WO2018168071A1 - 撮像装置、画像表示システム及び画像表示方法 - Google Patents

撮像装置、画像表示システム及び画像表示方法 Download PDF

Info

Publication number
WO2018168071A1
WO2018168071A1 PCT/JP2017/041046 JP2017041046W WO2018168071A1 WO 2018168071 A1 WO2018168071 A1 WO 2018168071A1 JP 2017041046 W JP2017041046 W JP 2017041046W WO 2018168071 A1 WO2018168071 A1 WO 2018168071A1
Authority
WO
WIPO (PCT)
Prior art keywords
skin
image
light
pressing
imaging
Prior art date
Application number
PCT/JP2017/041046
Other languages
English (en)
French (fr)
Inventor
霄 凌
淳一 森
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020197026882A priority Critical patent/KR102326393B1/ko
Priority to CN201780088381.5A priority patent/CN110662479A/zh
Priority to JP2019505701A priority patent/JP6858245B2/ja
Priority to EP17900401.5A priority patent/EP3597099A4/en
Publication of WO2018168071A1 publication Critical patent/WO2018168071A1/ja
Priority to US16/568,442 priority patent/US11164311B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0048Detecting, measuring or recording by applying mechanical forces or stimuli
    • A61B5/0053Detecting, measuring or recording by applying mechanical forces or stimuli by applying pressure, e.g. compression, indentation, palpation, grasping, gauging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/1032Determining colour for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4887Locating particular structures in or on the body
    • A61B5/489Blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/70Means for positioning the patient in relation to the detecting, measuring or recording means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/7445Display arrangements, e.g. multiple display units
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30088Skin; Dermal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular

Definitions

  • the present invention relates to an imaging device, an image display system, and an image display method, and in particular, an imaging device capable of acquiring and displaying an image of a capillary in a papillary structure and a papillary layer (papillary process) non-invasively,
  • the present invention relates to an image display system and an image display method.
  • the human skin tissue (skin) S has a layer structure, and is divided into an epidermis 82, a dermis 84, and a subcutaneous tissue (not shown) in order from the outermost layer.
  • the epidermis 82 is composed of a membrane having a stratum corneum 80 in contact with the outside as the outermost layer of the skin and a basal layer 86 in contact with the dermis 84, and the dermis 84 is a papillary layer 88 in contact with the basal layer 86 of the epidermis 82 and subcutaneous tissue. It is comprised with the film
  • the arteries and veins in the subcutaneous tissue are connected to blood vessels (reticular layer blood vessels) 92 in the reticular layer 90 of the dermis 84, and nourish the epidermis 82 where blood vessels are not present via capillaries 94 in the papillary process. And oxygen.
  • blood vessels reticular layer blood vessels
  • the nipple structure and capillaries in the nipple process are considered to be closely related to skin nutrient supply, metabolism, temperature regulation, and skin conditions (for example, firmness, wrinkles, tarmi, etc.).
  • the skin condition can be evaluated and the skin change due to aging can be grasped. Further, as a result, the effects of cosmetics, skin care products, and skin care can be examined, so that the present invention can be applied to research on cosmetics or product development.
  • a method for observing the internal structure of the skin S there are a invasive observation method and a non-invasive skin observation method.
  • Many of the invasive observation methods that have been used in the past involve performing chemical treatment on a skin tissue piece collected from a human and observing it.
  • a non-invasive observation method has been proposed in which a skin internal image is acquired using a confocal microscope and, for example, the following.
  • Patent Document 1 light is emitted from a light source to the skin surface, is incident on the skin, is reflected inside the skin, and is received through the skin by a light detector to obtain an image of the skin.
  • An apparatus capable of performing the above is disclosed.
  • This device further has a body in which a light source and a light detector are combined.
  • the body allows an opening that allows light to be emitted from the light source to the outside.
  • the light detector can receive light from the outside.
  • a cover that covers the light source and the light detector except for the opening.
  • a light source is brought into close contact with a living body, the surface of the skin is irradiated with light, light emitted from the living body is detected by a detection unit, and the inside of the skin is detected based on output (measurement data) from the detection unit.
  • An apparatus for generating an image eg, an image focused on the epidermis or dermis
  • the light source is arranged around the detection unit, and that the apparatus further includes a light shielding wall that prevents light emitted from the light source from entering the detection unit.
  • Patent Document 3 a hollow body having an open end with a shape capable of being in close contact with the skin, and an edge of the open end or in the vicinity thereof, toward the vicinity of the site to be inspected facing the opening in the hollow body,
  • An angiography apparatus having an irradiation unit that irradiates light, an imaging unit that receives light emitted from the inside of the examination target portion toward the hollow body, and a decompression unit that sucks a part of the examination target portion into the hollow body. It is disclosed. It is also disclosed that the blood vessel distribution of the vein can be imaged with this device.
  • the invasive observation method is suitable for accurately grasping the form and number of the nipple structure, but it is for observing a tissue piece collected by destroying the skin, so that the same observation position (ie, collection) There is a problem that it is difficult to observe the temporal change of the nipple structure at the target position) and the capillaries in the nipple process, and to examine the change and influence of other parts accompanying the change in detail.
  • the operation method is extremely complicated, and therefore, in practice, it is difficult to observe human skin noninvasively using this microscope.
  • the diameter of the apex of the capillaries in the papillary process is 7.5 to 10 ⁇ m, and it is wide enough to allow red blood cells to pass through in a single row.
  • the blood flow through the capillaries in the papillary process is used for body temperature adjustment. Because of the associated adjustments, there is not always blood flow in the capillaries within the papillary process. That is, the number of capillaries in the papillary process that can be observed varies greatly depending on conditions (for example, temperature, humidity, physical condition and constitution of the subject).
  • the conventional observation method is a combination of a method of observing a skin tissue piece collected from a human, a method of non-invasively observing the skin, and a result of each method. Therefore, the conventional observation method cannot observe both the nipple structure and capillaries in the nipple process at the same time, and accurately and accurately confirm the exact number and form of the nipple structure and capillaries. However, at the same observation position, it was impossible to measure changes over time in the nipple structure and capillaries in the nipple process, or to appropriately investigate or diagnose changes and effects in other parts.
  • the present invention solves the conventional problems as mentioned in the invasive and non-invasive observation methods as described above, and simultaneously observes both the nipple structure and the capillaries in the nipple process. It is an object of the present invention to provide an imaging device, an image display system, and an image display method capable of performing the above.
  • An imaging device is used in close contact with the surface of the skin, an illuminating unit that irradiates illumination light onto the surface of the skin, an imaging unit that images the transmitted light reflected inside the skin, and the surface of the skin.
  • a light-shielding part arranged to prevent the reflected light reflected at the imaging unit from reaching the imaging unit, and a pressing unit that presses the skin surface with the tip to curve the skin epidermis through which the transmitted light to be imaged passes are provided.
  • the light shielding portion has a cylindrical shape and opens in a normal direction of the sensor surface of the imaging unit.
  • the light shielding part is preferably cylindrical.
  • the illumination unit emits illumination light so that the surface of the skin is illuminated in a ring shape.
  • the pressing portion is preferably provided as a first light shielding member provided at the tip of the light shielding portion and integrated with the light shielding portion.
  • the pressing portion has a cylindrical shape having the same inner diameter as the light shielding portion, and opens in the normal direction of the sensor surface of the imaging unit.
  • the pressing unit includes a pressing unit main body and a pressing member that is mounted on the pressing unit main body and directly presses the surface of the skin.
  • the lighting unit is mounted on the lighting unit main body that emits illumination light and the lighting unit main body.
  • the pressure member is a conical nozzle shape having a circular through hole inside, and the second light shielding member is a cylinder having an inner diameter larger than the maximum outer diameter of the pressure member.
  • the pressing member and the second light shielding member have an annular shape that guides the illumination light emitted from the illumination unit main body to the skin surface between the outer peripheral surface of the pressing member and the inner peripheral surface of the light shielding member.
  • the light guide slit may be formed.
  • the tip of the pressing part protrudes from the tip of the illumination part, and in the normal direction of the sensor surface of the imaging part, the surface where the illumination part and the skin surface are in close contact, and the surface where the press part and the skin surface are in close contact Is preferably 0.1 mm to 1.0 mm.
  • the distance between the optical axis of the illumination light emitted by the illumination unit and the optical axis of the transmitted light received by the imaging unit is preferably 0.5 mm to 50 mm.
  • the illumination unit preferably has a plurality of light sources, and the plurality of light sources are preferably arranged symmetrically to each other.
  • the light source is preferably an LED, an incandescent bulb, a fluorescent lamp, or a discharge bulb.
  • the illumination unit further includes a cylindrical second light-shielding member having an inner diameter larger than the outer diameter of the pressing unit, and the second light-shielding member is disposed on the outer peripheral side of the pressing unit, 2
  • An annular light guide slit may be formed between the inner surface of the light shielding member, and the illumination light may be irradiated from the light source to the skin surface through the light guide slit.
  • the illumination unit may further include an optical fiber cable, and the illumination light may be irradiated from the light source to the skin surface through the optical fiber cable. It is preferable that the illumination unit includes a transparent cover member in a portion that contacts the surface of the skin.
  • the imaging unit preferably has an objective lens.
  • An image display system includes the imaging device according to the present invention and a display device that displays an image acquired by the imaging unit. Furthermore, the image processing apparatus which performs an image process based on the image acquired by the imaging part of an imaging device is provided, and a display apparatus can also display the image processed by the image processing apparatus.
  • the display device displays an RGB image
  • the RGB image preferably includes an image corresponding to the nipple structure and capillaries in the nipple process.
  • the RGB image preferably further includes an image corresponding to the reticular layer blood vessel.
  • the RGB image preferably includes a looped brown part and a looped red part surrounded by the looped brown part.
  • the loop-shaped brown portion is a melanin pigment contained in the skin, and the loop-shaped red portion surrounded by the loop-shaped brown portion is preferably a capillary vessel in the papillary process.
  • the image display method according to the present invention is an image display method that uses the image display system according to the present invention, and presses the surface of the skin to curve the skin epidermis through which the transmitted light to be imaged passes.
  • a first image forming step for forming an image of a skin with a curved epidermis based on a first image signal, and an image display step for displaying an image of the skin with a curved epidermis on a monitor. is there.
  • the second irradiation step of irradiating the skin surface with irradiation light, and only the transmitted light reflected inside the skin is imaged, and the epidermis in the same region as the imaging position of the skin image where the epidermis is curved is curved.
  • a second image signal acquiring step for acquiring a second image signal of the non-skin, a second image forming step for forming an image of the non-curved skin based on the image signal, and the epidermis curved It is preferable to include an image display step for displaying on the monitor an image of the skin and an image of the skin whose epidermis is not curved.
  • the first image forming step forms a first RGB image of the skin with a curved epidermis based on the first image signal
  • the second image forming step based on the second image signal
  • the image display step simultaneously displays the first RGB image and the second RGB image on the monitor, wherein the first and second RGB images are It is preferred to include images corresponding to structures and capillaries within the papillary process.
  • the first RGB image and the second RGB image include a loop-shaped brown portion and a loop-shaped red portion surrounded by the loop-shaped brown portion, and the loop-shaped brown portion is a melanin contained inside the skin.
  • the loop-shaped red portion surrounded by the loop-shaped brown portion is a capillary in the papillary process, and the second red-colored portion related to the loop-shaped red portion acquired in the second image signal acquisition step.
  • the image signal is weaker than the first image signal related to the looped red portion acquired in the first image signal acquisition step.
  • the second image forming step forms a second RGB image based on the second image signal weaker than the first image signal related to the looped red portion acquired in the first image signal acquiring step. Is something that can be done.
  • both the nipple structure and the capillaries in the nipple process can be observed simultaneously easily and non-invasively. Since the internal structure of the skin can be visualized non-invasively, changes over time in the nipple structure and capillaries flowing in the nipple process at the same observation position (ie, the collection target position) can be measured, and other parts associated therewith You can examine the changes and effects of Moreover, it can observe appropriately, without destroying the capillary vessel of a nipple layer (inside a nipple process) irrespective of observation conditions. Moreover, it is possible to clearly distinguish and observe the capillary blood vessels in the papillary process and the blood vessels in the reticular layer.
  • FIG. 1B is a cross-sectional view of the image pickup apparatus of FIG. 1A cut along line II. It is sectional drawing which shows typically the optical path of the imaging device of FIG. 1A. It is a three-dimensional view showing the optical path at the tip of the pressing unit and the illumination unit of the imaging apparatus of FIG. 1A. It is a schematic diagram for demonstrating the illumination radius R of the imaging device of FIG. 1A. It is a schematic diagram for demonstrating the principle which can visualize a nipple structure. It is the transmission image acquired using the imaging device of FIG. 1A. It is the figure which represented the transmission image in the white frame of FIG.
  • FIG. 8A It is a figure which shows typically the modification 2 of the illumination part of the imaging device of FIG. 1A. It is sectional drawing which cut
  • FIG. 10 is a cross-sectional view schematically showing a state where the adapter of FIG. 9 is attached to the main body and the surface of the skin is pressed.
  • 2 is a G component image of Example 1.
  • FIG. 6 is a G component image of Comparative Example 1; 4 is an RGB image of Example 2. It is an RGB image of Comparative Example 2.
  • 2 is an enlarged photograph of a section of a stained skin tissue. It is a schematic diagram which shows the structure of skin tissue.
  • FIG. 1A is a cross-sectional view schematically showing an image display system using the image pickup apparatus according to Embodiment 1 of the present invention
  • FIG. 1B is a cross-sectional view of the image pickup apparatus of FIG. 1A cut along the line II.
  • 2A is a cross-sectional view schematically showing the optical path of the imaging device 1 according to Embodiment 1
  • FIG. 2B is a three-dimensional view showing the optical path at the tip of the pressing unit 2 and the illumination unit 4 of the imaging device 1. .
  • the imaging device 1 includes a pressing unit 2, an illumination unit 4, and an imaging unit 6, and is connected to the image processing device 8 and the display device 10.
  • the pressing part 2 is made of a cylindrical pressing member, and the tip part (opening part on the light receiving side) is placed on the skin surface so that a circular observation site (skin surface imaged by the imaging part 6) is located within the diameter. By pressing in close contact, the skin surface of the observation site can be curved.
  • the distal end of the pressing unit 2 has a function of pressing the skin surface, and irradiation light applied to the skin surface from the illumination unit 4 described later and specular reflection light reflected from the skin surface are applied to the imaging unit 6.
  • the pressing portion 2 has a function as a light shielding member (first light shielding member) for shielding light so as not to be directly incident. That is, it can be said that the pressing portion 2 has a structure in which the pressing member is provided at the tip of the light shielding member, and the light shielding member and the pressing member (first light shielding member) are integrated. In this embodiment, the pressing unit 2 has both pressing and light shielding functions. However, the pressing unit 2 is not limited to this as long as it can press the surface of the skin and feed blood into the capillaries in the papillary process. The pressing member that presses the surface of the skin and the light shielding member (first light shielding member) that is used in close contact with the skin can also be configured separately.
  • the size of the inner diameter of the pressing portion 2 is not particularly limited as long as it is easy to search for an observation target, but is observed during normal observation (that is, without pressing). In some cases, it is preferable that the inner diameter is slightly larger than the inner diameter considered to be easy to search the observation target. This is because the skin located in the visual field ring (that is, the skin in close contact with the pressing member) is deformed when pressed. More specifically, the diameter of the visual field ring is preferably 1 mm to 10 mm. If it is less than 1 mm, the field of view becomes too narrow, and it becomes difficult to search for an observation target. On the other hand, if it exceeds 10 mm, the distance through which light shown in FIG.
  • the outer diameter has a thickness of the pressing portion 2 having a strength capable of pressing the skin surface, and can ensure a uniform and sufficient amount of light in the visual field, and is a width that contacts the skin surface (that is, the pressing portion).
  • the difference between the outer diameter and the inner diameter of 2) is not particularly limited as long as it does not force the capillaries in the papillary process. It is preferable to set appropriately according to the thickness and material of the pressing part 2. For example, when the thickness of the pressing portion 2 is 0.5 mm and a rubber material is used as the material, the outer diameter is preferably 2 mm to 11 mm.
  • the material of the pressing part 2 is not particularly limited as long as it is a material capable of bringing the tip part into close contact with the skin surface so as to prevent illumination light and reflected light reflected by the skin surface from reaching the imaging unit 6.
  • the material is preferably made of a material that does not deform greatly (that is, is harder than the skin) and has a softness that fits the skin surface more closely.
  • tip part of the press part 2 which contacts skin has a slightly round shape from the surface of safety
  • the illuminating unit 4 includes four light sources 12 and a light shielding member (second light shielding member) 16.
  • the light shielding member (second light shielding member) 16 forms a light guide slit 14 together with the pressing portion (first light shielding member) 2.
  • the illumination unit 4 irradiates light from the light source 12 via the light guide slit 14 so that the surface of the skin is illuminated in a ring shape.
  • the four light sources 12 are composed of four LEDs (Light-emitting diodes) arranged on the same circumference so as to be pointed with each other.
  • the light source is not particularly limited as long as the surface of the skin can be uniformly illuminated in a ring shape through the light guide slit 14.
  • the light source is not limited to the LED, and an LD (laser diode), a semiconductor laser, a lamp such as a xenon lamp, an SLD (superluminescent diode), or the like may be used.
  • the number of light sources is not particularly limited as long as the surface of the skin can be evenly illuminated with the brightness necessary for photographing by the imaging unit 6.
  • the number of light sources may be one as long as it can be illuminated concentrically, but is preferably two or more, more preferably four or more.
  • the intensity of the light source is not particularly limited as long as the field of view of the region related to the observation site is bright enough for photographing by the imaging unit 6. It is preferable that the intensity of the light source can be adjusted.
  • the color of the light source is not particularly limited as long as it has G (green) instead of R (red: red) and B (blue: single color). RGB (red-green-blue) light (that is, white light) and GB (green-blue) light are preferably used. Moreover, it is preferable that the color of a light source can be switched to each color.
  • the power source of the light source may be an internal power source (battery) or an external power source.
  • the light shielding member 16 is made of a cylindrical member having an inner diameter larger than the outer diameter of the pressing portion 2, is arranged on the outer peripheral side of the cylindrical pressing portion 2, and has an outer peripheral surface of the pressing portion 2 and an inner periphery of the light shielding member 16.
  • An annular light guide slit 14 is formed between the surface and the surface.
  • the distal end portion (opening portion on the light emission side) of the light shielding member 16 is located slightly behind the distal end portion (opening portion on the light receiving side) of the pressing portion 2. In other words, it can be said that the pressing part 2 protrudes from the front end part of the light shielding member 16 of the illumination part 4.
  • the distal end portion (opening portion on the light receiving side) of the pressing portion 2 protrudes from the distal end portion (opening portion on the light emitting side) of the light shielding member 16, and the protruding amount (that is, the light shielding member 16 is in close contact with the surface of the skin).
  • the distance L 1 between the surface and the surface where the pressing portion 2 is in close contact with the surface of the skin is set according to the amount of deformation of the skin at the time of pressing (the depth of the dent generated in the skin when the skin is pressed). can do.
  • the amount of deformation at the time of pressing in a thin part of human skin is about 1 mm, so the protrusion amount (L 1 ) should be set to 0.1 mm to 1.0 mm which is less than that. Is preferred. This is because the length of 0.1 mm or more is necessary to enable the curvature of the epidermis when pressing the face eyes or the back of the hand, and if it is 1.0 mm or less, the imaging device 1 is attached to the skin. This is because when the skin surface is placed on the surface and pressed against the skin surface with the required pressure by the pressing portion 2, the tip portion of the light shielding member 16 is easily brought into close contact with the skin surface without forcibly pressing the skin surface.
  • the weight of the imaging device 1 is not particularly limited as long as it is not a weight (for example, 1 kg) that damages the capillary when the imaging device 1 is placed on the skin surface, but is preferably 50 g to 600 g. This is because the pressing portion 2 of the imaging device 1 and the tip of the light shielding member 16 can be brought into close contact with the skin surface, can press the blood vessels in the mesh layer, and do not damage the capillaries. .
  • the distal end portion of the light shielding member 16 and the distal end portion of the pressing portion 2 are separated by the weight of the imaging device 1.
  • the skin surface is in close contact with the skin surface, and the skin surface is pressed by the pressing portion 2 with a required pressure.
  • the transmitted light is light transmitted through the skin surface, reflected inside the skin, and transmitted through the skin surface again.
  • the reduction in contrast of the captured image is caused by imaging reflected light from the skin surface in addition to the transmitted light.
  • the outer diameter of the light-shielding member 16 is not particularly limited as long as the area where the tip part is in close contact with the skin surface is such that the illumination light does not leak from the light guide slit 14, but the imaging device 1 is placed on the skin surface. It is preferable that the size does not hinder the placement.
  • the material of the light shielding member 16 is not particularly limited as long as the tip portion can be brought into close contact with the skin surface so that the illumination light is not diffused, but is more closely matched to the skin surface and has a slightly rounded shape. be able to. For example, it is preferable to use an elastic material such as silicon rubber. The reason is that leakage of illumination light from the light guide slit 14 can be prevented.
  • the light guide slit 14 has a function in which light emitted from the light source 12 diffuses out of the slit and exits. Since the light emitted from the light source 12 is applied to the surface of the skin through the light guide slit 14, the light can illuminate the surface of the skin directly without diffusing beyond the width of the light guide slit 14. If the width L 2 of the light guide slit 14 (difference between the inner diameter of the light shielding member 16 and the outer diameter of the pressing portion 2) can ensure the brightness of the field of view to the extent that an observation target such as a capillary can be confirmed, There is no particular limitation. In the present invention, since it aims at observing the nipple structure and capillaries in the nipple process, it preferably has a width of 1.0 to 5.0 mm that facilitates the search for these blood vessels.
  • the light guide slit 14 can use a general LED, lamp, or the like as the light source 12 and has an effect that the size is hardly limited. Specifically, as shown in FIG. 8B described later, the light source has a size larger than an annular space (corresponding to the light guide slit 14) between the outer peripheral surface of the pressing portion 2 and the inner peripheral surface of the light shielding member 16. Can even be used. In addition, sufficient light quantity and uniformity can be ensured. Further, the processing of the light shielding member (second light shielding member) 16 and the pressing portion (first light shielding member) 2 of the illumination unit 4 is performed as compared to the case where an optical fiber that is difficult to process as illustrated in FIG.
  • the light source according to the present embodiment is provided inside the device, The entire imaging apparatus can be reduced in size without the need for a cable.
  • the shape of the light guide slit 14 is not limited to a cylindrical shape (ring shape), and may be a cylindrical shape. That is, in this Embodiment, although the shape of the press part 2 and the light-shielding member 16 is a cylindrical shape, if it is a cylindrical shape, it will not specifically limit. That is, the shape of the outer peripheral surface of the pressing part 2 and the inner peripheral surface of the light shielding member is not particularly limited.
  • the imaging unit 6 includes an objective lens 18 that captures transmitted light reflected inside the skin, a drive unit 20 that performs a focusing operation of the objective lens 18 automatically or manually, and a camera 22.
  • the objective lens 18 uses a single focus lens, and the drive unit 20 can automatically or manually adjust the focus function of the objective lens 18.
  • a zoom lens can be used as the objective lens 18 without using the drive unit 20.
  • the camera 22 is disposed so that the sensor surface faces the observation site, and captures the transmitted light returned from the inside of the skin through the opening of the pressing unit 2 and the objective lens 18 to obtain an image signal of the skin. An image is generated based on the acquired image signal.
  • the light emitted from the light source 12 illuminates the surface of the skin in a ring shape through the light guide slit 14 and transmits the light into the skin.
  • the transmitted light that has entered the inside of the skin is diffused or reflected by the dermis and epidermis and returns from the inside of the skin.
  • the light returned from the inside of the skin passes through the surface of the skin, enters and passes through the lumen of the pressing portion 2, and is imaged by the camera 22 through the objective lens 18.
  • the optical axis of illumination light (that is, the optical axis of light that passes through the light guide slit 14) emitted from the light sources 12 arranged on the same circumference and the optical axis of transmitted light that the objective lens 18 receives (that is, the optical axis).
  • the distance (ie, the illumination radius R) between the pressing portion 2 and the central axis of the pressing portion 2 is not particularly limited as long as the brightness of the field of view to the extent that the object to be observed can be confirmed, but is 0.5 mm to 50 mm. It is preferable to set. If it is set to less than 0.5 mm, it is difficult to search for an observation target. Also, if the illumination radius is set to more than 50 mm, the field of view becomes dark, so a very strong light source must be used, and as a result, high-temperature light must be irradiated to the skin. .
  • the action of the illumination radius R will be described in detail with reference to FIG.
  • the farther the light incident position is from the observation point P the more the light diffuses inside the skin, and the amount of light returning from the skin as an internal diffused light or internally reflected light decreases exponentially.
  • the light incident position (2) (illumination radius R 2 ) farther from the observation point than the light incident position (1) (illumination radius R 1 ) is internally diffused or reflected internally.
  • the amount of light returning from the inside of the skin as light decreases exponentially.
  • the length of the illumination radius is the same as the maximum depth at which the light incident on the skin reaches.
  • the illumination radius R is preferably set according to the intensity of the light source to be used, the size of the observation target, the position where the observation target exists in the skin, and the like.
  • the illumination radius is more preferably about 1 mm.
  • the preferable illumination radius depends on the skin color of the subject as well as the thickness of the epidermis and dermis of the observation site, and therefore it is preferable to adjust the illumination radius including these conditions.
  • FIG. 5A is a transmission image (RGB image) obtained by imaging the transmitted light returning from the inside of the skin
  • FIG. 5B is a diagram that three-dimensionally represents the transmission image in the white frame of FIG. 5A.
  • the bright region in FIG. 5A and the bright convex portion in FIG. 5B correspond to a portion with a shallow subcutaneous depth
  • the dark region in FIG. 5A and the dark concave portion in FIG. 5B correspond to a portion with a deep subcutaneous depth.
  • the melanin pigment 96 contained only in the epidermis 82 has an action of blocking light when transmitted light returns from the inside of the skin through the dermis 84 and the epidermis 82.
  • the melanin pigment 96 is black and exists in the vicinity of the boundary between the epidermis 82 and the dermis 84. Therefore, the light (solid line arrow in FIG. 4) that the epidermis 82 passes through the convex part (papillary process 89) of the thin papillary layer 88 is bright and the light that passes through the concave part (and epidermal process 87) of the thick papillary layer 88. (Dotted line arrow in FIG. 4) is considered to be dark.
  • FIG. 6A is an RGB image (scale bar 100 ⁇ m) obtained by imaging the surface of a human cheek using the imaging apparatus 1 (the magnification of the objective lens is 4.5), and FIG. FIG. 6C is an RGB image (scale bar 100 ⁇ m) acquired by imaging the human eye using the imaging device 1, and FIG. 6C is an RGB image acquired by imaging the back of the human hand using the imaging device 1.
  • FIG. 6D is an RGB image (scale bar 200 ⁇ m) obtained by imaging the surface of the back of a human hand using the imaging device 1.
  • the brown portion corresponds to the melanin pigment
  • the loop-shaped brown portion 97 is a concave portion of the papillary layer 88.
  • the red portion corresponds to the blood vessel
  • the loop-shaped red portion 94 confirmed in the bright central portion existing inside the loop-shaped brown portion 97 is a capillary vessel in the papillary process. Accordingly, the portion surrounded by the dotted line corresponds to the nipple structure.
  • the red part confirmed outside the papillary structure (portion surrounded by a dotted line) indicated by an arrow is a blood vessel in the reticular layer
  • capillaries 94 in the nipple process and blood vessels in the reticular layer ( (Reticular layer blood vessel) 92 can be clearly distinguished and observed.
  • a black and white image in practice (that is, in an RGB image)
  • the difference between the brown portion and the red portion described above can be clearly identified, and in FIGS. 6A to 6D, a dotted line A recessed portion 97 of the nipple layer can be confirmed as a loop-shaped brown portion inside the portion surrounded by.
  • the capillary blood vessel 94 in a papillary process can be confirmed as a loop-shaped red part inside a loop-shaped brown part.
  • the reticular layer blood vessel 92 can be confirmed as a red portion indicated by an arrow outside the portion surrounded by the dotted line.
  • FIG. 7A shows a state before the surface of the skin S is pressed by the pressing part 2
  • FIG. 7B shows a state where the surface of the skin S is pressed by the pressing part 2.
  • Skin capillaries have a function of regulating body temperature by contracting and / or expanding to regulate blood flow. Therefore, as shown in FIG. 7A, in a state before the surface of the skin S is pressed by the pressing portion 2, there is not always blood flow in all capillaries in the observation region. As a result, capillaries that cannot be visually recognized in the observed image are generated. For this reason, in the conventional observation method, it is necessary to continue observation until blood circulates in all capillaries in the observation region, and the observation takes about several minutes. In addition, not all capillaries can be observed over time.
  • the skin around the observation site is pressed to compress the surrounding blood vessels, so that the capillaries that flow through the papillary process in the observation site are not affected by the observation conditions.
  • the apex of the hoof 94 can be detected.
  • the image processing device 8 includes a PC (personal computer), a CPU (central processing unit), an MPU (microprocessor unit), and the like, and is an image related to observation and diagnosis with respect to a captured image input from the imaging unit 6. Apply processing. For example, a G component image can be generated based on the RGB image input from the imaging unit 6. Since the G component image can enhance the contrast of blood vessels (hemoglobin components), it is suitable for searching and observing capillaries.
  • the image processing apparatus 8 has a memory (not shown) and can store the generated processed image.
  • the display device 10 includes a display device such as an LCD (liquid crystal display device), for example, and displays an image acquired by the imaging unit 6 or an image generated by the image processing device 8 on a monitor.
  • the image displayed on the monitor can be switched by the image processing device 8.
  • the G component image can be switched to an RGB image.
  • the capillaries are displayed in red and the melanin pigment is displayed in brown, so that both can be easily distinguished.
  • the imaging device 1 and the image processing device 8 can also have an output device such as a printer (not shown).
  • the operation of the imaging apparatus 1 according to the first embodiment will be described.
  • the surface of the skin is pressed by the pressing portion 2, and the distal end portion of the light shielding member 16 adheres to the skin surface together with the pressing portion 2.
  • the light guide slit 14 Irradiated light is transmitted into the skin and is scattered by the epidermis and dermis except for melanin distributed in the epidermis and absorbed by hemoglobin in the blood, etc., and returns from the skin as diffusely reflected light.
  • the light returned from the inside of the skin is captured by the camera 22 through the objective lens 18, and the image acquired by the imaging device 1 in this way is displayed on the monitor of the display device 10.
  • the image acquired by the imaging device 1 can be displayed on the display device 10 after being subjected to image processing by the image processing device 8.
  • the following observation and evaluation can be performed by acquiring an image acquired using the imaging device 1 of the first embodiment and displaying it on the monitor of the display device 10. Further, by using the image processing device 8 to display the image subjected to the image processing on the monitor of the display device 10, the following observation and evaluation can be performed.
  • the number density of capillaries between the parts can be accurately compared. It is also possible to evaluate the difference in the number density of capillaries at each site due to the difference in the age of the subject (for example, aging).
  • an image inside the skin can be acquired non-invasively, changes over time in capillaries in the papillary process at the same subject and at the same observation position can be observed in units of several days to several years.
  • the thickness of the blood vessel can be grasped from the image, the amount of blood flow can be accurately evaluated.
  • the capillaries in the papillary process and the blood vessels in the reticular layer can be clearly distinguished and grasped from the image, the difference in their blood flow can also be evaluated.
  • the imaging device 1 since not only a still image but also a moving image can be acquired, for example, capillary blood vessels in the papillary process and blood vessel variation in the reticular layer that occur when a subject takes a drug or the like. Can be observed over time.
  • an image that is, an image including a melanin pigment and capillaries in a papillary process
  • an image that is, an image including only a melanin pigment
  • a difference in blood flow can be evaluated by comparing a melanin pigment with an image including capillaries in the papillary process based on an image signal that is so weak that it cannot be visually recognized.
  • the difference in the nipple structure in each part can also be compared appropriately. Specifically, it is possible to evaluate the difference in the number density and flatness of the nipple process between the parts (the unevenness of the nipple layer formed by the epidermal process 87 and the nipple process 89).
  • changes over time in the papillary structure at the same subject and at the same observation position can be observed in units of several days to several years.
  • melanin pigment can be clearly recognized from the image, it is possible to observe the temporal change of the nipple structure in the same subject and the same observation position for several days to several years for the stain and pigmentation. it can.
  • the present invention can be applied to research on these cosmetics and the development of products.
  • Embodiment 1 the surface of the skin is illuminated through the light guide slit 14 with the light emitted from the light source 12 using the four light sources 12 arranged concentrically so as to be symmetrical with each other. It is not limited to this, What changed the magnitude
  • 8A to 8E show modified examples of the illumination unit 4 of the imaging device 1 according to Embodiment 1. FIG.
  • FIG. 8A is a cross-sectional view illustrating an illumination unit according to Modification 1 of Embodiment 1.
  • the illumination unit 4A illustrated in FIG. 8A includes an outer peripheral surface of the pressing unit 2 and an inner periphery of the light shielding member 16 instead of the light guide slit 14 of the illumination unit 4 of the imaging device 1 according to Embodiment 1 illustrated in FIGS. 1A and 1B.
  • An annular light guide member 26 filled with a light-transmitting resin that refracts light in an annular space (corresponding to the light guide slit 14) between the surfaces is provided.
  • the resin filled in the light guide slit is not particularly limited as long as it is a transparent and easily processed resin generally used as a material for optical fibers and the like. According to such a light guide member 26, even if the size of the light source 12 is reduced, the loss of light can be reduced, and a sufficient amount of light in the visual field can be secured.
  • FIG. 8B is a cross-sectional view showing an illuminating unit according to Modification 2 of Embodiment 1
  • FIG. 8C is a cross-sectional view taken along the line II-II of FIG. 8B.
  • the illumination unit 4B shown in FIGS. 8B and 8C includes eight light sources 12A instead of the four light sources 12 of the illumination unit 4 of the imaging device 1 according to Embodiment 1 shown in FIGS. 1A and 1B. is there.
  • the eight light sources 12A have an annular space (corresponding to the light guide slit 14) between the outer peripheral surface of the pressing portion 2 and the inner peripheral surface of the light shielding member 16 so that the end portions thereof are in close contact with the surface of the skin.
  • the illumination unit 4A can have a transparent cover member between the light source 12A and the surface of the skin. Examples of the material of the transparent cover member include plastic and glass.
  • FIG. 8D is a cross-sectional view showing an illuminating unit of Modification 3 of Embodiment 1
  • FIG. 8E is a cross-sectional view of the illuminating unit of FIG. 8D taken along line III-III.
  • the illumination unit 4C shown in FIGS. 8D and 8E is connected to the light source 12B provided outside the housing of the imaging device 1 according to Embodiment 1 shown in FIGS. 1A and 1B, and the outer peripheral surface of the pressing unit 2 And a plurality of optical fibers 24 laid in an annular space (corresponding to the light guide slit 14) between the light shielding member 16 and the inner peripheral surface thereof.
  • the optical fiber 24 can be reduced in diameter at the tip, and has a smaller diameter than that of LED lighting or the like, and thus an annular space between the outer peripheral surface of the pressing portion 2 and the inner peripheral surface of the light shielding member 16. A large number can be arranged uniformly in the light guide slit 14. Moreover, since the light source 12B outside the imaging device 1 is used, the intensity and color of light can be easily adjusted.
  • the integrated pressing unit 2 and the illumination unit 4 that cannot be removed are used.
  • the present invention is not limited to this.
  • the irradiation light is emitted to the surface of the skin, and the light returned from the inside of the skin is received. It is also possible to make an adapter in which only the tip portion can be replaced.
  • size it is not limited to this, Only a front-end
  • the light shielding member 16 having an outer diameter of a predetermined size is used.
  • the present invention is not limited to this, and the adapter is composed of light shielding members having light shielding members having different outer diameters. You can also.
  • FIG. 9 shows the adapter 30 attached to the main body 28 of the imaging apparatus according to the second embodiment.
  • FIG. 10 is a cross-sectional view schematically showing the main body 28 of the imaging device shown in FIG. 9 and the adapter 30 joined thereto.
  • FIG. 11A shows a state before the adapter 30 is attached to the distal end portion 35 of the main body 28, and
  • FIG. 11B shows a state where the adapter 30 is attached to the distal end portion 35 of the main body 28.
  • the main body 28 includes a pressing portion main body 31 made of a cylindrical member that does not have the distal end portion (opening portion on the light receiving side) of the pressing portion 2 of the first embodiment, and the illumination portion of the first embodiment.
  • the illumination unit main body 32 made of a cylindrical member that does not have the distal end portion (opening portion on the light emission side) of the four light shielding members 16 is integrally configured.
  • the illumination unit main body 32 is provided with an annular fitting groove 37 for fitting and engaging the adapter 30.
  • the adapter 30 is mounted on the pressing unit main body 31 and directly presses the surface of the skin, and the light blocking member 34 (second light blocking member) mounted on the illumination unit main body 32 and disposed on the outer peripheral side of the pressing member 33.
  • the pressing member 33 has an annular convex portion 38 fitted on the inner surface (inner peripheral surface) of the pressing portion main body 31 of the main body 28 when the adapter 30 is mounted on the main body 28 at the upper portion thereof.
  • the light shielding member 34 has an annular convex portion 39 that fits in the fitting groove 37 of the illumination portion main body 32 at the upper portion thereof.
  • the main body 28 and the adapter 30 are configured such that the convex portion 38 of the pressing member 33 is fitted into the inner cavity of the pressing portion main body 31 and the convex portion 39 of the light shielding member 34 is fitted into the fitting groove 37 of the lighting unit main body 32.
  • the adapter 30 can be attached to the distal end portion 35 of the main body 28.
  • the integrated pressing portion main body 31 and the pressing member 33 have a circular center through hole 40 through which reflected light transmitted inside the skin passes.
  • illumination light emitted from the illumination unit main body 32 is interposed between the outer peripheral surface of the integrated pressing unit main body 31 and the pressing member 33 and the integrated illumination unit main body 32 and the inner peripheral surface of the light shielding member 34.
  • An annular light guide slit 41 for guiding light to the surface of the skin is formed.
  • the pressing member 33 of the adapter 30 has a conical nozzle shape with a circular through-hole inside, and is imaged by the observation part (the imaging unit 6) in the circular tube, like the pressing unit 2 of the first embodiment.
  • the skin surface at the observation site can be curved by pressing the tip (light receiving side opening) in close contact with the skin surface so that the skin surface is positioned.
  • the pressing member 33 also has a function as a light shielding member that shields the irradiation light applied to the skin surface from the illumination unit and the specular reflection light reflected from the skin surface so as not to directly enter the imaging unit.
  • the light shielding member 34 of the adapter 30 has a cylindrical shape having an inner diameter larger than the maximum outer diameter of the pressing member 33 of the adapter 30, and is disposed on the outer peripheral side of the pressing member 33.
  • An annular light guide slit 36 is formed between the inner peripheral surface and the inner peripheral surface.
  • the tip of the light shielding member 34 (opening on the light emission side) is located slightly behind the tip of the pressing member 33 (opening on the light receiving side). In other words, it can be said that the pressing member 33 protrudes from the light shielding member 34.
  • the inner diameter of the pressing member 33 of the adapter 30 can be different from the inner diameter of the pressing portion main body 31 of the main body 28. That is, the diameter L 5 of the visual field ring of the pressing member 33 of the adapter 30 can be set to a size different from the diameter L 3 of the visual field ring of the pressing part main body 31 of the main body 28.
  • the outer diameter of the light shielding member 34 of the adapter 30 can be made different from the outer diameter of the illumination unit main body 32 of the main body 28. That is, the diameter L 6 of the adapter 30 light blocking member 34 can be made different from the diameter L 4 of the illumination unit main body 32 of the main body 28.
  • the distance between the surface that is in close contact with the surface of the skin and the surface that the pressing member 33 is in close contact with the surface of the skin) is the amount of deformation of the skin at the time of pressing (the depth of the dent that occurs in the skin when the skin is pressed) It can be set according to. Therefore, if an adapter corresponding to the observation target and the thickness of the epidermis of each part of the body is prepared in advance, an appropriate image can be acquired simply by changing the adapter according to the observation target or the observation part. .
  • the diameter of the tip of the light-shielding member 34 of the adapter is small, for example, when the imaging device 1 is placed on each part of the face such as the eyes or mouth, unevenness on the surface of the skin, The pressing portion and the light shielding member can be properly adhered to the skin surface without being interfered by a part such as the nose.
  • the adapter corresponding to the observation part can be used.
  • the adapter can also change the height of the pressing member 33. For example, when there is a dent or wrinkle on the skin surface, the height of the pressing member 33 is increased by 0.5 mm, so that irradiation light leaking from the light guide slit 36 and directly reflected light reflected from the skin surface are reliably shielded. be able to.
  • Example 1 The center part of the subject's cheek was imaged using the imaging device 1 of Embodiment 1 (using the pressing portion 2 having a protrusion amount of 1.0 mm), and a G image was acquired.
  • the center part of a test subject's cheek was imaged using the imaging device in which the press part 2 of the imaging device 1 of Embodiment 1 did not protrude from the light shielding member 16 of the illumination part 4, and G image was acquired.
  • FIG. 12A shows the G image of Example 1
  • FIG. 12B shows the G image of Comparative Example 1.
  • the G image of Example 1 in which the periphery of the observation region is pressed by the pressing unit 2 can confirm the capillaries in the papillary process indicated by the arrows in the figure.
  • FIG. 12B capillaries in the papillary process cannot be confirmed in the G image of Comparative Example 1 in which the periphery of the observation site is not pressed.
  • the capillaries in the papillary process can be observed appropriately.
  • Example 2 Similarly to Example 1, an image of the inner side of the subject's forearm was captured using the imaging device 1 of Embodiment 1, and an RGB image was acquired. [Comparative Example 2] Using the same imaging device as in Comparative Example 1, the inner part of the subject's forearm was imaged to obtain an RGB image.
  • FIG. 13A shows an RGB image of Example 2
  • FIG. 13B shows an RGB image of Comparative Example 2.
  • a brown part shows a melanin and a loop-like red part shows the capillary vessel in a papillary process.
  • the RGB image of Example 2 in which the periphery of the observation region is pressed by the pressing unit 2 can confirm the capillaries in the papillary process indicated by arrows in the figure.
  • the RGB image of Comparative Example 2 in which the periphery of the observation region is not pressed capillaries in the papillary process cannot be confirmed.
  • FIG. 6A shows an RGB image acquired by imaging the cheek of a subject using the imaging apparatus 1
  • FIG. 6B shows an RGB image acquired by imaging the eye.
  • a portion surrounded by a dotted line in FIGS. 6A and 6B corresponds to the nipple structure.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Vascular Medicine (AREA)
  • Immunology (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Hematology (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

皮膚の表面に照明光を照射する照明部と、皮膚の内部で反射された透過光を撮像する撮像部と、皮膚の表面に密着させて用いられ、皮膚の表面で反射された反射光が撮像部へ到達することを妨げるように配置される遮光部と、撮像する皮膚の表皮を湾曲させるために、皮膚の表面を先端で押圧する押圧部と、を備えることにより、乳頭構造及び乳頭突起内の毛細血管の両方を同時に観察することができる撮像装置、画像表示システム及び画像表示方法を提供する。

Description

撮像装置、画像表示システム及び画像表示方法
 この発明は、撮像装置、画像表示システム及び画像表示方法に係り、特に、非侵襲的に、乳頭構造や乳頭層(乳頭突起)内の毛細血管の画像を取得し表示することができる撮像装置、画像表示システム及び画像表示方法に関する。
 ヒトの皮膚組織(皮膚)Sは、図14の写真に示すように、層構造となっており、最外層から順に、表皮82、真皮84及び皮下組織(図示せず)に分かれている。表皮82は、皮膚の最外層として外界に接する角層80、及び真皮84と接する基底層86を有する膜で構成され、真皮84は、表皮82の基底層86と接する乳頭層88、及び皮下組織と接する網状層90を有する膜で構成されている。
 皮膚組織Sの模式図である図15に示すように、表皮82と真皮84との間には、表皮82の基底層86の表皮突起87と、真皮の乳頭層88の乳頭突起89とが互いに食い込むように存在する凸凹波打った乳頭構造が形成されている。
 皮下組織には、皮膚への栄養供給、老廃物を運び出す代謝及び体温調節に重要な役割を果たす動脈、及び静脈が存在している。皮下組織にある動脈、及び静脈は、真皮84の網状層90内の血管(網状層血管)92につながっており、乳頭突起内の毛細血管94を介して、血管が存在しない表皮82に栄養、及び酸素を供給している。
 このような皮膚構造Sにおいて、加齢等により、乳頭構造の凸凹が減り、乳頭突起88の表面積が減少すると、その内部にある毛細血管94から表皮82への栄養、及び酸素の供給が滞ることが指摘されている。また、その結果、皮膚は伸縮しなくなり、徐々に弛んでいくと言われている。つまり、乳頭構造と乳頭突起内の毛細血管は、皮膚の栄養供給、代謝、体温調節、及び肌の状態(例えば、ハリ、シワ、タルミ等)に密接に関わっていると考えられている。
 そのため、乳頭構造、及び乳頭突起内の毛細血管を適切に観察することができれば、肌の状態の評価、及び加齢による皮膚の変化を把握することができる。また、その結果、化粧品、及びスキンケア製品、スキンケアの効果を調べることができるため、化粧品等の研究または商品開発に応用することができる。
 皮膚Sの内部構造を観察する方法には、侵襲的に観察する方法と、非侵襲的に皮膚を観察する方法とがある。
 従来使用されている侵襲的な観察方法の多くは、ヒトから採取された皮膚組織片に化学的処理を施し観察するものである。
 非侵襲的な観察方法には、近年、共焦点顕微鏡を用いて皮膚内部画像を取得する方法、及び、例えば、次のようなものが提案されている。
 特許文献1には、光源から皮膚表面に光を照射し、皮膚内に入射し、皮膚内部で反射され、皮膚を経て放出された光を光検出器で受光し、皮膚の画像を取得することができる装置が開示されている。この装置は、光源及び光検出器が結合したボディを更に有し、このボディは、光源から外部に光を照射可能にする開口部、光検出器に外部からの光が受光されることを可能にする開口部、及び開口部を除いて光源及び光検出器を覆うカバーを備えている。
 特許文献2には、光源を生体に密着させて皮膚表面に光を照射し、検出部により生体から射出された光を検出し、検出部からの出力(測定データ)に基づいて、皮膚内部の画像(例えば、表皮または真皮に焦点を合わせた画像)を生成する装置が開示されている。また、光源が検出部の周囲に配置されることや、この装置が、光源から射出される光が検出部に入射することを防止する遮光壁をさらに備えることも開示されている。
 特許文献3には、皮膚に密着可能な形状の開口端を有する中空体と、開口端の縁部またはその近傍に設けられ、中空体内の開口部に面する検査対象部位の近傍に向けて、光を照射する照射部と、検査対象部位内部から中空体内に向けて射出する光を受け入れる撮影部、及び検査対象部位の一部を中空体内に吸引するための減圧手段とを有する血管撮影装置が開示されている。また、この装置により、静脈の血管分布を撮影することができることも開示されている。
特開2015-152601号 特開2013-236758号 国際公報2008/010604号
 侵襲的に観察する方法は、乳頭構造の形態や数を正確に把握するには適しているが、皮膚を破壊して採取した組織片を観察するものであるため、同じ観察位置(すなわち、採取対象位置)における乳頭構造、及び乳頭突起内の毛細血管の経時変化を観察したり、それに伴う他の部位の変化、及び影響を詳細に調べたりすることが難しいという問題がある。
 共焦点顕微鏡を用いる方法は、操作手法が極めて煩雑であるため、実際には、この顕微鏡を使用して非侵襲的にヒトの皮膚を観察することが困難という事情がある。
 また、乳頭突起内の毛細血管係蹄の頂点の径は7.5~10μmで赤血球が1列で通れる程度の広さであり、また、乳頭突起内の毛細血管を流れる血流は体温調整に関連して調整されるため、乳頭突起内の毛細血管に常に血流があるわけではない。つまり、条件(例えば、気温、湿度、並びに、被験者の体調及び体質等)によって、観察できる乳頭突起内の毛細血管の数が大きく変わってしまう。そのため、毛細血管に流れる血流量を調整することなく皮膚を撮像する特許文献1及び2の装置では、乳頭層内の全ての毛細血管を観察することができず、多くの毛細血管が見逃されてしまう可能性がある。
 特許文献3の装置は、減圧ポンプのような減圧手段により皮膚を吸引すると、非常に小さな内径を持つ毛細血管が破壊され内出血してしまい、正確に測定することができない。また、減圧手段に係るコストや、減圧を行う手間もかかるという問題もある。
 さらに、特許文献1~3の装置により撮像された画像では、乳頭突起内の毛細血管と、網状層内の血管とを区別して観察することが非常に難しいという問題もある。
 また、従来の観察方法は、上述したように、ヒトから採取された皮膚組織片を観察する方法、非侵襲的に皮膚を観察する方法、及び、各方法による結果を組み合わせたものであった。そのため、従来の観察方法では、乳頭構造及び乳頭突起内の毛細血管の両方を同時に観察することができず、乳頭構造、及び毛細血管等の正確な数、及び形態を非侵襲的に適切に確認しつつ、同じ観察位置において、乳頭構造、及び乳頭突起内の毛細血管の経時変化を測定したり、他の部位の変化、及び影響を適切に調査したり診断したりすることができなかった。
 そこで、本発明は、上述したような侵襲的及び非侵襲的な観察方法で挙げられるような従来の問題点を解消し、且つ、乳頭構造及び乳頭突起内の毛細血管の両方を同時に観察することができる撮像装置、画像表示システム及び画像表示方法を提供することを目的とする。
 本発明に係る撮像装置は、皮膚の表面に照明光を照射する照明部と、皮膚の内部で反射された透過光を撮像する撮像部と、皮膚の表面に密着させて用いられ、皮膚の表面で反射された反射光が撮像部へ到達することを妨げるように配置される遮光部と、撮像する透過光が通過する皮膚の表皮を湾曲させるために、皮膚の表面を先端で押圧する押圧部と、を備えるものである。
 遮光部は、筒形状であり、撮像部のセンサ面の法線方向に開口するものであることが好ましい。
 遮光部は、円筒形状であることが好ましい。
 照明部は、皮膚の表面がリング状に照明されるように照明光を照射するものであることが好ましい。
 押圧部は、遮光部の先端に設けられ、遮光部と一体化した第1遮光部材として形成されていることが好ましい。
 押圧部は、遮光部と同じ内径を持つ筒形状であり、且つ、撮像部のセンサ面の法線方向に開口するものである。
 押圧部は、押圧部本体と、押圧部本体に装着され、皮膚の表面を直接押圧する押圧部材とを有し、照明部は、照明光を射出する照明部本体と、照明部本体に装着され、押圧部材の外周側に配置される第2遮光部材とを有し、押圧部本体、及び照明部本体は、一体として撮像装置の本体を構成し、押圧部材、及び第2遮光部材は、本体の先端部に装着されるアダプタを構成し、押圧部材は、内部に円形の貫通孔を備える円錐形のノズル形状であり第2遮光部材は、押圧部材の最大外径よりも大きな内径を備える円筒形状であり、押圧部材と第2遮光部材とは、押圧部材の外周面と遮光部材の内周面との間に、照明部本体から射出される照明光を皮膚の表面に導光する円環状の導光スリットを形成するものであってもよい。
 押圧部の先端は、照明部の先端より突出しており、撮像部のセンサ面の法線方向において、照明部と皮膚の表面とが密着した面と、押圧部と皮膚の表面とが密着した面との間の距離が、0.1mm~1.0mmであることが好ましい。
 撮像部のセンサ面の水平方向において、照明部が照射する照明光の光軸と、撮像部が受光する透過光の光軸との間の距離が、0.5mm~50mmであることが好ましい。
 照明部は複数の光源を有し、複数の光源は、互いに対称に配置されていることが好ましい。
 光源は、LED、白熱電球、蛍光灯、または放電電球であることが好ましい。
 照明部は、更に、押圧部の外径よりも大きな内径を備える円筒形状の第2遮光部材を有し、第2遮光部材は、押圧部の外周側に配置され、押圧部の外周面と第2遮光部材の内周面との間に円環状の導光スリットを形成するものであり、照明光は、光源から導光スリットを通して皮膚の表面に照射されるものであってもよい。
 照明部は、更に、光ファイバーケーブルを有し、照明光は、光源から光ファイバーケーブルを通して皮膚の表面に照射されるものであってもよい。
 照明部は、皮膚の表面と接触する部分に透明のカバー部材を備えることが好ましい。
 撮像部は、対物レンズを有することが好ましい。
 本発明に係る画像表示システムは、本発明に係る撮像装置と、撮像部により獲得された画像を表示する表示装置と、を備えるものである。
 更に、撮像装置の撮像部により獲得された画像に基づいて画像処理を行う画像処理装置を備え、表示装置は画像処理装置により処理された画像を表示することもできる。
 表示装置は、RGB画像を表示し、RGB画像は、乳頭構造及び乳頭突起内の毛細血管に対応する画像を含むことが好ましい。
 RGB画像は、さらに、網状層血管に対応する画像を含むことが好ましい。
 RGB画像は、ループ状の茶色部分およびループ状の茶色部分に囲まれたループ状の赤色部分を含むことが好ましい。
 ループ状の茶色部分は、皮膚の内部に含まれるメラニン色素であり、ループ状の茶色部分に囲まれたループ状の赤色部分は、乳頭突起内の毛細血管であることが好ましい。
 本発明に係る画像表示方法は、本発明に係る画像表示システムを使用する画像表示方法であって、撮像する透過光が通過する皮膚の表皮を湾曲させるために、皮膚の表面を押圧し、皮膚の表面に照明光を照射する第一の照射ステップと、皮膚の内部で反射された透過光のみを撮像して、表皮が湾曲した皮膚の第一の画像信号を獲得する第一の画像信号獲得ステップと、第一の画像信号に基づいて表皮が湾曲した皮膚の画像を形成する第一の画像形成ステップと、表皮が湾曲した皮膚の画像をモニタに表示する画像表示ステップと、からなるものである。
 さらに、皮膚の表面に照射光を照射する第二の照射ステップと、皮膚内部で反射された透過光のみを撮像して、表皮が湾曲した皮膚の画像の撮像位置と同じ領域における表皮が湾曲していない皮膚の第二の画像信号を獲得する第二の画像信号獲得ステップと、画像信号に基づいて表皮が湾曲していない皮膚の画像を形成する第二の画像形成ステップと、表皮が湾曲した皮膚の画像と、表皮が湾曲していない皮膚の画像とをモニタに表示する画像表示ステップと、からなることが好ましい。
 第一の画像形成ステップは、第一の画像信号に基づいて、表皮が湾曲した皮膚の第一のRGB画像を形成し、第二の画像形成ステップは、第二の画像信号に基づいて、表皮が湾曲していない皮膚の第二のRGB画像を形成し、画像表示ステップは、第一のRGB画像と第二のRGB画像を同時にモニタに表示し、第一及び第二のRGB画像は、乳頭構造及び乳頭突起内の毛細血管に対応する画像を含むことが好ましい。
 第一のRGB画像及び第二のRGB画像は、ループ状の茶色部分およびループ状の茶色部分に囲まれたループ状の赤色部分を含み、ループ状の茶色部分は、皮膚の内部に含まれるメラニン色素であり、ループ状の茶色部分に囲まれたループ状の赤色部分は、乳頭突起内の毛細血管であり、第二の画像信号獲得ステップにおいて獲得されたループ状の赤色部分に係る第二の画像信号は、第一の画像信号獲得ステップにおいて獲得されたループ状の赤色部分に係る第一の画像信号よりも弱いものである。
 第二の画像形成ステップは、第一の画像信号獲得ステップにおいて獲得されたループ状の赤色部分に係る第一の画像信号よりも弱い第二の画像信号に基づいて、第二のRGB画像を形成することができるものである。
 この発明によれば、容易に、且つ、非侵襲的に、乳頭構造及び乳頭突起内の毛細血管の両方を同時に観察することができる。
 皮膚の内部構造を非侵襲的に可視化することができるため、同じ観察位置(すなわち、採取対象位置)における乳頭構造や乳頭突起内を流れる毛細血管の経時変化を測定したり、それに伴う他の部位の変化や影響を詳細に調べたりすることができる。
 また、観察条件によらず、乳頭層(乳頭突起内)の毛細血管を破壊することなく、適切に観察することができる。
 また、乳頭突起内の毛細血管と、網状層内の血管とを明確に区別して観察することができる。
本発明の実施の形態1に係る撮像装置を用いた画像表示システムを模式的に示す断面図である。 図1Aの撮像装置をI-I線で切断した断面図である。 図1Aの撮像装置の光路を模式的に示す断面図である。 図1Aの撮像装置の押圧部及び照明部の先端における光路を示す立体図である。 図1Aの撮像装置の照明半径Rを説明するための模式図である。 乳頭構造を可視化できる原理について説明するための模式図である。 図1Aの撮像装置を用いて取得した透過画像である。 図4Aの白枠内の透過画像を立体的に表した図である。 図1Aの撮像装置を用いて取得されたRGB画像(スケールバー100μm)を示す図である。 図1Aの撮像装置を用いて取得されたRGB画像(スケールバー100μm)を示す図である。 図1Aの撮像装置を用いて取得されたRGB画像(スケールバー200μm)を示す図である。 図1Aの撮像装置を用いて取得されたRGB画像(スケールバー200μm)を示す図である。 押圧部で皮膚の表面を押圧する前の状態を示す模式図である。 押圧部で皮膚の表面を押圧した状態を示す模式図である。 図1Aの撮像装置の照明部の変形例1を模式的に示す図である。 図1Aの撮像装置の照明部の変形例2を模式的に示す図である。 図8Bの撮像装置をII-IIで切断した断面図である。 図1Aの撮像装置の照明部の変形例3を模式的に示す図である。 図8Dの撮像装置をIII-IIIで切断した断面図である。 本発明の実施の形態2に係る撮像装置のアダプタを示す立体図である。 図9に示す撮像装置のアダプタを模式的に示す断面図である。 図9のアダプタが本体に装着される前の状態を模式的に示す断面図である。 図9のアダプタが本体に装着され、皮膚の表面を押圧した状態を模式的に示す断面図である。 実施例1のG成分画像である。 比較例1のG成分画像である。 実施例2のRGB画像である。 比較例2のRGB画像である。 染色した皮膚組織の切片の拡大写真である。 皮膚組織の構造を示す模式図である。
 以下、この発明の実施の形態を添付図面に基づいて説明する。
(実施の形態1)
 図1Aは、本発明の実施の形態1に係る撮像装置を用いた画像表示システムを模式的に示す断面図であり、図1Bは、図1Aの撮像装置をI-I線で切断した断面図である。
 図2Aは、実施の形態1に係る撮像装置1の光路を模式的に示す断面図であり、図2Bは、撮像装置1の押圧部2及び照明部4の先端における光路を示す立体図である。
 撮像装置1は、押圧部2と、照明部4及び撮像部6から構成され、画像処理装置8及び表示装置10に接続されている。
 押圧部2は、円筒形状の押圧部材からなり、径内に円形の観察部位(撮像部6により撮像される皮膚表面)が位置するように、先端部(受光側の開口部)を皮膚表面に密着させて押圧することにより、観察部位の皮膚表面を湾曲させることができる。また、押圧部2の先端部は、皮膚表面を押圧する機能を有するとともに、後述する照明部4から皮膚表面に照射される照射光や、皮膚表面から反射される鏡面反射光が撮像部6に直接入射しないように遮光する遮光部材(第1遮光部材)としての機能も有する。つまり、押圧部2は、押圧部材が遮光部材の先端に設けられ、遮光部材と押圧部材(第1遮光部材)が一体化した構造からなると言える。
 なお、本実施の形態では、押圧部2は、押圧及び遮光の両機能を担っているが、皮膚の表面を押圧し、乳頭突起内の毛細血管に血液を送り込むことができればこれに限定されず、皮膚の表面を押圧する押圧部材と、皮膚に密着させて用いる遮光部材(第1遮光部材)とを別々に構成することもできる。
 押圧部2の内径の大きさ(具体的には、視野環の直径)は、観察対象を探索しやすい大きさであれば特に限定されないが、通常の観察時(すなわち、押圧を行わず観察する場合)に観察対象を探索しやすいと見なされる内径よりも、やや大きい内径を有していることが好ましい。押圧時、視野環に位置する皮膚(すなわち、押圧部材と密着する皮膚)が変形してしまうからである。より具体的に言えば、視野環の直径は、1mm~10mmであることが好ましい。1mm未満にすると、視野が狭くなりすぎてしまうため、観察対象の探索が難しくなってしまう。一方、10mm超にすると、後述する図3に示す光が通ってくる距離が長くなって減衰してしまい、視野内が暗くなってしまうからである。
 また、外径の大きさは、皮膚表面を押圧可能な強度を備える押圧部2の厚みを持ち、且つ、視野における光量を均一且つ十分に確保でき、皮膚表面と接触する幅(すなわち、押圧部2の外径と内径の差)が乳頭突起内の毛細血管を無理に押圧しない大きさであれば特に限定されない。押圧部2の厚みや素材に応じて、適宜設定することが好ましい。例えば、押圧部2の厚みが0.5mmであり、素材としてゴム素材を使用している場合、外径の大きさは、2mm~11mmであることが好ましい。
 押圧部2の材質は、照明光、及び皮膚の表面で反射された反射光が撮像部6へ到達することを妨げるように先端部を皮膚表面に密着させることができる材質であれば特に限定されないが、皮膚表面を押圧した際、形状が大きく変形することなく(すなわち皮膚よりは硬く)、皮膚表面によりぴったりと適合する程度の柔らかさを持つ材質であることすることが好ましい。例えば、シリコンゴム等の弾性材料を使用することが好ましい。その理由は、導光スリット14からの照明光、及び反射光の漏れを防止することができるからである。
 また、皮膚に接触する押圧部2の先端部は、安全性の面から、少し丸みを帯びた形状であることが好ましい。
 照明部4は、4つの光源12と遮光部材(第2遮光部材)16から構成される。遮光部材(第2遮光部材)16は、押圧部(第1遮光部材)2とともに導光スリット14を形成する。この導光スリット14を介して、照明部4は、図2Bに示すように、皮膚の表面がリング状に照明されるように、光源12から光を照射する。
 4つの光源12は、互いに点対象になるように同一円周上に配置された4つのLED(発光ダイオード:Light-emitting diode)からなる。しかし、光源は、導光スリット14を介して皮膚の表面をリング状に均等に照明できれば特に限定されない。したがって、光源は、LEDに限定されず、LD(レーザダイオード:Laser diode)、半導体レーザ、キセノンランプ等のランプ、及びSLD(スーパールミネッセントダイオード:Superluminescent diode)等を用いることもできる。光源の数も、皮膚の表面を撮像部6による撮影に必要な明るさで均等に照明できれば特に限定されない。光源の数は、同心円状に照明できれば1個でも良いが、2個以上であることが好ましく、4個以上であることがより好ましい。
 光源の強度は、観察部位に係る領域の視野が撮像部6による撮影に必要な明るさであれば、特に限定されない。光源の強度調整が可能であることが好ましい。
 光源の色は、R(赤:red)及びB(青:blue)の単色でなく、G(緑:green)を有していれば特に限定されない。RGB(red-green-blue)光(すなわち、白色光)及びGB(green-blue)光を用いることが好ましい。また、光源の色は、各色に切り替え可能であることが好ましい。
 光源の電源は、内部電源(電池)でも外部電源でも良い。
 遮光部材16は、押圧部2の外径よりも大きな内径を備える円筒形状の部材からなり、円筒形状の押圧部2の外周側に配置され、押圧部2の外周面と遮光部材16の内周面との間に円環状の導光スリット14を形成するものである。図1Aに示すように、遮光部材16の先端部(光射出側の開口部)は、押圧部2の先端部(受光側の開口部)の後方側に少しずれて位置している。言い換えれば、押圧部2は、照明部4の遮光部材16の先端部より突出していると言える。
 押圧部2の先端部(受光側の開口部)は、遮光部材16の先端部(光射出側の開口部)より突出しており、その突出量(すなわち、遮光部材16が皮膚の表面と密着する面から、押圧部2が皮膚の表面と密着する面との間の距離L)は、押圧時における皮膚の変形量(皮膚を押圧した際に皮膚に生じる凹みの深さ)に応じて設定することができる。
 例えば、ヒトの皮膚の薄い部分(例えば、手の甲等)における押圧時の変形量は1mm程度であるため、突出量(L)は、それ以下である0.1mm~1.0mmに設定することが好ましい。これは、顔の目元や手の甲を押圧した際に表皮の湾曲を可能にするためには0.1mm以上の長さが必要であることや、1.0mm以下であれば、撮像装置1を皮膚表面に載置して押圧部2で皮膚表面を所要の圧力で押圧した際に、皮膚表面を無理に押圧することなく、遮光部材16の先端部も皮膚表面に密着させ易いからである。
 撮像装置1の重量は、撮像装置1を皮膚表面に載置したとき、毛細血管を傷める重さ(例えば1kg)でなければ、特に限定されないが、50g~600gであることが好ましい。撮像装置1の押圧部2、及び遮光部材16の先端部を皮膚表面に密着させることができ、網状層内の血管を圧迫でき、且つ、毛細血管を傷めることのない重さであるからである。
 このような配置構成により、図2Aに示すように、撮像装置1を観察対象の皮膚表面に載置すると、撮像装置1の重みで、遮光部材16の先端部と押圧部2の先端部とが皮膚表面に密着し、且つ、皮膚表面は、押圧部2により所要の圧力で押圧される。このように、遮光部材16の先端部と押圧部2の先端部とを皮膚表面に密着させて、光を皮膚表面に照射すれば、透過光の強度低下、及び撮像画像のコントラストの低下を防ぐことができる。ここで、透過光とは、皮膚表面を透過し、皮膚の内部において反射され、再び皮膚表面を透過した光である。撮像画像のコントラストの低下は、この透過光に加えて、皮膚表面からの反射光をも撮像することにより生じる。
 遮光部材16の外径は、先端部が皮膚表面に密着する面積が導光スリット14から照明光が漏れない程度の大きさを有していれば特に限定されないが、撮像装置1を皮膚表面に載置する際に妨げにならない程度の大きさであることが好ましい。
 遮光部材16の材質も、照明光が拡散しないように先端部を皮膚表面に密着させることができる材質であれば特に限定されないが、皮膚表面によりぴったりと適合し、少し丸みを帯びた形状とすることができる。例えば、シリコンゴム等の弾性材料を使用することが好ましい。その理由は、導光スリット14からの照明光の漏れを防止することができるからである。
 導光スリット14は、光源12から照射された光がスリット内で拡散して抜け出ていく機能を有する。光源12から射出された光は導光スリット14を通じて皮膚の表面に照射されるので、光が導光スリット14の幅以上に拡散することなく、直接的に皮膚の表面を照明することができる。
 導光スリット14の幅L(遮光部材16の内径と押圧部2の外径との差)は、毛細血管等の観察対象を確認できる程度の視野の明るさが確保できるものであれば、特に限定されない。本発明においては、乳頭構造や乳頭突起内の毛細血管を観察することを目的とするため、それら血管の探索がしやすい1.0~5.0mmの幅を有していることが好ましい。
 導光スリット14は、一般的なLEDやランプ等を光源12として用いることができ、サイズが制限されることもほとんどないという効果を有する。具体的には、後述する図8Bに示されるように、押圧部2の外周面と遮光部材16内周面との間の円環状の空間(導光スリット14に相当)よりも大きなサイズの光源であっても使用することができる。また、十分な光量や均一性を確保することもできる。
 また、後述する図8Dに示されるような加工が難しい光ファイバを使用する場合と比べて、照明部4の遮光部材(第2遮光部材)16、及び押圧部(第1遮光部材)2の加工が容易であるため、一般的な光源12を用いて皮膚表面に照射するリング状の照明光を生成することができるという効果を有する。また、光源が装置外部に設けられ、光源と光ファイバの束をつなぐ太いケーブル(光ファイバケーブル)を必要とするものと違い、本実施の形態に係る光源は装置内部に設けられているので、ケーブルを必要とせず、撮像装置全体を小型化することができる。
 なお、導光スリット14の形状は、円筒形状(リング形状)に限定されず、筒形状であればよい。すなわち、本実施の形態において、押圧部2及び遮光部材16の形状は円筒形状であるが、筒形状であれば特に限定されない。つまり、押圧部2の外周の表面や遮光部材の内周の表面の形状も、特に限定されない。
 撮像部6は、皮膚の内部で反射された透過光を取り込む対物レンズ18、対物レンズ18のフォーカス操作を自動または手動で行う駆動部20及びカメラ22から構成される。
 対物レンズ18は、単焦点レンズを使用し、駆動部20は、対物レンズ18のフォーカス機能の調整を自動又は手動で行うことできる。なお、駆動部20を使用せず、対物レンズ18にズームレンズを使用することもできる。
 カメラ22は、センサ面が観察部位に対向するように配置され、皮膚の内部から戻ってきた透過光を押圧部2の開口や対物レンズ18を通して撮像して皮膚の画像信号を獲得する。また、獲得した画像信号に基づいて画像を生成する。
 ここで、撮像装置1の光路について詳細に説明する。
 図2Aに示すように、光源12から照射された光は、導光スリット14を通って皮膚の表面をリング状に照明し、皮膚の内部へ透過する。皮膚の内部に入った透過光は、真皮及び表皮で拡散されたり、反射されたりして皮膚の内部から戻ってくる。皮膚の内部から戻ってきた光は、皮膚の表面を透過して、押圧部2の内腔に入射して通過し、対物レンズ18を通ってカメラ22により撮像される。
 同一円周状に配置された光源12から照射される照明光の光軸(すなわち、導光スリット14を通過する光の光軸)と、対物レンズ18が受光する透過光の光軸(すなわち、押圧部2の内腔の中心軸)との間の距離(すなわち、照明半径R)は、観察対象を確認できる程度の視野の明るさを確保できれば、特に限定されないが、0.5mm~50mmに設定することが好ましい。0.5mm未満に設定すれば、観察対象が探索し難い。また、照明半径を50mm超に設定すると、視野が暗くなってしまうため非常に強い光源を使用しなければならず、その結果、高温の光を皮膚に照射しなければならなくなってしまうからである。
 ここで、図3を参照して、照明半径Rの作用について詳細に説明する。
 一般的に、観察点Pから光入射位置が遠いほど、皮膚内部で光が拡散し、内部拡散光、又は内部反射光として、皮膚内部から戻ってくる光の光量は指数関数的に減少する。例えば、図3に示すように、光入射位置(1)(照明半径R)よりも観察点から遠い光入射位置(2)(照明半径R)の方が、内部拡散光、又は内部反射光(図中、点線)として皮膚内部から戻ってくる光の光量は指数関数的に減少している。
 また、一般的に、照明半径の長さと、皮膚内部に入射した光が到達する最大深度とは、同程度と言われている。つまり、照明半径が大きいほど、皮膚内部のより深い場所から光が戻ってくるため、深い位置における情報を得ることができる。具体的には、照明半径Rよりも照明半径Rの方が長いので、最大深度Dの照明半径Rの光よりも、最大深度Dより深い位置である最大深度Dの照明半径Rの光の方が、皮膚内部の深い位置における情報を得ることができる。
 そのため、照明半径Rは、使用する光源の強度、観察対象の大きさ、及び皮膚内部において観察対象が存在する位置等に応じて設定することが好ましいと言える。
 本発明においては、乳頭構造、及び乳頭突起内の毛細血管を観察することを目的とするため、皮膚Sの表面から表皮82、及び真皮84が存在する領域までの情報を獲得することが好ましい。具体的には、皮膚Sの表面から0.5mm~5mmの情報を獲得することが好ましく、500μm~1000μm程度の情報を獲得することがより好ましい。そのため、理論的には、照明半径が1mm程度であることがより好ましいと言える。
 なお、好ましい照明半径は、被験者の皮膚の色にも、観察部位の表皮及び真皮の厚さにも依存するため、それらの条件も含めて調整することが好ましい。
 次に、図4を参照して、撮像装置1に用いて皮膚Sの表面を撮像することにより、乳頭構造を可視化できる原理について詳細に説明する。
 図5Aは、皮膚内部から戻ってきた透過光を撮像した透過画像(RGB画像)であり、図5Bは、図5Aの白枠内の透過画像を立体的に表現した図である。
 図5Aの明るい領域及び図5Bの明るい凸部分は皮下深度が浅い部分に対応し、図5Aの暗い領域及び図5Bの暗い凹部分は皮下深度が深い部分に対応する。図4に示すように、表皮82にだけ含まれるメラニン色素96は、皮膚内部から透過光が真皮84及び表皮82を介して戻ってくるときに、光を遮る作用を有する。図14に示す皮膚組織の写真からもわかるように、メラニン色素96は、黒色であり、表皮82と真皮84との境界付近に多く存在するからである。そのため、表皮82が薄い乳頭層88の凸部(乳頭突起89)を通過する光(図4の実線矢印)は明るく、表皮82が厚い乳頭層88の凹部(及び表皮突起87)を通過する光(図4の点線矢印)は暗くなると考えられる。
 図6Aは、撮像装置1(対物レンズの倍率は、4.5倍を使用)を用いて、ヒトの頬の表面を撮像して取得したRGB画像(スケールバー100μm)であり、図6Bは、撮像装置1を用いて、ヒトの目元を撮像して取得したRGB画像(スケールバー100μm)であり、図6Cは、撮像装置1を用いて、ヒトの手の甲の表面を撮像して取得したRGB画像(スケールバー200μm)であり、図6Dは、撮像装置1を用いて、ヒトの手の甲の表面を撮像して取得したRGB画像(スケールバー200μm)である。
 図6A~図6Dにおいて、茶色部分がメラニン色素に対応するため、ループ状の茶色部分97は乳頭層88の凹部分であることがわかる。また、赤色部分が血管に対応するため、ループ状の茶色部分97の内側に存在する明るい中心部分に確認されるループ状の赤色部分94が乳頭突起内の毛細血管であることがわかる。従って、点線で囲まれた部分は乳頭構造に対応する。
 また、矢印で示される、乳頭構造(点線で囲まれた部分)の外側に確認される赤色部分は、網状層内の血管であるから、乳頭突起内の毛細血管94と網状層内の血管(網状層血管)92とを明確に区別して観察することができる。
 なお、白黒画像では判別し難いが、実際には(つまり、RGB画像では)、上述した茶色部分と赤色部分との違いを明確に識別することができ、また、図6A~図6Dにおいて、点線で囲まれた部分の内側にループ状の茶色部分として乳頭層の凹部分97を確認することできる。また、縮尺が図6A及び図6Bよりも大きい図6C及び図6Dにおいては、ループ状の茶色部分の内側にループ状の赤色部分として、乳頭突起内の毛細血管94を確認することができる。また、点線で囲まれた部分の外側には、矢印で示される赤色部分として、網状層血管92を確認することができる。
 このように、本実施の形態によれば、乳頭構造や乳頭突起内の毛細血管を適切に観察することができる。
 次に、図7A及び図7Bを参照して、押圧部2による押し込み効果について詳細に説明する。図7Aは、押圧部2で皮膚Sの表面を押圧する前の状態を示し、図7Bは、押圧部2で皮膚Sの表面を押圧した状態を示す。
 皮膚の毛細血管は、収縮、及び/又は拡張して血流を調整することによって、体温を調節する機能を担っている。従って、図7Aに示すように、押圧部2で皮膚Sの表面を押圧する前の状態においては、常に、観察領域における全ての毛細血管中に血流があるわけではない。その結果、観察画像において、視認することができない毛細血管が生じてしまう。そのため、従来の観察方法においては、観察領域における全ての毛細血管に血液が巡るまで観察し続けなければならず、観察には数分程度の時間が必要であった。また、時間をかけても、全ての毛細血管を観察できないこともある。
 これに対し、図7Bに示すように、押圧部2で観察領域周辺の皮膚の表面を押圧すれば、観察領域周辺の血管(網状層血管)92が圧迫され、観察領域における毛細血管に血液が強制的に送り込まれることになる。つまり、押圧前においては視認できないほど弱い毛細血管(乳頭突起内の毛細血管の係蹄94)の画像信号までも獲得することが可能となる。また、その結果、観察画像において、それらを観察することができる。特に、押圧部2を皮膚に押し当てた直後に、このような効果が表れるため、10秒程度で観察することができる。
 このように、本実施の形態によれば、観察部位の周辺の皮膚を押圧して周辺の血管を圧迫することにより、観察条件によらず、観察部位において、乳頭突起内を流れる毛細血管の係蹄94の頂点を検出することができる。
 画像処理装置8は、PC(パーソナルコンピュータ)、CPU(中央処理ユニット)、MPU(マイクロプロセッサユニット)等で構成され、撮像部6から入力される撮影画像に対して、観察や診断に関連する画像処理を施す。例えば、撮像部6から入力されたRGB画像に基づいて、G成分画像を生成することができる。G成分画像は、血管(ヘモグロビン成分)のコントラストを強調することができるため、毛細血管を探索、及び観察するのに適している。
 なお、画像処理装置8は、図示しないメモリを有し、生成された処理画像を格納することもできる。
 表示装置10は、例えば、LCD(液晶表示装置)等のディスプレイ装置を含んでおり、撮像部6が獲得した画像や、画像処理装置8で生成された画像をモニタに表示する。モニタに表示される画像は、画像処理装置8により切り替えることができる。例えば、G成分画像で毛細血管を観察した後、毛細血管とともにメラニン色素の分布も観察したい場合、G成分画像をRGB画像に切り替えることができる。RGB画像では、毛細血管は赤色で表示され、メラニン色素は茶色で表示されるため、容易に両者を判別することができる。
 また、撮像装置1及び画像処理装置8は、図示しないプリンタ等の出力装置を有することもできる。
 次に、この実施の形態1の撮像装置1の動作について説明する。
 まず、撮像装置1を被験者の皮膚に載置した後、図2Aに示すように、押圧部2により皮膚の表面が押圧され、押圧部2とともに遮光部材16の先端部が皮膚の表面に密着するように配置される。次いで、光源12から皮膚の表面に光が導光スリット14を通して照射される。照射された光は、皮膚内部へ透過し、表皮に分布するメラニンや血液中のヘモグロビン等で吸収される光以外は、表皮や真皮で散乱され、拡散反射光として皮膚内部から戻ってくる。皮膚内部から戻ってきた光は、対物レンズ18を介してカメラ22で撮像され、このように撮像装置1で獲得された画像は、表示装置10のモニタに表示される。
 撮像装置1で獲得された画像は、画像処理装置8で画像処理が施された後、表示装置10に表示することもできる。
 実施の形態1の撮像装置1を用いて取得した画像を取得し、表示装置10のモニタに表示することにより、以下のような観察、及び評価をすることができる。また、画像処理装置8を用いて、画像処理が施された画像を表示装置10のモニタに表示することにより、以下のような観察、及び評価をすることができる。
 例えば、ヒトの身体の各部位における皮膚の乳頭突起内の毛細血管の画像を適切に取得することができるため、部位間の毛細血管の数密度を正確に比較することができる。また、被験者の年齢の違い(、例えば老化)による各部位における毛細血管の数密度の違いを評価することもできる。
 また、非侵襲的に皮膚内部の画像を取得することができるため、同一の被験者及び同一の観察位置における乳頭突起内の毛細血管の経時変化を数日~数年単位で観察することができる。
 また、画像から血管の太さも把握することができるため、血流の多さも正確に評価することができる。さらに、画像から、乳頭突起内の毛細血管と、網状層内の血管とを明確に区別して把握することができるため、それらの血流の違いも評価することができる。
 また、撮像装置1によれば、静止画だけでなく動画でも取得することができるため、例えば、被験者が薬剤等を服用した際に生じる乳頭突起内の毛細血管、及び網状層内の血管の変異を経時的に観察することができる。
 また、皮膚表面に押圧部2を押し込んだ状態で取得した画像(すなわち、メラニン色素と乳頭突起内の毛細血管を含む画像)と、押し込まない状態で取得した画像(すなわち、メラニン色素のみ含む画像、又はメラニン色素と視認できないほど弱い画像信号に基づく乳頭突起内の毛細血管を含む画像)とを比較することにより、血流の違いを評価することができる。
 また、ヒトの身体の各部位における皮膚の乳頭構造の画像も適切に取得することができるため、各部位における乳頭構造の違いも適切に比較することができる。
 具体的には、部位間の乳頭突起の数密度や平坦度(表皮突起87と乳頭突起89により形成される乳頭層の凸凹具合)の違いを評価することができる。
 また、上述した乳頭突起内の毛細血管と同様に、同一の被験者及び同一の観察位置における乳頭構造の経時変化を数日~数年単位で観察することができる。
 また、メラニン色素も画像から明確に認識することができるため、シミ、及び色素沈着についても、同一の被験者及び同一の観察位置における乳頭構造の経時変化を数日~数年単位で観察することができる。
 このように、乳頭構造及び乳頭突起内の毛細血管を同時に一緒に観察することができるため、肌の状態の評価や加齢による皮膚の変化を適切に把握することができる。その結果、化粧品、及びスキンケア製品、スキンケアの効果を調べることができるため、それら化粧品等の研究または商品の開発に応用することができる。
 実施の形態1では、互いが対称になるように同心円状に配置された4つの光源12を用いて、光源12から照射された光を、導光スリット14を通して、皮膚の表面を照明したが、これに限定されず、光源の大きさ、数及び配置位置を変更したもの、及び導光スリットの構成を変更したものを使用することもできる。
 図8A~8Eに、実施の形態1に係る撮像装置1の照明部4の変形例を示す。
(実施の形態1の変形例1)
 図8Aは、実施の形態1の変形例1の照明部を示す断面図である。
 図8Aに示す照明部4Aは、図1A及び図1Bに示す実施の形態1に係る撮像装置1の照明部4の導光スリット14の代わりに、押圧部2の外周面と遮光部材16内周面との間の円環状の空間(導光スリット14に相当)内に光を屈折させる光透過性の樹脂を充填した円環状の導光部材26を備えるものである。
 導光スリット内に充填される樹脂は、光ファイバ等の材料として一般的に使用されている透明且つ加工し易い樹脂であれば、特に限定されない。
 このような導光部材26によれば、光源12のサイズを小さくしても光の損失を減らすことができ、視野における光量を十分に確保することができる。
(実施の形態1の変形例2)
 図8Bは、実施の形態1の変形例2の照明部を示す断面図であり、図8Cは、図8Bの照明部をII-II線で切断した断面図である。
 図8B、及び図8Cに示す照明部4Bは、図1A及び図1Bに示す実施の形態1に係る撮像装置1の照明部4の4つの光源12の代わりに、8つの光源12Aを備えるものである。また、8つの光源12Aは、その端部が皮膚の表面と密着するように、押圧部2の外周面と遮光部材16内周面との間の円環状の空間(導光スリット14に相当)の先端に、互いが対称になるように同心円状に配置されている。
 このように、光源の数を増やし、光源12Aの端部を皮膚の表面に密接させた照明部4Aによれば、視野における光量を十分に確保することができ、また、視野の明るさをより均一にすることができる。
 なお、照明部4Aは、光源12Aと皮膚の表面との間に透明なカバー部材を有することができる。透明なカバー部材の素材は、プラスチック、及びガラス等が挙げられる。
(実施の形態1の変形例3)
 図8Dは、実施の形態1の変形例3の照明部を示す断面図であり、図8Eは、図8Dの照明部をIII-III線で切断した断面図である。
 図8D、及び図8Eに示す照明部4Cは、図1A及び図1Bに示す実施の形態1に係る撮像装置1の筐体の外部に設けられた光源12Bに接続され、押圧部2の外周面と遮光部材16内周面との間の円環状の空間(導光スリット14に相当)内に敷き詰められた多数の光ファイバ24をさらに備えるものである。
 光ファイバ24は、先端の径を小さくすることができ、また、LED照明等と比較して径が細いため、押圧部2の外周面と遮光部材16内周面との間の円環状の空間(導光スリット14に相当)内に均一且つ多数並べることができる。また、撮像装置1の外部にある光源12Bを用いるため、光の強度や色を容易に調整することができる。
(実施の形態2)
 実施の形態1では、取り外しできない一体化した押圧部2や照明部4を使用したが、これに限定されず、照射光を皮膚の表面に射出し、皮膚の内部から戻ってきた光を受光する先端部分だけを取り換え可能なアダプタにすることもできる。
 また、実施の形態1では、押圧部2の視野環の直径や、照明部4の導光スリットの幅が所定の大きさであるものを使用したが、これに限定されず、先端部だけ視野環の直径が異なる押圧部や、先端部だけ導光スリットの幅が異なる照明部で構成されたアダプタにすることもできる。
 また、実施の形態1では、遮光部材16の外径が所定の大きさであるものを使用したが、これに限定されず、外径の異なる遮光部材を持つ遮光部材で構成されたアダプタにすることもできる。
 図9は、実施の形態2に係る撮像装置の本体28に装着されたアダプタ30を示す。
 図10は、図9に示す撮像装置の本体28とこれに接合されたアダプタ30とを模式的に示す断面図である。
 図11Aは、本体28の先端部35にアダプタ30を装着させる前の状態を示し、図11Bは、本体28の先端部35にアダプタ30を装着した状態を示す。
 図10に示すように、本体28は、実施の形態1の押圧部2の先端部(受光側の開口部)を有さない円筒部材からなる押圧部本体31と、実施の形態1の照明部4の遮光部材16の先端部(光射出側の開口部)を有さない円筒部材からなる照明部本体32とが一体として構成されたものである。照明部本体32には、アダプタ30を嵌めこんで係合するための円環状の嵌合溝37が設けられている。
 アダプタ30は、押圧部本体31に装着され、皮膚の表面を直接押圧する押圧部材33と、照明部本体32に装着され、押圧部材33の外周側に配置される遮光部材34(第2遮光部材)とからなるものであり、それぞれが本体28の先端部35に対して取り付け、かつ取り外し可能なものである。押圧部材33は、その上部に、アダプタ30が本体28に装着される際、本体28の押圧部本体31の内腔表面(内周面)に嵌合する円環状の凸部38を有し、遮光部材34は、その上部に、照明部本体32の嵌合溝37に嵌合する円環状の凸部39を有する。
 本体28とアダプタ30とは、押圧部本体31の内腔に押圧部材33の凸部38を嵌合し、照明部本体32の嵌合溝37に遮光部材34の凸部39を嵌合することにより、本体28の先端部35にアダプタ30を装着することができる。
 一体化した押圧部本体31と押圧部材33は、皮膚の内部で透過した反射光が通過する円形の中心貫通穴40を有する。また、一体化した押圧部本体31と押圧部材33との外周面と、一体化した照明部本体32と遮光部材34の内周面との間に、照明部本体32から射出される照明光を皮膚の表面に導光する円環状の導光スリット41を形成する。
 アダプタ30の押圧部材33は、内部に円形の貫通孔を備える円錘形のノズル形状からなり、実施の形態1の押圧部2と同様に、円管内に観察部位(撮像部6により撮像される皮膚表面)が位置するように、先端部(受光側の開口部)を皮膚表面に密着させて押圧することにより、観察部位の皮膚表面を湾曲させることができる。また、押圧部材33は、照明部から皮膚表面に照射される照射光や、皮膚表面から反射される鏡面反射光が撮像部に直接入射しないように遮光する遮光部材としての機能も有する。
 アダプタ30の遮光部材34は、アダプタ30の押圧部材33の最大外径よりも大きな内径を備える円筒形状からなり、押圧部材33の外周側に配置され、押圧部材33の外周面と遮光部材34の内周面との間に円環状の導光スリット36を形成するものである。遮光部材34の先端部(光射出側の開口部)は、押圧部材33の先端部(受光側の開口部)の後方側に少しずれて位置している。言い換えれば、押圧部材33は、遮光部材34より突出していると言える。
 アダプタ30の押圧部材33の内径は、本体28の押圧部本体31の内径と異なる大きさにすることができる。すなわち、アダプタ30の押圧部材33の視野環の直径Lは、本体28の押圧部本体31の視野環の直径Lと異なる大きさに設定することができる。
 アダプタ30の遮光部材34の外径は、本体28の照明部本体32の外径と異なる大きさにすることができる。すなわち、アダプタ30遮光部材34の直径Lは、本体28の照明部本体32の直径Lと異なる大きさにすることができる。
 アダプタ30の遮光部材34の先端部(光射出側の開口部)は、アダプタ30の押圧部材33の先端部(受光側の開口部)より突出しており、その突出量(すなわち、遮光部材34が皮膚の表面と密着する面から、押圧部材33が皮膚の表面と密着する面との間の距離)は、押圧時における皮膚の変形量(皮膚を押圧した際に皮膚に生じる凹みの深さ)に応じて設定することができる。
 そのため、観察対象、及び身体の各部位の表皮の厚さに応じたアダプタを予め作製しておけば、観察対象や観察部位に応じてアダプタを付け替えるだけで、適切な画像を取得することができる。
 具体的に言えば、図11Bに示すように、観察部位(視野)と照明光が照射される領域が近ければ近いほど、拡散透過光は明るくなることから、撮像画像の輝度を向上させることができる。
 また、アダプタの遮光部材34の先端部の直径が小さく形成されていれば、例えば、目元や口元等の顔の各部位に撮像装置1を載置する際、皮膚の表面の凹凸や、目や鼻等の部位によって干渉されることなく、適切に押圧部や遮光部材を皮膚表面に密着させることができる。
 また、身体の各部位の表皮の厚さに応じた視野径や外径を持つアダプタを予め作製しておけば、観察部位に応じたアダプタを使用することができる。
 また、上記アダプタは、押圧部材33の高さを変更することもできる。例えば、皮膚表面に窪みやシワがある場合、押圧部材33の高さを0.5mm高くすることで、導光スリット36から漏れる照射光や、皮膚表面から反射した直接反射光を確実に遮蔽することができる。
[実施例1]
 実施の形態1の撮像装置1(突出量1.0mmの押圧部2を使用)を用いて被験者の頬の中央部分を撮像し、G画像を取得した。
[比較例1]
 実施の形態1の撮像装置1の押圧部2が照明部4の遮光部材16より突出していない撮像装置を用いて被験者の頬の中央部分を撮像し、G画像を取得した。
 図12Aは、実施例1のG画像を示し、図12Bは、比較例1のG画像を示す。
 図12Aが示すように、押圧部2により観察領域周辺が押圧された実施例1のG画像は、図中矢印で示す乳頭突起内の毛細血管を確認することができる。
 一方、図12Bに示すように、観察部位周辺が押圧されていない比較例1のG画像では、乳頭突起内の毛細血管を確認することができない。
 このように、押圧部2により皮膚の表面を押圧すれば、適切に乳頭突起内の毛細血管を観察することができる。
[実施例2]
 実施例1と同様に、実施の形態1の撮像装置1を用いて被験者の前腕の内側部分を撮像しRGB画像を取得した。
[比較例2]
 比較例1と同じ撮像装置を用いて被験者の前腕の内側部分を撮像しRGB画像を取得した。
 図13Aは、実施例2のRGB画像を示し、図13Bは、比較例2のRGB画像を示す。図13A及び図13Bにおいて、茶色部分はメラニン、ループ状の赤色部分は乳頭突起内の毛細血管を示す。
 実施例1と同様に、押圧部2により観察領域周辺が押圧された実施例2のRGB画像は、図中矢印で示す乳頭突起内の毛細血管を確認することができる。
 一方、観察領域周辺が押圧されていない比較例2のRGB画像では、乳頭突起内の毛細血管を確認することができない。
 これらの結果により、押圧部2により観察領域周辺を押圧すれば、適切に乳頭突起内の毛細血管を観察することができることが確認された。
 また、RGB画像であるため、色の違いからメラニン色素(茶色部分)と、乳頭突起中の毛細血管(ループ状の赤色部分)とを明確に区別して観察することができた。
[参考例1]
 実施の形態1の撮像装置1により取得した画像を用いた皮膚の評価方法を示す。
 図6Aは、撮像装置1を用いて、ある被験者の頬を撮像して取得したRGB画像を示し、図6Bは、目元を撮像して取得したRGB画像を示す。
 図6A及び図6Bの点線で囲まれた部分が乳頭構造に対応する。図6A及び図6Bを比較することにより、目元よりも頬の方が乳頭突起内の毛細血管の数密度(毛細血管数密度)が高いことが確認できた。
1 撮像装置
2 押圧部(第1遮光部材)
4、4A、4B、4C 照明部
6 撮像部
8 画像処理装置(PC)
10 表示装置
12、12A、12B 光源
14、41 導光スリット
16 遮光部材(第2遮光部材)
18 対物レンズ
20 駆動部
22 カメラ
24 光ファイバーケーブル
26 樹脂
28 本体
30 アダプタ
31 押圧部本体
32 照明部本体
33 押圧部材
34 遮光部材
35 本体の先端部
36 アダプタの導光スリット
37 嵌合溝
38、39 凸部
40 中心貫通孔
80 角層
82 表皮
84 真皮
86 基底層
87 表皮突起
88 乳頭層
89 乳頭突起
90 網状層
92 網状層内の血管(網状層血管)
94 乳頭突起内の毛細血管(係蹄)
96 メラニン色素
97 乳頭層の凹部
R、R、R 照明半径
、D 最大深度
S 皮膚組織(皮膚)
 突出量
 導光スリットの幅
 本体の押圧部材の内孔(視野環)の直径
 本体の遮光部材の直径
 アダプタの押圧部材の内孔(視野環)の直径
 アダプタの遮光部材の直径

Claims (26)

  1.  皮膚の表面に照明光を照射する照明部と、
     前記皮膚の内部で反射された透過光を撮像する撮像部と、
     前記皮膚の表面に密着させて用いられ、前記皮膚の表面で反射された反射光が前記撮像部へ到達することを妨げるように配置される遮光部と、
     撮像する透過光が通過する前記皮膚の表皮を湾曲させるために、前記皮膚の表面を先端で押圧する押圧部と、
    を備える撮像装置。
  2.  前記遮光部は、筒形状であり、前記撮像部のセンサ面の法線方向に開口するものである請求項1記載の撮像装置。
  3.  前記遮光部は、円筒形状である請求項2に記載の撮像装置。
  4.  前記照明部は、前記皮膚の表面がリング状に照明されるように前記照明光を照射するものである請求項1~3のいずれか1項に記載の撮像装置。
  5.  前記押圧部は、前記遮光部の先端に設けられ、前記遮光部と一体化した第1遮光部材として形成されている請求項1~4のいずれか1項に記載の撮像装置。
  6.  前記押圧部は、前記遮光部と同じ内径を持つ筒形状であり、且つ、前記撮像部のセンサ面の法線方向に開口するものである請求項5に記載の撮像装置。
  7.  前記押圧部は、押圧部本体と、前記押圧部本体に装着され、前記皮膚の表面を直接押圧する押圧部材とを有し、
     前記照明部は、前記照明光を射出する照明部本体と、前記照明部本体に装着され、前記押圧部材の外周側に配置される第2遮光部材とを有し、
     前記押圧部本体、及び前記照明部本体は、一体として前記撮像装置の本体を構成し、
     前記押圧部材、及び前記第2遮光部材は、前記本体の先端部に装着されるアダプタを構成し、
     前記押圧部材は、内部に円形の貫通孔を備える円錐形のノズル形状であり
     前記第2遮光部材は、前記押圧部材の最大外径よりも大きな内径を備える円筒形状であり、
     前記押圧部材と前記第2遮光部材とは、前記押圧部材の外周面と前記遮光部材の内周面との間に、前記照明部本体から射出される前記照明光を前記皮膚の表面に導光する円環状の導光スリットを形成するものである請求項1~6のいずれか1項に記載の撮像装置。
  8.  前記押圧部の先端は、前記照明部の先端より突出しており、
     前記撮像部のセンサ面の法線方向において、前記照明部と前記皮膚の表面とが密着した面と、前記押圧部と前記皮膚の表面とが密着した面との間の距離が、0.1mm~1.0mmである請求項1~7のいずれか1項に記載の撮像装置。
  9.  前記撮像部のセンサ面の水平方向において、前記照明部が照射する前記照明光の光軸と、前記撮像部が受光する前記透過光の光軸との間の距離が、0.5mm~50mmである請求項1~8のいずれか1項に記載の撮像装置。
  10.  前記照明部は複数の光源を有し、前記複数の光源は、互いに対称に配置されている請求項1~9のいずれか1項に記載の撮像装置。
  11.  前記光源は、LED、白熱電球、蛍光灯、または放電電球である請求項10に記載の撮像装置。
  12.  前記照明部は、更に、前記押圧部の外径よりも大きな内径を備える円筒形状の第2遮光部材を有し、
     前記第2遮光部材は、前記押圧部の外周側に配置され、前記押圧部の外周面と前記第2遮光部材の内周面との間に円環状の導光スリットを形成するものであり、
     前記照明光は、前記光源から前記導光スリットを通して前記皮膚の表面に照射される請求項10または11に記載の撮像装置。
  13.  前記照明部は、更に、光ファイバーケーブルを有し、
     前記照明光は、前記光源から前記光ファイバーケーブルを通して前記皮膚の表面に照射される請求項10または11に記載の撮像装置。
  14.  前記照明部は、前記皮膚の表面と接触する部分に透明のカバー部材を備える請求項1~13のいずれか1項に記載の撮像装置。
  15.  前記撮像部は、対物レンズを有する請求項1~14のいずれか1項に記載の撮像装置。
  16.  請求項1~15のいずれか1項に記載の撮像装置と、
     前記撮像部により獲得された画像を表示する表示装置と、
     を備える画像表示システム。
  17.  更に、前記撮像装置の前記撮像部により獲得された画像に基づいて画像処理を行う画像処理装置を備え、
     前記表示装置は前記画像処理装置により処理された画像を表示する請求項16に記載の画像表示システム。
  18.  前記表示装置は、RGB画像を表示し、
     前記RGB画像は、乳頭構造、及び乳頭突起内の毛細血管に対応する画像を含む請求項16または17に記載の画像表示システム。
  19.  前記RGB画像は、さらに、網状層血管に対応する画像を含む請求項18に記載の画像表示システム。
  20.  前記RGB画像は、ループ状の茶色部分および前記ループ状の茶色部分に囲まれたループ状の赤色部分を含む請求項16~18のいずれか1項に記載の画像表示システム。
  21.  前記ループ状の茶色部分は、前記皮膚の内部に含まれるメラニン色素であり、
     前記ループ状の茶色部分に囲まれたループ状の赤色部分は、前記乳頭突起内の毛細血管である請求項20に記載の画像表示システム。
  22.  請求項16~21のいずれか1項に記載の画像表示システムを使用する画像表示方法であって、
     撮像する透過光が通過する皮膚の表皮を湾曲させるために、前記皮膚の表面を押圧し、
     前記皮膚の表面に照明光を照射する第一の照射ステップと、
     前記皮膚の内部で反射された透過光のみを撮像して、前記表皮が湾曲した皮膚の第一の画像信号を獲得する第一の画像信号獲得ステップと、
     前記第一の画像信号に基づいて前記表皮が湾曲した皮膚の画像を形成する第一の画像形成ステップと、
     前記表皮が湾曲した皮膚の画像をモニタに表示する画像表示ステップと、
    からなる画像表示方法。
  23.  さらに、前記皮膚の表面に照射光を照射する第二の照射ステップと、
     前記皮膚内部で反射された透過光のみを撮像して、前記表皮が湾曲した皮膚の画像の撮像位置と同じ領域における前記表皮が湾曲していない皮膚の第二の画像信号を獲得する第二の画像信号獲得ステップと、
     前記画像信号に基づいて前記表皮が湾曲していない皮膚の画像を形成する第二の画像形成ステップと、
     前記表皮が湾曲した皮膚の画像と、前記表皮が湾曲していない皮膚の画像とをモニタに表示する画像表示ステップと、
    からなる請求項22に記載の画像表示方法。
  24.  前記第一の画像形成ステップは、前記第一の画像信号に基づいて、前記表皮が湾曲した皮膚の第一のRGB画像を形成し、
     前記第二の画像形成ステップは、前記第二の画像信号に基づいて、前記表皮が湾曲していない皮膚の第二のRGB画像を形成し、
     前記画像表示ステップは、前記第一のRGB画像と前記第二のRGB画像を同時に前記モニタに表示し、
     前記第一及び第二のRGB画像は、乳頭構造及び乳頭突起内の毛細血管に対応する画像を含む請求項23に記載の画像表示方法。
  25.  前記第一のRGB画像及び前記第二のRGB画像は、ループ状の茶色部分および前記ループ状の茶色部分に囲まれたループ状の赤色部分を含み、
     前記ループ状の茶色部分は、前記皮膚の内部に含まれるメラニン色素であり、
     前記ループ状の茶色部分に囲まれたループ状の赤色部分は、前記乳頭突起内の毛細血管であり、
     前記第二の画像信号獲得ステップにおいて獲得された前記ループ状の赤色部分に係る前記第二の画像信号は、前記第一の画像信号獲得ステップにおいて獲得された前記ループ状の赤色部分に係る前記第一の画像信号よりも弱い請求項24に記載の画像表示方法。
  26.  前記第二の画像形成ステップは、前記第一の画像信号獲得ステップにおいて獲得された前記ループ状の赤色部分に係る前記第一の画像信号よりも弱い前記第二の画像信号に基づいて、前記第二のRGB画像を形成する請求項25に記載の画像表示方法。
PCT/JP2017/041046 2017-03-16 2017-11-15 撮像装置、画像表示システム及び画像表示方法 WO2018168071A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197026882A KR102326393B1 (ko) 2017-03-16 2017-11-15 촬상 장치, 화상 표시 시스템 및 화상 표시 방법
CN201780088381.5A CN110662479A (zh) 2017-03-16 2017-11-15 摄像装置、图像显示系统及图像显示方法
JP2019505701A JP6858245B2 (ja) 2017-03-16 2017-11-15 撮像装置、画像表示システム及び画像表示方法
EP17900401.5A EP3597099A4 (en) 2017-03-16 2017-11-15 IMAGING DEVICE, IMAGE DISPLAY SYSTEM, AND IMAGE DISPLAY METHOD
US16/568,442 US11164311B2 (en) 2017-03-16 2019-09-12 Imaging apparatus, image display system, and image display method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-051264 2017-03-16
JP2017051264 2017-03-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/568,442 Continuation US11164311B2 (en) 2017-03-16 2019-09-12 Imaging apparatus, image display system, and image display method

Publications (1)

Publication Number Publication Date
WO2018168071A1 true WO2018168071A1 (ja) 2018-09-20

Family

ID=63523246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041046 WO2018168071A1 (ja) 2017-03-16 2017-11-15 撮像装置、画像表示システム及び画像表示方法

Country Status (6)

Country Link
US (1) US11164311B2 (ja)
EP (1) EP3597099A4 (ja)
JP (1) JP6858245B2 (ja)
KR (1) KR102326393B1 (ja)
CN (1) CN110662479A (ja)
WO (1) WO2018168071A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019058641A (ja) * 2017-09-22 2019-04-18 富士フイルム株式会社 肌の内部構造の推定方法、肌の内部構造の推定プログラム、および肌の内部構造の推定装置
WO2021090917A1 (ja) * 2019-11-08 2021-05-14 株式会社資生堂 シミ属性判定方法、シミ属性判定システム、血管密集度推定方法、及び血管密集度推定システム
WO2022165249A1 (en) * 2021-01-30 2022-08-04 Microvascular Health Solutions, LLC A method and apparatus for microvascular vessel imaging
JP2023106142A (ja) * 2022-01-20 2023-08-01 学校法人 関西大学 画像処理装置および画像処理方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102267144B1 (ko) 2015-08-10 2021-06-18 조준호 전자 상거래 방법
JP7031626B2 (ja) * 2019-03-13 2022-03-08 オムロン株式会社 センサヘッド

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060832A (ja) * 1983-09-13 1985-04-08 カネボウ株式会社 皮膚老化度測定方法
JP2006051279A (ja) * 2004-08-16 2006-02-23 Sony Corp 可搬型情報端末装置及び情報提供システム
WO2008010604A1 (fr) 2006-07-19 2008-01-24 School Juridical Person Kitasato Gakuen Dispositif d'imagerie des vaisseaux sanguins et système pour analyser une distribution des vaisseaux sanguins
US20130148326A1 (en) * 2011-12-13 2013-06-13 Welch Allyn, Inc. Method and apparatus for observing subsurfaces of a target material
JP2013236758A (ja) 2012-05-15 2013-11-28 Sony Corp 情報処理装置、情報処理方法、プログラム及び情報処理システム
JP2015152601A (ja) 2014-02-11 2015-08-24 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. 皮膚状態診断装置およびこれを用いた皮膚状態診断方法
JP2016010641A (ja) * 2014-06-30 2016-01-21 カシオ計算機株式会社 ダーモスコピー用撮像装置及びその制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5146923A (en) * 1986-12-18 1992-09-15 Dhawan Atam P Apparatus and method for skin lesion examination
JP3663598B2 (ja) * 2001-06-04 2005-06-22 岩雄 岡田 血管の探知装置
JP5797921B2 (ja) * 2011-03-30 2015-10-21 花王株式会社 体表評価方法および体表評価装置
CN103370727A (zh) * 2011-04-22 2013-10-23 株式会社日立制作所 血管图像摄影装置及生物体认证装置
CN102819080A (zh) * 2011-06-09 2012-12-12 鸿富锦精密工业(深圳)有限公司 镜头模组
US10182757B2 (en) 2013-07-22 2019-01-22 The Rockefeller University System and method for optical detection of skin disease
AU2014360173B2 (en) * 2013-12-05 2019-05-02 Veriskin, Inc. Skin perfusion monitoring device
JP5977408B2 (ja) * 2015-08-20 2016-08-24 花王株式会社 体表評価方法および体表評価装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060832A (ja) * 1983-09-13 1985-04-08 カネボウ株式会社 皮膚老化度測定方法
JP2006051279A (ja) * 2004-08-16 2006-02-23 Sony Corp 可搬型情報端末装置及び情報提供システム
WO2008010604A1 (fr) 2006-07-19 2008-01-24 School Juridical Person Kitasato Gakuen Dispositif d'imagerie des vaisseaux sanguins et système pour analyser une distribution des vaisseaux sanguins
US20130148326A1 (en) * 2011-12-13 2013-06-13 Welch Allyn, Inc. Method and apparatus for observing subsurfaces of a target material
JP2013236758A (ja) 2012-05-15 2013-11-28 Sony Corp 情報処理装置、情報処理方法、プログラム及び情報処理システム
JP2015152601A (ja) 2014-02-11 2015-08-24 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. 皮膚状態診断装置およびこれを用いた皮膚状態診断方法
JP2016010641A (ja) * 2014-06-30 2016-01-21 カシオ計算機株式会社 ダーモスコピー用撮像装置及びその制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3597099A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019058641A (ja) * 2017-09-22 2019-04-18 富士フイルム株式会社 肌の内部構造の推定方法、肌の内部構造の推定プログラム、および肌の内部構造の推定装置
WO2021090917A1 (ja) * 2019-11-08 2021-05-14 株式会社資生堂 シミ属性判定方法、シミ属性判定システム、血管密集度推定方法、及び血管密集度推定システム
WO2021090513A1 (ja) * 2019-11-08 2021-05-14 株式会社資生堂 シミ属性判定方法、及びシミ属性判定システム
WO2022165249A1 (en) * 2021-01-30 2022-08-04 Microvascular Health Solutions, LLC A method and apparatus for microvascular vessel imaging
JP2023106142A (ja) * 2022-01-20 2023-08-01 学校法人 関西大学 画像処理装置および画像処理方法
JP7357955B2 (ja) 2022-01-20 2023-10-10 学校法人 関西大学 画像処理装置および画像処理方法

Also Published As

Publication number Publication date
US20200005457A1 (en) 2020-01-02
EP3597099A1 (en) 2020-01-22
CN110662479A (zh) 2020-01-07
KR102326393B1 (ko) 2021-11-12
KR20190116427A (ko) 2019-10-14
EP3597099A4 (en) 2020-02-19
JP6858245B2 (ja) 2021-04-14
US11164311B2 (en) 2021-11-02
JPWO2018168071A1 (ja) 2019-12-26

Similar Documents

Publication Publication Date Title
JP6858245B2 (ja) 撮像装置、画像表示システム及び画像表示方法
JP4739242B2 (ja) 埋込構造物の画像化
EP2948052B1 (en) Deep tissue flowmetry using diffuse speckle contrast analysis
US9931021B2 (en) Method for identifying objects in a subject's ear
US11058286B2 (en) Ear inspection device and method of determining a condition of a subject's ear
KR101647022B1 (ko) 의료 영상 획득 장치 및 방법
US10321826B2 (en) Optical dynamic imaging system
EP3197341B1 (en) Probe for iridocorneal angle imaging
CN102481098A (zh) 将针进入体内可视化的系统及方法
JP2006014902A (ja) 視野計
CA2840124C (en) Method and apparatus for imaging the choroid
KR101255146B1 (ko) 비가시광 형광신호의 실시간 가시화를 위한 형광영상의 획득투사장치
JP2004501712A (ja) 表皮診断支援装置
US20170172487A1 (en) Imaging skin cancer detection device
JP2015173920A (ja) 生体検査装置および生体検査方法
KR101663376B1 (ko) 망막 혈관 매핑 방법 및 장치
EP1369086B1 (en) Breast carcinoma detector
JP6688164B2 (ja) 皮膚毛細血管の観察方法
GB2442339A (en) Ocular imaging apparatus for monitoring a bodily function
KR102619327B1 (ko) 조명을 포함하는 공막 누르개와 이를 이용한 안구상의 병변 위치 표시 장치
JPH0866364A (ja) 眼科機器
KR200481528Y1 (ko) 간이 조영 영상 획득 장치
van Lookeren Campagne Laser Doppler Flowmetry, using in vitro phantoms to study skin microcirculation
KR20010010730A (ko) 모세혈관 촬영 및 혈류분석장치
Carlson Fiber optic confocal microscope: in vivo precancer detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900401

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505701

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197026882

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017900401

Country of ref document: EP

Effective date: 20191016