WO2018165873A1 - 一种上行信号的传输方法及相关设备 - Google Patents

一种上行信号的传输方法及相关设备 Download PDF

Info

Publication number
WO2018165873A1
WO2018165873A1 PCT/CN2017/076676 CN2017076676W WO2018165873A1 WO 2018165873 A1 WO2018165873 A1 WO 2018165873A1 CN 2017076676 W CN2017076676 W CN 2017076676W WO 2018165873 A1 WO2018165873 A1 WO 2018165873A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna array
terminal device
array block
array blocks
network device
Prior art date
Application number
PCT/CN2017/076676
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP17901005.3A priority Critical patent/EP3595190A4/en
Priority to CA3056153A priority patent/CA3056153C/en
Priority to BR112019018627-1A priority patent/BR112019018627B1/pt
Priority to CN201780087602.7A priority patent/CN110366828B/zh
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2017/076676 priority patent/WO2018165873A1/zh
Priority to JP2019549443A priority patent/JP6995874B2/ja
Priority to US16/492,025 priority patent/US11139871B2/en
Priority to RU2019131144A priority patent/RU2736636C1/ru
Priority to MX2019010915A priority patent/MX2019010915A/es
Priority to SG11201908403W priority patent/SG11201908403WA/en
Priority to KR1020197028832A priority patent/KR20190129060A/ko
Priority to AU2017403597A priority patent/AU2017403597A1/en
Priority to TW107105088A priority patent/TWI751282B/zh
Publication of WO2018165873A1 publication Critical patent/WO2018165873A1/zh
Priority to ZA2019/06726A priority patent/ZA201906726B/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0473Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking constraints in layer or codeword to antenna mapping into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0482Adaptive codebooks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • H04B7/061Antenna selection according to transmission parameters using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method for transmitting an uplink signal and related devices.
  • the terminal device can transmit uplink signals using one or more antenna panels.
  • the larger the number of antenna array blocks the larger the total number of antennas, and the larger the required RF channel.
  • a terminal device usually has a certain number of antenna array blocks. If all antenna array blocks are used to transmit uplink signals at the same time, the total number of antennas corresponding to all antenna array blocks may be large, and the terminal device may not have a corresponding number of RF channels to satisfy the terminal device at the same time. All antenna array blocks are used to transmit uplink signals. Therefore, how to select a part of the antenna array block from all the antenna array blocks to transmit the uplink signal is a technical problem to be solved.
  • the embodiment of the invention provides a method for transmitting an uplink signal and a related device, which are used for selecting an antenna array block for transmitting an uplink signal.
  • an embodiment of the present invention provides a method for transmitting an uplink signal, where: the terminal device determines a target codebook according to the number of antenna array blocks of the terminal device; and the terminal device uses a code in the target codebook.
  • the word transmits the upstream signal. It can be seen that the scheme can flexibly select some antenna array blocks from all antenna array blocks to transmit uplink signals.
  • the embodiment of the present invention provides a method for transmitting an uplink signal, including: the terminal device sends uplink signaling to the network device, where the uplink signaling carries the number of antenna array blocks of the terminal device; Receiving indication information of an antenna array block sent by the network device; the terminal device determining, according to the indication information of the antenna array block, a target antenna array block for transmitting an uplink signal from an antenna array block of the terminal device, and The target antenna array block is used to transmit an uplink signal. It can be seen that the scheme can flexibly select some antenna array blocks from all antenna array blocks to transmit uplink signals.
  • an embodiment of the present invention provides a method for transmitting an uplink signal, including:
  • the network device sends precoding indication (PMI) information to the terminal device, where the PMI information is used to instruct the terminal device to transmit an uplink signal by using a codeword in the target codebook.
  • PMI precoding indication
  • an embodiment of the present invention provides a method for transmitting an uplink signal, including:
  • the network device sends the indication information of the antenna array block to the terminal device, where the indication information of the antenna array block is used to instruct the terminal device to determine, from the antenna array block of the terminal device, a target for transmitting an uplink signal.
  • An antenna array block, and the uplink signal is transmitted by using the target antenna array block.
  • an embodiment of the present invention provides a terminal device, including a processor, a memory, a transceiver, and a bus.
  • the processor is connected to the memory and the transceiver through the bus and completes communication with each other;
  • the memory stores executable program instructions for invoking executable program code in the storage to perform a method as described in the first aspect of the embodiments of the present invention.
  • an embodiment of the present invention provides a terminal device, including a processor, a memory, a transceiver, and a bus.
  • the processor is connected to the memory and the transceiver through the bus and completes communication with each other;
  • the memory stores executable program instructions for invoking executable program code in the storage to perform a method as described in the second aspect of the embodiments of the present invention.
  • a seventh aspect of the present invention provides a network device, including a processor, a memory, a transceiver, and a bus.
  • the processor is connected to the memory and the transceiver through the bus and completes communication with each other;
  • the memory stores executable program instructions for invoking executable program code in the storage to perform a method as described in the third aspect of the embodiments of the present invention.
  • an embodiment of the present invention provides a network device, including a processor, a memory, a transceiver, and a bus.
  • the processor is connected to the memory and the transceiver through the bus and completes communication with each other;
  • the memory stores executable program instructions for invoking executable program code in the storage to perform a method as described in the fourth aspect of the embodiments of the present invention.
  • the present invention provides a computer storage medium for storing computer software instructions for a terminal device provided by the fifth aspect of the embodiments of the present invention, including a program designed to execute the first aspect of the embodiments of the present invention .
  • the present invention provides a computer storage medium for storing computer software instructions for a terminal device provided by a sixth aspect of the embodiments of the present invention, including a program designed to execute the second aspect of the embodiments of the present invention. .
  • the present invention provides a computer storage medium for storing computer software instructions for a network device provided by a seventh aspect of the embodiments of the present invention, which is configured to perform the third aspect of the embodiments of the present invention. program.
  • the present invention provides a computer storage medium for storing computer software instructions for a network device provided by an eighth aspect of the embodiments of the present invention, which is configured to perform the fourth aspect of the embodiments of the present invention. program.
  • the embodiment of the present invention provides a communication system, which includes the terminal device according to the fifth aspect of the present invention and the network device according to the seventh aspect of the embodiment of the present invention, or the communication system The terminal device according to the sixth aspect of the present invention and the network device according to the eighth aspect of the embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a network architecture according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for transmitting an uplink signal according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of another method for transmitting an uplink signal according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an antenna number and a corresponding precoding matrix according to an antenna array block according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of an antenna number and a corresponding precoding matrix according to a prior row and a row according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another terminal device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another network device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a computer device according to an embodiment of the present invention.
  • references herein to "embodiments” means specific features, structures, or characteristics described in connection with the embodiments. It can be included in at least one embodiment of the invention. The appearances of the phrases in various places in the specification are not necessarily referring to the same embodiments, and are not exclusive or alternative embodiments that are mutually exclusive. Those skilled in the art will understand and implicitly understand that the embodiments described herein can be combined with other embodiments.
  • FIG. 1 is a schematic diagram of a network architecture disclosed in an embodiment of the present invention.
  • the network architecture shown in FIG. 1 includes a network device 110 and a terminal device 120.
  • the terminal device 120 determines the target codebook according to the number of antenna array blocks of the terminal device 120; and then transmits the uplink signal to the network device 110 by using the codeword in the target codebook. Further, a part of the antenna array block can be flexibly selected from all antenna array blocks of the terminal device 120 to transmit the uplink signal.
  • the terminal device 120 first sends uplink signaling to the network device 110, where the uplink signaling carries the number of antenna array blocks of the terminal device 120, and then the network device 110 sends the antenna array block to the terminal device 120.
  • the terminal device 120 determines the target antenna array block for transmitting the uplink signal from the antenna array block of the terminal device 120 according to the indication information of the antenna array block, and adopts the target antenna array.
  • the block transmits an uplink signal to the network device 110. Further, a part of the antenna array block can be flexibly selected from all antenna array blocks of the terminal device 120 to transmit the uplink signal.
  • the network device 110 refers to a node device on the network side.
  • the network device may be a radio access network (RAN) device on the access network side of the cellular network, and the so-called RAN device is a terminal device.
  • the device that enters the wireless network including but not limited to: an evolved Node B (eNB), a radio network controller (RNC), a Node B (NB), and a base station controller (Base) Station Controller (BSC), Base Transceiver Station (BTS), home base station (for example, Home evolved NodeB, or Home Node B, HNB), BaseBand Unit (BBU); for example, network equipment can also It is a node device in a Wireless Local Area Network (WLAN), such as an access controller (AC), a gateway, or a WIFI access point (AP).
  • WLAN Wireless Local Area Network
  • AC access controller
  • AP WIFI access point
  • the terminal device 120 is also referred to as a User Equipment (UE), and is a device that provides voice and/or data connectivity to a user, for example, a handheld device with a wireless connection function. Equipment, vehicle equipment, etc.
  • UE User Equipment
  • Common terminals include, for example, mobile phones, tablets, notebook computers, PDAs, mobile internet devices (MIDs), wearable devices such as smart watches, smart bracelets, pedometers, and the like.
  • FIG. 2 is a schematic flowchart of a method for transmitting an upload signal according to an embodiment of the present invention, including the following steps:
  • Step S201 The terminal device determines the target codebook according to the number of antenna array blocks of the terminal device.
  • the method before the step S201, the method further includes:
  • Step S203 The terminal device sends uplink signaling to the network device, where the uplink signaling carries the number of antenna array blocks of the terminal device.
  • Step S204 The network device receives the uplink signaling; the network device determines the target codebook according to the number of antenna array blocks of the terminal device.
  • the foregoing signaling is uplink high-level signaling, such as Radio Resource Control (RRC) signaling, and the like.
  • RRC Radio Resource Control
  • the number of antenna array blocks of the terminal device indicates the number of all antenna array blocks of the current terminal device.
  • the number of antenna array blocks of the terminal device is W, and the W is an integer greater than 1.
  • the method further includes:
  • Step S205 The terminal device transmits a Sounding Reference Signal (SRS) through the W antenna array blocks.
  • SRS Sounding Reference Signal
  • Step S206 The network device receives the SRS that the terminal device transmits through the W antenna array blocks respectively; and the network device determines precoding indication (PMI) information according to the SRS.
  • PMI precoding indication
  • Step S207 The network device sends the PMI information to the terminal device, where the PMI information is used to indicate that the terminal device transmits an uplink signal by using a codeword in the target codebook; The PMI information sent by the network device.
  • the SRS is used as a reference signal for uplink channel sounding. Since the terminal device transmits the SRS through the W antenna array blocks respectively, the network device receives W SRSs. Internet equipment The transmission performance of the W antenna array blocks can be known through the W SRSs, and then the network device determines an indication information according to the transmission performance of the W antenna array blocks. The content of the indication information is used to indicate which codewords in the target codebook are used by the terminal device to transmit the uplink signal, where each codeword in the target codebook corresponds to at least one antenna array block.
  • the foregoing step S205 is that the terminal device transmits the SRS through the W antenna array blocks, respectively, that the terminal device transmits the SRS through the W antenna array blocks at different times.
  • the terminal device transmitting the SRS through the W antenna array blocks at different times may be that the terminal device transmits the SRS through the W antenna array blocks in turn.
  • the terminal device first transmits the SRS through the first antenna array block, then transmits the SRS through the second antenna array block, and then transmits the SRS through the third antenna array block, and so on.
  • a difference between a time when the SRS is transmitted by the first antenna block and a time when the SRS is transmitted through the second antenna array block is equal to a preset time threshold, a time when the SRS is transmitted through the second antenna block, and a time when the SRS is transmitted through the third antenna array block
  • the phase difference is also equal to the preset time threshold.
  • the terminal device transmits the SRS using the first antenna array block for the first time, the second transmission SRS uses the second antenna array block, and so on.
  • the terminal device transmits the SRS through the W antenna array blocks in the foregoing step S205.
  • the terminal device transmits the SRS through the W antenna array blocks at the same time.
  • the terminal device and the network device pre-arrange M codebooks, each codebook corresponding to the number of at least one antenna array block, and the network device or the terminal device according to the terminal device
  • the number of antenna array blocks determines the target codebook.
  • the terminal device or the network device determines the number of antenna array blocks of the terminal device according to the mapping relationship between the codebook and the number of antenna array blocks. The corresponding target codebook.
  • the number of antenna array blocks of the terminal device may be 1, 2, 4, a corresponding codebook may be agreed for each of the 1, 2, and 4 antenna array blocks.
  • 1 corresponds to the codebook 1
  • 2 corresponds to the codebook 2
  • 4 corresponds to the codebook 3.
  • the target codebook is the codebook 3.
  • the terminal device or the network device and the network device pre-approve a preset codebook, and the terminal device determines the specific implementation of the target codebook according to the number of antenna array blocks of the terminal device.
  • the method is: the terminal device network device is configured according to the antenna array block of the terminal device The number of the target codebook is determined from the preset codebook.
  • the target codebook when the number of antenna array blocks of the terminal device is greater than 1, the target codebook includes an antenna array block selection codeword, and the antenna array block selection codeword is used for selecting an uplink signal for transmission. Target antenna array block.
  • the antenna array block selection codeword is a Kronecker product of an antenna array block selection vector and a precoding matrix within the antenna array block.
  • Y 1 is an antenna array block selection vector, and Y 1 is a vector of Wx1 dimensions (multiple rows, 1 column).
  • Wk elements with a value of 0.
  • W is an integer greater than 1
  • W is the number of antenna array blocks reported by the terminal device
  • k is the number of target antenna array blocks (k is set by the network device)
  • k elements corresponding to 1 are corresponding. Selected k antenna array blocks.
  • Y 2 is an Nxr-dimensional vector, where N is the number of antennas of one antenna array block or the number of radio frequency units of one antenna array block, and r is the current transmission layer of the terminal device number.
  • N is the number of antennas of one antenna array block or the number of radio frequency units of one antenna array block
  • r is the current transmission layer of the terminal device number.
  • the antenna array block selection codeword is a vector matrix composed of a precoding matrix corresponding to W antenna array blocks as a row vector, and the W is an integer greater than 1.
  • the antenna array block selects a codeword as a vector matrix, where W is the number of antenna array blocks reported by the terminal device.
  • W is the number of antenna array blocks reported by the terminal device.
  • Y i is a precoding matrix corresponding to the i-th antenna array block
  • i is an arbitrary number from 1 to W
  • k of the Y 1 to Y W matrices are non-zero matrices
  • other matrices are all-zero matrices
  • k The number of target antenna array blocks (k is set by the network device).
  • k non-zero matrices correspond to selected k antenna array blocks.
  • the antenna array block selection codeword is a vector matrix composed of L precoding vectors as column vectors, and the L is an integer greater than 1; wherein the ith column in the vector matrix
  • the vector is a Kronecker product of the antenna array block selection vector and the precoding vector used for the antenna array block transmitting the data of the i-th transmission layer, the i being any number from 1 to L, wherein the L is The total number of current transport layers of the terminal device, or the maximum number of transport layers allowed by the terminal device.
  • the i-th column vector Y i y 1 * y 2 in the vector matrix, where * is the Kronecker product.
  • y 1 is the antenna array block selection vector, which is a vector of Wx1 dimension.
  • the value of w elements in y 1 is 1, and the value of other elements is 0.
  • W is the number of antenna array blocks reported by the terminal device
  • w is the number of antenna array blocks transmitting data of the i-th transmission layer
  • w elements of value 1 correspond to selected w antenna array blocks .
  • the value of w is 1, indicating that each data stream is transmitted on only one antenna array block.
  • y 2 is a precoding matrix used for the antenna array block for transmitting data of the i-th transmission layer, which is an Nx1-dimensional vector, where N is the number of antennas of one antenna array block or the number of radio frequency units of one antenna array block.
  • data of different transport layers can be transmitted on different antenna array blocks.
  • the antenna or radio frequency unit number sequence of the terminal device is in the order of numbering the antenna array block by antenna.
  • the terminal device has two antenna array blocks, and each antenna array block has 4 antennas, and the antenna number of the first antenna array block is 1, 2, 3, 4, and the second is 5, 6, 7, 8 .
  • the antenna array block selection codeword is X in the above method.
  • the transformed matrix ie, the partial row swap position for X). Specifically, as shown in Figures 3 and 4.
  • Step S202 The terminal device transmits an uplink signal to the network device by using the codeword in the target codebook.
  • the terminal device uses the codeword in the target codebook to transmit an uplink signal to the network device, where the terminal device determines that the target codebook is determined according to the PMI information.
  • the target codeword the terminal device pre-codes the uplink signal according to the target codeword, and transmits the pre-coded uplink signal.
  • the number of the target antenna array blocks may be one or more, which is not limited in the present invention.
  • the terminal device first determines the target codebook according to the number of antenna array blocks of the terminal device; and then uses the codeword in the target codebook to transmit the uplink signal. It can be seen that the scheme can flexibly select some antenna array blocks from all antenna array blocks to transmit uplink signals.
  • FIG. 5 is a schematic flowchart of a method for transmitting an upload signal according to an embodiment of the present invention, including the following steps:
  • Step S501 The terminal device sends uplink signaling to the network device, where the uplink signaling carries the number of antenna array blocks of the terminal device.
  • the foregoing signaling is uplink high-level signaling, such as Radio Resource Control (RRC) signaling, and the like.
  • RRC Radio Resource Control
  • the number of antenna array blocks of the terminal device indicates the number of all antenna array blocks of the current terminal device.
  • Step S502 The network device receives the uplink signaling sent by the terminal device, and the network device sends the indication information of the antenna array block to the terminal device.
  • the number of bits of the indication information may be determined according to the maximum possible number of antenna array blocks of the terminal, or may be determined according to the number of antenna array blocks reported by the terminal. For example, if the maximum possible number of antenna array blocks of the terminal is H, the indication information of log 2 H (up to the whole) bits may be used. Alternatively, if the number of antenna array blocks reported by the terminal is W, the indication information of log 2 W (up and down) bits may be used. In another embodiment, if the number of antenna array blocks reported by the terminal is W, the W bit indication information may be used, and the target antenna array block is indicated by using a bitmap. Each bit of the W bits corresponds to one antenna array block, and a bit value of 1 indicates that the corresponding antenna array block is selected, and a value of 0 indicates that it is not selected.
  • the network device sends the indication information of the antenna array block to the terminal device, where the network device sends the high layer signaling to the terminal device or the downlink for scheduling the uplink signal transmission.
  • Control information Downlink Control Information, DCI
  • the high layer signaling or the DCI carries indication information of the antenna array block.
  • the number of the antenna array blocks of the terminal device is W, and the W is an integer greater than 1.
  • the method further include:
  • Step S505 The terminal device transmits channel detection parameters through the W antenna array blocks respectively. Test signal (SRS).
  • SRS Test signal
  • Step S506 The network device receives the SRS that is transmitted by the terminal device by using the W antenna array blocks respectively, and the network device determines the indication information of the antenna array block according to the SRS.
  • the SRS is used as a reference signal for uplink channel sounding. Since the terminal device transmits the SRS through the W antenna array blocks respectively, the network device receives W SRSs. The network device can learn the transmission performance of the W antenna array blocks through the W SRSs, and then the network device determines an indication information according to the transmission performance of the W antenna array blocks. The content of the indication information is used to indicate which antenna array blocks with better performance are used by the terminal device to transmit the uplink signal, thereby improving the transmission efficiency of the uplink signal.
  • the terminal device transmits the SRS through the W antenna array blocks, respectively, including: the terminal device transmits the SRS through the W antenna array blocks at different times.
  • the terminal device transmitting the SRS through the W antenna array blocks at different times may be that the terminal device transmits the SRS through the W antenna array blocks in turn.
  • the terminal device first transmits the SRS through the first antenna array block, then transmits the SRS through the second antenna array block, and then transmits the SRS through the third antenna array block, and so on.
  • a difference between a time when the SRS is transmitted by the first antenna block and a time when the SRS is transmitted through the second antenna array block is equal to a preset time threshold, a time when the SRS is transmitted through the second antenna block, and a time when the SRS is transmitted through the third antenna array block
  • the phase difference is also equal to the preset time threshold.
  • the terminal device transmits the SRS using the first antenna array block for the first time, the second transmission SRS uses the second antenna array block, and so on.
  • the terminal device transmits the SRS through the W antenna array blocks, respectively, including: the terminal device transmits the SRS through the W antenna array blocks at the same time.
  • Step S503 The terminal device receives indication information of the antenna array block that is sent by the network device, and the terminal device determines, according to the indication information of the antenna array block, an antenna array block of the terminal device for transmission.
  • the target antenna array block of the uplink signal The target antenna array block of the uplink signal.
  • Step S504 The terminal device uses the target antenna array block to transmit an uplink signal to the network device.
  • the terminal device can select a target antenna array block for transmitting an uplink signal from the antenna array block of the terminal device based on the indication information sent by the network device, thereby being flexible.
  • a partial antenna array block is selected from all antenna array blocks of the terminal device to transmit an uplink signal.
  • the embodiment of the present invention further provides a terminal device 600, as shown in FIG. 6, comprising:
  • the processing module 601 is configured to determine a target codebook according to the number of antenna array blocks of the terminal device, and use the codeword in the target codebook to transmit an uplink signal.
  • the terminal device further includes:
  • the sending module 602 is configured to send uplink signaling to the network device, where the uplink signaling carries the number of antenna array blocks of the terminal device, and the number of antenna array blocks of the terminal device is used by the network device to determine the Target codebook.
  • the terminal device and the network device pre-arrange M codebooks, each codebook corresponding to the number of at least one antenna array block, and the processing module 601 is specifically configured to:
  • the target codebook corresponding to the number of antenna array blocks of the terminal device is determined according to a mapping relationship between the codebook and the number of antenna array blocks.
  • the terminal device and the network device pre-approve a preset codebook, and the processing module 601 is specifically configured to:
  • the target codebook when the number of antenna array blocks of the terminal device is greater than 1, the target codebook includes an antenna array block selection codeword, and the antenna array block selection codeword is used for selecting an uplink signal for transmission. Target antenna array block.
  • the antenna array block selection codeword is a Kronecker product of an antenna array block selection vector and a precoding matrix within the antenna array block.
  • the antenna array block selection codeword is a vector matrix composed of a precoding matrix corresponding to W antenna array blocks as a row vector, and the W is an integer greater than 1.
  • the antenna array block selection codeword is a vector matrix composed of L precoding vectors as column vectors, and the L is an integer greater than 1; wherein the ith column in the vector matrix
  • the vector is the Kronecker product of the antenna array block selection vector and the precoding vector used for the antenna array block transmitting the data of the i-th transmission layer, and the i is any number from 1 to L.
  • the terminal device further includes:
  • the receiving module 603 is configured to receive precoding indication (PMI) information sent by the network device;
  • PMI precoding indication
  • the processing module is specifically configured to: determine, according to the PMI information, a target codeword in the target codebook; perform precoding on the uplink signal according to the target codeword, and transmit the precoded uplink signal.
  • the number of antenna array blocks of the terminal device is W, and the W is an integer greater than 1.
  • the sending module 602 is further configured to transmit a channel sounding reference signal (SRS) through the W antenna array blocks, where the SRS is used by the network device to determine the PMI information.
  • SRS channel sounding reference signal
  • the sending module 602 is specifically configured to:
  • the SRSs are transmitted through the W antenna array blocks at different times.
  • each of the above modules (the processing module 601, the sending module 602, and the receiving module 603) is used to perform the related steps of the above method.
  • the terminal device 600 is presented in the form of a module.
  • a “module” herein may refer to an application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that provide the above functionality.
  • ASIC application-specific integrated circuit
  • the above processing module 601 can be implemented by the processor 1001 of the computer device shown in FIG. 10, and the transmitting module 602 and the receiving module 603 can be implemented by the transceiver 1003 of the computer device shown in FIG.
  • the embodiment of the present invention further provides a terminal device 700, as shown in FIG. 7, comprising:
  • the sending module 701 is configured to send uplink signaling to the network device, where the uplink signaling carries the number of antenna array blocks of the terminal device;
  • the receiving module 702 is configured to receive indication information of an antenna array block that is sent by the network device.
  • the processing module 703 is configured to determine, according to the indication information of the antenna array block, a target antenna array block for transmitting an uplink signal from an antenna array block of the terminal device, and transmit an uplink signal by using the target antenna array block.
  • the receiving module 702 is specifically configured to:
  • the number of antenna array blocks of the terminal device is W, and the W is greater than An integer of 1,
  • the sending module 701 is further configured to transmit a channel sounding reference signal (SRS) through the W antenna array blocks, where the SRS is used by the network device to determine indication information of the antenna array block.
  • SRS channel sounding reference signal
  • the sending module 701 is specifically configured to: transmit the SRS through the W antenna array blocks at different times.
  • each of the above modules (the transmitting module 701, the receiving module 702, and the processing module 703) is used to perform the related steps of the foregoing method.
  • the terminal device 700 is presented in the form of a module.
  • a “module” herein may refer to an application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that provide the above functionality.
  • ASIC application-specific integrated circuit
  • the above processing module 703 can be implemented by the processor 1001 of the computer device shown in FIG. 10, and the transmitting module 701 and the receiving module 702 can be implemented by the transceiver 1003 of the computer device shown in FIG.
  • the embodiment of the invention further provides a network device 800, as shown in FIG. 8, comprising:
  • the receiving module 801 is configured to receive uplink signaling sent by the terminal device, where the uplink signaling carries the number of antenna array blocks of the terminal device;
  • the processing module 802 is configured to determine a target codebook according to the number of antenna array blocks of the terminal device;
  • the sending module 803 is configured to send precoding indication (PMI) information to the terminal device, where the PMI information is used to instruct the terminal device to transmit an uplink signal by using a codeword in the target codebook.
  • PMI precoding indication
  • the terminal device and the network device pre-arrange M codebooks, each codebook corresponding to the number of at least one antenna array block, and the processing module 802 is specifically configured to:
  • the target codebook corresponding to the number of antenna array blocks of the terminal device is determined according to a mapping relationship between the codebook and the number of antenna array blocks.
  • the terminal device and the network device pre-provision a preset codebook, and the processing module 802 is specifically configured to:
  • the target codebook when the number of antenna array blocks of the terminal device is greater than 1, the target codebook includes an antenna array block selection codeword, and the antenna array block selection codeword is used for selecting an uplink signal for transmission. Target antenna array block.
  • the antenna array block selection codeword is a Kronecker product of an antenna array block selection vector and a precoding matrix within the antenna array block.
  • the antenna array block selection codeword is a vector matrix composed of a precoding matrix corresponding to W antenna array blocks as a row vector, and the W is an integer greater than 1.
  • the antenna array block selection codeword is a vector matrix composed of L precoding vectors as column vectors, and the L is an integer greater than 1; wherein the ith column in the vector matrix
  • the vector is the Kronecker product of the antenna array block selection vector and the precoding vector used for the antenna array block transmitting the data of the i-th transmission layer, and the i is any number from 1 to L.
  • the number of antenna array blocks of the terminal device is W, and the W is an integer greater than 1.
  • the receiving module 801 is further configured to receive a channel sounding reference signal (SRS) that is transmitted by the terminal device by using the W antenna array blocks respectively;
  • SRS channel sounding reference signal
  • the processing module 802 is further configured to determine the PMI information according to the SRS.
  • each of the above modules (the receiving module 801, the processing module 802, and the transmitting module 803) is used to perform the related steps of the above method.
  • user device 800 is presented in the form of a module.
  • a “module” herein may refer to an application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that provide the above functionality.
  • ASIC application-specific integrated circuit
  • the above processing module 802 can be implemented by the processor 1001 of the computer device shown in FIG. 10, and the receiving module 801 and the transmitting module 803 can be implemented by the transceiver 1003 of the computer device shown in FIG.
  • the embodiment of the present invention further provides a network device 900, as shown in FIG. 9, comprising:
  • the receiving module 901 is configured to receive uplink signaling sent by the terminal device, where the uplink signaling carries the number of antenna array blocks of the terminal device;
  • the sending module 902 is configured to send, to the terminal device, indication information of an antenna array block, where The indication information of the line array block is used to instruct the terminal device to determine a target antenna array block for transmitting an uplink signal from an antenna array block of the terminal device, and transmit an uplink signal by using the target antenna array block.
  • the sending module 902 is specifically configured to:
  • DCI downlink control information
  • the number of antenna array blocks of the terminal device is W, and the W is an integer greater than 1.
  • the receiving module 901 is further configured to receive a channel sounding reference signal (SRS) that is transmitted by the terminal device by using the W antenna array blocks respectively;
  • SRS channel sounding reference signal
  • the terminal device further includes:
  • the processing module 903 is configured to determine indication information of the antenna array block according to the SRS.
  • each of the above modules (the receiving module 901, the processing module 903, and the transmitting module 902) is used to perform the related steps of the above method.
  • network device 900 is presented in the form of a module.
  • a “module” herein may refer to an application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that provide the above functionality.
  • ASIC application-specific integrated circuit
  • the above processing module 903 can be implemented by the processor 1001 of the computer device shown in FIG. 10, and the receiving module 901 and the transmitting module 902 can be implemented by the transceiver 1003 of the computer device shown in FIG.
  • the terminal device 600, the terminal device 700, the network device 800, and the network device 900 may be implemented in the structure of FIG. 10, the computer device 1000 including at least one processor 1001, at least one memory 1002, and at least one transceiver. 1003.
  • the processor 1001 is connected to the memory 1002 and the transceiver 1003 via the communication bus and completes communication with each other.
  • the processor 1001 may be a general purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the above program.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the transceiver 1003 is configured to communicate with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), Wireless Local Area Networks (WLAN), etc., to communicate with other devices or communication networks.
  • devices or communication networks such as Ethernet, Radio Access Network (RAN), Wireless Local Area Networks (WLAN), etc.
  • the memory 1002 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an Electrically Erasable Programmable Read-Only Memory (EEPROM), a Compact Disc Read-Only Memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • the memory can exist independently and be connected to the processor via a bus.
  • the memory can also be integrated with the processor.
  • the memory 1002 is configured to store application code that executes the above solution, and is controlled by the processor 1001 for execution.
  • the processor 1001 is configured to execute application code stored in the memory 1002.
  • the code stored in the memory 1002 may perform the transmission method of the uplink signal performed by the terminal device 600 provided above, for example, the terminal device determines the target according to the number of antenna array blocks of the terminal device. a codebook; the terminal device transmits an uplink signal by using a codeword in the target codebook.
  • the code stored in the memory 1002 may perform the transmission method of the uplink signal performed by the terminal device 700 provided above, for example, the terminal device sends uplink signaling to the network device, where the uplink signaling is performed.
  • the number of the antenna array blocks carrying the terminal device; the terminal device receiving the indication information of the antenna array block sent by the network device; the terminal device receiving an antenna from the terminal device according to the indication information of the antenna array block A target antenna array block for transmitting an uplink signal is determined in the array block, and an uplink signal is transmitted by using the target antenna array block.
  • the code stored in the memory 1002 may perform the transmission method of the uplink signal performed by the network device 800 provided above, for example, the network device receives the uplink signaling sent by the terminal device, and the uplink signal Let the number of antenna array blocks carrying the terminal device
  • the network device determines a target codebook according to the number of antenna array blocks of the terminal device; the network device sends precoding indication (PMI) information to the terminal device, where the PMI information is used to indicate the terminal
  • the device transmits the uplink signal by using the codeword in the target codebook.
  • PMI precoding indication
  • the code stored in the memory 1002 may perform the transmission method of the uplink signal performed by the network device 900 provided above, for example, the network device receives the uplink signaling sent by the terminal device, and the uplink signal The number of the antenna array blocks that carry the terminal device; the network device sends the indication information of the antenna array block to the terminal device, where the indication information of the antenna array block is used to indicate that the terminal device is from the terminal device A target antenna array block for transmitting an uplink signal is determined in the antenna array block, and an uplink signal is transmitted by using the target antenna array block.
  • the embodiment of the present invention further provides a computer storage medium, wherein the computer storage medium can store a program, and the program includes some or all of the steps of the transmission method of any one of the uplink signals described in the foregoing method embodiments.
  • the disclosed apparatus may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated as The components displayed by the unit may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable memory. Based on such understanding, the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a memory. A number of instructions are included to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing memory includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like, which can store program codes.
  • ROM Read-Only Memory
  • RAM Random Access Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明公开了一种上行信号的传输方法,包括:终端设备根据所述终端设备的天线阵列块的数量确定目标码本;所述终端设备采用所述目标码本中的码字传输上行信号。本发明实施例还提供相关设备,采用本发明实施例可灵活的从全部天线阵列块中选取部分天线阵列块来传输上行信号。

Description

一种上行信号的传输方法及相关设备 技术领域
本发明涉及通信技术领域,尤其涉及一种上行信号的传输方法及相关设备。
背景技术
在第五代移动通信技术(5-Generation,5G)系统中,终端设备可以采用一个或多个天线阵列块(antenna panel)来传输上行信号。天线阵列块的数量越多对应的总天线数量就越大,需要的射频通道就越大。终端设备通常有一定数量的天线阵列块,如果同时采用全部天线阵列块来传输上行信号,全部天线阵列块对应的总天线数量可能较大,终端设备可能没有对应数量的射频通道来满足终端设备同时采用全部天线阵列块来传输上行信号。因此,如何从全部天线阵列块中选取部分天线阵列块来传输上行信号是需要解决的技术问题。
发明内容
本发明实施例提供一种上行信号的传输方法及相关设备,用于选取用来传输上行信号的天线阵列块。
第一方面,本发明实施例提供一种上行信号的传输方法,包括:终端设备根据所述终端设备的天线阵列块的数量确定目标码本;所述终端设备采用所述目标码本中的码字传输上行信号。可见,本方案可灵活的从全部天线阵列块中选取部分天线阵列块来传输上行信号。
第二方面,本发明实施例提供一种上行信号的传输方法,包括:终端设备向网络设备发送上行信令,所述上行信令携带所述终端设备的天线阵列块的数量;所述终端设备接收所述网络设备发送的天线阵列块的指示信息;所述终端设备根据所述天线阵列块的指示信息从所述终端设备的天线阵列块中确定用于传输上行信号的目标天线阵列块,以及采用所述目标天线阵列块传输上行信号。可见,本方案可灵活的从全部天线阵列块中选取部分天线阵列块来传输上行信号。
第三方面,本发明实施例提供一种上行信号的传输方法,包括:
网络设备接收终端设备发送的上行信令,所述上行信令携带所述终端设备的天线阵列块的数量;
所述网络设备根据所述终端设备的天线阵列块的数量确定目标码本;
所述网络设备向所述终端设备发送预编码指示(PMI)信息,所述PMI信息用于指示所述终端设备采用所述目标码本中的码字传输上行信号。
第四方面,本发明实施例提供一种上行信号的传输方法,包括:
网络设备接收终端设备发送的上行信令,所述上行信令携带所述终端设备的天线阵列块的数量;
所述网络设备向所述终端设备发送天线阵列块的指示信息,所述天线阵列块的指示信息用于指示所述终端设备从所述终端设备的天线阵列块中确定用于传输上行信号的目标天线阵列块,以及采用所述目标天线阵列块传输上行信号。
第五方面,本发明实施例提供一种终端设备,包括处理器、存储器、收发器和总线;
所述处理器通过所述总线与所述存储器和所述收发器连接以及完成相互间的通信;
所述存储器存储可执行程序指令,所述处理器用于调用所述存储中的可执行程序代码,执行如本发明实施例第一方面所描述的方法。
第六方面,本发明实施例提供一种终端设备,包括处理器、存储器、收发器和总线;
所述处理器通过所述总线与所述存储器和所述收发器连接以及完成相互间的通信;
所述存储器存储可执行程序指令,所述处理器用于调用所述存储中的可执行程序代码,执行如本发明实施例第二方面所描述的方法。
第七方面,本发明实施例提供一种网络设备,包括处理器、存储器、收发器和总线;
所述处理器通过所述总线与所述存储器和所述收发器连接以及完成相互间的通信;
所述存储器存储可执行程序指令,所述处理器用于调用所述存储中的可执行程序代码,执行如本发明实施例第三方面所描述的方法。
第八方面,本发明实施例提供一种网络设备,包括处理器、存储器、收发器和总线;
所述处理器通过所述总线与所述存储器和所述收发器连接以及完成相互间的通信;
所述存储器存储可执行程序指令,所述处理器用于调用所述存储中的可执行程序代码,执行如本发明实施例第四方面所描述的方法。
第九方面,本发明提供一种计算机存储介质,用于储存为本发明实施例第五方面提供的终端设备所用的计算机软件指令,其包含用于执行本发明实施例第一方面所设计的程序。
第十方面,本发明提供一种计算机存储介质,用于储存为本发明实施例第六方面提供的终端设备所用的计算机软件指令,其包含用于执行本发明实施例第二方面所设计的程序。
第十一方面,本发明提供一种计算机存储介质,用于储存为本发明实施例第七方面提供的网络设备所用的计算机软件指令,其包含用于执行本发明实施例第三方面所设计的程序。
第十二方面,本发明提供一种计算机存储介质,用于储存为本发明实施例第八方面提供的网络设备所用的计算机软件指令,其包含用于执行本发明实施例第四方面所设计的程序。
第十三方面,本发明实施例提供一种通信系统,该通信系统包括本发明实施例第五方面所述的终端设备和本发明实施例第七方面所述的网络设备,或者,该通信系统包括本发明实施例第六方面所述的终端设备和本发明实施例第八方面所述的网络设备。
本发明的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种网络构架的示意图;
图2是本发明实施例提供的一种上行信号的传输方法的流程示意图;
图3是本发明实施例提供的另一种上行信号的传输方法的流程示意图;
图4是本发明实施例提供的一种按照天线阵列块进行天线编号及对应预编码矩阵的示意图;
图5是本发明实施例提供的一种按照先列后行进行天线编号及对应预编码矩阵的示意图;
图6是本发明实施例提供的一种终端设备的结构示意图;
图7是本发明实施例提供的另一种终端设备的结构示意图;
图8是本发明实施例提供的一种网络设备的结构示意图;
图9是本发明实施例提供的另一种网络设备的结构示意图;
图10是本发明实施例提供的一种计算机设备的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
以下分别进行详细说明。
本发明的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性 可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
下面结合附图对本申请的实施例进行描述。
请参阅图1,图1是本发明实施例公开的一种网络构架的示意图。图1所示的网络构架包括网络设备110和终端设备120。其中,终端设备120线根据终端设备120的天线阵列块的数量确定目标码本;然后采用所述目标码本中的码字向网络设备110传输上行信号。进而可灵活的从终端设备120的全部天线阵列块中选取部分天线阵列块来传输上行信号。
或者,在另一实施例中,终端设备120先向网络设备110发送上行信令,该上行信令携带终端设备120的天线阵列块的数量,然后网络设备110向终端设备120发送天线阵列块的指示信息;终端设备120在接收到天线阵列块的指示信息后,根据天线阵列块的指示信息从终端设备120的天线阵列块中确定用于传输上行信号的目标天线阵列块,以及采用目标天线阵列块向网络设备110传输上行信号。进而可灵活的从终端设备120的全部天线阵列块中选取部分天线阵列块来传输上行信号。
其中,网络设备110是指网络侧的节点设备,例如,网络设备可以是蜂窝网络中接入网侧的无线接入网(Radio Access Network,RAN)设备,所谓RAN设备即是一种将终端接入到无线网络的设备,包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU);再如,网络设备也可以是无线局域网(Wireless Local Area Network,WLAN)中的节点设备,例如接入控制器(access controller,AC),网关,或WIFI接入点(Access Point,AP)等。
其中,终端设备120又称为用户设备(User Equipment,UE),是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设 备、车载设备等。常见的终端例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等。
下面结合图1所示的网络构架对本发明实施例提供的上行信号的传输方法进行详细说明。
请参见图2,图2为本发明实施例提供的一种上传信号的传输方法的流程示意图,包括以下步骤:
步骤S201:终端设备根据所述终端设备的天线阵列块的数量确定目标码本。
在一实施例中,在以上步骤S201之前,所述方法还包括:
步骤S203:所述终端设备向所述网络设备发送上行信令,所述上行信令携带所述终端设备的天线阵列块的数量。
步骤S204:所述网络设备接收所述上行信令;所述网络设备根据所述终端设备的天线阵列块的数量确定所述目标码本。
其中,上述信令为上行高层信令,比如无线资源控制协议(Radio Resource Control,RRC)信令,等。所述终端设备的天线阵列块的数量表示当前终端设备的所有天线阵列块的数量。
在一实施例中,所述终端设备的天线阵列块的数量为W,所述W为大于1的整数,所述方法还包括:
步骤S205:所述终端设备分别通过所述W个天线阵列块传输信道探测参考信号(Sounding Reference Signal,SRS)。
步骤S206:所述网络设备接收所述终端设备分别通过所述W个天线阵列块传输的所述SRS;所述网络设备根据所述SRS确定预编码指示(PMI)信息。
步骤S207:所述网络设备向所述终端设备发送所述PMI信息,所述PMI信息用于指示所述终端设备采用所述目标码本中的码字传输上行信号;所述终端设备接收所述网络设备发送的所述PMI信息。
具体地,SRS是用来作上行信道探测的参考信号,由于终端设备是分别通过W个天线阵列块传输SRS的,网络设备接收到的是W个SRS。网络设备 可通过这W个SRS得知这W个天线阵列块的传输性能,然后网络设备再根据这W个天线阵列块的传输性能确定一个指示信息。这个指示信息的内容用于指示终端设备采用目标码本中的哪些码字传输上行信号,其中,目标码本中的每个码字对应至少一个天线阵列块。
在一实施例中,以上步骤S205所述终端设备分别通过所述W个天线阵列块传输SRS的具体实施方式有:所述终端设备在不同时刻分别通过所述W个天线阵列块传输SRS。
具体地,终端设备在不同时刻分别通过W个天线阵列块传输SRS可以是终端设备轮流通过所述W个天线阵列块传输SRS。比如,终端设备先通过第一天线阵列块传输SRS,再通过第二天线阵列块传输SRS,再通过第三天线阵列块传输SRS,以此类推。进一步地,通过第一天线块传输SRS的时刻与通过第二天线阵列块传输SRS的时刻相差等于预设时间阈值,通过第二天线块传输SRS的时刻与通过第三天线阵列块传输SRS的时刻相差也等于预设时间阈值。或者,终端设备第一次发送SRS采用第一天线阵列块,第二次发送SRS采用第二天线阵列块,以此类推。
在一实施例中,以上步骤S205所述终端设备分别通过所述W个天线阵列块传输SRS的具体实施方式有:所述终端设备在相同时刻分别通过所述W个天线阵列块传输SRS。
在一实施例中,所述终端设备与所述网络设备预先约定M个码本,每个码本对应至少一个天线阵列块的数量,所述网络设备或所述终端设备根据所述终端设备的天线阵列块的数量确定所述目标码本的具体实施方式有:所述终端设备或所述网络设备根据码本与天线阵列块的数量的映射关系,确定所述终端设备的天线阵列块的数量对应的目标码本。
举例来说,终端设备的天线阵列块的数量可能取值为1,2,4,则可以针对1,2,4个天线阵列块分别约定一个对应码本。1对应码本1,2对应码本2,4对应码本3,如果天线阵列块的数量为4,那么目标码本为码本3。
在一实施例中,所述终端设备或所述网络设备与所述网络设备预先约定一个预设码本,所述终端设备根据所述终端设备的天线阵列块的数量确定目标码本的具体实施方式有:所述终端设备网络设备根据所述终端设备的天线阵列块 的数量从所述预设码本中确定目标码本。
具体地,所述预设码本为一个对应最大天线阵列块数量的码本。例如,假如天线阵列块的数量为W,一个天线阵列块的天线数目或一个天线阵列块的射频单元数目为N,则从预设码本中获取K=W*N行,或K=W*N列作为目标码本。
在一实施例中,当所述终端设备的天线阵列块的数量大于1时,所述目标码本中包含天线阵列块选择码字,所述天线阵列块选择码字用于选择传输上行信号所用的目标天线阵列块。
在一实施例中,所述天线阵列块选择码字是天线阵列块选择向量和天线阵列块内的预编码矩阵的克罗内克积。
具体地,所述天线阵列块选择码字为X=Y1*Y2,其中*为克罗内克积。Y1为天线阵列块选择向量,Y1是一个Wx1维(多行,1列)的向量。在Y1中有k个元素的取值为1,W-k个元素的取值为0。其中,W为大于1的整数,W为所述终端设备上报的天线阵列块的数量,k为目标天线阵列块的数量(k是网络设备设定的),取值为1的k个元素对应被选择的k个天线阵列块。Y2天线阵列块内的预编码矩阵,Y2是一个Nxr维的向量,其中,N为一个天线阵列块的天线数目或一个天线阵列块的射频单元数目,r为终端设备的当前的传输层数。在这种方法中,一个天线阵列块会传输所有传输层的数据,且在不同目标天线阵列块中采用相同的预编码矩阵。
在一实施例中,所述天线阵列块选择码字是由W个天线阵列块对应的预编码矩阵作为行向量组成的向量矩阵,所述W为大于1的整数。
具体地,天线阵列块选择码字为
Figure PCTCN2017076676-appb-000001
的向量矩阵,其中,W为所述终端设备上报的天线阵列块的数量。其中,Yi是第i个天线阵列块对应的预编码矩阵,i为1到W中的任意数,且Y1~YW中有k个矩阵是非0矩阵,其他矩阵是全0矩阵,k为目标天线阵列块的数量(k是网络设备设定的)。其中,k个非0的矩阵对应被选择的k个天线阵列块。
在一实施例中,所述天线阵列块选择码字是由L个预编码向量作为列向量组成的向量矩阵,所述L为大于1的整数;其中,所述向量矩阵中的第i个列向量是天线阵列块选择向量和传输第i个传输层的数据的天线阵列块所用的预编码向量的克罗内克积,所述i为1到L中的任意数,其中,所述L为所述终端设备当前传输层的总数目,或者所述终端设备最大允许传输层的数目。
具体地,向量矩阵中的第i个列向量Yi=y1*y2,其中*为克罗内克积。y1为天线阵列块选择向量,是一个Wx1维的向量,y1中w个元素的取值为1,其他元素的取值为0。其中,W为所述终端设备上报的天线阵列块的数量,w为传输第i个传输层的数据的天线阵列块的数量,取值为1的w个元素对应被选择的w个天线阵列块。例如,w的取值为1,表示每个数据流只在一个天线阵列块上传输。y2为传输第i个传输层的数据的天线阵列块所用的预编码矩阵,是一个Nx1维的向量,其中N为一个天线阵列块的天线数目或一个天线阵列块的射频单元数目。在这种方法中,不同的传输层的数据可以在不同的天线阵列块上传输。
需要说明的是,在以上方法中,假设终端设备的天线或者射频单元编号顺序为按照逐个天线阵列块编号的方式。例如终端设备有两个天线阵列块,每个天线阵列块有4个天线,则第一个天线阵列块的天线编号为1,2,3,4,第二个为5,6,7,8。如果终端设备采用不同的编号方式,例如按照先水平方向后垂直方向编号的方式,或者按照先垂直方向后水平方向编号的方式,则所述天线阵列块选择码字为上述方法中的X进行行变换后的矩阵(即对X的部分行交换位置)。具体如图3和图4所示。
步骤S202:所述终端设备采用所述目标码本中的码字向网络设备传输上行信号。
在一实施例中,以上步骤S202所述终端设备采用所述目标码本中的码字向网络设备传输上行信号的具体实施方式有:所述终端设备根据所述PMI信息确定所述目标码本中的目标码字;所述终端设备根据所述目标码字对上行信号进行预编码,以及传输预编码后的上行信号。
需要说明的是,上述目标天线阵列块的数量可以是一个也可以是多个,本发明不作限定。
可见,在本方案中,终端设备先根据所述终端设备的天线阵列块的数量确定目标码本;然后采用所述目标码本中的码字传输上行信号。可见,本方案可灵活的从全部天线阵列块中选取部分天线阵列块来传输上行信号。
请参见图5,图5为本发明实施例提供的一种上传信号的传输方法的流程示意图,包括以下步骤:
步骤S501:终端设备向网络设备发送上行信令,所述上行信令携带所述终端设备的天线阵列块的数量。
其中,上述信令为上行高层信令,比如无线资源控制协议(Radio Resource Control,RRC)信令,等。所述终端设备的天线阵列块的数量表示当前终端设备的所有天线阵列块的数量。
步骤S502:所述网络设备接收所述终端设备发送的上行信令;所述网络设备向所述终端设备发送天线阵列块的指示信息。
其中,所述指示信息的比特数可以根据终端的天线阵列块的最大可能数量确定,也可以根据终端上报的天线阵列块的数量确定。例如,终端的天线阵列块的最大可能数量为H,则可以采用log2H(上取整)个比特的指示信息。或者,终端上报的天线阵列块的数量为W,则可以采用log2W(上取整)个比特的指示信息。在另一个实施例中,所述终端上报的天线阵列块的数量为W,则可以采用W比特的指示信息,采用bitmap的方式来指示目标天线阵列块。其中,W个比特的每个比特对应一个天线阵列块,比特取值为1表示对应天线阵列块被选中,取值为0表示未被选中。
在一实施例中,所述网络设备向所述终端设备发送天线阵列块的指示信息的具体实施方式有:所述网络设备向所述终端设备发送高层信令或用于调度上行信号传输的下行控制信息(Downlink Control Information,DCI),所述高层信令或所述DCI携带所述天线阵列块的指示信息。
在一实施例中,所述终端设备的天线阵列块的数量为W,所述W为大于1的整数,所述网络设备向所述终端设备发送天线阵列块的指示信息之前,所述方法还包括:
步骤S505:所述终端设备分别通过所述W个天线阵列块传输信道探测参 考信号(SRS)。
步骤S506:所述网络设备接收所述终端设备分别通过所述W个天线阵列块传输的所述SRS;所述网络设备根据所述SRS确定所述天线阵列块的指示信息。
具体地,SRS是用来做上行信道探测的参考信号,由于终端设备是分别通过W个天线阵列块传输SRS的,网络设备接收到的是W个SRS。网络设备可通过这W个SRS得知这W个天线阵列块的传输性能,然后网络设备再根据这W个天线阵列块的传输性能确定一个指示信息。这个指示信息的内容用于指示终端设备采用哪些性能比较好的天线阵列块传输上行信号,进而提升了上行信号的传输效率。
在一实施例中,所述终端设备分别通过所述W个天线阵列块传输SRS,包括:所述终端设备分别在不同时刻通过所述W个天线阵列块传输SRS。
具体地,终端设备在不同时刻分别通过W个天线阵列块传输SRS可以是终端设备轮流通过所述W个天线阵列块传输SRS。比如,终端设备先通过第一天线阵列块传输SRS,再通过第二天线阵列块传输SRS,再通过第三天线阵列块传输SRS,以此类推。进一步地,通过第一天线块传输SRS的时刻与通过第二天线阵列块传输SRS的时刻相差等于预设时间阈值,通过第二天线块传输SRS的时刻与通过第三天线阵列块传输SRS的时刻相差也等于预设时间阈值。或者,终端设备第一次发送SRS采用第一天线阵列块,第二次发送SRS采用第二天线阵列块,以此类推。
在一实施例中,所述终端设备分别通过所述W个天线阵列块传输SRS,包括:所述终端设备分别在相同时刻通过所述W个天线阵列块传输SRS。
步骤S503:所述终端设备接收所述网络设备发送的所述天线阵列块的指示信息;所述终端设备根据所述天线阵列块的指示信息从所述终端设备的天线阵列块中确定用于传输上行信号的目标天线阵列块。
步骤S504:所述终端设备采用所述目标天线阵列块向所述网络设备传输上行信号。
可见,在本方案中,终端设备可基于网络设备发送的指示信息从所述终端设备的天线阵列块中选取用于传输上行信号的目标天线阵列块,进而可灵活的 从终端设备的全部天线阵列块中选取部分天线阵列块来传输上行信号。
本发明实施例还提供了一种终端设备600,如图6所示,包括:
处理模块601,用于根据所述终端设备的天线阵列块的数量确定目标码本;采用所述目标码本中的码字传输上行信号。
在一实施例中,所述终端设备还包括:
发送模块602,用于向网络设备发送上行信令,所述上行信令携带所述终端设备的天线阵列块的数量,所述终端设备的天线阵列块的数量用于所述网络设备确定所述目标码本。
在一实施例中,所述终端设备与所述网络设备预先约定M个码本,每个码本对应至少一个天线阵列块的数量,所述处理模块601具体用于:
根据码本与天线阵列块的数量的映射关系,确定所述终端设备的天线阵列块的数量对应的目标码本。
在一实施例中,所述终端设备与所述网络设备预先约定一个预设码本,所述处理模块601具体用于:
根据所述终端设备的天线阵列块的数量从所述预设码本中确定目标码本。
在一实施例中,当所述终端设备的天线阵列块的数量大于1时,所述目标码本中包含天线阵列块选择码字,所述天线阵列块选择码字用于选择传输上行信号所用的目标天线阵列块。
在一实施例中,所述天线阵列块选择码字是天线阵列块选择向量和天线阵列块内的预编码矩阵的克罗内克积。
在一实施例中,所述天线阵列块选择码字是由W个天线阵列块对应的预编码矩阵作为行向量组成的向量矩阵,所述W为大于1的整数。
在一实施例中,所述天线阵列块选择码字是由L个预编码向量作为列向量组成的向量矩阵,所述L为大于1的整数;其中,所述向量矩阵中的第i个列向量是天线阵列块选择向量和传输第i个传输层的数据的天线阵列块所用的预编码向量的克罗内克积,所述i为1到L中的任意数。
在一实施例中,所述终端设备还包括:
接收模块603,用于接收所述网络设备发送的预编码指示(PMI)信息;
所述处理模块具体用于:根据所述PMI信息确定所述目标码本中的目标码字;根据所述目标码字对上行信号进行预编码,以及传输预编码后的上行信号。
在一实施例中,所述终端设备的天线阵列块的数量为W,所述W为大于1的整数,
所述发送模块602,还用于分别通过所述W个天线阵列块传输信道探测参考信号(SRS),所述SRS用于所述网络设备确定所述PMI信息。
在一实施例中,所述发送模块602具体用于:
分别在不同时刻通过所述W个天线阵列块传输SRS。
需要说明的是,上述各模块(处理模块601、发送模块602和接收模块603)用于执行上述方法的相关步骤。
在本实施例中,终端设备600是以模块的形式来呈现。这里的“模块”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。此外,以上处理模块601可通过图10所示的计算机设备的处理器1001来实现,发送模块602和接收模块603可通过图10所示的计算机设备的收发器1003来实现。
本发明实施例还提供了一种终端设备700,如图7所示,包括:
发送模块701,用于向网络设备发送上行信令,所述上行信令携带所述终端设备的天线阵列块的数量;
接收模块702,用于接收所述网络设备发送的天线阵列块的指示信息;
处理模块703,用于根据所述天线阵列块的指示信息从所述终端设备的天线阵列块中确定用于传输上行信号的目标天线阵列块,以及采用所述目标天线阵列块传输上行信号。
在一实施例中,所述接收模块702具体用于:
接收所述网络设备发送的高层信令或用于调度上行信号传输的下行控制信息(DCI),所述高层信令或所述DCI携带所述天线阵列块的指示信息。
在一实施例中,所述终端设备的天线阵列块的数量为W,所述W为大于 1的整数,
所述发送模块701,还用于分别通过所述W个天线阵列块传输信道探测参考信号(SRS),所述SRS用于所述网络设备确定所述天线阵列块的指示信息。
在一实施例中,所述发送模块701具体用于:分别在不同时刻通过所述W个天线阵列块传输SRS。
需要说明的是,上述各模块(发送模块701、接收模块702和处理模块703)用于执行上述方法的相关步骤。
在本实施例中,终端设备700是以模块的形式来呈现。这里的“模块”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。此外,以上处理模块703可通过图10所示的计算机设备的处理器1001来实现,发送模块701和接收模块702可通过图10所示的计算机设备的收发器1003来实现。
本发明实施例还提供了一种网络设备800,如图8所示,包括:
接收模块801,用于接收终端设备发送的上行信令,所述上行信令携带所述终端设备的天线阵列块的数量;
处理模块802,用于根据所述终端设备的天线阵列块的数量确定目标码本;
发送模块803,用于向所述终端设备发送预编码指示(PMI)信息,所述PMI信息用于指示所述终端设备采用所述目标码本中的码字传输上行信号。
在一实施例中,所述终端设备与所述网络设备预先约定M个码本,每个码本对应至少一个天线阵列块的数量,所述处理模块802具体用于:
根据码本与天线阵列块的数量的映射关系,确定所述终端设备的天线阵列块的数量对应的目标码本。
在一实施例中,所述终端设备与所述网络设备预先约定一个预设码本,所述处理模块802具体用于:
根据所述终端设备的天线阵列块的数量从所述预设码本中确定目标码本。
在一实施例中,当所述终端设备的天线阵列块的数量大于1时,所述目标码本中包含天线阵列块选择码字,所述天线阵列块选择码字用于选择传输上行信号所用的目标天线阵列块。
在一实施例中,所述天线阵列块选择码字是天线阵列块选择向量和天线阵列块内的预编码矩阵的克罗内克积。
在一实施例中,所述天线阵列块选择码字是由W个天线阵列块对应的预编码矩阵作为行向量组成的向量矩阵,所述W为大于1的整数。
在一实施例中,所述天线阵列块选择码字是由L个预编码向量作为列向量组成的向量矩阵,所述L为大于1的整数;其中,所述向量矩阵中的第i个列向量是天线阵列块选择向量和传输第i个传输层的数据的天线阵列块所用的预编码向量的克罗内克积,所述i为1到L中的任意数。
在一实施例中,所述终端设备的天线阵列块的数量为W,所述W为大于1的整数,
所述接收模块801,还用于接收所述终端设备分别通过所述W个天线阵列块传输的信道探测参考信号(SRS);
所述处理模块802,还用于根据所述SRS确定所述PMI信息。
需要说明的是,上述各模块(接收模块801、处理模块802和发送模块803)用于执行上述方法的相关步骤。
在本实施例中,用户设备800是以模块的形式来呈现。这里的“模块”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。此外,以上处理模块802可通过图10所示的计算机设备的处理器1001来实现,接收模块801和发送模块803可通过图10所示的计算机设备的收发器1003来实现。
本发明实施例还提供了一种网络设备900,如图9所示,包括:
接收模块901,用于接收终端设备发送的上行信令,所述上行信令携带所述终端设备的天线阵列块的数量;
发送模块902,用于向所述终端设备发送天线阵列块的指示信息,所述天 线阵列块的指示信息用于指示所述终端设备从所述终端设备的天线阵列块中确定用于传输上行信号的目标天线阵列块,以及采用所述目标天线阵列块传输上行信号。
在一实施例中,所述发送模块902具体用于:
向所述终端设备发送的高层信令或用于调度上行信号传输的下行控制信息(DCI),所述高层信令或所述DCI携带所述天线阵列块的指示信息。
在一实施例中,所述终端设备的天线阵列块的数量为W,所述W为大于1的整数,
所述接收模块901,还用于接收所述终端设备分别通过所述W个天线阵列块传输的信道探测参考信号(SRS);
所述终端设备还包括:
所述处理模块903,用于根据所述SRS确定所述天线阵列块的指示信息。
需要说明的是,上述各模块(接收模块901、处理模块903和发送模块902)用于执行上述方法的相关步骤。
在本实施例中,网络设备900是以模块的形式来呈现。这里的“模块”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。此外,以上处理模块903可通过图10所示的计算机设备的处理器1001来实现,接收模块901和发送模块902可通过图10所示的计算机设备的收发器1003来实现。
如图10所示,终端设备600、终端设备700、网络设备800和网络设备900可以以图10中的结构来实现,该计算机设备1000包括至少一个处理器1001,至少一个存储器1002以及至少一个收发器1003。所述处理器1001通过所述通信总线与所述存储器1002和所述收发器1003连接并完成相互间的通信。
处理器1001可以是通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制以上方案程序执行的集成电路。
收发器1003,用于与其他设备或通信网络通信,如以太网,无线接入网(RAN),无线局域网(Wireless Local Area Networks,WLAN)等与其他设备或通信网络通信。
存储器1002可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,所述存储器1002用于存储执行以上方案的应用程序代码,并由处理器1001来控制执行。所述处理器1001用于执行所述存储器1002中存储的应用程序代码。
图10所示的计算机设备为终端设备600时,存储器1002存储的代码可执行以上提供的终端设备600执行的上行信号的传输方法,比如终端设备根据所述终端设备的天线阵列块的数量确定目标码本;所述终端设备采用所述目标码本中的码字传输上行信号。
图10所示的计算机设备为终端设备700时,存储器1002存储的代码可执行以上提供的终端设备700执行的上行信号的传输方法,比如终端设备向网络设备发送上行信令,所述上行信令携带所述终端设备的天线阵列块的数量;所述终端设备接收所述网络设备发送的天线阵列块的指示信息;所述终端设备根据所述天线阵列块的指示信息从所述终端设备的天线阵列块中确定用于传输上行信号的目标天线阵列块,以及采用所述目标天线阵列块传输上行信号。
图10所示的计算机设备为网络设备800时,存储器1002存储的代码可执行以上提供的网络设备800执行的上行信号的传输方法,比如网络设备接收终端设备发送的上行信令,所述上行信令携带所述终端设备的天线阵列块的数 量;所述网络设备根据所述终端设备的天线阵列块的数量确定目标码本;所述网络设备向所述终端设备发送预编码指示(PMI)信息,所述PMI信息用于指示所述终端设备采用所述目标码本中的码字传输上行信号。
图10所示的计算机设备为网络设备900时,存储器1002存储的代码可执行以上提供的网络设备900执行的上行信号的传输方法,比如网络设备接收终端设备发送的上行信令,所述上行信令携带所述终端设备的天线阵列块的数量;所述网络设备向所述终端设备发送天线阵列块的指示信息,所述天线阵列块的指示信息用于指示所述终端设备从所述终端设备的天线阵列块中确定用于传输上行信号的目标天线阵列块,以及采用所述目标天线阵列块传输上行信号。
本发明实施例还提供一种计算机存储介质,其中,该计算机存储介质可存储有程序,该程序执行时包括上述方法实施例中记载的任何一种上行信号的的传输方法的部分或全部步骤。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为 单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取器(英文:Random Access Memory,简称:RAM)、磁盘或光盘等。
以上对本发明实施例进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上上述,本说明书内容不应理解为对本发明的限制。

Claims (46)

  1. 一种上行信号的传输方法,其特征在于,包括:
    终端设备根据所述终端设备的天线阵列块的数量确定目标码本;
    所述终端设备采用所述目标码本中的码字传输上行信号。
  2. 如权利要求1所述的方法,其特征在于,所述终端设备根据所述终端设备的天线阵列块的数量确定目标码本之前,所述方法还包括:
    所述终端设备向网络设备发送上行信令,所述上行信令携带所述终端设备的天线阵列块的数量,所述终端设备的天线阵列块的数量用于所述网络设备确定所述目标码本。
  3. 如权利要求1或2所述的方法,其特征在于,所述终端设备与所述网络设备预先约定M个码本,每个码本对应至少一个天线阵列块的数量,所述终端设备根据所述终端设备的天线阵列块的数量确定目标码本,包括:
    所述终端设备根据码本与天线阵列块的数量的映射关系,确定所述终端设备的天线阵列块的数量对应的目标码本。
  4. 如权利要求1或2所述的方法,其特征在于,所述终端设备与所述网络设备预先约定一个预设码本,所述终端设备根据所述终端设备的天线阵列块的数量确定目标码本,包括:
    所述终端设备根据所述终端设备的天线阵列块的数量从所述预设码本中确定目标码本。
  5. 如权利要求1-4任一项所述的方法,其特征在于,当所述终端设备的天线阵列块的数量大于1时,所述目标码本中包含天线阵列块选择码字,所述天线阵列块选择码字用于选择传输上行信号所用的目标天线阵列块。
  6. 如权利要求5所述的方法,其特征在于,所述天线阵列块选择码字是 天线阵列块选择向量和天线阵列块内的预编码矩阵的克罗内克积。
  7. 如权利要求5所述的方法,其特征在于,所述天线阵列块选择码字是由W个天线阵列块对应的预编码矩阵作为行向量组成的向量矩阵,所述W为大于1的整数。
  8. 如权利要求5所述的方法,其特征在于,所述天线阵列块选择码字是由L个预编码向量作为列向量组成的向量矩阵,所述L为大于1的整数;其中,所述向量矩阵中的第i个列向量是天线阵列块选择向量和传输第i个传输层的数据的天线阵列块所用的预编码向量的克罗内克积,所述i为1到L中的任意数。
  9. 如权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的预编码指示(PMI)信息;
    所述终端设备采用所述目标码本中的码字传输上行信号,包括:
    所述终端设备根据所述PMI信息确定所述目标码本中的目标码字;
    所述终端设备根据所述目标码字对上行信号进行预编码,以及传输预编码后的上行信号。
  10. 如权利要求9所述的方法,其特征在于,所述终端设备的天线阵列块的数量为W,所述W为大于1的整数,所述终端设备接收所述网络设备发送的PMI信息之前,所述方法还包括:
    所述终端设备分别通过所述W个天线阵列块传输信道探测参考信号(SRS),所述SRS用于所述网络设备确定所述PMI信息。
  11. 如权利要求10所述的方法,其特征在于,所述终端设备分别通过所述W个天线阵列块传输SRS,包括:所述终端设备分别在不同时刻通过所述W个天线阵列块传输SRS。
  12. 一种上行信号的传输方法,其特征在于,包括:
    终端设备向网络设备发送上行信令,所述上行信令携带所述终端设备的天线阵列块的数量;
    所述终端设备接收所述网络设备发送的天线阵列块的指示信息;
    所述终端设备根据所述天线阵列块的指示信息从所述终端设备的天线阵列块中确定用于传输上行信号的目标天线阵列块,以及采用所述目标天线阵列块传输上行信号。
  13. 如权利要求12所述的方法,其特征在于,所述终端设备接收所述网络设备发送的天线阵列块的指示信息,包括:
    所述终端设备接收所述网络设备发送的高层信令或用于调度上行信号传输的下行控制信息(DCI),所述高层信令或所述DCI携带所述天线阵列块的指示信息。
  14. 如权利要求12或13所述的方法,其特征在于,所述终端设备的天线阵列块的数量为W,所述W为大于1的整数,所述终端设备接收所述网络设备发送的天线阵列块的指示信息之前,所述方法还包括:
    所述终端设备分别通过所述W个天线阵列块传输信道探测参考信号(SRS),所述SRS用于所述网络设备确定所述天线阵列块的指示信息。
  15. 如权利要求14所述的方法,其特征在于,所述终端设备分别通过所述W个天线阵列块传输SRS,包括:所述终端设备分别在不同时刻通过所述W个天线阵列块传输SRS。
  16. 一种上行信号的传输方法,其特征在于,包括:
    网络设备接收终端设备发送的上行信令,所述上行信令携带所述终端设备的天线阵列块的数量;
    所述网络设备根据所述终端设备的天线阵列块的数量确定目标码本;
    所述网络设备向所述终端设备发送预编码指示(PMI)信息,所述PMI 信息用于指示所述终端设备采用所述目标码本中的码字传输上行信号。
  17. 如权利要求16所述的方法,其特征在于,所述终端设备与所述网络设备预先约定M个码本,每个码本对应至少一个天线阵列块的数量,所述网络设备根据所述终端设备的天线阵列块的数量确定目标码本,包括:
    所述网络设备根据码本与天线阵列块的数量的映射关系,确定所述终端设备的天线阵列块的数量对应的目标码本。
  18. 如权利要求16所述的方法,其特征在于,所述终端设备与所述网络设备预先约定一个预设码本,所述网络设备根据所述终端设备的天线阵列块的数量确定目标码本,包括:
    所述网络设备根据所述终端设备的天线阵列块的数量从所述预设码本中确定目标码本。
  19. 如权利要求16-18任一项所述的方法,其特征在于,当所述终端设备的天线阵列块的数量大于1时,所述目标码本中包含天线阵列块选择码字,所述天线阵列块选择码字用于选择传输上行信号所用的目标天线阵列块。
  20. 如权利要求16-19任一项所述的方法,其特征在于,所述终端设备的天线阵列块的数量为W,所述W为大于1的整数,所述网络设备向所述终端设备发送PMI信息之前,所述方法还包括:
    所述网络设备接收所述终端设备分别通过所述W个天线阵列块传输的信道探测参考信号(SRS);
    所述网络设备根据所述SRS确定所述PMI信息。
  21. 一种上行信号的传输方法,其特征在于,包括:
    网络设备接收终端设备发送的上行信令,所述上行信令携带所述终端设备的天线阵列块的数量;
    所述网络设备向所述终端设备发送天线阵列块的指示信息,所述天线阵列 块的指示信息用于指示所述终端设备从所述终端设备的天线阵列块中确定用于传输上行信号的目标天线阵列块,以及采用所述目标天线阵列块传输上行信号。
  22. 如权利要求21所述的方法,其特征在于,所述网络设备向所述终端设备发送天线阵列块的指示信息,包括:
    所述网络设备向所述终端设备发送的高层信令或用于调度上行信号传输的下行控制信息(DCI),所述高层信令或所述DCI携带所述天线阵列块的指示信息。
  23. 如权利要求21或22所述的方法,其特征在于,所述终端设备的天线阵列块的数量为W,所述W为大于1的整数,所述网络设备向所述终端设备发送天线阵列块的指示信息之前,所述方法还包括:
    所述网络设备接收所述终端设备分别通过所述W个天线阵列块传输的信道探测参考信号(SRS);
    所述网络设备根据所述SRS确定所述天线阵列块的指示信息。
  24. 一种终端设备,其特征在于,包括:
    处理模块,用于根据所述终端设备的天线阵列块的数量确定目标码本;采用所述目标码本中的码字传输上行信号。
  25. 如权利要求24所述的终端设备,其特征在于,所述终端设备还包括:
    发送模块,用于向网络设备发送上行信令,所述上行信令携带所述终端设备的天线阵列块的数量,所述终端设备的天线阵列块的数量用于所述网络设备确定所述目标码本。
  26. 如权利要求24或25所述的终端设备,其特征在于,所述终端设备与所述网络设备预先约定M个码本,每个码本对应至少一个天线阵列块的数量,所述处理模块具体用于:
    根据码本与天线阵列块的数量的映射关系,确定所述终端设备的天线阵列块的数量对应的目标码本。
  27. 如权利要求24或25所述的终端设备,其特征在于,所述终端设备与所述网络设备预先约定一个预设码本,所述处理模块具体用于:
    根据所述终端设备的天线阵列块的数量从所述预设码本中确定目标码本。
  28. 如权利要求24-27任一项所述的终端设备,其特征在于,当所述终端设备的天线阵列块的数量大于1时,所述目标码本中包含天线阵列块选择码字,所述天线阵列块选择码字用于选择传输上行信号所用的目标天线阵列块。
  29. 如权利要求28所述的终端设备,其特征在于,所述天线阵列块选择码字是天线阵列块选择向量和天线阵列块内的预编码矩阵的克罗内克积。
  30. 如权利要求28所述的终端设备,其特征在于,所述天线阵列块选择码字是由W个天线阵列块对应的预编码矩阵作为行向量组成的向量矩阵,所述W为大于1的整数。
  31. 如权利要求28所述的终端设备,其特征在于,所述天线阵列块选择码字是由L个预编码向量作为列向量组成的向量矩阵,所述L为大于1的整数;其中,所述向量矩阵中的第i个列向量是天线阵列块选择向量和传输第i个传输层的数据的天线阵列块所用的预编码向量的克罗内克积,所述i为1到L中的任意数。
  32. 如权利要求24-31任一项所述的终端设备,其特征在于,所述终端设备还包括:
    接收模块,用于接收所述网络设备发送的预编码指示(PMI)信息;
    所述处理模块具体用于:根据所述PMI信息确定所述目标码本中的目标码字;根据所述目标码字对上行信号进行预编码,以及传输预编码后的上行信 号。
  33. 如权利要求32所述的终端设备,其特征在于,所述终端设备的天线阵列块的数量为W,所述W为大于1的整数,
    所述发送模块,还用于分别通过所述W个天线阵列块传输信道探测参考信号(SRS),所述SRS用于所述网络设备确定所述PMI信息。
  34. 如权利要求33所述的终端设备,其特征在于,所述发送模块具体用于:
    分别在不同时刻通过所述W个天线阵列块传输SRS。
  35. 一种终端设备,其特征在于,包括:
    发送模块,用于向网络设备发送上行信令,所述上行信令携带所述终端设备的天线阵列块的数量;
    接收模块,用于接收所述网络设备发送的天线阵列块的指示信息;
    处理模块,用于根据所述天线阵列块的指示信息从所述终端设备的天线阵列块中确定用于传输上行信号的目标天线阵列块,以及采用所述目标天线阵列块传输上行信号。
  36. 如权利要求35所述的终端设备,其特征在于,所述接收模块具体用于:
    接收所述网络设备发送的高层信令或用于调度上行信号传输的下行控制信息(DCI),所述高层信令或所述DCI携带所述天线阵列块的指示信息。
  37. 如权利要求35或36所述的终端设备,其特征在于,所述终端设备的天线阵列块的数量为W,所述W为大于1的整数,
    所述发送模块,还用于分别通过所述W个天线阵列块传输信道探测参考信号(SRS),所述SRS用于所述网络设备确定所述天线阵列块的指示信息。
  38. 如权利要求37所述的终端设备,其特征在于,所述发送模块具体用于:分别在不同时刻通过所述W个天线阵列块传输SRS。
  39. 一种网络设备,其特征在于,包括:
    接收模块,用于接收终端设备发送的上行信令,所述上行信令携带所述终端设备的天线阵列块的数量;
    处理模块,用于根据所述终端设备的天线阵列块的数量确定目标码本;
    发送模块,用于向所述终端设备发送预编码指示(PMI)信息,所述PMI信息用于指示所述终端设备采用所述目标码本中的码字传输上行信号。
  40. 如权利要求39所述的网络设备,其特征在于,所述终端设备与所述网络设备预先约定M个码本,每个码本对应至少一个天线阵列块的数量,所述处理模块具体用于:
    根据码本与天线阵列块的数量的映射关系,确定所述终端设备的天线阵列块的数量对应的目标码本。
  41. 如权利要求39所述的网络设备,其特征在于,所述终端设备与所述网络设备预先约定一个预设码本,所述处理模块具体用于:
    根据所述终端设备的天线阵列块的数量从所述预设码本中确定目标码本。
  42. 如权利要求39-41任一项所述的网络设备,其特征在于,当所述终端设备的天线阵列块的数量大于1时,所述目标码本中包含天线阵列块选择码字,所述天线阵列块选择码字用于选择传输上行信号所用的目标天线阵列块。
  43. 如权利要求39-42任一项所述的网络设备,其特征在于,所述终端设备的天线阵列块的数量为W,所述W为大于1的整数,
    所述接收模块,还用于接收所述终端设备分别通过所述W个天线阵列块传输的信道探测参考信号(SRS);
    所述处理模块,还用于根据所述SRS确定所述PMI信息。
  44. 一种网络设备,其特征在于,包括:
    接收模块,用于接收终端设备发送的上行信令,所述上行信令携带所述终端设备的天线阵列块的数量;
    发送模块,用于向所述终端设备发送天线阵列块的指示信息,所述天线阵列块的指示信息用于指示所述终端设备从所述终端设备的天线阵列块中确定用于传输上行信号的目标天线阵列块,以及采用所述目标天线阵列块传输上行信号。
  45. 如权利要求44所述的网络设备,其特征在于,所述发送模块具体用于:
    向所述终端设备发送的高层信令或用于调度上行信号传输的下行控制信息(DCI),所述高层信令或所述DCI携带所述天线阵列块的指示信息。
  46. 如权利要求44或45所述的网络设备,其特征在于,所述终端设备的天线阵列块的数量为W,所述W为大于1的整数,
    所述接收模块,还用于接收所述终端设备分别通过所述N个天线阵列块传输的信道探测参考信号(SRS);
    所述终端设备还包括:
    所述处理模块,用于根据所述SRS确定所述天线阵列块的指示信息。
PCT/CN2017/076676 2017-03-14 2017-03-14 一种上行信号的传输方法及相关设备 WO2018165873A1 (zh)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP2019549443A JP6995874B2 (ja) 2017-03-14 2017-03-14 上り信号の伝送方法及びデバイス
BR112019018627-1A BR112019018627B1 (pt) 2017-03-14 Método de transmissão de sinal de uplink e dispositivo terminal
CN201780087602.7A CN110366828B (zh) 2017-03-14 2017-03-14 一种上行信号的传输方法及相关设备
RU2019131144A RU2736636C1 (ru) 2017-03-14 2017-03-14 Способ передачи сигнала восходящей линии связи и соответствующее устройство
PCT/CN2017/076676 WO2018165873A1 (zh) 2017-03-14 2017-03-14 一种上行信号的传输方法及相关设备
CA3056153A CA3056153C (en) 2017-03-14 2017-03-14 Uplink signal transmission method and related device
US16/492,025 US11139871B2 (en) 2017-03-14 2017-03-14 Uplink signal transmission method and related device
EP17901005.3A EP3595190A4 (en) 2017-03-14 2017-03-14 UPLINK SIGNAL TRANSMISSION METHOD AND ASSOCIATED DEVICE
MX2019010915A MX2019010915A (es) 2017-03-14 2017-03-14 Metodo y dispositivo relacionado de transmision de se?al de enlace ascendente.
SG11201908403W SG11201908403WA (en) 2017-03-14 2017-03-14 Uplink signal transmission method and related device
KR1020197028832A KR20190129060A (ko) 2017-03-14 2017-03-14 상향 신호의 전송 방법 및 관련되는 디바이스
AU2017403597A AU2017403597A1 (en) 2017-03-14 2017-03-14 Uplink signal transmission method and related device
TW107105088A TWI751282B (zh) 2017-03-14 2018-02-12 一種上行訊號的傳輸方法及相關設備
ZA2019/06726A ZA201906726B (en) 2017-03-14 2019-10-11 Uplink signal transmission method and related device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/076676 WO2018165873A1 (zh) 2017-03-14 2017-03-14 一种上行信号的传输方法及相关设备

Publications (1)

Publication Number Publication Date
WO2018165873A1 true WO2018165873A1 (zh) 2018-09-20

Family

ID=63521970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076676 WO2018165873A1 (zh) 2017-03-14 2017-03-14 一种上行信号的传输方法及相关设备

Country Status (13)

Country Link
US (1) US11139871B2 (zh)
EP (1) EP3595190A4 (zh)
JP (1) JP6995874B2 (zh)
KR (1) KR20190129060A (zh)
CN (1) CN110366828B (zh)
AU (1) AU2017403597A1 (zh)
CA (1) CA3056153C (zh)
MX (1) MX2019010915A (zh)
RU (1) RU2736636C1 (zh)
SG (1) SG11201908403WA (zh)
TW (1) TWI751282B (zh)
WO (1) WO2018165873A1 (zh)
ZA (1) ZA201906726B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113196865A (zh) * 2018-12-14 2021-07-30 株式会社Ntt都科摩 用户终端以及无线通信方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391301B (zh) * 2017-08-11 2021-12-14 大唐移动通信设备有限公司 一种上行传输码本确定方法及设备
US11871420B2 (en) * 2018-05-11 2024-01-09 Lg Electronics Inc. Method for transmitting and receiving uplink channel in wireless communication system, and device for same
EP3925088A1 (en) * 2019-02-14 2021-12-22 Telefonaktiebolaget LM Ericsson (publ) Apparatuses and methods for multi-user transmissions
US11233550B2 (en) * 2019-03-21 2022-01-25 Samsung Electronics Co., Ltd. Multi-user precoders based on partial reciprocity
US11265818B2 (en) * 2019-03-29 2022-03-01 FG Innovation Company Limited Method of closed-loop power control in multi-panel transmission and related device
WO2022036677A1 (en) * 2020-08-21 2022-02-24 Qualcomm Incorporated Antenna switching for reference signals
US20240244595A1 (en) * 2021-11-03 2024-07-18 Intel Corporation Enhanced uplink transmission using multiple codewords

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103201962A (zh) * 2010-06-24 2013-07-10 高通股份有限公司 结构化的mimo码本
WO2016013882A1 (ko) * 2014-07-23 2016-01-28 엘지전자 주식회사 무선 접속 시스템에서 채널상태정보를 전송하는 방법 및 장치
CN105432025A (zh) * 2013-07-30 2016-03-23 Lg电子株式会社 用于在无线通信系统中报告用于基于部分天线阵列的波束成形的信道状态信息的方法、以及使用该方法的装置
CN106301506A (zh) * 2015-05-15 2017-01-04 电信科学技术研究院 一种码本子集约束的方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010002734A2 (en) * 2008-06-30 2010-01-07 Interdigital Patent Holdings, Inc. Method and apparatus to support single user (su) and multiuser (mu) beamforming with antenna array groups
CA2755432C (en) 2009-03-17 2018-10-16 Nokia Siemens Networks Oy Method and apparatus for codebook-based precoding in mimo systems
CN102195760A (zh) * 2010-03-16 2011-09-21 松下电器产业株式会社 无线通信系统、基站、终端及码本生成方法
CN102857285B (zh) * 2011-06-30 2017-11-03 中兴通讯股份有限公司 信道信息反馈方法及装置
JP2013038666A (ja) * 2011-08-10 2013-02-21 Sharp Corp 端末装置、基地局装置、プログラムおよび集積回路
CN104811231B (zh) * 2014-01-26 2018-06-05 电信科学技术研究院 一种支持fd-mimo的信道状态信息传输方法及装置
WO2016049943A1 (en) * 2014-10-04 2016-04-07 Qualcomm Incorporated Codebook for elevation beamforming
US20180083681A1 (en) * 2015-01-30 2018-03-22 Telefonaktiebolaget Lm Ericsson (Publ) A CSI Report Framework for Enhanced Separate Dimension Feedback
WO2016163842A1 (ko) * 2015-04-10 2016-10-13 엘지전자 (주) 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
EP3330859A1 (en) 2016-12-05 2018-06-06 Universiteit Gent Self-debugging
US11038566B2 (en) 2017-01-06 2021-06-15 Telefonaktiebolaget Lm Ericsson (Publ) Precoding a transmission from a multi-panel antenna array

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103201962A (zh) * 2010-06-24 2013-07-10 高通股份有限公司 结构化的mimo码本
CN105432025A (zh) * 2013-07-30 2016-03-23 Lg电子株式会社 用于在无线通信系统中报告用于基于部分天线阵列的波束成形的信道状态信息的方法、以及使用该方法的装置
WO2016013882A1 (ko) * 2014-07-23 2016-01-28 엘지전자 주식회사 무선 접속 시스템에서 채널상태정보를 전송하는 방법 및 장치
CN106301506A (zh) * 2015-05-15 2017-01-04 电信科学技术研究院 一种码本子集约束的方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113196865A (zh) * 2018-12-14 2021-07-30 株式会社Ntt都科摩 用户终端以及无线通信方法

Also Published As

Publication number Publication date
CN110366828A (zh) 2019-10-22
CA3056153A1 (en) 2018-09-20
SG11201908403WA (en) 2019-10-30
JP6995874B2 (ja) 2022-01-17
EP3595190A1 (en) 2020-01-15
AU2017403597A1 (en) 2019-10-24
EP3595190A4 (en) 2020-07-15
BR112019018627A2 (pt) 2020-04-07
MX2019010915A (es) 2019-11-07
US11139871B2 (en) 2021-10-05
CN110366828B (zh) 2023-11-10
TW201834407A (zh) 2018-09-16
CA3056153C (en) 2022-12-06
JP2020515139A (ja) 2020-05-21
ZA201906726B (en) 2021-01-27
RU2736636C1 (ru) 2020-11-19
KR20190129060A (ko) 2019-11-19
US20200358494A1 (en) 2020-11-12
TWI751282B (zh) 2022-01-01

Similar Documents

Publication Publication Date Title
WO2018165873A1 (zh) 一种上行信号的传输方法及相关设备
US11277762B2 (en) Base station side device and method for wireless communication, and user side device and method for wireless communication
WO2021142631A1 (en) Method, device and computer readable medium of communication
KR102027075B1 (ko) 프리코딩 정보 송신 및 피드백 방법 및 장치
WO2017193404A1 (zh) 信道状态信息的上报方法、读取方法及相关设备
CN110324071B (zh) 一种tpmi的传输方法、接收端和发送端
WO2018228356A1 (zh) 通道校正的方法和网络设备
WO2022199346A1 (zh) 指示方法及相关产品
US8504031B2 (en) Transmission of channel quality indications
WO2017193703A1 (zh) 一种信道状态信息反馈方法、设备及系统
CN109495148A (zh) 一种码本子集限制的方法
AU2021418030B2 (en) Methods for communication, terminal device, network device, and computer readable media
JP7261223B2 (ja) 基地局及び送信方法
WO2016106696A1 (zh) 一种预编码矩阵指示pmi的反馈方法
WO2019218906A1 (zh) 预编码矩阵指示方法及相关设备
CN113632398B (zh) 用于较高秩扩展的信道状态信息反馈
WO2024016227A1 (en) Uplink transmission techniques
BR112019018627B1 (pt) Método de transmissão de sinal de uplink e dispositivo terminal
WO2023202717A1 (zh) 一种上行数据传输方法及终端设备
WO2023070459A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901005

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549443

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3056153

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019018627

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197028832

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017901005

Country of ref document: EP

Effective date: 20191014

ENP Entry into the national phase

Ref document number: 2017403597

Country of ref document: AU

Date of ref document: 20170314

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019018627

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190909