WO2018168115A1 - Laminate, method for producing same and electronic component - Google Patents

Laminate, method for producing same and electronic component Download PDF

Info

Publication number
WO2018168115A1
WO2018168115A1 PCT/JP2017/044192 JP2017044192W WO2018168115A1 WO 2018168115 A1 WO2018168115 A1 WO 2018168115A1 JP 2017044192 W JP2017044192 W JP 2017044192W WO 2018168115 A1 WO2018168115 A1 WO 2018168115A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
laminate
surface tension
underfill material
forming
Prior art date
Application number
PCT/JP2017/044192
Other languages
French (fr)
Japanese (ja)
Inventor
多田羅 了嗣
祐徳 山下
杉郎 下田
平井 剛
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2018168115A1 publication Critical patent/WO2018168115A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body

Definitions

  • the present invention relates to a laminate, a manufacturing method thereof, and an electronic component.
  • the chip and the substrate are reinforced with an adhesive called an underfill material in order to ensure connection reliability and mechanical strength between the chip and the substrate.
  • an adhesive called an underfill material
  • the location called a fillet is generally formed in the underfill material.
  • the fillet is a portion of the underfill material that is formed larger than the chip and protrudes from the chip. The fillet plays an important role in ensuring connection reliability and mechanical strength between the chip and the substrate (Patent Document 1).
  • the present invention provides an adhesive for forming an underfill material that can form a fillet with a good shape without bleeding, etc., and provides a method for producing a laminate having a fillet with a good shape. It is an object of the present invention to provide a laminate having a fillet of various shapes and an electronic component having the laminate.
  • the method for producing the laminate of the present invention comprises: A method for manufacturing a laminate in which a second substrate having electrode pads is laminated on a first substrate having electrode pads via an underfill material, Forming a resist having an opening corresponding to an electrode pad of the first substrate on the first substrate (1); Forming a solder electrode on a portion of the first substrate corresponding to the opening (2); On the solder electrode and / or on the second substrate, Using an adhesive for forming an underfill material containing inorganic particles and a dispersant having a critical surface tension greater than a surface tension of a surface in contact with the underfill material in the first substrate or the second substrate Forming a layer (3), and laminating the second substrate on the first substrate across the adhesive layer, and via the solder electrodes, the electrode pads of the first substrate and the second substrate And (4) forming an electrical connection structure with the electrode pad.
  • the step (2) may be a step (2 ′) of forming the solder electrode by filling the opening while heating the molten solder.
  • the said adhesive agent for underfill material formation contains an epoxy resin further, and also contains a hardening
  • the first substrate or the second substrate is a plasma processing substrate.
  • the critical surface tension of the inorganic particles is preferably larger than the critical surface tension of the dispersant, and the critical surface tension of the inorganic particles is preferably 70 mN / m or more.
  • the dispersant preferably has a surface tension of 45 to 70 mN / m.
  • a critical surface tension of a surface in contact with the underfill material in the first substrate and the second substrate is less than 45 mN / m.
  • the laminate of the present invention comprises a laminate produced by the laminate production method, the first substrate and the second substrate via an underfill material formed from the underfill material-forming adhesive. It is a laminated body formed by laminating.
  • the electronic component of the present invention has the laminate.
  • a laminate of the present invention According to the method for manufacturing a laminate of the present invention, it is possible to form a fillet having a good shape without an adhesive bleed, and a laminate having a good shape fillet can be manufactured.
  • FIG. 1 is a schematic cross-sectional view of a structure including a substrate in each step of the laminate manufacturing method according to the present invention.
  • FIG. 2 is a photomicrograph obtained by bright field observation and dark field observation of the fillet of the laminate.
  • FIG. 3 is a diagram showing the relationship between the critical surface tension of the SiN substrate and the elapsed time from the oxygen plasma treatment.
  • FIG. 4 is a diagram showing the relationship between the critical surface tension of the SiN substrate, the surface tension of the dispersant, and the critical surface tension of the inorganic particles with or without bleed in the laminate.
  • the method for producing a laminate according to the present invention includes: A method for manufacturing a laminate in which a second substrate having electrode pads is laminated on a first substrate having electrode pads via an underfill material, Forming a resist having an opening corresponding to an electrode pad of the first substrate on the first substrate (1); Forming a solder electrode on a portion of the first substrate corresponding to the opening (2); On the solder electrode and / or on the second substrate, Using an adhesive for forming an underfill material containing inorganic particles and a dispersant having a critical surface tension greater than a surface tension of a surface in contact with the underfill material in the first substrate or the second substrate Forming a layer (3), and laminating the second substrate on the first substrate across the adhesive layer, and via the solder electrodes, the electrode pads of the first substrate and the second substrate And (4) forming an electrical connection structure with the electrode pad.
  • the method for producing a laminate of the present invention is a method for producing a laminate in which a second substrate having electrode pads is laminated on a first substrate having electrode pads via an underfill material. That is, the laminate has a structure in which an underfill material is laminated on the first substrate, and the second substrate is laminated on the underfill material.
  • the laminate manufacturing method of the present invention may correspond to a laminate manufacturing method by the IMS (Injection Molded Solder) method described in US Publication No. 2002/0109228.
  • the laminate manufacturing method of the present invention corresponding to the laminate manufacturing method by the IMS method includes the steps (1) to (4), and the step (2) applies molten solder to the opening.
  • the method for producing a laminate of the present invention includes the steps (1) to (4).
  • steps (1) to (4) will be described with reference to FIG. (Process (1))
  • a resist having openings corresponding to electrode pads of the first substrate is formed on the first substrate.
  • a coating film 3 of a photosensitive resin composition is formed on a first substrate 1 having electrode pads 2.
  • the first substrate 1 is, for example, a semiconductor substrate, a glass substrate, a silicon substrate, a substrate formed by providing various metal films or various elements on the surface of a semiconductor plate, a glass plate, and a silicon plate.
  • the first substrate 1 has a large number of electrode pads 2.
  • the coating film 3 is formed by applying a photosensitive resin composition to the first substrate 1.
  • the photosensitive resin composition may be a photosensitive resin composition conventionally used for forming a resist.
  • the photosensitive resin composition usually includes a crosslinking agent such as a radically polymerizable compound such as a polyfunctional acrylate, or a cationic reactive compound such as methoxymethylmelamine or an epoxy resin, and is formed from the photosensitive resin composition.
  • the coating film 3 is crosslinked in Step 2 described later.
  • the coating method of the photosensitive resin composition is not particularly limited, and examples thereof include a spray method, a roll coating method, a spin coating method, a slit die coating method, a bar coating method, and an ink jet method.
  • the film thickness of the coating film 3 is usually 0.1 to 100 ⁇ m, preferably 1 to 80 ⁇ m, more preferably 5 to 50 ⁇ m.
  • the coating film 3 is selectively exposed, further developed, and heated to form a resist 5 having an opening 4 in a region corresponding to each electrode pad 2 as shown in FIG. Form.
  • the coating film 3 is partially exposed so that the openings 4 for accommodating the respective electrode pads 2 are formed, and thereafter developed and heated to form the openings 4 for accommodating the respective electrode pads 2.
  • a resist 5 having an opening 4 in a region corresponding to each electrode pad 2 is obtained.
  • the opening 4 is a hole that penetrates the resist 5.
  • the exposure, development and heating can be performed according to conventional methods.
  • the maximum width of the opening 4 is usually 0.1 to 10 times, preferably 0.5 to 2 times the film thickness of the coating film 3.
  • Step (2) is a step of forming a solder electrode 6 at a portion of the first substrate corresponding to the opening 4.
  • Examples of the method for forming the solder electrode 6 include an electrolytic plating method, a solder paste imprinting method, a solder ball transfer method, and an IMS method.
  • Step (2 ′) is a step of forming the solder electrode 6 by the IMS method.
  • the opening 4 is filled with molten solder while being heated.
  • molten solder 9 is injected from the IMS head 8 into the opening 4.
  • solder electrodes 6 are formed in the openings 4 as shown in FIG. 1 (2-2).
  • filling is usually performed while heating the molten solder at 250 ° C. or higher.
  • the resist may be peeled off.
  • the resist stripping method may be a conventionally used resist stripping method. Examples thereof include a wet process using a stripping solution and a dry process using ashing.
  • step (3) underfill is applied on the solder electrode 6 or on the second substrate 11 having the electrode pads 12 or on the solder electrode 6 and the second substrate 11 having the electrode pads 12.
  • a material forming adhesive is applied to form an adhesive layer. If the resist is not removed after step (2), the resist 5 and the solder electrode 6 or the second substrate 11 having the electrode pad 12 or the resist 5 and the solder electrode 6 are removed. An adhesive for forming an underfill material is applied on the second substrate 11 having the electrode pads 12 and an adhesive layer.
  • FIG. 1 (3) shows a state in which an adhesive layer 7 is formed by applying an underfill material forming adhesive on the second substrate 11 having the electrode pads 12.
  • the second substrate 11 is, for example, a semiconductor substrate, a glass substrate, a silicon substrate, a semiconductor plate, a substrate formed by providing various metal films on the surface of the glass plate and the silicon plate, and the like.
  • the surface of the resist 5 and the solder electrode 6 and / or the second substrate 11 to which the underfill material forming adhesive is applied may be subjected to a pretreatment such as a plasma treatment in advance.
  • the adhesive layer 7 can be formed by applying an underfill material forming adhesive by a method such as a dipping method, a spin coating method, a spray coating method, a blade method, a dispensing method, or an ink jet method.
  • the underfill material-forming adhesive contains inorganic particles and a dispersant as fillers in addition to a binder as a main component.
  • the dispersant stabilizes the dispersion of the inorganic particles.
  • the inorganic particles promote heat conduction from the semiconductor substrate and lower the temperature of the semiconductor substrate, thereby stably operating an electronic component having a stacked body formed by stacking the semiconductor substrates.
  • the inorganic particles suppress deformation due to thermal expansion / contraction of the adhesive layer and improve the connection reliability of the electronic component.
  • Examples of the inorganic particles include at least one selected from the group consisting of metal, carbon, metal carbide, metal oxide, and metal nitride.
  • Examples of carbon include carbon black, graphite, fullerene, diamond and the like.
  • Examples of the metal carbide include silicon carbide, titanium carbide, tungsten carbide and the like.
  • Examples of the metal oxide include magnesium oxide, aluminum oxide, silicon oxide, calcium oxide, zinc oxide, yttrium oxide, zirconium oxide, cerium oxide, ytterbium oxide, sialon (ceramics composed of silicon, aluminum, oxygen, and nitrogen). Etc.
  • Examples of the metal nitride include boron nitride, aluminum nitride, and silicon nitride.
  • the inorganic particles are preferably oxides and nitrides.
  • examples of such inorganic particles include alumina (Al 2 O 3 ), aluminum nitride (AlN), boron nitride (BN), silicon nitride (Si 3 N 4 ), silica (SiO 2 ), and the like.
  • the said inorganic particle may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the number average particle diameter of the inorganic particles by dynamic light scattering is preferably 1 to 5,000 nm, more preferably 10 to 2,000 nm.
  • the content of the inorganic particles is usually 20 to 80% by mass in the solid content of the adhesive for forming the underfill material.
  • the dispersant has a function of stabilizing the dispersion of the inorganic particles and the binder.
  • the surface tension of the dispersant is such that the surface of the first substrate or the second substrate in contact with the underfill material, that is, the surface on which the adhesive layer is formed on the first substrate or the adhesive layer on the second substrate. It has the characteristic that it is larger than the critical surface tension of the formed surface.
  • the surface tension of the dispersant contained in the adhesive layer 7 is larger than the critical surface tension of the surface of the second substrate 11 on which the adhesive layer 7 is formed.
  • fillet bleeding may occur due to the underfill material protruding beyond the chip larger than expected. Such fillet bleed may cause a decrease in connection reliability.
  • the cause of the fillet bleeding is separation of the filler and the binder contained in the adhesive for forming the underfill material. Fillet bleeds may or may not appear even when using the same underfill.
  • the inventor of the present invention has found that the presence or absence of fillet bleeding depends on the elapsed time from the plasma treatment of the substrate to the formation of the underfill material. Furthermore, when the changes in plasma processing and subsequent time passage were examined, it was found that the critical surface tension of the substrate was greatly changed.
  • the inventors of the present invention established the following relationship in view of the fact that the critical surface tension correlates with the bleed of the fillet and, as described above, the contamination of the fillet is caused by the separation of the filler and the binder. It has been found that the contamination of the fillet can be prevented.
  • the reason why the generation of fillet bleeding depends on the elapsed time from the plasma treatment of the substrate to the formation of the underfill material is that the critical surface tension of the surface of the substrate has decreased with the elapsed time. Since the critical surface tension of the substrate is lower than the surface tension of the dispersant, bleed occurs in the fillet of the underfill formed immediately after the plasma treatment, and the underfill formed after a certain time has elapsed since the plasma treatment. It is thought that the phenomenon that bleed does not occur appears in the fillet.
  • the critical surface tension of the dispersant is larger than the critical surface tension of the surface in contact with the underfill material in the first substrate or the second substrate, bleed occurs in the fillet of the underfill. It becomes difficult to do. It is preferable that the surface tension of the dispersant is larger than the critical surface tension of any of the surface in contact with the underfill material in the first substrate and the surface in contact with the underfill material in the second substrate.
  • the critical surface tension can be determined with reference to Japanese Patent Application Laid-Open No. 2010-164980.
  • Zisman Plot The contact angle ⁇ is measured using various liquids having a surface tension ⁇ LV, and ⁇ LV and cos ⁇ are plotted. When ⁇ LV approaches ⁇ SV on the solid surface, ⁇ decreases, and the contact angle ⁇ becomes 0 ° at a certain value of ⁇ LV.
  • Dispersants include amino group-containing block copolymers, acid group-containing polymers, hyperbranched amino group-containing polyesters, cationic group-containing acrylic polymers, carboxyl group-containing polymer modified products, polycarboxylic acid ester-containing polyaminoamide salts, nitrogen-containing grafts Polymer, High molecular fatty acid derivative, Phosphoric acid derivative of organic modified polymer, Modified polyester, Urethane polymer, Polyesteramine salt, Long chain amine salt of polycarboxylic acid, Polyphosphate ester, Basic functional group-containing copolymer, Modified polyvinyl alcohol And so on.
  • the dispersant is selected according to the first substrate and the second substrate to be used so that the above conditions are satisfied.
  • the surface tension of the dispersant is preferably 10 to 70 mN / m, more preferably 20 to 65 mN / m, and more preferably 30 to 60 mN / m. Further preferred.
  • the critical surface tension of the surface in contact with the underfill material in the first substrate and the second substrate is preferably less than 50 mN / m, and less than 45 N / m. It is more preferable.
  • the numerical value of the critical surface tension is a numerical value after the pretreatment when a pretreatment such as a plasma treatment is performed, and an underfill is applied when the critical surface tension changes with time after the pretreatment. It is a numerical value at the time of applying the material forming adhesive.
  • the critical surface tension of the inorganic particles is larger than the surface tension of the dispersant because separation of the filler and the binder can be suppressed and the fouling of the fillet can be prevented.
  • the critical surface tension of the inorganic particles is preferably 70 mN / m or more, and more preferably 75 N / m or more.
  • the content of the dispersant is usually 0.1 to 5% by mass in the adhesive for forming the underfill material.
  • the underfill material-forming adhesive preferably contains an epoxy resin as a binder.
  • the epoxy resin may be a low molecule or a polymer as long as it has one or more epoxy groups in the molecule.
  • low molecules are preferable because generation of voids in the adhesive layer can be satisfactorily suppressed.
  • the epoxy resin preferably has two or more epoxy groups in the molecule because the semiconductor element can be satisfactorily bonded.
  • the epoxy resin include the same compounds as the “compound having two or more epoxy groups” mentioned in the description of the aromatic secondary amine described later. Among these compounds, there are 3 epoxy groups such as a compound having 3 epoxy groups having no aromatic ring, a compound having 3 epoxy groups having an aromatic ring, and a compound having 4 or more epoxy groups.
  • a compound having two or more compounds is preferable because it can form a three-dimensional network structure by reaction with an aromatic secondary amine described later, and can satisfactorily bond a semiconductor element.
  • the content of the binder is usually 20 to 80% by mass in the adhesive for forming the underfill material.
  • the adhesive for forming the underfill material further contains a curing agent in addition to the binder, the inorganic particles, and the dispersant.
  • a curing agent in addition to the binder, the inorganic particles, and the dispersant.
  • an epoxy resin is included as a binder
  • an amine is usually used as a curing agent.
  • the amine include aliphatic primary to tertiary amines and aromatic primary to tertiary amines, and among these, aromatic primary amines and aromatic secondary amines are preferable.
  • the aromatic secondary amine can be obtained, for example, by reacting an aromatic primary amine with a compound having two or more epoxy groups.
  • the aromatic primary amine include aniline, 1-naphthylamine, 2-naphthylamine, 2-aminophenol, 3-aminophenol, 4-aminophenol, 4-amino-3-methylphenol, and 2-amino-4.
  • Examples of the compound having two or more epoxy groups include a compound having two epoxy groups, a compound having three epoxy groups, and a compound having four or more epoxy groups.
  • Examples of the compound having two epoxy groups include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, epoxypropoxypropyl-terminated poly Dimethylsiloxane, neopentyl glycol diglycidyl ether, glycerol diglycidyl ether, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, polypropylene glycol diglycidyl ether having a molecular weight of 2000 or less, and polyethylene glycol diglycidyl having a molecular weight of 2000 or less
  • Examples of the compound having three epoxy groups include compounds having three epoxy groups having no aromatic ring, such as trimethylolpropane triglycidyl ether and glycerol triglycidyl ether; Tetraglycidyl-3,4'-diaminodiphenyl ether, tetraglycidyl-3,3'-diaminodiphenyl ether, tetraglycidyl-3,4'-diamino-2,2'-dimethyldiphenyl ether, tetraglycidyl-4,4'-diaminodiphenyl ether 3 epoxy groups having an aromatic ring such as tetraglycidyl-3,4'-diamino-5-methyldiphenylmethane, tetraglycidyl-3,4'-diamino-2'-methyldiphenylmethane and triglycidyl-m-aminophenol And the like.
  • Examples of the compound having 4 or more epoxy groups include compounds having 4 or more epoxy groups such as trimethylolpropane polyglycidyl ether having a molecular weight of 2000 or less and sorbitol polyglycidyl ether having a molecular weight of 2000 or less.
  • the equivalent ratio of the hydrogen of the amino group contained in the aromatic primary amine to the epoxy group contained in the compound having two epoxy groups (amine) is usually 2.0 or more, preferably 2 to 10.
  • the reaction temperature is preferably 60 to 250 ° C., more preferably 80 to 180 ° C.
  • the amine content in the adhesive for forming an underfill material is preferably 0.5 to 1.5 mol, preferably 0.5 to 1.5 mol of amine hydrogen atoms with respect to 1 mol of epoxy groups contained in the epoxy resin. Is an amount of 0.7 to 1.3 mol.
  • the underfill material-forming adhesive may contain a diluent such as an organic solvent, a flux, a surfactant, an emulsifier, a low elastic agent, a diluent, an antifoaming agent, an ion trapping agent, and the like.
  • a diluent such as an organic solvent, a flux, a surfactant, an emulsifier, a low elastic agent, a diluent, an antifoaming agent, an ion trapping agent, and the like.
  • the second substrate is stacked on the first substrate with the adhesive layer interposed therebetween, and the electrode pads of the first substrate and the electrode pads of the second substrate are interposed via the solder electrodes.
  • the electrical connection structure is formed.
  • the first substrate having the solder electrode 6 produced in the step (2) on the second substrate 11 having the adhesive layer 7 produced in the step (3). are arranged so that each electrode pad 12 of the second substrate 11 faces each solder electrode 6 of the first substrate 1.
  • FIG. 1 (4-2) shows the laminate 10 manufactured by the method for manufacturing a laminate of the present invention when the resist is not removed after the step (2).
  • the laminated body 10 includes the electrode pads 2 of the first substrate 1 and the electrodes of the second substrate 11 via the solder electrodes 6 shown in FIGS. 1 (2) and (3) manufactured by the steps (1) to (3). It has an electrical connection structure formed by connecting the pad 12.
  • the electrode pad 12 of the second substrate 11 faces the electrode pad 2 of the first substrate 1 when the first substrate 1 and the second substrate 11 are opposed to each other with the surfaces on which the electrode pads are formed facing each other. In the position.
  • the electrode pad 12 of the second substrate 11 is brought into contact with the adhesive layer 7 shown in FIG. 1 (3) and heated and / or pressurized. Then, the second substrate 11, the resist 5, and the solder electrode 6 are bonded together by the adhesive, and at the same time, the solder electrode 6 and the electrode pad 12 are soldered, and the adhesive layer 7 becomes the underfill material 13. In the underfill material 13, the portion protruding from the first substrate 1 is a fillet 14.
  • substrate 11 are electrically connected via the solder electrode 6, an electrical connection structure is formed, and the laminated body 10 is obtained.
  • the heating temperature is usually 100 to 300 ° C.
  • the pressing force is usually 0.1 to 10 MPa. Fillets are usually formed in the underfill material thus formed, but no fillet bleeding occurs as described above.
  • the laminate of the present invention comprises an underfill material formed from the laminate produced by the method for producing a laminate, the first substrate, and the second substrate from the underfill material forming adhesive according to the present invention. It is the laminated body formed by laminating
  • the electronic component of the present invention is an electronic component having the above-described laminate.
  • Examples of the electronic component include a semiconductor element, a display element, and a power device.
  • Epoxy resin Bisphenol A type epoxy resin (trade name “LX-01”, manufactured by Osaka Soda Co., Ltd.)
  • Curing agent 4,4′-diaminodiphenylsulfone (trade name “Seika Cure S”, manufactured by Wakayama Seika Kogyo Co., Ltd.)
  • Inorganic particles spherical silica (trade name “Sciquas 0.7 ⁇ m”, manufactured by Sakai Chemical Industry Co., Ltd.)
  • Dispersant A Trade name “Disperbyk-2155” (manufactured by Big Chemie Japan Co., Ltd.)
  • Dispersant B Trade name “Dispers685” (manufactured by Evonik Japan Co., Ltd.)
  • Dispersant C Trade name “ED351” (manufactured by Enomoto Kasei Co., Ltd.) Flux: 8-quinolinol (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • Example XY and “Comparative Example XY” are indicated, but the number corresponding to X indicates the type of the underfill forming adhesive used. The number corresponding to Y is attached corresponding to the time from when the oxygen plasma treatment is applied until the adhesive for forming the underfill is applied onto the substrate II.
  • Comparative Example 1-1 According to FIG. 1, a laminate was produced by the IMS method described in Example 2 of WO2016 / 167036. Solder bumps were formed on the electrodes of the substrate I (first substrate 1) formed into a dicing chip.
  • an oxygen plasma treatment (oxygen pressure: 21 Pa, RF output: 200 W, 60 seconds) was performed as a pretreatment on the SiN substrate II having electrode pads.
  • the substrates are electrically connected via the solder bumps. 1 was placed.
  • a pressure of 0.1 MPa was applied to both substrates at 250 ° C. for 20 seconds using a die bonder so that both substrates were bonded via an adhesive.
  • the adhesive was cured by heating in an oven at 170 ° C. for 2 hours to obtain a laminate.
  • the critical interface tension of the substrate II immediately after the oxygen plasma treatment was 48 mN / m.
  • Comparative Example 2-1 A laminate was produced in the same manner as Comparative Example 1-1 except that the underfill forming adhesive 2 was used instead of the underfill forming adhesive 1. When the following method was used to evaluate the presence or absence of fillet bleeding, bleeding was observed.
  • Comparative Example 3-1 A laminate was produced in the same manner as Comparative Example 1-1 except that the underfill forming adhesive 3 was used instead of the underfill forming adhesive 1. When the following method was used to evaluate the presence or absence of fillet bleeding, bleeding was observed.
  • Example 1-2 A laminate was manufactured in the same manner as Comparative Example 1-1 except that the underfill-forming adhesive 1 was applied onto the substrate II after 17 hours had passed after the oxygen plasma treatment. After 17 hours from the oxygen plasma treatment, the critical interface tension of the substrate II was 38 mN / m. When the obtained laminate was evaluated for the presence or absence of fillet bleed by the following method, no bleed was observed.
  • Example 2-2 A laminate was produced in the same manner as in Example 1-2 except that the underfill forming adhesive 2 was used instead of the underfill forming adhesive 1. When the following method was used to evaluate the presence or absence of fillet bleed, no bleed was observed.
  • Example 3-2 A laminate was produced in the same manner as in Example 1-2 except that the underfill forming adhesive 3 was used instead of the underfill forming adhesive 1. When the following method was used to evaluate the presence or absence of fillet bleeding, bleeding was observed.
  • Example 1-3 A laminate was manufactured in the same manner as Comparative Example 1-1 except that the underfill-forming adhesive 1 was applied onto the substrate II after 22 hours had passed after the oxygen plasma treatment.
  • the critical interfacial tension of the substrate II after 17 hours from the oxygen plasma treatment was 35 mN / m.
  • Example 2-3 A laminate was produced in the same manner as in Example 1-3 except that the underfill forming adhesive 2 was used instead of the underfill forming adhesive 1. When the following method was used to evaluate the presence or absence of fillet bleed, no bleed was observed.
  • Example 3-3 A laminate was produced in the same manner as in Example 1-3 except that the underfill forming adhesive 3 was used instead of the underfill forming adhesive 1. When the following method was used to evaluate the presence or absence of fillet bleeding, bleeding was observed.
  • Example 1-4 A laminate was manufactured in the same manner as Comparative Example 1-1 except that the underfill-forming adhesive 1 was applied onto the substrate II after 50 hours had passed after the oxygen plasma treatment.
  • the critical interfacial tension of the substrate II after 17 hours from the oxygen plasma treatment was 30 mN / m.
  • Example 2-4 A laminate was produced in the same manner as in Example 1-4, except that the underfill forming adhesive 2 was used instead of the underfill forming adhesive 1. When the following method was used to evaluate the presence or absence of fillet bleed, no bleed was observed.
  • Example 3-4 A laminate was produced in the same manner as in Example 1-4 except that the underfill forming adhesive 3 was used instead of the underfill forming adhesive 1. When the following method was used to evaluate the presence or absence of fillet bleed, no bleed was observed.
  • the fillet blade was evaluated by observing the fillet of the laminate. As shown in FIG. 2, the evaluation is performed by applying a uniform light to the measurement sample and observing the reflected light, and a dark field observation in which the sample is irradiated with light obliquely and the scattered light is observed. Went. In bright field observation, as shown by the arrow in the part surrounded by the broken line in the left diagram of FIG. Since no bleed image could be confirmed on the outside, it was assumed that the bleed does not contain an inorganic filler that scatters light, and the organic component is the main component. That is, bleed is considered to be caused by separation of the inorganic filler and the organic component.
  • FIG. 3 shows the change in the critical surface tension of the SiN substrate II with respect to the elapsed time from the oxygen plasma treatment.
  • FIG. 4 is a diagram showing the relationship between the critical surface tension of the SiN substrate II, the surface tension of the dispersant, and the critical surface tension of the inorganic particles with or without bleeding of the laminate.

Abstract

The present invention is a method for producing a laminate, wherein a second substrate having an electrode pad is laminated on a first substrate having an electrode pad, with an underfill material being interposed therebetween. This method for producing a laminate comprises: a step (1) wherein a resist which comprises an opening that corresponds to the electrode pad of the first substrate is formed on the first substrate; a step (2) wherein a solder electrode is formed in a region of the first substrate, said region corresponding to the opening; a step (3) wherein an adhesive layer is formed on the solder electrode and/or the second substrate with use of an adhesive for underfill material formation, said adhesive containing inorganic particles and a dispersant that has a surface tension higher than the critical surface tension of the surface of the first substrate or the second substrate, said surface being in contact with the underfill material; and a step (4) wherein the second substrate is laminated on the first substrate such that the adhesive layer is sandwiched therebetween, thereby forming an electrical connection structure of the electrode pad of the first substrate and the electrode pad of the second substrate via the solder electrode. According to this method for producing a laminate, a fillet which is free from bleeding of an adhesive or the like and has a good shape is able to be formed, and therefore a laminate which has a fillet having a good shape is able to be produced.

Description

積層体およびその製造方法並びに電子部品LAMINATE, MANUFACTURING METHOD THEREOF, AND ELECTRONIC COMPONENT
 本発明は、積層体およびその製造方法並びに電子部品に関する。 The present invention relates to a laminate, a manufacturing method thereof, and an electronic component.
 フリップチップ方式の実装では、チップと基板との接続信頼性や機械的強度を確保するために、チップと基板との間をアンダーフィル材と呼ばれる接着剤で補強している。また、アンダーフィル材には、一般的に、フィレットと呼ばれる箇所が形成される。フィレットは、チップよりも大きく形成されたアンダーフィル材において、チップからはみ出した部分のことである。フィレットは、チップと基板との接続信頼性や機械的強度を確保する上で重要な役割を担っている(特許文献1)。 In flip chip mounting, the chip and the substrate are reinforced with an adhesive called an underfill material in order to ensure connection reliability and mechanical strength between the chip and the substrate. Moreover, the location called a fillet is generally formed in the underfill material. The fillet is a portion of the underfill material that is formed larger than the chip and protrudes from the chip. The fillet plays an important role in ensuring connection reliability and mechanical strength between the chip and the substrate (Patent Document 1).
特開2012-107149号公報JP 2012-107149 A
 チップと基板との接続信頼性や機械的強度を確保するためには良好な形状のフィレットを形成する必要がある。さらに、複数のチップを基板に高密度で実装する場合、良好な形状のフィレットを形成する必要がある。たとえば、想定よりも大きくアンダーフィル材がはみ出してしまうことによりフィレットのにじみ(ブリード)が生じると、接続信頼性の低下が生じる場合がある。 ¡In order to ensure the connection reliability and mechanical strength between the chip and the substrate, it is necessary to form a fillet with a good shape. Furthermore, when a plurality of chips are mounted on a substrate at a high density, it is necessary to form a fillet with a good shape. For example, if the underfill material protrudes more than expected and the fillet bleeds (bleeds), the connection reliability may be lowered.
 本発明は、ブリードなどがない良好な形状のフィレットを形成することができる、アンダーフィル材形成用接着剤を提供すること、良好な形状のフィレットを有する積層体の製造方法を提供すること、良好な形状のフィレットを有する積層体を提供すること、および当該積層体を有する電子部品を提供することを目的とする。 The present invention provides an adhesive for forming an underfill material that can form a fillet with a good shape without bleeding, etc., and provides a method for producing a laminate having a fillet with a good shape. It is an object of the present invention to provide a laminate having a fillet of various shapes and an electronic component having the laminate.
 本発明の積層体の製造方法は、
 電極パッドを有する第1基板上に、アンダーフィル材を介して、電極パッドを有する第2基板を積層する積層体の製造方法であって、
 前記第1基板上に、該第1基板が有する電極パッドに対応する開口部を備えたレジストを形成する工程(1)、
 前記第1基板の、前記開口部に対応する部位にはんだ電極を形成する工程(2)、
 前記はんだ電極上、および/または前記第2基板上に、
 無機粒子と、臨界表面張力が、前記第1基板または前記第2基板における前記アンダーフィル材と接する面の表面張力より大きい分散剤とを含有するアンダーフィル材形成用接着剤を用いて、接着剤層を形成する工程(3)、および
 前記接着剤層を挟んで、前記第1基板に前記第2基板を積層し、前記はんだ電極を介して、前記第1基板の電極パッドと前記第2基板の電極パッドとの電気的接続構造を形成する工程(4) を有する。
The method for producing the laminate of the present invention comprises:
A method for manufacturing a laminate in which a second substrate having electrode pads is laminated on a first substrate having electrode pads via an underfill material,
Forming a resist having an opening corresponding to an electrode pad of the first substrate on the first substrate (1);
Forming a solder electrode on a portion of the first substrate corresponding to the opening (2);
On the solder electrode and / or on the second substrate,
Using an adhesive for forming an underfill material containing inorganic particles and a dispersant having a critical surface tension greater than a surface tension of a surface in contact with the underfill material in the first substrate or the second substrate Forming a layer (3), and laminating the second substrate on the first substrate across the adhesive layer, and via the solder electrodes, the electrode pads of the first substrate and the second substrate And (4) forming an electrical connection structure with the electrode pad.
 前記積層体の製造方法において、前記工程(2)を、前記開口部に溶融はんだを加熱しながら充填して、はんだ電極を形成する工程(2')とすることができる。
 前記積層体の製造方法において、前記アンダーフィル材形成用接着剤が、さらにエポキシ樹脂を含有することが好ましく、さらに硬化剤を含有することが好ましい。
In the method for manufacturing the laminated body, the step (2) may be a step (2 ′) of forming the solder electrode by filling the opening while heating the molten solder.
In the manufacturing method of the said laminated body, it is preferable that the said adhesive agent for underfill material formation contains an epoxy resin further, and also contains a hardening | curing agent.
 前記積層体の製造方法において、前記第1基板または前記第2基板が、プラズマ処理基板であることが好ましい。
 前記積層体の製造方法において、前記無機粒子の臨界表面張力が、前記分散剤の臨界表面張力よりも大きいことが好ましく、前記無機粒子の臨界表面張力が、70mN/m以上であることが好ましい。
In the method for manufacturing the laminate, it is preferable that the first substrate or the second substrate is a plasma processing substrate.
In the method for producing a laminate, the critical surface tension of the inorganic particles is preferably larger than the critical surface tension of the dispersant, and the critical surface tension of the inorganic particles is preferably 70 mN / m or more.
 前記積層体の製造方法において、前記分散剤の表面張力が、45~70mN/mであることが好ましい。
 前記積層体の製造方法において、前記第1基板および前記第2基板における前記アンダーフィル材と接する面の臨界表面張力が45mN/m未満であることが好ましい。
In the method for producing a laminate, the dispersant preferably has a surface tension of 45 to 70 mN / m.
In the method for manufacturing the laminated body, it is preferable that a critical surface tension of a surface in contact with the underfill material in the first substrate and the second substrate is less than 45 mN / m.
 本発明の積層体は、前記積層体の製造方法によって製造された積層体および、前記第1基板および前記第2基板を、前記アンダーフィル材形成用接着剤から形成されたアンダーフィル材を介して積層して形成された積層体である。
 本発明の電子部品は、前記積層体を有する。
The laminate of the present invention comprises a laminate produced by the laminate production method, the first substrate and the second substrate via an underfill material formed from the underfill material-forming adhesive. It is a laminated body formed by laminating.
The electronic component of the present invention has the laminate.
 本発明の積層体の製造方法によれば、接着剤のブリードなどのない良好な形状のフィレットを形成することができ、良好な形状のフィレットを有する積層体を製造することができる。 According to the method for manufacturing a laminate of the present invention, it is possible to form a fillet having a good shape without an adhesive bleed, and a laminate having a good shape fillet can be manufactured.
図1は、本発明に係る積層体の製造方法の各工程における基板を含む構造体の模式断面図である。FIG. 1 is a schematic cross-sectional view of a structure including a substrate in each step of the laminate manufacturing method according to the present invention. 図2は、積層体のフィレットを明視野観察および暗視野観察して得られた顕微鏡写真である。FIG. 2 is a photomicrograph obtained by bright field observation and dark field observation of the fillet of the laminate. 図3は、SiN基板の臨界表面張力と酸素プラズマ処理からの経過時間との関係を示す図である。FIG. 3 is a diagram showing the relationship between the critical surface tension of the SiN substrate and the elapsed time from the oxygen plasma treatment. 図4は、積層体のブリードの有無についての、SiN基板の臨界表面張力、分散剤の表面張力および無機粒子の臨界表面張力の関係を示す図である。FIG. 4 is a diagram showing the relationship between the critical surface tension of the SiN substrate, the surface tension of the dispersant, and the critical surface tension of the inorganic particles with or without bleed in the laminate.
[積層体の製造方法]
 本発明に係る積層体の製造方法は、
 電極パッドを有する第1基板上に、アンダーフィル材を介して、電極パッドを有する第2基板を積層する積層体の製造方法であって、
 前記第1基板上に、該第1基板が有する電極パッドに対応する開口部を備えたレジストを形成する工程(1)、
 前記第1基板の、前記開口部に対応する部位にはんだ電極を形成する工程(2)、
 前記はんだ電極上、および/または前記第2基板上に、
 無機粒子と、臨界表面張力が、前記第1基板または前記第2基板における前記アンダーフィル材と接する面の表面張力より大きい分散剤とを含有するアンダーフィル材形成用接着剤を用いて、接着剤層を形成する工程(3)、および
 前記接着剤層を挟んで、前記第1基板に前記第2基板を積層し、前記はんだ電極を介して、前記第1基板の電極パッドと前記第2基板の電極パッドとの電気的接続構造を形成する工程(4) を有する。
[Manufacturing method of laminate]
The method for producing a laminate according to the present invention includes:
A method for manufacturing a laminate in which a second substrate having electrode pads is laminated on a first substrate having electrode pads via an underfill material,
Forming a resist having an opening corresponding to an electrode pad of the first substrate on the first substrate (1);
Forming a solder electrode on a portion of the first substrate corresponding to the opening (2);
On the solder electrode and / or on the second substrate,
Using an adhesive for forming an underfill material containing inorganic particles and a dispersant having a critical surface tension greater than a surface tension of a surface in contact with the underfill material in the first substrate or the second substrate Forming a layer (3), and laminating the second substrate on the first substrate across the adhesive layer, and via the solder electrodes, the electrode pads of the first substrate and the second substrate And (4) forming an electrical connection structure with the electrode pad.
 本発明の積層体の製造方法は、電極パッドを有する第1基板上に、アンダーフィル材を介して、電極パッドを有する第2基板を積層する積層体の製造方法である。つまり、前記積層体は、前記第1基板上にアンダーフィル材が積層され、そのアンダーフィル材上に前記第2基板が積層された構造を有する。 The method for producing a laminate of the present invention is a method for producing a laminate in which a second substrate having electrode pads is laminated on a first substrate having electrode pads via an underfill material. That is, the laminate has a structure in which an underfill material is laminated on the first substrate, and the second substrate is laminated on the underfill material.
 また、本発明の積層体の製造方法は、米国公開特許2002/0109228号公報に記載のIMS(インジェクション・モールデッド・ソルダー)法による積層体の製造方法に対応していてもよい。 Further, the laminate manufacturing method of the present invention may correspond to a laminate manufacturing method by the IMS (Injection Molded Solder) method described in US Publication No. 2002/0109228.
 つまり、IMS法による積層体の製造方法に対応する本発明の積層体の製造方法は、前記工程(1)~(4)を有し、前記工程(2)が、前記開口部に溶融はんだを加熱しながら充填して、はんだ電極を形成する工程(2')である。 In other words, the laminate manufacturing method of the present invention corresponding to the laminate manufacturing method by the IMS method includes the steps (1) to (4), and the step (2) applies molten solder to the opening. This is a step (2 ′) in which a solder electrode is formed by filling with heating.
 本発明の積層体の製造方法は、前記工程(1)~(4)を含む。以下、工程(1)~(4)を、図1を参照しながら説明する。
(工程(1))
 工程(1)では、第1基板上に、前記第1基板が有する電極パッドに対応する開口部を備えたレジストを形成する。
The method for producing a laminate of the present invention includes the steps (1) to (4). Hereinafter, steps (1) to (4) will be described with reference to FIG.
(Process (1))
In the step (1), a resist having openings corresponding to electrode pads of the first substrate is formed on the first substrate.
 たとえば、まず、図1(1-1)に示すように、電極パッド2を有する第1基板1上に感光性樹脂組成物の塗膜3を形成する。
 第1基板1は、たとえば半導体基板、ガラス基板、シリコン基板、並びに半導体板、ガラス板およびシリコン板の表面に各種金属膜や各種素子などを設けて形成される基板などである。第1基板1は多数の電極パッド2を有している。
For example, first, as shown in FIG. 1 (1-1), a coating film 3 of a photosensitive resin composition is formed on a first substrate 1 having electrode pads 2.
The first substrate 1 is, for example, a semiconductor substrate, a glass substrate, a silicon substrate, a substrate formed by providing various metal films or various elements on the surface of a semiconductor plate, a glass plate, and a silicon plate. The first substrate 1 has a large number of electrode pads 2.
 塗膜3は、感光性樹脂組成物を第1基板1に塗布等することにより形成される。前記感光性樹脂組成物は、レジストの形成に従来使用される感光性樹脂組成物であって差し支えない。感光性樹脂組成物は、通常、多官能アクリレート等のラジカル重合性化合物や、メトキシメチルメラミンやエポキシ樹脂等のカチオン反応性化合物等の架橋剤を含んでおり、感光性樹脂組成物から形成された塗膜3は、後述の工程2において架橋される。感光性樹脂組成物の塗布方法としては、特に限定されず、例えば、スプレー法、ロールコート法、スピンコート法、スリットダイ塗布法、バー塗布法、インクジェット法を挙げることができる。塗膜3の膜厚は、通常0.1~100μm、好ましくは1~80μm、より好ましくは5~50μmである。 The coating film 3 is formed by applying a photosensitive resin composition to the first substrate 1. The photosensitive resin composition may be a photosensitive resin composition conventionally used for forming a resist. The photosensitive resin composition usually includes a crosslinking agent such as a radically polymerizable compound such as a polyfunctional acrylate, or a cationic reactive compound such as methoxymethylmelamine or an epoxy resin, and is formed from the photosensitive resin composition. The coating film 3 is crosslinked in Step 2 described later. The coating method of the photosensitive resin composition is not particularly limited, and examples thereof include a spray method, a roll coating method, a spin coating method, a slit die coating method, a bar coating method, and an ink jet method. The film thickness of the coating film 3 is usually 0.1 to 100 μm, preferably 1 to 80 μm, more preferably 5 to 50 μm.
 続いて、塗膜3を選択的に露光し、さらに現像、加熱することにより、図1(1-2)に示すような、各電極パッド2に対応する領域に開口部4を有するレジスト5を形成する。 Subsequently, the coating film 3 is selectively exposed, further developed, and heated to form a resist 5 having an opening 4 in a region corresponding to each electrode pad 2 as shown in FIG. Form.
 つまり、各電極パッド2を収容する開口部4が形成されるように塗膜3に対して部分的に露光を行い、その後現像、加熱を行って、各電極パッド2を収容する開口部4を形成する。その結果、各電極パッド2に対応する領域に開口部4を有するレジスト5が得られる。開口部4は、レジスト5を貫通する孔である。露光、現像および加熱に関しては、従来法に則して行うことができる。開口部4の最大幅は、通常、塗膜3の膜厚の0.1~10倍、好ましくは0.5~2倍である。 That is, the coating film 3 is partially exposed so that the openings 4 for accommodating the respective electrode pads 2 are formed, and thereafter developed and heated to form the openings 4 for accommodating the respective electrode pads 2. Form. As a result, a resist 5 having an opening 4 in a region corresponding to each electrode pad 2 is obtained. The opening 4 is a hole that penetrates the resist 5. The exposure, development and heating can be performed according to conventional methods. The maximum width of the opening 4 is usually 0.1 to 10 times, preferably 0.5 to 2 times the film thickness of the coating film 3.
(工程(2))
 工程(2)は、前記第1基板の、開口部4に対応する部位にはんだ電極6を形成する工程である。はんだ電極6の形成方法としては、例えば、電解メッキ法、半田ペースト刷り込み法、半田ボール振り込み法、並びにIMS法が挙げられる。
(Process (2))
Step (2) is a step of forming a solder electrode 6 at a portion of the first substrate corresponding to the opening 4. Examples of the method for forming the solder electrode 6 include an electrolytic plating method, a solder paste imprinting method, a solder ball transfer method, and an IMS method.
 工程(2')は、IMS法によりはんだ電極6を形成する工程である。
 工程(2')では、開口部4に溶融はんだを加熱しながら充填する。図1(2-1)に示すように、IMSヘッド8から溶融はんだ9を開口部4に注入する。その後冷却することによって、図1(2-2)に示すように、各開口部4にはんだ電極6が形成される。IMS法においては、通常、250℃以上に溶融はんだを加熱しながら充填を行う。
Step (2 ′) is a step of forming the solder electrode 6 by the IMS method.
In the step (2 ′), the opening 4 is filled with molten solder while being heated. As shown in FIG. 1 (2-1), molten solder 9 is injected from the IMS head 8 into the opening 4. Thereafter, by cooling, solder electrodes 6 are formed in the openings 4 as shown in FIG. 1 (2-2). In the IMS method, filling is usually performed while heating the molten solder at 250 ° C. or higher.
 開口部4に溶融はんだを加熱しながら充填する方法には特に制限はなく、IMS法以外の充填方法を採用することもできる。
 工程(2)の後、レジストを剥離してもよい。レジストの剥離方法は、従来使用されるレジストの剥離方法で行えばよく、例えば、剥離液によるウェットプロセスやアッシングによるドライプロセスが挙げられる。
There is no particular limitation on the method for filling the opening 4 while heating the molten solder, and a filling method other than the IMS method can also be adopted.
After step (2), the resist may be peeled off. The resist stripping method may be a conventionally used resist stripping method. Examples thereof include a wet process using a stripping solution and a dry process using ashing.
(工程(3))
 工程(3)では、はんだ電極6の上に、もしくは電極パッド12を有する第2基板11の上に、または、はんだ電極6の上および電極パッド12を有する第2基板11の上に、アンダーフィル材形成用接着剤を塗布して、接着剤層を形成する。
 なお、工程(2)の後、レジストを剥離していない場合は、レジスト5およびはんだ電極6の上に、もしくは電極パッド12を有する第2基板11の上に、または、レジスト5およびはんだ電極6の上ならびに電極パッド12を有する第2基板11の上に、アンダーフィル材形成用接着剤を塗布して、接着剤層を形成することになる。
(Process (3))
In the step (3), underfill is applied on the solder electrode 6 or on the second substrate 11 having the electrode pads 12 or on the solder electrode 6 and the second substrate 11 having the electrode pads 12. A material forming adhesive is applied to form an adhesive layer.
If the resist is not removed after step (2), the resist 5 and the solder electrode 6 or the second substrate 11 having the electrode pad 12 or the resist 5 and the solder electrode 6 are removed. An adhesive for forming an underfill material is applied on the second substrate 11 having the electrode pads 12 and an adhesive layer.
 図1(3)は、電極パッド12を有する第2基板11の上に、アンダーフィル材形成用接着剤を塗布して接着剤層7が形成された状態を示す。第2基板11は、第1基板1と同様に、たとえば半導体基板、ガラス基板、シリコン基板、並びに半導体板、ガラス板およびシリコン板の表面に各種金属膜などを設けて形成される基板などである。 FIG. 1 (3) shows a state in which an adhesive layer 7 is formed by applying an underfill material forming adhesive on the second substrate 11 having the electrode pads 12. Similar to the first substrate 1, the second substrate 11 is, for example, a semiconductor substrate, a glass substrate, a silicon substrate, a semiconductor plate, a substrate formed by providing various metal films on the surface of the glass plate and the silicon plate, and the like. .
 レジスト5およびはんだ電極6、および/または第2基板11におけるアンダーフィル材形成用接着剤が塗布される面は、事前にプラズマ処理等の前処理が施されていてもよい。 The surface of the resist 5 and the solder electrode 6 and / or the second substrate 11 to which the underfill material forming adhesive is applied may be subjected to a pretreatment such as a plasma treatment in advance.
 接着剤層7は、アンダーフィル材形成用接着剤をディップ法、スピンコート法、スプレーコート法、ブレード法、ディスペンス法またはインクジェット法等の方法により塗布することにより形成することができる。 The adhesive layer 7 can be formed by applying an underfill material forming adhesive by a method such as a dipping method, a spin coating method, a spray coating method, a blade method, a dispensing method, or an ink jet method.
 前記アンダーフィル材形成用接着剤は、主成分となるバインダーの他に、フィラーである無機粒子および分散剤を含有する。前記分散剤は前記無機粒子を分散安定化している。 The underfill material-forming adhesive contains inorganic particles and a dispersant as fillers in addition to a binder as a main component. The dispersant stabilizes the dispersion of the inorganic particles.
 前記無機粒子は、半導体基板からの熱伝導を促進させて、半導体基板の温度を低下させることにより、半導体基板を積層して形成される積層体を有する電子部品は安定的に動作させている。また、無機粒子は接着層の熱膨張・収縮による変形を抑制し、電子部品の接続信頼性を向上させている。 The inorganic particles promote heat conduction from the semiconductor substrate and lower the temperature of the semiconductor substrate, thereby stably operating an electronic component having a stacked body formed by stacking the semiconductor substrates. In addition, the inorganic particles suppress deformation due to thermal expansion / contraction of the adhesive layer and improve the connection reliability of the electronic component.
 前記無機粒子としては、金属、炭素、金属炭化物、金属酸化物及び金属窒化物からなる群から選ばれる少なくとも1種が挙げられる。炭素の例としては、カーボンブラック、グラファイト、フラーレン、ダイヤモンドなどが挙げられる。前記金属炭化物の例としては、炭化ケイ素、炭化チタン、炭化タングステンなどが挙げられる。前記金属酸化物の例としては、酸化マグネシウム、酸化アルミニウム、酸化ケイ素、酸化カルシウム、酸化亜鉛、酸化イットリウム、酸化ジルコニウム、酸化セリウム、酸化イッテルビウム、サイアロン(ケイ素、アルミニウム、酸素、および窒素からなるセラミックス)等が挙げられる。前記金属窒化物としては、窒化ホウ素、窒化アルミニウム、窒化ケイ素等が挙げられる。 Examples of the inorganic particles include at least one selected from the group consisting of metal, carbon, metal carbide, metal oxide, and metal nitride. Examples of carbon include carbon black, graphite, fullerene, diamond and the like. Examples of the metal carbide include silicon carbide, titanium carbide, tungsten carbide and the like. Examples of the metal oxide include magnesium oxide, aluminum oxide, silicon oxide, calcium oxide, zinc oxide, yttrium oxide, zirconium oxide, cerium oxide, ytterbium oxide, sialon (ceramics composed of silicon, aluminum, oxygen, and nitrogen). Etc. Examples of the metal nitride include boron nitride, aluminum nitride, and silicon nitride.
 絶縁性が要求される場合には、前記無機粒子としては酸化物及び窒化物が好ましい。このような無機粒子として、アルミナ(Al23)、窒化アルミニウム(AlN)、窒化ホウ素(BN)、窒化ケイ素(Si34)、シリカ(SiO2)などが挙げられる。 In the case where insulation is required, the inorganic particles are preferably oxides and nitrides. Examples of such inorganic particles include alumina (Al 2 O 3 ), aluminum nitride (AlN), boron nitride (BN), silicon nitride (Si 3 N 4 ), silica (SiO 2 ), and the like.
 前記無機粒子は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 前記無機粒子の動的光散乱法による数平均粒子径は、好ましくは1~5,000nm、さらに好ましくは10~2,000nmである。
The said inorganic particle may be used individually by 1 type, and may be used in combination of 2 or more type.
The number average particle diameter of the inorganic particles by dynamic light scattering is preferably 1 to 5,000 nm, more preferably 10 to 2,000 nm.
 前記無機粒子の含有量は、アンダーフィル材形成用接着剤の固形分中、通常、20~80質量%である。
 前記分散剤は、無機粒子とバインダーとを分散安定化させる機能を有する。
The content of the inorganic particles is usually 20 to 80% by mass in the solid content of the adhesive for forming the underfill material.
The dispersant has a function of stabilizing the dispersion of the inorganic particles and the binder.
 前記分散剤の表面張力は、前記第1基板または前記第2基板における前記アンダーフィル材と接する面、つまり前記第1基板において接着剤層が形成された面または前記第2基板において接着剤層が形成された面の臨界表面張力より大きいという特徴を有する。図1(3)においては、接着剤層7に含まれる分散剤の表面張力は、第2基板11における接着剤層7が形成された面の臨界表面張力より大きい。 The surface tension of the dispersant is such that the surface of the first substrate or the second substrate in contact with the underfill material, that is, the surface on which the adhesive layer is formed on the first substrate or the adhesive layer on the second substrate. It has the characteristic that it is larger than the critical surface tension of the formed surface. In FIG. 1 (3), the surface tension of the dispersant contained in the adhesive layer 7 is larger than the critical surface tension of the surface of the second substrate 11 on which the adhesive layer 7 is formed.
 前述のとおり、チップを基板に実装するときに、チップから想定よりも大きくアンダーフィル材がはみ出してしまうことにより、フィレットのブリードが生じる場合がある。このようなフィレットのブリードがあると、接続信頼性の低下が生じる場合がある。 As described above, when the chip is mounted on the substrate, fillet bleeding may occur due to the underfill material protruding beyond the chip larger than expected. Such fillet bleed may cause a decrease in connection reliability.
 フィレットのブリードが発生する原因は、アンダーフィル材形成用接着剤に含まれるフィラーとバインダーとの分離であると推定される。
 フィレットのブリードは、同じアンダーフィルを使っていても、現われたり現われなかったりすることがある。本発明の発明者は、フィレットのブリード発生の有無は、基板のプラズマ処理からアンダーフィル材形成までの経過時間に依存するとの知見を得た。さらに、プラズマ処理およびその後の時間経過によってどのような変化が生じているのかを検証したところ、基板の臨界表面張力が大きく変化していることを知得した。
It is estimated that the cause of the fillet bleeding is separation of the filler and the binder contained in the adhesive for forming the underfill material.
Fillet bleeds may or may not appear even when using the same underfill. The inventor of the present invention has found that the presence or absence of fillet bleeding depends on the elapsed time from the plasma treatment of the substrate to the formation of the underfill material. Furthermore, when the changes in plasma processing and subsequent time passage were examined, it was found that the critical surface tension of the substrate was greatly changed.
 以上より、本発明の発明者は、臨界表面張力がフィレットのブリードと相関しており、上述のとおり、フィレットの汚れがフィラーとバインダーとの分離に起因することを鑑みて、以下の関係を成立させることにより、フィレットの汚れを防止できることを見出した。 From the above, the inventors of the present invention established the following relationship in view of the fact that the critical surface tension correlates with the bleed of the fillet and, as described above, the contamination of the fillet is caused by the separation of the filler and the binder. It has been found that the contamination of the fillet can be prevented.
 (分散剤の表面張力)>(基板の臨界表面張力)
 分散剤はフィラーとバインダーとを分散安定化させる機能を有しているところ、分散剤が基板に濡れやすくなると、分散剤の一部が基板上に広く流れ出るようになり、その結果、分散が不安定になり、フィラーとバインダーとが分離すると考えられる。なお、一般的に、液体の表面張力が固体の臨界表面張力より大きいと、液体は固体に濡れにくくなる。
(Surface tension of dispersant)> (Critical surface tension of substrate)
Since the dispersant has a function of stabilizing the dispersion of the filler and the binder, when the dispersant is easily wetted to the substrate, a part of the dispersant flows out onto the substrate widely. It becomes stable and it is considered that the filler and the binder are separated. In general, when the surface tension of the liquid is larger than the critical surface tension of the solid, the liquid is difficult to get wet with the solid.
 また、フィレットのブリード発生が、基板のプラズマ処理からアンダーフィル材形成までの経過時間に依存する理由は、経過時間と共に基板の表面の臨界表面張力が低下したからであり、ある一定時間経過すると、分散剤の表面張力よりも基板の臨界表面張力が低くなることから、プラズマ処理直後に形成されたアンダーフィルのフィレットにはブリードが発生し、プラズマ処理から一定時間経過した後に形成されたアンダーフィルのフィレットにはブリードが発生しないという現象が現れるのだと考えられる。 In addition, the reason why the generation of fillet bleeding depends on the elapsed time from the plasma treatment of the substrate to the formation of the underfill material is that the critical surface tension of the surface of the substrate has decreased with the elapsed time. Since the critical surface tension of the substrate is lower than the surface tension of the dispersant, bleed occurs in the fillet of the underfill formed immediately after the plasma treatment, and the underfill formed after a certain time has elapsed since the plasma treatment. It is thought that the phenomenon that bleed does not occur appears in the fillet.
 以上の理由から、分散剤の臨界表面張力が、第1基板または第2基板における前記アンダーフィル材と接する面の臨界表面張力より大きいという条件が満たされると、アンダーフィルのフィレットにはブリードが発生しにくくなる。分散剤の表面張力は、前記第1基板における前記アンダーフィル材と接する前記面および第2基板における前記アンダーフィル材と接する面のいずれの臨界表面張力よりも大きいことが好ましい。 For the above reasons, if the condition that the critical surface tension of the dispersant is larger than the critical surface tension of the surface in contact with the underfill material in the first substrate or the second substrate, bleed occurs in the fillet of the underfill. It becomes difficult to do. It is preferable that the surface tension of the dispersant is larger than the critical surface tension of any of the surface in contact with the underfill material in the first substrate and the surface in contact with the underfill material in the second substrate.
 臨界表面張力は特開2010-164980号公報を参照して求めることができる。臨界表面張力は、高分子の表面物性の『濡れ特性』として知られた物性であり、固体の表面張力(γc)である。このγcは液体のように直接評価できないため、次のようにYoung-Dupreの式とZisman Plotから求められる。
Young-Dupreの式:
γLVcosθ=γSV-γSL
 式中のθ:接触角、S:固体、L:液体、V:飽和蒸気である。なお、液体として水を用いたときθが90°であり、θが90°以上のときその表面は疎水性であり、0°に近い表面を親水性という。
Zisman Plot:
 種種の表面張力γLVの液体を用いて接触角θを測定して、γLVとcosθをプロットする。γLVが固体表面のγSVに近づくとθは小さくなり、γLVのある値で接触角θは0°となる。このθ=0°となったときの液体のγLVが固体の表面張力、即ち臨界表面張力(γc)と定義される。
The critical surface tension can be determined with reference to Japanese Patent Application Laid-Open No. 2010-164980. The critical surface tension is a physical property known as “wetting property” of the surface physical property of the polymer, and is the surface tension (γc) of the solid. Since this γc cannot be directly evaluated like a liquid, it can be obtained from the Young-Dupre equation and Zisman Plot as follows.
Young-Dupre equation:
γLV cos θ = γSV−γSL
In the formula, θ: contact angle, S: solid, L: liquid, V: saturated vapor. When water is used as the liquid, θ is 90 °, and when θ is 90 ° or more, the surface is hydrophobic, and the surface close to 0 ° is called hydrophilic.
Zisman Plot:
The contact angle θ is measured using various liquids having a surface tension γLV, and γLV and cos θ are plotted. When γLV approaches γSV on the solid surface, θ decreases, and the contact angle θ becomes 0 ° at a certain value of γLV. The γLV of the liquid when θ = 0 ° is defined as the surface tension of the solid, that is, the critical surface tension (γc).
 分散剤としては、アミノ基含有ブロック共重合物、酸基含有ポリマー、超分岐アミノ基含有ポリエステル、カチオン基含有アクリルポリマー、カルボキシル基含有ポリマー変性物、ポリカルボン酸エステル含有ポリアミノアマイド塩、窒素含有グラフトポリマー、高分子脂肪酸誘導体、有機変性ポリマーのリン酸誘導体、変性ポリエステル、ウレタンポリマー、ポリエステルアミン塩、ポリカルボン酸の長鎖アミン塩、ポリリン酸エステル、塩基性官能基含有共重合物、変性ポリビニルアルコールなどを挙げることができる。分散剤は、使用される第1基板および第2基板に応じて、前記の条件が満たされるように選択される。 Dispersants include amino group-containing block copolymers, acid group-containing polymers, hyperbranched amino group-containing polyesters, cationic group-containing acrylic polymers, carboxyl group-containing polymer modified products, polycarboxylic acid ester-containing polyaminoamide salts, nitrogen-containing grafts Polymer, High molecular fatty acid derivative, Phosphoric acid derivative of organic modified polymer, Modified polyester, Urethane polymer, Polyesteramine salt, Long chain amine salt of polycarboxylic acid, Polyphosphate ester, Basic functional group-containing copolymer, Modified polyvinyl alcohol And so on. The dispersant is selected according to the first substrate and the second substrate to be used so that the above conditions are satisfied.
 前記の条件が満たされやすくなるという観点から、分散剤の表面張力は10~70mN/mであることが好ましく、20~65mN/mであることがより好ましく、30~60mN/mであることがさらに好ましい。 From the viewpoint that the above conditions are easily satisfied, the surface tension of the dispersant is preferably 10 to 70 mN / m, more preferably 20 to 65 mN / m, and more preferably 30 to 60 mN / m. Further preferred.
 また、前記の条件が満たされやすくなるという観点から、第1基板および第2基板における前記アンダーフィル材と接する面の臨界表面張力は50mN/m未満であることが好ましく、45N/m未満であることがより好ましい。前記臨界表面張力の数値は、プラズマ処理等の前処理が施される場合には、前処理後の数値であり、前処理後、時間の経過とともに臨界表面張力が変化する場合には、アンダーフィル材形成用接着剤を塗布する時点における数値である。 Further, from the viewpoint that the above condition is easily satisfied, the critical surface tension of the surface in contact with the underfill material in the first substrate and the second substrate is preferably less than 50 mN / m, and less than 45 N / m. It is more preferable. The numerical value of the critical surface tension is a numerical value after the pretreatment when a pretreatment such as a plasma treatment is performed, and an underfill is applied when the critical surface tension changes with time after the pretreatment. It is a numerical value at the time of applying the material forming adhesive.
 さらに、前記無機粒子の臨界表面張力が分散剤の表面張力よりも大きいと、フィラーとバインダーとの分離を抑制でき、フィレットの汚れを防止できるので好ましい。前記無機粒子の臨界表面張力は、70mN/m以上であることが好ましく、75N/m以上であることがより好ましい。 Furthermore, it is preferable that the critical surface tension of the inorganic particles is larger than the surface tension of the dispersant because separation of the filler and the binder can be suppressed and the fouling of the fillet can be prevented. The critical surface tension of the inorganic particles is preferably 70 mN / m or more, and more preferably 75 N / m or more.
 分散剤の含有量は、アンダーフィル材形成用接着剤中、通常、0.1~5質量%である。
 アンダーフィル材形成用接着剤は、バインダーとしてエポキシ樹脂を含有することが好ましい。
The content of the dispersant is usually 0.1 to 5% by mass in the adhesive for forming the underfill material.
The underfill material-forming adhesive preferably contains an epoxy resin as a binder.
 エポキシ樹脂は、分子内に1個以上のエポキシ基を有していれば、低分子であっても、高分子であってもよい。これらの中でも低分子が、接着剤層の空隙の発生を良好に抑制できることから好ましい。 The epoxy resin may be a low molecule or a polymer as long as it has one or more epoxy groups in the molecule. Among these, low molecules are preferable because generation of voids in the adhesive layer can be satisfactorily suppressed.
 エポキシ樹脂は、分子内に2個以上のエポキシ基を有することが良好に半導体素子を接合することができることから好ましい。エポキシ樹脂としては、後述の芳香族2級アミンの説明の中で挙げた「エポキシ基を2つ以上有する化合物」と同様の化合物を挙げることができる。またこれらの化合物中でも、芳香族環を有さないエポキシ基を3つ有する化合物、芳香族環を有するエポキシ基を3つ有する化合物およびエポキシ基を4つ以上有する化合物のように、エポキシ基を3つ以上有する化合物が、後述の芳香族2級アミンとの反応により3次元網目構造を形成できることから、良好に半導体素子を接合することができるので好ましい。
 バインダーの含有量は、アンダーフィル材形成用接着剤中、通常、20~80質量%である。
The epoxy resin preferably has two or more epoxy groups in the molecule because the semiconductor element can be satisfactorily bonded. Examples of the epoxy resin include the same compounds as the “compound having two or more epoxy groups” mentioned in the description of the aromatic secondary amine described later. Among these compounds, there are 3 epoxy groups such as a compound having 3 epoxy groups having no aromatic ring, a compound having 3 epoxy groups having an aromatic ring, and a compound having 4 or more epoxy groups. A compound having two or more compounds is preferable because it can form a three-dimensional network structure by reaction with an aromatic secondary amine described later, and can satisfactorily bond a semiconductor element.
The content of the binder is usually 20 to 80% by mass in the adhesive for forming the underfill material.
 前記アンダーフィル材形成用接着剤は、バインダー、無機粒子および分散剤のほか、さらに硬化剤を含有することが好ましい。バインダーとしてエポキシ樹脂が含まれることから、硬化剤としては、通常、アミンが用いられる。前記アミンとしては、脂肪族1~3級アミン、および芳香族1~3級アミンが挙げられ、これらのなかでも、芳香族1級アミンおよび芳香族2級アミンが好ましい。 It is preferable that the adhesive for forming the underfill material further contains a curing agent in addition to the binder, the inorganic particles, and the dispersant. Since an epoxy resin is included as a binder, an amine is usually used as a curing agent. Examples of the amine include aliphatic primary to tertiary amines and aromatic primary to tertiary amines, and among these, aromatic primary amines and aromatic secondary amines are preferable.
 芳香族2級アミンは、例えば、芳香族1級アミンとエポキシ基を2つ以上有する化合物とを反応させることによって得ることができる。
 前記芳香族1級アミンとしては、たとえば、アニリン、1-ナフチルアミン、2-ナフチルアミン、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、4-アミノ-3-メチルフェノール、2-アミノ-4-メチルフェノール、3-アミノ-2-メチルフェノール、5-アミノ-2-メチルフェノール、1-アミノ-2-ナフトール、3-アミノ-2-ナフトール、2-(4-アミノフェニル)-6-アミノベンゾオキサゾールおよび5-アミノ-1-ナフトール等のモノアミン;
o-フェニレンジアミン、p-フェニレンジアミン、4,4'-ジアミノジフェニルメタン、2,4-ジアミノアニソール、2,4-トルエンジアミン、4,4'-ジアミノジフェニルメタン、3,3'-ジエチル-4,4'-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルスルホン、4,4'-ジアミノジフェニルエーテル、3,4'-ジアミノジフェインルエーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4'-ビス(4-アミノフェノキシ)ビフェニル、2,2-ビス{4-(4-アミノフェノキシ)フェニル}プロパン、2,2-ビス{4-(4-アミノフェノキシ)フェニル}ヘキサフルオロプロパン、ビス{4-(4-アミノフェノキシ)フェニル}スルホン、ビス{4-(3-アミノフェノキシ)フェニル}スルホン、4,4'-ジアミノ-2,2'-ビス(トリフルオロメチル)ジフェニルエーテル、ビス{4-(4-アミノフェノキシ)フェニル}ケトン、1,4-ビス(4-アミノフェノキシ)-2,3,5-トリメチルベンゼン、1,4-ビス(4-アミノフェノキシ)-2,5-ジ-t-ブチルベンゼン、1,4-ビス{4-アミノ-2-(トリフルオロメチル)フェノキシ}ベンゼン、4,4'-ジアミノ-2-(トリフルオロメチル)ジフェニルエーテル、2,3'-ジアミノジフェニルエーテル、ビス(4-アミノフェノキシ)メタン、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,3-ビス(4-アミノフェノキシ)ネオペンタン、2,5-ビス(4-アミノフェノキシ)-ビフェニル、4,4'-ジアミノ-3,3'-ジメチルビフェニル、4,4'-ジアミノ-2,2'-ジメチルビフェニル、4,4'-ジアミノ-2,2'-ジメトキシビフェニル、4,4'-ジアミノ-2,2'-ビス(トリフルオロメチル)ビフェニル、3,7-ジアミノ-2,8-ジメチルジベンゾチオフェン 5,5-ジオキシド、4,4'-ビス(4-アミノフェノキシ)ビフェニル、4,4'-ジアミノ-3,3'-ジヒドロキシビフェニル、4,4'-ビス(4-アミノベンズアミド)-3,3'-ジヒドロキシビフェニル、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、9,9-ビス(4-アミノフェニル)フルオレン、3,3',4,4'-テトラアミノジフェニルケトン、4,4'-ジアミノジフェニルケトン、ビス{4-(4-アミノフェノキシ)フェニル}ケトン、2,2-ビス{4-(4-アミノフェノキシ)フェニル}ヘキサフルオロプロパン、2,2-ビス{4-(4-アミノフェノキシ)フェニル}プロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、4,4'-ジアミノジフェニルスルフィド、N-(4-アミノフェニル)-4-アミノベンズアミド、N,N'-ビス(4-アミノフェニル)テレフタルアミド、N,N'-ビス(4-アミノフェニル)ピペラジン、トリメチレンオキシビス-4-アミノベンゾエートおよびポリテトラメチレンオキシビス-4-アミノベンゾエート等のジアミン;
4,4',4"-トリアミノトリフェニルメタン、2,3,6-ピリジントリアミン、2,4,6-ピリジントリアミン、2,4,5-ピリミジントリアミン、2,4,6-トリアミノトルエン、1,2,3-ベンゼントリアミン、1,3,5-ベンゼントリアミン、2,4,4'-トリアミノジフェニルエーテル、3,3',4,4'-テトラアミノジフェニルエーテル、メラミン、および3,3',4,4'-テトラアミノジフェニルスルホン等の多価アミン;を挙げることができる。
The aromatic secondary amine can be obtained, for example, by reacting an aromatic primary amine with a compound having two or more epoxy groups.
Examples of the aromatic primary amine include aniline, 1-naphthylamine, 2-naphthylamine, 2-aminophenol, 3-aminophenol, 4-aminophenol, 4-amino-3-methylphenol, and 2-amino-4. -Methylphenol, 3-amino-2-methylphenol, 5-amino-2-methylphenol, 1-amino-2-naphthol, 3-amino-2-naphthol, 2- (4-aminophenyl) -6-amino Monoamines such as benzoxazole and 5-amino-1-naphthol;
o-phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenylmethane, 2,4-diaminoanisole, 2,4-toluenediamine, 4,4'-diaminodiphenylmethane, 3,3'-diethyl-4,4 '-Diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4′-bis (4-aminophenoxy) biphenyl, 2,2-bis {4- (4-aminophenoxy) phenyl} propane, 2,2-bis {4- (4 -Aminophenoxy) phenyl} hexafluoropropane, bis {4- (4-aminophenoxy) phenyl} sulfo Bis {4- (3-aminophenoxy) phenyl} sulfone, 4,4′-diamino-2,2′-bis (trifluoromethyl) diphenyl ether, bis {4- (4-aminophenoxy) phenyl} ketone, , 4-bis (4-aminophenoxy) -2,3,5-trimethylbenzene, 1,4-bis (4-aminophenoxy) -2,5-di-t-butylbenzene, 1,4-bis {4 -Amino-2- (trifluoromethyl) phenoxy} benzene, 4,4'-diamino-2- (trifluoromethyl) diphenyl ether, 2,3'-diaminodiphenyl ether, bis (4-aminophenoxy) methane, 1,3 -Bis (4-aminophenoxy) propane, 1,4-bis (4-aminophenoxy) butane, 1,5-bis (4-aminophenoxy) penta 1,3-bis (4-aminophenoxy) neopentane, 2,5-bis (4-aminophenoxy) -biphenyl, 4,4′-diamino-3,3′-dimethylbiphenyl, 4,4′-diamino- 2,2′-dimethylbiphenyl, 4,4′-diamino-2,2′-dimethoxybiphenyl, 4,4′-diamino-2,2′-bis (trifluoromethyl) biphenyl, 3,7-diamino-2 , 8-Dimethyldibenzothiophene 5,5-dioxide, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-diamino-3,3′-dihydroxybiphenyl, 4,4′-bis (4- Aminobenzamide) -3,3′-dihydroxybiphenyl, 2,2-bis (3-amino-4-hydroxyphenyl) propane, 9,9-bis (4-aminophenyl) fluorene, 3, 3 ′, 4,4′-tetraaminodiphenyl ketone, 4,4′-diaminodiphenyl ketone, bis {4- (4-aminophenoxy) phenyl} ketone, 2,2-bis {4- (4-aminophenoxy) Phenyl} hexafluoropropane, 2,2-bis {4- (4-aminophenoxy) phenyl} propane, 2,2-bis (3-amino-4-hydroxyphenyl) sulfone, 4,4′-diaminodiphenyl sulfide, N- (4-aminophenyl) -4-aminobenzamide, N, N′-bis (4-aminophenyl) terephthalamide, N, N′-bis (4-aminophenyl) piperazine, trimethyleneoxybis-4- Diamines such as aminobenzoate and polytetramethyleneoxybis-4-aminobenzoate;
4,4 ', 4 "-triaminotriphenylmethane, 2,3,6-pyridinetriamine, 2,4,6-pyridinetriamine, 2,4,5-pyrimidinetriamine, 2,4,6- triaminotoluene 1,2,3-benzenetriamine, 1,3,5-benzenetriamine, 2,4,4′-triaminodiphenyl ether, 3,3 ′, 4,4′-tetraaminodiphenyl ether, melamine, and 3,3 And polyvalent amines such as', 4,4'-tetraaminodiphenylsulfone;
 前記エポキシ基を2つ以上有する化合物としては、エポキシ基を2つ有する化合物、エポキシ基を3つ有する化合物、およびエポキシ基を4つ以上有する化合物等が挙げられる。 Examples of the compound having two or more epoxy groups include a compound having two epoxy groups, a compound having three epoxy groups, and a compound having four or more epoxy groups.
 前記エポキシ基を2つ有する化合物としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、エポキシプロポキシプロピル末端ポリジメチルシロキサン、ネオペンチルグリコールジグリシジルエーテル、グリセロールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、分子量2000以下のポリプロピレングリコールジグリシジルエーテル、および分子量2000以下のポリエチレングリコールジグリシジルエーテル等の芳香族環を有さないエポキシ基を2つ有する化合物;
エピコート827、エピコート828、エピコート834(以上、三菱化学社製)、EPICLON840、EPICLON850、EXA-850CRP(以上、DIC社製)BPO-20E、BPO-60E(以上、新日本理化株式会社製)、エピコート806、エピコート807(以上、三菱化学社製)、EPICLON830、EPICLON830-S、EPICLON835、EPICLON EXA-83CRP、EPICLON EXA-830LVP、およびEPICLON EXA-835LV(以上、DIC社製)等の市販されているビスフェノール型エポキシ樹脂、2,7-ナフタレンジグリシジルエーテル、2,6-ナフタレンジグリシジルエーテル等の芳香族環を有するエポキシ基を2つ有する化合物; 等が挙げられる。
Examples of the compound having two epoxy groups include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, epoxypropoxypropyl-terminated poly Dimethylsiloxane, neopentyl glycol diglycidyl ether, glycerol diglycidyl ether, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, polypropylene glycol diglycidyl ether having a molecular weight of 2000 or less, and polyethylene glycol diglycidyl having a molecular weight of 2000 or less Compounds having two epoxy groups having no aromatic ring, such as ether;
Epicoat 827, Epicoat 828, Epicoat 834 (Mitsubishi Chemical Co., Ltd.), EPICLON 840, EPICLON 850, EXA-850CRP (Made by DIC) BPO-20E, BPO-60E (Nippon Nippon Rika Co., Ltd.), Epicoat Commercially available bisphenols such as 806, Epicoat 807 (above, manufactured by Mitsubishi Chemical), EPICLON 830, EPICLON 830-S, EPICLON 835, EPICLON EXA-83CRP, EPICLON EXA-830LVP, and EPICLON EXA-835LV (above, made by DIC) Type epoxy resin, 2,7-naphthalenediglycidyl ether, 2,6-naphthalenediglycidyl ether and other compounds having two epoxy groups having an aromatic ring; It is.
 前記エポキシ基を3つ有する化合物としては、トリメチロールプロパントリグリシジルエーテルおよびグリセロールトリグリシジルエーテル等の芳香族環を有さないエポキシ基を3つ有する化合物;
テトラグリシジル-3,4'-ジアミノジフェニルエーテル、テトラグリシジル-3,3'-ジアミノジフェニルエーテル、テトラグリシジル-3,4'-ジアミノ-2,2'-ジメチルジフェニルエーテル、テトラグリシジル-4,4'-ジアミノジフェニルエーテル、テトラグリシジル-3,4'-ジアミノ-5-メチルジフェニルメタン、テトラグリシジル-3,4'-ジアミノ-2'-メチルジフェニルメタンおよびトリグリシジル-m-アミノフェノール等の芳香族環を有するエポキシ基を3つ有する化合物;等が挙げられる。
Examples of the compound having three epoxy groups include compounds having three epoxy groups having no aromatic ring, such as trimethylolpropane triglycidyl ether and glycerol triglycidyl ether;
Tetraglycidyl-3,4'-diaminodiphenyl ether, tetraglycidyl-3,3'-diaminodiphenyl ether, tetraglycidyl-3,4'-diamino-2,2'-dimethyldiphenyl ether, tetraglycidyl-4,4'-diaminodiphenyl ether 3 epoxy groups having an aromatic ring such as tetraglycidyl-3,4'-diamino-5-methyldiphenylmethane, tetraglycidyl-3,4'-diamino-2'-methyldiphenylmethane and triglycidyl-m-aminophenol And the like.
 前記エポキシ基を4つ以上有する化合物としては、分子量2000以下のトリメチロールプロパンポリグリシジルエーテルおよび分子量2000以下のソルビトールポリグリシジルエーテル等のエポキシ基を4つ以上有する化合物等が挙げられる。 Examples of the compound having 4 or more epoxy groups include compounds having 4 or more epoxy groups such as trimethylolpropane polyglycidyl ether having a molecular weight of 2000 or less and sorbitol polyglycidyl ether having a molecular weight of 2000 or less.
 芳香族1級アミンとエポキシ基を2つ以上有する化合物との反応において、芳香族1級アミンに含まれるアミノ基の水素とエポキシ基を2つ有する化合物に含まれるエポキシ基との当量比(アミン水素/エポキシ基)は、通常、2.0以上、好ましくは2~10である。反応温度は、60~250℃であることが好ましく、80~180℃であることがより好ましい。 In the reaction of an aromatic primary amine and a compound having two or more epoxy groups, the equivalent ratio of the hydrogen of the amino group contained in the aromatic primary amine to the epoxy group contained in the compound having two epoxy groups (amine) (Hydrogen / epoxy group) is usually 2.0 or more, preferably 2 to 10. The reaction temperature is preferably 60 to 250 ° C., more preferably 80 to 180 ° C.
 前記アンダーフィル材形成用接着剤におけるアミンの含有量は、エポキシ樹脂に含まれるエポキシ基の数1モルに対して、アミンの水素原子の数が、通常、0.5~1.5モル、好ましくは0.7~1.3モルとなる量である。 The amine content in the adhesive for forming an underfill material is preferably 0.5 to 1.5 mol, preferably 0.5 to 1.5 mol of amine hydrogen atoms with respect to 1 mol of epoxy groups contained in the epoxy resin. Is an amount of 0.7 to 1.3 mol.
 前記アンダーフィル材形成用接着剤は、そのほか、有機溶剤等の希釈剤、フラックス、界面活性剤、乳化剤、低弾性化剤、希釈剤、消泡剤、イオントラップ剤等を含有することができる。 In addition, the underfill material-forming adhesive may contain a diluent such as an organic solvent, a flux, a surfactant, an emulsifier, a low elastic agent, a diluent, an antifoaming agent, an ion trapping agent, and the like.
(工程(4))
 工程(4)では、前記接着剤層を挟んで、前記第1基板に前記第2基板を積層し、前記はんだ電極を介して、前記第1基板の電極パッドと前記第2基板の電極パッドとの電気的接続構造を形成する。
(Process (4))
In the step (4), the second substrate is stacked on the first substrate with the adhesive layer interposed therebetween, and the electrode pads of the first substrate and the electrode pads of the second substrate are interposed via the solder electrodes. The electrical connection structure is formed.
 たとえば、図1(4-1)に示すように、 工程(3)で作製された接着剤層7を有する第2基板11に、工程(2)で作製されたはんだ電極6を有する第1基板を、第2基板11の各電極パッド12が第1基板1の各はんだ電極6と向かい合うように対置する。 For example, as shown in FIG. 1 (4-1), the first substrate having the solder electrode 6 produced in the step (2) on the second substrate 11 having the adhesive layer 7 produced in the step (3). Are arranged so that each electrode pad 12 of the second substrate 11 faces each solder electrode 6 of the first substrate 1.
 図1(4-2)は、工程(2)の後、レジストを剥離していない場合における、本発明の積層体の製造方法で製造された積層体10を示す。積層体10は、工程(1)~(3)により製造された図1(2)および(3)に示すはんだ電極6を介して、第1基板1の電極パッド2と第2基板11の電極パッド12とを接続することにより形成された電気的接続構造を有する。 FIG. 1 (4-2) shows the laminate 10 manufactured by the method for manufacturing a laminate of the present invention when the resist is not removed after the step (2). The laminated body 10 includes the electrode pads 2 of the first substrate 1 and the electrodes of the second substrate 11 via the solder electrodes 6 shown in FIGS. 1 (2) and (3) manufactured by the steps (1) to (3). It has an electrical connection structure formed by connecting the pad 12.
 第2基板11が有する電極パッド12は、第1基板1と第2基板11とを、電極パッドが形成された面を向かい合わせにして対置したとき、第1基板1の電極パッド2と対向する位置に設けられている。第2基板11の電極パッド12を、図1(3)に示す接着剤層7に接触させ、加熱および/または加圧する。そうすると、第2基板11とレジスト5およびはんだ電極6とが接着剤により接着されると同時に、はんだ電極6と電極パッド12とがはんだ付けされ、接着剤層7はアンダーフィル材13となる。アンダーフィル材13において、第1基板1からはみ出した部分がフィレット14である。これにより、第1基板1の電極パッド2と第2基板11の電極パッド12とがはんだ電極6を介して電気的に接続されて、電気的接続構造が形成され、積層体10が得られる。前記加熱温度は、通常、100~300℃であり、前記加圧時の力は、通常、0.1~10MPaである。
 このようにして形成されたアンダーフィル材には通常フィレットが形成されるが、前述のとおりフィレットのブリードは発生しない。
The electrode pad 12 of the second substrate 11 faces the electrode pad 2 of the first substrate 1 when the first substrate 1 and the second substrate 11 are opposed to each other with the surfaces on which the electrode pads are formed facing each other. In the position. The electrode pad 12 of the second substrate 11 is brought into contact with the adhesive layer 7 shown in FIG. 1 (3) and heated and / or pressurized. Then, the second substrate 11, the resist 5, and the solder electrode 6 are bonded together by the adhesive, and at the same time, the solder electrode 6 and the electrode pad 12 are soldered, and the adhesive layer 7 becomes the underfill material 13. In the underfill material 13, the portion protruding from the first substrate 1 is a fillet 14. Thereby, the electrode pad 2 of the 1st board | substrate 1 and the electrode pad 12 of the 2nd board | substrate 11 are electrically connected via the solder electrode 6, an electrical connection structure is formed, and the laminated body 10 is obtained. The heating temperature is usually 100 to 300 ° C., and the pressing force is usually 0.1 to 10 MPa.
Fillets are usually formed in the underfill material thus formed, but no fillet bleeding occurs as described above.
[積層体]
 本発明の積層体は、前記積層体の製造方法によって製造された積層体および、前記第1基板および前記第2基板を、本発明に係るアンダーフィル材形成用接着剤から形成されたアンダーフィル材を介して積層して形成された積層体である。
[Laminate]
The laminate of the present invention comprises an underfill material formed from the laminate produced by the method for producing a laminate, the first substrate, and the second substrate from the underfill material forming adhesive according to the present invention. It is the laminated body formed by laminating | stacking via.
[電子部品]
 本発明の電子部品は、前述した積層体を有する電子部品である。前記電子部品としては、半導体素子、表示素子、及びパワーデバイス等を挙げることができる。
[Electronic parts]
The electronic component of the present invention is an electronic component having the above-described laminate. Examples of the electronic component include a semiconductor element, a display element, and a power device.
 以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明はこれら実施例に限定されない。以下の実施例等の記載において、「部」は「質量部」の意味で用いる。
1.アンダーフィル形成用接着剤の製造
EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to these Examples. In the following description of Examples and the like, “part” is used to mean “part by mass”.
1. Manufacture of adhesives for underfill formation
[製造例]アンダーフィル形成用接着剤1~3の製造
 表1に示す成分を、表1に示す配合量で自転・公転ミキサーを用いて混合した後、三本ロールミルにて分散した。得られた分散液を真空脱泡機能付き自転・公転ミキサーを用いて脱泡した後、ディスペンサーシリンジに充填し、アンダーフィル形成用接着剤1~3(以下、それぞれ接着剤1~3とも記す)を製造した。表1中の各成分の詳細は、以下に記載する通りである。
[Production Example] Production of Underfill Forming Adhesives 1 to 3 The components shown in Table 1 were mixed in the blending amounts shown in Table 1 using a rotation / revolution mixer, and then dispersed in a three-roll mill. The resulting dispersion is defoamed using a rotating / revolving mixer with a vacuum defoaming function, and then filled into a dispenser syringe to form an underfill adhesive 1-3 (hereinafter also referred to as adhesive 1-3). Manufactured. Details of each component in Table 1 are as described below.
 エポキシ樹脂:ビスフェノールA型エポキシ樹脂(商品名「LX-01」、株式会社大阪ソーダ製)
 硬化剤:4,4'-ジアミノジフェニルスルホン(商品名「セイカキュアS」、和歌山精化工業株式会社製)
 無機粒子:球状シリカ(商品名「Sciqas0.7μm」、堺化学工業株式会社製)
 分散剤A:商品名「Disperbyk-2155」(ビックケミー・ジャパン株式会社製)
 分散剤B:商品名「Dispers685」(エボニック・ジャパン株式会社製)
 分散剤C:商品名「ED351」(楠本化成株式会社製)
 フラックス:8-キノリノール(東京化成工業株式会社製)
Epoxy resin: Bisphenol A type epoxy resin (trade name “LX-01”, manufactured by Osaka Soda Co., Ltd.)
Curing agent: 4,4′-diaminodiphenylsulfone (trade name “Seika Cure S”, manufactured by Wakayama Seika Kogyo Co., Ltd.)
Inorganic particles: spherical silica (trade name “Sciquas 0.7 μm”, manufactured by Sakai Chemical Industry Co., Ltd.)
Dispersant A: Trade name “Disperbyk-2155” (manufactured by Big Chemie Japan Co., Ltd.)
Dispersant B: Trade name “Dispers685” (manufactured by Evonik Japan Co., Ltd.)
Dispersant C: Trade name “ED351” (manufactured by Enomoto Kasei Co., Ltd.)
Flux: 8-quinolinol (manufactured by Tokyo Chemical Industry Co., Ltd.)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
2.表面張力の測定
[基板の臨界表面張力測定]
 表面張力がそれぞれ31.0,39.0,48.0,61.0,73.0 mN/mである、ぬれ張力試験用混合液(和光純薬工業株式会社製)を用い、各液体の基板に対する接触角θを測定した。各表面張力に対するcosθのプロット(Zisman Plot)から、cosθ=1となる表面張力を基板の臨界表面張力とした。
2. Surface tension measurement [Substrate surface tension measurement]
Using a liquid mixture for wet tension test (manufactured by Wako Pure Chemical Industries, Ltd.) having a surface tension of 31.0, 39.0, 48.0, 61.0, 73.0 mN / m, respectively, The contact angle θ with respect to the substrate was measured. From the plot of cos θ against each surface tension (Zisman Plot), the surface tension at which cos θ = 1 was determined as the critical surface tension of the substrate.
[分散剤の表面張力測定]
 前述の方法から臨界表面張力が明らかとなった基板に対して、分散剤の接触角を測定した。基板のZisman Plotから対応する表面張力を読み取り、分散剤の表面張力とした。
[Surface tension measurement of dispersant]
The contact angle of the dispersant was measured on the substrate whose critical surface tension was clarified from the above method. The corresponding surface tension was read from the Zisman Plot of the substrate and used as the surface tension of the dispersant.
[無機粒子の臨界表面張力]
 参考文献(水系塗料における顔料分散剤、TECHNO-COSMOS 2007 Mar.Vol.20)から確認した。
[Critical surface tension of inorganic particles]
It was confirmed from a reference (pigment dispersant in water-based paint, TECHNO-COSMOS 2007 Mar. Vol. 20).
 下記実施例および比較例において、「実施例X-Y」、「比較例X-Y」のように表示されているが、Xに該当する数字は、用いられたアンダーフィル形成用接着剤の種類に対応して付けられており、Yに該当する数字は、酸素プラズマ処理した時から基板II上にアンダーフィル形成用接着剤を塗布するまでの時間に対応して付けられている。
[比較例1-1]
 図1に従って、WO2016/167036号公報の実施例2に記載のIMS法にて積層体を製造した。ダイシングチップ化した基板I(第1基板1)の電極上にはんだバンプを形成した。次いで電極パッドを有するSiN基板IIに対して、前処理として、酸素プラズマ処理(酸素圧:21Pa、RF出力:200W,60秒)を行った。酸素プラズマ処理した直後の基板II上に、ディスペンサーを用いて製造例で製造したアンダーフィル形成用接着剤1を塗布した後、はんだバンプを介して両基板が電気的接続構造をとるように、基板1を載置した。両基板に対し、ダイボンダーを用いて、両者が接着剤を介して圧着するように250℃で0.1MPaの圧力を20秒間加えた。次いで、オーブンにて170℃で2時間加熱して接着剤を硬化させ、積層体を得た。
In the following examples and comparative examples, “Example XY” and “Comparative Example XY” are indicated, but the number corresponding to X indicates the type of the underfill forming adhesive used. The number corresponding to Y is attached corresponding to the time from when the oxygen plasma treatment is applied until the adhesive for forming the underfill is applied onto the substrate II.
[Comparative Example 1-1]
According to FIG. 1, a laminate was produced by the IMS method described in Example 2 of WO2016 / 167036. Solder bumps were formed on the electrodes of the substrate I (first substrate 1) formed into a dicing chip. Next, an oxygen plasma treatment (oxygen pressure: 21 Pa, RF output: 200 W, 60 seconds) was performed as a pretreatment on the SiN substrate II having electrode pads. After applying the underfill-forming adhesive 1 manufactured in the manufacturing example using a dispenser on the substrate II immediately after the oxygen plasma treatment, the substrates are electrically connected via the solder bumps. 1 was placed. A pressure of 0.1 MPa was applied to both substrates at 250 ° C. for 20 seconds using a die bonder so that both substrates were bonded via an adhesive. Next, the adhesive was cured by heating in an oven at 170 ° C. for 2 hours to obtain a laminate.
 酸素プラズマ処理した直後の基板IIの臨界界面張力は48mN/mであった。得られた積層体においてフィレットのブリードの有無を下記の方法で評価したところ、ブリードが観察された。 The critical interface tension of the substrate II immediately after the oxygen plasma treatment was 48 mN / m. When the obtained laminate was evaluated for the presence or absence of fillet bleed by the following method, bleed was observed.
[比較例2-1]
 アンダーフィル形成用接着剤1の代わりにアンダーフィル形成用接着剤2を用いたこと以外は比較例1-1と同様にして積層体を製造した。フィレットのブリードの有無を下記の方法で評価したところ、ブリードが観察された。
[Comparative Example 2-1]
A laminate was produced in the same manner as Comparative Example 1-1 except that the underfill forming adhesive 2 was used instead of the underfill forming adhesive 1. When the following method was used to evaluate the presence or absence of fillet bleeding, bleeding was observed.
[比較例3-1]
 アンダーフィル形成用接着剤1の代わりにアンダーフィル形成用接着剤3を用いたこと以外は比較例1-1と同様にして積層体を製造した。フィレットのブリードの有無を下記の方法で評価したところ、ブリードが観察された。
[Comparative Example 3-1]
A laminate was produced in the same manner as Comparative Example 1-1 except that the underfill forming adhesive 3 was used instead of the underfill forming adhesive 1. When the following method was used to evaluate the presence or absence of fillet bleeding, bleeding was observed.
[実施例1-2]
 酸素プラズマ処理して17時間経過した後の基板II上にアンダーフィル形成用接着剤1を塗布したこと以外は比較例1-1と同様にして積層体を製造した。
 酸素プラズマ処理して17時間経過した後の基板IIの臨界界面張力は38mN/mであった。得られた積層体においてフィレットのブリードの有無を下記の方法で評価したところ、ブリードが観察されなかった。
[Example 1-2]
A laminate was manufactured in the same manner as Comparative Example 1-1 except that the underfill-forming adhesive 1 was applied onto the substrate II after 17 hours had passed after the oxygen plasma treatment.
After 17 hours from the oxygen plasma treatment, the critical interface tension of the substrate II was 38 mN / m. When the obtained laminate was evaluated for the presence or absence of fillet bleed by the following method, no bleed was observed.
[実施例2-2]
 アンダーフィル形成用接着剤1の代わりにアンダーフィル形成用接着剤2を用いたこと以外は実施例1-2と同様にして積層体を製造した。フィレットのブリードの有無を下記の方法で評価したところ、ブリードが観察されなかった。
[Example 2-2]
A laminate was produced in the same manner as in Example 1-2 except that the underfill forming adhesive 2 was used instead of the underfill forming adhesive 1. When the following method was used to evaluate the presence or absence of fillet bleed, no bleed was observed.
[比較例3-2]
 アンダーフィル形成用接着剤1の代わりにアンダーフィル形成用接着剤3を用いたこと以外は実施例1-2と同様にして積層体を製造した。フィレットのブリードの有無を下記の方法で評価したところ、ブリードが観察された。
[Comparative Example 3-2]
A laminate was produced in the same manner as in Example 1-2 except that the underfill forming adhesive 3 was used instead of the underfill forming adhesive 1. When the following method was used to evaluate the presence or absence of fillet bleeding, bleeding was observed.
[実施例1-3]
 酸素プラズマ処理して22時間経過した後の基板II上にアンダーフィル形成用接着剤1を塗布したこと以外は比較例1-1と同様にして積層体を製造した。
 酸素プラズマ処理して17時間経過した後の基板IIの臨界界面張力は35mN/mであった。得られた積層体においてフィレットのブリードの有無を下記の方法で評価したところ、ブリードが観察されなかった。
[Example 1-3]
A laminate was manufactured in the same manner as Comparative Example 1-1 except that the underfill-forming adhesive 1 was applied onto the substrate II after 22 hours had passed after the oxygen plasma treatment.
The critical interfacial tension of the substrate II after 17 hours from the oxygen plasma treatment was 35 mN / m. When the obtained laminate was evaluated for the presence or absence of fillet bleed by the following method, no bleed was observed.
[実施例2-3]
 アンダーフィル形成用接着剤1の代わりにアンダーフィル形成用接着剤2を用いたこと以外は実施例1-3と同様にして積層体を製造した。フィレットのブリードの有無を下記の方法で評価したところ、ブリードが観察されなかった。
[Example 2-3]
A laminate was produced in the same manner as in Example 1-3 except that the underfill forming adhesive 2 was used instead of the underfill forming adhesive 1. When the following method was used to evaluate the presence or absence of fillet bleed, no bleed was observed.
[比較例3-3]
 アンダーフィル形成用接着剤1の代わりにアンダーフィル形成用接着剤3を用いたこと以外は実施例1-3と同様にして積層体を製造した。フィレットのブリードの有無を下記の方法で評価したところ、ブリードが観察された。
[Comparative Example 3-3]
A laminate was produced in the same manner as in Example 1-3 except that the underfill forming adhesive 3 was used instead of the underfill forming adhesive 1. When the following method was used to evaluate the presence or absence of fillet bleeding, bleeding was observed.
[実施例1-4]
 酸素プラズマ処理して50時間経過した後の基板II上にアンダーフィル形成用接着剤1を塗布したこと以外は比較例1-1と同様にして積層体を製造した。
 酸素プラズマ処理して17時間経過した後の基板IIの臨界界面張力は30mN/mであった。得られた積層体においてフィレットのブリードの有無を下記の方法で評価したところ、ブリードが観察されなかった。
[Example 1-4]
A laminate was manufactured in the same manner as Comparative Example 1-1 except that the underfill-forming adhesive 1 was applied onto the substrate II after 50 hours had passed after the oxygen plasma treatment.
The critical interfacial tension of the substrate II after 17 hours from the oxygen plasma treatment was 30 mN / m. When the obtained laminate was evaluated for the presence or absence of fillet bleed by the following method, no bleed was observed.
[実施例2-4]
 アンダーフィル形成用接着剤1の代わりにアンダーフィル形成用接着剤2を用いたこと以外は実施例1-4と同様にして積層体を製造した。フィレットのブリードの有無を下記の方法で評価したところ、ブリードが観察されなかった。
[Example 2-4]
A laminate was produced in the same manner as in Example 1-4, except that the underfill forming adhesive 2 was used instead of the underfill forming adhesive 1. When the following method was used to evaluate the presence or absence of fillet bleed, no bleed was observed.
[実施例3-4]
 アンダーフィル形成用接着剤1の代わりにアンダーフィル形成用接着剤3を用いたこと以外は実施例1-4と同様にして積層体を製造した。フィレットのブリードの有無を下記の方法で評価したところ、ブリードが観察されなかった。
[Example 3-4]
A laminate was produced in the same manner as in Example 1-4 except that the underfill forming adhesive 3 was used instead of the underfill forming adhesive 1. When the following method was used to evaluate the presence or absence of fillet bleed, no bleed was observed.
積層体の評価
[フィレットのブリードの評価]
 積層体のフィレットを観察することによりフィレットのブレードを評価した。
評価は、図2に示すように、測定試料に対して均一な光を当て、反射した光を観察する明視野観察と、試料に対して斜めから光を当て、散乱光を観察する暗視野観察を行った。明視野観察で、図2の左図で破線で囲った部分の矢印により示したように、フィレット外側にブリードが見られる場合でも、暗視野観察では、図2の右図に示すように、フィレット外側にブリードの像が確認出来ないことから、ブリードは光を散乱する無機フィラーを含有せず、有機成分が主成分であることが推察された。すなわち、ブリードは無機フィラーと有機成分の分離が原因であると考えられる。
Evaluation of laminate [ Evaluation of fillet bleed]
The fillet blade was evaluated by observing the fillet of the laminate.
As shown in FIG. 2, the evaluation is performed by applying a uniform light to the measurement sample and observing the reflected light, and a dark field observation in which the sample is irradiated with light obliquely and the scattered light is observed. Went. In bright field observation, as shown by the arrow in the part surrounded by the broken line in the left diagram of FIG. Since no bleed image could be confirmed on the outside, it was assumed that the bleed does not contain an inorganic filler that scatters light, and the organic component is the main component. That is, bleed is considered to be caused by separation of the inorganic filler and the organic component.
[プラズマ処理後のSiN基板の臨界表面張力の経時変化]
 前記積層体の製造において、SiN基板IIの臨界表面張力を測定したところ、酸素プラズマ処理からの引き置き時間に応じて、SiN基板IIの臨界表面張力が低下する現象が確認された。本現象は、大気中の微量な有機物質の表面付着が原因であると考えられる。図3に、酸素プラズマ処理からの経過時間に対するSiN基板IIの臨界表面張力の変化を示す。
[Time-dependent change of critical surface tension of SiN substrate after plasma treatment]
In the production of the laminate, when the critical surface tension of the SiN substrate II was measured, it was confirmed that the critical surface tension of the SiN substrate II was lowered according to the holding time from the oxygen plasma treatment. This phenomenon is thought to be due to the surface adhesion of trace amounts of organic substances in the atmosphere. FIG. 3 shows the change in the critical surface tension of the SiN substrate II with respect to the elapsed time from the oxygen plasma treatment.
[フィレットのブリードと、基板II、無機粒子、および分散剤の表面張力の関係]
 積層体において、SiN基板IIの酸素プラズマ処理からの経過時間とブリードの有無について評価した。図4は、積層体のブリードの有無についての、SiN基板IIの臨界表面張力、分散剤の表面張力および無機粒子の臨界表面張力の関係を示す図である。
[Relationship between fillet bleed and surface tension of substrate II, inorganic particles, and dispersant]
In the laminate, the elapsed time from the oxygen plasma treatment of the SiN substrate II and the presence or absence of bleed were evaluated. FIG. 4 is a diagram showing the relationship between the critical surface tension of the SiN substrate II, the surface tension of the dispersant, and the critical surface tension of the inorganic particles with or without bleeding of the laminate.
 上記ブリードの有無の評価および図4から、無機粒子の臨界表面張力 > 分散剤の表面張力 > 基板IIの臨界表面張力の関係にあるとき、フィレットのブリードはなく、良好な形状のフィレットを形成することが確認された。 From the above evaluation of the presence or absence of bleed and FIG. 4, when there is a relationship of critical surface tension of inorganic particles> surface tension of dispersant> critical surface tension of substrate II, there is no bleed of fillet and a well-shaped fillet is formed. It was confirmed.
1 第1基板
2、12 電極パッド
3 塗膜
4 開口部
5 レジスト
6 はんだ電極
7 接着剤層
8 IMSヘッド
9 溶融はんだ
10 積層体
11 第2基板
13 アンダーフィル材
14 フィレット
DESCRIPTION OF SYMBOLS 1 1st board | substrates 2 and 12 Electrode pad 3 Coating film 4 Opening part 5 Resist 6 Solder electrode 7 Adhesive layer 8 IMS head 9 Molten solder 10 Laminated body 11 2nd board | substrate 13 Underfill material 14 Fillet

Claims (11)

  1.  電極パッドを有する第1基板上に、アンダーフィル材を介して、電極パッドを有する第2基板を積層する積層体の製造方法であって、
     前記第1基板上に、該第1基板が有する電極パッドに対応する開口部を備えたレジストを形成する工程(1)、
     前記第1基板の、前記開口部に対応する部位にはんだ電極を形成する工程(2)、
     前記はんだ電極上、および/または前記第2基板上に、
     無機粒子と、表面張力が前記第1基板または前記第2基板における前記アンダーフィル材と接する面の臨界表面張力より大きい分散剤とを含有するアンダーフィル材形成用接着剤を用いて、接着剤層を形成する工程(3)、および
     前記接着剤層を挟んで、前記第1基板に前記第2基板を積層し、前記はんだ電極を介して、前記第1基板の電極パッドと前記第2基板の電極パッドとの電気的接続構造を形成する工程(4)
     を有する積層体の製造方法。
    A method for manufacturing a laminate in which a second substrate having electrode pads is laminated on a first substrate having electrode pads via an underfill material,
    Forming a resist having an opening corresponding to an electrode pad of the first substrate on the first substrate (1);
    Forming a solder electrode on a portion of the first substrate corresponding to the opening (2);
    On the solder electrode and / or on the second substrate,
    Using an underfill material-forming adhesive containing inorganic particles and a dispersant having a surface tension larger than the critical surface tension of the surface in contact with the underfill material in the first substrate or the second substrate Forming the step (3), and laminating the second substrate on the first substrate across the adhesive layer, and via the solder electrodes, the electrode pads of the first substrate and the second substrate Step (4) of forming an electrical connection structure with the electrode pad
    The manufacturing method of the laminated body which has this.
  2.  前記工程(2)が、前記開口部に溶融はんだを加熱しながら充填して、はんだ電極を形成する工程(2')である、請求項1に記載の積層体の製造方法。 The method for producing a laminate according to claim 1, wherein the step (2) is a step (2 ') of filling the opening with molten solder while heating to form a solder electrode.
  3.  前記アンダーフィル材形成用接着剤が、さらにエポキシ樹脂を含有する、請求項1または2に記載の積層体の製造方法。 The manufacturing method of the laminated body of Claim 1 or 2 in which the said adhesive agent for underfill material formation contains an epoxy resin further.
  4.  前記アンダーフィル材形成用接着剤が、さらに硬化剤を含有する、請求項1~3に記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 3, wherein the underfill material-forming adhesive further contains a curing agent.
  5.  前記第1基板または前記第2基板が、プラズマ処理基板である、請求項1~4のいずれかに記載の積層体の製造方法。 The method for manufacturing a laminate according to any one of claims 1 to 4, wherein the first substrate or the second substrate is a plasma processing substrate.
  6.  前記無機粒子の臨界表面張力が、前記分散剤の表面張力よりも大きい請求項1~5のいずれかに記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 5, wherein a critical surface tension of the inorganic particles is larger than a surface tension of the dispersant.
  7.  前記無機粒子の臨界表面張力が、70mN/m以上である、請求項6に記載の積層体の製造方法。 The manufacturing method of the laminated body of Claim 6 whose critical surface tension of the said inorganic particle is 70 mN / m or more.
  8.  前記分散剤の表面張力が、10~70mN/mである、請求項1~7のいずれかに記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 7, wherein the dispersant has a surface tension of 10 to 70 mN / m.
  9.  前記第1基板および前記第2基板における前記アンダーフィル材と接する面の臨界表面張力が45mN/m未満である、請求項1~8のいずれかに記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 8, wherein a critical surface tension of a surface in contact with the underfill material in the first substrate and the second substrate is less than 45 mN / m.
  10.  請求項1~9のいずれかに記載の積層体の製造方法によって製造された積層体。 A laminate produced by the laminate production method according to any one of claims 1 to 9.
  11.  請求項10に記載の積層体を有する電子部品。 An electronic component having the laminate according to claim 10.
PCT/JP2017/044192 2017-03-13 2017-12-08 Laminate, method for producing same and electronic component WO2018168115A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-047250 2017-03-13
JP2017047250 2017-03-13

Publications (1)

Publication Number Publication Date
WO2018168115A1 true WO2018168115A1 (en) 2018-09-20

Family

ID=63522048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044192 WO2018168115A1 (en) 2017-03-13 2017-12-08 Laminate, method for producing same and electronic component

Country Status (1)

Country Link
WO (1) WO2018168115A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203869A (en) * 2000-10-30 2002-07-19 Seiko Epson Corp Forming method of bump, semiconductor device, method for manufacturing the device, circuit substrate and electronic equipment
JP2004210901A (en) * 2002-12-27 2004-07-29 Hitachi Chem Co Ltd Liquid epoxy resin composition and electronic component device
JP2005051128A (en) * 2003-07-30 2005-02-24 Sony Corp Semiconductor chip, method for manufacturing the same, and method for manufacturing semiconductor device
JP2009111340A (en) * 2007-10-11 2009-05-21 Hitachi Chem Co Ltd Wafer with adhesive, adhesive composition, and method for manufacturing wafer with adhesive
JP2013127039A (en) * 2011-12-19 2013-06-27 Daicel Corp Epoxy resin composition
JP2016208001A (en) * 2015-04-16 2016-12-08 Jsr株式会社 Method for producing soldered electrode and use of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203869A (en) * 2000-10-30 2002-07-19 Seiko Epson Corp Forming method of bump, semiconductor device, method for manufacturing the device, circuit substrate and electronic equipment
JP2004210901A (en) * 2002-12-27 2004-07-29 Hitachi Chem Co Ltd Liquid epoxy resin composition and electronic component device
JP2005051128A (en) * 2003-07-30 2005-02-24 Sony Corp Semiconductor chip, method for manufacturing the same, and method for manufacturing semiconductor device
JP2009111340A (en) * 2007-10-11 2009-05-21 Hitachi Chem Co Ltd Wafer with adhesive, adhesive composition, and method for manufacturing wafer with adhesive
JP2013127039A (en) * 2011-12-19 2013-06-27 Daicel Corp Epoxy resin composition
JP2016208001A (en) * 2015-04-16 2016-12-08 Jsr株式会社 Method for producing soldered electrode and use of the same

Similar Documents

Publication Publication Date Title
JP3995022B2 (en) Adhesive composition for semiconductor, semiconductor device using the same, and method for manufacturing semiconductor device
US8110066B2 (en) Adhesive composition suitable to be applied by screen printing
KR102220124B1 (en) Adhesive agent, adhesive film, and semiconductor device and method for manufacturing same
JP5040247B2 (en) Adhesive composition for semiconductor, semiconductor device using the same, and method for manufacturing semiconductor device
CN102140257B (en) Heat conductive sheet
JP5141366B2 (en) Adhesive film for semiconductor and method of manufacturing semiconductor device using the same
KR20120051634A (en) Adhesive composition, adhesive sheet, circuit board and semiconductor device both produced using these, and processes for producing these
CN101245231A (en) Adhesive composition, adhesive film, and method for producing semiconductor device
TW201139642A (en) Thermal conductive sheet
US20120126393A1 (en) Resin composition, multilayer body containing the same, semiconductor device, and film
JP5422878B2 (en) Adhesive composition for semiconductor, semiconductor device using the same, and method for manufacturing semiconductor device
EP4316815A1 (en) Laminate and manufacturing method of semiconductor device
JP6112013B2 (en) Adhesive sheet for manufacturing semiconductor device with bump electrode and method for manufacturing semiconductor device
JP2009194054A (en) Adhesive composition for semiconductor, and method of manufacturing semiconductor device using the same
JP5910731B2 (en) Method for manufacturing heat conductive sheet, heat conductive sheet, heat conductive sheet with metal foil, and semiconductor device
TW201336951A (en) Thermal conductive adhesive composition, and adhesive sheet and thermal conductive dicing and die attach film using the same
JP2008094993A (en) Adhesive composition for semiconductor, semiconductor device using the same and method for producing semiconductor device
WO2018168115A1 (en) Laminate, method for producing same and electronic component
TW200920779A (en) Composition with thermally-treated silica filler for performance enhancement
JP2018012749A (en) Adhesive, laminate, method for producing laminate and electronic component
TW201239026A (en) Liquid sealing resin composition and semiconductor device using the same
WO2016093114A1 (en) Adhesive composition, semiconductor device containing cured product thereof, and method for manufacturing semiconductor device using same
JP2005244188A (en) Paste-like adhesive for bonding semiconductor chip and semiconductor device
WO2015107990A1 (en) Adhesive composition and adhesive film having same, substrate provided with adhesive composition, and semiconductor device and method for manufacturing same
JP5278280B2 (en) Adhesive composition, adhesive sheet and dicing die attach film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP