WO2018164221A1 - 筋線維化抑制用組成物 - Google Patents

筋線維化抑制用組成物 Download PDF

Info

Publication number
WO2018164221A1
WO2018164221A1 PCT/JP2018/008960 JP2018008960W WO2018164221A1 WO 2018164221 A1 WO2018164221 A1 WO 2018164221A1 JP 2018008960 W JP2018008960 W JP 2018008960W WO 2018164221 A1 WO2018164221 A1 WO 2018164221A1
Authority
WO
WIPO (PCT)
Prior art keywords
muscle
quercetin
composition
inhibiting
fibrosis
Prior art date
Application number
PCT/JP2018/008960
Other languages
English (en)
French (fr)
Inventor
大将 吉田
祐多 大塚
Original Assignee
サントリーホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サントリーホールディングス株式会社 filed Critical サントリーホールディングス株式会社
Priority to JP2019504664A priority Critical patent/JP7379152B2/ja
Priority to US16/492,284 priority patent/US20190388387A1/en
Priority to CN201880013057.1A priority patent/CN110312510A/zh
Priority to CA3055164A priority patent/CA3055164A1/en
Priority to SG11201907472QA priority patent/SG11201907472QA/en
Publication of WO2018164221A1 publication Critical patent/WO2018164221A1/ja
Priority to JP2022050012A priority patent/JP2022079551A/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/0056Mouth soluble or dispersible forms; Suckable, eatable, chewable coherent forms; Forms rapidly disintegrating in the mouth; Lozenges; Lollipops; Bite capsules; Baked products; Baits or other oral forms for animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0087Galenical forms not covered by A61K9/02 - A61K9/7023
    • A61K9/0095Drinks; Beverages; Syrups; Compositions for reconstitution thereof, e.g. powders or tablets to be dispersed in a glass of water; Veterinary drenches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2059Starch, including chemically or physically modified derivatives; Amylose; Amylopectin; Dextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system

Definitions

  • the present invention relates to a composition for inhibiting muscle fibrosis.
  • the present invention also relates to a method for suppressing muscle fibrosis.
  • Muscle quality represents muscle cross-sectional area, muscle strength per muscle mass, or tension per muscle fiber, and is known to decrease with age (Non-Patent Document 1). It is considered that the cause of deterioration in muscle quality with aging is accumulation of fibers and fat droplets in the muscle.
  • Muscle muscle cells which are stem cells, exist between the basement membrane and the cell membrane of muscle fibers. Muscle satellite cells are activated and proliferated when stimulated by muscle damage or the like, and at the same time, differentiate into myoblasts and myotubes to form new muscle fibers. It is important to promote the differentiation of muscle satellite cells into myoblasts and myotubes for muscle hypertrophy and muscle regeneration, which are important for preventing muscle atrophy and improving motor function. . As a component that promotes the differentiation of muscle satellite cells into myoblasts and myotube cells, it was made from a perennial plant of Oleanderaceae, Raffa or its extract, or tea leaves obtained from hybrids of the genus Camellia through a fermentation process. Black tea extracts have been reported (Patent Documents 3 and 4).
  • Non-Patent Document 3 It has been reported that, when activated, muscle satellite cells proliferate by self-replication and differentiate into myoblasts and myotubes, but can also differentiate into adipocytes and myofibroblasts. 2). Cells differentiated into adipocytes produce lipid droplets, and cells differentiated into myofibroblasts produce fibers such as collagen. In this way, fat droplets accumulate in the muscle (muscle fatification), and extracellular matrix such as fibers accumulates excessively (muscle fibrosis (also called muscle fibrosis)). Decreases. There is also a report that muscle fibrosis is promoted by actually changing the differentiation direction of muscle satellite cells from myoblasts to cells that produce fiber with aging (Non-patent Document 3).
  • tissue fibrosis has been studied especially in the liver and heart, but less research has been conducted on muscle fibrosis.
  • no study has been conducted focusing on the differentiation of muscle satellite cells into myofibroblasts for myofibrosis, and components that suppress the differentiation of myo-satellite cells into myofibroblasts have not yet been reported. Absent.
  • Quercetin is a kind of flavonoid and is contained in many plants such as onions as it is or as a glycoside. Moreover, as a physiological activity of quercetin, an antioxidant action, an anti-inflammatory action, an antitumor action, a vasodilator action, etc. are reported. On the other hand, the action of quercetin on the differentiation of muscle satellite cells into myofibroblasts has not been known so far.
  • JP 2002-338464 A International Publication No. 2005/074962 JP 2014-15428 A JP 2013-91608 A
  • the present inventors have used rat-derived muscle satellite cells, and found that quercetin has an action of suppressing the differentiation process from muscle satellite cells to myofibroblasts, and is useful for suppressing muscle fibrosis, The present invention has been completed.
  • the present invention includes the following composition for inhibiting muscle fibrosis, the method for inhibiting muscle fibrosis, and the like.
  • the composition for inhibiting muscle fibrosis according to (1) which suppresses the differentiation process from muscle satellite cells to myofibroblasts.
  • the composition for suppressing muscle fibrosis according to (1) or (2) which has an effect of improving muscle quality.
  • the composition for inhibiting muscle fibrosis according to any one of (1) to (3) which has an action to improve motor function.
  • composition for suppressing muscle fibrosis according to any one of (1) to (5) which has an effect of suppressing muscle atrophy.
  • the composition for suppressing muscle fibrosis according to any one of (1) to (6) which has an action of suppressing accumulation of extracellular matrix in muscle.
  • composition for inhibiting muscle fibrosis according to any one of (1) to (9), which is labeled as used in the above.
  • (11) Use of quercetin or a glycoside thereof for suppressing muscle fibrosis.
  • (12) Use of quercetin or a glycoside thereof for suppressing the process of differentiation from muscle satellite cells to myofibroblasts.
  • (13) A method for inhibiting muscle fibrosis, comprising administering or ingesting quercetin or a glycoside thereof.
  • a method for suppressing a differentiation process from a muscle satellite cell to a myofibroblast comprising administering or ingesting quercetin or a glycoside thereof.
  • a composition for inhibiting muscle fibrosis containing quercetin or a glycoside thereof as an active ingredient. Quercetin and its glycoside have an action of suppressing the differentiation process from muscle satellite cells to myofibroblasts, are effective in suppressing myofibrosis, and are highly safe. Therefore, according to the present invention, it is possible to provide a composition for inhibiting muscle fibrosis, which contains, as an active ingredient, a component that can be safely ingested over a long period of time. According to the present invention, muscle fibrosis can be suppressed safely.
  • FIG. 1 is a photomicrograph of muscle satellite cells cultured with differentiation induction medium for 24 hours under conditions of addition of a TGF ⁇ (TGF- ⁇ ) signal inhibitor or quercetin and then stained with Masson trichrome ((a): TGF ⁇ added.
  • TGF- ⁇ TGF ⁇
  • B group to which TGF ⁇ was added
  • SB525334 added group SB525334 added group
  • quercetin 50 ⁇ M added group quercetin 100 ⁇ M added group.
  • FIG. 1 is a photomicrograph of muscle satellite cells cultured with differentiation induction medium for 24 hours under conditions of addition of a TGF ⁇ (TGF- ⁇ ) signal inhibitor or quercetin and then stained with Masson trichrome ((a): TGF ⁇ added.
  • B group to which TGF ⁇ was added
  • SB525334 added group SB525334 added group
  • quercetin 50 ⁇ M added group quercetin 50 ⁇ M added group
  • e quercetin 100 ⁇ M added group
  • FIG. 2 is a graph showing the results of analyzing the expression level of a fibrosis marker gene in cells after culturing muscle satellite cells in a differentiation-inducing medium for 24 hours under conditions where a TGF ⁇ signal inhibitor or quercetin is added ((a ): Acta2 gene, (b) Col1a1 gene, **: P ⁇ 0.01, vs. TGF ⁇ (+)).
  • composition for inhibiting muscle fibrosis of the present invention contains quercetin or a glycoside thereof as an active ingredient. Quercetin and its glycoside have an action of suppressing the differentiation process from muscle satellite cells to myofibroblasts, and exert an effect of suppressing muscle fibrosis.
  • the composition for inhibiting muscle fibrosis of the present invention is used for inhibiting the accumulation of extracellular matrix such as collagen such as collagen in muscle (muscle fibrosis).
  • the composition for inhibiting muscle fibrosis according to the present invention is suitably used for inhibiting muscle fibrosis by inhibiting the differentiation process from muscle satellite cells to myofibroblasts.
  • the degree of inhibition of the process of differentiation from muscle satellite cells to myofibroblasts can be evaluated by the amount of myofibroblasts present.
  • the abundance of myofibroblasts can be evaluated, for example, by measuring the expression level of a marker gene specific to myofibroblasts, measuring the amount of protein encoded by the gene, observing the morphology of muscle satellite cells, etc. it can.
  • the expression level of Acta2 gene which is a marker specific to myofibroblasts, and the Col1a1 gene involved in type I collagen production ( The expression level of type I collagen gene) was evaluated.
  • the Acta2 gene codes for ⁇ -smooth muscle actin ( ⁇ -SMA) protein, and ⁇ -SMA is a protein expressed in fibroblasts and myofibroblasts. It is considered as a cause of tissue fibrosis that activated fibroblasts and myofibroblasts accumulate at the fibrosis site to produce a large amount of type I collagen. Therefore, suppression of the differentiation process from muscle satellite cells to myofibroblasts includes suppression of the expression of Acta2 gene and Col1a1 gene in muscle satellite cells.
  • Mammalian muscle satellite cells are induced to differentiate into myofibroblasts by applying transforming growth factor ⁇ (Transformation growth factor ⁇ , TGF- ⁇ ) stimulation.
  • TGF- ⁇ transformation growth factor ⁇
  • Quercetin and its glycoside have an action of suppressing the process of differentiation from muscle satellite cells to myofibroblasts induced by TGF- ⁇ (also referred to as TGF ⁇ ).
  • muscle satellite cell means a mesenchymal stem cell that exists between the basement membrane and the cell membrane of muscle fibers. It is known that muscle satellite cells can differentiate not only into myoblasts but also into fat cells, bone cells, myofibroblasts, and the like. For example, muscle satellite cells are differentiated into myofibroblasts by being cultured in a myofibroblast induction medium. In addition, muscle satellite cells are differentiated into adipocyte-like cells by culturing in a fat differentiation induction medium. When muscle satellite cells differentiate into myofibroblasts and adipocyte-like cells, muscle quality, muscle mass, and muscle atrophy are caused, resulting in decreased motor function.
  • muscle fibrosis By inhibiting the process of differentiation from muscle satellite cells to myofibroblasts, muscle fibrosis can be suppressed.
  • the stem cell capacity of muscle satellite cells is maintained and / or differentiation from muscle satellite cells to myoblasts is preferentially performed. Will be guided. Therefore, by suppressing the process of differentiation from muscle satellite cells to myofibroblasts, it is possible to suppress muscle quality decline, muscle mass decline and muscle atrophy, and by obtaining such effects, The effect of improving the motor function can also be obtained.
  • the induction of muscle fibrosis means induction of differentiation of muscle satellite cells into myofibroblasts by TGF- ⁇ stimulation. Fibrosis in many tissues is thought to be caused by increased TGF- ⁇ signaling and activation of fibroblasts or myofibroblasts. In organs such as the lung and kidney, it has been reported that overexpression of TGF- ⁇ causes fibrosis, and conversely, inhibition of TGF- ⁇ signal suppresses fibrosis.
  • muscle quality means muscle cross-sectional area or muscle force per muscle mass, or tension per muscle fiber. Therefore, in this specification, “muscle improvement” means that the muscle cross-sectional area or the muscle force per muscle mass or the tension per muscle fiber increases. It can be said that the improvement in muscle quality is that the rate of increase in muscle strength exceeds the rate of increase in muscle cross-sectional area or muscle mass.
  • the “motor function” means the ability to perform daily activities such as walking, climbing up and down stairs, and standing up.
  • the above function can be measured by knee extension muscle strength, grip strength, walking speed, and the like. Therefore, in this specification, “improvement of motor function” means that the result of the measurement item increases.
  • “increase in muscle mass” means an increase in the number of muscle fibers per unit area, an increase in muscle fiber cross-sectional area, an increase in muscle cross-sectional area, or an increase in muscle weight.
  • the increase in muscle mass occurs because the amount of protein in muscle tissue increases in muscle tissue because the synthesis rate of muscle protein exceeds the degradation rate of muscle protein.
  • muscle atrophy means that the amount of protein in muscle tissue is reduced by the synthesis rate of muscle protein being lower than the degradation rate. Therefore, “muscle atrophy suppression” means that the balance between synthesis and degradation is normalized by increasing the synthesis rate of muscle protein, or decreasing the degradation rate of muscle protein, or both. It means to suppress the decrease of the amount.
  • accumulation of extracellular matrix means excessive accumulation of extracellular matrix including collagen and advanced glycation end products (AGEs) in muscle.
  • AGEs advanced glycation end products
  • collagen and advanced glycation products accumulate with aging.
  • collagen means a molecule having 3- or 4-hydroxyproline or 5-hydroxylysine residue as an amino acid residue. 3- or 4-hydroxyproline, 5-hydroxylysine residues are usually rarely contained in other proteins. In general, the collagen content in animal tissues can be estimated by measuring the amount of 4-hydroxyproline residues.
  • terminal glycation product means a substance produced by a non-enzymatic reaction of a reducing sugar such as glucose with an amino group of a protein.
  • collagen is known to be saccharified and easy to accumulate terminal glycation products, and it has also been reported that accumulation of terminal glycation products in muscles is involved in muscle function deterioration (Journal of applied physology, 2007, vol. 103 (6): 2068-76.).
  • quercetin is also called vitamin P and means quercetin, which is a compound belonging to flavonol, which is a kind of polyphenol. Quercetin is a compound represented by the following formula (I).
  • quercetin glycoside means the above quercetin glycoside.
  • Quercetin glycoside is a compound represented by the following general formula (II).
  • (X) n in the following general formula (II) represents a sugar chain, and n is an integer of 1 or more.
  • the sugar constituting the sugar chain represented by X that is glycosidically bonded to quercetin is, for example, glucose, rhamnose, galactose, glucuronic acid, etc., preferably glucose or rhamnose.
  • n is not particularly limited as long as it is 1 or more, but is preferably 1 to 16, more preferably 1 to 8.
  • the X moiety may be composed of one type of sugar or a plurality of types of sugars.
  • (X) n may be a sugar chain composed of one kind of sugar or a sugar chain composed of a plurality of kinds of sugars.
  • the quercetin glycoside in the present invention includes those obtained by treating an existing quercetin glycoside with an enzyme or the like to cause sugar transfer.
  • the quercetin glycoside referred to in the present invention specifically includes rutin, enzyme-treated rutin, quercitrin, isoquercitrin and the like.
  • an enzyme-treated product of rutin as the quercetin glycoside.
  • Preferred examples of the rutin enzyme-treated product include isoquercitrin from which rhamnose sugar chain portion has been removed by enzymatic treatment of quercetin glycoside, and sugar chain comprising 1 to 7 glucose by treating isoquercitrin with glycosyltransferase. And those having a mixture as a main component.
  • quercetin or glycoside thereof may be used, or a plurality of compounds may be used.
  • quercetin and one or more quercetin glycosides may be used, or two or more quercetin glycosides may be used.
  • Ingested quercetin glycoside is absorbed into the body from the digestive tract and then becomes quercetin by the action of digestive enzyme or metabolic enzyme, and exhibits the same effect as quercetin in the body.
  • quercetin or its glycoside used in this invention, and a manufacturing method.
  • plants rich in quercetin or its glycosides buckwheat, enju, capers, apples, tea, onions, grapes, broccoli, morroheia, raspberries, bilberries, cranberries, optia, leaf vegetables, citrus, etc. are known, Quercetin or a glycoside thereof can be obtained from these plants.
  • quercetin suppressed the change of cell shape of muscle satellite cells and the expression of Acta2 gene and Col1a1 gene under the condition of inducing fibrosis by TGF- ⁇ . That is, this means that quercetin has an action of suppressing the process of differentiation of muscle satellite cells into myofibroblasts.
  • tissue fibrosis is considered to be caused by myofibroblasts or fibroblasts excessively producing an extracellular matrix such as collagen.
  • muscle fibrosis can be suppressed.
  • symptoms caused by muscle fibrosis include a decrease in muscle quality, a decrease in muscle mass, muscle atrophy, and a decrease in motor function.
  • Prevention includes preventing, delaying, and reducing the incidence of onset. Improvement includes symptom relief, symptom progression inhibition, and symptom healing.
  • Quercetin or a glycoside thereof is useful for suppressing the process of differentiation from muscle satellite cells to myofibroblasts and can be used for such purposes. Quercetin or its glycoside is useful for inhibiting muscle fibrosis. Quercetin or a glycoside thereof can be used for inhibiting muscle fibrosis. Quercetin or a glycoside thereof is a food and drink, a pharmaceutical, a quasi-drug, and a feed used to suppress the differentiation process from muscle satellite cells to myofibroblasts, or to suppress myofibrosis. It can be used for various applications such as cosmetics and is preferably used as these active ingredients. The suppression of muscle fibrosis is preferably suppression of skeletal muscle fibrosis. In addition, quercetin or its glycoside has an action of suppressing the differentiation process from muscle satellite cells to myofibroblasts as described above, so that muscle quality is improved, motor function is increased, and muscle mass is increased. It is also useful for suppressing muscle atrophy.
  • the present invention provides a composition for inhibiting muscle fibrosis, containing quercetin or a glycoside thereof as an active ingredient.
  • the composition for inhibiting muscle fibrosis of the present invention is useful for preventing or improving muscle fibrosis.
  • the present invention contains quercetin or a glycoside thereof as an active ingredient, and improves muscle quality, motor function, muscle mass, muscle atrophy, and extracellular matrix in muscle.
  • a composition for inhibiting muscle fibrosis which has one or more effects of suppressing accumulation.
  • composition for inhibiting muscle fibrosis of the present invention can be provided in the form of an agent as an example, but is not limited to this form.
  • the agent can be provided as it is as a composition or as a composition containing the agent.
  • the composition for inhibiting muscle fibrosis of the present invention can be provided in the form of, for example, food and drink, medicine, quasi-drug, feed, cosmetics and the like, but is not limited thereto.
  • the composition for inhibiting muscle fibrosis according to the present invention may itself be a food or drink, a medicine, a quasi-drug, a feed, a cosmetic, or the like, and is a formulation or material such as an additive used in these. May be.
  • the composition for inhibiting muscle fibrosis of the present invention is preferably an oral composition.
  • the composition for inhibiting muscle fibrosis of the present invention is preferably a food or drink, a medicine (preferably an oral medicine) or a quasi drug, more preferably a food or drink or an oral medicine, A food or drink is preferred.
  • composition for inhibiting muscle fibrosis of the present invention can contain any additive and any component in addition to quercetin or a glycoside thereof as an active ingredient as long as the effects of the present invention are not impaired.
  • additives and components those which can be generally used for foods and drinks, medicines, quasi drugs, feeds, cosmetics and the like can be used.
  • optional additives or components include vitamins such as vitamin E and vitamin C, bioactive components such as minerals and nutritional components, as well as excipients, binders, emulsifiers, tensions incorporated in the formulation. Examples include agents (isotonic agents), buffers, solubilizers, preservatives, stabilizers, antioxidants, colorants, coagulants, coating agents, and flavors.
  • optional components include proteins such as casein protein, whey protein, and soy protein and peptides thereof; and amino acids containing branched chain amino acids such as valine, leucine, and isoleucine, and metabolites thereof. . These may be used alone or in combination of two or more.
  • ingredients such as materials used in foods and drinks, medicines, quasi-drugs, feeds, cosmetics, and the like can be appropriately blended depending on the application.
  • composition for inhibiting muscle fibrosis of the present invention when used as a food or drink, quercetin or a glycoside thereof can be used in a food or drink (for example, a food or drink material, an additive used as necessary).
  • a food or drink for example, a food or drink material, an additive used as necessary.
  • Food / beverage products are not particularly limited, and examples thereof include general food / beverage products, health foods, functional display foods, foods for specified health use, foods for patients, food additives, and raw materials thereof.
  • the form of food and drink is not particularly limited, and oral solid preparations such as tablets, coated tablets, fine granules, granules, powders, pills, capsules, dry syrups, chewables; oral use such as oral liquids and syrups It can also be set as the various formulation forms of a liquid formulation.
  • the food and drink is a physiologically active ingredient such as the above vitamins, minerals, and nutritional ingredients; the above proteins and peptides thereof; the amino acids including branched chain amino acids and metabolites thereof; It is also preferred to include seeds or two or more.
  • composition for inhibiting muscle fibrosis of the present invention When the composition for inhibiting muscle fibrosis of the present invention is used as a medicine or quasi-drug, pharmacologically acceptable excipients and the like are mixed with quercetin or a glycoside thereof, and pharmaceuticals in various dosage forms.
  • pharmaceutical composition or quasi-drug (quasi-drug composition).
  • the administration form of the medicine or quasi-drug is not particularly limited and may be orally administered or parenterally, but oral administration is preferred.
  • the dosage form of the medicine or quasi drug may be a dosage form suitable for the administration form.
  • Oral pharmaceutical dosage forms include, for example, oral solid preparations such as tablets, coated tablets, fine granules, granules, powders, pills, capsules, dry syrups, chewables; oral use such as oral liquids, syrups, etc. Liquid formulations are mentioned. Examples of parenteral pharmaceutical dosage forms include injections, infusions, external preparations, suppositories, and transdermal absorption agents.
  • the medicament may be a medicament for non-human animals.
  • a feed can be prepared by blending quercetin or a glycoside thereof with components that can be used in feed.
  • the feed include feed for livestock used for cattle, pigs, chickens, sheep, horses, etc .; feed for small animals used for rabbits, rats, mice, etc .; pet food used for dogs, cats, birds, etc.
  • a cosmetic cosmetic composition is prepared by blending quercetin or a glycoside thereof with ingredients such as additives that can be used in cosmetics. be able to.
  • composition for inhibiting muscle fibrosis of the present invention is used as a food, drink, medicine, quasi-drug, feed, cosmetic, etc.
  • its production method is not particularly limited, and quercetin, which is an active ingredient, or a glycoside thereof Can be produced by a general method.
  • the composition for inhibiting muscle fibrosis according to the present invention displays one or more of the use, the type of active ingredient, the above-described effects, usage methods (for example, ingestion method, administration method) on packaging, containers or instructions. May be.
  • the composition for inhibiting muscle fibrosis according to the present invention is provided with an indication indicating that it has an action of suppressing the differentiation process from muscle satellite cells to myofibroblasts or an action based on the action of inhibiting muscle fibrosis. Also good.
  • a display for example, it has one or more actions such as suppression, prevention or improvement of muscle fibrosis, improvement of muscle quality, improvement of motor function, increase of muscle mass, suppression of muscle atrophy, and the like. Therefore, an indication to be used may be attached.
  • the content of quercetin or a glycoside thereof in the composition for inhibiting muscle fibrosis of the present invention is not particularly limited, and can be appropriately set according to the form and the like.
  • the total content of quercetin or its glycoside (quercetin and its distribution) in any form is preferably 0.0001% by weight or more, more preferably 0.01% by weight or more, still more preferably 0.1% by weight or more in the composition as a quercetin conversion value.
  • the total content of quercetin or a glycoside thereof is preferably 0.0001 to 99.9% by weight, more preferably 0.001 to 95% by weight in the composition as a quercetin conversion value, and 0.01% More preferably, it is ⁇ 80 wt%, particularly preferably 0.01 to 45 wt%.
  • the total content of quercetin or a glycoside thereof is preferably 0.0001 to 99.9% by weight in the food or drink. 001 to 45% by weight is more preferable.
  • the content of quercetin or its glycoside can be measured according to a known method, for example, HPLC method or the like can be used.
  • the composition for inhibiting muscle fibrosis of the present invention can be ingested or administered by an appropriate method according to the form.
  • the composition for inhibiting muscle fibrosis of the present invention may be orally administered or ingested, and may be administered parenterally in the form of an injection or the like, but is preferably orally administered or ingested.
  • the amount of intake (also referred to as a dose) of the composition for inhibiting muscle fibrosis of the present invention is not particularly limited, and may be appropriately set according to the administration form, administration method, and the like.
  • a human (adult) is orally administered or ingested to a subject for the purpose of obtaining an action of inhibiting the differentiation process from muscle satellite cells to myofibroblasts or an action of inhibiting muscle fibrosis.
  • the intake amount of the composition for inhibiting muscle fibrosis is 0.1 mg to 8000 mg per day as a quercetin equivalent value as the total intake amount of quercetin or its glycoside (the total intake amount of quercetin and its glycoside). Is preferred, 0.3 mg to 4000 mg is more preferred, 1.0 mg to 1000 mg is more preferred, 10 mg to 500 mg is even more preferred, and 10 mg to 200 mg is particularly preferred.
  • the above amount is preferably orally administered or ingested, for example, divided into 1 to 3 times a day.
  • the total dose of quercetin or a glycoside thereof is 0.1 to 8000 mg per day as a quercetin equivalent value.
  • 0.3 mg to 4000 mg is more preferable, 1.0 mg to 1000 mg is more preferable, 10 mg to 500 mg is still more preferable, and 10 mg to 200 mg is particularly preferable. It is preferable to ingest or administer the composition for inhibiting muscle fibrosis of the present invention so that the total intake amount of quercetin or its glycoside is within the above range.
  • the composition for inhibiting muscle fibrosis according to the present invention is an amount that can achieve the desired effect of the present invention, that is, an effective amount of quercetin or a glycoside thereof, in consideration of its administration form, administration method, and the like. It is preferable to contain a body.
  • the composition for inhibiting muscle fibrosis is an oral composition such as a food or drink or an oral medicine
  • quercetin or a glycoside thereof is contained in the daily intake per adult of the composition. Is preferably 0.1 to 8000 mg in terms of quercetin, more preferably 0.3 to 4000 mg, further preferably 1.0 to 1000 mg, still more preferably 10 mg to 500 mg, and particularly preferably 10 mg to 200 mg. .
  • the subject to be administered or ingested with the composition for inhibiting muscle fibrosis of the present invention is preferably an animal, more preferably a mammal (human or non-human mammal), and even more preferably a human.
  • non-human mammals include cows, horses, goats, dogs, cats, rabbits, mice, rats, guinea pigs, monkeys, and the like.
  • a subject that requires or desires one or more of suppression of muscle fibrosis, improvement of muscle quality, improvement of motor function, increase of muscle mass, and suppression of muscle atrophy is preferable.
  • a subject whose muscular strength has decreased due to aging or the like, a subject who desires prevention of muscular strength reduction due to aging or the like, and the like can be cited as suitable subjects.
  • the present invention also includes a method for inhibiting muscle fibrosis, which comprises administering or ingesting quercetin or a glycoside thereof.
  • the above-mentioned method for inhibiting muscle fibrosis is preferably a method for inhibiting muscle fibrosis by inhibiting the process of differentiation from muscle satellite cells to myofibroblasts.
  • the present invention also includes a method for inhibiting the process of differentiation from muscle satellite cells to myofibroblasts, comprising administering or ingesting quercetin or a glycoside thereof.
  • the method may be a therapeutic method or a non-therapeutic method. “Non-therapeutic” is a concept that does not include medical practice, ie surgery, treatment or diagnosis.
  • the dose of quercetin or a glycoside thereof is not particularly limited as long as it is an amount that can suppress the differentiation process from muscle satellite cells to myofibroblasts or an effect to suppress muscle fibrosis, that is, an effective amount.
  • Quercetin or a glycoside thereof may be administered or taken as it is, or may be administered or taken as a composition containing quercetin or a glycoside thereof.
  • the above-described composition for inhibiting muscle fibrosis of the present invention can be administered or ingested.
  • Quercetin or its glycoside, administration subject, administration method, dosage, and preferred embodiments thereof are the same as those in the composition for inhibiting muscle fibrosis described above. According to the present invention, muscle fibrosis can be safely suppressed without causing side effects.
  • the present invention includes the following uses.
  • Use of quercetin or a glycoside thereof for suppressing muscle fibrosis is preferably the use of quercetin or a glycoside thereof for suppressing muscle fibrosis by inhibiting the differentiation process from muscle satellite cells to myofibroblasts.
  • Quercetin or a glycoside thereof used for suppressing muscle fibrosis Use of quercetin or a glycoside thereof for suppressing the process of differentiation from muscle satellite cells to myofibroblasts.
  • Quercetin or a glycoside thereof used for suppressing the differentiation process from muscle satellite cells to myofibroblasts are for human or non-human animals.
  • the present invention also encompasses the use of quercetin or a glycoside thereof for producing a composition for inhibiting muscle fibrosis.
  • the composition for suppressing muscle fibrosis and preferred embodiments thereof are the same as described above.
  • the present invention also includes the use of quercetin or a glycoside thereof for producing a composition for suppressing the process of differentiation from muscle satellite cells to myofibroblasts.
  • Example 1 Induction of differentiation of muscle satellite cells derived from rat skeletal muscle into myofibroblasts (1) Isolation and culture conditions of muscle satellite cells From male Fischer 344 rats aged 9 to 15 weeks under anesthesia, gastrocnemius and soleus muscles The plantar muscle, the anterior tibialis muscle, the long leg extensor muscle, and the quadriceps muscle were excised and minced on ice in phosphate buffered saline (PBS) (Life Technologies Corporation). At 37 ° C., minced muscle tissue was enzymatically digested with protease (SIGMA), and then centrifuged repeatedly to isolate muscle satellite cells.
  • PBS phosphate buffered saline
  • Muscle satellite cells were suspended in Dulbecco's Modified Eagle Medium (DMEM) containing 10% horse fetal serum and cultured for 24 hours. After culturing, the cells were centrifuged again, and the precipitated muscle satellite cells were placed in 8 wells at 5 ⁇ 10 4 to 7 ⁇ 10 4 cells / mL in F-10 medium (GIBCO) containing 20% bovine serum. Seeding was carried out on a slide glass (BD Thermoscience). Muscle satellite cells were cultured for 72 hours or 120 hours after seeding. The muscle satellite cells for tissue staining were cultured for 72 hours, and the muscle satellite cells for gene analysis were cultured for 120 hours to ensure the number of cells. In the case of muscle satellite cells cultured for 120 hours, medium replacement of F-10 medium containing 20% bovine serum was performed 72 hours after seeding.
  • DMEM Dulbecco's Modified Eagle Medium
  • fibrosis Differentiation (fibrosis) induction conditions of myo-satellite cells into myofibroblasts
  • Myo-satellite cells were cultured in the differentiation-inducing medium for 24 hours after the culture for 72 hours or 120 hours.
  • the differentiation induction medium a medium in which 2% horse fetal serum-containing Dulbecco's Modified Eagle Medium (DMEM) medium is mixed with a TGF ⁇ (TGF- ⁇ ) signal inhibitor, quercetin or a solvent in the amounts shown in Table 1 is used. did.
  • TGF ⁇ SIGMA
  • the compound was added to the differentiation induction medium using HCl as a solvent so that the final concentration was 1 ng / mL.
  • TGF ⁇ When adding a TGF ⁇ signal inhibitor or quercetin, TGF ⁇ was added.
  • SB525334 (6- [2-tert-butyl-5- (6-methyl-pyridin-2-yl) -1H-imidazol-4-yl] -quinoxaline, Wako Pure Chemical Industries, Ltd.) as a TGF ⁇ signal inhibitor was used.
  • SB525334 was added using dimethyl sulfoxide (DMSO) as a solvent so that the final concentration was 1 ⁇ M.
  • DMSO dimethyl sulfoxide
  • RNA was prepared from cells cultured in a differentiation-inducing medium using an RNeasy micro kit (QIAGEN). The prepared RNA was homogenized, then heat-treated at 70 ° C. for 2 minutes, and used after rapid cooling. The extracted RNA was subjected to reverse transcription using 15 ng of RNA under the conditions of cooling at 25 ° C. for 10 minutes, 37 ° C. for 120 minutes, 85 ° C. for 5 minutes and 4 ° C. The cDNA obtained by the reverse transcription reaction was subjected to quantitative PCR at Step One Plus Real Time PCR System using TaqMan Fast Universal PCR Mastermix (Life Technologies Corporation).
  • FIG. 1 shows a photomicrograph of muscle satellite cells stained with Masson trichrome after culturing for 24 hours in a differentiation-inducing medium under conditions where a TGF ⁇ signal inhibitor or quercetin is added.
  • 1 (a) to 1 (e) show that the group (a) in which TGF ⁇ was not added (TGF ⁇ ( ⁇ )), the group (b) in which TGF ⁇ was added (TGF ⁇ (+)), and (c), respectively.
  • the SB525334 added group (TGF ⁇ (+) + SB525334), (d) is the quercetin 50 ⁇ M added group (TGF ⁇ (+) + quercetin 50 ⁇ M), and (e) is the quercetin 100 ⁇ M added group (TGF ⁇ (+) + quercetin 100 ⁇ M).
  • the scale bar in FIGS. 1A to 1E is 200 ⁇ m.
  • the cells In the group to which TGF ⁇ is not added (FIG. 1 (a)), the cells have a spherical cell form (form in which the cytoplasm is not extended). On the other hand, it can be seen that in the group to which TGF ⁇ was added (FIG.
  • FIG. 2 shows the results of analyzing the expression level of a fibrosis marker gene in cells after culturing muscle satellite cells in a differentiation-inducing medium under a TGF ⁇ signal inhibitor or quercetin addition condition ((a): Acta2). Gene, (b): Col1a1 gene).
  • the significance test of the results shown in FIGS. 2A and 2B was performed by Dunnett test (**: P ⁇ 0.01, vs. TGF ⁇ (+)).
  • the relative mRNA amounts shown in FIGS. 2 (a) and 2 (b) are relative mRNA amounts where the mRNA amount of each gene in the group to which TGF ⁇ is not added (TGF ⁇ ( ⁇ )) is 1.
  • Acta2 gene specifically expressed in myofibroblasts was significantly suppressed in the SB525334 added group.
  • Acta2 gene expression was significantly suppressed in the 100 ⁇ M quercetin addition group.
  • Concerning Col1a1 gene expression significant expression suppression was observed in the SB525334 addition group, but it was also found that the quercetin addition group also has an expression suppression effect in a concentration-dependent manner.
  • quercetin was quantitatively shown to suppress the process of differentiation from muscle satellite cells to myofibroblasts.
  • composition for inhibiting muscle fibrosis of the present invention are shown below.
  • (Production Example 1) Tablet quercetin glucoside 10 g Vitamin E 50g 222 g starch Sucrose fatty acid ester 9g Silicon oxide 9g These were mixed and tableted with a single-punch tableting machine to produce tablets with a diameter of 9 mm and a mass of 300 mg.
  • the composition for inhibiting muscle fibrosis according to the present invention can suppress the process of differentiation from muscle satellite cells to myofibroblasts, and suppress muscle fibrosis. Can do.
  • the composition for suppressing muscle fibrosis of the present invention can suppress muscle atrophy and the like by the action of quercetin or its glycoside to suppress the differentiation process from muscle satellite cells to myofibroblasts.
  • quercetin or a glycoside thereof is contained in an ingestible plant and has not been reported to show side effects in healthy adults, so safety is also ensured.
  • the composition for inhibiting muscle fibrosis of the present invention can be safely and continuously ingested, suppresses muscle degeneration, muscle mass loss and muscle atrophy caused by muscle fibrosis, and exerts motor function. It is thought that it can contribute to the improvement of the industry, and industrial applicability is high.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Nutrition Science (AREA)
  • Physiology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Neurology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Non-Alcoholic Beverages (AREA)

Abstract

本発明は、長期間にわたって安全に摂取可能な成分を有効成分として含有する、筋線維化抑制用組成物、及び、安全に筋線維化を抑制する方法を提供することを目的とする。本発明は、ケルセチン又はその配糖体を有効成分として含有する、筋線維化抑制用組成物を提供する。

Description

筋線維化抑制用組成物
本発明は、筋線維化抑制用組成物に関する。本発明はまた、筋線維化抑制方法等に関する。
超高齢社会である日本では、医療が進歩し、後期高齢者の割合が増加している一方で、健康寿命の延長や日常生活の質(QOL)の向上が課題となっている。この健康寿命の短縮の一つの要因として、運動器の障害による要介護になるリスクが高い状態になること、すなわちロコモティブシンドロームが挙げられる。加齢に伴う運動器疾患による痛みや、筋力低下、持久力低下、運動速度低下など運動機能の低下がおこり、これらが相まって負の連鎖に陥る。その結果、日常生活動作を行えなくなり、要介護状態になっていくと考えられており、その予防が重要となっている。現在、運動機能の低下予防として軽度な運動や電気刺激を与えるなどのリハビリテーションが行われている。更に、栄養学的観点からの研究も行われ、筋萎縮や筋力低下を予防し得る成分がいくつか見出されている(特許文献1及び2)。
運動機能は単に筋肉量に比例するのではなく、筋肉の質も関与しているということが知られているため、筋萎縮を予防するだけでなく、筋肉の質を向上させることが運動機能の向上に重要であると考えられる。筋肉の質とは、筋断面積又は筋肉量あたりの筋力、あるいは筋線維あたりの張力を表しており、加齢に伴い減少することがわかっている(非特許文献1)。加齢に伴う筋肉の質の低下の要因は、筋肉内における線維質や脂肪滴が蓄積することであると考えられている。
筋肉には、幹細胞である筋サテライト細胞が筋線維の基底膜と細胞膜の間に存在する。筋サテライト細胞は、筋損傷などの刺激を受けると活性化されて増殖すると同時に、筋芽細胞、筋管細胞へと分化をして新たな筋線維を形成する。筋萎縮の予防や運動機能の向上を実現するために重要な筋肉の肥大や筋肉の再生には、筋サテライト細胞の筋芽細胞、筋管細胞への分化を促進することが重要であるといえる。筋サテライト細胞の筋芽細胞、筋管細胞への分化を促進する成分として、キョウチクトウ科の多年生植物であるラフマ又はその抽出物や、camellia属の雑種から得られる茶葉から発酵工程を経て製茶された紅茶の抽出物などが報告されている(特許文献3及び4)。
筋サテライト細胞は活性化すると、自己複製により増殖し、筋芽細胞、筋管細胞へ分化をするが、同時に脂肪細胞や筋線維芽細胞へも分化し得ることが報告されている(非特許文献2)。脂肪細胞へ分化した細胞は脂肪滴を産生し、筋線維芽細胞へと分化した細胞はコラーゲン等の線維質を産生する。こうして、筋肉内に脂肪滴が蓄積したり(筋肉の脂肪化)、線維質等の細胞外マトリックスが過度に蓄積(筋肉の線維化(筋線維化ともいう))したりすることにより筋肉の質が低下する。実際に加齢に伴い、筋サテライト細胞の分化方向が筋芽細胞から線維質を産生する細胞に変わることで筋肉の線維化が促進されるという報告もある(非特許文献3)。現在までに組織の線維化は、特に肝臓や心臓で研究が進んでいるが、筋肉の線維化に関してはあまり研究が進んでいない。また、筋線維化について筋サテライト細胞の筋線維芽細胞への分化に着目した研究は行われておらず、筋サテライト細胞の筋線維芽細胞への分化を抑制する成分は、未だ報告がなされていない。
ケルセチンは、フラボノイドの一種であり、そのままで、又は、配糖体として玉ねぎなど多くの植物に含有されている。また、ケルセチンの生理活性として、抗酸化作用、抗炎症作用、抗腫瘍作用や血管拡張作用などが報告されている。一方、筋サテライト細胞の筋線維芽細胞への分化に対するケルセチンが持つ作用はこれまで知られていなかった。
特開2002-338464号公報 国際公開第2005/074962号 特開2014-15428号公報 特開2013-91608号公報
Journal of Applied Physiology, 1999, 86(1), 188-194. Journal of cell science, 2011, 124, 3654-3664. Journal of Science, 2007, 317, 5839, 807-810.
本発明は、長期間にわたって安全に摂取可能な成分を有効成分として含有する、筋線維化抑制用組成物を提供することを目的とする。また、本発明は、安全に筋線維化を抑制する方法を提供することを目的とする。
本発明者らは、ラット由来筋サテライト細胞を用い、ケルセチンが筋サテライト細胞から筋線維芽細胞への分化の過程を抑制する作用を有し、筋線維化の抑制に有用であることを見出し、本発明を完成するに至った。
すなわち、これに限定されるものではないが、本発明は以下の筋線維化抑制用組成物、筋線維化抑制方法等を包含する。
(1)ケルセチン又はその配糖体を有効成分として含有する、筋線維化抑制用組成物。
(2)筋サテライト細胞から筋線維芽細胞への分化の過程を抑制する、(1)に記載の筋線維化抑制用組成物。
(3)筋質向上作用を有する、(1)又は(2)に記載の筋線維化抑制用組成物。
(4)運動機能向上作用を有する、(1)~(3)のいずれかに記載の筋線維化抑制用組成物。
(5)筋量増加作用を有する、(1)~(4)のいずれかに記載の筋線維化抑制用組成物。
(6)筋萎縮抑制作用を有する、(1)~(5)のいずれかに記載の筋線維化抑制用組成物。
(7)筋肉中の細胞外マトリックスの蓄積を抑制する作用を有する、(1)~(6)のいずれかに記載の筋線維化抑制用組成物。
(8)細胞外マトリックスがコラーゲン及び/又は終末糖化産物である、(7)に記載の筋線維化抑制用組成物。
(9)飲食品又は経口用医薬である、(1)~(8)のいずれかに記載の筋線維化抑制用組成物。
(10)筋線維化の抑制、予防又は改善、筋質向上、運動機能向上、筋量増加、及び、筋萎縮抑制の1又は2以上の作用を有する旨の表示、又は、上記作用を得るために用いられる旨の表示を付した、(1)~(9)のいずれかに記載の筋線維化抑制用組成物。
(11)筋線維化を抑制するための、ケルセチン又はその配糖体の使用。
(12)筋サテライト細胞から筋線維芽細胞への分化の過程を抑制するための、ケルセチン又はその配糖体の使用。
(13)ケルセチン又はその配糖体を投与する又は摂取させることを含む、筋線維化抑制方法。
(14)ケルセチン又はその配糖体を投与する又は摂取させることを含む、筋サテライト細胞から筋線維芽細胞への分化の過程を抑制する方法。
本発明により、ケルセチン又はその配糖体を有効成分として含有する、筋線維化抑制用組成物が提供される。ケルセチン及びその配糖体は、筋サテライト細胞から筋線維芽細胞への分化の過程を抑制する作用を有し、筋線維化抑制に有効であり、しかも安全性が高い。従って本発明によれば、長期間にわたって安全に摂取可能な成分を有効成分として含有する、筋線維化抑制用組成物を提供することができる。本発明によれば、安全に筋線維化を抑制することができる。
図1は、筋サテライト細胞をTGFβ(TGF-β)シグナル阻害剤又はケルセチン添加条件下において分化誘導培地にて24時間培養後、マッソントリクローム染色した顕微鏡写真である((a):TGFβを添加していない群、(b):TGFβを添加した群、(c):SB525334添加群、(d):ケルセチン50μM添加群、(e):ケルセチン100μM添加群)。 図2は、筋サテライト細胞をTGFβシグナル阻害剤又はケルセチン添加条件下において分化誘導培地にて24時間培養後、細胞内の線維化マーカー遺伝子の発現量を解析した結果を示すグラフである((a):Acta2遺伝子、(b)Col1a1遺伝子、**:P<0.01、vs.TGFβ(+))。
本発明の筋線維化抑制用組成物は、ケルセチン又はその配糖体を有効成分として含有する。
ケルセチン及びその配糖体は、筋サテライト細胞から筋線維芽細胞への分化の過程を抑制する作用を有し、筋線維化抑制効果を発揮する。
本発明の筋線維化抑制用組成物は、コラーゲン等の線維質をはじめとした細胞外マトリックスが筋肉に蓄積すること(筋線維化)を抑制するために使用される。本発明の筋線維化抑制用組成物は、筋サテライト細胞から筋線維芽細胞への分化の過程を抑制することによって、筋線維化を抑制するために好適に使用される。
筋サテライト細胞から筋線維芽細胞への分化の過程の抑制の程度は、筋線維芽細胞の存在量で評価を行うことができる。筋線維芽細胞の存在量は、例えば、筋線維芽細胞に特異的なマーカー遺伝子の発現量の測定、該遺伝子にコードされるタンパク質量の測定、筋サテライト細胞の形態観察等により評価することができる。後記の実施例では、筋線維芽細胞の存在量を定量的に評価するために、筋線維芽細胞に特異的なマーカーであるActa2遺伝子の発現量と、I型コラーゲン産生に関与するCol1a1遺伝子(I型コラーゲン遺伝子)の発現量で評価を行った。
上記Acta2遺伝子は、α-平滑筋アクチン(α-smooth muscle actin、α-SMA)タンパクをコードしており、α-SMAは線維芽細胞や筋線維芽細胞に発現するタンパク質である。活性化した線維芽細胞や筋線維芽細胞が線維化部位に集積してI型コラーゲンを大量に産生することが、組織の線維化の原因として考えられている。したがって、筋サテライト細胞から筋線維芽細胞への分化の過程の抑制には、筋サテライト細胞におけるActa2遺伝子及びCol1a1遺伝子の発現抑制が含まれる。
哺乳動物の筋サテライト細胞は、トランスフォーミング増殖因子β(Transforming growth factorβ、TGF-β)刺激を与えることによって、筋線維芽細胞への分化が誘導される。ケルセチン及びその配糖体は、TGF-β(TGFβとも記載する)により誘導される筋サテライト細胞から筋線維芽細胞への分化の過程を抑制する作用を有する。
本明細書において、「筋サテライト細胞」とは筋線維の基底膜と細胞膜の間に存在する間葉系幹細胞を意味する。筋サテライト細胞は、筋芽細胞だけでなく脂肪細胞、骨細胞及び筋線維芽細胞などへも分化し得ることが知られている。例えば、筋サテライト細胞は、筋線維芽細胞誘導培地にて培養されることにより、筋線維芽細胞へと分化する。また、筋サテライト細胞は、脂肪分化誘導培地にて培養されることにより、脂肪細胞様細胞へと分化する。筋サテライト細胞が筋線維芽細胞、脂肪細胞様細胞に分化すると、筋質の低下、筋量の低下、筋萎縮を招き、その結果運動機能が低下する。
筋サテライト細胞から筋線維芽細胞への分化の過程を抑制することにより、筋線維化を抑制することができる。また、筋サテライト細胞から筋線維芽細胞への分化の過程を抑制することにより、筋サテライト細胞の幹細胞能が維持される、及び/又は、筋サテライト細胞から筋芽細胞への分化が優先的に誘導されることになる。従って、筋サテライト細胞から筋線維芽細胞への分化の過程を抑制することにより、筋質の低下、筋量の低下及び筋萎縮を抑制することができ、このような効果が得られることで、運動機能の向上効果も得られることになる。
本明細書において、筋線維化誘導とは、TGF-β刺激により筋サテライト細胞の筋線維芽細胞への分化を誘導することを意味する。多くの組織の線維症は、TGF-βシグナル伝達が亢進し、線維芽細胞又は筋線維芽細胞が活性化されることによって引き起こされると考えられている。肺や腎臓などの臓器において、TGF-βの過剰発現が線維化を引き起こし、逆にTGF-βシグナルの阻害が線維化を抑制するということが報告されている。
本明細書において、「筋質」とは、筋断面積又は筋肉量あたりの筋力、あるいは、筋線維あたりの張力を意味する。したがって、本明細書において、「筋質向上」とは、筋断面積又は筋肉量あたりの筋力、あるいは、筋線維あたりの張力が増加することを意味する。筋質向上は、筋断面積又は筋肉量の増加率よりも、筋力の増加率が上回ることということもできる。
本明細書において、「運動機能」とは、歩行、階段の上り下り、ならびに立ち上がり動作など日常生活動作を行う能力を意味している。例えば、上記機能は、膝伸展筋力、握力や歩行速度などで測定することが可能である。したがって、本明細書において、「運動機能向上」とは、上記測定項目の結果が上昇することを意味する。
本明細書において、「筋量増加」とは、単位面積当たりの筋線維数の増加、筋線維断面積の増加、筋断面積の増加、又は筋重量の増加を意味する。筋量増加は、筋組織において、筋タンパク質の合成速度が筋タンパク質の分解速度を上回ることにより、筋組織中のタンパク質量が増加するために起こる。筋サテライト細胞から筋線維芽細胞への分化の過程を抑制することによって、実質的に筋サテライト細胞が筋芽細胞へ分化する割合が高くなり、筋量増加に繋がると考えられる。このことは、筋量が減少した場合にそれを回復させるために有効である。
本明細書において、「筋萎縮」とは、筋タンパク質の合成速度が分解速度よりも下回ることにより、筋組織中のタンパク質量が減少することを意味する。したがって、「筋萎縮抑制」とは、筋タンパク質の合成速度を上げること、又は、筋タンパク質の分解速度を下げることのいずれか又は両方により、合成と分解のバランスを正常化し、筋組織中のタンパク質量の減少を抑制することを意味する。
本明細書において、「細胞外マトリックスの蓄積」とは、筋肉中におけるコラーゲン、終末糖化産物(AGEs)を含む細胞外マトリックスの過度な蓄積を意味する。特に、コラーゲン及び終末糖化産物は老化に伴って蓄積されるということも知られている。
本明細書において、「コラーゲン」とは、アミノ酸残基として3-又は4-ヒドロキシプロリン、5-ヒドロキシリジン残基を有する分子を意味する。3-又は4-ヒドロキシプロリン、5-ヒドロキシリジン残基は、通常、他のタンパク中にはほとんど含まれない。一般に、動物組織内のコラーゲン含有量は、4-ヒドロキシプロリン残基量を測定することにより、推測可能とされている。
本明細書において、「終末糖化産物」とは、グルコースなどの還元糖が、タンパク質のアミノ基と非酵素的に反応して生成される物質を意味している。特にコラーゲンは、糖化され、終末糖化産物が蓄積し易いことが知られており、筋肉における終末糖化産物の蓄積が、筋機能低下に関与しているという報告もされている(Journal of applied physiology, 2007, vol. 103 (6): 2068-76.)。
本明細書において、「ケルセチン」とは、ビタミンPとも称され、ポリフェノールの一種であるフラボノールに属する化合物であるケルセチンを意味する。ケルセチンは、下記式(I)で示される化合物である。
Figure JPOXMLDOC01-appb-C000001
本発明において、「ケルセチン配糖体」とは、上記ケルセチンの配糖体を意味する。ケルセチン配糖体は、下記一般式(II)で示される化合物である。ただし、下記一般式(II)中の(X)nは、糖鎖を表し、nは1以上の整数である。
Figure JPOXMLDOC01-appb-C000002
ケルセチンにグリコシド結合するXで表される糖鎖を構成する糖は、例えば、グルコース、ラムノース、ガラクトース、グルクロン酸等であり、好ましくはグルコース、ラムノースである。また、nは1以上であれば、特に制限されないが、好ましくは1~16、より好ましくは1~8である。nが2以上であるとき、X部分は1種類の糖からなっていてもよく、複数種の糖からなっていてもよい。換言すると、nが2以上であるとき、(X)nは、1種類の糖からなる糖鎖であってもよく、複数種の糖からなる糖鎖であってもよい。本発明におけるケルセチン配糖体は、既存のケルセチン配糖体を、酵素などで処理して糖転移させたものも含む。本発明でいうケルセチン配糖体は、具体的には、ルチン、酵素処理ルチン、クエルシトリン、イソクエルシトリンなどを含む。本発明において、ケルセチン配糖体として、ルチンの酵素処理物を使用することが、特に好ましい。ルチンの酵素処理物の好ましい例として、ケルセチン配糖体を酵素処理してラムノース糖鎖部分を除去したイソクエルシトリン、イソクエルシトリンを糖転移酵素で処理してグルコース1~7個からなる糖鎖が結合したもの、及びその混合物を主成分とするものが挙げられる。
本発明において、ケルセチン又はその配糖体は、1種のみ用いてもよく、複数種の化合物を用いてもよい。複数種の化合物を使用する場合、例えば、ケルセチン及び1種又は2種以上のケルセチン配糖体を用いてもよく、2種以上のケルセチン配糖体を用いてもよい。
摂取されたケルセチン配糖体は、消化管から体内に吸収後、消化酵素又は代謝酵素の働きによりケルセチンとなり、体内でケルセチンと同様の効果を発揮する。
本発明で使用する、ケルセチン又はその配糖体を得るための由来、製法については特に制限はない。例えば、ケルセチン又はその配糖体を多く含む植物として、ソバ、エンジュ、ケッパー、リンゴ、茶、タマネギ、ブドウ、ブロッコリー、モロヘイヤ、ラズベリー、コケモモ、クランベリー、オプンティア、葉菜類、柑橘類などが知られており、これらの植物からケルセチン又はその配糖体を得ることができる。
後記実施例で示すとおり、ケルセチンは、TGF-βによる線維化誘導条件下にて、筋サテライト細胞の細胞形態変化を抑制し、Acta2遺伝子及びCol1a1遺伝子発現を抑制した。すなわち、これはケルセチンが筋サテライト細胞の筋線維芽細胞への分化の過程を抑制する作用を有することを意味している。また、組織の線維化は、筋線維芽細胞又は線維芽細胞が、コラーゲンなどの細胞外マトリックスを過度に産生することが原因であると考えられている。筋サテライト細胞から筋線維芽細胞への分化の過程を抑制することにより、筋線維芽細胞の増加が抑制される。これに伴い、筋線維芽細胞によるコラーゲン、終末糖化産物等の細胞外マトリックスの蓄積が抑制され、その結果、筋線維化を抑制することができる。筋線維化を抑制することによって、筋線維化に起因する症状の予防又は改善も可能となる。筋線維化に起因する症状として、例えば、筋質の低下、筋量の低下、筋萎縮、運動機能低下等が挙げられる。予防は、発症の防止、遅延、発症率の低下を包含する。改善は、症状の軽快、症状の進行抑制、症状の治癒を包含する。
さらに、筋サテライト細胞の筋線維芽細胞への分化の過程を抑制することによって、筋サテライト細胞の幹細胞性の維持又は筋芽細胞への分化を優先的に誘導することができると考えられ、線維質の蓄積を抑えるだけでなく、筋合成も促進し得ると考えられる。従って筋サテライト細胞から筋線維芽細胞への分化の過程を抑制することにより、筋線維化抑制、筋質向上、筋量増加、筋萎縮抑制等の効果が得られ、これにより運動機能向上効果も得られる。
ケルセチン又はその配糖体は、筋サテライト細胞から筋線維芽細胞への分化の過程を抑制するために有用であり、このような目的のために使用することができる。
ケルセチン又はその配糖体は、筋線維化抑制に有用である。ケルセチン又はその配糖体は、筋線維化抑制のために使用することができる。ケルセチン又はその配糖体は、筋サテライト細胞から筋線維芽細胞への分化の過程を抑制するため、又は、筋線維化を抑制するために使用される飲食品、医薬、医薬部外品、飼料、化粧料等の様々な用途に使用することができ、これらの有効成分として好適に使用される。筋線維化抑制は、好ましくは骨格筋線維化抑制である。
また、ケルセチン又はその配糖体は、上述したように筋サテライト細胞から筋線維芽細胞への分化の過程を抑制する作用を有することから、筋質の向上、運動機能の向上、筋量の増加、筋萎縮抑制等にも有用である。
本発明は、一態様において、ケルセチン又はその配糖体を有効成分として含有する、筋線維化抑制用組成物を提供する。本発明の筋線維化抑制用組成物は、筋線維化の予防又は改善に有用である。
本発明は、一態様において、ケルセチン又はその配糖体を有効成分として含有し、筋質向上作用、運動機能向上作用、筋量増加作用、筋萎縮抑制作用、及び、筋肉中の細胞外マトリックスの蓄積を抑制する作用の1又は2以上の作用を有する、筋線維化抑制用組成物を提供する。
本発明の筋線維化抑制用組成物は、一例として、剤の形態で提供することができるが、本形態に限定されるものではない。当該剤をそのまま組成物として、又は、当該剤を含む組成物として提供することもできる。
本発明の筋線維化抑制用組成物は、例えば、飲食品、医薬、医薬部外品、飼料、化粧料等の形態で提供することができるが、これらに限定されるものではない。本発明の筋線維化抑制用組成物は、それ自体が飲食品、医薬、医薬部外品、飼料、化粧料等であってもよく、これらに使用される添加剤等の製剤、素材であってもよい。一態様において、本発明の筋線維化抑制用組成物は、好ましくは経口用組成物である。
一態様において、本発明の筋線維化抑制用組成物は、好ましくは飲食品、医薬(好ましくは経口用医薬)又は医薬部外品であり、より好ましくは飲食品又は経口用医薬であり、さらに好ましくは飲食品である。
本発明の筋線維化抑制用組成物は、本発明の効果を損なわない限り、有効成分であるケルセチン又はその配糖体の他に、任意の添加剤、任意の成分を含有することができる。これらの添加剤及び成分としては、一般的に飲食品、医薬、医薬部外品、飼料、化粧料等に使用可能なものが使用できる。任意の添加剤又は成分の一例としては、ビタミンE、ビタミンC等のビタミン類、ミネラル類、栄養成分等の生理活性成分の他、製剤化において配合される賦形剤、結合剤、乳化剤、緊張化剤(等張化剤)、緩衝剤、溶解補助剤、防腐剤、安定化剤、抗酸化剤、着色剤、凝固剤、コーティング剤、香料等が挙げられる。また、任意の成分の一例として、カゼインタンパク質、ホエイタンパク質、大豆タンパク質等のタンパク質類及びそのペプチド類;更にはバリン、ロイシン、イソロイシン等の分岐鎖アミノ酸を含むアミノ酸類及びその代謝産物等が挙げられる。これらは1種用いてもよく、2種以上を組み合わせて用いてもよい。
上記以外にも、その用途に応じて、飲食品、医薬、医薬部外品、飼料、化粧料等に使用される素材等の成分を適宜配合することができる。
本発明の筋線維化抑制用組成物を飲食品とする場合、ケルセチン又はその配糖体に、飲食品に使用可能な成分(例えば、飲食品素材、必要に応じて使用される添加剤等)を配合して、種々の飲食品(飲食品組成物)とすることができる。飲食品は特に限定されず、例えば、一般的な飲食品、健康食品、機能性表示食品、特定保健用食品、病者用食品、食品添加剤、これらの原料等が挙げられる。飲食品の形態も特に限定されず、錠剤、被覆錠剤、細粒剤、顆粒剤、散剤、丸薬、カプセル剤、ドライシロップ剤、チュアブル剤等の経口用固形製剤;内服液剤、シロップ剤等の経口用液体製剤の各種製剤形態とすることもできる。本発明の一態様において、飲食品は、上記のビタミン類、ミネラル類、栄養成分等の生理活性成分;上記のタンパク質類及びそのペプチド類;分岐鎖アミノ酸を含むアミノ酸類及びその代謝産物等の1種又は2種以上を含むことも好ましい。
本発明の筋線維化抑制用組成物を医薬又は医薬部外品とする場合、ケルセチン又はその配糖体に、薬理学的に許容される賦形剤等を配合して、各種剤形の医薬(医薬組成物)又は医薬部外品(医薬部外品組成物)とすることができる。医薬又は医薬部外品の投与形態は特に限定されず、経口投与でもよいし、非経口の形態で投与してもよいが、経口投与が好ましい。医薬又は医薬部外品の剤形は、投与形態に適した剤形とすればよい。経口用医薬の剤形として、例えば、錠剤、被覆錠剤、細粒剤、顆粒剤、散剤、丸薬、カプセル剤、ドライシロップ剤、チュアブル剤等の経口用固形製剤;内服液剤、シロップ剤等の経口用液体製剤が挙げられる。非経口用医薬の剤形として、例えば、注射剤、輸液剤、外用剤、坐薬、経皮吸収剤等が挙げられる。医薬は、非ヒト動物用医薬であってもよい。
本発明の筋線維化抑制用組成物を飼料とする場合、ケルセチン又はその配糖体に、飼料に使用可能な成分を配合して飼料(飼料組成物)とすることができる。飼料としては、例えば、牛、豚、鶏、羊、馬等に用いる家畜用飼料;ウサギ、ラット、マウス等に用いる小動物用飼料;犬、猫、小鳥等に用いるペットフードなどが挙げられる。
本発明の筋線維化抑制用組成物を化粧料とする場合、ケルセチン又はその配糖体に、化粧料に使用可能な添加剤等の成分を配合して化粧料(化粧料組成物)とすることができる。
本発明の筋線維化抑制用組成物を、飲食品、医薬、医薬部外品、飼料、化粧料等とする場合、その製造方法は特に限定されず、有効成分であるケルセチン又はその配糖体を用いて、一般的な方法により製造することができる。
本発明の筋線維化抑制用組成物には、包装、容器又は説明書に用途、有効成分の種類、上述した効果、使用方法(例えば、摂取方法、投与方法)等の1又は2以上を表示してもよい。本発明の筋線維化抑制用組成物には、筋サテライト細胞から筋線維芽細胞への分化の過程を抑制する作用又は筋線維化抑制作用に基づく作用を有する旨の表示等が付されていてもよい。このような表示として、例えば、筋線維化の抑制、予防又は改善、筋質向上、運動機能向上、筋量増加、筋萎縮抑制等の1又は2以上の作用を有する旨や、該作用を得るために用いられる旨の表示が付されていてもよい。
本発明の筋線維化抑制用組成物中のケルセチン又はその配糖体の含有量は特に限定されず、その形態等に応じて適宜設定することができる。例えば、筋線維化抑制用組成物を飲食品、医薬、医薬部外品、飼料又は化粧料とする場合、いずれの形態の場合でも、ケルセチン又はその配糖体の総含有量(ケルセチン及びその配糖体の合計含有量)は、ケルセチン換算値として組成物中に0.0001重量%以上が好ましく、0.01重量%以上がより好ましく、0.1重量%以上がさらに好ましく、また、99.9重量%以下が好ましく、95重量%以下がより好ましく、80重量%以下がさらに好ましく、45重量%以下が特に好ましい。一態様において、ケルセチン又はその配糖体の総含有量は、ケルセチン換算値として組成物中に0.0001~99.9重量%が好ましく、0.001~95重量%がより好ましく、0.01~80重量%がさらに好ましく、0.01~45重量%が特に好ましい。また、一態様において、筋線維化抑制用組成物を飲食品とする場合、ケルセチン又はその配糖体の総含有量は、飲食品中に0.0001~99.9重量%が好ましく、0.001~45重量%がより好ましい。
ケルセチン又はその配糖体の含有量は、公知の方法に従って測定することができ、例えば、HPLC法等を用いることができる。
本発明の筋線維化抑制用組成物は、その形態に応じた適当な方法で摂取又は投与することができる。本発明の筋線維化抑制用組成物は、経口投与又は摂取されてもよく、注射剤等の形態として、非経口投与されてもよいが、好ましくは経口投与又は摂取される。
本発明の筋線維化抑制用組成物の摂取量(投与量ということもできる)は特に限定されず、投与形態、投与方法等に応じて適宜設定すればよい。一態様として、筋サテライト細胞から筋線維芽細胞への分化の過程を抑制する作用又は筋線維化抑制作用を得ることを目的として、例えば、ヒト(成人)を対象に経口で投与する又は摂取させる場合、筋線維化抑制用組成物の摂取量は、ケルセチン又はその配糖体の総摂取量(ケルセチン及びその配糖体の合計摂取量)として、ケルセチン換算値として1日あたり0.1mg~8000mgが好ましく、0.3mg~4000mgがより好ましく、1.0mg~1000mgがさらに好ましく、10mg~500mgがさらにより好ましく、10mg~200mgが特に好ましい。上記量を、例えば1日1~3回に分けて経口投与又は摂取させることが好ましい。また、筋線維化抑制用組成物を注射等によりヒト(成人)に非経口投与する場合は、ケルセチン又はその配糖体の総投与量は、ケルセチン換算値として、1日当たり0.1~8000mgが好ましく、0.3mg~4000mgがより好ましく、1.0mg~1000mgがさらに好ましく、10mg~500mgがさらにより好ましく、10mg~200mgが特に好ましい。
ケルセチン又はその配糖体の総摂取量が上記範囲となるように、本発明の筋線維化抑制用組成物を対象に摂取させる又は投与することが好ましい。
一態様において、本発明の筋線維化抑制用組成物は、その投与形態、投与方法等を考慮して、本発明の所望の効果が得られるような量、すなわち有効量のケルセチン又はその配糖体を含有することが好ましい。一態様として例えば、筋線維化抑制用組成物が飲食品又は経口用医薬等の経口用組成物である場合、該組成物の成人1人1日当たりの摂取量中に、ケルセチン又はその配糖体の総含有量が、ケルセチン換算値で0.1~8000mgが好ましく、0.3~4000mgがより好ましく、1.0~1000mgがさらに好ましく、10mg~500mgがさらにより好ましく、10mg~200mgが特に好ましい。
本発明の筋線維化抑制用組成物を投与又は摂取させる対象(以下、単に投与対象ともいう)は、動物が好ましく、哺乳動物(ヒト及び非ヒト哺乳動物)がより好ましく、ヒトがさらに好ましい。非ヒト哺乳動物としては、例えば、ウシ、ウマ、ヤギ、イヌ、ネコ、ウサギ、マウス、ラット、モルモット、サル等が挙げられる。また、本発明における投与対象として、筋線維化抑制、筋質向上、運動機能向上、筋量増加、筋萎縮抑制の1又は2以上を必要とする又は希望する対象が好ましい。例えば、加齢等により筋力が低下した対象、加齢等による筋力低下の予防を望む対象等が好適な対象として挙げられる。
本発明は、ケルセチン又はその配糖体を投与する又は摂取させることを含む、筋線維化抑制方法も包含する。上記筋線維化抑制方法は、好ましくは筋サテライト細胞から筋線維芽細胞への分化の過程を抑制することによる筋線維化抑制方法である。
本発明は、ケルセチン又はその配糖体を投与する又は摂取させることを含む、筋サテライト細胞から筋線維芽細胞への分化の過程を抑制する方法も包含する。上記方法は、治療的な方法であってもよく、非治療的な方法であってもよい。「非治療的」とは、医療行為、すなわち手術、治療又は診断を含まない概念である。
ケルセチン又はその配糖体の投与量は、筋サテライト細胞から筋線維芽細胞への分化の過程を抑制する作用又は筋線維化抑制作用が得られる量、すなわち有効量であればよく、特に限定されず、例えば上述した量を投与又は摂取することが好ましい。ケルセチン又はその配糖体は、そのまま投与又は摂取してもよいし、ケルセチン又はその配糖体を含有する組成物として投与又は摂取してもよい。例えば、上述した本発明の筋線維化抑制用組成物を投与又は摂取することができる。ケルセチン又はその配糖体、投与対象、投与方法、投与量及びそれらの好ましい態様等は、上述した筋線維化抑制用組成物におけるものと同じである。本発明によれば、副作用を生じず、安全に、筋線維化を抑制することができる。
本発明は、以下の使用等も包含する。
筋線維化を抑制するための、ケルセチン又はその配糖体の使用。
上記使用は、好ましくは、筋サテライト細胞から筋線維芽細胞への分化の過程を抑制することにより、筋線維化を抑制するための、ケルセチン又はその配糖体の使用である。
筋線維化抑制のために使用される、ケルセチン又はその配糖体。
筋サテライト細胞から筋線維芽細胞への分化の過程を抑制するための、ケルセチン又はその配糖体の使用。
筋サテライト細胞から筋線維芽細胞への分化の過程を抑制するために使用される、ケルセチン又はその配糖体。
上記の使用は、ヒト又は非ヒト動物における使用である。使用は、治療的使用であってもよく、非治療的使用であってもよい。ケルセチン又はその配糖体等の好ましい態様等は、上述した通りである。
本発明は一態様において、筋線維化抑制用組成物を製造するための、ケルセチン又はその配糖体の使用、も包含する。筋線維化抑制用組成物及びその好ましい態様は、上記と同じである。本発明は、筋サテライト細胞から筋線維芽細胞への分化の過程を抑制するための組成物を製造するための、ケルセチン又はその配糖体の使用も包含する。
以下、本発明を実施例によりさらに詳しく説明するが、これにより本発明の範囲を限定するものではない。
<実施例1>
ラット骨格筋由来の筋サテライト細胞の筋線維芽細胞への分化誘導
(1)筋サテライト細胞の単離と培養条件
9週齢から15週齢の雄性Fischer344ラットから、麻酔下にて腓腹筋、ヒラメ筋、足底筋、前脛骨筋、長趾伸筋、及び大腿四頭筋を摘出し、氷上でリン酸緩衝生理食塩水(PBS)(Life Technologies Corporation社)内でミンスを行った。37℃にて、ミンスされた筋組織をプロテアーゼ(SIGMA社)により酵素分解後、遠心分離を繰り返し行い、筋サテライト細胞を単離した。筋サテライト細胞は、10%ウマ胎児血清含有Dulbecco’s Modified Eagle Medium(DMEM)に懸濁後、24時間培養した。培養後、再び遠心分離を行い、沈殿した筋サテライト細胞を20%ウシ血清を含むF-10培地(GIBCO社)にて5×10~7×10細胞/mLとなるように、8ウェルスライドガラス(BDサーモサイエンス社)に播種をした。筋サテライト細胞は播種後、72時間又は120時間培養した。組織染色用の筋サテライト細胞は72時間培養を行い、遺伝子解析用の筋サテライト細胞は細胞数の確保のため120時間培養を行った。120時間培養する筋サテライト細胞の場合は、播種後72時間後に20%ウシ血清を含むF-10培地の培地交換を行った。
(2)筋サテライト細胞の筋線維芽細胞への分化(線維化)誘導条件
筋サテライト細胞は、上記の72時間又は120時間培養後、分化誘導培地で24時間培養した。分化誘導培地としては、2%ウマ胎児血清含有Dulbecco’s Modified Eagle Medium(DMEM)培地に、表1に記載の量でTGFβ(TGF-β)シグナル阻害剤、ケルセチン又は溶媒を混合した培地を使用した。線維化誘導に際しては、TGFβ(SIGMA社)を用いた。当該化合物は、HClを溶媒として用い、終濃度が1ng/mLとなるように分化誘導培地に添加した。TGFβシグナル阻害剤又はケルセチンを添加する場合は、TGFβを添加した。また、TGFβシグナル阻害剤としてSB525334(6-[2-tert-ブチル-5-(6-メチル-ピリジン-2-イル)-1H-イミダゾール-4-イル]-キノキサリン、和光純薬工業株式会社)を用いた。SB525334は、ジメチルスルホキシド(DMSO)を溶媒として用い、終濃度が1μMとなるように添加した。なお、ケルセチン添加時の溶媒もDMSOを用いた。
Figure JPOXMLDOC01-appb-T000003
(3)線維化誘導による形態変化の評価
分化誘導培地で培養した細胞はPBSで洗浄後、10%ホルマリン液(和光純薬工業株式会社)により室温で10分間固定した。その後に、56℃にてBouin’s solution(SIGMA社)と15分間反応させ、TRICHROME STAINS(MASSON)Kit(SIGMA-ALDLICH社)を使用して、マッソントリクローム染色を行った。染色後のサンプルの顕微鏡写真を図1に示す。
(4)線維化マーカー遺伝子発現解析
分化誘導培地で培養した細胞から、RNeasy micro kit(QIAGEN社)を用いて、RNA調製を行った。調製したRNAは、濃度を均一化した後、70℃、2分間の熱処理を行い、急冷後に使用した。抽出されたRNAは、15ngのRNAを使用し、25℃にて10分間、37℃にて120分間、85℃にて5分間、4℃冷却するという条件で逆転写反応を行った。逆転写反応によって得られたcDNAを、Step One Plus Real Time PCR Systemにて、TaqMan Fast Universal PCR Mastermix(Life Technologies Corporation社)を使用して定量的PCRを行った。Col1a1遺伝子及び筋線維芽細胞のマーカーであるActa2遺伝子の発現量を測定した。定量的PCRは、95℃にて20秒間維持した後、95℃にて1秒間、60℃にて20秒間の反応を40サイクル行った。各群における内部標準遺伝子として18SrRNA遺伝子の発現量を測定し、18SrRNA遺伝子(Applied Biosystems:Hs99999901_s1)、Col1a1遺伝子(Applied Biosystems:Rn01463848_m1)及びActa2遺伝子(Applied Biosystems:Rn01759928_g1)のCt値(一定の増幅量に達するまでのサイクル数)からCol1a1遺伝子発現及びActa2遺伝子発現の相対値を算出した。結果を図2に示す。
図1は、筋サテライト細胞をTGFβシグナル阻害剤又はケルセチン添加条件下において分化誘導培地にて24時間培養後、マッソントリクローム染色した顕微鏡写真を示す。図1(a)~(e)はそれぞれ、(a)がTGFβを添加していない群(TGFβ(-))、(b)がTGFβを添加した群(TGFβ(+))、(c)がSB525334添加群(TGFβ(+)+SB525334)、(d)がケルセチン50μM添加群(TGFβ(+)+ケルセチン50μM)、(e)がケルセチン100μM添加群(TGFβ(+)+ケルセチン100μM)である。図1(a)~(e)中のスケールバーは、200μmである。TGFβを添加していない群(図1(a))では、細胞は球状様の細胞形態(細胞質が伸びていない形態)を示している。一方、TGFβを添加した群(図1(b))では、筋線維芽細胞の細胞形態(細胞質が伸びたような形態)へと明らかに変化していることがわかる。TGFβシグナル阻害剤であるSB525334の添加は、TGFβによる筋サテライト細胞の筋線維芽細胞への細胞形態変化を明らかに抑制した(図1(c))。50μMのケルセチン添加群では、TGFβを添加した群(図1(b))と比較して、筋サテライト細胞の筋線維芽細胞様細胞への細胞形態変化が抑制された(図1(d))。100μMのケルセチン添加群では、筋サテライト細胞の筋線維芽細胞への細胞形態変化のより強い抑制効果が認められ(図1(e))、この抑制効果は、50μMのケルセチン添加群(図1(d))と比較して強かった。したがって、TGFβによる線維化誘導条件下にて、ケルセチンは、筋サテライト細胞の筋線維芽細胞への細胞形態変化の抑制作用を示すことが定性的に示された。
図2は、筋サテライト細胞をTGFβシグナル阻害剤又はケルセチン添加条件下において分化誘導培地にて24時間培養後、細胞内の線維化マーカー遺伝子の発現量を解析した結果である((a):Acta2遺伝子、(b):Col1a1遺伝子)。図2(a)及び(b)に示す結果の有意差検定は、Dunnett検定により行った(**:P<0.01、vs.TGFβ(+))。図2(a)及び(b)に示す相対mRNA量は、TGFβを添加していない群(TGFβ(-))における各遺伝子のmRNA量を1とした相対mRNA量である。
筋線維芽細胞に特異的に発現するActa2遺伝子の発現は、SB525334添加群において顕著な抑制が認められた。また、100μMケルセチン添加群においてもActa2遺伝子発現は、有意に抑制されていた。Col1a1遺伝子発現に関しては、SB525334添加群において顕著な発現抑制が認められたが、ケルセチン添加群においても濃度依存的に発現抑制作用があることがわかった。したがって、ケルセチンは筋サテライト細胞から筋線維芽細胞への分化の過程を抑制することが定量的に示された。
本発明の筋線維化抑制用組成物の製造例を以下に示す。
(製造例1)錠剤
ケルセチングルコシド 10g
ビタミンE 50g
デンプン 222g
ショ糖脂肪酸エステル 9g
酸化ケイ素 9g
これらを混合し、単発式打錠機にて打錠して径9mm、質量300mgの錠剤を製造した。
(製造例2)ドリンク剤
DL-酒石酸ナトリウム 0.1g
コハク酸 0.009g
液糖 800g
クエン酸 12g
ビタミンC 10g
ケルセチングルコシド 1g
ビタミンE 20g
シクロデキストリン 5g
乳化剤 5g
香料 15g
塩化カリウム 1g
硫酸マグネシウム 0.5g
上記成分を配合し、水を加えて1リットルとした。このドリンク剤は、1回あたり100mL以上を飲用する。
本発明の筋線維化抑制用組成物は、ケルセチン又はその配糖体を含有することにより、筋サテライト細胞から筋線維芽細胞へ分化の過程を抑制することができ、筋線維化を抑制することができる。また、本発明の筋線維化抑制用組成物は、ケルセチン又はその配糖体の筋サテライト細胞から筋線維芽細胞へ分化の過程を抑制する作用により、筋萎縮等を抑制することができる。また、ケルセチン又はその配糖体は、摂取可能な植物に含有されており、健常者の成人においては副作用を示すことが報告されていないため、安全性も担保されている。したがって、本発明の筋線維化抑制用組成物は、安全にかつ継続的に摂取することができるものであり、筋線維化がもたらす筋質低下、筋肉量減少及び筋萎縮を抑制し、運動機能の向上に寄与できると考えられ、産業上の利用可能性が高い。

Claims (14)

  1. ケルセチン又はその配糖体を有効成分として含有する、筋線維化抑制用組成物。
  2. 筋サテライト細胞から筋線維芽細胞への分化の過程を抑制する、請求項1に記載の筋線維化抑制用組成物。
  3. 筋質向上作用を有する、請求項1又は2に記載の筋線維化抑制用組成物。
  4. 運動機能向上作用を有する、請求項1~3のいずれかに記載の筋線維化抑制用組成物。
  5. 筋量増加作用を有する、請求項1~4のいずれかに記載の筋線維化抑制用組成物。
  6. 筋萎縮抑制作用を有する、請求項1~5のいずれかに記載の筋線維化抑制用組成物。
  7. 筋肉中の細胞外マトリックスの蓄積を抑制する作用を有する、請求項1~6のいずれかに記載の筋線維化抑制用組成物。
  8. 細胞外マトリックスがコラーゲン及び/又は終末糖化産物である、請求項7に記載の筋線維化抑制用組成物。
  9. 飲食品又は経口用医薬である、請求項1~8のいずれかに記載の筋線維化抑制用組成物。
  10. 筋線維化の抑制、予防又は改善、筋質向上、運動機能向上、筋量増加、及び、筋萎縮抑制の1又は2以上の作用を有する旨の表示、又は、前記作用を得るために用いられる旨の表示を付した、請求項1~9のいずれかに記載の筋線維化抑制用組成物。
  11. 筋線維化を抑制するための、ケルセチン又はその配糖体の使用。
  12. 筋サテライト細胞から筋線維芽細胞への分化の過程を抑制するための、ケルセチン又はその配糖体の使用。
  13. ケルセチン又はその配糖体を投与する又は摂取させることを含む、筋線維化抑制方法。
  14. ケルセチン又はその配糖体を投与する又は摂取させることを含む、筋サテライト細胞から筋線維芽細胞への分化の過程を抑制する方法。
PCT/JP2018/008960 2017-03-10 2018-03-08 筋線維化抑制用組成物 WO2018164221A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019504664A JP7379152B2 (ja) 2017-03-10 2018-03-08 筋線維化抑制用組成物
US16/492,284 US20190388387A1 (en) 2017-03-10 2018-03-08 Composition for inhibiting myofibrosis
CN201880013057.1A CN110312510A (zh) 2017-03-10 2018-03-08 肌纤维化抑制用组合物
CA3055164A CA3055164A1 (en) 2017-03-10 2018-03-08 Composition for inhibiting myofibrosis
SG11201907472QA SG11201907472QA (en) 2017-03-10 2018-03-08 Composition for inhibiting myofibrosis
JP2022050012A JP2022079551A (ja) 2017-03-10 2022-03-25 筋線維化抑制用組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-046265 2017-03-10
JP2017046265 2017-03-10

Publications (1)

Publication Number Publication Date
WO2018164221A1 true WO2018164221A1 (ja) 2018-09-13

Family

ID=63448674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008960 WO2018164221A1 (ja) 2017-03-10 2018-03-08 筋線維化抑制用組成物

Country Status (7)

Country Link
US (1) US20190388387A1 (ja)
JP (2) JP7379152B2 (ja)
CN (1) CN110312510A (ja)
CA (1) CA3055164A1 (ja)
SG (1) SG11201907472QA (ja)
TW (1) TWI830696B (ja)
WO (1) WO2018164221A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023017654A1 (ja) * 2021-08-11 2023-02-16 株式会社島津製作所 予測装置、予測方法、および予測プログラム
JP7489271B2 (ja) 2020-09-04 2024-05-23 花王株式会社 脂肪線維化抑制剤
JP7518580B2 (ja) 2020-08-31 2024-07-18 ケー-バイオテック カンパニー リミテッド ウチワノキ抽出物を有効成分として含むアンドロゲン受容体関連疾患治療用薬学的組成物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4066897A4 (en) * 2019-11-27 2023-12-27 Suntory Holdings Limited COMPOSITION FOR PREVENTING DECREASE IN MUSCLE MASS, PREVENTING WEAKNESS IN MUSCLE STRENGTH, INCREASE MUSCLE MASS OR STRENGTHENING MUSCLE STRENGTH
JPWO2022131063A1 (ja) * 2020-12-18 2022-06-23

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166887A1 (ja) * 2014-04-28 2015-11-05 サントリーホールディングス株式会社 ケルセチン配糖体を含有する筋萎縮抑制剤
WO2016175136A1 (ja) * 2015-04-27 2016-11-03 サントリーホールディングス株式会社 筋脂肪化抑制用組成物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166887A1 (ja) * 2014-04-28 2015-11-05 サントリーホールディングス株式会社 ケルセチン配糖体を含有する筋萎縮抑制剤
WO2016175136A1 (ja) * 2015-04-27 2016-11-03 サントリーホールディングス株式会社 筋脂肪化抑制用組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7518580B2 (ja) 2020-08-31 2024-07-18 ケー-バイオテック カンパニー リミテッド ウチワノキ抽出物を有効成分として含むアンドロゲン受容体関連疾患治療用薬学的組成物
JP7489271B2 (ja) 2020-09-04 2024-05-23 花王株式会社 脂肪線維化抑制剤
WO2023017654A1 (ja) * 2021-08-11 2023-02-16 株式会社島津製作所 予測装置、予測方法、および予測プログラム

Also Published As

Publication number Publication date
TW201836669A (zh) 2018-10-16
SG11201907472QA (en) 2019-09-27
US20190388387A1 (en) 2019-12-26
TWI830696B (zh) 2024-02-01
JP7379152B2 (ja) 2023-11-14
JP2022079551A (ja) 2022-05-26
JPWO2018164221A1 (ja) 2020-01-09
CA3055164A1 (en) 2018-09-13
CN110312510A (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
US11219590B2 (en) Anti-aging agent and anti-aging method
WO2018164221A1 (ja) 筋線維化抑制用組成物
DE502007010071C5 (de) Verwendung einer zusammensetzung aus mineralstoffen und gegebenenfalls acetogenen und/oder butyrogenen bakterien zur vermeidung oder reduzierung von gasbildung im dickdarm eines säugetiers und dadurch bedingter abdominaler beschwerden
EP3850954A1 (en) Anti-aging agent and anti-aging method
KR101800632B1 (ko) 엔테로코커스 패칼리스, 이의 배양액 또는 이의 사균체를 유효성분으로 함유하는 근육감퇴, 약화 및 근위축 예방, 개선 또는 치료용 약학 조성물, 식품 조성물 및 식품첨가제
JP7013238B2 (ja) 筋脂肪化抑制用組成物
KR102178926B1 (ko) 발효 태반 조성물을 유효성분으로 하는 면역 증강 또는 항피로 조성물과 그의 용도
US20110160136A1 (en) Polyphenols for the treatment of cartilage disorders
KR20140139949A (ko) 난각막 성분을 포함한 시르투인 유전자 활성화제 및 그것을 이용한 조성물
JP2024102128A (ja) エンテロコッカス・フェカーリス、その培養液またはその死菌体を有効成分として含有する筋肉の減退、低下及び筋萎縮の予防、改善または治療用の薬学組成物、食品組成物及び食品添加剤
WO2021205975A1 (ja) 細胞老化抑制用組成物及び細胞老化を抑制する方法
JPWO2015015816A1 (ja) 繊維芽細胞賦活剤
KR20150063006A (ko) 난각막 성분을 포함한 인슐린 저항성 개선제 및 그것을 이용한 조성물
WO2009144977A1 (ja) 経口育毛用組成物
JPWO2015015815A1 (ja) 繊維芽細胞賦活剤
EP4311553A1 (en) Method for preparing gynostemma pentaphyllum leaf extract and gynostemma pentaphyllum leaf extract prepared thereby
WO2022085603A1 (ja) 筋量増加、筋力増加、筋量減少抑制又は筋力低下抑制用組成物
JP7161170B2 (ja) 亜鉛トランスポーター発現促進剤
JP6998044B2 (ja) 亜鉛トランスポーター発現促進剤
WO2017130638A1 (ja) アストロサイトのグルコース代謝活性化剤
JP2019099542A (ja) 亜鉛トランスポーター発現促進剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763562

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2019504664

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 3055164

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18763562

Country of ref document: EP

Kind code of ref document: A1