TW200920779A - Composition with thermally-treated silica filler for performance enhancement - Google Patents

Composition with thermally-treated silica filler for performance enhancement Download PDF

Info

Publication number
TW200920779A
TW200920779A TW097109759A TW97109759A TW200920779A TW 200920779 A TW200920779 A TW 200920779A TW 097109759 A TW097109759 A TW 097109759A TW 97109759 A TW97109759 A TW 97109759A TW 200920779 A TW200920779 A TW 200920779A
Authority
TW
Taiwan
Prior art keywords
resin
filler
resins
temperature
curable
Prior art date
Application number
TW097109759A
Other languages
Chinese (zh)
Inventor
Daniel Duffy
Ya-Yun Liu
Allison Yue Xiao
Original Assignee
Nat Starch Chem Invest
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Starch Chem Invest filed Critical Nat Starch Chem Invest
Publication of TW200920779A publication Critical patent/TW200920779A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

A curable composition comprising a curable resin and a thermally-treated silica filler, when used as an underfill material in semiconductor packages provides improved flow behavior, reduction in CTE, and enhancement of modulus, leading to reduced warpage. In one embodiment, the curable composition comprises (a) a thermally-treated silica filler, (b) a curable resin (c) an initiator, and (d) optionally, adhesion promoters and/or wetting agents. The curable resins can be cyanate ester resins, epoxy resins, maleimide resins, or acrylate or methacrylate resins.

Description

200920779 九、發明說明: 【發明所屬之技術領域】 本發明相關於包含可固化樹脂及熱處理氧化矽之組成物。 特別是相關於含有氰酸酯及/或環氧樹脂與熱處理氧化矽之 5 組成物。 【先前技術】 10 15 20 矽填充物用於多種供半導體封裝與微電子裝置之製造用的 化學组成物,特別是做為填缝組成物。半導體封裝與微電 子裝置含大量電子線路零件,這些零件相互電性連結及與 载體或基板電性連結。利用聚合物或金屬焊料塗覆於零件 或基板接點的凸點以使各零件與基板產生相互連結,這些 接起排列及互相接觸,及所產生的組件經過加数使金 屬或聚合物焊料回焊_〇W),以岐其間的連結。...... 壽命内’電子組件進行包含焊點、回焊過程 二…猶%後測試的溫度升降循環。肇因於各電子零件、互 與基板的熱膨脹係數(CTE)差異,此熱循環可使組 因緊壓或勉曲而失效。為避免零件 ==聚合物封農劑(一種填鏠劑) 基 i t 膨脹係數差異’而減少零件麵曲。 的材二 =曲力係由其用於調製填縫劑組成物 充之樹脂:::常性填充物填 多種樹脂系統可用於構成填縫劑組成物,包化物、 5 200920779 順丁婦二酸醯亞胺酯(bismaieimides)以及丙稀酸醋 (acrylates) ’而氰酸酯化合物亦是理想的樹脂,因其可形成 回父聯密度,高交聯密度提供低濕氣吸收與高玻璃轉移溫 度(Tg)。高玻璃轉移溫度(通常高於125。〇使聚合物1 在熱循環時保持聚合物完整性。 10 15 20 $而,因為交聯而始材料變成非撓性,高交聯密度使零件 容^翹曲。利用大量的填充物不僅能降低翹曲,也能^低 熱膨,係數,而增加材料的強度,改變其流變學特性。使 用大董填充劑的問題是會增加黏度與減緩流動速度。 使用填縫劑的方法之一是:將一測定量之填缝劑沿著一個 ^-個以上的電子組件邊界塗佈,零件與基板間的缝隙合 將填縫劑引人其内。基板可視需要預熱以達到 理心毛細作用所需的封裝黏度。在缝隙填滿後,可再 二==額外的填缝義,以減少應力及延i零 :、,,。構疲切Dp。填缝或吸濕是耗時的步驟,且幻 流動作用而不適用做填缝劑/1度的材料因會減慢毛細 因此’添加可固化填充組成物是 醋時)’使其在做為填缝劑材料使用時:用二 動作用,也能降低零件翻曲的可能性Ί、備良好的毛細流 【發明内容】 其包含一可固化樹脂及 具體例中,該可固化組 本發明關於一種可固化的組成物, 一經熱處理的氧化矽填充劑,於一 6 200920779 =物包含⑷-經熱處理的氧化矽填充劑 月曰,(c)一起始劑,與(d)選擇性加入 匕树 劑,該可固化$ m ^ 刎及/或潤濕200920779 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a composition comprising a curable resin and a heat-treated cerium oxide. In particular, it relates to a composition comprising a cyanate ester and/or an epoxy resin and a heat-treated cerium oxide. [Prior Art] 10 15 20 The ruthenium filler is used for a variety of chemical compositions for the manufacture of semiconductor packages and microelectronic devices, particularly as a caulking composition. Semiconductor packages and microelectronic devices contain a large number of electronic circuit components that are electrically connected to each other and to the carrier or substrate. Applying a polymer or metal solder to the bumps of the part or substrate contacts to interconnect the parts and the substrate, these are aligned and in contact with each other, and the resulting components are subjected to an addendum to make the metal or polymer solder back. Weld _〇W) to connect the 岐. ...... Within the life of the 'electronic components to include solder joints, reflow process two ... after the test of the temperature rise and fall cycle. Due to the difference in coefficient of thermal expansion (CTE) between the electronic components and the substrate, this thermal cycle can cause the group to fail due to compression or distortion. In order to avoid parts == polymer sealant (a type of filler) base i t expansion coefficient difference 'reduced part curvature. The second material = the curved force is used to prepare the sealant composition to fill the resin::: the normal filler filled with a variety of resin systems can be used to form the sealant composition, the inclusion compound, 5 200920779 cis-butane diacid Bismueimides and acrylates' are also ideal resins because they form a back-to-parent density and high cross-linking density provides low moisture absorption and high glass transition temperature. (Tg). High glass transition temperature (usually higher than 125. 〇 allows polymer 1 to maintain polymer integrity during thermal cycling. 10 15 20 $, because the material becomes non-flexible due to cross-linking, high cross-linking density allows parts to be ^ Warpage. Using a large amount of filler can not only reduce warpage, but also reduce the thermal expansion coefficient, increase the strength of the material, and change its rheological properties. The problem with Dadong filler is to increase the viscosity and slow down the flow rate. One of the methods of using a caulk is to apply a measured amount of caulking agent along a boundary of one or more electronic components, and the gap between the part and the substrate is used to introduce the caulking agent. It can be preheated as needed to achieve the package viscosity required for the nucleus capillary action. After the gap is filled, the additional gap == additional seaming can be used to reduce the stress and delay the zero:,,,, and the fatigue Dp. Caulking or moisture absorption is a time consuming step, and the magic flow is not suitable for the caulking agent / 1 degree of material because it will slow down the capillary and therefore 'adding the curable filling composition to the vinegar' When using caulk material: use two actions to reduce zero Ί 翻 Ί Ί 备 备 备 备 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【于一6 200920779=The material comprises (4)-heat treated cerium oxide filler cerium, (c) an initiator, and (d) optionally added eucalyptus, the curable $m^ 刎 and/or wetting

UiG树彻』馬虱鲛根酯、環氧樹脂、 亞胺樹脂或是⑽酸酯或f基丙_g|樹脂。 — 【二:::,,::或’可固化樹脂為-氰酸根酯樹脂或-環 氧樹舳或疋虱酸根酯樹脂與環氧樹脂的组合, 的氧化矽填充劑,與起始劑及選擇 σ 、,’ 、,、處里 ·*, 、擇丨生的黏者促進劑盘潤渴 劑。該氧化石夕的熱處理明顯地降低了在表面上的經基濃- 10 15 20 =其造成與樹脂的相容性會有改善,及特別的是與氛酸 =曰的相容性,經改善的流動行為,降低cte及增強模數。 =這^生質特徵的改善,利用樹脂及經熱處理的氧化石夕 真充的晶片封裝件的輕曲會減少。 言,氧化石夕填充劑由製造商提供,其表面經石夕烧處 广有高濃度的幾基。部分樹脂(例如:氰酸醋樹脂)會 ”經基作用及反應釋出揮發物質。當填縫劑固化時,從填 =劑组成射逸出的揮發物質產生孔隙,可使精密電子設 備發生經常性的故障。移除經基可改善此問題,此外,填 ^劑與樹脂間的如何作用可決定組成物的黏度。藉由移除 i基可降低氧化;^的表面能量,增加氧化⑦對特定樹脂 (特別疋氰酸醋)表面能量的相容性’而使黏度降低。此現 象可容許添加大量的氧化石夕以減少元件起曲,而不增加組 ,物的黏度。經熱處理之氧化石夕與氛酸酿樹脂間的良好相 各性也影響複合物的熱膨脹係數與模數,因而能較未處理 過之氧化石夕明顯地減少麵曲的現象。 7 200920779 適用作為填缝劑材料之氰酸根酯包括彼等具有一般結 構fNSC—,其中η為大於或等於1,X為烴基的氰酸 L J η 根酯適於做為填缝物質。舉例說明,X所代表的包括(但 不偈限於):雙酚Α、雙酚F、雙酚S、雙酚Ε、雙酚0、 5 苯酚或曱酚酚醛清漆樹脂(novolac)、二環戊二烯、聚丁二 烯、聚碳酸酯、聚胺基曱酸酯、聚醚或聚酯。市面上可見 的氰酸根酯材料包括:獲自Huntsman LLC的AROCY L-10、AROCYXU366、AROCYXU371、AROCYXU378、 XU71787.02L,以及 XU 71787.07L ;獲自 Lonza Group i〇 Limited 的 PRIMASET PT30、PRIMASET PT30 S75、 PRIMASET PT60 > PRIMASET PT60S > PRIMASET BADCY ' PRIMASETDA230S、PRIMASETMethylCy 及 PRIMASET LECY;獲自OakwoodProducts,Inc.的2-婦丙基苯齡氰酸 酯、4-曱氧基苯酚氰酸酯、2,2-雙(4-氰酸基苯 15酚)-1,1,1,3,3,3-六氟丙烷、雙酚八氰酸酯、雙烯丙基雙酚 A氰酸酯、4-苯基苯酚氰酸酯、1,1,1_三(4-氰酸基苯基)乙 烷、4-異丙基苯酚氰酸酯、ι,ι_雙(4-氰酸基苯基)乙烷、 2,2,3,4,4,5,5,6,6,7,7-十二氟辛二醇雙氰酸酯,及4,4-雙酚 氦醢酷。UiG is a resin of horse macadamine, epoxy resin, imine resin or (10) acid ester or f-based acrylic acid. — [2:::,,:: or 'curable resin is - cyanate ester resin or - epoxy resin or combination of phthalate resin and epoxy resin, cerium oxide filler, and initiator And choose σ,, ',,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The heat treatment of the oxidized oxidized stone significantly reduces the base concentration on the surface - 10 15 20 = which results in an improvement in compatibility with the resin, and in particular, compatibility with odor acid = hydrazine, improved The flow behavior reduces cte and enhances modulus. = This improves the quality of the raw material, and the lightness of the wafer package using the resin and the heat-treated oxide oxide is reduced. In other words, the Oxide Oxide Filler is supplied by the manufacturer, and its surface is widely distributed with a high concentration of several bases. Some of the resin (for example, cyanate vinegar resin) will release volatile substances through the action of the base and the reaction. When the caulking agent is solidified, the volatile matter that escapes from the composition of the filling agent generates pores, which can cause frequent electronic equipment to occur frequently. Sexual failure. Removing the warp group can improve the problem. In addition, how the interaction between the filler and the resin determines the viscosity of the composition. By removing the i-base, the oxidation can be reduced; The viscosity of the specific resin (especially cyanuric acid vinegar) is reduced by the surface energy. This phenomenon allows a large amount of oxidized stone to be added to reduce the component's curvature without increasing the viscosity of the group. The good phase between Shixi and the scented resin also affects the thermal expansion coefficient and modulus of the composite, so that it can significantly reduce the curvature of the surface compared with the untreated oxidized oxide. 7 200920779 Applicable as a caulk material The cyanate esters include those having a general structure fNSC-, wherein η is greater than or equal to 1, and X is a hydrocarbyl group, the LJ η root ester is suitable as a caulking material. For example, X represents Not limited to): bisphenol hydrazine, bisphenol F, bisphenol S, bisphenol oxime, bisphenol 0, 5 phenol or nonanophenol novolac resin (novolac), dicyclopentadiene, polybutadiene, polycarbonate Ester, polyamino phthalate, polyether or polyester. Commercially available cyanate ester materials include: AROCY L-10, AROCYXU366, AROCYXU371, AROCYXU378, XU71787.02L, and XU 71787.07L from Huntsman LLC; PRIMASET PT30, PRIMASET PT30 S75, PRIMASET PT60 > PRIMASET PT60S > PRIMASET BADCY 'PRIMASETDA230S, PRIMASETMethylCy and PRIMASET LECY from Lonza Group i〇Limited; 2-propylpropyl benzoate from Oakwood Products, Inc. , 4-decyloxyphenol cyanate, 2,2-bis(4-cyanylbenzene 15phenol)-1,1,1,3,3,3-hexafluoropropane, bisphenol ocyanate, Bisallyl bisphenol A cyanate, 4-phenylphenol cyanate, 1,1,1-tris(4-cyanylphenyl)ethane, 4-isopropylphenol cyanate, ι , ι_bis(4-cyanylphenyl)ethane, 2,2,3,4,4,5,5,6,6,7,7-dodecafluorooctanediol dicyanate, and 4,4-bisphenol is cool.

結構之氰 酸酯’其中R1到R4各自獨立地代表Η、CrC1()烷基、 C3-C8環烷基、烷氧基、鹵素、苯基、苯氧基以及 部分或完全氟化之烷基或芳基(例如:伸笨基-1,3-二氰酸 8 200920779The structural cyanate 'wherein R1 to R4 each independently represent anthracene, CrC1()alkyl, C3-C8 cycloalkyl, alkoxy, halogen, phenyl, phenoxy and partially or fully fluorinated alkyl Or aryl (for example: stupid base-1,3-dicyanate 8 200920779

結構之氰酸酯,其中R1到;R5各 氧基、_素、苯基、苯氧基以及部分或完全氟化之烷基或a structural cyanate wherein R1 to R5 are each oxy, _, phenyl, phenoxy and partially or fully fluorinated alkyl or

芳基;具有 Μ θ θ ΘAryl; with Μ θ θ Θ

NSC-O— O-CSN 結構之氰酸酯,其中R1到R4各自獨立地代表H'c^-c 烷基、C3-C8環烷基、q-Cio烷氧基、鹵素、苯基、苯氧 基以及部分或完全氟化之烧基或芳基;Z)為化學鍵威 10 S〇2、CF2、CH2、CHF、CHCH3、異丙基、六氟異丙基、ίν〇10 烷基、Ο、N=N、R8OCR8 (其中R8代表H、CVC10烷基、 或芳基)、R8COO、R8C=N、R8ON-C(R8)=N、CVCk)烷氧 基、S、Si(CH3)2或以下結構之一: 15a cyanate of the NSC-O-O-CSN structure, wherein R1 to R4 each independently represent H'c^-c alkyl, C3-C8 cycloalkyl, q-Cioalkoxy, halogen, phenyl, benzene An oxy group and a partially or fully fluorinated alkyl or aryl group; Z) is a chemical bond 10 S〇2, CF2, CH2, CHF, CHCH3, isopropyl, hexafluoroisopropyl, ίν〇10 alkyl, hydrazine , N=N, R8OCR8 (wherein R8 represents H, CVC10 alkyl, or aryl), R8COO, R8C=N, R8ON-C(R8)=N, CVCk) alkoxy, S, Si(CH3)2 or One of the following structures: 15

c*— ί cf3 (例如:4,4’亞乙基二伸苯基氰酸酯,C*— ί cf3 (eg 4,4′ ethylene diphenyl phenyl cyanate,

其獲自Vantico的商品名稱是AroCyL-10); 具有 20 結構之氰酸酯’其中η為〇至20的數,R_6代表Η、 Cl-Cl0烧基’及Χ代表CH2或以下結構之一: 9 200920779Its trade name from Vantico is AroCyL-10); a cyanate having a structure of 20, wherein η is a number from 〇 to 20, R_6 represents Η, Cl-Cl0 alkyl group and Χ represents one of CH2 or the following structure: 9 200920779

(例如:獲自Vantico的商品XU366與XU71787.07);具 5 有 NSC-〇-R7-0-CSN 結構之氮酸醋與具有N^G-O-R7 結構之氰酸酯,其中R7代表具有3至12碳原子的非芳香 族的碳氫鏈,此碳氫鏈可選擇性部分或全部氟化。 適用之環氧樹脂包括雙酚、萘與脂族類環氧化物。可商購 的材料包括:雙酚型環氧樹脂,由DainipponInk& ίο Chemicals, Inc 所製造(EPICLON 830LVP、830CRP、 835LV、850CRP);萘型環氧樹脂,由 DainipponInk& Chemicals, Inc 製造(EPICLON HP4032);脂型環氧樹脂由 Ciba Specialty Chemicals (ARALDITE CY179、184、192、 175、179)、Dow Corporation (Epoxy 1234、249、206)以 15 及 Daicel Chemical Industries, Ltd (EHPE-3150)所製造0 其他適用之環氧樹脂包括環脂族環氧樹脂、雙酚-A型環氧 樹脂、雙酚-F型環氧樹脂、環氧酚醛清漆樹脂、雙苯基型 環氧樹脂、萘型環氧樹脂、雙環戊二烯酚型環氧樹脂。 適用之順丁烯二醯亞胺樹脂具有下列一般結構:(Example: Commercial products XU366 and XU71787.07 from Vantico); a nitrite having a NSC-〇-R7-0-CSN structure and a cyanate having a structure of N^GO-R7, wherein R7 represents 3 A non-aromatic hydrocarbon chain of up to 12 carbon atoms, which may be selectively partially or fully fluorinated. Suitable epoxy resins include bisphenols, naphthalenes and aliphatic epoxides. Commercially available materials include: bisphenol type epoxy resins, manufactured by DainipponInk & ίο Chemicals, Inc. (EPICLON 830LVP, 830CRP, 835LV, 850CRP); naphthalene type epoxy resin, manufactured by DainipponInk & Chemicals, Inc. (EPICLON HP4032) The lipid epoxy resin is manufactured by Ciba Specialty Chemicals (ARALDITE CY179, 184, 192, 175, 179), Dow Corporation (Epoxy 1234, 249, 206) as 15 and Daicel Chemical Industries, Ltd (EHPE-3150). Other suitable epoxy resins include cycloaliphatic epoxy resins, bisphenol-A epoxy resins, bisphenol-F epoxy resins, epoxy novolac resins, bisphenyl epoxy resins, naphthalene epoxy resins. Resin, dicyclopentadiene phenol type epoxy resin. Suitable maleimide resins have the following general structure:

20 ,其中η為1至3,X1為脂族或芳族官能基,X1實例包 括:聚(丁二烯)、聚(碳酸酯)、聚(胺基曱酸酯)、聚(醚)、聚 200920779 (酯)、簡單的碳氫化合物、以及含有官能基(例如:羰基 羧基、醯胺根、胺基甲酸根、尿素、酯或醚)的簡單碳氫 化合物。此類型之樹脂已商品化且可獲自例如Dainippon20, wherein η is 1 to 3, X1 is an aliphatic or aromatic functional group, and examples of X1 include: poly(butadiene), poly(carbonate), poly(amino phthalate), poly(ether), Poly 200920779 (ester), simple hydrocarbons, and simple hydrocarbons containing functional groups such as carbonyl carboxyl, guanyl, urethane, urea, ester or ether. This type of resin is commercially available and can be obtained, for example, from Dainippon

Ink and Chemicals,Inc 等公司取得。 5其他適用之順丁烯二醯亞胺樹脂包括(但不限於)固態芳 香族二順丁烯二醯亞胺酯(BMI)樹脂、特別是具有Ink and Chemicals, Inc. and other companies. 5 Other suitable maleimide resins include, but are not limited to, solid aromatic bis-butylene imidate (BMI) resins, especially

11 20092077911 200920779

5 10 15 "'有這,Q橋接官能基之二順丁烯二醯亞胺樹脂已商品 化’且可獲自 Sart〇mer(USA)或 HOS-TechnicGmbH (Austria)公司取得。 其他適用之順丁烯二醯亞胺樹脂包括: 〇 〇 20 Ο Ο # + 代表36個碳原子之直鏈或支鏈碳氫鏈(具有或不 具有環部分)之碳氫基, 12 200920779 與5 10 15 "'With this, the Q-bridged functional group of the maleimide resin has been commercialized' and is available from Sart〇mer (USA) or HOS-Technic GmbH (Austria). Other suitable maleimide resins include: 〇 〇 20 Ο Ο # + a hydrocarbon group representing a straight or branched hydrocarbon chain of 36 carbon atoms (with or without a ring moiety), 12 200920779 and

ο · 適用之丙烯酸酯與甲基丙烯酸酯樹脂包括由—般結構 10 (计 所2構成者,其中η為1至6,R1代表-Η或—CH3,及 X為芳族或脂族官能基,Χ2實例包括:聚(丁二 酸醋)、聚(胺基甲酸醋)、聚(趟)、聚㈤、簡單的碳氫= 15物、以及含有官能基(例如:絲、絲、St胺、胺基/ 酸、尿素、酯或醚)的簡單碳氫化合物。已商品化的 = :=KyoeishaChemicalc〇,,LTD 的(甲基)丙‘ 丁酉曰、(曱基)丙婦酸異丁醋、(甲基)丙烯酸2-乙基己 基)丙烯酸異十二酯、(曱基)丙稀酸正 20 酸烧醋、(甲基)丙稀酸十三酉旨、(曱基)丙稀㈣^硬土月^: (甲,,酸環己酉旨、(曱基)丙稀酸四氣糖醋、(甲基)丙 ^妒2笨氧基乙醋、(甲基)丙稀酸異冰片醋、二(甲基) 丙_酸!,4,丁二醇醋、二(甲基)丙婦酸己二醇醋、 一(甲基)丙稀酸!,9-壬二醇醋、(甲基)丙烯酸全氟辛基 13 200920779 乙酯、雙(曱基)丙烯酸1,1〇~癸二醇酯、(曱基)丙烯酸壬 基苯酚基聚丙氧基化酯以及聚戊氧基化酯四氫糠基丙烯酸 酉旨;獲自Sartomer Company, Inc的雙曱基丙烯酸聚丁二烯 胺基曱酸酯(CN302、NTX6513)及雙曱基丙烤酸聚丁二烯 5 (CN301、NTX6039、PRO6270);獲自 Negami Chemicalο · Suitable acrylate and methacrylate resins include those consisting of the general structure 10 (where η is 1 to 6, R1 represents -Η or -CH3, and X is an aromatic or aliphatic functional group) Examples of Χ2 include: poly(succinic acid vinegar), poly(amino carboxylic acid vinegar), poly(趟), poly(5), simple hydrocarbon = 15 and functional groups (eg silk, silk, St amine) Simple hydrocarbons of amines/acids, ureas, esters or ethers. Commercially available = :=KyoeishaChemicalc〇,, LTD's (methyl)propene's butyl sulfonate , (ethyl)ethyl 2-ethylhexyl)isodecyl acrylate, (mercapto) acrylic acid, acid sulphuric acid, (meth) acrylic acid, thirteenth hydrazine, (mercapto) propylene (four) ^硬土月^: (A, acid ring hexahydrate, (mercapto) acrylic acid four-gas sweet and sour vinegar, (methyl) propyl 妒 2 stupid oxyacetic acid, (meth) acrylic acid Borneol vinegar, di(methyl)propanoid acid, 4, butanediol vinegar, di(methyl)propionic acid hexanediol vinegar, mono (meth) acrylic acid!, 9-nonanediol vinegar, (meth)acrylic acid perfluoro Base 13 200920779 Ethyl ester, bis(indenyl)acrylic acid 1,1〇~ decyl glycol ester, (mercapto)acrylic acid decyl phenol based polypropoxylated ester and polypentoxylated ester tetrahydrofurfuryl acrylate ; bis-mercaptoacrylic acid polybutadienyl decanoate (CN302, NTX6513) and bis-decyl-propionic acid polybutadiene 5 (CN301, NTX6039, PRO6270) from Sartomer Company, Inc; obtained from Negami Chemical

Industries Co·,LTD的二丙烯酸聚碳酸酯胺基曱酸酯 (ArtResin UN9200A);獲自 Radcure Specialities,Inc 的丙 烯酸化的脂族胺基曱酸酯寡聚物(Ebecryl 230、264、265、 270、284、4830、4833、4834、4835、4866、4881、4883、 ίο 8402、8800-20R、8803、8804);獲自 Radcure Specialities 的 聚S旨丙稀酸酯寡聚物(Ebecryl 657, 770,810,830,1657,1810,1830);獲自 Sartomer Company,Inc 的環氧基丙烯酸樹脂(CN104、111、112、115、116、117、 118、119、120、124、136)。於一具體例中,丙烯酸樹脂選 15自組群包含:丙烯酸異冰片酯、甲基丙烯酸異冰片酯、丙 烯酸十二酯、甲基丙婦酸十二酯、具丙烯酸官能基的聚(丁 二烯)、具甲基丙烯酸官能基的聚(丁二稀)。 適用之氧化矽顆粒為具有平均粒徑為0.1微米至10微米 的球體,例如:獲自Admatechs的產品SOE5與SOE2。 2〇於一具體例中,不同大小顆粒的混合物可用於增加總填充 劑的承載量,同時保持黏度在可控制的範圍内。 熱處理過程是將從供應商取得之氧化矽粉末以一定量(一 般10克至50克)置入瓷坩堝内,在已預熱至400°C至 450 C的烘箱内加熱72小時。適用之烘箱為Thermolyne 14 200920779 F-A1740高溫爐。將坩堝自爐内移出’在乾燥空氣或氮氣 中冷卻至80°C。處理後的氧化矽在乾燥空氣下自坩堝轉移 熱(80°C )至以聚合物為基材的氣密儲存容器(例如:250 ml 的Nalgene瓶)内。裝滿熱處理之氧化矽的容器可儲存於' 5可排氣之包裝(例如:食物保存袋)内以提供額外的保護以 避免週遭濕氣的影響,以利長期儲存。 【實施方式】 實例1.流速 ίο 使用如上述詳細說明中所述的樹脂組成物及氧化矽填充劑 製備組成物及測試其流動能力,該樹脂組成物由: 60重量%氰酸根酯(獲自LonzaLTD的PRIMASET LECY)及40重量%,Bis-F-環氧樹脂(獲自EPON 828 Resolution Performance Products)所構成。氧化石夕填充劑具 15 有最大粒徑為5微米(獲自 Admatechs的SE5050氧化 矽)以40重量%與70重量%被加入樹脂系統中。控制組 則不含填充劑。 於内有3mm玻璃或二氧化锆研磨介質之聚丙烯杯中將樹 脂與填充劑組合以製備填充的樣品。將杯置入Flaktek 2〇 Speed Mixer,各以 1800 RPM、2100 RPM、2700 RPM 連 續三次30秒進行混合。 填充之氰酸酯/環氧樹脂組成物的流動速度,以訂製之設 備測量,此設備由矩形毛細管道、溫控流動腔及光學組態 與數位影像系統組成以測量流動前方情形。矩形毛細管道 15 200920779 由上下兩基板組成’其沿著基板的兩侧長邊相連接,中間 以一定距離分隔。使用兩片載玻片(75 X 25 mm),間隙為 50微米,獲得本次記錄結果。 狐控流動腔可固定上述之毛細管道,並使樣品與測試機器 5整體維持於均一溫度。此系統可探討2〇。〇至範圍 内的流動現象。溫控腔的一端連接毛細管道的開口以注入 樣品,樣品以注射針注入〇 〇5至〇12 ml。樣品流下管道 的情=由溫控腔的上方觀察,另由數位影像擷取系統記 錄在官逭中材料的流動情形。流動前方位置、速度與估計 10填充時間可以數位影像分析得知。 本試驗結果記錄於表i,顯示的結果為未添加填充劑與添 加填充劑之氰酸酯/環氧樹脂以上述設備與方法,在 9 0 C測得之流動速率。 表1 T=90°C 未處理的氧化矽 熱處理的氣彳卜.石々 唐出仓4 氧化夕Wt% 流動速度/S) ( UL /S) 執/夫虛瑰 0 2294 2294 1.00 40 322 328 1.02 70 22 — 一· 丨丨-—一.一. Π9 ----- 5,40 時,填充劑的處理 填充劑濃度超過展 ’填充劑表面性質 為符合熱膨脹與模 流動速率的結果顯示在低填充劑負荷量 對流動速率沒有顯著的影響。然而,^ 透點(percolation point,約 35 重量 〇/〇) 明顯地變為黏稠,因此減緩其流動率。 16 200920779 數表現,氧化矽的比例必須低於40%。上表顯示在填充劑 負荷為70%時’使用經熱處理後之填充劑,其流動速率至 少增加5倍之多。在氰酸酯/環氧樹脂系統使用經熱處 理之填充劑可兼顧高負荷量(未含有流動速率)。 5 實例2.翹曲 翹曲的測量方式為比較填縫封裝相對於基板的最高點與最 低點間的高度差。使用如上述詳細說明所述的樹脂系統與 熱處理的氧化矽製備及測試翹曲,該樹脂的配方由55.8重 ίο 量°/❶之氰酸酯(獲自Lonza LTD的PRIMASET LECY)、 37.2 重量% 之 Bis-F-環氧樹脂(由 National Starch andPolyacrylic acid amide phthalate (Art Resin UN9200A) from Industries Co., LTD; acrylated aliphatic amino phthalate oligomers from Radcure Specialities, Inc. (Ebecryl 230, 264, 265, 270 , 284, 4830, 4833, 4834, 4835, 4866, 4881, 4883, ί 8402, 8800-20R, 8803, 8804); poly S acrylate oligomers from Radcure Specialities (Ebecryl 657, 770, 810, 830, 1657, 1810, 1830); epoxy based acrylic resins (CN 104, 111, 112, 115, 116, 117, 118, 119, 120, 124, 136) available from Sartomer Company, Inc. In one embodiment, the acrylic resin is selected from the group consisting of isobornyl acrylate, isobornyl methacrylate, dodecyl acrylate, dodecyl methacrylate, and poly(butyl) having an acrylic functional group. Alkene), a poly(butylene) having a methacrylic acid functional group. Suitable cerium oxide particles are spheres having an average particle size of from 0.1 micron to 10 microns, such as the products SOE5 and SOE2 available from Admatechs. 2 In one embodiment, a mixture of particles of different sizes can be used to increase the loading of the total filler while maintaining the viscosity within a manageable range. The heat treatment process is carried out by placing a quantity of cerium oxide powder obtained from a supplier (generally 10 g to 50 g) in a porcelain crucible and heating in an oven preheated to 400 ° C to 450 C for 72 hours. The applicable oven is Thermolyne 14 200920779 F-A1740 high temperature furnace. Remove the crucible from the furnace and cool to 80 ° C in dry air or nitrogen. The treated cerium oxide is transferred from dry heat (80 ° C) to a polymer-based airtight storage container (for example, a 250 ml Nalgene bottle) under dry air. Containers filled with heat-treated yttrium oxide can be stored in '5 ventable packages (eg food storage bags) to provide additional protection against the effects of moisture around them for long-term storage. [Examples] Example 1. Flow rate ίο The composition was prepared and tested for flowability using a resin composition as described in the above detailed description and a cerium oxide filler consisting of: 60% by weight of cyanate ester (obtained from Lonza LTD's PRIMASET LECY) and 40% by weight of Bis-F-epoxy resin (available from EPON 828 Resolution Performance Products). The oxidized stone enamel filler 15 had a maximum particle size of 5 μm (SE5050 ruthenium oxide available from Admatechs) was added to the resin system at 40% by weight and 70% by weight. The control group does not contain fillers. The resin was combined with a filler in a polypropylene cup with 3 mm glass or zirconia grinding media to prepare a filled sample. Place the cups into the Flaktek 2〇 Speed Mixer and mix at 1800 RPM, 2100 RPM, 2700 RPM for three 30 seconds. The flow rate of the filled cyanate/epoxy resin composition is measured by a custom-made device consisting of a rectangular capillary channel, a temperature-controlled flow chamber, and an optical configuration and digital imaging system to measure the flow front. Rectangular capillary channel 15 200920779 consists of two upper and lower substrates 'connected along the long sides of the two sides of the substrate, separated by a certain distance. The results of this recording were obtained using two slides (75 X 25 mm) with a gap of 50 μm. The fox-controlled flow chamber holds the capillary channel as described above and maintains the sample and the test machine 5 as a whole at a uniform temperature. This system can be explored 2〇. Flow phenomena within the range. One end of the temperature control chamber is connected to the opening of the capillary channel to inject the sample, and the sample is injected into the 〇5 to 〇12 ml with the injection needle. The flow of the sample under the pipe = observed from above the temperature control chamber, and the digital image capture system records the flow of material in the bureaucracy. Flow front position, speed and estimate 10 fill time can be found by digital image analysis. The results of this test are reported in Table i, and the results are shown in the flow rate measured at 90 C without the addition of filler and cyanate/epoxy resin added with the above apparatus and method. Table 1 T=90°C Untreated cerium oxide heat treated gas 彳 .. Shijie Tang warehousing 4 oxidized eve Wt% flow rate / S) (UL / S) 执 / 虚虚瑰 0 2294 2294 1.00 40 322 328 1.02 70 22 — I·丨丨-—一一一。 Π9 ----- 5,40, the filler treatment concentration of the filler exceeds the surface property of the filler. The results of thermal expansion and mold flow rate are shown in Low filler loading has no significant effect on flow rate. However, the percolation point (about 35 weight 〇/〇) apparently becomes viscous, thus slowing its flow rate. 16 200920779 Number performance, the proportion of bismuth oxide must be less than 40%. The above table shows that when the filler loading is 70%, the flow rate of the heat-treated filler is at least increased by a factor of five. The use of heat treated fillers in cyanate/epoxy systems allows for a high loading (without flow rate). 5 Example 2. Warpage Warpage is measured by comparing the height difference between the highest and lowest points of the caulk package relative to the substrate. The resin system was prepared and tested for warpage using a resin system as described in the above detailed description, and the formulation of the resin was 55.8 parts by weight of cerium cyanide (available from PRIMASET LECY of Lonza LTD), 37.2% by weight. Bis-F-Epoxy Resin (by National Starch and

Chemical Company現場製備),與7重量%之3, 3’二胺 二苯磺酮(得自Aldrich)所構成。樹脂成分在加入填充劑 之前先行混合’氧化矽填充劑的最大粒徑為5微米(獲自 15 Admatechs的SOE2),分別以4〇重量%與60重量%加入 樹脂系統中。樹脂與填充劑以3〇〇〇Ri>M高速離心5分 鐘’之後脫氣以除去調配物内含之空氣。 紐曲測試以覆晶職平台進行,晶粒尺寸為15 X 15晒, =無錯焊料接合於42 x 42 mm❸Βτ基板,晶粒與町 2 無鉛迴焊製程組合。在進行填縫之前,測試平 :之箱預熱2小時以除去吸收之濕氣,測試平 頭口徑0 33功間維持在U〇£>C進行。填缝劑調配物用針 充後之封注射針,以手沿著晶粒的-邊塗佈’填 在C下固化90分鐘。 20 200920779 測試平台的趣曲程度以雷射平坦儀(Cobra 3D,Optical Gaging Product)在基板背面,沿著兩對角線方向測量。兩 個曲線的平均高度可作為此封裝的魅曲程度計算,魅曲程 度分別在填缝前與立刻固化封裝冷卻至25°C後測量。固 5 化後增加的輕曲程度可用以比較填充劑對勉曲程度的影 響。結果記錄於如表2所示。 表2 填充劑負荷量 S0E2-MRCE 處理的 變化% (micron) SOE2-MRCE(micron) 之麵曲增加 之麵曲增加 40% wt 23.2±3.0 19.7±2.0 -15% 60% wt 38.6±4.2 28.1±2.0 -21% 10 結果顯示,使用經熱處理之氧化矽,用於填缝封裝之組成 物翹曲程度可減少,減少的程度隨填充劑的量而增加,當 填充劑負荷量為60重量%時,固化後的翹曲程度減少了 .27% ° 黏度隨溫度變化之預測探討 15 材質的黏度變化率影響其表現,例如:溢出、下陷與流動。 此效應已實際應用於設計電子零件封裝之毛細填缝劑、印 刷墨以及黏著性材質,黏度變化對這些物質可能是所需或 不需要的特性。因此,若能預測填充樹脂系統之黏度變化 將是非常有助益的。 20 填充樹脂系統對溫度的反應速率與無填充劑添加之樹脂系 統不完全相同,部分填充樹脂較未添加填充劑之樹脂其黏 18 200920779 度隨溫度變化而變薄的速率明顯緩慢許多,甚至具有接、斤 怪疋的黏度。® 1圖示聚辛f基㈣(Pqms)流體中一 系列表面處理的氧化石夕物質的黏度與溫度關係圖。表面處 理=苯基三烧氧基矽貌(圖中之苯基)、苯基胺基三烧 5乳基魏(®巾之苯基絲)以及末㈣三絲基石夕燒 官能基之二甲基矽鲷寡聚物(圖中之矽鋼)進行。此系列物 質的承載量與顆粒大小皆相同’圖表顯示黏度隨溫度上升 而降低,但不同填充劑具有不同的降低比率。 針對溫度對黏度的影響,填充樹月旨系統的行為是一受能量 Π)活化的過程。活化能可以黏度的對數對溫度的倒數作圖, 以所產生直線的斜率測得。以P0MS為例,在剪切變率 (Shearrate)為1 rad/s時,p〇MS的活化能㈣為 t〇〇OK,而一般的Bis_F_環氧樹脂為9l9〇K。 氧化石夕及礬土填充劑的活化能(Ea)由一系列對環氧樹脂、聚 U (苯基甲基)石夕酮(PPMS)及POMS的表面處理而判定。不 同填充劑類型與樹脂的活化能差異顯示於圖2(活化能的 數值得自黏度之自然對數與溫度倒數(1/τ)的圖表)。不同樹 脂系統間的表現具大範圍的差異;部分系統相似於未添加 填充劑之樹脂;部分系統對溫度變化保持不變性;其他隨 20溫度上升而有些微的膨脹。 另一個樹脂與填充劑組合對活化能依賴性的例子,氰酸酯 ,脂_MASETL-10)與具有下列表面修飾之氧化石夕組 合:利用六甲基二矽氮烷(HMDZ)處理、環氧矽烷處理、 熱處理(鍛燒)與未處理。未處理、環氧矽烷處理與鍛燒填 19 200920779 5 10 15 20 ^質皆隨溫度上升而變薄,但舰μ處 :上升’先是變薄而後膨脹(參見目3 貧隨溫 或預期其發生。 種見象難以預料 ,充樹㈣溫度依賴性及獨立性 ^ ^ ^ ^ ^ # ^ (m:g^;alf; (^ ^ ^ coatmg),MAIc的乾式塗佈法製 lmpact 在二:表: 度影響的黏度變化=:;=,化能與受溫 的黏度。 了以改邊表面修飾的程度以達到所需 另们例子疋在填充樹脂系統中加入不同量 樹腊系統含有相填充齊】(τ咖LLE 該 卿则)中。圖5的結果顯示活化能⑽ 劑_量,隨著量增加,聚合物的活化能趨近於零:充 树月日與填充劑的表面性質隨溫度而改變黏 ; 準:化能⑼與標準界面交互作用力(F)J= 兩者間的關係;其中Q是填充樹脂活化能與未埴充樹月匕活 ==合=充:;系;:黏著力所做的二 表面能量總合的比值;亦即’標準活化能的參數為 Q-Chemical Company prepared in situ) with 7 wt% of 3,3' diamine diphenyl sulfonone (available from Aldrich). The resin component was mixed prior to the addition of the filler. The maximum particle size of the cerium oxide filler was 5 μm (SOE 2 obtained from 15 Admatechs), and was added to the resin system at 4% by weight and 60% by weight, respectively. The resin and the filler were centrifuged at 3 Torr > M at high speed for 5 minutes' and then degassed to remove the air contained in the formulation. The New Curve test was carried out on a flip-chip platform with a grain size of 15 X 15 , = error-free solder bonded to a 42 x 42 mm 基板τ substrate, and a die-to-cho 2 lead-free reflow process. Before the caulking, the test was carried out by preheating the box for 2 hours to remove the absorbed moisture, and the test head caliber 0 33 was maintained at U &> C. The caulk formulation was filled with a needle after filling with a needle and applied by hand along the edge of the die to fill in C for 90 minutes. 20 200920779 The degree of interest in the test platform was measured on the back of the substrate with a Cobra 3D (Optical Gaging Product) along two diagonal directions. The average height of the two curves can be calculated as the degree of enchantment of the package, and the melody degree is measured before the filling and immediately after the package is cooled to 25 °C. The degree of softness added after solidification can be used to compare the effect of the filler on the degree of distortion. The results are recorded as shown in Table 2. Table 2 % change in filler loading S0E2-MRCE treatment (micron) The surface curvature of SOE2-MRCE(micron) increased by 40% wt 23.2±3.0 19.7±2.0 -15% 60% wt 38.6±4.2 28.1± 2.0 -21% 10 The results show that with the heat-treated cerium oxide, the degree of warpage of the composition for caulking can be reduced, and the degree of reduction increases with the amount of filler, when the filler loading is 60% by weight. The degree of warpage after curing is reduced by .27% °. Prediction of viscosity with temperature change 15 The viscosity change rate of the material affects its performance, such as overflow, sagging and flow. This effect has been applied to the design of capillary sealants, printing inks, and adhesive materials for electronic component packaging. Viscosity changes may or may not be desirable for these materials. Therefore, it would be very helpful to predict the viscosity change of the filled resin system. 20 The rate of reaction of the filled resin system to temperature is not exactly the same as that of the resin system without filler addition. Partially filled resin is much slower than the resin without added filler. The rate of thinning with temperature changes is much slower, even with Pick up, pounds of strange viscosity. ® 1 shows a plot of viscosity versus temperature for a series of surface treated oxidized stone materials in a poly(integrated) p-group (4) (Pqms) fluid. Surface treatment = phenyl triacetoxy oxime (phenyl in the figure), phenylamine-based tri-burning 5-milyl-wei (the phenyl wire of the towel), and the end (four) trifilite It is carried out based on the oligomer (the steel in the figure). The load capacity and particle size of this series of materials are the same. The graph shows that the viscosity decreases with increasing temperature, but different fillers have different reduction ratios. For the effect of temperature on viscosity, the behavior of the tree-filled system is a process of activation by energy. The activation energy can be plotted against the logarithm of the viscosity versus the reciprocal of the temperature, measured as the slope of the resulting line. Taking P0MS as an example, when the shear variability (Shearrate) is 1 rad/s, the activation energy of p〇MS (4) is t〇〇OK, and the general Bis_F_ epoxy resin is 9l9〇K. The activation energy (Ea) of the oxidized stone and alumina filler is determined by a series of surface treatments of epoxy resin, poly U (phenylmethyl) linaloate (PPMS) and POMS. The difference in activation energy between different filler types and resins is shown in Figure 2 (the value of the activation energy is derived from the natural logarithm of viscosity and the inverse of temperature (1/τ)). The performance of different resin systems varies widely; some systems are similar to resins without fillers; some systems remain invariant to temperature changes; others swell slightly with increasing temperature. Another example of activation energy dependence of resin and filler combination, cyanate ester, lipid _MASETL-10) combined with oxidized stone with the following surface modification: treatment with hexamethyldioxane (HMDZ), ring Oxane treatment, heat treatment (calcination) and untreated. Untreated, epoxy decane treatment and calcination filling 19 200920779 5 10 15 20 ^The quality is thinned with the temperature rise, but the ship μ: the rise 'first thinning and then expanding (see item 3) with temperature or expected to occur Species are unpredictable, filled with trees (4) Temperature dependence and independence ^ ^ ^ ^ ^ # ^ (m:g^;alf; (^ ^ ^ coatmg), dry coating method of MAIc lmpact in two: Table: Degree The viscosity change affected =:; =, the viscosity of the chemical energy and the temperature. The degree of surface modification is changed to achieve the required other examples. In the filled resin system, different amounts of wax system are added to contain phase filling] The results of Figure 5 show that the activation energy (10) agent _ amount, as the amount increases, the activation energy of the polymer approaches zero: the surface of the tree and the surface properties of the filler change with temperature Viscosity; quasi-capacity: (9) interaction with standard interface (F) J = relationship between the two; where Q is the activation energy of the filled resin and the unfilled tree 匕 匕 = = = = = =:;;;; adhesion; The ratio of the sum of the two surface energies made; that is, the parameter of the standard activation energy is Q-

Jymtr ’及標準介面交互作用力的參數為卜 的功的計算方式為樹脂的表面張力乘β (1+填充劑顆粒做 20 200920779 與樹脂接觸角度的餘弦(c〇s))°F與Q這兩個參數可將流 變學與交互作用力標準化為未填充樹脂的性質,因此可直 接比較填充樹脂系統内樹脂與填充劑的界面效應之獨立 性。圖6 A與6B以圖表顯示F與Q的意義。 10 15 20 實際上,以工程學計算此效應有助於應用填縫劑於電子零 件封裝以控制邊緣導角或樹脂溢流。活化能(Ea)接近零的 填缝劑不會隨著設備在回焊或固化烘箱的溫度升高而變薄 或擴散。用做毛細填縫劑的材質必須在室溫塗佈,可隨溫 度上升而在晶粒的下方變薄並流動。樹脂與填充劑的組合 物必須選擇能隨溫度升高而足以變薄至可流動的狀態,但 不會溢流出其應在位置的材質含量。 接下來以兩種填缝劑調配物(JKL與MN〇)為例,JKL 與MNO皆為含有用量為35體積%的氧化矽作為填充劑的 POMS樹脂。調配物JKL氧化矽為以矽酮表面處理,及調 配物MNO氧化矽為苯基矽烷表面處理;JKL的活化能為 正值,MNO則趨近於零。將這兩種調配物施於矽晶圓"與”玻 璃基=的巾間,置於室溫數小時以達到平衡狀態,皆能在 完全填滿晶圓之下的體積,且具有相似的邊緣導角 二度^。之後調配物置於架熱板以表面溫度12〇t加熱半 硯察發現MN0調配物仍保持於晶圓之下且活化能 保持趨近於零,伸jKL、、*屮。益a % ^ 舞證觀察鮮觀察流變行為,明顯地 !的:所件的活化能與材,本身的溢流控制特性具有- POMS填充樹脂的界面與流變性質具有以下特點 21 200920779 JKL MNO 填充劑類型 SE-5050-SQ SE-5050-SPD 填充劑表面處理 矽酮 苯基矽烷 樹脂 POMS POMS 負荷量 35.1 34.6 黏度(mz,25°C) 30.0 49.7 填充的樣品表面張力 25.7 25.9 Ea(K/1000)@lHz 2.6 -0.4 黏度指度-α 7.1 9.0 樹脂表面張力(mN/m) 24.9 24.9 填充劑表面張力(raN/m) 36.1 54.1 當Q值趨近於零時,觀察到之F值的範圍標示以預測各 種類樹脂填充劑的配對將產生的性質,如圖7,圖中的兩個 區塊代表經實驗觀察後,趨近於零的範圍:一區為F值大 5於2.5,另一區為F值小於15時。高F值區代表黏著 力所作的功充分大於液態表面張力,此情況發生於填充劑 的能量高於樹脂時。當F=2時,接觸角=〇。,高F值 區代表良好的潤濕條件;低F值區代表黏著力所作的功減 少,且相較於由樹脂本身形成的界面,較有利於產生由 充劑與樹脂形成者。此情況發生於填充劑的能量低於液相 時,填充劑的能量不足以干擾液體界面行為。 填充劑的組合落於高F值區,因石夕闕樹脂材質 、此里較低(〜25mN/m)。調配物MN〇化合物為此種系統 22 200920779 、弋表,肥里矽鲷與高能量氧化矽(〜5〇mN/m)的組合。 ^地’ ^2;的氰酸樹脂(〜45謹㈣貞低能量的填充 二」例如.HMD2,〜2〇 mN/m)的組合則落在低ρ值區。 、丙一醇與脂族ΒΜι材料則落於兩區之間,因 得的預測疋會隨溫度上升而變薄。因此,本發明者發 值趨近於零時的F值之關係可用以幫助預測與設計 …展現近於零之行為的樹脂/填充劑系統。舉例說明,順 丁烯二醯亞胺樹脂與環脂基環氧樹脂的Q值與承載量的 關係’為表面處理與填充劑添加量函數,由關係圖預刻此 〇兩種材質在所有承載量下,應該都會隨溫度上升而變薄。 【圖式簡單說明】 圖/為聚辛基曱基矽酮(polyoctylmethyl silicone)流體中 一系列表面處理氧化矽材料的黏度與溫度關係圖。 15圖2為不同填充劑與樹脂的活化能變化圖表。 圖3為樹脂與填充劑組合的活化能依賴性圖。 圖4 „、、員示氮化紹顆粒在有條件的表面覆蓋面積下,其活化 能趨近零。 、 - 圖5為取決於填充劑負載之活化能的關係圖。 20 ,6A及6B為標準化之活化能參數(q)的涵義顯示圖及 標準化之界面間交互作用參數(F)的涵義顯示圖。 圖7樹脂與填充劑組合在Q值趨近於零時,F值的 範圍。 23 200920779 【主要元件符號說明】 無 24The parameter of Jymtr 'and the standard interface interaction force is calculated by the surface tension of the resin multiplied by β (1 + filler particles do 20 200920779 cosine (c〇s) with resin contact angle) °F and Q Two parameters can normalize rheology and interaction to the nature of the unfilled resin, thus directly comparing the independence of the interfacial effects of the resin and filler in the filled resin system. Figures 6A and 6B graphically show the meaning of F and Q. 10 15 20 In fact, engineering this effect helps to apply caulk to electronic parts packages to control edge or resin overflow. The caulking agent with an activation energy (Ea) close to zero does not become thinner or spread as the temperature of the reflow or curing oven increases. The material used as the capillary sealant must be applied at room temperature and thin and flow below the grains as the temperature rises. The combination of resin and filler must be selected to be thin enough to be flowable as the temperature increases, but does not overflow the material content at which it should be. Next, two types of caulk formulations (JKL and MN〇) are exemplified, and both JKL and MNO are POMS resins containing cerium oxide in an amount of 35% by volume as a filler. The formulation JKL cerium oxide is surface treated with fluorenone, and the preparation MNO cerium oxide is surface treated with phenyl decane; the activation energy of JKL is positive, and MNO is close to zero. Applying these two formulations to the wafers and the glass-based wipes at room temperature for a few hours to achieve equilibrium, can completely fill the volume under the wafer, and have similar The edge lead angle is 2 degrees. After the preparation is placed on the hot plate and heated at a surface temperature of 12 〇t, the MN0 formulation remains below the wafer and the activation energy remains close to zero. JKL, *屮Benefits a % ^ Dance test observation freshly observed rheological behavior, obviously! The activation energy of the piece and the material, its own overflow control characteristics have - the interface and rheological properties of POMS filled resin have the following characteristics 21 200920779 JKL MNO Filler Type SE-5050-SQ SE-5050-SPD Filler Surface Treatment Anthrone Phenyldecane Resin POMS POMS Loading 35.1 34.6 Viscosity (mz, 25°C) 30.0 49.7 Filled Sample Surface Tension 25.7 25.9 Ea (K /1000)@lHz 2.6 -0.4 Viscosity index -α 7.1 9.0 Resin surface tension (mN/m) 24.9 24.9 Filler surface tension (raN/m) 36.1 54.1 When the Q value approaches zero, the observed F value The range is marked to predict the pairing of various types of resin fillers will be produced The nature of the figure, as shown in Figure 7, shows that the two blocks represent the range that approaches zero after experimental observation: one zone has an F value of 5 to 2.5, and the other zone has an F value of less than 15. High F value The area represents the adhesion force is greater than the liquid surface tension, which occurs when the energy of the filler is higher than the resin. When F = 2, the contact angle = 〇., the high F value area represents good wetting conditions; low The F value region represents a decrease in work performed by the adhesive force, and is more favorable for the formation of a charge and a resin than the interface formed by the resin itself. This occurs when the energy of the filler is lower than that of the liquid phase, and the filler The energy is not enough to interfere with the behavior of the liquid interface. The combination of fillers falls in the high F value zone, because of the material of the stone 阙 resin, which is lower (~25mN/m). The formulation MN〇 compound is such a system 22 200920779 ,弋 Table, a combination of fat 矽鲷 and high energy yttrium oxide (~5〇mN/m) ^^'^2; cyanic resin (~45 ((4) 贞 low energy filling two" for example. HMD2, ~ The combination of 2 〇 mN/m) falls in the low ρ value region. The propanol and aliphatic ΒΜι materials fall between the two regions, and the predicted enthalpy becomes thinner as the temperature rises. Thus, the inventors' value of the F-value relationship approaching zero can be used to help predict and design ... a resin/filler system that exhibits near zero behavior. For example, the relationship between the Q value and the carrying capacity of the maleimide resin and the cycloaliphatic epoxy resin is a function of the surface treatment and the filler addition amount, and the two materials are pre-etched by the relationship diagram. Under the amount, it should be thinned as the temperature rises. BRIEF DESCRIPTION OF THE DRAWINGS Fig. / is a graph showing the relationship between viscosity and temperature of a series of surface treated cerium oxide materials in polyoctylmethyl silicone fluids. Figure 15 is a graph showing the change in activation energy of different fillers and resins. Figure 3 is a graph of activation energy dependence of a resin in combination with a filler. Figure 4 „,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The meaning of the standardized activation energy parameter (q) is shown in the figure and the standardized inter-interface interaction parameter (F). Figure 7 Resin and filler combination when the Q value approaches zero, the range of F value. 200920779 [Explanation of main component symbols] No 24

Claims (1)

200920779 十、申請專利範圍: L:=r成物,其包含可固化樹腊與經熱處理之氧 化石夕填充劑。 2. 根據巾請專利範圍第丨項之可固化組成物,其中 5化樹脂為選自群組包含:氰酸酯、環氧化物、順 醯亞胺樹脂、丙烯酸酯,及這些樹脂的組合。、一 3. —種熱處理氧化矽的方法,其包含將氧化矽置於—溫产 或一 400 C至450°C的溫度範圍内,進行72小時。又 4. 一種可固化組成物,其包含可固化樹脂與填充劑,其 10可固化樹脂與填充劑的標準界面交互作用參數為j/及F 為小於或等於I.5或大於或等於2·5,其中卜卜) 15 20 25200920779 X. Patent application scope: L:=r, which contains curable wax and heat-treated oxidized fossil horn filler. 2. The curable composition according to the scope of the invention, wherein the resin is selected from the group consisting of cyanate esters, epoxides, cis-imine resins, acrylates, and combinations of these resins. A method of heat treating cerium oxide, which comprises subjecting cerium oxide to a temperature range of -40 C to 450 ° C for 72 hours. Further, a curable composition comprising a curable resin and a filler, wherein a standard interface interaction parameter of the 10 curable resin and the filler is j/ and F is less than or equal to 1.5 or greater than or equal to 2· 5, of which Bu Bu) 15 20 25
TW097109759A 2006-11-02 2008-03-20 Composition with thermally-treated silica filler for performance enhancement TW200920779A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US85624506P 2006-11-02 2006-11-02
PCT/US2007/083319 WO2008057931A1 (en) 2006-11-02 2007-11-01 Composition with thermally-treated silica filler for performance enhancement

Publications (1)

Publication Number Publication Date
TW200920779A true TW200920779A (en) 2009-05-16

Family

ID=39364845

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097109759A TW200920779A (en) 2006-11-02 2008-03-20 Composition with thermally-treated silica filler for performance enhancement

Country Status (6)

Country Link
EP (1) EP2084213A1 (en)
JP (1) JP2010509410A (en)
KR (1) KR20090090324A (en)
CN (1) CN101535379A (en)
TW (1) TW200920779A (en)
WO (1) WO2008057931A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8970034B2 (en) 2012-05-09 2015-03-03 Micron Technology, Inc. Semiconductor assemblies and structures
KR102398816B1 (en) * 2014-02-14 2022-05-17 로디아 오퍼레이션스 Process for the preparation of precipitated silicas, precipitated silicas and their uses, in particular for the reinforcement of polymers
JP6317472B2 (en) 2014-04-03 2018-04-25 エルジー・ケム・リミテッド Silica sol composition excellent in dispersibility for cyanate resin and method for producing the same
KR101745676B1 (en) 2014-05-30 2017-06-09 주식회사 엘지화학 A Silica Sol Composition with Excellent Dispersibility in Cyanate Resin and the Method for Preparation of the Same
CN111065603B (en) * 2018-08-17 2021-04-23 浙江三时纪新材科技有限公司 Preparation method of semiconductor packaging material and semiconductor packaging material obtained by preparation method
US11746183B2 (en) * 2018-09-11 2023-09-05 United States Of America As Represented By The Administrator Of Nasa Durable contamination resistant coatings

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234658A (en) * 1988-07-25 1990-02-05 Matsushita Electric Works Ltd Epoxy resin sealing composition
US5175228A (en) * 1991-12-09 1992-12-29 Gencorp Inc. Two-component primerless urethane-isocyanurate adhesive compositions having high temperature resistance
US6451437B1 (en) * 1999-10-13 2002-09-17 Chugoku Marine Paints, Ltd. Curable composition, coating composition, paint, antifouling paint, cured product thereof and method of rendering base material antifouling
KR20080087045A (en) * 2000-02-15 2008-09-29 히다치 가세고교 가부시끼가이샤 Adhesive composition, process for producing the same, adhesive film made with the same, substrate for semiconductor mounting, and semiconductor device

Also Published As

Publication number Publication date
WO2008057931A1 (en) 2008-05-15
EP2084213A1 (en) 2009-08-05
CN101535379A (en) 2009-09-16
KR20090090324A (en) 2009-08-25
JP2010509410A (en) 2010-03-25

Similar Documents

Publication Publication Date Title
EP2258757B1 (en) Dam composition for use with multilayer semiconductor package underfill material, and fabrication of multilayer semiconductor package using the same
JP5163912B2 (en) Epoxy resin composition and semiconductor device
JP5354753B2 (en) Underfill material and semiconductor device
TWI552237B (en) A semiconductor wafer bonding method, a semiconductor wafer bonding method, a semiconductor device manufacturing method, and a semiconductor device
TW200920779A (en) Composition with thermally-treated silica filler for performance enhancement
JP2007308678A (en) Liquid state epoxy resin composition
TWI690575B (en) Adhesive for electronic parts assembly and adhesive film for flip chip assembly
KR101979482B1 (en) Liquid compression molding encapsulants
JP3958102B2 (en) Liquid encapsulating resin composition, semiconductor device manufacturing method, and semiconductor device
US8286465B2 (en) Self-filleting die attach paste
JP2012509961A (en) Phase separation curable composition
Wong et al. Novel high performance no flow and reworkable underfills for flip-chip applications
JP2010144121A (en) Resin composition for encapsulating and apparatus for encapsulating semiconductor
TWI722610B (en) Compound, method for preparation thereof, resin composition for bonding semiconductors containing the same, and adhesive film produced using the same
JP4737364B2 (en) Liquid epoxy resin composition and semiconductor device
JP6189148B2 (en) Epoxy resin composition and semiconductor device
US10283378B2 (en) Fluxing underfill compositions
US20040155334A1 (en) Epoxy resin composition and semiconductor device
JP2005350618A (en) Liquefied epoxy resin composition and semiconductor device
KR20210044775A (en) Liquid compression molding or encapsulant composition
JP2003105054A (en) Liquid sealing resin composition and semiconductor device
WO2024075342A1 (en) Epoxy resin composition, semiconductor device, and method for producing semiconductor device
CN103258804A (en) Self-filleting chip bonding paste