材上に設けられた共通電極と、
     前記第1基材において前記共通電極上に絶縁膜を介して配置された画素電極と、
     前記第1基材及び前記第2基材の少なくとも一方に形成され、前記液晶層に隣接する液晶配向膜と、
    を備える、液晶素子。
  2.  前記第1基材がガラス基材であり、前記第2基材が樹脂からなる基材である、請求項1に記載の液晶素子。
  3.  前記液晶配向膜は、重合性不飽和結合を有する単量体の重合体、ポリアミック酸、ポリアミック酸エステル及びポリイミドよりなる群から選ばれる少なくとも一種の重合体を含有する、請求項1又は2に記載の液晶素子。
  4.  樹脂からなる基材に、重合性不飽和結合を有する単量体の重合体を含有する液晶配向膜が形成されている、請求項1~3のいずれか一項に記載の液晶素子。
  5.  前記液晶配向膜は、光配向性基を有する重合体を含有する液晶配向剤により形成されてなる、請求項1~4のいずれか一項に記載の液晶素子。
  6.  前記液晶配向膜は、シラン化合物及びポリシロキサンよりなる群から選ばれる少なくとも一種の化合物を含有する液晶配向剤により形成されてなる、請求項1~5のいずれか一項に記載の液晶素子。
  7.  前記液晶配向膜は、前記第1基材及び前記第2基材のそれぞれに形成されており、前記第1基材に形成された液晶配向膜と、前記第2基材に形成された液晶配向膜とが、組成が互いに異なる液晶配向剤を用いて形成されている、請求項1~6のいずれか一項に記載の液晶素子。
  8.  前記第1基材がガラス基材であり、前記第2基材が樹脂からなる基材であり、
     前記第1基材に形成された液晶配向膜は、ポリアミック酸、ポリアミック酸エステル及びポリイミドよりなる群から選ばれる少なくとも一種を含み、
     前記第2基材に形成された液晶配向膜は、重合性不飽和結合を有する単量体の重合体を含む、請求項7に記載の液晶素子。
  9.  前記液晶配向膜は、架橋性基を有する化合物を含有する液晶配向剤により形成されてなる、請求項1~8のいずれか一項に記載の液晶素子。
  10.  第1基材と、前記第1基材に対向配置された第2基材と、前記一対の基材間に配置された液晶層と、を備える液晶素子の製造方法であって、
     前記第1基材及び前記第2基材のうち少なくとも一方は、樹脂からなる基材であり、
     前記第1基材上に、共通電極と、前記共通電極上に絶縁膜を介して配置された画素電極とが設けられており、
     前記第1基材及び前記第2基材の少なくとも一方に液晶配向剤を塗布して液晶配向膜を形成する工程と、
     前記液晶配向膜の形成後、前記第1基材及び前記第2基材を、前記液晶層を介して対向配置して液晶セルを構築する工程と、
    を含む、液晶素子の製造方法。
  11.  樹脂からなる基材の表面に塗布した液晶配向剤を150℃以下で加熱する、請求項10に記載の液晶素子の製造方法。
  12.  前記液晶配向剤中における、N-メチル-2-ピロリドン、γ-ブチロラクトン及びN-エチル-2-ピロリドンよりなる群から選ばれる少なくとも一種の溶剤の含有割合が、前記液晶配向剤中に含まれる溶剤の全量に対して30質量%以下である、請求項10又は11に記載の液晶素子の製造方法。
PCT/JP2018/007183 2017-03-17 2018-02-27 液晶素子及びその製造方法 WO2018168440A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880014550.5A CN110352382A (zh) 2017-03-17 2018-02-27 液晶元件及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-052456 2017-03-17
JP2017052456 2017-03-17

Publications (1)

Publication Number Publication Date
WO2018168440A1 true WO2018168440A1 (ja) 2018-09-20

Family

ID=63523476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007183 WO2018168440A1 (ja) 2017-03-17 2018-02-27 液晶素子及びその製造方法

Country Status (3)

Country Link
CN (1) CN110352382A (ja)
TW (1) TW201835163A (ja)
WO (1) WO2018168440A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013127049A (ja) * 2011-11-15 2013-06-27 Jsr Corp 膜形成材料の製造方法、膜及び液晶表示素子
JP2014077925A (ja) * 2012-10-11 2014-05-01 Japan Display Inc 液晶表示装置
US20150168753A1 (en) * 2013-12-16 2015-06-18 Innolux Corporation Liquid crystal display panel
JP2015179100A (ja) * 2012-07-23 2015-10-08 シャープ株式会社 液晶表示装置
JP2016095491A (ja) * 2014-11-07 2016-05-26 Jsr株式会社 液晶配向剤、液晶配向膜及びその製造方法、液晶表示素子、並びに位相差フィルム及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6672801B2 (ja) * 2015-04-09 2020-03-25 Jsr株式会社 液晶配向剤

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013127049A (ja) * 2011-11-15 2013-06-27 Jsr Corp 膜形成材料の製造方法、膜及び液晶表示素子
JP2015179100A (ja) * 2012-07-23 2015-10-08 シャープ株式会社 液晶表示装置
JP2014077925A (ja) * 2012-10-11 2014-05-01 Japan Display Inc 液晶表示装置
US20150168753A1 (en) * 2013-12-16 2015-06-18 Innolux Corporation Liquid crystal display panel
JP2016095491A (ja) * 2014-11-07 2016-05-26 Jsr株式会社 液晶配向剤、液晶配向膜及びその製造方法、液晶表示素子、並びに位相差フィルム及びその製造方法

Also Published As

Publication number Publication date
TW201835163A (zh) 2018-10-01
CN110352382A (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
CN104845642B (zh) 液晶取向剂、液晶取向膜、液晶显示元件、相位差膜及其制造方法、聚合物以及化合物
CN107338058B (zh) 液晶取向剂、液晶取向膜及其制造方法、液晶元件、聚合物以及化合物
JP6547461B2 (ja) 液晶配向剤、液晶配向膜、液晶表示素子、位相差フィルム及び位相差フィルムの製造方法
JP6597913B2 (ja) 液晶配向剤、液晶配向膜及び液晶素子
JP6672801B2 (ja) 液晶配向剤
JP6897791B2 (ja) 液晶配向剤、液晶配向膜及び液晶素子
TWI739929B (zh) 液晶配向劑、液晶配向膜、液晶元件及聚合體
WO2020148953A1 (ja) 液晶配向剤、液晶配向膜及び液晶素子
TWI746668B (zh) 液晶配向劑、液晶配向膜及液晶元件
TWI785018B (zh) 液晶配向劑、液晶配向膜、液晶元件及聚有機矽氧烷
CN111108433B (zh) 液晶元件的制造方法
JP7322875B2 (ja) 液晶配向剤、液晶配向膜及び液晶素子
WO2018168440A1 (ja) 液晶素子及びその製造方法
WO2018016263A1 (ja) 液晶素子の製造方法
KR20200098659A (ko) 액정 배향제, 액정 배향막, 액정 소자 및 액정 소자의 제조 방법
JP6617529B2 (ja) 液晶配向剤、液晶配向膜、液晶素子及び液晶配向膜の製造方法
CN112400135B (zh) 液晶取向剂、液晶取向膜、液晶元件及液晶元件的制造方法
JP2021103205A (ja) 液晶配向剤、液晶配向膜及び液晶素子
JP2023107736A (ja) 液晶配向剤、液晶配向膜、液晶素子及び液晶素子の製造方法
WO2019176276A1 (ja) 液晶配向剤、液晶配向膜及び液晶素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18768622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP