WO2016049943A1 - Codebook for elevation beamforming - Google Patents

Codebook for elevation beamforming Download PDF

Info

Publication number
WO2016049943A1
WO2016049943A1 PCT/CN2014/088101 CN2014088101W WO2016049943A1 WO 2016049943 A1 WO2016049943 A1 WO 2016049943A1 CN 2014088101 W CN2014088101 W CN 2014088101W WO 2016049943 A1 WO2016049943 A1 WO 2016049943A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
codeword
indicating
column
phasing adjustment
Prior art date
Application number
PCT/CN2014/088101
Other languages
French (fr)
Inventor
Yu Zhang
Chao Wei
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2014/088101 priority Critical patent/WO2016049943A1/en
Publication of WO2016049943A1 publication Critical patent/WO2016049943A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account

Definitions

  • the present disclosure relates generally to communication systems, and more particularly, to techniques regarding using codebooks for elevation beamforming at a UE and a base station.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e. g. , bandwidth, transmit power) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP Third Generation Partnership Project
  • LTE is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA on the downlink (DL) , SC-FDMA on the uplink (UL) , and multiple-input multiple-output (MIMO) antenna technology.
  • OFDMA on the downlink
  • UL uplink
  • MIMO multiple-input multiple-output
  • the apparatus may be a user equipment (UE) .
  • the UE communicates with a base station having a vertical antenna array.
  • the UE receives first signals transmitted by the vertical antenna array from the base station.
  • the UE selects a codeword from a codebook optimized to reduce vertical interference of the first signals.
  • the codeword indicates beamforming parameters to be used by the base station to precode second signals to be transmitted by the vertical antenna array to the UE.
  • the UE transmits an indicator of the codeword to the base station.
  • the apparatus may be a UE.
  • the UE communicates with a base station having a vertical antenna array.
  • the vertical antenna array has a first antenna column and a second antenna column.
  • the first antenna column has a first antenna and a second antenna.
  • the second antenna column has a third antenna and a fourth antenna.
  • the first antenna column and the second antenna column are orthogonal to each other.
  • the UE receives first signals transmitted by the vertical antenna array from the base station.
  • the UE selects a codeword from a codebook optimized to reduce vertical interference of the first signals.
  • the codeword indicates beamforming parameters to be used by the base station to precode second signals to be transmitted by the vertical antenna array to the UE.
  • the UE transmits an indicator of the codeword to the base station.
  • the codeword has a first set of indicators indicating beamforming parameters used in a first beamforming layer.
  • the first set of indicators includes (a) a first indicator ( ⁇ 1 ) indicating a co-phasing adjustment between the first antenna and the second antenna as well as indicating a co-phasing adjustment between the third antenna and the fourth antenna, (b) a second indicator ( ⁇ 1 ) indicating a co-phasing adjustment between the third antenna and the fourth antenna, and (c) a third indicator ( ⁇ 1 ) indicating a co-phasing adjustment between the first antenna column and the second antenna column.
  • ⁇ 1 , ⁇ 1 , and ⁇ 1 each are selected from K-ary phase-shift keying (PSK) alphabets.
  • K is 2 j. . j is an integer greater than 1.
  • the codebook is configured based on that a phase difference between ⁇ 1 and ⁇ 1 is not greater than e j ⁇ /2 .
  • the codeword (W) is represented as
  • the apparatus may be a UE.
  • the UE communicates with a base station having a vertical antenna array.
  • the vertical antenna array has a first antenna column and a second antenna column.
  • the first antenna column has a first antenna and a second antenna.
  • the second antenna column has a third antenna and a fourth antenna.
  • the first antenna column and the second antenna column are orthogonal to each other.
  • the UE includes means for receiving first signals transmitted by the vertical antenna array from the base station.
  • the UE includes means for selecting a codeword from a codebook optimized to reduce vertical interference of the first signals.
  • the codeword indicates beamforming parameters to be used by the base station to precode second signals to be transmitted by the vertical antenna array to the UE.
  • the UE includes means for transmitting an indicator of the codeword to the base station.
  • the apparatus may be a UE.
  • the UE communicates with a base station having a vertical antenna array.
  • the vertical antenna array has a first antenna column and a second antenna column.
  • the first antenna column has a first antenna and a second antenna.
  • the second antenna column has a third antenna and a fourth antenna.
  • the first antenna column and the second antenna column are orthogonal to each other.
  • the UE includes means for receiving first signals transmitted by the vertical antenna array from the base station.
  • the UE includes means for selecting a codeword from a codebook optimized to reduce vertical interference of the first signals.
  • the codeword indicates beamforming parameters to be used by the base station to precode second signals to be transmitted by the vertical antenna array to the UE.
  • the UE includes means for transmitting an indicator of the codeword to the base station.
  • the codeword has a first set of indicators indicating beamforming parameters used in a first beamforming layer.
  • the first set of indicators includes (a) a first indicator ( ⁇ 1 ) indicating a co-phasing adjustment between the first antenna and the second antenna as well as indicating a co-phasing adjustment between the third antenna and the fourth antenna, (b) a second indicator ( ⁇ 1 ) indicating a co-phasing adjustment between the third antenna and the fourth antenna, and (c) a third indicator ( ⁇ 1 ) indicating a co-phasing adjustment between the first antenna column and the second antenna column.
  • ⁇ 1 , ⁇ 1 , and ⁇ 1 each are selected from K-ary PSK alphabets.
  • K is 2 j. . j is an integer greater than 1.
  • the codebook is configured based on that a phase difference between ⁇ 1 and ⁇ 1 is not greater than e j ⁇ /2 .
  • the codeword (W) is represented as
  • FIG. 1 is a diagram illustrating an example of a network architecture.
  • FIG. 2 is a diagram illustrating an example of an access network.
  • FIG. 3 is a diagram illustrating an example of a DL frame structure in LTE.
  • FIG. 4 is a diagram illustrating an example of an UL frame structure in LTE.
  • FIG. 5 is a diagram illustrating an example of a radio protocol architecture for the user and control planes.
  • FIG. 6 is a diagram illustrating an example of an evolved Node B and a user equipment in an access network.
  • FIG. 7 is a diagram illustrating beamforming between an evolved Node B and a user equipment.
  • FIG. 8 is a diagram illustrating a vertical antenna array of an evolved Node B.
  • FIG. 9 is a flow chart of a method of wireless communication.
  • FIG. 10 is a conceptual data flow diagram illustrating the data flow between different modules/means/components in an exemplary apparatus.
  • FIG. 11 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
  • processors include microprocessors, microcontrollers, digital signal processors (DSPs) , field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • DSPs digital signal processors
  • FPGAs field programmable gate arrays
  • PLDs programmable logic devices
  • state machines gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • One or more processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc. , whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , compact disk ROM (CD-ROM) or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer. Combinations of the above should also be included within the scope of computer-readable media.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • CD-ROM compact disk ROM
  • magnetic disk storage magnetic disk storage or other magnetic storage devices
  • FIG. 1 is a diagram illustrating an LTE network architecture 100.
  • the LTE network architecture 100 may be referred to as an Evolved Packet System (EPS) 100.
  • the EPS 100 may include one or more user equipment (UE) 102, an Evolved UMTS Terrestrial Radio Access Network (E-UTRAN) 104, an Evolved Packet Core (EPC) 110, and an Operator’s Internet Protocol (IP) Services 122.
  • the EPS can interconnect with other access networks, but for simplicity those entities/interfaces are not shown.
  • the EPS provides packet-switched services, however, as those skilled in the art will readily appreciate, the various concepts presented throughout this disclosure may be extended to networks providing circuit-switched services.
  • the E-UTRAN includes the evolved Node B (eNB) 106 and other eNBs 108, and may include a Multicast Coordination Entity (MCE) 128.
  • the eNB 106 provides user and control planes protocol terminations toward the UE 102.
  • the eNB 106 may be connected to the other eNBs 108 via a backhaul (e. g. , an X2 interface) .
  • the MCE 128 allocates time/frequency radio resources for evolved Multimedia Broadcast Multicast Service (MBMS) (eMBMS) , and determines the radio configuration (e. g. , a modulation and coding scheme (MCS) ) for the eMBMS.
  • MBMS evolved Multimedia Broadcast Multicast Service
  • MCS modulation and coding scheme
  • the MCE 128 may be a separate entity or part of the eNB 106.
  • the eNB 106 may also be referred to as a base station, a Node B, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , or some other suitable terminology.
  • the eNB 106 provides an access point to the EPC 110 for a UE 102.
  • Examples of UEs 102 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e. g., MP3 player) , a camera, a game console, a tablet, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • the UE 102 may also be referred to by those skilled in the art as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • the eNB 106 is connected to the EPC 110.
  • the EPC 110 may include a Mobility Management Entity (MME) 112, a Home Subscriber Server (HSS) 120, other MMEs 114, a Serving Gateway 116, a Multimedia Broadcast Multicast Service (MBMS) Gateway 124, a Broadcast Multicast Service Center (BM-SC) 126, and a Packet Data Network (PDN) Gateway 118.
  • MME Mobility Management Entity
  • HSS Home Subscriber Server
  • MBMS Multimedia Broadcast Multicast Service
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the PDN Gateway 118 provides UE IP address allocation as well as other functions.
  • the PDN Gateway 118 and the BM-SC 126 are connected to the IP Services 122.
  • the IP Services 122 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service (PSS) , and/or other IP services.
  • the BM-SC 126 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 126 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a PLMN, and may be used to schedule and deliver MBMS transmissions.
  • the MBMS Gateway 124 may be used to distribute MBMS traffic to the eNBs (e. g. , 106, 108) belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related
  • FIG. 2 is a diagram illustrating an example of an access network 200 in an LTE network architecture.
  • the access network 200 is divided into a number of cellular regions (cells) 202.
  • One or more lower power class eNBs 208 may have cellular regions 210 that overlap with one or more of the cells 202.
  • the lower power class eNB 208 may be a femto cell (e. g. , home eNB (HeNB) ) , pico cell, micro cell, or remote radio head (RRH) .
  • the macro eNBs 204 are each assigned to a respective cell 202 and are configured to provide an access point to the EPC 110 for all the UEs 206 in the cells 202.
  • the eNBs 204 are responsible for all radio related functions including radio bearer control, admission control, mobility control, scheduling, security, and connectivity to the serving gateway 116.
  • An eNB may support one or multiple (e. g. , three) cells (also referred to as a sectors) .
  • the term “cell” can refer to the smallest coverage area of an eNB and/or an eNB subsystem serving a particular coverage area. Further, the terms “eNB, ” “base station, ” and “cell” may be used interchangeably herein.
  • the modulation and multiple access scheme employed by the access network 200 may vary depending on the particular telecommunications standard being deployed.
  • OFDM is used on the DL
  • SC-FDMA is used on the UL to support both frequency division duplex (FDD) and time division duplex (TDD) .
  • FDD frequency division duplex
  • TDD time division duplex
  • the various concepts presented herein are well suited for LTE applications. However, these concepts may be readily extended to other telecommunication standards employing other modulation and multiple access techniques. By way of example, these concepts may be extended to Evolution-Data Optimized (EV-DO) or Ultra Mobile Broadband (UMB) .
  • EV-DO Evolution-Data Optimized
  • UMB Ultra Mobile Broadband
  • EV-DO and UMB are air interface standards promulgated by the 3rd Generation Partnership Project 2 (3GPP2) as part of the CDMA2000 family of standards and employs CDMA to provide broadband Internet access to mobile stations. These concepts may also be extended to Universal Terrestrial Radio Access (UTRA) employing Wideband-CDMA (W-CDMA) and other variants of CDMA, such as TD-SCDMA; Global System for Mobile Communications (GSM) employing TDMA; and Evolved UTRA (E-UTRA) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, and Flash-OFDM employing OFDMA.
  • UTRA Universal Terrestrial Radio Access
  • W-CDMA Wideband-CDMA
  • GSM Global System for Mobile Communications
  • E-UTRA Evolved UTRA
  • IEEE 802.11 Wi-Fi
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM employing OFDMA.
  • UTRA, E-UTRA, UMTS, LTE and GSM are described in documents from the 3GPP organization.
  • CDMA2000 and UMB are described in documents from the 3GPP2 organization.
  • the actual wireless communication standard and the multiple access technology employed will depend on the specific application and the overall design constraints imposed on the system.
  • the eNBs 204 may have multiple antennas supporting MIMO technology.
  • MIMO technology enables the eNBs 204 to exploit the spatial domain to support spatial multiplexing, beamforming, and transmit diversity.
  • Spatial multiplexing may be used to transmit different streams of data simultaneously on the same frequency.
  • the data streams may be transmitted to a single UE 206 to increase the data rate or to multiple UEs 206 to increase the overall system capacity. This is achieved by spatially precoding each data stream (i. e. , applying a scaling of an amplitude and a phase) and then transmitting each spatially precoded stream through multiple transmit antennas on the DL.
  • the spatially precoded data streams arrive at the UE (s) 206 with different spatial signatures, which enables each of the UE (s) 206 to recover the one or more data streams destined for that UE 206.
  • each UE 206 transmits a spatially precoded data stream, which enables the eNB 204 to identify the source of each spatially precoded data stream.
  • Beamforming may be used to focus the transmission energy in one or more directions. This may be achieved by spatially precoding the data for transmission through multiple antennas. To achieve good coverage at the edges of the cell, a single stream beamforming transmission may be used in combination with transmit diversity.
  • OFDM is a spread-spectrum technique that modulates data over a number of subcarriers within an OFDM symbol.
  • the subcarriers are spaced apart at precise frequencies. The spacing provides “orthogonality” that enables a receiver to recover the data from the subcarriers.
  • a guard interval e. g. , cyclic prefix
  • the UL may use SC-FDMA in the form of a DFT-spread OFDM signal to compensate for high peak-to-average power ratio (PAPR) .
  • PAPR peak-to-average power ratio
  • FIG. 3 is a diagram 300 illustrating an example of a DL frame structure in LTE.
  • a frame (10 ms) may be divided into 10 equally sized subframes. Each subframe may include two consecutive time slots.
  • a resource grid may be used to represent two time slots, each time slot including a resource block.
  • the resource grid is divided into multiple resource elements.
  • a resource block contains 12 consecutive subcarriers in the frequency domain and 7 consecutive OFDM symbols in the time domain, for a total of 84 resource elements.
  • For an extended cyclic prefix a resource block contains 12 consecutive subcarriers in the frequency domain and 6 consecutive OFDM symbols in the time domain, for a total of 72 resource elements.
  • Some of the resource elements, indicated as R 302, 304, include DL reference signals (DL-RS) .
  • the DL-RS include Cell-specific RS (CRS) (also sometimes called common RS) 302 and UE-specific RS (UE-RS) 304.
  • UE-RS 304 are transmitted on the resource blocks upon which the corresponding physical DL shared channel (PDSCH) is mapped.
  • PDSCH physical DL shared channel
  • the number of bits carried by each resource element depends on the modulation scheme. Thus, the more resource blocks that a UE receives and the higher the modulation scheme, the higher the data rate for the UE.
  • FIG. 4 is a diagram 400 illustrating an example of an UL frame structure in LTE.
  • the available resource blocks for the UL may be partitioned into a data section and a control section.
  • the control section may be formed at the two edges of the system bandwidth and may have a configurable size.
  • the resource blocks in the control section may be assigned to UEs for transmission of control information.
  • the data section may include all resource blocks not included in the control section.
  • the UL frame structure results in the data section including contiguous subcarriers, which may allow a single UE to be assigned all of the contiguous subcarriers in the data section.
  • a UE may be assigned resource blocks 410a, 410b in the control section to transmit control information to an eNB.
  • the UE may also be assigned resource blocks 420a, 420b in the data section to transmit data to the eNB.
  • the UE may transmit control information in a physical UL control channel (PUCCH) on the assigned resource blocks in the control section.
  • the UE may transmit data or both data and control information in a physical UL shared channel (PUSCH) on the assigned resource blocks in the data section.
  • a UL transmission may span both slots of a subframe and may hop across frequency.
  • a set of resource blocks may be used to perform initial system access and achieve UL synchronization in a physical random access channel (PRACH) 430.
  • the PRACH 430 carries a random sequence and cannot carry any UL data/signaling.
  • Each random access preamble occupies a bandwidth corresponding to six consecutive resource blocks.
  • the starting frequency is specified by the network. That is, the transmission of the random access preamble is restricted to certain time and frequency resources. There is no frequency hopping for the PRACH.
  • the PRACH attempt is carried in a single subframe (1 ms) or in a sequence of few contiguous subframes and a UE can make a single PRACH attempt per frame (10 ms).
  • FIG. 5 is a diagram 500 illustrating an example of a radio protocol architecture for the user and control planes in LTE.
  • the radio protocol architecture for the UE and the eNB is shown with three layers: Layer 1, Layer 2, and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various physical layer signal processing functions.
  • the L1 layer will be referred to herein as the physical layer 506.
  • Layer 2 (L2 layer) 508 is above the physical layer 506 and is responsible for the link between the UE and eNB over the physical layer 506.
  • the L2 layer 508 includes a media access control (MAC) sublayer 510, a radio link control (RLC) sublayer 512, and a packet data convergence protocol (PDCP) 514 sublayer, which are terminated at the eNB on the network side.
  • MAC media access control
  • RLC radio link control
  • PDCP packet data convergence protocol
  • the UE may have several upper layers above the L2 layer 508 including a network layer (e. g. , IP layer) that is terminated at the PDN gateway 118 on the network side, and an application layer that is terminated at the other end of the connection (e. g. , far end UE, server, etc. ) .
  • the PDCP sublayer 514 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 514 also provides header compression for upper layer data packets to reduce radio transmission overhead, security by ciphering the data packets, and handover support for UEs between eNBs.
  • the RLC sublayer 512 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to hybrid automatic repeat request (HARQ) .
  • the MAC sublayer 510 provides multiplexing between logical and transport channels.
  • the MAC sublayer 510 is also responsible for allocating the various radio resources (e. g., resource blocks) in one cell among the UEs.
  • the MAC sublayer 510 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and eNB is substantially the same for the physical layer 506 and the L2 layer 508 with the exception that there is no header compression function for the control plane.
  • the control plane also includes a radio resource control (RRC) sublayer 516 in Layer 3 (L3 layer) .
  • the RRC sublayer 516 is responsible for obtaining radio resources (e. g., radio bearers) and for configuring the lower layers using RRC signaling between the eNB and the UE.
  • FIG. 6 is a block diagram of an eNB 610 in communication with a UE 650 in an access network.
  • upper layer packets from the core network are provided to a controller/processor 675.
  • the controller/processor 675 implements the functionality of the L2 layer.
  • the controller/processor 675 provides header compression, ciphering, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocations to the UE 650 based on various priority metrics.
  • the controller/processor 675 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the UE 650.
  • the transmit (TX) processor 616 implements various signal processing functions for the L1 layer (i. e. , physical layer) .
  • the signal processing functions include coding and interleaving to facilitate forward error correction (FEC) at the UE 650 and mapping to signal constellations based on various modulation schemes (e. g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • FEC forward error correction
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • the coded and modulated symbols are then split into parallel streams. Each stream is then mapped to an OFDM subcarrier, multiplexed with a reference signal (e. g.
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator 674 may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 650.
  • Each spatial stream may then be provided to a different antenna 620 via a separate transmitter 618TX.
  • Each transmitter 618TX may modulate an RF carrier with a respective spatial stream for transmission.
  • each receiver 654RX receives a signal through its respective antenna 652.
  • Each receiver 654RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 656.
  • the RX processor 656 implements various signal processing functions of the L1 layer.
  • the RX processor 656 may perform spatial processing on the information to recover any spatial streams destined for the UE 650. If multiple spatial streams are destined for the UE 650, they may be combined by the RX processor 656 into a single OFDM symbol stream.
  • the RX processor 656 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) .
  • FFT Fast Fourier Transform
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the eNB 610. These soft decisions may be based on channel estimates computed by the channel estimator 658.
  • the soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the eNB 610 on the physical channel.
  • the data and control signals are then provided to the controller/processor 659.
  • the controller/processor 659 implements the L2 layer.
  • the controller/processor can be associated with a memory 660 that stores program codes and data.
  • the memory 660 may be referred to as a computer-readable medium.
  • the controller/processor 659 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover upper layer packets from the core network.
  • the upper layer packets are then provided to a data sink 662, which represents all the protocol layers above the L2 layer.
  • Various control signals may also be provided to the data sink 662 for L3 processing.
  • the controller/processor 659 is also responsible for error detection using an acknowledgement (ACK) and/or negative acknowledgement (NACK) protocol to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • a data source 667 is used to provide upper layer packets to the controller/processor 659.
  • the data source 667 represents all protocol layers above the L2 layer.
  • the controller/processor 659 implements the L2 layer for the user plane and the control plane by providing header compression, ciphering, packet segmentation and reordering, and multiplexing between logical and transport channels based on radio resource allocations by the eNB 610.
  • the controller/processor 659 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the eNB 610.
  • Channel estimates derived by a channel estimator 658 from a reference signal or feedback transmitted by the eNB 610 may be used by the TX processor 668 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the TX processor 668 may be provided to different antenna 652 via separate transmitters 654TX. Each transmitter 654TX may modulate an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the eNB 610 in a manner similar to that described in connection with the receiver function at the UE 650.
  • Each receiver 618RX receives a signal through its respective antenna 620.
  • Each receiver 618RX recovers information modulated onto an RF carrier and provides the information to a RX processor 670.
  • the RX processor 670 may implement the L1 layer.
  • the controller/processor 675 implements the L2 layer.
  • the controller/processor 675 can be associated with a memory 676 that stores program codes and data.
  • the memory 676 may be referred to as a computer-readable medium.
  • the controller/processor 675 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover upper layer packets from the UE 650.
  • Upper layer packets from the controller/processor 675 may be provided to the core network.
  • the controller/processor 675 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • FIG. 7 is a diagram 700 illustrating beamforming between an eNB and a UE.
  • a UE 712 communicates with an eNB 710.
  • the eNB 710 has a vertical antenna array 720.
  • the vertical antenna array 720 has a first antenna column 721 and a second antenna column 722.
  • the first antenna column 721 has a first antenna 723 and a second antenna 725.
  • the second antenna column 722 has a third antenna 724 and fourth antenna 726.
  • the antennas 723, 724, 725, 726 transmit signal streams 733, 734, 735, 736 to the UE 712.
  • the antennas 723, 724, 725, 726 transmit signal streams 743, 744, 745, 746 to the UE 712.
  • the UE 712 receives the streams 733, 735, 734, 736 of the first beamforming layer 730 at a receiver 714.
  • the streams 733, 735, 734, 736 may interfere with each other.
  • the UE 712 receives the streams 743, 745, 744, 746 of the second beamforming layer 740 at a receiver 716. Similarly, the streams 743, 745, 744, 746 may interfere with each other.
  • the receiver 714 and the receiver 716 can measure the channel elements of the streams 733, 735, 734, 736 and the streams 743, 745, 744, 746. Based on the measurements, the UE 712 can transmit a precoding matrix indicator (PMI) 760 back to the eNB 710.
  • PMI precoding matrix indicator
  • the eNB 710 can precode the signal streams to be transmitted by the vertical antenna array 720 and, thus, use beamforming techniques to reduce interference among the streams 733, 735, 734, 736 and among the streams 743, 745, 744, 746.
  • the eNB 710 can precode the signals such that the streams 733, 735, 734, 736 interfere constructively, rather than destructively, with each other at the receiver 714 of the UE 712.
  • the eNB 710 can precode the signals such that the streams 743, 745, 744, 746 interfere constructively, rather than destructively, with each other at the receiver 716 of the UE 712.
  • the eNB 710 and the UE 712 each can have a copy of the same codebook.
  • the cookbook has one or more codewords each indicating a precoding configuration. Based on the channel element measurements, the UE 712 can select one or more precoding configurations to be used at the eNB 710 for precoding signals to be transmitted to the UE 712. The UE 712 selects the one or more codewords from the codebook that correspond to the one or more precoding configurations. Each codeword can be indicated or represented by one or more bits in a unique bit combination. For example, a first codeword may be represented by “01, ” and a second codeword may be presented by “10. ” Indications (e. g.
  • a bit combination or a value) of the selected codeword (s) can be included in the PMI 760 and transmitted to the eNB 710.
  • the eNB 710 can extract the bit (s) representing the codeword (s) and, accordingly, select the corresponding codeword (s) from the codebook at the eNB 710.
  • the eNB 710 can precode the signals to be transmitted to the UE 712 using the precoding configuration (s) indicated by the codewords (s) .
  • the precoding configurations used by the eNB 710 may only address the interference at the azimuth dimension of the three-dimensional (3D) multipath propagation. For example, the precoding configurations may only attempt to reduce azimuth dimension interference such as the interference among the signal streams 733, 734, 735, 736 at the receiver 714.
  • the codewords of the codebook used by the UE 712 and the eNB 710 accordingly only indicate such precoding configurations.
  • the azimuth dimension for example, is within the plane that is perpendicular to a long axis of the vertical antenna array 720, of the first antenna column 721, or of the second antenna column 722.
  • the precoding configurations used by the eNB 710 may implement dynamic beam steering in a vertical dimension (or an elevation dimension) .
  • the elevation dimension may be parallel to the long axis of the vertical antenna array 720, of the first antenna column 721, or of the second antenna column 722.
  • Substantial capacity improvement and significant gain of interference avoidance can be achieved by exploiting the additional elevation dimension inherent in a MIMO wireless system.
  • the precoding configurations may reduce elevation dimension interference among the signal streams 733, 734, 735, 736 at the receiver 714.
  • FIG. 8 is a diagram 800 illustrating a vertical antenna array.
  • the vertical antenna array 720 has the first antenna column 721 and the second antenna column 722.
  • the first antenna column has the first antenna 723 and the second antenna 725.
  • the second antenna column 722 has the third antenna 724 and the fourth antenna 726.
  • the first antenna column 721 and the second antenna column 722 are orthogonal to each other.
  • the first antenna 723 and the second antenna 725 are positive 45-degree polarized.
  • the third antenna 724 and the fourth antenna 726 are negative 45-degree polarized.
  • the eNB 710 may use the first, second, third, and fourth antennas 723, 725, 724, 726 of the vertical antenna array 720 to transmit one or more signals to the UE 712 in the first beamforming layer 730.
  • the eNB 710 may use the first, second, third, and fourth antennas 723, 725, 724, 726 of the vertical antenna array 720 to transmit to transmit another one or more signals to the UE 712 in the second beamforming layer 740.
  • the eNB 710 may apply, in the first beamforming layer 730, at least one of a co-phasing adjustment ( ⁇ 1 ) between the first antenna and the second antenna, a co-phasing adjustment ( ⁇ 1 ) between the third antenna and the fourth antenna, and a co-phasing adjustment ( ⁇ 1 ) between the first antenna column and the second antenna column.
  • the eNB 710 may apply, in the second beamforming layer 740, at least one of a co-phasing adjustment ( ⁇ 2 ) between the first antenna and the second antenna, a co-phasing adjustment ( ⁇ 2 ) between the third antenna and the fourth antenna, and a co-phasing adjustment ( ⁇ 2 ) between the first antenna column and the second antenna column.
  • the eNB 710 and the UE 712 each may have a codebook having codewords indicating one or more of the ⁇ 1 , ⁇ 1 , ⁇ 1 , ⁇ 2 , ⁇ 2 , and ⁇ 2 . Based on the channel element measurements, the UE 712 select a codeword and transmit a PMI 760 indicating the codeword to the eNB 710 to inform the eNB 710 a precoding configuration to use.
  • a codeword (W) for the first beamforming layer 730 can be represented as:
  • a codeword (W) for the second beamforming layer 740 can be represented as:
  • a codeword (W) for two beamforming layers (e. g. , the first beamforming layer 730 and the second beamforming layer 740) can be represented as:
  • each of the co-phasing adjustments ⁇ 1 , ⁇ 1 , ⁇ 1 , ⁇ 2 , ⁇ 2 , and ⁇ 2 can be selected from K-ary Phase-shift keying (PSK) alphabets such as 4-ary PSK (QPSK) , 8-ary PSK, and 16-ary PSK.
  • K equals to 2 j , where j is an integer greater than 1. That is, the ⁇ 1 , ⁇ 1 , ⁇ 1 , ⁇ 2 , ⁇ 2 , and ⁇ 2 each can be selected from e j2 ⁇ m/K , where m is an integer greater than -1 and less than K.
  • the ⁇ 1 , ⁇ 1 , ⁇ 1 , ⁇ 2 , ⁇ 2 , and ⁇ 2 each can be selected from 1, e j ⁇ /2 , -1, and e j ⁇ 3/2 .
  • the UE 712 may use a PMI having 6 bits to represent a codeword in the QPSK codebook.
  • the eNB 710 can use a set of precoding configurations to apply the same co-phasing adjustment to ⁇ 1 and ⁇ 1 in the first beamforming layer 730.
  • ⁇ 1 ⁇ 1 .
  • a codeword W (I) (1) can be represented as:
  • ⁇ 1 and ⁇ 1 each can be selected from QPSK alphabets 1, e j ⁇ /2 , -1, and e j ⁇ 3/2 .
  • ⁇ 1 can be e j ⁇ m/2 , m being 0, 1, 2, or 3.
  • ⁇ 1 can bee j ⁇ n/2 , m being 0, 1, 2, or 3.
  • the codeword in this example can be represented as
  • n 0, 1, 2, or 3.
  • an elevation PMI i. e. , a PMI used to reduce interference in the elevation dimension
  • 4 bits i. e. , 16 different values
  • a codewordW (I a ) (2) can be represented as:
  • ⁇ 1 , ⁇ 1 , ⁇ 2 , and ⁇ 2 each can be selected from QPSK alphabets 1, e j ⁇ /2 , -1, and e j ⁇ 3/2 .
  • ⁇ 1 and ⁇ 1 can be e j ⁇ m/2 , m being 0, 1, 2, or 3.
  • ⁇ 2 and ⁇ 2 can be e j ⁇ m′/2 , m’ being 0, 1, 2, or 3.
  • ⁇ 1 and - ⁇ 2 can be e j ⁇ n/2 , n being 0, 1, 2, or 3.
  • the codeword in this example can be represented as
  • n 0, 1, 2, or 3
  • n 0, 1, 2, or 3.
  • the elevation PMI can use 5 bits (i. e. , 32 different values) to indicate the 32 different codewords.
  • Table (2) below illustrates one exemplary representation.
  • ⁇ 1 * is a complex conjugate of ⁇ 1 . Accordingly, a codeword W (I b ) (2) can be represented as:
  • ⁇ 1 , ⁇ 1 , ⁇ 2 , and ⁇ 2 each can be selected from QPSK alphabets 1, e j ⁇ /2 , -1, and e j ⁇ 3/2 .
  • ⁇ 1 and ⁇ 1 can be e j ⁇ m/2 , m being 0, 1, 2, or 3.
  • ⁇ 2 and ⁇ 2 can be e j ⁇ m′/2 , m’ being 0, 1, 2, or 3.
  • ⁇ 1 can be e j ⁇ n/2 , n being 0, 1, 2, or 3.
  • ⁇ 2 can be e j ⁇ n′/2 , n’ being 0, 1, 2, or 3.
  • the codeword in this example can be represented as
  • n 0, 1, 2, or 3
  • n 0, 1, 2, or 3
  • n’ 0, 1, 2, or 3.
  • the elevation PMI can use 5 bits (i. e. , 32 different values) to indicate the 32 different codewords.
  • Table (3) below illustrates one exemplary representation.
  • a codeword down selection may be applied to codewords W (I a ) (2) andW (I b ) (2) for 2-layer reporting.
  • the eNB 710 can use a set of precoding configurations for the first beamforming layer 730 to apply co-phasing adjustments to the first, second, third, and fourth antennas 723, 725, 724, 726 in a manner such that a phase difference between ⁇ 1 and ⁇ 1 is not greater than e j ⁇ /2 .
  • a codeword W (II) (1) can be represented as:
  • ⁇ 1 , ⁇ 1 , and ⁇ 1 each can be selected from QPSK alphabets 1, e j ⁇ /2 , -1, and e j ⁇ 3/2 .
  • ⁇ 1 can be e j ⁇ m/2 , m being 0, 1, 2, or 3.
  • ⁇ 1 can bee j ⁇ n/2 , m being 0, 1, 2, or 3. Because in this system configuration the phase difference between ⁇ 1 and ⁇ 1 is not greater than e j ⁇ /2 , ⁇ 1 is e j_ ⁇ /2 ⁇ 1 .
  • the codeword in this example can be represented as
  • n 0, 1, 2, or 3
  • n 0, 1, 2, or 3.
  • the codeword can be represented by two PMIs.
  • the first PMI (i 1 ) may have two bits indicating values 0 to 3.
  • the second PMI (i 2 ) may have four bits indicating values 0 to 15.
  • the combination of the first PMI and the second PMI can represent a specific codeword.
  • the UE 712 may initially transmits the first PMI to the eNB 710. Subsequently, the UE 712 transmits the second PMI to the eNB 710. When the UE 712 desire to change the precoding configurations at the eNB 710, the UE 712 may determine whether the first PMI should be changed. If not, the UE 712 may choose not to transmit the first PMI again, and only to transmit the second PMI.
  • the eNB 710 upon receiving the second PMI, by default may use the first PMI received previously from the UE 712 when a new first PMI has not been received from the UE 712. Table (4) illustrates one exemplary representation of the two PMIs.
  • i 1 0, 1, 2 or 3
  • a codeword W (II a ) (2) can be represented as:
  • ⁇ 1 , ⁇ 1 , ⁇ 1 , ⁇ 2 , ⁇ 2 , and ⁇ 2 each can be selected from QPSK alphabets 1, e j ⁇ /2 , -1, and e j ⁇ 3/2 .
  • ⁇ 1 and ⁇ 1 can be e j ⁇ m/2 , m being 0, 1, 2, or 3.
  • ⁇ 2 and ⁇ 2 can be e j ⁇ m′/2 , m’ being 0, 1, 2, or 3.
  • ⁇ 1 and - ⁇ 2 can be e j ⁇ n/2 , n being 0, 1, 2, or 3.
  • the codeword in this example can be represented as
  • n 0, 1, 2, or 3
  • n 0, 1, 2, or 3.
  • the codeword W (II a ) (2) can be represented by two PMIs.
  • the first PMI (i 1 ) may have two bits indicating values 0 to 3.
  • the second PMI (i 2 ) representing W (II a ) (2) in combination with the second PMIs representing W (II b ) (2) and W (II c ) (2) as will be described infra, may use four bits to indicate values 0 to 15.
  • Table (5) illustrates one exemplary representation of the two PMIs.
  • i 1 0, 1, 2 or 3
  • a codeword W (II b ) (2) can be represented as:
  • ⁇ 1 , ⁇ 1 , ⁇ 1 , ⁇ 2 , ⁇ 2 , and ⁇ 2 each can be selected from QPSK alphabets 1, e j ⁇ /2 , -1, and e j ⁇ 3/2 .
  • ⁇ 1 and ⁇ 2 can be e j ⁇ m/2 , m being 0, 1, 2, or 3.
  • ⁇ 1 and ⁇ 2 can be e j ⁇ m′/2 , m’ being 0, 1, 2, or 3.
  • ⁇ 1 can be e j ⁇ n/2 , n being 0, 1, 2, or 3.
  • ⁇ 2 can be -e j ⁇ n/2 , n being 0, 1, 2, or 3.
  • the codeword in this example can be represented as
  • n 0, 1, 2, or 3
  • n 0, 1, 2, or 3.
  • the codeword W (II b ) (2) can be represented by two PMIs.
  • the first PMI (i 1 ) may have two bits indicating values 0 to 3.
  • the second PMI (i 2 ) representing W (II b ) (2) in combination with the second PMIs representing W (II a ) (2) and W (II c ) (2) , may use four bits to indicate values 0 to 15.
  • Table (6) illustrates one exemplary representation of the two PMIs.
  • i 1 0, 1, 2 or 3
  • a codeword W (II c ) (2) can be represented as:
  • ⁇ 1 , ⁇ 1 , ⁇ 1 , ⁇ 2 , ⁇ 2 , and ⁇ 2 each can be selected from QPSK alphabets 1, e j ⁇ /2 , -1, and e j ⁇ 3/2 .
  • ⁇ 1 and ⁇ 2 can be e j ⁇ m/2 , m being 0, 1, 2, or 3.
  • ⁇ 1 and ⁇ 2 can be e j ⁇ m′/2 , m’ being 0, 1, 2, or 3.
  • ⁇ 1 can be e j ⁇ n/2
  • n being 0, 1, 2, or 3.
  • ⁇ 2 can be e j ⁇ n′/2 , n’ being 0, 1, 2, or 3.
  • the codeword in this example can be represented as:
  • n 0, 1, 2, or 3
  • n 0, 1, 2, or 3
  • n’ 0, 1, 2, or 3.
  • the codeword W (II c ) (2) can be represented by two PMIs.
  • the first PMI (i 1 ) may have two bits indicating values 0 to 3.
  • the second PMI (i 2 ) representing W (II c ) (2) in combination with the second PMIs representing W (II a ) (2) and W (II b ) (2) , may use four bits to indicate values 0 to 15.
  • Table (7) illustrates one exemplary representation of the two PMIs.
  • i 1 0, 1, 2 or 3
  • the UE 712 and the eNB 710 can use a dual codebook structure to organize the codewords.
  • the UE 712 can use two PMIs, i. e. , a first PMI and a second PMI, to indicate a precoding configuration.
  • the first PMI corresponds to a first codeword portion W 1 (v)
  • the second PMI corresponds to a second codeword portion W 2 (v) . vindicates the number of beamforming layers to which the codeword is applied.
  • the complete codeword can be represented as
  • the first codeword portion can be represented as
  • a 1 , ..., and a Nb are a pre-selected number (i. e. , N b ) of possible values for ⁇ 1 , ⁇ 2 , ⁇ 1 , and ⁇ 2 .
  • the second codeword portion can be represented as
  • N u is the number of beamforming layers to which the codeword is applied to
  • K 1Nu represents a column number of a size N u (i. e. , N u ⁇ N u ) identity matrix
  • e K represents the K th column of the N u ⁇ N u identity matrix.
  • K is an integer not less than 0 and not greater than N u .
  • N u is the number of beamforming layers to which the codeword is applied to
  • K 2Nu represents a column number of a size N u (i. e. , N u ⁇ N u ) identity matrix
  • e K represents the K th column of the N u ⁇ N u identity matrix.
  • K is an integer not less than 0 and not greater than N u .
  • N u is the number of beamforming layers to which the codeword is applied to
  • ⁇ sK is the co-phasing adjustment between the first antenna column 721 and the second antenna column 722 for the K th beamforming layer.
  • W (II) (1) can be represented as W (II) 1 (1) ⁇ W (II) 2 (1) .
  • W (II a ) (2) can be represented as W (II a ) 1 (2) ⁇ W (II a ) 2 (2) .
  • W (II b ) (2) can be represented as W (II b ) 2 (1) ⁇ W (II b ) 2 (2) .
  • W (II c ) (2) can be represented as W (II c ) 1 (2) ⁇ W (II c ) 2 (2) .
  • N b can be selected as 2.
  • the first PMI (i 1 ) having a value 0 can represent the below codeword:
  • the first PMI (i 1 ) having a value 1 can represent the below codeword:
  • the first PMI (i 1 ) having a value 2 can represent the below codeword:
  • the first PMI (i 1 ) having a value 3 can represent the below codeword:
  • Each of the W (II) 1 (1) , W (II a ) 1 (2) , W (II b ) 1 (2) , and W (II c ) 1 (2) can be selected from the above four codewords and represented by the corresponding first PMI (i 1 ) value.
  • Table (8) illustrates one exemplary representation of W (II) 2 (1) by the second PMI (i 2 ) values.
  • Table (9) illustrates one exemplary representation of W (II a ) 2 (2) by the second PMI (i 2 ) values.
  • Table (10) below illustrates one exemplary representation of W (II b ) 2 (2) by the second PMI (i 2 ) values.
  • Table (11) illustrates one exemplary representation of W (II c ) 2 (2) by the second PMI (i 2 ) values.
  • FIG. 9 is a flow chart 900 of a method of wireless communication.
  • the method may be performed by a UE (e. g. , the UE 712, the apparatus 1002/1002′) .
  • the UE communicates with a base station having a vertical antenna array.
  • the eNB 710 has the vertical antenna array 720.
  • the UE receives first signals transmitted by the vertical antenna array from the base station.
  • the UE 712 receives the streams 733, 735, 734, 736 and the streams 743, 745, 744, 746 from the eNB 710.
  • the UE selects a codeword from a codebook optimized to reduce vertical interference of the first signals.
  • the codeword indicates beamforming parameters to be used by the base station to precode second signals to be transmitted by the vertical antenna array to the UE.
  • the UE 712 can select one or more of the codewords W (I) (1) , W (I a ) (2) , W (I b ) (2) , W (II) (1) , W (II a ) (2) , W (II b ) (2) , and W (II c ) (2) .
  • the UE transmits an indicator of the codeword to the base station.
  • the UE 712 can transmit the PMI 760 to the eNB 710.
  • the vertical antenna array has a first antenna column and a second antenna column.
  • the first antenna column has a first antenna and a second antenna.
  • the second antenna column has a third antenna and a fourth antenna.
  • the first antenna column and the second antenna column are orthogonal to each other.
  • the first antenna and the second antenna are positive 45-degree polarized.
  • the third antenna and the fourth antenna are negative 45-degree polarized.
  • FIG. 7 illustrates an exemplary vertical antenna array.
  • the codeword has a first set of indicators indicating beamforming parameters used in a first beamforming layer.
  • the first set of indicators includes (a) a first indicator ( ⁇ 1 ) indicating a co-phasing adjustment between the first antenna and the second antenna as well as indicating a co-phasing adjustment between the third antenna and the fourth antenna and (b) a second indicator ( ⁇ 1 ) indicating a co-phasing adjustment between the first antenna column and the second antenna column.
  • ⁇ 1 and ⁇ 1 each are selected from K-ary phase-shift keying (PSK) alphabets, Kbeing 2 j , j being an integer greater than 1.
  • PSK phase-shift keying
  • ⁇ 1 indicates a co-phasing adjustment of e j2 ⁇ m/K , m being an integer greater than -1 and less than K.
  • ⁇ 1 indicates a co-phasing adjustment of e j2 ⁇ n/K , n being an integer greater than -1 and less than K.
  • the codeword has a second set of indicators indicating beamforming parameters used in a second beamforming layer, the second set of indicators including (a) a third indicator ( ⁇ 2 ) indicating a co-phasing adjustment between the first antenna and the second antenna as well as indicating a co-phasing adjustment between the third antenna and the fourth antenna and (b) a fourth indicator ( ⁇ 2 ) indicating a co-phasing adjustment between the first antenna column and the second antenna column.
  • ⁇ 2 and ⁇ 2 each are selected from the K-ary PSK alphabets.
  • the codeword (W) is represented as
  • ⁇ 2 indicates a co-phasing adjustment of e j2 ⁇ m′/K , m’ being an integer greater than -1 and less than K.
  • ⁇ 2 indicates a co-phasing adjustment of e j2 ⁇ n′/K , n’ being an integer greater than -1 and less than K.
  • the codeword (W) is represented as
  • ⁇ 1 * is a complex conjugate of ⁇ 1 .
  • the UE selects a codeword from another codebook optimized to reduce vertical interference of the first signals.
  • the codeword has a first set of indicators indicating beamforming parameters used in the first beamforming layer.
  • the first set of indicators includes (a) a first indicator ( ⁇ 1 ) indicating a co-phasing adjustment between the first antenna and the second antenna as well as indicating a co-phasing adjustment between the third antenna and the fourth antenna, (b) a second indicator ( ⁇ 1 ) indicating a co-phasing adjustment between the third antenna and the fourth antenna, and (c) a third indicator ( ⁇ 1 ) indicating a co-phasing adjustment between the first antenna column and the second antenna column.
  • ⁇ 1 , ⁇ 1 , and ⁇ 1 each are selected from K-ary phase-shift keying (PSK) alphabets, Kbeing 2 j , j being an integer greater than 1.
  • PSK phase-shift keying
  • the codebook is configured based on that a phase difference between ⁇ 1 and ⁇ 1 is not greater than e j ⁇ /2 .
  • the codeword (W) is represented as
  • ⁇ 1 indicates a co-phasing adjustment of e j2 ⁇ m/K , m being an integer greater than -1 and less than K.
  • ⁇ 1 indicates a co-phasing adjustment of e j2 ⁇ l/K , l being an integer greater than -1 and less than K.
  • ⁇ 1 indicates a co-phasing adjustment of e j2 ⁇ n/K , n being an integer greater than -1 and less than K.
  • the codeword has a second set of indicators indicating beamforming parameters used in the second beamforming layer.
  • the second set of indicators includes (a) a fourth indicator ( ⁇ 2 ) indicating a co-phasing adjustment between the first antenna and the second antenna as well as indicating a co-phasing adjustment between the third antenna and the fourth antenna, (b) a fifth indicator ( ⁇ 2 ) indicating a co-phasing adjustment between the third antenna and the fourth antenna, and (c) a sixth indicator ( ⁇ 2 ) indicating a co-phasing adjustment between the first antenna column and the second antenna column.
  • ⁇ 2 , ⁇ 2 , and ⁇ 2 each are selected from the K-ary PSK alphabets.
  • the codebook is further configured based on that a phase difference between ⁇ 2 and ⁇ 2 is not greater than e j ⁇ /2 .
  • the codeword (W) is represented as
  • ⁇ 2 indicates a co-phasing adjustment of e j2 ⁇ m′/K , m’ being an integer greater than -1 and less than K.
  • ⁇ 2 indicates a co-phasing adjustment of e j2 ⁇ l′/K , l’ being an integer greater than -1 and less than K.
  • ⁇ 2 indicates a co-phasing adjustment of e j2 ⁇ n′/K , n’ being an integer greater than -1 and less than K.
  • FIG. 10 is a conceptual data flow diagram 1000 illustrating the data flow between different modules/means/components in an exemplary apparatus 1002.
  • the apparatus may be a UE.
  • the apparatus 1002 includes a reception module 1004, a PMI control module 1006, and a transmission module 1010.
  • the apparatus 1002 communicates with an eNB 1050 having a vertical antenna array.
  • the reception module 1004 may be configured to receive first signals transmitted by the vertical antenna array from the eNB 1050.
  • the PMI control module 1006 may be configured to select a codeword from a codebook optimized to reduce vertical interference of the first signals.
  • the codeword indicates beamforming parameters to be used by the eNB 1050 to precode second signals to be transmitted by the vertical antenna array to the apparatus 1002.
  • the codebook may be stored at the PMI control module 1006.
  • the PMI control module 1006 and/or the transmission module 1010 may be configured to transmit an indicator of the codeword to the eNB 1050.
  • the vertical antenna array has a first antenna column and a second antenna column.
  • the first antenna column has a first antenna and a second antenna.
  • the second antenna column has a third antenna and a fourth antenna.
  • the first antenna column and the second antenna column are orthogonal to each other.
  • the first antenna and the second antenna are positive 45-degree polarized.
  • the third antenna and the fourth antenna are negative 45-degree polarized.
  • the apparatus may include additional modules that perform each of the blocks of the algorithm in the aforementioned flow charts of FIG. 9. As such, each block in the aforementioned flow charts of FIG. 9 may be performed by a module and the apparatus may include one or more of those modules.
  • the modules may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • FIG. 11 is a diagram 1100 illustrating an example of a hardware implementation for an apparatus 1002′employing a processing system 1114.
  • the processing system 1114 may be implemented with a bus architecture, represented generally by the bus 1124.
  • the bus 1124 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1114 and the overall design constraints.
  • the bus 1124 links together various circuits including one or more processors and/or hardware modules, represented by the processor 1104, the modules 1004, 1006, 1010, and the computer-readable medium /memory 1106.
  • the bus 1124 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
  • the processing system 1114 may be coupled to a transceiver 1110.
  • the transceiver 1110 is coupled to one or more antennas 1120.
  • the transceiver 1110 provides a means for communicating with various other apparatus over a transmission medium.
  • the transceiver 1110 receives a signal from the one or more antennas 1120, extracts information from the received signal, and provides the extracted information to the processing system 1114, specifically the reception module 1004.
  • the transceiver 1110 receives information from the processing system 1114, specifically the transmission module 1010, and based on the received information, generates a signal to be applied to the one or more antennas 1120.
  • the processing system 1114 includes a processor 1104 coupled to a computer-readable medium /memory 1106.
  • the processor 1104 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1106.
  • the software when executed by the processor 1104, causes the processing system 1114 to perform the various functions described supra for any particular apparatus.
  • the computer-readable medium /memory 1106 may also be used for storing data that is manipulated by the processor 1104 when executing software.
  • the processing system further includes at least one of the modules 1004, 1006, and 1010.
  • the modules may be software modules running in the processor 1104, resident/stored in the computer readable medium /memory 1106, one or more hardware modules coupled to the processor 1104, or some combination thereof.
  • the processing system 1114 may be a component of the UE 650 and may include the memory 660 and/or at least one of the TX processor 668, the RX processor 656, and the controller/processor 659.
  • the apparatus 1002/1002′for wireless communication with a base station having a vertical antenna array includes means for receiving first signals transmitted by the vertical antenna array from the base station.
  • the codeword indicates beamforming parameters to be used by the base station to precode second signals to be transmitted by the vertical antenna array to the UE.
  • the aforementioned means may be one or more of the aforementioned modules of the apparatus 1002 and/or the processing system 1114 of the apparatus 1002′configured to perform the functions recited by the aforementioned means.
  • the processing system 1114 may include the TX Processor 668, the RX Processor 656, and the controller/processor 659.
  • the aforementioned means may be the TX Processor 668, the RX Processor 656, and the controller/processor 659 configured to perform the functions recited by the aforementioned means.
  • Combinations such as “at least one of A, B, or C, ” “at least one of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “at least one of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.

Abstract

A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a UE. The UE communicates with a base station having a vertical antenna array. The UE receives first signals transmitted by the vertical antenna array from the base station. The UE selects a codeword from a codebook optimized to reduce vertical interference of the first signals. The codeword indicates beamforming parameters to be used by the base station to precode second signals to be transmitted by the vertical antenna array to the UE. The UE transmits an indicator of the codeword to the base station.

Description

CODEBOOK FOR ELEVATION BEAMFORMING BACKGROUND
Field
The present disclosure relates generally to communication systems, and more particularly, to techniques regarding using codebooks for elevation beamforming at a UE and a base station.
Background
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e. g. , bandwidth, transmit power) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example of an emerging telecommunication standard is Long Term Evolution (LTE) . LTE is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by Third Generation Partnership Project (3GPP) . LTE is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA on the downlink (DL) , SC-FDMA on the uplink (UL) , and multiple-input multiple-output (MIMO) antenna technology. However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in LTE technology. Preferably, these improvements should be applicable to other multi- access technologies and the telecommunication standards that employ these technologies.
SUMMARY
In an aspect of the disclosure, a method, a computer program product, and an apparatus are provided. The apparatus may be a user equipment (UE) . The UE communicates with a base station having a vertical antenna array. The UE receives first signals transmitted by the vertical antenna array from the base station. The UE selects a codeword from a codebook optimized to reduce vertical interference of the first signals. The codeword indicates beamforming parameters to be used by the base station to precode second signals to be transmitted by the vertical antenna array to the UE. The UE transmits an indicator of the codeword to the base station.
In another aspect of the disclosure, a method, a computer program product, and an apparatus are provided. The apparatus may be a UE. The UE communicates with a base station having a vertical antenna array. The vertical antenna array has a first antenna column and a second antenna column. The first antenna column has a first antenna and a second antenna. The second antenna column has a third antenna and a fourth antenna. The first antenna column and the second antenna column are orthogonal to each other. The UE receives first signals transmitted by the vertical antenna array from the base station. The UE selects a codeword from a codebook optimized to reduce vertical interference of the first signals. The codeword indicates beamforming parameters to be used by the base station to precode second signals to be transmitted by the vertical antenna array to the UE. The UE transmits an indicator of the codeword to the base station. The codeword has a first set of indicators indicating beamforming parameters used in a first beamforming layer. The first set of indicators includes (a) a first indicator (α1) indicating a co-phasing adjustment between the first antenna and the second antenna as well as indicating a co-phasing adjustment between the third antenna and the fourth antenna, (b) a second indicator (β1) indicating a co-phasing adjustment between the third antenna and the fourth antenna, and (c) a third indicator (γ1) indicating a co-phasing adjustment between the first antenna column and the second antenna column. α1, β1, and γ1 each are selected from K-ary phase-shift keying (PSK) alphabets. K is 2j.. j is an integer greater than 1. The codebook is configured based on that a phase  difference between α1 and β1 is not greater than ejπ/2. The codeword (W) is represented as
Figure PCTCN2014088101-appb-000001
In yet another aspect of the disclosure, a method, a computer program product, and an apparatus are provided. The apparatus may be a UE. The UE communicates with a base station having a vertical antenna array. The vertical antenna array has a first antenna column and a second antenna column. The first antenna column has a first antenna and a second antenna. The second antenna column has a third antenna and a fourth antenna. The first antenna column and the second antenna column are orthogonal to each other. The UE includes means for receiving first signals transmitted by the vertical antenna array from the base station. The UE includes means for selecting a codeword from a codebook optimized to reduce vertical interference of the first signals. The codeword indicates beamforming parameters to be used by the base station to precode second signals to be transmitted by the vertical antenna array to the UE. The UE includes means for transmitting an indicator of the codeword to the base station.
In a further aspect of the disclosure, a method, a computer program product, and an apparatus are provided. The apparatus may be a UE. The UE communicates with a base station having a vertical antenna array. The vertical antenna array has a first antenna column and a second antenna column. The first antenna column has a first antenna and a second antenna. The second antenna column has a third antenna and a fourth antenna. The first antenna column and the second antenna column are orthogonal to each other. The UE includes means for receiving first signals transmitted by the vertical antenna array from the base station. The UE includes means for selecting a codeword from a codebook optimized to reduce vertical interference of the first signals. The codeword indicates beamforming parameters to be used by the base station to precode second signals to be transmitted by the vertical antenna array to the UE. The UE includes means for transmitting an indicator of the codeword to the base station. The codeword has a first set of indicators indicating beamforming parameters used in a first beamforming layer. The first set of indicators includes (a) a first indicator (α1) indicating a co-phasing  adjustment between the first antenna and the second antenna as well as indicating a co-phasing adjustment between the third antenna and the fourth antenna, (b) a second indicator (β1) indicating a co-phasing adjustment between the third antenna and the fourth antenna, and (c) a third indicator (γ1) indicating a co-phasing adjustment between the first antenna column and the second antenna column. α1, β1, and γ1 each are selected from K-ary PSK alphabets. K is 2j. . j is an integer greater than 1. The codebook is configured based on that a phase difference between α1 and β1 is not greater than ejπ/2. The codeword (W) is represented as
Figure PCTCN2014088101-appb-000002
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram illustrating an example of a network architecture.
FIG. 2 is a diagram illustrating an example of an access network.
FIG. 3 is a diagram illustrating an example of a DL frame structure in LTE.
FIG. 4 is a diagram illustrating an example of an UL frame structure in LTE.
FIG. 5 is a diagram illustrating an example of a radio protocol architecture for the user and control planes.
FIG. 6 is a diagram illustrating an example of an evolved Node B and a user equipment in an access network.
FIG. 7 is a diagram illustrating beamforming between an evolved Node B and a user equipment.
FIG. 8 is a diagram illustrating a vertical antenna array of an evolved Node B.
FIG. 9 is a flow chart of a method of wireless communication.
FIG. 10 is a conceptual data flow diagram illustrating the data flow between different modules/means/components in an exemplary apparatus.
FIG. 11 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, etc. (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented with a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, digital signal processors (DSPs) , field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc. , whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more exemplary embodiments, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that  can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , compact disk ROM (CD-ROM) or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer. Combinations of the above should also be included within the scope of computer-readable media.
FIG. 1 is a diagram illustrating an LTE network architecture 100. The LTE network architecture 100 may be referred to as an Evolved Packet System (EPS) 100. The EPS 100 may include one or more user equipment (UE) 102, an Evolved UMTS Terrestrial Radio Access Network (E-UTRAN) 104, an Evolved Packet Core (EPC) 110, and an Operator’s Internet Protocol (IP) Services 122. The EPS can interconnect with other access networks, but for simplicity those entities/interfaces are not shown. As shown, the EPS provides packet-switched services, however, as those skilled in the art will readily appreciate, the various concepts presented throughout this disclosure may be extended to networks providing circuit-switched services.
The E-UTRAN includes the evolved Node B (eNB) 106 and other eNBs 108, and may include a Multicast Coordination Entity (MCE) 128. The eNB 106 provides user and control planes protocol terminations toward the UE 102. The eNB 106 may be connected to the other eNBs 108 via a backhaul (e. g. , an X2 interface) . The MCE 128 allocates time/frequency radio resources for evolved Multimedia Broadcast Multicast Service (MBMS) (eMBMS) , and determines the radio configuration (e. g. , a modulation and coding scheme (MCS) ) for the eMBMS. The MCE 128 may be a separate entity or part of the eNB 106. The eNB 106 may also be referred to as a base station, a Node B, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , or some other suitable terminology. The eNB 106 provides an access point to the EPC 110 for a UE 102. Examples of UEs 102 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e. g., MP3 player) , a camera, a game console, a tablet, or any other similar functioning device.  The UE 102 may also be referred to by those skilled in the art as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
The eNB 106 is connected to the EPC 110. The EPC 110 may include a Mobility Management Entity (MME) 112, a Home Subscriber Server (HSS) 120, other MMEs 114, a Serving Gateway 116, a Multimedia Broadcast Multicast Service (MBMS) Gateway 124, a Broadcast Multicast Service Center (BM-SC) 126, and a Packet Data Network (PDN) Gateway 118. The MME 112 is the control node that processes the signaling between the UE 102 and the EPC 110. Generally, the MME 112 provides bearer and connection management. All user IP packets are transferred through the Serving Gateway 116, which itself is connected to the PDN Gateway 118. The PDN Gateway 118 provides UE IP address allocation as well as other functions. The PDN Gateway 118 and the BM-SC 126 are connected to the IP Services 122. The IP Services 122 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service (PSS) , and/or other IP services. The BM-SC 126 may provide functions for MBMS user service provisioning and delivery. The BM-SC 126 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a PLMN, and may be used to schedule and deliver MBMS transmissions. The MBMS Gateway 124 may be used to distribute MBMS traffic to the eNBs (e. g. , 106, 108) belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
FIG. 2 is a diagram illustrating an example of an access network 200 in an LTE network architecture. In this example, the access network 200 is divided into a number of cellular regions (cells) 202. One or more lower power class eNBs 208 may have cellular regions 210 that overlap with one or more of the cells 202. The lower power class eNB 208 may be a femto cell (e. g. , home eNB (HeNB) ) , pico cell, micro cell, or remote radio head (RRH) . The macro eNBs 204 are each assigned to a respective cell 202 and are configured to provide an access point to the EPC 110  for all the UEs 206 in the cells 202. There is no centralized controller in this example of an access network 200, but a centralized controller may be used in alternative configurations. The eNBs 204 are responsible for all radio related functions including radio bearer control, admission control, mobility control, scheduling, security, and connectivity to the serving gateway 116. An eNB may support one or multiple (e. g. , three) cells (also referred to as a sectors) . The term “cell” can refer to the smallest coverage area of an eNB and/or an eNB subsystem serving a particular coverage area. Further, the terms “eNB, ” “base station, ” and “cell” may be used interchangeably herein.
The modulation and multiple access scheme employed by the access network 200 may vary depending on the particular telecommunications standard being deployed. In LTE applications, OFDM is used on the DL and SC-FDMA is used on the UL to support both frequency division duplex (FDD) and time division duplex (TDD) . As those skilled in the art will readily appreciate from the detailed description to follow, the various concepts presented herein are well suited for LTE applications. However, these concepts may be readily extended to other telecommunication standards employing other modulation and multiple access techniques. By way of example, these concepts may be extended to Evolution-Data Optimized (EV-DO) or Ultra Mobile Broadband (UMB) . EV-DO and UMB are air interface standards promulgated by the 3rd Generation Partnership Project 2 (3GPP2) as part of the CDMA2000 family of standards and employs CDMA to provide broadband Internet access to mobile stations. These concepts may also be extended to Universal Terrestrial Radio Access (UTRA) employing Wideband-CDMA (W-CDMA) and other variants of CDMA, such as TD-SCDMA; Global System for Mobile Communications (GSM) employing TDMA; and Evolved UTRA (E-UTRA) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, and Flash-OFDM employing OFDMA. UTRA, E-UTRA, UMTS, LTE and GSM are described in documents from the 3GPP organization. CDMA2000 and UMB are described in documents from the 3GPP2 organization. The actual wireless communication standard and the multiple access technology employed will depend on the specific application and the overall design constraints imposed on the system.
The eNBs 204 may have multiple antennas supporting MIMO technology. The use of MIMO technology enables the eNBs 204 to exploit the spatial domain to support spatial multiplexing, beamforming, and transmit diversity. Spatial multiplexing may  be used to transmit different streams of data simultaneously on the same frequency. The data streams may be transmitted to a single UE 206 to increase the data rate or to multiple UEs 206 to increase the overall system capacity. This is achieved by spatially precoding each data stream (i. e. , applying a scaling of an amplitude and a phase) and then transmitting each spatially precoded stream through multiple transmit antennas on the DL. The spatially precoded data streams arrive at the UE (s) 206 with different spatial signatures, which enables each of the UE (s) 206 to recover the one or more data streams destined for that UE 206. On the UL, each UE 206 transmits a spatially precoded data stream, which enables the eNB 204 to identify the source of each spatially precoded data stream.
Spatial multiplexing is generally used when channel conditions are good. When channel conditions are less favorable, beamforming may be used to focus the transmission energy in one or more directions. This may be achieved by spatially precoding the data for transmission through multiple antennas. To achieve good coverage at the edges of the cell, a single stream beamforming transmission may be used in combination with transmit diversity.
In the detailed description that follows, various aspects of an access network will be described with reference to a MIMO system supporting OFDM on the DL. OFDM is a spread-spectrum technique that modulates data over a number of subcarriers within an OFDM symbol. The subcarriers are spaced apart at precise frequencies. The spacing provides “orthogonality” that enables a receiver to recover the data from the subcarriers. In the time domain, a guard interval (e. g. , cyclic prefix) may be added to each OFDM symbol to combat inter-OFDM-symbol interference. The UL may use SC-FDMA in the form of a DFT-spread OFDM signal to compensate for high peak-to-average power ratio (PAPR) .
FIG. 3 is a diagram 300 illustrating an example of a DL frame structure in LTE. A frame (10 ms) may be divided into 10 equally sized subframes. Each subframe may include two consecutive time slots. A resource grid may be used to represent two time slots, each time slot including a resource block. The resource grid is divided into multiple resource elements. In LTE, for a normal cyclic prefix, a resource block contains 12 consecutive subcarriers in the frequency domain and 7 consecutive OFDM symbols in the time domain, for a total of 84 resource elements. For an extended cyclic prefix, a resource block contains 12 consecutive subcarriers in the frequency domain and 6 consecutive OFDM symbols in the time domain, for  a total of 72 resource elements. Some of the resource elements, indicated as  R  302, 304, include DL reference signals (DL-RS) . The DL-RS include Cell-specific RS (CRS) (also sometimes called common RS) 302 and UE-specific RS (UE-RS) 304. UE-RS 304 are transmitted on the resource blocks upon which the corresponding physical DL shared channel (PDSCH) is mapped. The number of bits carried by each resource element depends on the modulation scheme. Thus, the more resource blocks that a UE receives and the higher the modulation scheme, the higher the data rate for the UE.
FIG. 4 is a diagram 400 illustrating an example of an UL frame structure in LTE. The available resource blocks for the UL may be partitioned into a data section and a control section. The control section may be formed at the two edges of the system bandwidth and may have a configurable size. The resource blocks in the control section may be assigned to UEs for transmission of control information. The data section may include all resource blocks not included in the control section. The UL frame structure results in the data section including contiguous subcarriers, which may allow a single UE to be assigned all of the contiguous subcarriers in the data section.
A UE may be assigned  resource blocks  410a, 410b in the control section to transmit control information to an eNB. The UE may also be assigned  resource blocks  420a, 420b in the data section to transmit data to the eNB. The UE may transmit control information in a physical UL control channel (PUCCH) on the assigned resource blocks in the control section. The UE may transmit data or both data and control information in a physical UL shared channel (PUSCH) on the assigned resource blocks in the data section. A UL transmission may span both slots of a subframe and may hop across frequency.
A set of resource blocks may be used to perform initial system access and achieve UL synchronization in a physical random access channel (PRACH) 430. The PRACH 430 carries a random sequence and cannot carry any UL data/signaling. Each random access preamble occupies a bandwidth corresponding to six consecutive resource blocks. The starting frequency is specified by the network. That is, the transmission of the random access preamble is restricted to certain time and frequency resources. There is no frequency hopping for the PRACH. The PRACH attempt is carried in a single subframe (1 ms) or in a sequence of few  contiguous subframes and a UE can make a single PRACH attempt per frame (10 ms).
FIG. 5 is a diagram 500 illustrating an example of a radio protocol architecture for the user and control planes in LTE. The radio protocol architecture for the UE and the eNB is shown with three layers: Layer 1, Layer 2, and Layer 3. Layer 1 (L1 layer) is the lowest layer and implements various physical layer signal processing functions. The L1 layer will be referred to herein as the physical layer 506. Layer 2 (L2 layer) 508 is above the physical layer 506 and is responsible for the link between the UE and eNB over the physical layer 506.
In the user plane, the L2 layer 508 includes a media access control (MAC) sublayer 510, a radio link control (RLC) sublayer 512, and a packet data convergence protocol (PDCP) 514 sublayer, which are terminated at the eNB on the network side. Although not shown, the UE may have several upper layers above the L2 layer 508 including a network layer (e. g. , IP layer) that is terminated at the PDN gateway 118 on the network side, and an application layer that is terminated at the other end of the connection (e. g. , far end UE, server, etc. ) .
The PDCP sublayer 514 provides multiplexing between different radio bearers and logical channels. The PDCP sublayer 514 also provides header compression for upper layer data packets to reduce radio transmission overhead, security by ciphering the data packets, and handover support for UEs between eNBs. The RLC sublayer 512 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to hybrid automatic repeat request (HARQ) . The MAC sublayer 510 provides multiplexing between logical and transport channels. The MAC sublayer 510 is also responsible for allocating the various radio resources (e. g., resource blocks) in one cell among the UEs. The MAC sublayer 510 is also responsible for HARQ operations.
In the control plane, the radio protocol architecture for the UE and eNB is substantially the same for the physical layer 506 and the L2 layer 508 with the exception that there is no header compression function for the control plane. The control plane also includes a radio resource control (RRC) sublayer 516 in Layer 3 (L3 layer) . The RRC sublayer 516 is responsible for obtaining radio resources (e. g., radio bearers) and for configuring the lower layers using RRC signaling between the eNB and the UE.
FIG. 6 is a block diagram of an eNB 610 in communication with a UE 650 in an access network. In the DL, upper layer packets from the core network are provided to a controller/processor 675. The controller/processor 675 implements the functionality of the L2 layer. In the DL, the controller/processor 675 provides header compression, ciphering, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocations to the UE 650 based on various priority metrics. The controller/processor 675 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the UE 650.
The transmit (TX) processor 616 implements various signal processing functions for the L1 layer (i. e. , physical layer) . The signal processing functions include coding and interleaving to facilitate forward error correction (FEC) at the UE 650 and mapping to signal constellations based on various modulation schemes (e. g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) . The coded and modulated symbols are then split into parallel streams. Each stream is then mapped to an OFDM subcarrier, multiplexed with a reference signal (e. g. , pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 674 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 650. Each spatial stream may then be provided to a different antenna 620 via a separate transmitter 618TX. Each transmitter 618TX may modulate an RF carrier with a respective spatial stream for transmission.
At the UE 650, each receiver 654RX receives a signal through its respective antenna 652. Each receiver 654RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 656. The RX processor 656 implements various signal processing functions of the L1 layer. The RX processor 656 may perform spatial processing on the information to recover any spatial streams destined for the UE 650. If multiple spatial streams are destined for the UE 650, they may be combined by the RX processor 656 into a single OFDM symbol stream. The RX processor 656 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) . The  frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the eNB 610. These soft decisions may be based on channel estimates computed by the channel estimator 658. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the eNB 610 on the physical channel. The data and control signals are then provided to the controller/processor 659.
The controller/processor 659 implements the L2 layer. The controller/processor can be associated with a memory 660 that stores program codes and data. The memory 660 may be referred to as a computer-readable medium. In the UL, the controller/processor 659 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to a data sink 662, which represents all the protocol layers above the L2 layer. Various control signals may also be provided to the data sink 662 for L3 processing. The controller/processor 659 is also responsible for error detection using an acknowledgement (ACK) and/or negative acknowledgement (NACK) protocol to support HARQ operations.
In the UL, a data source 667 is used to provide upper layer packets to the controller/processor 659. The data source 667 represents all protocol layers above the L2 layer. Similar to the functionality described in connection with the DL transmission by the eNB 610, the controller/processor 659 implements the L2 layer for the user plane and the control plane by providing header compression, ciphering, packet segmentation and reordering, and multiplexing between logical and transport channels based on radio resource allocations by the eNB 610. The controller/processor 659 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the eNB 610.
Channel estimates derived by a channel estimator 658 from a reference signal or feedback transmitted by the eNB 610 may be used by the TX processor 668 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 668 may be provided to different antenna 652 via separate transmitters 654TX. Each transmitter 654TX may modulate an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the eNB 610 in a manner similar to that described in connection with the receiver function at the UE 650. Each receiver 618RX receives a signal through its respective antenna 620. Each receiver 618RX recovers information modulated onto an RF carrier and provides the information to a RX processor 670. The RX processor 670 may implement the L1 layer.
The controller/processor 675 implements the L2 layer. The controller/processor 675 can be associated with a memory 676 that stores program codes and data. The memory 676 may be referred to as a computer-readable medium. In the UL, the controller/processor 675 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover upper layer packets from the UE 650. Upper layer packets from the controller/processor 675 may be provided to the core network. The controller/processor 675 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
FIG. 7 is a diagram 700 illustrating beamforming between an eNB and a UE. A UE 712 communicates with an eNB 710. The eNB 710 has a vertical antenna array 720. The vertical antenna array 720 has a first antenna column 721 and a second antenna column 722. The first antenna column 721 has a first antenna 723 and a second antenna 725. The second antenna column 722 has a third antenna 724 and fourth antenna 726. In a first beamforming layer 730, the  antennas  723, 724, 725, 726 transmit signal streams 733, 734, 735, 736 to the UE 712. In a second beamforming layer 740, the  antennas  723, 724, 725, 726 transmit signal streams 743, 744, 745, 746 to the UE 712.
The UE 712 receives the streams 733, 735, 734, 736 of the first beamforming layer 730 at a receiver 714. The streams 733, 735, 734, 736 may interfere with each other. The UE 712 receives the streams 743, 745, 744, 746 of the second beamforming layer 740 at a receiver 716. Similarly, the streams 743, 745, 744, 746 may interfere with each other. The receiver 714 and the receiver 716 can measure the channel elements of the streams 733, 735, 734, 736 and the streams 743, 745, 744, 746. Based on the measurements, the UE 712 can transmit a precoding matrix indicator (PMI) 760 back to the eNB 710. Based on the PMI 760, the eNB 710 can precode the signal streams to be transmitted by the vertical antenna array 720 and, thus, use beamforming techniques to reduce interference among the streams 733, 735, 734, 736 and among the streams 743, 745, 744, 746. For example, the eNB 710 can  precode the signals such that the streams 733, 735, 734, 736 interfere constructively, rather than destructively, with each other at the receiver 714 of the UE 712. Similarly, the eNB 710 can precode the signals such that the streams 743, 745, 744, 746 interfere constructively, rather than destructively, with each other at the receiver 716 of the UE 712.
The eNB 710 and the UE 712 each can have a copy of the same codebook. The cookbook has one or more codewords each indicating a precoding configuration. Based on the channel element measurements, the UE 712 can select one or more precoding configurations to be used at the eNB 710 for precoding signals to be transmitted to the UE 712. The UE 712 selects the one or more codewords from the codebook that correspond to the one or more precoding configurations. Each codeword can be indicated or represented by one or more bits in a unique bit combination. For example, a first codeword may be represented by “01, ” and a second codeword may be presented by “10. ” Indications (e. g. , a bit combination or a value) of the selected codeword (s) can be included in the PMI 760 and transmitted to the eNB 710. Upon receiving the PMI 760, the eNB 710 can extract the bit (s) representing the codeword (s) and, accordingly, select the corresponding codeword (s) from the codebook at the eNB 710. Subsequently, the eNB 710 can precode the signals to be transmitted to the UE 712 using the precoding configuration (s) indicated by the codewords (s) .
In one configuration, the precoding configurations used by the eNB 710 may only address the interference at the azimuth dimension of the three-dimensional (3D) multipath propagation. For example, the precoding configurations may only attempt to reduce azimuth dimension interference such as the interference among the signal streams 733, 734, 735, 736 at the receiver 714. The codewords of the codebook used by the UE 712 and the eNB 710 accordingly only indicate such precoding configurations. The azimuth dimension, for example, is within the plane that is perpendicular to a long axis of the vertical antenna array 720, of the first antenna column 721, or of the second antenna column 722.
In another configuration, the precoding configurations used by the eNB 710 may implement dynamic beam steering in a vertical dimension (or an elevation dimension) . For example, the elevation dimension may be parallel to the long axis of the vertical antenna array 720, of the first antenna column 721, or of the second antenna column 722. Substantial capacity improvement and significant gain of  interference avoidance can be achieved by exploiting the additional elevation dimension inherent in a MIMO wireless system. For example, the precoding configurations may reduce elevation dimension interference among the signal streams 733, 734, 735, 736 at the receiver 714.
In this example, a compact two-dimensional (2D) active-antenna array (AAA) , i. e., a 4-transmitter cross-polarized vertical antenna array, is used as an exemplary antenna array to illustrate the elevation beamforming technique. FIG. 8 is a diagram 800 illustrating a vertical antenna array. The vertical antenna array 720 has the first antenna column 721 and the second antenna column 722. The first antenna column has the first antenna 723 and the second antenna 725. The second antenna column 722 has the third antenna 724 and the fourth antenna 726. The first antenna column 721 and the second antenna column 722 are orthogonal to each other. The first antenna 723 and the second antenna 725 are positive 45-degree polarized. The third antenna 724 and the fourth antenna 726 are negative 45-degree polarized.
The eNB 710 may use the first, second, third, and  fourth antennas  723, 725, 724, 726 of the vertical antenna array 720 to transmit one or more signals to the UE 712 in the first beamforming layer 730. The eNB 710 may use the first, second, third, and  fourth antennas  723, 725, 724, 726 of the vertical antenna array 720 to transmit to transmit another one or more signals to the UE 712 in the second beamforming layer 740.
The eNB 710, in accordance with a precoding configuration, may apply, in the first beamforming layer 730, at least one of a co-phasing adjustment (α1) between the first antenna and the second antenna, a co-phasing adjustment (β1) between the third antenna and the fourth antenna, and a co-phasing adjustment (γ1) between the first antenna column and the second antenna column. The eNB 710, in accordance with the precoding configuration, may apply, in the second beamforming layer 740, at least one of a co-phasing adjustment (α2) between the first antenna and the second antenna, a co-phasing adjustment (β2) between the third antenna and the fourth antenna, and a co-phasing adjustment (γ2) between the first antenna column and the second antenna column.
The eNB 710 and the UE 712 each may have a codebook having codewords indicating one or more of the α1, β1, γ1, α2, β2, and γ2. Based on the channel element measurements, the UE 712 select a codeword and transmit a PMI 760 indicating the codeword to the eNB 710 to inform the eNB 710 a precoding configuration to use.  For example, a codeword (W) for the first beamforming layer 730 can be represented as:
Figure PCTCN2014088101-appb-000003
Similarly, a codeword (W) for the second beamforming layer 740 can be represented as:
Figure PCTCN2014088101-appb-000004
A codeword (W) for two beamforming layers (e. g. , the first beamforming layer 730 and the second beamforming layer 740) can be represented as:
Figure PCTCN2014088101-appb-000005
In one technique, each of the co-phasing adjustments α1, β1, γ1, α2, β2, and γ2can be selected from K-ary Phase-shift keying (PSK) alphabets such as 4-ary PSK (QPSK) , 8-ary PSK, and 16-ary PSK. K equals to 2j, where j is an integer greater than 1. That is, the α1, β1, γ1, α2, β2, and γ2 each can be selected from ej2πm/K, where m is an integer greater than -1 and less than K. For example, when using 4-ary PSK (QPSK) alphabets, the α1, β1, γ1, α2, β2, and γ2each can be selected from 1, ejπ/2, -1, and ejπ3/2. In certain configurations, the UE 712 may use a PMI having 6 bits to represent a codeword in the QPSK codebook.
In one system configuration, the eNB 710 can use a set of precoding configurations to apply the same co-phasing adjustment to α1 and β1 in the first beamforming layer 730. In other words, α1 = β1. Accordingly, a codeword W (I)(1) can be represented as:
Figure PCTCN2014088101-appb-000006
Further, for example and as described supra, α1 and γ1 each can be selected from QPSK alphabets 1, ejπ/2, -1, and ejπ3/2. α1 can be ejπm/2, m being 0, 1, 2, or 3. γ1 can beejπn/2, m being 0, 1, 2, or 3. The codeword in this example can be represented as 
Figure PCTCN2014088101-appb-000007
m = 0, 1, 2, or 3,
n = 0, 1, 2, or 3.
Therefore, in this example, there can be 16 different codewords (hypotheses) . Accordingly, an elevation PMI, i. e. , a PMI used to reduce interference in the elevation dimension, can use 4 bits (i. e. , 16 different values) to indicate the 16 different codewords. Table (1) below illustrates one exemplary representation.
Table (1)
Figure PCTCN2014088101-appb-000008
The technique regarding one layer codeword described supra with respect to the first beamforming layer 730 can be similarly applied to the second beamforming layer 740.
In one system configuration, the eNB 710 can use a set of precoding configurations for both the first beamforming layer 730 and the second beamforming layer 740 to apply co-phasing adjustments to the first, second, third, and fourth antennas 723, 725, 724, 726 in a manner such that α1 = β1, α2 = β2, and γ1 = -γ2. Accordingly, a codewordW (Ia)(2) can be represented as:
Figure PCTCN2014088101-appb-000009
Further, for example and as described supra, α1, γ1, α2, and γ2 each can be selected from QPSK alphabets 1, ejπ/2, -1, and ejπ3/2. Thus, α1 and β1can be ejπm/2, m being 0,  1, 2, or 3. α2 and β2can be ejπm′/2, m’ being 0, 1, 2, or 3. γ1 and -γ2 can be ejπn/2, n being 0, 1, 2, or 3.
The codeword in this example can be represented as
Figure PCTCN2014088101-appb-000010
m = 0, 1, 2, or 3,
m’= 0, 1, 2, or 3,
n = 0, 1, 2, or 3.
Therefore, in this example, there can be 32 different codewords (hypotheses) . Accordingly, the elevation PMI can use 5 bits (i. e. , 32 different values) to indicate the 32 different codewords. Table (2) below illustrates one exemplary representation.
Table (2)
Figure PCTCN2014088101-appb-000011
Figure PCTCN2014088101-appb-000012
In one system configuration, the eNB 710 can use a set of precoding configurations for both the first beamforming layer 730 and the second beamforming layer 740 to apply co-phasing adjustments to the first, second, third, and fourth antennas 723, 725, 724, 726 in a manner such that α1 = β1, α2 = β2, and α1 *α2 = -1. α1 *is a complex conjugate of α1. Accordingly, a codeword W (Ib)(2) can be represented as:
Figure PCTCN2014088101-appb-000013
Further, for example and as described supra, α1, γ1, α2, and γ2 each can be selected from QPSK alphabets 1, ejπ/2, -1, and ejπ3/2. Thus, α1 and β1can be ejπm/2, m being 0, 1, 2, or 3. α2 and β2can be ejπm′/2, m’ being 0, 1, 2, or 3. γ1 can be ejπn/2, n being 0, 1, 2, or 3. γ2 can be ejπn′/2, n’ being 0, 1, 2, or 3.
The codeword in this example can be represented as
Figure PCTCN2014088101-appb-000014
m = 0, 1, 2, or 3,
m’= 0, 1, 2, or 3,
n = 0, 1, 2, or 3,
n’= 0, 1, 2, or 3.
Therefore, in this example, there can be 32 different codewords (hypotheses) . Accordingly, the elevation PMI can use 5 bits (i. e. , 32 different values) to indicate the 32 different codewords. Table (3) below illustrates one exemplary representation.
Table (3)
Figure PCTCN2014088101-appb-000015
In one technique, to maintain the same feedback overhead for both 1-layer and 2-layer reporting, a codeword down selection may be applied to codewords W (Ia)(2) andW (Ib)(2) for 2-layer reporting.
In one system configuration, the eNB 710 can use a set of precoding configurations for the first beamforming layer 730 to apply co-phasing adjustments to the first, second, third, and fourth antennas 723, 725, 724, 726 in a manner such that a phase difference between α1 and β1 is not greater than ejπ/2. Accordingly, a codeword W (II)(1) can be represented as:
Figure PCTCN2014088101-appb-000016
Further, for example and as described supra, α1, β1, and γ1 each can be selected from QPSK alphabets 1, ejπ/2, -1, and ejπ3/2. α1 can be ejπm/2, m being 0, 1, 2, or 3. γ1 can beejπn/2, m being 0, 1, 2, or 3. Because in this system configuration the phase difference between α1 and β1 is not greater than ejπ/2, α1 is ej_π/2β1.
The codeword in this example can be represented as
Figure PCTCN2014088101-appb-000017
m = 0, 1, 2, or 3,
m’= 0, 1, 2, or 3,
n = 0, 1, 2, or 3.
In one technique, the codeword can be represented by two PMIs. The first PMI (i1) may have two bits indicating values 0 to 3. The second PMI (i2) may have four bits indicating values 0 to 15. The combination of the first PMI and the second PMI can represent a specific codeword. During operation, the UE 712 may initially transmits the first PMI to the eNB 710. Subsequently, the UE 712 transmits the second PMI to the eNB 710. When the UE 712 desire to change the precoding configurations at the eNB 710, the UE 712 may determine whether the first PMI should be changed. If not, the UE 712 may choose not to transmit the first PMI again, and only to transmit the second PMI. The eNB 710, upon receiving the second PMI, by default may use the first PMI received previously from the UE 712 when a new first PMI  has not been received from the UE 712. Table (4) illustrates one exemplary representation of the two PMIs.
Table (4)
Figure PCTCN2014088101-appb-000018
i1= 0, 1, 2 or 3,
j1 = (i1 + 1) mod 4.
The technique regarding one layer codeword described supra with respect to the first beamforming layer 730 can be similarly applied to the second beamforming layer 740.
In one system configuration, the eNB 710 can use a set of precoding configurations in the first beamforming layer 730 and the second beamforming layer 740 to apply co-phasing adjustments to the first, second, third, and  fourth antennas  723, 725, 724, 726 in a manner such that γ1 = -γ2, α1 = β1, and α2 = β2.
Accordingly, a codeword W (IIa)(2) can be represented as:
Figure PCTCN2014088101-appb-000019
Further, for example and as described supra, α1, β1, γ1, α2, β2, and γ2 each can be selected from QPSK alphabets 1, ejπ/2, -1, and ejπ3/2. Thus, α1 and β1 can be ejπm/2, m being 0, 1, 2, or 3. α2 and β2can be ejπm′/2, m’ being 0, 1, 2, or 3. γ1 and -γ2 can be ejπn/2, n being 0, 1, 2, or 3.
The codeword in this example can be represented as
Figure PCTCN2014088101-appb-000020
m = 0, 1, 2, or 3,
m’= 0, 1, 2, or 3,
n = 0, 1, 2, or 3.
In one technique, similar to the technique described supra regarding codeword W (II)(1) , the codeword W (IIa)(2) can be represented by two PMIs. The first PMI (i1) may have two bits indicating values 0 to 3. The second PMI (i2) representing W (IIa)(2) , in combination with the second PMIs representing W (IIb)(2) and W (IIc)(2) as will be described infra, may use four bits to indicate values 0 to 15. Table (5) illustrates one exemplary representation of the two PMIs.
Table (5)
Figure PCTCN2014088101-appb-000021
i1= 0, 1, 2 or 3,
j1 = (i1 + 1) mod 4.
In one system configuration, the eNB 710 can use a set of precoding configurations for both the first beamforming layer 730 and the second beamforming layer 740 to apply co-phasing adjustments to the first, second, third, and  fourth antennas  723, 725, 724, 726 in a manner such that γ1 = -γ2, α1 = α2, β1 = β2, and α1≠β1.
Accordingly, a codeword W (IIb)(2) can be represented as:
Figure PCTCN2014088101-appb-000022
Further, for example and as described supra, α1, β1, γ1, α2, β2, and γ2 each can be selected from QPSK alphabets 1, ejπ/2, -1, and ejπ3/2. Thus, α1 and α2 can be ejπm/2, m being 0, 1, 2, or 3. β1 and β2 can be ejπm′/2, m’ being 0, 1, 2, or 3. γ1 can be ejπn/2, n being 0, 1, 2, or 3. γ2 can be -ejπn/2, n being 0, 1, 2, or 3.
The codeword in this example can be represented as
Figure PCTCN2014088101-appb-000023
m = 0, 1, 2, or 3,
m’= 0, 1, 2, or 3,
n = 0, 1, 2, or 3.
In one technique, similar to the technique described supra regarding codeword W (II)(1) , the codeword W (IIb)(2) can be represented by two PMIs. The first PMI (i1) may have two bits indicating values 0 to 3. The second PMI (i2) representing W (IIb)(2) , in combination with the second PMIs representing W (IIa)(2) and W (IIc)(2) , may use four bits to indicate values 0 to 15. Table (6) illustrates one exemplary representation of the two PMIs.
Table (6)
Figure PCTCN2014088101-appb-000024
i1= 0, 1, 2 or 3,
j1 = (i1 + 1) mod 4.
In one system configuration, the eNB 710 can use a set of precoding configurations for both the first beamforming layer 730 and the second beamforming layer 740 to apply co-phasing adjustments to the first, second, third, and  fourth antennas  723, 725, 724, 726 in a manner such that γ1 *γ2 = -α1 *α2, α1 = β2, α2 = β1, and α1≠α2, .
Accordingly, a codeword W (IIc)(2) can be represented as:
Figure PCTCN2014088101-appb-000025
Further, for example and as described supra, α1, β1, γ1, α2, β2, and γ2 each can be selected from QPSK alphabets 1, ejπ/2, -1, and ejπ3/2. Thus, α1 and β2 can be ejπm/2, m being 0, 1, 2, or 3. β1 and α2 can be ejπm′/2, m’ being 0, 1, 2, or 3. γ1 can be ejπn/2, n being 0, 1, 2, or 3. γ2 can be ejπn′/2, n’ being 0, 1, 2, or 3.
The codeword in this example can be represented as:
Figure PCTCN2014088101-appb-000026
m = 0, 1, 2, or 3,
m’= 0, 1, 2, or 3,
n = 0, 1, 2, or 3,
n’= 0, 1, 2, or 3.
In one technique, similar to the technique described supra regarding codeword W (II)(1) , the codeword W (IIc)(2) can be represented by two PMIs. The first PMI (i1) may have two bits indicating values 0 to 3. The second PMI (i2) representing W (IIc)(2) , in combination with the second PMIs representing W (IIa)(2) and W (IIb)(2) , may use four bits to indicate values 0 to 15. Table (7) illustrates one exemplary representation of the two PMIs.
Table (7)
Figure PCTCN2014088101-appb-000027
i1= 0, 1, 2 or 3,
j1 = (i1 + 1) mod 4.
In one system configuration, the UE 712 and the eNB 710 can use a dual codebook structure to organize the codewords. The UE 712 can use two PMIs, i. e. , a first PMI and a second PMI, to indicate a precoding configuration. The first PMI corresponds to a first codeword portion W1 (v) , and the second PMI corresponds to a second codeword portion W2 (v) . vindicates the number of beamforming layers to which the codeword is applied. The complete codeword can be represented as
Figure PCTCN2014088101-appb-000028
The first codeword portion can be represented as
Figure PCTCN2014088101-appb-000029
Ais
Figure PCTCN2014088101-appb-000030
wherea1, …, and aNb are a pre-selected number (i. e. , Nb) of possible values for α1, α21, and β2.
The second codeword portion can be represented as
Figure PCTCN2014088101-appb-000031
Y1 is
Figure PCTCN2014088101-appb-000032
where Nu is the number of beamforming layers to which the codeword is applied to, each of K11, …, K1Nu represents a column number of a size Nu (i. e. , Nu × Nu) identity matrix, and eK represents the Kth column of the Nu × Nu identity matrix. K is an integer not less than 0 and not greater than Nu.
Y2 is
Figure PCTCN2014088101-appb-000033
where Nu is the number of beamforming layers to which the codeword is applied to, each of K21, …, K2Nu represents a column number of a size Nu (i. e. , Nu × Nu) identity matrix, and eK represents the Kth column of the Nu ×Nu identity matrix. K is an integer not less than 0 and not greater than Nu.
Γ is
Figure PCTCN2014088101-appb-000034
where Nu is the number of beamforming layers to which the codeword is applied to, and γsK is the co-phasing adjustment between the first antenna column 721 and the second antenna column 722 for the Kth beamforming layer.
Using the technique discussed supra regarding dual codebooks, W (II)(1) can be represented as W (II)1 (1) ·W (II)2 (1) . W (IIa)(2) can be represented as W (IIa)1 (2) ·W (II a)2 (2) . W (IIb)(2) can be represented as W (IIb)2 (1) ·W (IIb)2 (2) . W (IIc)(2) can be represented as W (IIc)1 (2) ·W (IIc)2 (2) .
Further, as an example, Nb can be selected as 2. The first PMI (i1) having a value 0 can represent the below codeword:
Figure PCTCN2014088101-appb-000035
The first PMI (i1) having a value 1 can represent the below codeword:
Figure PCTCN2014088101-appb-000036
The first PMI (i1) having a value 2 can represent the below codeword:
Figure PCTCN2014088101-appb-000037
The first PMI (i1) having a value 3 can represent the below codeword:
Figure PCTCN2014088101-appb-000038
Each of the W (II)1 (1) , W (IIa)1 (2) , W (IIb)1 (2) , and W (IIc)1 (2) can be selected from the above four codewords and represented by the corresponding first PMI (i1) value.
Further, Table (8) below illustrates one exemplary representation of W (II)2 (1) by the second PMI (i2) values.
Table (8)
Figure PCTCN2014088101-appb-000039
Figure PCTCN2014088101-appb-000040
Table (9) below illustrates one exemplary representation of W (IIa)2 (2) by the second PMI (i2) values.
Table (9)
Figure PCTCN2014088101-appb-000041
Table (10) below illustrates one exemplary representation of W (IIb)2 (2) by the second PMI (i2) values.
Table (10)
Figure PCTCN2014088101-appb-000042
Table (11) below illustrates one exemplary representation of W (IIc)2 (2) by the second PMI (i2) values.
Table (11)
Figure PCTCN2014088101-appb-000043
Figure PCTCN2014088101-appb-000044
FIG. 9 is a flow chart 900 of a method of wireless communication. The method may be performed by a UE (e. g. , the UE 712, the apparatus 1002/1002′) . The UE communicates with a base station having a vertical antenna array. Referring to FIG. 7, for example, the eNB 710 has the vertical antenna array 720. At operation 902, the UE receives first signals transmitted by the vertical antenna array from the base station. Referring to FIG. 7, for example, the UE 712 receives the streams 733, 735, 734, 736 and the streams 743, 745, 744, 746 from the eNB 710. At operation 904, the UE selects a codeword from a codebook optimized to reduce vertical interference of the first signals. The codeword indicates beamforming parameters to be used by the base station to precode second signals to be transmitted by the vertical antenna array to the UE. Referring to FIG. 7, for example, the UE 712 can select one or more of the codewords W (I)(1) , W (Ia)(2) , W (Ib)(2) , W (II)(1) , W (IIa)(2) , W (IIb)(2) , and W (IIc)(2) . At operation 906, The UE transmits an indicator of the codeword to the base station. Referring to FIG. 7, for example, the UE 712 can transmit the PMI 760 to the eNB 710.
In one configuration, the vertical antenna array has a first antenna column and a second antenna column. The first antenna column has a first antenna and a second antenna. The second antenna column has a third antenna and a fourth antenna. The first antenna column and the second antenna column are orthogonal to each other. In one configuration, the first antenna and the second antenna are positive 45-degree polarized. The third antenna and the fourth antenna are negative 45-degree polarized. FIG. 7 illustrates an exemplary vertical antenna array.
In one configuration, the codeword has a first set of indicators indicating beamforming parameters used in a first beamforming layer. The first set of indicators includes (a) a first indicator (α1) indicating a co-phasing adjustment between the first antenna and the second antenna as well as indicating a co-phasing adjustment between the third antenna and the fourth antenna and (b) a second indicator (γ1) indicating a co-phasing adjustment between the first antenna column  and the second antenna column. α1 and γ1 each are selected from K-ary phase-shift keying (PSK) alphabets, Kbeing 2j, j being an integer greater than 1. The codeword (W) is represented as
Figure PCTCN2014088101-appb-000045
In one configuration, α1 indicates a co-phasing adjustment of ej2πm/K, m being an integer greater than -1 and less than K. γ1 indicates a co-phasing adjustment of ej2πn/K, n being an integer greater than -1 and less than K.
In one configuration, the codeword has a second set of indicators indicating beamforming parameters used in a second beamforming layer, the second set of indicators including (a) a third indicator (α2) indicating a co-phasing adjustment between the first antenna and the second antenna as well as indicating a co-phasing adjustment between the third antenna and the fourth antenna and (b) a fourth indicator (γ2) indicating a co-phasing adjustment between the first antenna column and the second antenna column. α2 and γ2 each are selected from the K-ary PSK alphabets. The codeword (W) is represented as
Figure PCTCN2014088101-appb-000046
In one configuration, α2 indicates a co-phasing adjustment of ej2πm′/K, m’ being an integer greater than -1 and less than K. γ2 indicates a co-phasing adjustment of ej2πn′/K, n’ being an integer greater than -1 and less than K.
In one configuration, the codebook is further configured based on γ1 = -γ2. The codeword (W) is represented as
Figure PCTCN2014088101-appb-000047
In one configuration, the codebook is further configured based on α1 *α2 = -1. α1 *is a complex conjugate of α1.
In one configuration, at operation 904, the UE selects a codeword from another codebook optimized to reduce vertical interference of the first signals. The codeword has a first set of indicators indicating beamforming parameters used in the  first beamforming layer. The first set of indicators includes (a) a first indicator (α1) indicating a co-phasing adjustment between the first antenna and the second antenna as well as indicating a co-phasing adjustment between the third antenna and the fourth antenna, (b) a second indicator (β1) indicating a co-phasing adjustment between the third antenna and the fourth antenna, and (c) a third indicator (γ1) indicating a co-phasing adjustment between the first antenna column and the second antenna column. α1, β1, and γ1 each are selected from K-ary phase-shift keying (PSK) alphabets, Kbeing 2j, j being an integer greater than 1. The codebook is configured based on that a phase difference between α1 and β1 is not greater than ejπ/2. The codeword (W) is represented as
Figure PCTCN2014088101-appb-000048
In one configuration, α1 indicates a co-phasing adjustment of ej2πm/K, m being an integer greater than -1 and less than K. β1 indicates a co-phasing adjustment of ej2πl/K, l being an integer greater than -1 and less than K. γ1 indicates a co-phasing adjustment of ej2πn/K, n being an integer greater than -1 and less than K.
In one configuration, the codeword has a second set of indicators indicating beamforming parameters used in the second beamforming layer. The second set of indicators includes (a) a fourth indicator (α2) indicating a co-phasing adjustment between the first antenna and the second antenna as well as indicating a co-phasing adjustment between the third antenna and the fourth antenna, (b) a fifth indicator (β2) indicating a co-phasing adjustment between the third antenna and the fourth antenna, and (c) a sixth indicator (γ2) indicating a co-phasing adjustment between the first antenna column and the second antenna column. α2, β2, and γ2 each are selected from the K-ary PSK alphabets. The codebook is further configured based on that a phase difference between α2 and β2 is not greater than ejπ/2. The codeword (W) is represented as
Figure PCTCN2014088101-appb-000049
In one configuration, α2 indicates a co-phasing adjustment of ej2πm′/K, m’ being an integer greater than -1 and less than K. β2 indicates a co-phasing adjustment of  ej2πl′/K, l’ being an integer greater than -1 and less than K. γ2 indicates a co-phasing adjustment of ej2πn′/K, n’ being an integer greater than -1 and less than K.
In one configuration, the codebook is further configured based on that γ1 = -γ2, α1 =β1, and α2 = β2. In one configuration, the codebook is further configured based on thatγ1 = -γ2, α1 = α2, β1 = β2, and α1≠β1. In one configuration, the codebook is further configured based on that γ1 *γ2 = -α1 *α2, α1 = β2, α2 = β1, and α1≠α2. α1 *is a complex conjugate of α1. γ1 *is a complex conjugate of γ1.
FIG. 10 is a conceptual data flow diagram 1000 illustrating the data flow between different modules/means/components in an exemplary apparatus 1002. The apparatus may be a UE. The apparatus 1002 includes a reception module 1004, a PMI control module 1006, and a transmission module 1010. The apparatus 1002 communicates with an eNB 1050 having a vertical antenna array. The reception module 1004 may be configured to receive first signals transmitted by the vertical antenna array from the eNB 1050. The PMI control module 1006 may be configured to select a codeword from a codebook optimized to reduce vertical interference of the first signals. The codeword indicates beamforming parameters to be used by the eNB 1050 to precode second signals to be transmitted by the vertical antenna array to the apparatus 1002. The codebook may be stored at the PMI control module 1006. The PMI control module 1006 and/or the transmission module 1010 may be configured to transmit an indicator of the codeword to the eNB 1050.
In one configuration, the vertical antenna array has a first antenna column and a second antenna column. The first antenna column has a first antenna and a second antenna. The second antenna column has a third antenna and a fourth antenna. The first antenna column and the second antenna column are orthogonal to each other. In one configuration, the first antenna and the second antenna are positive 45-degree polarized. The third antenna and the fourth antenna are negative 45-degree polarized.
The apparatus may include additional modules that perform each of the blocks of the algorithm in the aforementioned flow charts of FIG. 9. As such, each block in the aforementioned flow charts of FIG. 9 may be performed by a module and the apparatus may include one or more of those modules. The modules may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated  processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
FIG. 11 is a diagram 1100 illustrating an example of a hardware implementation for an apparatus 1002′employing a processing system 1114. The processing system 1114 may be implemented with a bus architecture, represented generally by the bus 1124. The bus 1124 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1114 and the overall design constraints. The bus 1124 links together various circuits including one or more processors and/or hardware modules, represented by the processor 1104, the  modules  1004, 1006, 1010, and the computer-readable medium /memory 1106. The bus 1124 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
The processing system 1114 may be coupled to a transceiver 1110. The transceiver 1110 is coupled to one or more antennas 1120. The transceiver 1110 provides a means for communicating with various other apparatus over a transmission medium. The transceiver 1110 receives a signal from the one or more antennas 1120, extracts information from the received signal, and provides the extracted information to the processing system 1114, specifically the reception module 1004. In addition, the transceiver 1110 receives information from the processing system 1114, specifically the transmission module 1010, and based on the received information, generates a signal to be applied to the one or more antennas 1120. The processing system 1114 includes a processor 1104 coupled to a computer-readable medium /memory 1106. The processor 1104 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1106. The software, when executed by the processor 1104, causes the processing system 1114 to perform the various functions described supra for any particular apparatus. The computer-readable medium /memory 1106 may also be used for storing data that is manipulated by the processor 1104 when executing software. The processing system further includes at least one of the  modules  1004, 1006, and 1010. The modules may be software modules running in the processor 1104, resident/stored in the computer readable medium /memory 1106, one or more hardware modules coupled to the processor 1104, or some combination thereof. The processing system 1114 may be a component of the UE 650 and may include the memory 660 and/or at  least one of the TX processor 668, the RX processor 656, and the controller/processor 659.
In one configuration, the apparatus 1002/1002′for wireless communication with a base station having a vertical antenna array includes means for receiving first signals transmitted by the vertical antenna array from the base station. The apparatus 1002/1002′includes means for selecting a codeword from a codebook optimized to reduce vertical interference of the first signals. The codeword indicates beamforming parameters to be used by the base station to precode second signals to be transmitted by the vertical antenna array to the UE. The apparatus 1002/1002′includes means for transmitting an indicator of the codeword to the base station. The aforementioned means may be one or more of the aforementioned modules of the apparatus 1002 and/or the processing system 1114 of the apparatus 1002′configured to perform the functions recited by the aforementioned means. As describedsupra, the processing system 1114 may include the TX Processor 668, the RX Processor 656, and the controller/processor 659. As such, in one configuration, the aforementioned means may be the TX Processor 668, the RX Processor 656, and the controller/processor 659 configured to perform the functions recited by the aforementioned means.
It is understood that the specific order or hierarchy of blocks in the processes /flow charts disclosed is an illustration of exemplary approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the processes /flow charts may be rearranged. Further, some blocks may be combined or omitted. The accompanying method claims present elements of the various blocks in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not  necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “at least one of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C, ” “at least one of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”
WHAT IS CLAIMED IS:

Claims (30)

  1. A method of wireless communication of a user equipment (UE) communicating with a base station having a vertical antenna array, comprising:
    receiving first signals transmitted by the vertical antenna array from the base station;
    selecting a codeword from a codebook optimized to reduce vertical interference of the first signals, wherein the codeword indicates beamforming parameters to be used by the base station to precode second signals to be transmitted by the vertical antenna array to the UE; and
    transmitting an indicator of the codeword to the base station.
  2. The method of claim 1, wherein the vertical antenna array has a first antenna column and a second antenna column, wherein the first antenna column has a first antenna and a second antenna, wherein the second antenna column has a third antenna and a fourth antenna, and wherein the first antenna column and the second antenna column are orthogonal to each other.
  3. The method of claim 2, wherein the first antenna and the second antenna are positive 45-degree polarized, and wherein the third antenna and the fourth antenna are negative 45-degree polarized.
  4. The method of claim 2, wherein the codeword has a first set of indicators indicating beamforming parameters used in a first beamforming layer, the first set of indicators including
    a first indicator (α1) indicating a co-phasing adjustment between the first antenna and the second antenna as well as indicating a co-phasing adjustment between the third antenna and the fourth antenna, and
    a second indicator (γ1) indicating a co-phasing adjustment between the first antenna column and the second antenna column;
    whereinα1 and γ1 each are selected from K-ary phase-shift keying (PSK) alphabets, K being 2j, j being an integer greater than 1; and
    wherein the codeword (W) is represented as
    Figure PCTCN2014088101-appb-100001
  5. The method of claim 4, wherein α1 indicates a co-phasing adjustment of ej2πm/K, m being an integer greater than -1 and less than K; and
    whereinγ1 indicates a co-phasing adjustment of ej2πn/K, n being an integer greater than -1 and less than K.
  6. The method of claim 4, wherein the codeword has a second set of indicators indicating beamforming parameters used in a second beamforming layer, the second set of indicators including
    a third indicator (α2) indicating a co-phasing adjustment between the first antenna and the second antenna as well as indicating a co-phasing adjustment between the third antenna and the fourth antenna, and
    a fourth indicator (γ2) indicating a co-phasing adjustment between the first antenna column and the second antenna column;
    whereinα2 and γ2 each are selected from the K-ary PSK alphabets; and
    wherein the codeword (W) is represented as
    Figure PCTCN2014088101-appb-100002
  7. The method of claim 6, wherein α2 indicates a co-phasing adjustment of ej2πm′/K, m’being an integer greater than -1 and less than K; and
    whereinγ2 indicates a co-phasing adjustment of ej2πn′/K, n’ being an integer greater than -1 and less than K.
  8. The method of claim 6, wherein the codebook is further configured based on γ1 = -γ2, and wherein the codeword (W) is represented as
    Figure PCTCN2014088101-appb-100003
  9. The method of claim 6, wherein the codebook is further configured based on
    Figure PCTCN2014088101-appb-100004
    and
    whereinα1 *is a complex conjugate of α1.
  10. A method of wireless communication of a user equipment (UE) communicating with a base station having a vertical antenna array, the vertical antenna array having a first antenna column and a second antenna column, the first antenna column having a first antenna and a second antenna, the second antenna column having a third antenna and a fourth antenna, the first antenna column and the second antenna column being orthogonal to each other, the method comprising:
    receiving first signals transmitted by the vertical antenna array from the base station;
    selecting a codeword from a codebook optimized to reduce vertical interference of the first signals, wherein the codeword indicates beamforming parameters to be used by the base station to precode second signals to be transmitted by the vertical antenna array to the UE; and
    transmitting an indicator of the codeword to the base station, wherein the codeword has a first set of indicators indicating beamforming parameters used in a first beamforming layer, the first set of indicators including
    a first indicator (α1) indicating a co-phasing adjustment between the first antenna and the second antenna as well as indicating a co-phasing adjustment between the third antenna and the fourth antenna,
    a second indicator (β1) indicating a co-phasing adjustment between the third antenna and the fourth antenna, and
    a third indicator (γ1) indicating a co-phasing adjustment between the first antenna column and the second antenna column;
    whereinα1, β1, and γ1 each are selected from K-ary phase-shift keying (PSK) alphabets, K being 2j, j being an integer greater than 1;
    wherein the codebook is configured based on that a phase difference between α1 and β1 is not greater than ejπ/2
    wherein the codeword (W) is represented as
    Figure PCTCN2014088101-appb-100005
  11. The method of claim 10, wherein the first antenna and the second antenna are positive 45-degree polarized, and wherein the third antenna and the fourth antenna are negative 45-degree polarized.
  12. The method of claim 10, wherein α1 indicates a co-phasing adjustment of ej2πm/K, m being an integer greater than -1 and less than K;
    whereinβ1 indicates a co-phasing adjustment of ej2πl/K, l being an integer greater than -1 and less than K; and
    whereinγ1 indicates a co-phasing adjustment of ej2πn/K, n being an integer greater than -1 and less than K.
  13. The method of claim 10, wherein the codeword has a second set of indicators indicating beamforming parameters used in a second beamforming layer, the second set of indicators including
    a fourth indicator (α2) indicating a co-phasing adjustment between the first antenna and the second antenna as well as indicating a co-phasing adjustment between the third antenna and the fourth antenna,
    a fifth indicator (β2) indicating a co-phasing adjustment between the third antenna and the fourth antenna, and
    a sixth indicator (γ2) indicating a co-phasing adjustment between the first antenna column and the second antenna column;
    whereinα2, β2, and γ2 each are selected from the K-ary PSK alphabets;
    wherein the codebook is further configured based on that a phase difference between α2 and β2 is not greater than ejπ/2; and
    wherein the codeword (W) is represented as
    Figure PCTCN2014088101-appb-100006
  14. The method of claim 13, wherein α2 indicates a co-phasing adjustment of ej2πm′/K, m’ being an integer greater than -1 and less than K,
    whereinβ2 indicates a co-phasing adjustment of ej2πl′/K, l’ being an integer greater than -1 and less than K, and
    whereinγ2 indicates a co-phasing adjustment of ej2πn′/K, n’ being an integer greater than -1 and less than K.
  15. The method of claim 13, wherein the codebook is further configured based on that
    γ1=-γ2, α1=β1, and α2=β2.
  16. The method of claim 13, wherein the codebook is further configured based on that
    γ1=-γ2, α1=α2, β1=β2, and α1≠β1.
  17. The method of claim 13, wherein the codebook is further configured based on that
    Figure PCTCN2014088101-appb-100007
    α1=β2, α2=β1, and α1≠α2, and
    whereinα1 *is a complex conjugate of α1, and wherein γ1 *is a complex conjugate of γ1.
  18. An apparatus for wireless communication, the apparatus being a user equipment (UE) communicating with a base station having a vertical antenna array, the vertical antenna array having a first antenna column and a second antenna column, the first antenna column having a first antenna and a second antenna, the second antenna column having a third antenna and a fourth antenna, the first antenna column and the second antenna column being orthogonal to each other, comprising:
    means for receiving first signals transmitted by the vertical antenna array from the base station;
    means for selecting a codeword from a codebook optimized to reduce vertical interference of the first signals, wherein the codeword indicates beamforming parameters to be used by the base station to precode second signals to be transmitted by the vertical antenna array to the UE; and
    means for transmitting an indicator of the codeword to the base station.
  19. The apparatus of claim 18, wherein the first antenna and the second antenna are positive 45-degree polarized, and wherein the third antenna and the fourth antenna are negative 45-degree polarized.
  20. The apparatus of claim 18, wherein the codeword has a first set of indicators indicating beamforming parameters used in a first beamforming layer, the first set of indicators including
    a first indicator (α1) indicating a co-phasing adjustment between the first antenna and the second antenna as well as indicating a co-phasing adjustment between the third antenna and the fourth antenna, and
    a second indicator (γ1) indicating a co-phasing adjustment between the first antenna column and the second antenna column;
    whereinα1 and γ1 each are selected from K-ary phase-shift keying (PSK) alphabets, K being 2j, j being an integer greater than 1; and
    wherein the codeword (W) is represented as
    Figure PCTCN2014088101-appb-100008
  21. The apparatus of claim 20, wherein α1 indicates a co-phasing adjustment of ej2πm/K, m being an integer greater than -1 and less than K; and
    whereinγ1 indicates a co-phasing adjustment of ej2πn/K, n being an integer greater than -1 and less than K.
  22. The apparatus of claim 20, wherein the codeword has a second set of indicators indicating beamforming parameters used in a second beamforming layer, the second set of indicators including
    a third indicator (α2) indicating a co-phasing adjustment between the first antenna and the second antenna as well as indicating a co-phasing adjustment between the third antenna and the fourth antenna, and
    a fourth indicator (γ2) indicating a co-phasing adjustment between the first antenna column and the second antenna column;
    whereinα2 and γ2 each are selected from the K-ary PSK alphabets; and
    wherein the codeword (W) is represented as
    Figure PCTCN2014088101-appb-100009
  23. The apparatus of claim 22, wherein α2 indicates a co-phasing adjustment of ej2πm′/K, m’ being an integer greater than -1 and less than K; and
    whereinγ2 indicates a co-phasing adjustment of ej2πn′/K, n’ being an integer greater than -1 and less than K.
  24. The apparatus of claim 22, wherein the codebook is further configured based on
    (a) γ1 = -γ2, wherein the codeword (W) is represented as
    Figure PCTCN2014088101-appb-100010
    or
    (b) 
    Figure PCTCN2014088101-appb-100011
    whereinα1 *is a complex conjugate of α1.
  25. An apparatus for wireless communication, the apparatus being a user equipment (UE) communicating with a base station having a vertical antenna array, the vertical antenna array having a first antenna column and a second antenna column, the first antenna column having a first antenna and a second antenna, the second antenna column having a third antenna and a fourth antenna, the first antenna column and the second antenna column being orthogonal to each other, the apparatus comprising:
    means for receiving first signals transmitted by the vertical antenna array from the base station;
    means for selecting a codeword from a codebook optimized to reduce vertical interference of the first signals, wherein the codeword indicates beamforming parameters to be used by the base station to precode second signals to be transmitted by the vertical antenna array to the UE; and
    means for transmitting an indicator of the codeword to the base station, wherein the codeword has a first set of indicators indicating beamforming parameters used in a first beamforming layer, the first set of indicators including
    a first indicator (α1) indicating a co-phasing adjustment between the first antenna and the second antenna as well as indicating a co-phasing adjustment between the third antenna and the fourth antenna,
    a second indicator (β1) indicating a co-phasing adjustment between the third antenna and the fourth antenna, and
    a third indicator (γ1) indicating a co-phasing adjustment between the first antenna column and the second antenna column;
    whereinα1, β1, and γ1 each are selected from K-ary phase-shift keying (PSK) alphabets, K being 2j, j being an integer greater than 1;
    wherein the codebook is configured based on that a phase difference between α1 and β1 is not greater than ejπ/2
    wherein the codeword (W) is represented as
    Figure PCTCN2014088101-appb-100012
  26. The apparatus of claim 25, wherein the first antenna and the second antenna are positive 45-degree polarized, and wherein the third antenna and the fourth antenna are negative 45-degree polarized.
  27. The apparatus of claim 25, wherein α1 indicates a co-phasing adjustment of ej2πm/K, m being an integer greater than -1 and less than K;
    whereinβ1 indicates a co-phasing adjustment of ej2πl/K, l being an integer greater than -1 and less than K; and
    whereinγ1 indicates a co-phasing adjustment of ej2πn/K, n being an integer greater than -1 and less than K.
  28. The apparatus of claim 25, wherein the codeword has a second set of indicators indicating beamforming parameters used in a second beamforming layer, the second set of indicators including
    a fourth indicator (α2) indicating a co-phasing adjustment between the first antenna and the second antenna as well as indicating a co-phasing adjustment between the third antenna and the fourth antenna,
    a fifth indicator (β2) indicating a co-phasing adjustment between the third antenna and the fourth antenna, and
    a sixth indicator (γ2) indicating a co-phasing adjustment between the first antenna column and the second antenna column;
    whereinα2, β2, and γ2 each are selected from the K-ary PSK alphabets;
    wherein the codebook is further configured based on that a phase difference between α2 and β2 is not greater than ejπ/2; and
    wherein the codeword (W) is represented as
    Figure PCTCN2014088101-appb-100013
  29. The apparatus of claim 28, wherein α2 indicates a co-phasing adjustment of ej2πm′/K, m’ being an integer greater than -1 and less than K,
    whereinβ2 indicates a co-phasing adjustment of ej2πl′/K, l’ being an integer greater than -1 and less than K, and
    whereinγ2 indicates a co-phasing adjustment of ej2πn′/K, n’ being an integer greater than -1 and less than K.
  30. The apparatus of claim 28, wherein the codebook is further configured based on
    (a)
    γ1=-γ2, α1=β1, and α2=β2
    (b)
    γ1=-γ2, α1=α2, β1=β2, and α1≠β1; or
    (c)
    Figure PCTCN2014088101-appb-100014
    α1=β2, α2=β1, and α1≠α2
    whereinα1 *is a complex conjugate of α1, and wherein γ1 *is a complex conjugate of γ1.
PCT/CN2014/088101 2014-10-04 2014-10-04 Codebook for elevation beamforming WO2016049943A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/088101 WO2016049943A1 (en) 2014-10-04 2014-10-04 Codebook for elevation beamforming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/088101 WO2016049943A1 (en) 2014-10-04 2014-10-04 Codebook for elevation beamforming

Publications (1)

Publication Number Publication Date
WO2016049943A1 true WO2016049943A1 (en) 2016-04-07

Family

ID=55629366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088101 WO2016049943A1 (en) 2014-10-04 2014-10-04 Codebook for elevation beamforming

Country Status (1)

Country Link
WO (1) WO2016049943A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110366828A (en) * 2017-03-14 2019-10-22 Oppo广东移动通信有限公司 A kind of transmission method and relevant device of uplink signal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101036316A (en) * 2004-08-19 2007-09-12 诺基亚公司 Generalized m-rank beamformers for MIMO systems using successive quantization
CN101394217A (en) * 2007-09-20 2009-03-25 华为技术有限公司 Method, system and apparatus for feedback error resistance
CN101552632A (en) * 2009-04-07 2009-10-07 东南大学 Method for cooperating relays to form beams based on limited feedback
CN102334299A (en) * 2009-02-25 2012-01-25 三星电子株式会社 Method and apparatus for multiple input multiple output (mimo) transmit beamforming

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101036316A (en) * 2004-08-19 2007-09-12 诺基亚公司 Generalized m-rank beamformers for MIMO systems using successive quantization
CN101394217A (en) * 2007-09-20 2009-03-25 华为技术有限公司 Method, system and apparatus for feedback error resistance
CN102334299A (en) * 2009-02-25 2012-01-25 三星电子株式会社 Method and apparatus for multiple input multiple output (mimo) transmit beamforming
CN101552632A (en) * 2009-04-07 2009-10-07 东南大学 Method for cooperating relays to form beams based on limited feedback

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110366828A (en) * 2017-03-14 2019-10-22 Oppo广东移动通信有限公司 A kind of transmission method and relevant device of uplink signal

Similar Documents

Publication Publication Date Title
US10285169B2 (en) Downlink control information (DCI) enhancements for non-orthogonal multiple access
EP3055940B1 (en) Data transmission scheme with unequal code block sizes
US9578632B2 (en) Methods and apparatus for UL DM-RS overhead reduction
AU2015290200B2 (en) Methods and apparatus for beam search and tracking in mm-wave access systems
US20170180020A1 (en) Per-tone precoding for downlink mimo transmission
US10097321B2 (en) Cooperative techniques between lower-frequency carriers and millimeter-wave channels for discovery and synchronization and beamforming
EP2946484B1 (en) Hybrid interference alignment for mixed macro-femto base station downlink
US10341072B2 (en) Elevation PMI reporting on PUCCH
US10219269B2 (en) Mixed size expression peer discovery in WWAN
US8908606B2 (en) Opportunistic interference alignment for multi-cell multi-user uplink
US9800393B2 (en) Aperiodic CQI reporting for LTE-TDD eimta system
US9860888B2 (en) UE category handling
US20170048036A1 (en) Extending lte-d discovery for v2v
US10602508B2 (en) LTE-direct communication for vehicle-to-vehicle
WO2016049943A1 (en) Codebook for elevation beamforming

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14903490

Country of ref document: EP

Kind code of ref document: A1