WO2018164412A1 - 수직구용 다중결합 쐐기형 콘크리트 블록 및 이를 이용한 수직구 건설 공법 - Google Patents

수직구용 다중결합 쐐기형 콘크리트 블록 및 이를 이용한 수직구 건설 공법 Download PDF

Info

Publication number
WO2018164412A1
WO2018164412A1 PCT/KR2018/002491 KR2018002491W WO2018164412A1 WO 2018164412 A1 WO2018164412 A1 WO 2018164412A1 KR 2018002491 W KR2018002491 W KR 2018002491W WO 2018164412 A1 WO2018164412 A1 WO 2018164412A1
Authority
WO
WIPO (PCT)
Prior art keywords
wedge
vertical
shaped
shaped concrete
lot
Prior art date
Application number
PCT/KR2018/002491
Other languages
English (en)
French (fr)
Inventor
박진감
허성
Original Assignee
박진감
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박진감 filed Critical 박진감
Publication of WO2018164412A1 publication Critical patent/WO2018164412A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/045Underground structures, e.g. tunnels or galleries, built in the open air or by methods involving disturbance of the ground surface all along the location line; Methods of making them
    • E02D29/05Underground structures, e.g. tunnels or galleries, built in the open air or by methods involving disturbance of the ground surface all along the location line; Methods of making them at least part of the cross-section being constructed in an open excavation or from the ground surface, e.g. assembled in a trench
    • E02D29/055Underground structures, e.g. tunnels or galleries, built in the open air or by methods involving disturbance of the ground surface all along the location line; Methods of making them at least part of the cross-section being constructed in an open excavation or from the ground surface, e.g. assembled in a trench further excavation of the cross-section proceeding underneath an already installed part of the structure, e.g. the roof of a tunnel
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/04Making large underground spaces, e.g. for underground plants, e.g. stations of underground railways; Construction or layout thereof
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2600/00Miscellaneous
    • E02D2600/20Miscellaneous comprising details of connection between elements

Definitions

  • the present invention relates to a vertical sphere construction method for excavating construction vertically downward from the surface for the construction of underground facilities such as subway, electric power, communication, underground pipelines, vertical ventilation or pier foundation work of underground tunnels, Do not perform separate temporary construction work, but perform vertical hole lot assembly step by setting up vertical hole lot by digging down vertical hole lot installed by multi-bond wedge type concrete blocks
  • the present invention relates to a multi-bond wedge-shaped concrete block required for constructing a vertical sphere structure and a vertical sphere construction method using the same.
  • the multi-bonded wedge-shaped concrete block of the present invention is a concrete block in which wedge-shaped protrusions or wedge-shaped recesses are formed on the upper and lower sides of the vertical direction and the left and right sides of the horizontal direction, and the concrete blocks are formed by the wedge-shaped protrusions and the wedge-shaped recesses. It is fitted and assembled in the vertical direction (up and down direction of the vertical sphere wall) and in the horizontal direction (left and right direction on the circumferential surface of the vertical sphere) to enable the formation of the vertical cylinder.
  • Conventional vertical sphere construction method excavates the ground to a certain depth, and then installs a wall of mud inside the excavated ground to prevent the ground from loosening or collapse, and supports the construction of the wall using props, step by step to the planned depth. After excavation, formwork is installed from the bottom and concrete is poured to construct vertical wall.
  • Korean Patent Registration No. 10-1087726 proposes excavation construction steel pipes with a plurality of bit blades installed at the tip, but even when the facility encounters obstacles when laying facilities underground such as plumbing works of water and sewage, the ground is sold by the installation method. If it is not possible, it is applicable, and it is practically impossible to construct a large vertical sphere such as underground vertical sphere for bridge construction.
  • Republic of Korea Patent No. 10-0746594 is a step of assembling the cylindrical body by installing the temporary facility to excavate to the target depth of the underground, then dismantled the temporary facility and zigzag the trapezoidal segments bent in the circumferential cross-section from the basement floor and zigzag both sides.
  • this vertical sphere construction method does not need to install concrete for installing vertical spheres on the site, but there is a problem in that it is necessary to install a temporary facility for mounting vertical spheres and the step-by-step segment assembly becomes complicated.
  • the invention can omit the temporary construction process for the vertical hole excavation and easy construction of vertical spheres only by assembling concrete segments manufactured in a standardized factory without placing concrete in the field, but the connection between the segments Since the vertical sphere installation work is complicated to be connected by the horizontal connector and the vertical sphere is structurally lacking in stability, there is a problem that the segments may be separated from the vertical sphere or the vertical sphere may collapse.
  • the present invention adopts a method of constructing a vertical sphere by a method of assembling and installing multiple bonded wedge-shaped concrete blocks on site without installing a temporary sphere concrete at a construction site without installing a temporary facility for ground excavation, and enumerated above. Eliminates problems, facilitates the assembly and installation of multi-bonded wedge-shaped concrete blocks without the need for skilled personnel, shortens the construction period of vertical spheres, and enhances the convenience of material management for vertical sphere construction. The purpose is to make it.
  • the present invention forms the wedge-shaped projections and the wedge-shaped concave grooves on both sides in the vertical and horizontal directions, respectively, in the multi-bonded wedge-shaped concrete blocks so that the multi-bonded wedge-shaped concrete blocks can be structurally and securely assembled and mounted. It is also aimed at reducing the likelihood that the large spheres will be deformed or collapsed by the large sphere blocks being deviated from the vertical sphere by side earth pressure.
  • an object of this invention is also to improve water-tightness by inserting the sealing material of a water expandable gasket into the wedge-shaped contact center point.
  • the present invention is an isosceles triangular shape in which the thickness width of the front end portion multiple coupling wedge-shaped concrete block 10 is one side on the left and right in the horizontal direction, and the two sides having the same length are symmetrically inclined in the horizontal direction and the front end multiple coupling wedge shaped concrete block Wedge-shaped protrusions 40 and wedge-shaped concave grooves 41 formed on the entire length of the upper and lower heights of the 10 are respectively formed, and the multi-edge wedge-shaped concrete blocks 10 having the wedge-shaped protrusions 40 formed thereon.
  • Spherical front end lot assembly step (200) is the isosceles triangle shape in which the overall width of the middle multi-joined wedge-shaped concrete blocks (20, 21) is one side on the left and right sides in the horizontal direction, the two sides of the same length are inclined in the horizontal direction Wedge shaped protrusions 40 and wedge shaped recessed grooves 41 are formed to be symmetrical and formed in the entire length of the vertical heights of the intermediate multiple coupling wedge-shaped concrete blocks 20 and 21, respectively.
  • the thickness of the wedge-shaped concrete blocks 20, 21 is an isosceles triangle shape in which the entire length of the width is one side, and two sides having the same length are symmetrically inclined in the vertical direction and horizontal of the middle multiple-joined wedge-shaped concrete blocks 20, 21.
  • Wedge-shaped projections 40 formed in the entire length of the direction is formed, the lower side of the overall width of the width of the intermediate multiple coupling wedge-shaped concrete blocks (20, 21) is one side Two middle portions having an equilateral triangular shape with two equal sides inclined in the vertical direction and having a wedge-shaped concave groove 41 formed in the horizontal entire lengths of the middle multiple-joined wedge-shaped concrete blocks 20 and 21.
  • the wedge-shaped protrusions 40 are formed by the combined wedge-shaped concrete blocks 20 and 21 to form a middle hole of the vertical sphere of the vertical cylinder, and the multi-coupling wedge-shaped concrete block 10 at the distal end of the vertical sphere tip lot.
  • the vertical cylindrical vertical sphere extended by inserting the lower wedge-shaped concave grooves 41 of the middle multiple coupling wedge-shaped convex convex parts 20 and 21 into the vertical sphere middle lot on the vertical spout tip lot. After forming, excavate the inside of the vertical sphere leading end lot and press the vertical sphere middle lot by the indentation device 80 or settle by the loading method.
  • Vertical slots installed in the middle of the middle Lot assembly step of installation (300) and horizontally in the left and right sides of the finishing multiple coupling wedge-shaped concrete block 30 is an isosceles triangular shape of which the total length is one side, two sides of the same length horizontal Wedge-shaped projections 40 and wedge-shaped concave grooves 41 are formed to be symmetrically inclined in the direction and formed at the entire length of the upper and lower heights of the finishing multi-coupling wedge-shaped concrete block 30, respectively, and the finishing portion is lower side.
  • the thickness of the multi-joined wedge-shaped concrete block 30 is an isosceles triangle shape in which the entire length of the thickness is one side, and two sides having the same length are inclined in the vertical direction to be symmetrical, and the entire horizontal direction of the finishing multi-joined wedge-shaped concrete block 30 is symmetrical. Finishing the vertical sphere of the vertical cylinder by the multi-joint wedge-shaped concrete blocks 30 formed with the wedge-shaped concave groove 41 formed in the length A lot is formed, but the lower wedge of the multi-coupling wedge-shaped concrete convexes 30 of the finishing portion is formed in the wedge-shaped projection 40 above the middle-middle multi-bonded wedge-shaped concrete blocks 20 and 21 of the vertical middle hole.
  • Multi-spherical wedge-shaped concrete block for vertical spheres characterized in that it includes a vertical assembly lot assembly step (400) is installed in the excavated ground by pressing the indentation device 80 or settled by the load loading method Provide vertical construction method using
  • the present invention is the front end multi-coupling wedge-shaped concrete block 10 is formed with a wedge-shaped projection 40 at the lower side and the vertical spout front end lot assembly step 200 in the front end multi-coupling wedge-shaped concrete block 10 Provides a vertical sphere construction method using a multi-combined wedge-shaped concrete block for vertical spheres further comprising the step of inserting the steel cap 55 on the lower side.
  • the present invention is to install the annular shape reinforcement concrete on the outside of the position where the vertical sphere construction is planned before proceeding to the vertical sphere end lot assembly installation step 200 and the position of the reinforcement concrete poured in an annular shape
  • the vertical sphere provides a vertical sphere construction method using a multi-combined wedge-shaped concrete block for vertical sphere, characterized in that it further comprises the step of installing the indentation device (80).
  • the present invention further comprises the step of mounting a water-expandable gasket 50 between the wedge-shaped projection 40 and the wedge-shaped concave groove 41, a vertical sphere using a multi-combined wedge-shaped concrete block for vertical spheres.
  • a water-expandable gasket 50 between the wedge-shaped projection 40 and the wedge-shaped concave groove 41, a vertical sphere using a multi-combined wedge-shaped concrete block for vertical spheres.
  • the present invention is an isosceles triangular shape in which the total width of the multi-joined wedge-shaped concrete blocks 10, 20, 21, and 30 is one side on the left and right in the horizontal direction, and two sides having the same length are symmetrically inclined in the horizontal direction and the multi-join Wedge-shaped protrusions 40 and wedge-shaped recessed grooves 41 are formed on the upper and lower heights of the wedge-shaped concrete blocks 10, 20, 21, and 30, respectively, and the multi-joined wedge-shaped concrete blocks are formed on the upper side ( 10, 20, 21, 30) is an isosceles triangle shape in which the entire length of the thickness width is one side, and two sides of the same length are inclined in the vertical direction to be symmetrical and Wedge-shaped protrusions 40 formed in the entire length of the horizontal direction and the width of the multi-joined wedge-shaped concrete blocks 10, 20, 21, 30 at the lower side is an isosceles triangular shape with one side, the same length is two
  • the wedge-shaped projections 40 and the wedge-shaped recesses 41 are assembled into vertical cylindrical bodies, and the multi-combined wedge-shaped concrete blocks are stacked in the vertical direction. It provides a multi-bond wedge shaped concrete block, characterized in that it is possible to form a vertical sphere.
  • multi-coupling wedge-shaped concrete blocks 20 and 21 of the present invention may be limited to the configuration in which the wedge-shaped protrusion 40 is formed on the upper side and the wedge-shaped concave groove 41 is formed on the lower side.
  • the present invention may further include a configuration in which the support base step 60 and the beam insertion groove 61 are formed.
  • the present invention may further include a configuration in which the lifting hole 75 is formed.
  • the present invention may be limited to the upper side is formed in a plane and formed as a wedge-shaped concave groove 41 in the lower side.
  • the present invention is required to build a vertical sphere by constructing a vertical sphere by the method of assembling and installing multi-bonded wedge-shaped concrete blocks in the field without installing a vertical sphere concrete at a construction site without installing a temporary facility for ground excavation.
  • Complex processes can be shortened, construction quality can be improved, and air can be shortened.
  • the present invention can provide a vertical sphere construction method secured vertical stability and horizontal stability.
  • the present invention is possible due to the structural features of the wedge-shaped concrete block that can be produced to a certain standard, even though the concrete block is heavy, precise construction and stable construction is possible without requiring high skill in the vertical sphere assembly installation by the concrete block.
  • the time required to assemble and install vertical slots with concrete blocks can be shortened.
  • the present invention can improve the efficiency of material management and can reduce the paper cost by reducing the work site area required during construction.
  • the present invention can bring the effect of reducing the construction cost by reducing the thickness of the concrete block due to the increased structural stability of the present invention.
  • FIG. 1 is a vertical sphere construction method according to an embodiment of the present invention.
  • Figure 2 is a horizontal cross-sectional view of the vertical sphere installed by assembling the multi-bond wedge-shaped concrete blocks according to an embodiment of the present invention.
  • Figure 3 is a vertical cross-sectional view of the vertical sphere installed by assembling a multi-bond wedge-shaped concrete blocks according to an embodiment of the present invention.
  • FIG. 4 is a perspective view of a distal end multi-coupling wedge shaped concrete block 10 according to an embodiment of the present invention.
  • FIG. 5A is a perspective view of a middle portion multiple bonded wedge shaped concrete block (type A) 20 and FIG. 5B is a perspective view of an intermediate portion multiple bonded wedge shaped concrete block (type B) 21 according to an embodiment of the present invention. .
  • FIG. 6 is a perspective view of a finishing multiple bond wedge shaped concrete block 30 according to one embodiment of the invention.
  • Figure 7 is a detailed view of the fitting portion of the multiple bond wedge-shaped concrete blocks according to an embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of the steel cap 55 used in the rock according to an embodiment of the present invention.
  • FIG 9 is a cross-sectional view of a state in which the steel cap 55 is mounted on the lower end of the multi-coupled wedge-shaped concrete block 10 in accordance with an embodiment of the present invention.
  • 10A, 10B and 10C are respectively a cross-sectional view of an assembly of a vertical sphere tip lot, a vertical sphere tip lot internal excavation conceptual view, and a state diagram of indenting a vertical sphere tip lot.
  • 11A, 11B, and 11C are assembled cross-sectional views of a vertical sphere middle lot according to an embodiment of the present invention, a vertical view of a vertical end tip lot, and a state diagram of injecting vertical middle part lot.
  • 12A, 12B and 12C are respectively a cross-sectional view of the assembly assembly of the vertical sphere closing lot, a vertical sphere end lot internal excavation conceptual view and a vertical sphere closing lot is a state diagram.
  • Figure 13 is a vertical cross-sectional view of the completed vertical sphere in accordance with an embodiment of the present invention.
  • 14A and 14B are a plan view and a cross-sectional view showing the installation of an internal facility of a vertical sphere according to an embodiment of the present invention.
  • 15A and 15B are a plan view and a vertical sectional view of the indentation device 80 installation.
  • FIG. 1 Vertical ball construction method according to the present invention is as shown in Figure 1 (a) reinforcement concrete placing and indentation device installation step (100), (b) vertical hole end lot assembly installation step (200), (c) vertical ball The middle lot assembly assembly step (300) and (d) vertical mouth finish lot assembly process step comprising the step (400).
  • the ring-shaped reinforcement concrete is poured on the outside of the position where the vertical ball construction is planned, and the indentation apparatuses 80 are installed at regular intervals at the position of the reinforcement concrete that is cast in the annular shape. .
  • the indentation device 80 is preferably installed in the process until the excavation work is completed in the vertical sphere tip lot.
  • the ground is formed only of soils that do not come out of the rock, it is possible to settle on the excavation surface just by placing loads such as concrete loading blocks on the H-shaped steel placed on the vertical cylinder. If it is possible to install the vertical hole lot in the basement ground, the installation and use of the press-fit device 80 can be omitted.
  • the front-end multi-coupling wedge-shaped concrete blocks 10 have a constant height and thickness and have a constant arc-shaped length equally divided by the circumferential length of the vertical sphere inner diameter.
  • the multiple bonded wedge-shaped concrete blocks are fitted with each other to prevent horizontal deviation even in the side earth pressure.
  • the protrusion 40 and the wedge-shaped protrusion 40 may be formed with a wedge-shaped concave groove 41.
  • the tip-sided multi-coupling wedge-shaped concrete block 10 is an isosceles triangular shape in which the overall width and length of the tip-coupling multi-walled wedge-shaped concrete block 10 are one side as two sides having the same length.
  • the wedge-shaped protrusion 40 and the wedge-shaped concave groove 41 which are symmetrically inclined in the horizontal direction and formed on the entire length of the vertical height of the front end multi-coupled wedge-shaped concrete block 10 are formed.
  • the wedge-shaped projection 40 is formed so that the lower wedge-shaped projection 40 can fit the steel cap 55 and the upper wedge-shaped projection 40 ) Is manufactured in a shape that can fit snugly into the wedge-shaped concave grooves 41 below the middle multi-joined wedge-shaped concrete blocks 20 and 21 assembled on the tip multi-joined wedge-shaped concrete blocks 10.
  • Some sections of the vertical sphere cylindrical body are formed by assembling the front-end multi-joined wedge-shaped concrete blocks 10 and the steel cap 55 is fitted to the lower side of the front-end multi-joined wedge-shaped concrete blocks 10 as shown in FIG. 9.
  • the vertical sphere tip lot to be assembled is installed as shown in Figure 10a to position the vertical sphere.
  • the shape of the steel cap 55 is a pointed blade portion is formed in the tip portion so as to dig into the ground underground as shown in FIG.
  • the vertical sphere installation position When installing the vertical sphere in the water, such as when the bridge construction, the vertical sphere installation position to be embedded in the soil to enable the implementation of the present invention.
  • the ground is excavated to a depth corresponding to the height of the vertical sphere tip lot in the vertical sphere tip lot as shown in FIG. 10B.
  • the vertical spout tip lot is press-fitted into the ground by the press-fit device 80 as shown in FIG. 10C.
  • the wedge-shaped protrusion 40 is formed on the press surface of the press-fit device 80.
  • a fitting groove is formed that can be fitted.
  • the wedge-shaped projections 40 and the wedge-shaped recesses on the left and right sides in the horizontal direction are the same as the front-end multi-joined wedge-shaped concrete blocks 10 of the middle multi-joined wedge-shaped concrete blocks 20 and 21, which are assembled and installed on the vertical sphere end lot. (41) is formed and the wedge-shaped projections 40 are formed on the upper side, but unlike the shape where the wedge-shaped projections 40 are formed on the lower end of the multi-coupled wedge-shaped concrete block 10, the wedge-shaped projections 40 are inserted.
  • a wedge-shaped recess 41 is formed which can be fitted. As shown in FIGS.
  • the middle portion multiple bonded concrete blocks 20 and 21 have an isosceles triangular shape in which the overall width and length of the middle portion multiple bonded wedge shaped concrete blocks 20 and 21 are one side. As the two sides of the same length are inclined in the horizontal direction, the wedge-shaped protrusion 40 and the wedge-shaped concave groove 41 are formed on the entire length of the upper and lower heights of the middle multiple coupling wedge-shaped concrete blocks 20 and 21.
  • Respectively formed is an isosceles triangular shape in which the entire thickness width of the middle portion multiple coupling wedge-shaped concrete blocks (20, 21) is one side, the two sides having the same length are symmetrically inclined in the vertical direction and the middle portion multiple coupling Wedge-shaped protrusions 40 are formed on the entire horizontal length of the wedge-shaped concrete blocks 20 and 21, and the lower side of the middle multiple-joined wedge-shaped concrete blocks 20 and 21 is formed.
  • the intermediate multiple coupling wedge-shaped concrete blocks 20 and 21 form a vertical sphere intermediate lot of the vertical cylinder, and the intermediate multiple coupling wedge is formed in the wedge-shaped protrusion 40 above the vertical sphere leading end lot.
  • Wedge-shaped concave grooves 41 of the concrete convex 20 and 21 are fitted to assemble the vertical sphere middle lot on the vertical sphere tip lot to form the vertical sphere of the extended vertical cylinder.
  • FIG. 5a shows a middle multiplexed wedge-shaped concrete block (type A) 20 in which a support base step 60 and a beam insertion groove 61 are formed for installation of a vertical sphere inner slab beam.
  • 5b shows a middle multiple coupling wedge-shaped concrete block (type B) 21 in which the support base step 60 and the beam insertion groove 61 are not formed.
  • the beam insertion groove 61 is preferably formed in a rectangular shape so that the rectangular beam can be inserted.
  • the vertical ball mid-lot lots are stacked several times so that vertical balls of length can be built up to reach the total height of the planned vertical ball, and the middle multi-joined wedge-shaped concrete blocks will depend on the number of slabs installed in the vertical ball.
  • middle multiple bond wedge-shaped concrete block (B type) 21 can be selected and constructed suitably.
  • Horizontal left and right wedge-shaped protrusions 40 and wedge-shaped concave grooves of the finishing multi-joined wedge-shaped concrete block 30 assembled on the middle of the vertical sphere lot are formed at the ends of the multi-joined wedge-shaped concrete block 10.
  • the same shape as the finished concrete convex 30 is a wedge-shaped concave groove 41 into which the wedge-shaped protrusion 40 can be inserted and fitted, such as the middle portion multiple-joined wedge-shaped concrete blocks 20 and 21 at the lower side. It is formed but the upper side is formed in a planar shape.
  • Finishing multi-joint wedge-shaped concrete block 30 is an isosceles triangular shape in which the overall width and width of the finishing multi-coupling wedge-shaped concrete block 30 is one side on the left and right in the horizontal direction as shown in FIG.
  • Two sides are inclined in the horizontal direction and are formed with a wedge-shaped protrusion 40 and a wedge-shaped concave groove 41 formed on the entire length of the upper and lower heights of the finishing multiple coupling wedge-shaped concrete block 30, respectively.
  • the two-sided sides of the same thickness as the isosceles triangular shape of which the overall width of the finishing multiple-joined wedge-shaped concrete block 30 is one side are inclined in the vertical direction and are symmetrical to each other.
  • Wedge-shaped concave grooves 41 are formed in the entire horizontal length.
  • Assemble and install the vertical ball finishing lot by fitting the multi-coupling wedge-shaped concrete blocks (30) at the vertical vertical middle of the installed vertical hole, and excavate the ground with the depth corresponding to the height of the vertical ball finishing lot inside the vertical hole tip. And press the vertical sphere finish lot and the vertical sphere end lot and the vertical sphere middle lot to press the ground excavation to complete the vertical sphere finish lot assembly step 400.
  • FIGS. 14A and 14B illustrate one type of internal facility installation.
  • Multi-bonded wedge-shaped concrete blocks (10, 20, 21, 30) for carrying out the present invention is preferably produced in a precast so that it can be manufactured in the factory and transported to the site, but may be manufactured in the field according to the construction conditions. .
  • Multi-bonded wedge-shaped concrete blocks (10, 20, 21, 30) for carrying out the present invention is one weight within 13 tons for improved efficiency, the thickness is within the range of 400 ⁇ 1,000mm 1,000 ⁇ 2,500 It is preferred to be selected within the mm range.
  • the length of the multi-bond wedge-shaped concrete blocks 10, 20, 21, 30 for carrying out the present invention is preferably constant to 5,000mm, multi-bond having a small length to assemble the cylindrical body to form a complete circumferential surface Can be assembled with one or two wedge shaped concrete blocks.
  • Multi-bonded wedge shaped concrete blocks 10, 20, 21, 30 for carrying out the present invention form four lifting holes 75 to form a lifting hole 75 into which a rope can be fitted for transport and assembly installation. It is desirable to.
  • the wedge-shaped protrusion 40 and the wedge-shaped concave groove 41 formed in the multiple-bonded wedge-shaped concrete blocks 10, 20, 21, and 30 for carrying out the present invention are sandwiched during assembly of a heavy product. It is preferable to be easy to fit, but it is also possible to form a curved surface for smooth manufacturing and damage prevention.
  • the wedge-shaped concave groove 41 of the present invention prevents water or foreign matter from accumulating in the wedge-shaped concave groove 41 by always opening downward when constructed.
  • the front end multi-coupled wedge-shaped concrete block 10 for implementing the present invention is inserted and fixed in the steel cap 55 and the wedge-shaped protrusion 40 and the steel tip of the multi-joined wedge-shaped concrete block. It is preferable to fill and fix the epoxy 56 between the shoes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Sustainable Development (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

본 발명은 지하철, 전력구, 통신구, 지중관로 등의 지하시설물 건설, 지하 터널의 수직 환기구 또는 교각 기초 작업 등을 위해 지표로부터 수직 하방으로 굴착 시공하는 수직구 건설 공법에 관한 것으로서, 더욱 상세하게는 별도의 가시설 공사를 시행하지 아니하고, 다중결합 쐐기형 콘크리트 블록들로 조립 설치된 수직구 롯트 내부를 굴착한 후 수직구 롯트를 압입하여 설치하는 수직구 롯트 조립설치 단계를 수직구 깊이에 따라 수회 실시하는 방법으로 수직구 구조물을 건설하는 데 있어서 소요되는 다중결합 쐐기형 콘크리트 블록 및 이를 이용한 수직구 건설 공법에 관한 것이다.

Description

수직구용 다중결합 쐐기형 콘크리트 블록 및 이를 이용한 수직구 건설 공법
본 발명은 지하철, 전력구, 통신구, 지중관로 등의 지하시설물 건설, 지하 터널의 수직 환기구 또는 교각 기초 작업 등을 위해 지표로부터 수직 하방으로 굴착 시공하는 수직구 건설 공법에 관한 것으로서, 더욱 상세하게는 별도의 가시설 공사를 시행하지 아니하고, 다중결합 쐐기형 콘크리트 블록들로 조립 설치된 수직구 롯트 내부를 굴착한 후 수직구 롯트를 침하시켜 설치하는 수직구 롯트 조립설치 단계를 수직구 깊이에 따라 수회 실시하는 방법으로 수직구 구조물을 건설하는 데 있어서 소요되는 다중결합 쐐기형 콘크리트 블록 및 이를 이용한 수직구 건설 공법에 관한 것이다.
본 발명의 다중결합 쐐기형 콘크리트 블록은 수직방향의 상측 및 하측과 수평방향의 좌우측에 쐐기형 돌기 또는 쐐기형 오목홈이 형성되어 있는 콘크리트 블록으로써 콘크리트 블록들이 쐐기형 돌기와 쐐기형 오목홈에 의해 서로 끼워져서 수직방향(수직구벽체의 상하 방향) 및 수평방향 (수직구의 원주면상의 좌우방향)으로 조립되어 수직원통체의 형성을 가능하게 한다.
통상적인 수직구 건설 공법은 지반을 일정 깊이까지 굴착한 후 굴착된 지반의 안쪽으로 흙막이 벽체를 가설하여 지반의 이완이나 붕괴를 방지하고 버팀목 등을 이용하여 가설된 벽체를 지지하면서 계획된 심도까지 단계적으로 굴착한 뒤 바닥부터 거푸집을 설치하고 콘크리트를 타설하여 수직구 벽체를 시공한다.
그러나 이러한 현장 타설 공법은 작업 절차가 복잡하고 노동강도가 높은 작업이 소요될 뿐만 아니라 콘크리트 양생 등으로 인하여 수직구 건설 공사 기간이 장기간으로 소요되는 문제점이 있다.
이러한 문제점을 해결하기 위한 방법의 하나로 강관을 수직으로 압입한 후 강관 내 유입된 토사를 외부로 배출하는 방식을 채택할 수 있으나 대형 수직구에 적합한 대형 강관의 제작, 운반 및 설치작업이 용이하지 않을 뿐만 아니라 공사비가 크게 증가되어 교량건설 등을 위한 지하 수직구 건설을 위해서는 실질적으로 채택하기 어려운 문제점이 있다.
대한민국 등록특허 제10-1087726호는 선단부에 다수의 비트날이 설치된 굴착 시공용 강관을 제안하고 있으나 상하수도의 배관공사 등 지하에 설비를 매설할 때 작업 장애 시설물을 만나게 되더라도 개착 공법에 의해 지반을 팔 수 없는 경우 적용 가능한 것이고, 교량 건설을 위한 지하 수직구등 대형 수직구 건설을 위해서는 적용이 실질적으로 불가능하다.
대한민국 등록특허 제10-0746594호는 가시설을 설치하여 지하 목표 심도까지 굴착한 후 가시설을 해체하고 지하 바닥면부터 원주 방향 단면상으로 만곡지고 양측이 경사진 사다리꼴 세그먼트들을 지그재그로 끼워 원통체를 조립하는 단계를 여러번 적층하는 방법으로 프리캐스트 구조물에 의한 수직구 건설 공법을 제안하고 있다.
그러나 이러한 수직구 건설 공법은 현장에서 수직구 설치를 위해 콘크리트를 타설하지 않아도 되지만 수직구 개착을 위해 가시설을 설치해야하고 단계별 세그먼트 조립이 복잡해지는 문제점이 있다.
대한민국 등록특허 제10-1440422호는 지반을 예비 굴착한 후 원형의 압입용 강재캡을 설치하고 지반 상부에서 하부로 굴착하면서 상기 압입용 강재캡 상부에 콘크리트 세그먼트를 원형으로 설치한 후, 상기 콘크리트 세그먼트를 압입용 유압장치를 이용하여 지하 하방까지 압입 시공하여 다단의 콘크리트 세그먼트 수직구조물을 시공하는 탑다운 방식에 의한 지하 콘크리트 수직구조물 시공방법을 제안하고 있다.
상기 발명은 수직구 굴착을 위해 가시설 시공 공정을 생략할 수 있고 현장에서 콘크리트 타설 없이 규격화된 공장에서 제작되어진 콘크리트 세그먼트들을 조립하는 것만으로 수직구 건설이 용이하지만, 세그먼트들 간의 연결을 수직방향 연결구 및 수평방향 연결구에 의하여 연결하도록 되어 있어서 수직구 설치작업이 복잡해지고 설치된 수직구는 구조적으로 안정성이 결여되어 수직구로부터 세그먼트들이 이탈되거나 수직구가 붕괴될 우려가 있는 문제점이 있다.
본 발명은 지반 굴착을 위한 가시설을 설치하지 않고 수직구용 콘크리트를 건설 현장에서 타설하지 않으면서 다중결합 쐐기형 콘크리트 블록들을 현장에서 조립 설치하는 방법에 의해 수직구를 건설하는 공법을 채택하되, 위에 열거한 문제점들을 해소하고, 다중결합 쐐기형 콘크리트 블록들의 조립 및 설치작업을 숙련된 인력에 의하지 않더라도 용이하게 할 수 있게 하고, 수직구 건설 공사 기간을 단축시키고, 수직구 건설용 자재관리의 편이성을 제고시키고자 하는데 그 목적이 있다.
또한, 본 발명은 다중결합 쐐기형 콘크리트 블록에 쐐기형 돌기와 쐐기형 오목홈을 수직 및 수평방향 각각 양측에 형성하여 다중결합 쐐기형 콘크리트 블록들이 구조적으로 안정되게 조립 안착되도록 하여 정밀시공 및 안전시공을 도모하고 큰크리트 블록들이 측면 토압에 의해 수직구로부터 이탈되거나 건설된 수직구가 변형되거나 붕괴될 가능성을 감소시키고자 하는 것에도 그 목적이 있다.
또한, 본 발명은 쐐기형상의 접촉 중심점에 수팽창성 개스킷의 실링재를 삽입하여 수밀성을 효과적으로 제고시키데도 목적이 있다.
그러나 본 발명의 목적은 상기에 언급된 목적으로 제한되지 않으며, 언급되지 않았으나 아래 수단들 또는 실시예상의 구체적인 구성에 따른 다른 목적들은 그 기재로부터 이 기술 분야의 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 발명은 수평 방향 좌우측에 선단부 다중결합 쐐기형 콘크리트 블록(10)의 두께 폭 전체길이가 일변이 되는 이등변 삼각형 형상으로서 길이가 동일한 두 변이 수평 방향으로 경사져서 대칭되고 상기 선단부 다중결합 쐐기형 콘크리트 블록(10)의 상하 높이 전체 길이에 형성되는 쐐기형 돌기(40)와 쐐기형 오목홈(41)이 각각 형성되고 상측에 쐐기형 돌기(40)가 형성된 선단부 다중결합 쐐기형 콘크리트 블록(10)들을 수평방향에서 상기 쐐기형 돌기(40)와 상기 쐐기형 오목홈(41)을 서로 끼워서 수직원통체로 조립된 수직구 선단부 롯트를 수직구 건설 위치의 지상에 조립설치 한 후 상기 수직구 선단부 롯트 내부의 지반을 굴착하고 상기 수직구 선단부 롯트를 압입장치(80)에 의해 압입시키거나 상재하중방식에 의해 침하시켜 굴착되어진 지반에 설치하는 수직구 선단부 롯트 조립설치 단계(200), 수평 방향 좌우측에 중간부 다중결합 쐐기형 콘크리트 블록(20, 21)의 두께 폭 전체길이가 일변이 되는 이등변 삼각형 형상으로서 길이가 동일한 두 변이 수평 방향으로 경사져서 대칭되고 상기 중간부 다중결합쐐기형 콘크리트 블록(20, 21)의 상하 높이 전체 길이에 형성되는 쐐기형 돌기(40)와 쐐기형 오목홈(41)이 각각 형성되고, 상측에 상기 중간부 다중결합 쐐기형 콘크리트 블록(20, 21)의 두께 폭 전체 길이가 일변이 되는 이등변 삼각형 형상으로서 길이가 동일한 두 변이 수직 방향으로 경사져서 대칭되고 상기 중간부 다중결합 쐐기형 콘크리트 블록(20, 21)의 수평방향 전체 길이에 형성되는 쐐기형 돌기(40)가 형성되고, 하측에 상기 중간부 다중결합 쐐기형 콘크리트 블록(20, 21)의 두께 폭 전체길이가 일변이 되는 이등변 삼각형 형상으로서 길이가 동일한 두 변이 수직 방향으로 경사져서 대칭되고 상기 중간부 다중결합 쐐기형 콘크리트 블록(20, 21)의 수평방향 전체 길이에 형성되는 쐐기형 오목홈(41)이 형성된 중간부 다중결합 쐐기형 콘크리트 블록(20, 21)들에 의하여 수직원통체의 수직구 중간부 롯트를 형성하되, 상기 수직구 선단부 롯트의 선단부 다중결합 쐐기형 콘크리트 블록(10) 상측의 쐐기형 돌기(40)에 상기 중간부 다중결합 쐐기형 콘크리트 볼록(20, 21)들의 하측 쐐기형 오목홈(41)을 끼워서 상기 수직구 선단부 롯트 위에 상기 수직구 중간부 롯트를 조립설치함으로써 연장된 수직원통체 수직구를 형성한 후 상기 수직구 선단부 롯트 내부를 굴착하고 상기 수직구 중간부 롯트를 압입장치(80)에 의해 압입시키거나 상재하중방식에 의해 침하시켜 굴착되어진 지반에 설치하는 수직구 중간부 롯트 조립설치 단계(300) 및 수평 방향 좌우측에 마감부 다중결합 쐐기형 콘크리트 블록(30)의 두께 폭 전체길이가 일변이 되는 이등변 삼각형 형상으로서 길이가 동일한 두 변이 수평 방향으로 경사져서 대칭되고 상기 마감부 다중결합 쐐기형 콘크리트 블록(30)의 상하 높이 전체 길이에 형성되는 쐐기형 돌기(40)와 쐐기형 오목홈(41)이 각각 형성되고, 하측에 상기 마감부 다중결합 쐐기형 콘크리트 블록(30)의 두께 폭 전체길이가 일변이 되는 이등변 삼각형 형상으로서 길이가 동일한 두 변이 수직 방향으로 경사져서 대칭되고 상기 마감부 다중결합 쐐기형 콘크리트 블록(30)의 수평방향 전체 길이에 형성되는 쐐기형 오목홈(41)이 형성된 마감부 다중결합 쐐기형 콘크리트 블록(30)들에 의하여 수직원통체의 수직구 마감부 롯트를 형성하되, 상기 수직구 중간부 롯트의 중간부 다중결합 쐐기형 콘크리트 블록(20, 21) 상측의 쐐기형 돌기(40)에 상기 마감부 다중결합 쐐기형 콘크리트 볼록(30)들의 하측 쐐기형 오목홈(41)을 끼워서 상기 수직구 중간부 롯트 위에 상기 수직구 마감부 롯트를 조립설치함으로써 연장된 수직원통체 수직구를 형성한 후 상기 수직구 선단부 롯트 내부를 굴착하고 상기 수직구 마감부 롯트를 압입장치(80)에 의해 압입시키거나 상재하중방식에 의해 침하시켜 굴착되어진 지반에 설치하는 수직구 마감부 롯트 조립설치 단계(400)가 포함되는 것을 특징으로 하는 수직구용 다중결합 쐐기형 콘크리트 블록을 이용한 수직구 건설 공법을 제공한다.
또한, 본 발명은 상기 선단부 다중결합 쐐기형 콘크리트 블록(10)은 하측에 쐐기형 돌기(40)가 형성되고 상기 수직구 선단부 롯트 조립설치 단계(200)에 상기 선단부 다중결합 쐐기형 콘크리트 블록(10) 하측에 강재캡(55)을 삽입하는 공정을 더 포함한 것을 특징으로 하는 수직구용 다중결합 쐐기형 콘크리트 블록을 이용한 수직구 건설 공법을 제공한다.
또한, 본 발명은 수직구 선단부 롯트 조립설치 단계(200)를 진행하기 전에 수직구 건설이 계획되어진 위치의 외측에 원환(圓環) 형상의 보강 콘크리트를 타설하고 원환상으로 타설된 보강 콘크리트의 위치에서 일정간격으로 압입장치(80)들을 설치하는 단계가 더 포함된 것을 특징으로 하는 수직구용 다중결합 쐐기형 콘크리트 블록을 이용한 수직구 건설 공법을 제공한다.
또한, 본 발명은 쐐기형 돌기(40)와 쐐기형 오목홈(41) 사이에 수팽창성 개스킷(50)을 장착하는 공정을 더 포함한 것을 특징으로 하는 수직구용 다중결합 쐐기형 콘크리트 블록을 이용한 수직구 건설 공법을 제공한다.
본 발명은 수평 방향 좌우측에 다중결합 쐐기형 콘크리트 블록(10, 20, 21, 30)의 두께 폭 전체길이가 일변이 되는 이등변 삼각형 형상으로서 길이가 동일한 두 변이 수평 방향으로 경사져서 대칭되고 상기 다중결합 쐐기형 콘크리트 블록(10, 20, 21, 30)의 상하 높이 전체 길이에 형성되는 쐐기형 돌기(40)와 쐐기형 오목홈(41)이 각각 형성되고, 상측에 상기 다중결합 쐐기형 콘크리트 블록(10, 20, 21, 30)의 두께 폭 전체 길이가 일변이 되는 이등변 삼각형 형상으로서 길이가 동일한 두 변이 수직 방향으로 경사져서 대칭되고 상기 다중결합 쐐기형 콘크리트 블록(10. 20, 21, 30)의 수평방향 전체 길이에 형성되는 쐐기형 돌기(40)와 하측에 상기 다중결합 쐐기형 콘크리트 블록(10, 20, 21, 30)의 두께 폭 전체길이가 일변이 되는 이등변 삼각형 형상으로서 길이가 동일한 두 변이 수직 방향으로 경사져서 대칭되고 상기 다중결합 쐐기형 콘크리트 블록(10, 20, 21, 30)의 수평방향 전체 길이에 형성되는 쐐기형 오목홈(41)이 적어도 하나 이상 형성된 다중결합 쐐기형 콘크리트 블록으로서 좌우방향 및 상하방향에 각각 상기 쐐기형 돌기(40)와 쐐기형 오목홈(41)을 끼워지게 하는 것만으로 수직원통체로 조립되고 상하방향으로 다중결합 쐐기형 콘크리트 블록들이 적층되어 수직원통체의 수직구를 형성하는 것이 가능한 것을 특징으로 하는 다중결합 쐐기형 콘크리트 블록을 제공한다.
또한, 본 발명의 상기 다중결합 쐐기형 콘크리트 블록(20, 21)은 상측에는 쐐기형 돌기(40)가 형성되고 하측에는 쐐기형 오목홈(41)이 형성된 구성으로 한정될 수 있다.
또한, 본 발명은 보받침단턱(60)과 보삽입홈(61)이 형성된 구성이 더 포함될 수 있다.
또한, 본 발명은 인양홀(75)이 형성된 구성이 더 포함될 수 있다.
또한, 본 발명은 상측이 평면으로 형성되고 하측에 쐐기형 오목홈(41)으로 형성된 것으로 한정될 수 있다.
본 발명은 지반 굴착을 위한 가시설을 설치하지 않고 수직구용 콘크리트를 건설 현장에서 타설하지 않으면서 다중결합 쐐기형 콘크리트 블록들을 현장에서 조립 설치하는 방법에 의해 수직구를 건설함으로써, 수직구 시공에 소요되는 복잡한 공정을 단축시키고 공사품질을 향상하고 공기를 단축할 수 있다.
본 발명의 삼각형상의 쐐기형 돌기와 쐐기형 오목홈이 형성된 콘크리트 블록들이 수평방향과 상하 방향 양 방향에서 맞추어져서 조립되는 구조는 수직구 측면으로부터 발생되는 높은 토압과 지반 침하와 같은 수직적 지반 변화에도 저항할 수 있게하여 콘크리트 블록의 이탈이 억제되며 수직구 붕괴나 변형의 가능성을 감소시킬 수 있는 효과를 갖게 할 수 있다.
즉, 본 발명은 수직적 안정성과 수평적 안정성을 확보된 수직구 건설 공법을 제공할 수 있다.
또한, 본 발명은 일정한 규격으로 제작될 수 있는 쐐기형상의 콘크리트 블록의 구조적 특징으로 인하여 콘크리트 블록이 중량물임에도 콘크리트 블록에 의한 수직구 조립 설치에 있어서 높은 숙련도를 요하지 않고도 정밀시공과 안정시공이 가능하고 콘크리트 블록으로 수직구 롯트들을 조립 설치하는 작업시간을 단축시킬 수 있다.
또한, 본 발명은 자재관리의 효율성을 제고할 수 있으며 공사시 소요되는 작업용 부지 면적을 축소시켜 용지비를 절감하는 효과를 가져올 수 있다.
또한, 본 발명은 본 발명의 구조적 안정성 증가로 인해 콘크리트 블록의 두께를 감소시켜 공사비를 절감할 수 있는 효과를 가져올 수 있다.
도 1은 본 발명의 일실시예에 따른 수직구 건설 공법 공정도이다.
도 2는 본 발명의 일실시예에 따른 다중결합 쐐기형 콘크리트 블록들을 조립하여 설치된 수직구의 수평단면도이다.
도 3은 본 발명의 일실시예에 따른 다중결합 쐐기형 콘크리트 블록들을 조립하여 설치된 수직구의 수직단면도이다.
도 4는 본 발명의 일실시예에 따른 선단부 다중결합 쐐기형 콘크리트 블록(10)의 사시도이다.
도 5a는 본 발명의 일실시예에 따른 중간부 다중결합 쐐기형 콘크리트 블록(A형)(20)의 사시도이고 도 5b는 중간부 다중결합 쐐기형 콘크리트 블록(B형)(21)의 사시도이다.
도 6은 본 발명의 일실시예에 따른 마감부 다중결합 쐐기형 콘크리트 블록(30)의 사시도이다.
도 7은 본 발명의 일실시예에 따른 다중결합 쐐기형 콘크리트 블록들을 끼워 맞추어 주는 부분의 상세도이다.
도 8은 본 발명의 일실시예에 따른 암반에 사용되는 강재캡(55)의 단면도이다.
도 9는 본 발명의 일실시예에 따른 선단부 다중결합 쐐기형 콘크리트 블록(10) 하측에 강재캡(55)을 장착한 상태의 단면도이다.
도 10a, 도 10b 및 도 10c는 각각 본 발명의 일실시예에 따른 수직구 선단부 롯트의 조립 단면도, 수직구 선단부 롯트 내부굴착 개념도 및 수직구 선단부 롯트를 압입하는 상태도이다.
도 11a, 도 11b 및 도 11c는 각각 본 발명의 일실시예에 따른 수직구 중간부 롯트의 조립 단면도, 수직구 선단부 롯트 내부굴착 개념도 및 수직구 중간부 롯트를 압입하는 상태도이다.
도 12a, 도 12b 및 도 12c는 각각 본 발명의 일실시예에 따른 수직구 마감부 롯트의 조립 단면도, 수직구 선단부 롯트 내부굴착 개념도 및 수직구 마감부 롯트를 압입하는 상태도이다.
도 13은 본 발명의 일실시예에 따른 완성된 수직구의 수직단면도이다.
도 14a와 도 14b는 본 발명의 일실시예에 따른 수직구의 내부시설 설치개요평면도 및 단면도이다.
도 15a와 도 15b는 압입장치(80) 설치 평면도와 수직 단면도이다.
본 명세서에 사용되는 기술적 용어는 단지 특정한 실시예를 설명하기 위하여 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의하여야 한다.
또한, 본 명세서에서 사용되는 기술적 용어는 본 명세서에서 특별히 다른 의미로 정의되지 않는 한 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의하여 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다.
또한, 본 명세서에서 사용되는 단수의 표현은 문맥상 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "구성된다" 또는 "포함한다" 등의 용어는 명세서 상에 기재된 여러 구성요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.
본 발명에 의한 수직구 건설공법은 도 1에 도시된 바와 같이 (a)보강 콘크리트 타설 및 압입장치 설치 단계(100), (b)수직구 선단부 롯트 조립설치 단계(200), (c)수직구 중간부 롯트 조립설치 단계(300) 및 (d)수직구 마감부 롯트 조립설치 단계(400)들을 포함하는 공정으로 진행된다.
(a) 보강 콘크리트 타설 및 압입장치 설치단계(100)
도 15a, 도 15b와 같이 수직구 건설이 계획되어진 위치의 외측에 원환(圓環) 형상의 보강 콘크리트를 타설하고 원환상으로 타설된 보강 콘크리트의 위치에서 일정간격으로 압입장치(80)들을 설치한다.
압입장치(80)들은 수직구 선단부 롯트 내에서 굴착 작업이 완료되기 전까지 설치되는 것이 공정상 바람직하다.
그러나 지반이 암반이 나오지 않는 토사만으로 형성되어 있어서 수직구 원통체 상부에 재치된 H 형강위에 콘크리트 재하 블록 등 하중체를 올려 놓는 것만으로 굴착면에서 침하를 실시할 수 있는 경우와 같이 상재하중 재하방식에 의해 수직구 롯트를 지하지반에 설치하는 것이 가능한 경우에는 압입장치(80)의 설치나 사용을 생략할 수 있다.
(b) 수직구 선단부 롯트 조립설치 단계(200)
도 4에 도시된 바와 같이 선단부 다중결합 쐐기형 콘크리트 블록(10)들은 일정한 높이와 두께를 갖으며 수직구 내경의 원주 길이를 균등 분할한 일정한 원호형상의 길이를 갖는다.
수직구의 원통체를 형성하는 원주면에서 다중결합 쐐기형 콘크리트 블록들이 서로 끼워 맞추어져 측면 토압에도 수평방향 이탈을 방지할 수 있도록 하나의 다중결합 쐐기형 콘크리트 블록(10)은 좌우 양측에 각각 쐐기형 돌기(40)와 쐐기형 돌기(40)가 안착될 수 있는 쐐기형 오목홈(41)이 형성된다. 선단부 다중결합 쐐기형 콘크리트 블록(10)은 도 4에 도시된 바와 같이 수평 방향 좌우측에 선단부 다중결합 쐐기형 콘크리트 블록(10)의 두께 폭 전체길이가 일변이 되는 이등변 삼각형 형상으로서 길이가 동일한 두 변이 수평 방향으로 경사져서 대칭되고 상기 선단부 다중결합 쐐기형 콘크리트 블록(10)의 상하 높이 전체 길이에 형성되는 쐐기형 돌기(40)와 쐐기형 오목홈(41)이 각각 형성된다.
또한, 선단부 다중결합 쐐기형 콘크리트 블록(10)의 상측과 하측에도 쐐기형 돌기(40)가 형성되어 하측 쐐기형 돌기(40)는 강재캡(55)를 끼워 맞출수 있도록 하며 상측 쐐기형 돌기(40)는 선단부 다중결합 쐐기형 콘크리트 블록(10) 위에 조립되는 중간부 다중결합 쐐기형 콘크리트 블록(20, 21) 하측의 쐐기형 오목홈(41)에 꼭 맞게 끼워 맞추어질 수 있는 형상으로 제작된다.
선단부 다중결합 쐐기형 콘크리트 블록(10)들을 조립하여 수직구 원통체의 일부 구간이 형성되고 선단부 다중결합 쐐기형 콘크리트 블록(10)의 하측에 강재캡(55)을 도 9와 같이 끼워 맞춘 상태로 조립되는 수직구 선단부 롯트를 수직구를 건설코자 하는 위치에 도 10a와 같이 설치한다.
상기 강재캡(55)의 형상은 도 9에 도시된 바와 같이 지반 지하로 파고 들어갈 수 있도록 선단부에 뾰족한 형상의 날부가 형성된다.
교각 건설시 등 수중에 수직구를 설치할 경우에는 수직구 설치 위치를 토사로 매립하여 본 발명의 실시가 가능하도록 한다.
수직구 선단부 롯트를 수직구 건설 위치의 지상에 조립 설치한 후 도 10b와 같이 수직구 선단부 롯트 내부에서 수직구 선단부 롯트의 높이에 해당하는 깊이로 지반을 굴착한다.
수직 선단부 롯트의 높이에 해당하는 깊이의 굴착이 이루어지면 도 10c와 같이 압입장치(80)에 의해 수직구 선단부 롯트를 지반에 압입하는데 압입장치(80)의 프레스면에는 쐐기형 돌기(40)가 끼워 맞추어질 수 있는 끼움홈이 형성된다.
(c) 수직구 중간부 롯트 조립설치 단계(300)
수직구 선단부 롯트 위에 조립 설치되는 중간부 다중결합 쐐기형 콘크리트 블록(20, 21)의 선단부 다중결합 쐐기형 콘크리트 블록(10)과 동일하게 수평 방향 좌우측에 쐐기형 돌기(40)와 쐐기형 오목홈(41)이 형성되고 상측에 쐐기형 돌기(40)가 형성되지만 하측에는 선단부 다중결합 쐐기형 콘크리트 블록(10)에서 쐐기형 돌기(40)가 형성된 형태와 달리 쐐기형 돌기(40)가 삽입되어 끼워 맞추어질 수 있는 쐐기형 오목홈(41)이 형성된다. 중간부 다중결합 콘크리트 블록(20, 21)은 도 5a, 5b에 도시된 바와 같이 수평 방향 좌우측에 중간부 다중결합 쐐기형 콘크리트 블록(20, 21)의 두께 폭 전체길이가 일변이 되는 이등변 삼각형 형상으로서 길이가 동일한 두 변이 수평 방향으로 경사져서 대칭되고 상기 중간부 다중결합 쐐기형 콘크리트 블록(20, 21)의 상하 높이 전체 길이에 형성되는 쐐기형 돌기(40)와 쐐기형 오목홈(41)이 각각 형성되고, 상측에 상기 중간부 다중결합 쐐기형 콘크리트 블록(20, 21)의 두께 폭 전체 길이가 일변이 되는 이등변 삼각형 형상으로서 길이가 동일한 두 변이 수직 방향으로 경사져서 대칭되고 상기 중간부 다중결합 쐐기형 콘크리트 블록(20, 21)의 수평방향 전체 길이에 형성되는 쐐기형 돌기(40)가 형성되고, 하측에 상기 중간부 다중결합 쐐기형 콘크리트 블록(20, 21)의 두께 폭 전체길이가 일변이 되는 이등변 삼각형 형상으로서 길이가 동일한 두 변이 수직 방향으로 경사져서 대칭되고 상기 중간부 다중결합 쐐기형 콘크리트 블록(20, 21)의 수평방향 전체 길이에 형성된다.
상기 중간부 다중결합 쐐기형 콘크리트 블록(20, 21)들에 의하여 수직원통체의 수직구 중간부 롯트를 형성하는데 상기 수직구 선단부 롯트 상측의 쐐기형 돌기(40)에 상기 중간부 다중결합 쐐기형 콘크리트 볼록(20, 21)들의 쐐기형 오목홈(41)을 끼워서 상기 수직구 중간부 롯트를 상기 수직구 선단부 롯트위에 조립설치함으로써 연장된 수직원통체의 수직구를 형성한다.
도 5a는 수직구 내부 슬래브용 보의 설치를 위한 보받침단턱(60)과 보삽입홈(61)이 형성되어 있는 중간부 다중결합 쐐기형 콘크리트 블록(A형)(20)을 도시하고 있으며 도 5b는 보받침단턱(60)과 보삽입홈(61)이 형성되어 있지 아니한 중간부 다중결합 쐐기형 콘크리트 블록(B형)(21)을 도시하고 있다.
보삽입홈(61)은 사각형상으로 형성되어 사각형상의 보가 삽입될 수 있도록 하는 것이 바람직하다.
설치된 수직구 선단부 롯트 위에 중간부 다중결합 쐐기형 콘크리트 블록(20, 21)들을 끼워 맞추어 수직구 중간부 롯트를 조립 설치하고 수직구 선단부 내부에서 수직구 중간부 롯트의 높이에 해당하는 깊이의 지반을 굴착하고 수직구 중간부 롯트를 수직구 선단부 롯트와 함께 지반 굴착부에 압입하여 수직구 중간부 롯트 조립설치 단계(300)를 진행한다.
수직구 중간부 롯트는 계획되어진 수직구의 총 높이에 도달될 수 있는 길이의 수직구가 건설될 수 있도록 여러 번 적층되게 실시되어지며 수직구에 설치되는 슬래브 수에 따라 중간부 다중결합 쐐기형 콘크리트 블록(A형)(20)과 중간부 다중결합 쐐기형 콘크리트 블록(B형)(21)을 적의 선택하여 시공할 수 있다.
(d) 수직구 마감부 롯트 조립설치 단계(400)
수직구 중간부 롯트 위에 조립 설치되는 마감부 다중결합 쐐기형 콘크리트 블록(30)의 수평 방향 좌우측 쐐기형 돌기(40)와 쐐기형 오목홈(41)은 선단부 다중결합 쐐기형 콘크리트 블록(10)의 형상과 동일하고 마감부 콘크리트 볼록(30)은 하측에 중간부 다중결합 쐐기형 콘크리트 블록(20, 21)과 같이 쐐기형 돌기(40)가 삽입되어 끼워 맞추어질 수 있는 쐐기형 오목홈(41)이 형성되지만 상측은 평면 형상으로 형성된다. 마감부 다중결합 쐐기형 콘크리트 블록(30)은 도 6에 도시된 바와 같이 수평 방향 좌우측에 마감부 다중결합 쐐기형 콘크리트 블록(30)의 두께 폭 전체길이가 일변이 되는 이등변 삼각형 형상으로서 길이가 동일한 두 변이 수평 방향으로 경사져서 대칭되고 상기 마감부 다중결합 쐐기형 콘크리트 블록(30)의 상하 높이 전체 길이에 형성되는 쐐기형 돌기(40)와 쐐기형 오목홈(41)이 각각 형성되고, 하측에 상기 마감부 다중결합 쐐기형 콘크리트 블록(30)의 두께 폭 전체길이가 일변이 되는 이등변 삼각형 형상으로서 길이가 동일한 두 변이 수직 방향으로 경사져서 대칭되고 상기 마감부 다중결합 쐐기형 콘크리트 블록(30)의 수평방향 전체 길이에 형성되는 쐐기형 오목홈(41)이 형성된다.
설치된 수직구 중간부 롯트 위에 마감부 다중결합 쐐기형 콘크리트 블록(30)들을 끼워 맞추어 수직구 마감부 롯트를 조립 설치하고 수직구 선단부 내부에서 수직구 마감부 롯트의 높이에 해당하는 깊이의 지반을 굴착하고 수직구 마감부 롯트를 수직구 선단부 롯트 및 수직구 중간부 롯트와 함께 지반 굴착부에 압입하여 수직구 마감부 롯트 조립설치 단계(400)를 완료한다.
수직구 설치 완료 후 공정 특성에 따라 카리프트 설치, 중간격벽, 보 또는 슬래브를 설치하거나 공정에 따라 변경할 수 있으며 도 14a, 도 14b은 내부시설 설치 형태의 하나를 예시하고 있다.
본 발명을 실시하기 위한 다중결합 쐐기형 콘크리트 블록(10, 20, 21, 30)은 공장에서 제작되어 현장에 운반될 수 있도록 프리캐스트로 제작되는 것이 바람직하나 시공 여건에 따라 현장에서 제작되어도 무방하다.
본 발명을 실시하기 위한 다중결합 쐐기형 콘크리트 블록(10, 20, 21, 30)은 효율성 제고를 위해 1개의 중량이 13톤 이내가 되도록 하고, 두께는 400~1,000mm 범위내에서 높이는 1,000~2,500mm 범위 내에서 선택되는 것이 바람직하다.
본 발명을 실시하기 위한 다중결합 쐐기형 콘크리트 블록(10, 20, 21, 30)의 길이는 5,000mm로 일정하게 하는 것이 바람직하며 완전한 원주면을 형성되는 원통체로 조립하기 위하여 작은 길이를 갖는 다중결합 쐐기형 콘크리트 블록 1~2개와 함께 조립될 수 있다.
본 발명을 실시하기 위한 다중결합 쐐기형 콘크리트 블록(10, 20, 21, 30)은 운반과 조립 설치를 위해 로우프를 끼울 수 있는 인양홀(75)을 형성하는데 4개의 인양홀(75)을 형성하는 것이 바람직하다.
본 발명을 실시하기 위한 다중결합 쐐기형 콘크리트 블록(10, 20, 21, 30)에 형성되는 쐐기형 돌기(40)와 쐐기형 오목홈(41)은 삼각 형상으로 제작하는 것이 중량물의 조립 시 끼워 맞추는 작업을 쉽게 할 수 있어서 바람직하나 원활한 제작과 손상방지 등을 위해 만곡면으로 형성시키는 것도 가능하다.
본 발명의 쐐기형 오목홈(41)은 시공시에 개구부가 항시 하측을 향하게 됨으로써 쐐기형 오목홈(41)에 물이나 이물질이 축적됨을 방지한다.
본 발명을 실시하기 위한 다중결합 쐐기형 콘크리트 블록(10, 20, 21, 30)에 형성되는 쐐기형 돌기(40)와 쐐기형 오목홈(41) 사이에 도 7과 같이 고무재의 수팽창성 개스킷(50)을 삽입하여 다중결합 쐐기형 콘크리트 블록들의 접합면에서 방수가 이루어지도록 하는 것이 바람직하다.
도 9에 도시된 바와 같이 본 발명을 실시하기 위한 선단부 다중결합 쐐기형 콘크리트 블록(10)은 강재캡(55)에 삽입되어 고정되며 다중결합 쐐기형 콘크리트 블록의 쐐기형돌기(40)와 강재 선단슈 사이에 에폭시(56)를 충전하여 고정하는 것이 바람직하다.
상기 내용을 참조하여 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.
그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 상기 상세한 설명에서 기술된 본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (8)

  1. 수평 방향 좌우측에 선단부 다중결합 쐐기형 콘크리트 블록(10)의 두께 폭 전체길이가 일변이 되는 이등변 삼각형 형상으로서 길이가 동일한 두 변이 수평 방향으로 경사져서 대칭되고 상기 선단부 다중결합 쐐기형 콘크리트 블록(10)의 상하 높이 전체 길이에 형성되는 쐐기형 돌기(40)와 쐐기형 오목홈(41)이 각각 형성되고 상측에 쐐기형 돌기(40)가 형성된 선단부 다중결합 쐐기형 콘크리트 블록(10)들을 수평방향에서 상기 쐐기형 돌기(40)와 상기 쐐기형 오목홈(41)을 서로 끼워서 수직원통체로 조립된 수직구 선단부 롯트를 수직구 건설 위치의 지상에 조립설치 한 후 상기 수직구 선단부 롯트 내부의 지반을 굴착하고 상기 수직구 선단부 롯트를 압입장치(80)에 의해 압입시키거나 상재하중방식에 의해 침하시켜 굴착되어진 지반에 설치하는 수직구 선단부 롯트 조립설치 단계(200);
    수평 방향 좌우측에 중간부 다중결합 쐐기형 콘크리트 블록(20, 21)의 두께 폭 전체길이가 일변이 되는 이등변 삼각형 형상으로서 길이가 동일한 두 변이 수평 방향으로 경사져서 대칭되고 상기 중간부 다중결합쐐기형 콘크리트 블록(20, 21)의 상하 높이 전체 길이에 형성되는 쐐기형 돌기(40)와 쐐기형 오목홈(41)이 각각 형성되고, 상측에 상기 중간부 다중결합 쐐기형 콘크리트 블록(20, 21)의 두께 폭 전체 길이가 일변이 되는 이등변 삼각형 형상으로서 길이가 동일한 두 변이 수직 방향으로 경사져서 대칭되고 상기 중간부 다중결합 쐐기형 콘크리트 블록(20, 21)의 수평방향 전체 길이에 형성되는 쐐기형 돌기(40)가 형성되고, 하측에 상기 중간부 다중결합 쐐기형 콘크리트 블록(20, 21)의 두께 폭 전체길이가 일변이 되는 이등변 삼각형 형상으로서 길이가 동일한 두 변이 수직 방향으로 경사져서 대칭되고 상기 중간부 다중결합 쐐기형 콘크리트 블록(20, 21)의 수평방향 전체 길이에 형성되는 쐐기형 오목홈(41)이 형성된 중간부 다중결합 쐐기형 콘크리트 블록(20, 21)들에 의하여 수직원통체의 수직구 중간부 롯트를 형성하되, 상기 수직구 선단부 롯트의 선단부 다중결합 쐐기형 콘크리트 블록(10) 상측의 쐐기형 돌기(40)에 상기 중간부 다중결합 쐐기형 콘크리트 볼록(20, 21)들의 하측 쐐기형 오목홈(41)을 끼워서 상기 수직구 선단부 롯트 위에 상기 수직구 중간부 롯트를 조립설치함으로써 연장된 수직원통체 수직구를 형성한 후 상기 수직구 선단부 롯트 내부를 굴착하고 상기 수직구 중간부 롯트를 압입장치(80)에 의해 압입시키거나 상재하중방식에 의해 침하시켜 굴착되어진 지반에 설치하는 수직구 중간부 롯트 조립설치 단계(300);
    및 수평 방향 좌우측에 마감부 다중결합 쐐기형 콘크리트 블록(30)의 두께 폭 전체길이가 일변이 되는 이등변 삼각형 형상으로서 길이가 동일한 두 변이 수평 방향으로 경사져서 대칭되고 상기 마감부 다중결합 쐐기형 콘크리트 블록(30)의 상하 높이 전체 길이에 형성되는 쐐기형 돌기(40)와 쐐기형 오목홈(41)이 각각 형성되고, 하측에 상기 마감부 다중결합 쐐기형 콘크리트 블록(30)의 두께 폭 전체길이가 일변이 되는 이등변 삼각형 형상으로서 길이가 동일한 두 변이 수직 방향으로 경사져서 대칭되고 상기 마감부 다중결합 쐐기형 콘크리트 블록(30)의 수평방향 전체 길이에 형성되는 쐐기형 오목홈(41)이 형성된 마감부 다중결합 쐐기형 콘크리트 블록(30)들에 의하여 수직원통체의 수직구 마감부 롯트를 형성하되, 상기 수직구 중간부 롯트의 중간부 다중결합 쐐기형 콘크리트 블록(20, 21) 상측의 쐐기형 돌기(40)에 상기 마감부 다중결합 쐐기형 콘크리트 볼록(30)들의 하측 쐐기형 오목홈(41)을 끼워서 상기 수직구 중간부 롯트 위에 상기 수직구 마감부 롯트를 조립설치함으로써 연장된 수직원통체 수직구를 형성한 후 상기 수직구 선단부 롯트 내부를 굴착하고 상기 수직구 마감부 롯트를 압입장치(80)에 의해 압입시키거나 상재하중방식에 의해 침하시켜 굴착되어진 지반에 설치하는 수직구 마감부 롯트 조립설치 단계(400)가 포함되는 것을 특징으로 하는 수직구용 다중결합 쐐기형 콘크리트 블록을 이용한 수직구 건설 공법.
  2. 제 1항에 있어서,
    상기 선단부 다중결합 쐐기형 콘크리트 블록(10)은 하측에 쐐기형 돌기(40)가 형성되고 상기 수직구 선단부 롯트 조립설치 단계(200)의 상기 선단부 다중결합 쐐기형 콘크리트 블록(10) 하측에 강재캡(55)을 삽입하는 공정을 더 포함한 것을 특징으로 하는 수직구용 다중결합 쐐기형 콘크리트 블록을 이용한 수직구 건설 공법.
  3. 제 1항 또는 제2항에 있어서,
    수직구 선단부 롯트 조립설치 단계(200)를 진행하기 전에 수직구 건설이 계획되어진 위치의 외측에 원환(圓環) 형상의 보강 콘크리트를 타설하고 원환상으로 타설된 보강 콘크리트의 위치에서 일정간격으로 압입장치(80)들을 설치하는 단계가 더 포함된 것을 특징으로 하는 수직구용 다중결합 쐐기형 콘크리트 블록을 이용한 수직구 건설 공법.
  4. 제 1항 또는 제2항에 있어서,
    쐐기형 돌기(40)와 쐐기형 오목홈(41) 사이에 수팽창성 개스킷(50)을 장착하는 공정을 더 포함한 것을 특징으로 하는 수직구용 다중결합 쐐기형 콘크리트 블록을 이용한 수직구 건설 공법.
  5. 수평 방향 좌우측에 다중결합 쐐기형 콘크리트 블록(10, 20, 21, 30)의 두께 폭 전체길이가 일변이 되는 이등변 삼각형 형상으로서 길이가 동일한 두 변이 수평 방향으로 경사져서 대칭되고 상기 다중결합 쐐기형 콘크리트 블록(10, 20, 21, 30)의 상하 높이 전체 길이에 형성되는 쐐기형 돌기(40)와 쐐기형 오목홈(41)이 각각 형성되고, 상측에 상기 다중결합 쐐기형 콘크리트 블록(10, 20, 21, 30)의 두께 폭 전체 길이가 일변이 되는 이등변 삼각형 형상으로서 길이가 동일한 두 변이 수직 방향으로 경사져서 대칭되고 상기 다중결합 쐐기형 콘크리트 블록(10. 20, 21, 30)의 수평방향 전체 길이에 형성되는 쐐기형 돌기(40)와 하측에 상기 다중결합 쐐기형 콘크리트 블록(10, 20, 21, 30)의 두께 폭 전체길이가 일변이 되는 이등변 삼각형 형상으로서 길이가 동일한 두 변이 수직 방향으로 경사져서 대칭되고 상기 다중결합 쐐기형 콘크리트 블록(10, 20, 21, 30)의 수평방향 전체 길이에 형성되는 쐐기형 오목홈(41)이 적어도 하나 이상 형성된 다중결합 쐐기형 콘크리트 블록으로서 좌우방향 및 상하방향에 각각 상기 쐐기형 돌기(40)와 쐐기형 오목홈(41)을 끼워지게 하는 것만으로 수직원통체로 조립되고 상하방향으로 다중결합 쐐기형 콘크리트 블록들이 적층되어 수직원통체의 수직구를 형성하는 것이 가능한 것을 특징으로 하는 다중결합 쐐기형 콘크리트 블록.
  6. 제 5항에 있어서,
    보받침단턱(60)과 보삽입홈(61)이 형성된 것을 특징으로 하는 다중결합 쐐기형 콘크리트 블록.
  7. 제 5항 또는 제6항에 있어서,
    인양홀(75)이 형성된 것을 특징으로 하는 다중결합 쐐기형 콘크리트 블록.
  8. 제 5항에 있어서,
    상측이 평면으로 형성되고 하측에 쐐기형 오목홈(41)이 형성된 것을 특징으로 하는 다중결합 쐐기형 콘크리트 블록.
PCT/KR2018/002491 2017-03-10 2018-02-28 수직구용 다중결합 쐐기형 콘크리트 블록 및 이를 이용한 수직구 건설 공법 WO2018164412A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0030831 2017-03-10
KR1020170030831A KR101822330B1 (ko) 2017-03-10 2017-03-10 수직구용 다중결합 쐐기형 콘크리트 블록 및 이를 이용한 수직구 건설 공법

Publications (1)

Publication Number Publication Date
WO2018164412A1 true WO2018164412A1 (ko) 2018-09-13

Family

ID=61726223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002491 WO2018164412A1 (ko) 2017-03-10 2018-02-28 수직구용 다중결합 쐐기형 콘크리트 블록 및 이를 이용한 수직구 건설 공법

Country Status (2)

Country Link
KR (1) KR101822330B1 (ko)
WO (1) WO2018164412A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114809103A (zh) * 2022-05-18 2022-07-29 广东省建筑工程集团有限公司 一种装配式预制管片封闭结构

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101971831B1 (ko) 2018-07-02 2019-04-23 박진감 수직구 연결통로용 섀시 및 거푸집 구조와 이를 이용한 수직구 연결통로 시공 방법
KR102026571B1 (ko) 2018-08-16 2019-11-04 고엄식 수직구용 매입형 슬라브 브라켓 및 시공방법
KR102127487B1 (ko) * 2020-01-17 2020-06-29 영인산업 주식회사 탄성슈와 자중을 이용한 수직구 시공방법 및 이를 이용하여 제작된 수직구
KR102250336B1 (ko) * 2020-03-23 2021-05-10 현대제철 주식회사 보수용 연와조립체 및 열풍로 연와 보수 방법
KR102246774B1 (ko) * 2020-12-29 2021-04-29 박진감 하향식 세그먼트 하강 제어 시스템과 이를 이용한 수직구 시공 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020073985A (ko) * 2001-03-19 2002-09-28 주식회사 케이티 조립식 수직구 건설 공법 및 그 공법에 사용되는프리캐스트 구조물
KR20090124284A (ko) * 2008-05-29 2009-12-03 장영미 지하 수직구 구조물 시공 방법
JP4452170B2 (ja) * 2004-12-17 2010-04-21 株式会社ピーエス三菱 立坑の構築方法
KR101440423B1 (ko) * 2013-04-23 2014-09-17 우경기술주식회사 지하 콘크리트 수직구조물 시공방법
KR101672712B1 (ko) * 2016-06-29 2016-11-07 이신원 Pcc 구조의 가물막이 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020073985A (ko) * 2001-03-19 2002-09-28 주식회사 케이티 조립식 수직구 건설 공법 및 그 공법에 사용되는프리캐스트 구조물
JP4452170B2 (ja) * 2004-12-17 2010-04-21 株式会社ピーエス三菱 立坑の構築方法
KR20090124284A (ko) * 2008-05-29 2009-12-03 장영미 지하 수직구 구조물 시공 방법
KR101440423B1 (ko) * 2013-04-23 2014-09-17 우경기술주식회사 지하 콘크리트 수직구조물 시공방법
KR101672712B1 (ko) * 2016-06-29 2016-11-07 이신원 Pcc 구조의 가물막이 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114809103A (zh) * 2022-05-18 2022-07-29 广东省建筑工程集团有限公司 一种装配式预制管片封闭结构

Also Published As

Publication number Publication date
KR101822330B1 (ko) 2018-03-08

Similar Documents

Publication Publication Date Title
WO2018164412A1 (ko) 수직구용 다중결합 쐐기형 콘크리트 블록 및 이를 이용한 수직구 건설 공법
US11143027B2 (en) Rectangular working well with preset pipe jacking hole and sliding back wall in water-rich stratum and construction method thereof
WO2013133546A1 (ko) 지하터널의 시공방법
WO2020145483A1 (ko) 구조물 시공방법
CN108331026B (zh) 一种预制装配式钢筋混凝土检查井及其施工方法
WO2012044091A2 (ko) 지하 구조물 구축장치 및 공법
CN111254977A (zh) 一种预制钢扶壁柱的轨排井支撑结构及施工方法
WO2021187873A1 (ko) 건축기초시스템에 있어 임플란트식 파일압입장치 및 이를 이용한 임플란트식 파일링공법
CN111827280B (zh) 一种异位浇筑顶升就位挖孔桩护壁装置及其施工方法
CN113738374A (zh) 下沉式竖井掘进设备支撑圈梁及其施工方法
CN209975581U (zh) 装配式预制混凝土检查井
CN117090598A (zh) 一种运营期隧道微型桩加嵌托梁组合结构的地基处理方法
CN110777803A (zh) 基坑分期结构的施工方法
WO2021015442A1 (ko) 건축기초시스템에 있어 임플란트식 파일 설치구 및 이를 이용한 임플란트식 파일공법
CN210460663U (zh) 一种可拆卸式钢波纹板围圈护壁
CN211648187U (zh) 一种地下通道小断面多管并行顶进系统
CN114197526A (zh) 一种逆作法竖向结构支模体系及施工方法
RU2123091C1 (ru) Фундамент под металлическую колонну, способ его сооружения и рихтования
CN113073683A (zh) 一种既有管线的临时悬吊装置及施工方法
WO2015020257A1 (ko) 지중 구조물 시공방법
KR200313739Y1 (ko) 기성 콘크리트 파일을 이용한 흙막이 구조
CN112726784A (zh) 一种全预制pc下水道检查井构件装配式结构及施工方法
CN110306597A (zh) 一种长距离顶管施工中部检查井及其施工方法
CN109184703B (zh) 结构后做的重叠顶管深大工作井布置方法
CN216920378U (zh) 拼装式地下井挡土装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18763631

Country of ref document: EP

Kind code of ref document: A1