WO2018164175A1 - Adhesive tape for semiconductor processing - Google Patents

Adhesive tape for semiconductor processing Download PDF

Info

Publication number
WO2018164175A1
WO2018164175A1 PCT/JP2018/008737 JP2018008737W WO2018164175A1 WO 2018164175 A1 WO2018164175 A1 WO 2018164175A1 JP 2018008737 W JP2018008737 W JP 2018008737W WO 2018164175 A1 WO2018164175 A1 WO 2018164175A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
adhesive tape
sensitive adhesive
pressure
semiconductor
Prior art date
Application number
PCT/JP2018/008737
Other languages
French (fr)
Japanese (ja)
Inventor
具朗 内山
裕介 五島
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to KR1020197017291A priority Critical patent/KR102267114B1/en
Priority to CN201880005072.1A priority patent/CN110073470B/en
Priority to MYPI2019005133A priority patent/MY197838A/en
Priority to SG11201907365RA priority patent/SG11201907365RA/en
Publication of WO2018164175A1 publication Critical patent/WO2018164175A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/24Plastics; Metallised plastics based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/241Polyolefin, e.g.rubber
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/24Plastics; Metallised plastics based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/241Polyolefin, e.g.rubber
    • C09J7/243Ethylene or propylene polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors

Definitions

  • the present invention relates to a pressure-sensitive adhesive tape for semiconductor processing, more particularly to a pressure-sensitive adhesive tape for semiconductor processing used during processing of a semiconductor wafer, and more particularly to a method for manufacturing a semiconductor chip that is singulated into chips by back grinding of a semiconductor wafer. It is related with the surface protection adhesive tape for semiconductor processing used.
  • a processing process of a semiconductor wafer (hereinafter also referred to as a wafer), after forming a pattern on the wafer surface, so-called back surface grinding / polishing is performed in which the back surface of the wafer is ground and polished to a predetermined thickness.
  • a surface protective adhesive tape is bonded to the wafer surface, and the wafer back surface is ground in that state.
  • the surface protective pressure-sensitive adhesive tape one in which a pressure-sensitive adhesive layer mainly composed of an acrylic polymer is provided on a plastic film such as polyolefin has been proposed (for example, see Patent Document 1).
  • a chip having a thickness of about 200 to 350 ⁇ m is required to be thinned to a thickness of 50 to 100 ⁇ m or less.
  • the wafer on which the circuit pattern is formed is processed thinly in the back grinding process.
  • the thin film wafer after grinding is likely to be bent (hereinafter referred to as warpage) due to the difference in shrinkage between the silicon and the circuit, the protective layer, and the shrinkage of the adhesive tape.
  • warpage As the chip becomes thinner, the rigidity of the wafer itself decreases, which may cause a problem of warping that makes it impossible to carry or process the wafer in the apparatus.
  • the chip is mechanically cut with a diamond blade in the subsequent chip singulation (hereinafter referred to as dicing) process, so the chip is caused by chipping (hereinafter referred to as chipping) generated from the cutting line. May break.
  • Patent Document 2 discloses that the wafer thickness larger than the wafer thickness planned to be finished by dicing from the wafer circuit side to the predetermined position (chip division planned position) before the back surface grinding is larger than the original wafer thickness.
  • a method of dividing a wafer has been proposed in which a groove having a smaller depth is formed, and then the thickness of the groove is reduced to a depth greater than the depth of the groove by backside grinding, and backside grinding and chip formation are performed simultaneously.
  • JP 2001-240842 A Japanese Patent Laid-Open No. 11-40520 JP 2002-192370 A
  • the present invention solves the above-mentioned problems, and even when grinding to a thin film in the processing of semiconductor wafers, particularly back grinding of silicon wafers, etc., it has excellent peelability and excellent interlayer adhesion, and is further defective. It is an object of the present invention to provide an adhesive tape for semiconductor processing that can sufficiently suppress the generation of chips.
  • a pressure-sensitive adhesive tape comprising a base material and a pressure-sensitive adhesive layer provided on one side of the base material, wherein the base material has a multi-layer structure, and at least one layer of the multi-layer structure is composed of 80 masses of a cyclic olefin polymer. % Of layer A, and a layer B containing linear low-density polyethylene or high-density polyethylene separately from the layer A, a pressure-sensitive adhesive tape for semiconductor processing.
  • the density of the said linear low density polyethylene is 0.95 g / cm ⁇ 3 > or less,
  • the adhesive tape for semiconductor processing as described in (1) characterized by the above-mentioned.
  • the pressure-sensitive adhesive tape for semiconductor processing of the present invention has excellent releasability and excellent interlayer adhesion even when ground to a thin film in the processing of semiconductor wafers, especially backside grinding of silicon wafers, etc., and further generates defective chips. It can be sufficiently suppressed.
  • the adhesive tape for semiconductor processing of the present invention is excellent in releasability even if it is ground into a thin film by using it in a semiconductor chip manufacturing method in which chips are separated by back grinding of a semiconductor wafer. The adhesiveness is excellent, and the generation of defective chips can be sufficiently suppressed.
  • FIG. 1 is a schematic cross-sectional view schematically showing an embodiment of the pressure-sensitive adhesive tape for semiconductor processing of the present invention.
  • 2 (a) to 2 (c) are schematic cross-sectional views illustrating the processing steps of a semiconductor wafer using the semiconductor processing adhesive tape of the present invention.
  • FIG. 2 (a) shows the process of peeling the release film from the semiconductor processing adhesive tape to expose the adhesive layer
  • FIG. 2 (b) shows the semiconductor processing adhesive tape affixed to the convex side of the semiconductor wafer.
  • FIG. 2C shows a process of grinding the back surface of the semiconductor wafer.
  • the pressure-sensitive adhesive tape for semiconductor processing of the present invention is a pressure-sensitive adhesive tape comprising a base material and a pressure-sensitive adhesive layer provided on one side of the base material, and the base material has a multi-layer structure. At least one layer is a layer A containing 80% by mass or more of a cyclic olefin polymer, and has a layer B containing linear low density polyethylene or high density polyethylene separately from this layer A.
  • the preferable form of the adhesive tape for semiconductor processing of this invention is demonstrated below.
  • the adhesive tape 1 for semiconductor processing of the present invention is a tape in which an adhesive layer 3 is laminated on a substrate 2 and both layers are integrated as shown in FIG.
  • the semiconductor processing pressure-sensitive adhesive tape 1 may further include a release film 4 on the pressure-sensitive adhesive layer 3 for protecting the pressure-sensitive adhesive layer 3.
  • the pressure-sensitive adhesive tape 1 for semiconductor processing according to the present invention may be formed by rolling a laminate of the base material 2, the pressure-sensitive adhesive layer 3 and the release film 4 into a roll shape.
  • the substrate 2 of the adhesive tape 1 for semiconductor processing of the present invention has a multilayer structure. At least one layer of this multilayer structure is a layer A containing a cyclic olefin polymer (hereinafter referred to as “COP”). Separately from this layer A, as at least one layer of the multilayer structure, A layer B containing low-density polyethylene or high-density polyethylene.
  • COP cyclic olefin polymer
  • COP means a ring-opening polymer of a cyclic olefin, a hydrogenated product thereof, or an addition polymer of a cyclic olefin, and is called a cyclic olefin copolymer (hereinafter referred to as “COC”) Also included are addition copolymers with chain olefins.
  • the cyclic olefin as a monomer is a cyclic alkene or alkyne, and may be any compound that can form a polymer by ring-opening polymerization or addition polymerization.
  • the number of carbon atoms is preferably 4-12.
  • the cyclic olefin may contain a bicyclic olefin, and may further contain a monocyclic olefin and / or a tricyclic or higher polycyclic olefin.
  • Examples of the monocyclic olefin include cyclic cycloolefins having 4 to 12 carbon atoms such as cyclobutene, cyclopentene, cycloheptene, and cyclooctene.
  • Examples of the bicyclic olefin or the tricyclic or higher polycyclic olefin include dicyclopentadiene; 2,3-dihydrodicyclopentadiene, methanooctahydrofluorene, dimethanooctahydronaphthalene, dimethanocyclopentadienonaphthalene, Derivatives such as methanooctahydrocyclopentadienonaphthalene; derivatives having substituents such as 6-ethyl-octahydronaphthalene; adducts of cyclopentadiene and tetrahydroindene and the like, tripentamers of cyclopentadiene, norbornene, and Examples include tetracyclododecene, and norbornene and tetracyclododecene are preferable.
  • the chain olefin may be a chain-like alkene or alkyne that can form a polymer by addition polymerization with a cyclic olefin.
  • the number of carbon atoms is preferably 2 to 10, more preferably 2 to 8, and further preferably 2 to 4. Specifically, it has 2 to 10 carbon atoms such as ethylene, propylene, 1-butene, isobutene, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene and 1-octene. Examples thereof include chain olefins. These chain olefins can be used alone or in combination of two or more, and ethylene is particularly preferable.
  • the content of COP is 80% by mass or more, and preferably 90% by mass or more. There is no restriction
  • the COP content is the COC content.
  • Specific examples of the COP include “ZEONOR” manufactured by Nippon Zeon Co., Ltd. and “Topas” manufactured by Polyplastics Co., Ltd.
  • the homopolymer of cyclic olefin is an amorphous resin, has a hard and brittle property, and requires high-temperature treatment when molding a sheet or film.
  • COC is a copolymer of cyclic olefin and ethylene, it has flexibility and ductility.
  • COC which has various characteristics is obtained by adjusting a polymerization ratio (content ratio).
  • the ethylene component content is preferably 30 to 40% by mass, more preferably 35 to 40% by mass.
  • ethylene component content When there is too little ethylene component content, a base material will be very weak and there exists a possibility that the adhesive tape for semiconductor processing may fracture
  • the property of an ethylene component will become strong and there exists a possibility that sufficient rigidity may not be obtained.
  • the substrate 2 is a layer different from the layer A containing COP, and is a linear low-density polyethylene (hereinafter referred to as “LLDPE”) or high-density polyethylene (having good adhesion to the layer A).
  • LLDPE linear low-density polyethylene
  • HDPE high-density polyethylene
  • LDPE low density polyethylene
  • the peelability may be insufficient, or peeling may occur between layers during processing of a semiconductor wafer as an adherend, and the wafer may be damaged.
  • LLDPE and HDPE may be a copolymer of ethylene and ⁇ -olefin.
  • ⁇ -olefin those having 3 to 10 carbon atoms are preferable, and propylene, butene-1, pentene-1, hexene-1, 4-methylpentene-1, heptene-1, octene-1, and the like are preferable.
  • the content of the ethylene component is preferably 95 to 99% by mass and more preferably 96 to 98% by mass in all the constituent components of the copolymer.
  • the content of LLDPE and HDPE is preferably 50% by mass or more, and more preferably 80% by mass or more. There is no restriction
  • LLDPE and HDPE are a copolymer of ethylene and ⁇ -olefin
  • the content of LLDPE and HDPE is the content of a copolymer of ethylene and ⁇ -olefin.
  • the density of LLDPE is preferably from 0.95 g / cm 3 or less, more preferably 0.94 g / cm 3 or less, more preferably 0.93 g / cm 3 or less.
  • the lower limit is practically 0.89 g / cm 3 or more.
  • the melt flow rate (MFR) of LLDPE is preferably 4.0 g / 10 min or less, more preferably 2.0 g / 10 min or less, and even more preferably 1.0 g / 10 min or less.
  • the lower limit is practically 0.5 g / 10 min or more.
  • the density of HDPE is preferably 0.97 g / cm 3 or less, and more preferably 0.96 g / cm 3 or less.
  • the lower limit is practically 0.5 g / cm 3 or more.
  • HDPE has an MFR (melt flow rate) of preferably 6.0 g / 10 min or less, and more preferably 5.0 g / 10 min or less. The lower limit is practically 0.5 g / 10 min or more.
  • MFR is a value at a temperature of 190 ° C. and a load of 21.18 N, and the density and MFR can be measured by the method described in the examples.
  • metallocene polyethylene is particularly preferable from the viewpoint of adhesion to the layer A containing COC.
  • metallocene polyethylene means an ethylene-based polyolefin obtained by using a metallocene catalyst (hereinafter sometimes referred to as “metallocene-catalyzed ethylene-based polyolefin”), and ethylene, or ethylene and ⁇ -olefin. Is obtained by polymerizing in the presence of a metallocene catalyst.
  • the ethylene-based polyolefin obtained using the metallocene catalyst includes polyethylene obtained by conducting a polymerization reaction in the presence of the metallocene catalyst, and a copolymer of ethylene and an ⁇ -olefin.
  • the metallocene catalyst is a general term for a metallocene, that is, a catalyst comprising a transition metal component composed of a complex composed of two substituted or unsubstituted cyclopentadienyl rings and various transition metals, and an organoaluminum component, particularly an aluminoxane. It is.
  • the transition metal component include metals of groups IVb, Vb or VIb of the periodic table, particularly zirconium or hafnium.
  • the transition metal component in the catalyst is generally represented by the following formula (Cp) 2 MR 2 (Wherein Cp is a substituted or unsubstituted cyclopentadienyl ring, M is a transition metal, and R is a halogen atom or an alkyl group) is generally used. .
  • the aluminoxane is obtained by reacting an organoaluminum compound with water, and includes a linear aluminoxane and a cyclic aluminoxane. These aluminoxanes can be used alone or in combination with other organic aluminum.
  • a method for polymerizing ethylene or ethylene and ⁇ -olefin using a metallocene catalyst is known in many publications, and is synthesized by polymerization in an organic solvent, in a liquid monomer or in a gas phase method in the presence of the metallocene catalyst.
  • any of these known methods satisfying the above conditions can be used for the purpose of the present invention.
  • the specific ⁇ -olefin and the content of the ethylene component in all the constituent components of the copolymer are the copolymer of ethylene and the ⁇ -olefin in the LLDPE.
  • the description in can be preferably applied.
  • the metallocene-catalyzed ethylene-based polyolefin is characterized by a narrow molecular weight distribution.
  • the polydispersity mass average molecular weight Mw / number average molecular weight Mn
  • Mw number average molecular weight
  • Mn index of molecular weight distribution
  • the metallocene-catalyzed ethylene-based polyolefin usually has a density of 0.89 to 0.95 g / cm 3 , preferably about 0.91 to 0.93 g / cm 3 and an MFR of 0.1 to 10 g / cm 3. 10 minutes, preferably about 0.3 to 5 g / 10 minutes.
  • the presence of the metallocene-catalyzed ethylene-based polyolefin in layer B can be confirmed by the following method. That is, the layer B is cut into a glass having a thickness of 100 ⁇ m to form a sample, which is laid on a scanning electron microscope SEM and measured with an analyzer that distributes the generated fluorescent X-rays. Zr (zirconium) or Hf (hafnium) The presence of a peak corresponding to the energy of.
  • a synthetic product can be used, but it can also be selected from commercially available products.
  • Commercially available products include Umerit (registered trademark) manufactured by Ube Maruzen Polyethylene Co., Ltd., Excellen (registered trademark) manufactured by Sumitomo Chemical Co., Ltd., Harmolex (registered trademark) manufactured by Nippon Polyethylene Co., Ltd., and Kernel (registered trademark). .
  • the melting point of the resin is preferably 60 ° C. or higher.
  • Each resin may be used alone as a layer constituting the substrate 2 or may be used by blending resins in combination.
  • the layer which comprises the base material 2 may contain additives, such as a coloring agent, antioxidant, and antistatic agent, in the range which does not affect a physical property as needed other than the said resin. .
  • the thickness of the substrate 2 is not particularly limited, but is preferably 50 to 200 ⁇ m, and more preferably 80 to 180 ⁇ m.
  • the thickness of the layer A is preferably 20 to 100 ⁇ m and more preferably 30 to 60 ⁇ m from the viewpoint of rigidity.
  • the thickness of the layer B is preferably 10 to 100 ⁇ m and more preferably 20 to 80 ⁇ m from the viewpoint of flexibility.
  • the layer structure of the substrate 2 is not particularly limited as long as it has a multilayer structure including at least one layer A and one layer B, but the layer structure in which the layer A and the layer B are laminated adjacent to each other.
  • the layer B 1 / layer a / layer B 2 is 3 or more layers structure is more preferable are laminated in this order, more preferably 3-layer structure in which a layer B 1 / layer a / layer B 2 are laminated in this order .
  • the layer B 1 and the layer B 2 mean the layer B, and may be the same layer or different layers.
  • the surface of the substrate 2 on the side where the pressure-sensitive adhesive layer 3 is provided may be appropriately subjected to a treatment such as a corona treatment or a primer layer in order to improve the adhesion with the pressure-sensitive adhesive layer 3.
  • the method for manufacturing the substrate 2 is not particularly limited. It can be produced by information such as extrusion, inflation and casting. Moreover, the film formed independently and another film can be bonded together with an adhesive etc., and it can also be set as the base material 2.
  • the pressure-sensitive adhesive layer 3 of the semiconductor processing pressure-sensitive adhesive tape 1 of the present invention may be a layer containing a pressure-sensitive adhesive, and is formed using, for example, a pressure-sensitive adhesive composition.
  • This pressure-sensitive adhesive composition is not particularly limited, and examples thereof include a composition containing a normal pressure-sensitive adhesive such as acrylic, rubber, and silicone.
  • An acrylic pressure-sensitive adhesive is preferably used from the viewpoint of weather resistance and price.
  • the acrylic pressure-sensitive adhesive examples include a copolymer having a (meth) acrylic acid ester as a constituent component (hereinafter referred to as “(meth) acrylic acid ester copolymer”). Moreover, you may contain the hardening
  • the (meth) acrylic monomer includes both an acrylic monomer and a methacrylic monomer.
  • Examples of the (meth) acrylic acid ester that is a constituent of the (meth) acrylic acid ester copolymer include methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, isobutyl, amyl, isoamyl, Hexyl, heptyl, cyclohexyl, 2-ethylhexyl, octyl, isooctyl, nonyl, isononyl, decyl, isodecyl, undecyl, lauryl, tridecyl, tetradecyl, stearyl, octadecyl, dodecyl and the like, preferably 4 to 18 carbon atoms And alkyl acrylate or alkyl methacrylate having a linear or branched alkyl group.
  • alkyl (meth) acrylates may be used alone or in combination of two or more.
  • the content of the (meth) acrylic acid ester component is preferably 80% by mass or more, more preferably 90% by mass or more, and more preferably 95 to 99.9% by mass. .
  • the (meth) acrylic acid ester copolymer may contain components other than the (meth) acrylic acid ester.
  • Other components include, for example, (meth) acrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, and carboxyl group-containing monomers such as crotonic acid, maleic anhydride Acid anhydride monomers such as acid and itaconic anhydride, hydroxyl group-containing monomers such as hydroxyalkyl (meth) acrylate (preferably those in which the alkyl (meth) acrylate is substituted with a hydroxy group), styrene sulfonic acid, allyl sulfone Sulfonic acid group-containing mono-acids such as acid, 2- (meth) acrylamide-2-methylpropanesulfonic acid, (meth) acrylamidepropanesulfonic acid, sulfopropy
  • the content of the (meth) acrylic copolymer is preferably 80% by mass or more, 90% by mass or more is more preferable, and 95 to 99.9% by mass is more preferable.
  • a curing agent described in JP 2007-146104 A can be used.
  • Epoxy compounds having two or more epoxy groups in the molecule such as benzene, N, N, N, N′-tetraglycidyl-m-xylenediamine, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate , 1,3-xylylene diisocyanate, 1,4-xylene diisocyanate, diphenylmethane-4,4′-diisocyanate, etc.
  • an isocyanate compound having two or more isocyanate groups in the molecule tetramethylol-tri- ⁇ -aziridini Lupropionat
  • the content of the curing agent may be adjusted according to the desired adhesive strength, and is preferably 0.01 to 10 parts by weight, preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the (meth) acrylic acid ester copolymer. 5 parts by mass is more preferable.
  • the pressure-sensitive adhesive layer 3 is preferably composed of a radiation curable pressure-sensitive adhesive containing a photopolymerizable compound and a photopolymerization initiator in addition to the above pressure-sensitive adhesive.
  • a radiation curable pressure-sensitive adhesive containing a photopolymerizable compound and a photopolymerization initiator
  • it can be cured by irradiation with radiation (preferably ultraviolet rays), and the adhesive strength of the adhesive layer 3 can be reduced.
  • radiation preferably ultraviolet rays
  • Examples of such a photopolymerizable compound include those described in JP-A-60-196956 and JP-A-60-223139, which have a photopolymerizable carbon in a molecule that can be three-dimensionally reticulated by light irradiation.
  • a low molecular weight compound having at least two carbon double bonds or an oligomer obtained by polymerizing them can be used.
  • photopolymerizable compound examples include trimethylolpropane tri (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, and dipentaerythritol monohydroxy.
  • the photopolymerization initiators described in JP2007-146104A or JP2004-186429A can be used. Specifically, isopropyl benzoin ether, isobutyl benzoin ether, benzophenone, Michler's ketone, chlorothioxanthone, benzylmethyl ketal, ⁇ -hydroxycyclohexyl phenyl ketone, 2-hydroxymethylphenylpropane, and the like can be used.
  • a copolymer having (meth) acrylic acid ester as a constituent component, wherein the repeating unit constituting the copolymer has a radiation-polymerizable carbon-carbon double bond hereinafter referred to as “a”. It is also preferable to use “radiation polymerizable (meth) acrylic copolymer”.
  • the radiation-polymerizable (meth) acrylic copolymer is a copolymer having a reactive group capable of undergoing a polymerization reaction upon irradiation with radiation, particularly ultraviolet rays, in the copolymer molecule.
  • a reactive group is an ethylenically unsaturated group, that is, a group having a carbon-carbon double bond (ethylenically unsaturated bond), such as vinyl group, allyl group, styryl group, (meth) acryloyloxy. Group, (meth) acryloylamino group and the like.
  • the radiation polymerizable (meth) acrylic copolymer is not particularly limited.
  • a (meth) acrylic copolymer obtained by reacting a compound having a polymerizable carbon-carbon double bond (hereinafter referred to as “radiation polymerizable compound having a functional group b”) can be given.
  • Examples of the (meth) acrylic copolymer having a carbon-carbon double bond include the same materials as those described in paragraphs [0036] to [0055] of JP-A-2014-192204. be able to.
  • the functional group b includes a carboxyl group, a hydroxyl group, an amino group, a cyclic acid anhydride group, an epoxy group, an isocyanate group, and the like.
  • the radiation polymerizable compound having a functional group b include acrylic acid, methacrylic acid, cinnamic acid, itaconic acid, fumaric acid, phthalic acid, 2-hydroxyalkyl acrylates, 2-hydroxyalkyl methacrylates, Glycol monoacrylates, glycol monomethacrylates, N-methylolacrylamide, N-methylolmethacrylamide, allyl alcohol, N-alkylaminoethyl acrylates, N-alkylaminoethyl methacrylates, acrylamides, methacrylamides, maleic anhydride Itaconic anhydride, fumaric anhydride, phthalic anhydride, glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether, hydroxyl group or a part of the isocyanate group of the polyisocyanate compound Carboxyl group and a radiation-polymerizable carbon - can enum
  • the acid value and the hydroxyl value can be determined. Can be set as appropriate.
  • the radiation-polymerizable (meth) acrylic copolymer can be obtained by solution polymerization in various solvents.
  • the organic solvent in the case of solution polymerization, a ketone, ester, alcohol, or aromatic solvent can be used. In general, it is preferable to use a good solvent for an acrylic polymer and a solvent having a boiling point of 60 to 120 ° C.
  • toluene, ethyl acetate, isopropyl alcohol, benzene, methyl cellosolve, ethyl cellosolve, acetone, methyl ethyl ketone, and the like can be used.
  • radical generators such as azobis compounds such as ⁇ , ⁇ ′-azobisisobutylnitrile and organic peroxide compounds such as benzoyl peroxide can be used.
  • a catalyst and a polymerization inhibitor can be used in combination, and a copolymer having a desired molecular weight can be obtained by adjusting the polymerization temperature and the polymerization time.
  • the synthesis method is not limited to solution polymerization, and other methods such as bulk polymerization and suspension polymerization may be used.
  • the pressure-sensitive adhesive composition constituting the pressure-sensitive adhesive layer 3 may contain a release agent, a tackifier, a tackifier, a surfactant, or other modifiers as necessary.
  • you may contain an inorganic compound filler.
  • the pressure-sensitive adhesive layer 3 can be formed by applying the pressure-sensitive adhesive composition onto the release film 4, drying it, and transferring it to the substrate 2.
  • the thickness of the pressure-sensitive adhesive layer 3 is preferably 10 to 60 ⁇ m, more preferably 20 to 50 ⁇ m. If it is too thick, the semiconductor wafer 5 will be peeled off after the adhesive tape 1 for semiconductor processing has been peeled off due to excessive adhesion to the surface of the semiconductor wafer 5 (see FIG. 2) and embedding in the convex portion 51 (see FIG. 2) of the surface of the semiconductor wafer 5. There is a risk of adhesive residue on the surface. By setting it to the upper limit value or less, excessive adhesion of the pressure-sensitive adhesive can be suppressed.
  • the pressure-sensitive adhesive layer 3 cannot follow the convex portion 51 on the surface of the semiconductor wafer 5, and grinding water containing silicon grinding waste enters through the gap between the semiconductor processing pressure-sensitive adhesive tape 1 and the semiconductor wafer 5. 5 may contaminate the circuit surface of 5 and cause so-called seapage.
  • the release film 4 is also called a separator, a release layer, or a release liner, and is provided as necessary for the purpose of protecting the radiation curable pressure-sensitive adhesive layer and for the purpose of smoothing the radiation curable pressure-sensitive adhesive layer. It is done.
  • the constituent material of the release film 4 include synthetic resin films such as polyethylene, polypropylene, and polyethylene terephthalate, and paper.
  • the surface of the release film 4 may be subjected to release treatment such as silicone treatment, long-chain alkyl treatment, and fluorine treatment as necessary in order to enhance the peelability from the pressure-sensitive adhesive layer 3.
  • the ultraviolet-ray prevention process may be performed as needed.
  • the thickness of the release film 4 is usually 10 to 50 ⁇ m, preferably 25 to 38 ⁇ m.
  • the pressure-sensitive adhesive tape for semiconductor processing of the present invention is a semiconductor wafer (hereinafter referred to as “semiconductor wafer A”) in which a modified layer is formed inside a semiconductor wafer by irradiating a laser along a region where each chip is to be separated.
  • a semiconductor wafer hereinafter referred to as “semiconductor wafer B” in which a groove is formed by mechanical means along a region where each chip is to be singulated is divided into chips by grinding the back surface of the semiconductor wafer. It is preferably used for manufacturing a semiconductor chip to be (divided).
  • the “back surface of the semiconductor wafer” means a surface of the semiconductor wafer that is located on the opposite side of the pattern surface on the surface of which the circuit of the semiconductor element is formed.
  • the pattern surface is a modified layer forming surface in the semiconductor wafer A and a groove forming surface in the semiconductor wafer B.
  • “Scheduled area of each chip” means a scribe line of a wafer.
  • “divided into chips” means a state where semiconductor chips are separated from a semiconductor wafer, and the separated semiconductor chips are bonded onto the adhesive tape for semiconductor processing of the present invention. Including the state.
  • the semiconductor wafer A is a semiconductor wafer in which a modified layer is formed inside the semiconductor wafer by irradiating a laser along a region to be singulated of each chip.
  • a modified layer is formed inside the semiconductor wafer by irradiating a laser along a region to be singulated of each chip.
  • the semiconductor wafer 5 is than or equal the thickness T A and the thickness T A
  • the thickness T A is not particularly limited as long as less than the thickness of back grinding the semiconductor wafer before, it is it is practical than the final thickness of the wafer greater the 20 ⁇ 30 [mu] m.
  • This method is a method that combines stealth dicing and tip dicing, and is also called a chip singulation method corresponding to a narrow scribe width.
  • the modified layer of silicon semiconductor wafer
  • the semiconductor wafer B is a semiconductor wafer in which a groove is formed by mechanical means along a region to be singulated of each chip.
  • the semiconductor wafer 5 is equal to or above the aforementioned thickness T B by grinding to be thinner than the thickness T B, it is possible to perform thinning of the semiconductor wafer 5 and the pieces of the semiconductor chips at the same time.
  • the thickness T B is not particularly limited as long as less than the thickness of back grinding the semiconductor wafer before it is is practical than the final thickness of the wafer greater the 20 ⁇ 30 [mu] m. This method is called a DBG (first dicing) method.
  • the semiconductor chip manufacturing method (semiconductor wafer processing method) using the semiconductor processing adhesive tape of the present invention will be described with reference to FIG.
  • the adhesive tape 1 for semiconductor processing of this invention has the peeling film 4 on the adhesive layer 3, the peeling film 4 is peeled off and the adhesive layer 3 is exposed, and the base material 2 and the adhesive layer 3 are laminated
  • the semiconductor processing adhesive tape 1 is used (see FIG. 2A).
  • the adhesive tape 1 for semiconductor processing of the present invention is bonded to a semiconductor wafer 5 so that the convex portion 51 of the semiconductor wafer 5 and the adhesive layer 3 are in contact with each other, and the convex portion 51 is covered with the adhesive tape 1 for semiconductor processing of the present invention.
  • Obtained semiconductor wafer 5 is obtained (see FIG. 2B).
  • the convex portion 51 means a portion that can constitute a semiconductor chip when separated into pieces in a semiconductor wafer, and usually has a pattern surface on which a circuit of a semiconductor element or the like is formed.
  • the back surface of the semiconductor wafer 5 is ground by the polishing machine 7 to reduce the thickness of the semiconductor wafer 5 (see FIG. 2C), and finally is separated into semiconductor chips having a pattern surface.
  • the separated semiconductor chip is picked up from the semiconductor processing pressure-sensitive adhesive tape 1 of the present invention by a conventional method such as peeling with a peeling tape while adsorbed on the chuck table.
  • the pressure-sensitive adhesive layer 3 is an ultraviolet curable type, the pressure-sensitive adhesive layer 3 is easily peeled off from the separated semiconductor chip by reducing the adhesive force of the pressure-sensitive adhesive layer 3 by ultraviolet irradiation. It becomes possible.
  • Example 1> Preparation of pressure-sensitive adhesive composition 80 parts by mass of 2-ethylhexyl acrylate as an acrylate monomer, 20 parts by mass of 2-hydroxyethyl acrylate as an acrylate monomer having a functional group, and 1 part by mass of methyl methacrylate as constituent components (meth) acrylic
  • the polymer is reacted with 3 parts by mass of 2-isocyanatoethyl methacrylate having an ultraviolet-polymerizable carbon-carbon double bond in the molecule and an isocyanate group that reacts with a hydroxyl group, thereby producing an ultraviolet-polymerizable carbon-carbon double bond.
  • a (meth) acrylic copolymer having the following was obtained.
  • this copolymer For 100 parts by mass of this copolymer, 0.9 part by mass of an isocyanate compound (trade name: Coronate L, manufactured by Nippon Polyurethane Industry Co., Ltd.) as a crosslinking agent, and a photopolymerization initiator (trade name: Irgacure 184, manufactured by BASF) 5.0 parts by mass was mixed to obtain an ultraviolet curable pressure-sensitive adhesive composition.
  • an isocyanate compound trade name: Coronate L, manufactured by Nippon Polyurethane Industry Co., Ltd.
  • a photopolymerization initiator trade name: Irgacure 184, manufactured by BASF
  • base material having a total thickness of 100 ⁇ m, prepared by an extrusion method, in which 25 ⁇ m of LLDPE (linear low density polyethylene, metallocene catalyst polymer), 50 ⁇ m of COP (cyclic olefin polymer), and 25 ⁇ m of LLDPE were laminated in this order. Obtained.
  • LLDPE linear low density polyethylene, metallocene catalyst polymer
  • COP cyclic olefin polymer
  • the semiconductor processing pressure-sensitive adhesive tape 1 has a structure in which a base film 2, a pressure-sensitive adhesive layer 3, and a release film 4 are laminated in this order.
  • the substrate film 2 includes sequentially from the pressure-sensitive adhesive layer 3 side, the layer B 1, a layer A, a structure in which the layer B 2 are laminated in this order.
  • Example 2 A semiconductor processing pressure-sensitive adhesive tape according to Example 2 was obtained in the same manner as in Example 1 except that LLDPE was changed to LLDPE (metallocene catalyst polymer) having an MFR of 4 g / 10 min.
  • LLDPE metalocene catalyst polymer
  • Example 3 A pressure-sensitive adhesive tape for semiconductor processing according to Example 3 was obtained in the same manner as in Example 2 except that the thickness of the substrate was changed to 150 ⁇ m in total thickness of LLDPE 35 ⁇ m, COP 80 ⁇ m, and LLDPE 35 ⁇ m.
  • Example 4 LLDPE was changed to HDPE with MFR of 7.0 g / 10 min and density of 0.964 g / cm 3 , except that COP was changed to COP with ethylene content of 35% by mass and MFR of 2.0 g / 10 min.
  • a semiconductor processing pressure-sensitive adhesive tape according to Example 4 was obtained in the same manner as in Example 1.
  • Example 5 Adhesion for semiconductor processing according to Example 5 except that LLDPE was changed to LLDPE (metallocene catalyst polymer) having an MFR of 2.0 g / 10 min and a density of 0.918 g / cm 3. I got a tape.
  • LLDPE metalocene catalyst polymer
  • Example 6 Example 1 except that LLDPE was changed to LLDPE with MFR of 4.0 g / 10 min and density of 0.944 g / cm 3 , and the thickness of the base material was changed to LLDPE of 16 ⁇ m, COP of 48 ⁇ m, and LLDPE of 16 ⁇ m, total thickness of 80 ⁇ m.
  • the adhesive tape for semiconductor processing which concerns on Example 6 was obtained.
  • Comparative Example 1 A pressure-sensitive adhesive tape for semiconductor processing according to Comparative Example 1 was obtained in the same manner as in Example 1 except that LLDPE was changed to LDPE having an MFR of 3.1 g / 10 min and a density of 0.925 g / cm 3 .
  • Comparative Example 2 A pressure-sensitive adhesive tape for semiconductor processing according to Comparative Example 2 was obtained in the same manner as in Comparative Example 1 except that the COP was changed to a COP having an ethylene content of 35% by mass and an MFR of 2.0 g / 10 min.
  • a film having a length of 1300 mm, a width of 25 mm, and a thickness of 100 ⁇ m was prepared using the resin constituting the layers B 1 and B 2 and the resin constituting the layer A, respectively.
  • An area of 25 mm ⁇ 10 mm of the two types of produced films was overlapped and thermocompression bonded at 220 ° C. for 5 seconds to form a joint.
  • the peel strength when peeled at a speed of 300 mm / min and a peel angle of 180 ° was measured with a strograph (manufactured by Toyo Seiki).
  • the peel strength of 5N or more was evaluated as “ ⁇ ”, and the peel strength of less than 5N was evaluated as “x”.
  • each tape of the adhesive tape for semiconductor processing according to Examples and Comparative Examples is bonded to a 8-inch dummy wafer having a smooth surface, and the wafer is bonded using a disco grinder DGP8760 (trade name). Grinding to a thickness of 50 ⁇ m. After grinding, the tape side was heated to 70 ° C. with the hot plate so as to be in contact with the hot plate, and “ ⁇ ” was evaluated when there was no change in appearance, and “X” when there was a change.
  • the adhesive tape for semiconductor processing (hereinafter referred to as “adhesive tape”) produced above was bonded to an 8-inch dummy wafer, and the wafer was ground to a thickness of 50 ⁇ m using a disco grinder DGP8760 (trade name). . After grinding, using a high-pressure mercury lamp from the adhesive tape side, irradiate ultraviolet rays with an integrated irradiation amount of 500 mJ / cm 2 to cure the adhesive layer and reduce the adhesive force, then with the adhesive tape surface facing up It was adsorbed on the chuck table, and the adhesive tape was peeled off using a peeling tape (manufactured by Nitto Denko Corporation). What was peeled off at the interface between the wafer and the pressure-sensitive adhesive layer was evaluated as “ ⁇ ”, and those that could not be peeled off or peeled off at other locations were evaluated as “x”.
  • Examples 1 to 6 which are adhesive tapes for semiconductor processing specified in the present invention, showed good results in all of heat resistance, peelability, interlayer adhesion, and suppression of crack generation.
  • the adhesive tape for semiconductor processing of Comparative Examples 1 and 2 was inferior in peelability and interlayer adhesion
  • the adhesive tape for semiconductor processing in Comparative Example 3 was inferior in interlayer adhesion.

Abstract

An adhesive tape for semiconductor processing, which is composed of a substrate and an adhesive layer that is provided on one surface of the substrate, and which is characterized in that: the substrate has a multilayer structure; at least one layer of the multilayer structure is a layer A that contains 80% by mass or more of a cyclic olefin polymer; and the multilayer structure comprises, in addition to the layer A, a layer B that contains a linear low-density polyethylene or a high-density polyethylene.

Description

半導体加工用粘着テープAdhesive tape for semiconductor processing
 本発明は、半導体加工用粘着テープに関し、詳しくは半導体ウェハ加工時に使用される半導体加工用粘着テープに関し、更に詳しくは半導体ウェハの裏面研削によりチップへ個片化する半導体チップの製造方法に好適に用いられる半導体加工用表面保護粘着テープに関する。 The present invention relates to a pressure-sensitive adhesive tape for semiconductor processing, more particularly to a pressure-sensitive adhesive tape for semiconductor processing used during processing of a semiconductor wafer, and more particularly to a method for manufacturing a semiconductor chip that is singulated into chips by back grinding of a semiconductor wafer. It is related with the surface protection adhesive tape for semiconductor processing used.
 半導体ウェハ(以下、ウェハとも称す。)の加工工程において、ウェハ表面にパターンを形成した後、ウェハ裏面を所定の厚さまで研削・研磨するいわゆる裏面研削・研磨が行なわれる。その際、ウェハ表面を保護する目的で、ウェハ表面に表面保護粘着テープを貼り合わせ、その状態でウェハ裏面が研削される。表面保護粘着テープとしては、ポリオレフィンなどのプラスチックフィルム上に、アクリルポリマーを主成分とする粘着剤層が設けられたものが提案されている(例えば、特許文献1参照)。 In a processing process of a semiconductor wafer (hereinafter also referred to as a wafer), after forming a pattern on the wafer surface, so-called back surface grinding / polishing is performed in which the back surface of the wafer is ground and polished to a predetermined thickness. At that time, for the purpose of protecting the wafer surface, a surface protective adhesive tape is bonded to the wafer surface, and the wafer back surface is ground in that state. As the surface protective pressure-sensitive adhesive tape, one in which a pressure-sensitive adhesive layer mainly composed of an acrylic polymer is provided on a plastic film such as polyolefin has been proposed (for example, see Patent Document 1).
 他方、ICカードの普及、USBメモリに代表される半導体メモリの急激な容量アップへの対応、スマートフォンやタブレットといった小型デバイスの普及により、チップにはさらなる薄膜化が求められている。例えば、従来は厚さ200~350μm程度であったチップに対し、厚さ50~100μm、あるいはそれ以下の厚さへの薄膜化が要求されている。 On the other hand, with the spread of IC cards, the rapid increase in capacity of semiconductor memories represented by USB memories, and the spread of small devices such as smartphones and tablets, further thinning of the chips is required. For example, a chip having a thickness of about 200 to 350 μm is required to be thinned to a thickness of 50 to 100 μm or less.
 通常、回路パターンを形成したウェハは裏面研削工程にて薄く加工される。研削後の薄膜状ウェハは、シリコンと回路、保護層の収縮率の差および粘着テープの収縮によってウェハの湾曲(以下、反りと呼称)が発生しやすい。チップが薄膜化するほど、ウェハ自体の剛性が減少するため、装置内でのウェハ搬送や加工が不可能になるような反りが発生するといった問題点が生じ得る。 Usually, the wafer on which the circuit pattern is formed is processed thinly in the back grinding process. The thin film wafer after grinding is likely to be bent (hereinafter referred to as warpage) due to the difference in shrinkage between the silicon and the circuit, the protective layer, and the shrinkage of the adhesive tape. As the chip becomes thinner, the rigidity of the wafer itself decreases, which may cause a problem of warping that makes it impossible to carry or process the wafer in the apparatus.
 また、裏面研削後のウェハは、仕上げ厚が100μm以下になるとウェハの強度が低下し、僅かな衝撃や欠点を起点にして割れが発生し、歩留まりが下がる可能性がある。また、裏面研削で割れが発生しなくとも、続くチップ個片化(以下、ダイシング)工程ではダイヤモンドブレードで機械的に切断されるため、切断ラインから発生する欠け(以下、チッピング)を起因としてチップが割れてしまうこともある。 In addition, when the finished thickness of the wafer after back grinding is 100 μm or less, the strength of the wafer decreases, cracks may occur starting from slight impacts and defects, and the yield may decrease. Even if cracks do not occur during backside grinding, the chip is mechanically cut with a diamond blade in the subsequent chip singulation (hereinafter referred to as dicing) process, so the chip is caused by chipping (hereinafter referred to as chipping) generated from the cutting line. May break.
 上記のような薄膜ウェハの加工に関して、例えば特許文献2には、裏面研削前にウェハ回路側から所定の位置(チップ分割予定位置)にダイシングにより仕上げ予定のウェハ厚より大きく、元のウェハ厚よりも小さい深さの溝を形成したのち、裏面研削によって溝の深さ以上に薄膜化し、裏面研削とチップ化を同時に行うウェーハの分割方法が提案されている。 Regarding the processing of the thin film wafer as described above, for example, Patent Document 2 discloses that the wafer thickness larger than the wafer thickness planned to be finished by dicing from the wafer circuit side to the predetermined position (chip division planned position) before the back surface grinding is larger than the original wafer thickness. A method of dividing a wafer has been proposed in which a groove having a smaller depth is formed, and then the thickness of the groove is reduced to a depth greater than the depth of the groove by backside grinding, and backside grinding and chip formation are performed simultaneously.
 また、上記に似た方法として、例えば特許文献3には、チップ分割予定位置にレーザー照射を行い、溝の代わりにウェハ内部に改質層を形成し、裏面研削時に改質層を起点として分割・チップ化を行うレーザ加工方法も提案されている。この方法を用いると、従来のような溝が存在しないためにチップ間距離をほぼ0にでき、一枚のウェハからより多くのチップを得ることができる。また、ダイヤモンドブレードによる切断の衝撃がないため、チッピングも無くすことが可能となる。 As a method similar to the above, for example, in Patent Document 3, laser irradiation is performed at a chip division planned position, a modified layer is formed inside the wafer instead of a groove, and the modified layer is divided as a starting point during backside grinding.・ Laser processing methods for chip formation have also been proposed. When this method is used, since there is no conventional groove, the distance between the chips can be made almost zero, and more chips can be obtained from one wafer. Further, since there is no impact of cutting with a diamond blade, chipping can be eliminated.
特開2001-240842号公報JP 2001-240842 A 特開平11-40520号公報Japanese Patent Laid-Open No. 11-40520 特開2002-192370号公報JP 2002-192370 A
 一方で、上記特許文献3記載の方法では、レーザーで改質層を形成しているためチップ間距離がほぼ0であり、表面保護テープの変形や裏面研削時のせん断力等の外的要因によってチップがずれると、隣接するチップと容易に接触してその部分からクラックが発生しやすいという問題点が生じる。
 また、本発明者らは鋭意検討した結果、テープの基材として特定の層を有する複層構造からなる基材を用いた場合には、複層構造を構成する層同士での密着性が重要となり、この層間密着性が十分でないと、剥離性が低下したり、被着体である半導体ウェハの加工中に層間で剥離が発生し、ウェハが破損したりすることが分かってきた。
On the other hand, in the method described in Patent Document 3, since the modified layer is formed by a laser, the distance between the chips is almost zero, and due to external factors such as deformation of the surface protection tape and shear force during back surface grinding. When the chip is displaced, there is a problem that it easily contacts with an adjacent chip and a crack is likely to be generated from that part.
In addition, as a result of intensive studies, the present inventors have found that when a base material having a multilayer structure having a specific layer is used as a tape base material, adhesion between layers constituting the multilayer structure is important. Thus, it has been found that if this interlaminar adhesion is not sufficient, the releasability is lowered, or peeling occurs between layers during processing of a semiconductor wafer as an adherend, and the wafer is damaged.
 そこで、本発明は、上記の問題点を解決し、半導体ウェハの加工、特にシリコンウェハ等の裏面研削工程において、薄膜に研削しても、剥離性に優れ、また層間密着性に優れ、さらに不良チップの発生を十分に抑制することができる半導体加工用粘着テープを提供することを課題とする。 Therefore, the present invention solves the above-mentioned problems, and even when grinding to a thin film in the processing of semiconductor wafers, particularly back grinding of silicon wafers, etc., it has excellent peelability and excellent interlayer adhesion, and is further defective. It is an object of the present invention to provide an adhesive tape for semiconductor processing that can sufficiently suppress the generation of chips.
 本発明の上記課題は、以下の手段によって解決された。
(1)
 基材と、該基材の片面に設けられた粘着剤層とからなる粘着テープであって、前記基材が複層構造からなり、該複層構造の少なくとも1層が環状オレフィンポリマーを80質量%以上含有する層Aであって、該層Aとは別に、直鎖状低密度ポリエチレンまたは高密度ポリエチレンを含有する層Bを有することを特徴とする、半導体加工用粘着テープ。
(2)
 前記直鎖状低密度ポリエチレンの密度が0.95g/cm以下であることを特徴とする、(1)に記載の半導体加工用粘着テープ。
(3)
 前記直鎖状低密度ポリエチレンのメルトフローレートが4.0g/10min以下であることを特徴とする、(1)または(2)に記載の半導体加工用粘着テープ。
(4)
 前記直鎖状低密度ポリエチレンが、メタロセンポリエチレンであることを特徴とする、(1)~(3)のいずれか1項に記載の半導体加工用粘着テープ。
(5)
 各チップの個片化予定領域に沿ってレーザーを照射して半導体ウェハ内部に改質層を形成した半導体ウェハ、または、各チップの個片化予定領域に沿って機械的手段により溝を形成した半導体ウェハを、前記半導体ウェハの裏面研削によりチップへ個片化する半導体チップの製造に用いられることを特徴とする、(1)~(4)のいずれか1項に記載の半導体加工用粘着テープ。
The above-described problems of the present invention have been solved by the following means.
(1)
A pressure-sensitive adhesive tape comprising a base material and a pressure-sensitive adhesive layer provided on one side of the base material, wherein the base material has a multi-layer structure, and at least one layer of the multi-layer structure is composed of 80 masses of a cyclic olefin polymer. % Of layer A, and a layer B containing linear low-density polyethylene or high-density polyethylene separately from the layer A, a pressure-sensitive adhesive tape for semiconductor processing.
(2)
The density of the said linear low density polyethylene is 0.95 g / cm < 3 > or less, The adhesive tape for semiconductor processing as described in (1) characterized by the above-mentioned.
(3)
The adhesive tape for semiconductor processing according to (1) or (2), wherein the melt flow rate of the linear low density polyethylene is 4.0 g / 10 min or less.
(4)
The pressure-sensitive adhesive tape for semiconductor processing according to any one of (1) to (3), wherein the linear low-density polyethylene is metallocene polyethylene.
(5)
A semiconductor wafer in which a modified layer is formed inside the semiconductor wafer by irradiating a laser along the individual separation area of each chip, or a groove is formed by mechanical means along the individual separation area of each chip. The adhesive tape for semiconductor processing according to any one of (1) to (4), wherein the adhesive tape is used for manufacturing a semiconductor chip in which a semiconductor wafer is separated into chips by grinding the back surface of the semiconductor wafer. .
 本発明の半導体加工用粘着テープは、半導体ウェハの加工、特にシリコンウェハ等の裏面研削工程において、薄膜に研削しても、剥離性に優れ、また層間密着性に優れ、さらに不良チップの発生を十分に抑制することができる。
 また、本発明の半導体加工用粘着テープは、半導体ウェハの裏面研削によりチップの個片化を行う半導体チップの製造方法に使用することで、薄膜に研削しても、剥離性に優れ、また層間密着性に優れ、さらに不良チップの発生を十分に抑制することができる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
The pressure-sensitive adhesive tape for semiconductor processing of the present invention has excellent releasability and excellent interlayer adhesion even when ground to a thin film in the processing of semiconductor wafers, especially backside grinding of silicon wafers, etc., and further generates defective chips. It can be sufficiently suppressed.
Moreover, the adhesive tape for semiconductor processing of the present invention is excellent in releasability even if it is ground into a thin film by using it in a semiconductor chip manufacturing method in which chips are separated by back grinding of a semiconductor wafer. The adhesiveness is excellent, and the generation of defective chips can be sufficiently suppressed.
The above and other features and advantages of the present invention will become more apparent from the following description, with reference where appropriate to the accompanying drawings.
図1は、本発明の半導体加工用粘着テープの一形態を模式的に示す概略断面図である。FIG. 1 is a schematic cross-sectional view schematically showing an embodiment of the pressure-sensitive adhesive tape for semiconductor processing of the present invention. 図2(a)~2(c)は、本発明の半導体加工用粘着テープを使用する半導体ウェハの加工工程を説明する概略断面図である。図2(a)は、半導体加工用粘着テープから剥離フィルムを剥がし、接着剤層を剥き出しにする工程を示し、図2(b)は、半導体ウェハの凸部側に半導体加工用粘着テープを貼合せた状態を示し、図2(c)は、半導体ウェハの裏面を研削する工程を示す。2 (a) to 2 (c) are schematic cross-sectional views illustrating the processing steps of a semiconductor wafer using the semiconductor processing adhesive tape of the present invention. FIG. 2 (a) shows the process of peeling the release film from the semiconductor processing adhesive tape to expose the adhesive layer, and FIG. 2 (b) shows the semiconductor processing adhesive tape affixed to the convex side of the semiconductor wafer. FIG. 2C shows a process of grinding the back surface of the semiconductor wafer.
[半導体加工用粘着テープ]
 本発明の半導体加工用粘着テープは、基材と、該基材の片面に設けられた粘着剤層とからなる粘着テープであって、前記基材は複層構造からなり、この複層構造の少なくとも1層は、環状オレフィンポリマーを80質量%以上含有する層Aであって、この層Aとは別に、直鎖状低密度ポリエチレンまたは高密度ポリエチレンを含有する層Bを有する。
 本発明の半導体加工用粘着テープの好ましい形態について、以下に説明する。
[Semiconductor processing adhesive tape]
The pressure-sensitive adhesive tape for semiconductor processing of the present invention is a pressure-sensitive adhesive tape comprising a base material and a pressure-sensitive adhesive layer provided on one side of the base material, and the base material has a multi-layer structure. At least one layer is a layer A containing 80% by mass or more of a cyclic olefin polymer, and has a layer B containing linear low density polyethylene or high density polyethylene separately from this layer A.
The preferable form of the adhesive tape for semiconductor processing of this invention is demonstrated below.
 本発明の半導体加工用粘着テープ1は、図1に示すように、基材2上に粘着剤層3が積層され、両層が一体化されたテープである。また、半導体加工用粘着テープ1は、粘着剤層3上に、粘着剤層3を保護するための剥離フィルム4をさらに備えていてもよい。本発明の半導体加工用粘着テープ1は、基材2、粘着剤層3および剥離フィルム4の積層体をロール状に巻いた形態とすることもできる。 The adhesive tape 1 for semiconductor processing of the present invention is a tape in which an adhesive layer 3 is laminated on a substrate 2 and both layers are integrated as shown in FIG. The semiconductor processing pressure-sensitive adhesive tape 1 may further include a release film 4 on the pressure-sensitive adhesive layer 3 for protecting the pressure-sensitive adhesive layer 3. The pressure-sensitive adhesive tape 1 for semiconductor processing according to the present invention may be formed by rolling a laminate of the base material 2, the pressure-sensitive adhesive layer 3 and the release film 4 into a roll shape.
(基材2)
 本発明の半導体加工用粘着テープ1の基材2は複層構造からなる。この複層構造の少なくとも1層は、環状オレフィンポリマー(以下、「COP」と称す。)を含有する層Aであって、この層Aとは別に、複層構造の少なくとも1層として、直鎖状低密度ポリエチレンまたは高密度ポリエチレンを含有する層Bを有する。
(Substrate 2)
The substrate 2 of the adhesive tape 1 for semiconductor processing of the present invention has a multilayer structure. At least one layer of this multilayer structure is a layer A containing a cyclic olefin polymer (hereinafter referred to as “COP”). Separately from this layer A, as at least one layer of the multilayer structure, A layer B containing low-density polyethylene or high-density polyethylene.
 本明細書において、COPは、環状オレフィンの開環重合体やその水素付加体、環状オレフィンの付加重合体を意味し、環状オレフィンコポリマー(以下、「COC」と称す。)と呼ばれる、環状オレフィンと鎖状オレフィンとの付加共重合体も含む。
 モノマーとしての環状オレフィンは、環状の、アルケンまたはアルキンであって、開環重合または付加重合によりポリマーを形成可能な化合物であればよい。炭素数は4~12が好ましい。環状オレフィンは、二環式オレフィンを含んでいればよく、さらに単環式オレフィン及び/又は三環以上の多環式オレフィンを含んでいてもよい。単環式オレフィンとしては、例えば、シクロブテン、シクロペンテン、シクロヘプテン、シクロオクテンなどの炭素数4~12の環状シクロオレフィン類などが挙げられる。二環式オレフィン又は三環以上の多環式オレフィンとしては、例えば、ジシクロペンタジエン;2,3-ジヒドロジシクロペンタジエン、メタノオクタヒドロフルオレン、ジメタノオクタヒドロナフタレン、ジメタノシクロペンタジエノナフタレン、メタノオクタヒドロシクロペンタジエノナフタレンなどの誘導体;6-エチル-オクタヒドロナフタレンなどの置換基を有する誘導体;シクロペンタジエンとテトラヒドロインデン等との付加物、シクロペンタジエンの3~4量体、ノルボルネン、及びテトラシクロドデセン等が挙げられ、ノルボルネン及びテトラシクロドデセンが好ましい。
 また、鎖状オレフィンは、鎖状の、アルケンまたはアルキンであって、環状オレフィンとの付加重合によりポリマーを形成可能な化合物であればよい。炭素数は2~10が好ましく、2~8がより好ましく、2~4がさらに好ましい。具体的には、エチレン、プロピレン、1-ブテン、イソブテン、1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテンなどの炭素数2~10の鎖状オレフィン類などが挙げられる。これらの鎖状オレフィンは、単独で又は二種以上組み合わせて使用することができ、特にエチレンが好ましい。
 上記層A中、COPの含有量は80質量%以上であり、90質量%以上が好ましい。上限値に特に制限はなく、100質量%以下である。なお、COPがCOCである場合には、COPの含有量とはCOCの含有量である。
 上記COPとしては、具体的には、いずれも商品名で、日本ゼオン社製の「ZEONOR」およびポリプラスチックス社製の「Topas」などが挙げられる。
In the present specification, COP means a ring-opening polymer of a cyclic olefin, a hydrogenated product thereof, or an addition polymer of a cyclic olefin, and is called a cyclic olefin copolymer (hereinafter referred to as “COC”) Also included are addition copolymers with chain olefins.
The cyclic olefin as a monomer is a cyclic alkene or alkyne, and may be any compound that can form a polymer by ring-opening polymerization or addition polymerization. The number of carbon atoms is preferably 4-12. The cyclic olefin may contain a bicyclic olefin, and may further contain a monocyclic olefin and / or a tricyclic or higher polycyclic olefin. Examples of the monocyclic olefin include cyclic cycloolefins having 4 to 12 carbon atoms such as cyclobutene, cyclopentene, cycloheptene, and cyclooctene. Examples of the bicyclic olefin or the tricyclic or higher polycyclic olefin include dicyclopentadiene; 2,3-dihydrodicyclopentadiene, methanooctahydrofluorene, dimethanooctahydronaphthalene, dimethanocyclopentadienonaphthalene, Derivatives such as methanooctahydrocyclopentadienonaphthalene; derivatives having substituents such as 6-ethyl-octahydronaphthalene; adducts of cyclopentadiene and tetrahydroindene and the like, tripentamers of cyclopentadiene, norbornene, and Examples include tetracyclododecene, and norbornene and tetracyclododecene are preferable.
The chain olefin may be a chain-like alkene or alkyne that can form a polymer by addition polymerization with a cyclic olefin. The number of carbon atoms is preferably 2 to 10, more preferably 2 to 8, and further preferably 2 to 4. Specifically, it has 2 to 10 carbon atoms such as ethylene, propylene, 1-butene, isobutene, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene and 1-octene. Examples thereof include chain olefins. These chain olefins can be used alone or in combination of two or more, and ethylene is particularly preferable.
In the layer A, the content of COP is 80% by mass or more, and preferably 90% by mass or more. There is no restriction | limiting in particular in an upper limit, It is 100 mass% or less. When the COP is COC, the COP content is the COC content.
Specific examples of the COP include “ZEONOR” manufactured by Nippon Zeon Co., Ltd. and “Topas” manufactured by Polyplastics Co., Ltd.
 COPのうち、環状オレフィンの単独重合体は非晶質樹脂であり、硬く脆い性質を有し、シートやフィルムを成形する際にも高温処理が必要である。
 一方、COCは環状オレフィンとエチレンとの共重合体であるため、柔軟性と延性を有する。また、重合比(含有量比)を調整することで、様々な特性を有するCOCが得られる。
 COCの構成成分中、エチレン成分含有量は30~40質量%が好ましく、35~40質量%がより好ましい。エチレン成分含有量が少なすぎると、基材が非常に脆く、半導体加工用粘着テープが破断するおそれがある。また、エチレン成分含有量が多すぎると、エチレン成分の性質が強くなり、十分な剛性が得られないおそれがある。
Among the COPs, the homopolymer of cyclic olefin is an amorphous resin, has a hard and brittle property, and requires high-temperature treatment when molding a sheet or film.
On the other hand, since COC is a copolymer of cyclic olefin and ethylene, it has flexibility and ductility. Moreover, COC which has various characteristics is obtained by adjusting a polymerization ratio (content ratio).
Among the constituent components of COC, the ethylene component content is preferably 30 to 40% by mass, more preferably 35 to 40% by mass. When there is too little ethylene component content, a base material will be very weak and there exists a possibility that the adhesive tape for semiconductor processing may fracture | rupture. Moreover, when there is too much ethylene component content, the property of an ethylene component will become strong and there exists a possibility that sufficient rigidity may not be obtained.
 上記基材2は、COPを含有する層Aとは別の層として、層Aとの密着性が良好な、直鎖状低密度ポリエチレン(以下、「LLDPE」と称す。)または高密度ポリエチレン(以下、「HDPE」と称す。)を含有する層Bを有する。なお、低密度ポリエチレン(以下、「LDPE」と称す。)は、層Aとの十分な層間密着性を得られない点から、好ましくない。層間密着性が不十分であると、剥離性が不十分となったり、被着体である半導体ウェハの加工中に層間で剥離が発生し、ウェハが破損する可能性がある。 The substrate 2 is a layer different from the layer A containing COP, and is a linear low-density polyethylene (hereinafter referred to as “LLDPE”) or high-density polyethylene (having good adhesion to the layer A). Hereinafter referred to as “HDPE”). Note that low density polyethylene (hereinafter referred to as “LDPE”) is not preferable because sufficient interlayer adhesion with the layer A cannot be obtained. If the interlayer adhesion is insufficient, the peelability may be insufficient, or peeling may occur between layers during processing of a semiconductor wafer as an adherend, and the wafer may be damaged.
 LLDPE及びHDPEはエチレンとα-オレフィンとの共重合体であってもよい。α-オレフィンとしては、炭素数が3~10の範囲にあるものが好ましく、プロピレン、ブテン-1、ペンテン-1、ヘキセン-1、4-メチルペンテン-1、ヘプテン-1、オクテン-1等を挙げることができる。
 LLDPE及びHDPEがエチレンとα-オレフィンとの共重合体である場合、共重合体の全構成成分中、エチレン成分の含有量は95~99質量%が好ましく96~98質量%がより好ましい。
LLDPE and HDPE may be a copolymer of ethylene and α-olefin. As the α-olefin, those having 3 to 10 carbon atoms are preferable, and propylene, butene-1, pentene-1, hexene-1, 4-methylpentene-1, heptene-1, octene-1, and the like are preferable. Can be mentioned.
When LLDPE and HDPE are copolymers of ethylene and α-olefin, the content of the ethylene component is preferably 95 to 99% by mass and more preferably 96 to 98% by mass in all the constituent components of the copolymer.
 上記層B中、LLDPE及びHDPEの含有量は50質量%以上が好ましく、80質量%以上がより好ましい。上限値に特に制限はなく、100質量%以下である。なお、LLDPE及びHDPEがエチレンとα-オレフィンとの共重合体である場合には、LLDPE及びHDPEの含有量とは、エチレンとα-オレフィンとの共重合体の含有量である。 In the layer B, the content of LLDPE and HDPE is preferably 50% by mass or more, and more preferably 80% by mass or more. There is no restriction | limiting in particular in an upper limit, It is 100 mass% or less. When LLDPE and HDPE are a copolymer of ethylene and α-olefin, the content of LLDPE and HDPE is the content of a copolymer of ethylene and α-olefin.
 LLDPEの密度は、0.95g/cm以下が好ましく、0.94g/cm以下がより好ましく、0.93g/cm以下がさらに好ましい。下限値は、0.89g/cm以上が実際的である。
 LLDPEのメルトフローレート(MFR)は、4.0g/10min以下が好ましく、2.0g/10min以下がより好ましく、1.0g/10min以下がさらに好ましい。下限値は、0.5g/10min以上が実際的である。
 また、HDPEの密度は、0.97g/cm以下が好ましく、0.96g/cm以下がより好ましい。下限値は、0.5g/cm以上が実際的である。
 HDPEのMFR(melt flow rate)は、6.0g/10min以下が好ましく、5.0g/10min以下がより好ましい。下限値は、0.5g/10min以上が実際的である。
 MFRは温度190℃、荷重21.18Nでの値であり、密度及びMFRは、実施例記載の方法により測定することができる。
The density of LLDPE is preferably from 0.95 g / cm 3 or less, more preferably 0.94 g / cm 3 or less, more preferably 0.93 g / cm 3 or less. The lower limit is practically 0.89 g / cm 3 or more.
The melt flow rate (MFR) of LLDPE is preferably 4.0 g / 10 min or less, more preferably 2.0 g / 10 min or less, and even more preferably 1.0 g / 10 min or less. The lower limit is practically 0.5 g / 10 min or more.
Moreover, the density of HDPE is preferably 0.97 g / cm 3 or less, and more preferably 0.96 g / cm 3 or less. The lower limit is practically 0.5 g / cm 3 or more.
HDPE has an MFR (melt flow rate) of preferably 6.0 g / 10 min or less, and more preferably 5.0 g / 10 min or less. The lower limit is practically 0.5 g / 10 min or more.
MFR is a value at a temperature of 190 ° C. and a load of 21.18 N, and the density and MFR can be measured by the method described in the examples.
 LLDPEとしては、COCを含有する層Aとの密着性の観点から、なかでもメタロセンポリエチレンが好ましい。
 本明細書において「メタロセンポリエチレン」とは、メタロセン触媒を用いて得られるエチレン系ポリオレフィン(以下、「メタロセン触媒エチレン系ポリオレフィン」ということがある。)を意味し、エチレン、または、エチレンとα-オレフィンの混合単量体を、メタロセン触媒の存在下に重合させることにより得られる。したがって、メタロセン触媒を用いて得られるエチレン系ポリオレフィンは、メタロセン触媒の存在下で重合反応を行って得られるポリエチレン、および、エチレンとα-オレフィンとの共重合体を含む。
As LLDPE, metallocene polyethylene is particularly preferable from the viewpoint of adhesion to the layer A containing COC.
In the present specification, “metallocene polyethylene” means an ethylene-based polyolefin obtained by using a metallocene catalyst (hereinafter sometimes referred to as “metallocene-catalyzed ethylene-based polyolefin”), and ethylene, or ethylene and α-olefin. Is obtained by polymerizing in the presence of a metallocene catalyst. Accordingly, the ethylene-based polyolefin obtained using the metallocene catalyst includes polyethylene obtained by conducting a polymerization reaction in the presence of the metallocene catalyst, and a copolymer of ethylene and an α-olefin.
 メタロセン触媒は、メタロセン、即ち、置換または未置換のシクロペンタジエニル環2個と各種の遷移金属で構成されている錯体からなる遷移金属成分と、有機アルミニウム成分、特にアルミノキサンとからなる触媒の総称である。遷移金属成分としては、周期律表第IVb族、第Vb族または第VIb族の金属、特にジルコニウムまたはハフニウムが挙げられる。触媒中の遷移金属成分としては、一般に下記式
  (Cp)MR
(式中、Cpは置換または未置換のシクロペンタジエニル環であり、Mは遷移金属であり、Rはハロゲン原子またはアルキル基である。)で表されるものが一般的に使用されている。
The metallocene catalyst is a general term for a metallocene, that is, a catalyst comprising a transition metal component composed of a complex composed of two substituted or unsubstituted cyclopentadienyl rings and various transition metals, and an organoaluminum component, particularly an aluminoxane. It is. Examples of the transition metal component include metals of groups IVb, Vb or VIb of the periodic table, particularly zirconium or hafnium. The transition metal component in the catalyst is generally represented by the following formula (Cp) 2 MR 2
(Wherein Cp is a substituted or unsubstituted cyclopentadienyl ring, M is a transition metal, and R is a halogen atom or an alkyl group) is generally used. .
 アルミノキサンとしては、有機アルミニウム化合物を水と反応させることにより得られたものであり、線状アルミノキサン及び環状アルミノキサンがある。これらのアルミノキサンは、単独でも、他の有機アルミニウムとの組み合わせでも使用できる。 The aluminoxane is obtained by reacting an organoaluminum compound with water, and includes a linear aluminoxane and a cyclic aluminoxane. These aluminoxanes can be used alone or in combination with other organic aluminum.
 メタロセン触媒を用いるエチレンまたはエチレンとα-オレフィンとの重合法は、多数の公報で公知であり、前記メタロセン触媒の存在下、有機溶剤中、液状単量体中または気相法での重合により合成されるが、これら公知のいずれの方法によるものでも、前記条件を満足するものは本発明の目的に使用できる。 A method for polymerizing ethylene or ethylene and α-olefin using a metallocene catalyst is known in many publications, and is synthesized by polymerization in an organic solvent, in a liquid monomer or in a gas phase method in the presence of the metallocene catalyst. However, any of these known methods satisfying the above conditions can be used for the purpose of the present invention.
 エチレンとα-オレフィンとの共重合体の場合、具体的なα-オレフィンおよび共重合体の全構成成分中のエチレン成分の含有量としては、上記LLDPEにおけるエチレンとα-オレフィンとの共重合体における記載を好ましく適用することができる。 In the case of a copolymer of ethylene and an α-olefin, the specific α-olefin and the content of the ethylene component in all the constituent components of the copolymer are the copolymer of ethylene and the α-olefin in the LLDPE. The description in can be preferably applied.
 メタロセン触媒エチレン系ポリオレフィンは、分子量分布が狭いのが特徴であり、本発明においては、分子量分布の指標である多分散度(質量平均分子量Mw/数平均分子量Mn)が好ましくは4.0以下、より好ましくは3.5以下、更に好ましくは3.2以下であるものが使用される。なお、成形性を改善する目的で、重合時またはその後の工程にて比較的長鎖の分岐を導入したものも好適に使用される。また、メタロセン触媒エチレン系ポリオレフィンは、通常、密度は0.89~0.95g/cmであり、好ましくは0.91~0.93g/cm程度であり、MFRは0.1~10g/10分であり、好ましくは0.3~5g/10分程度である。 The metallocene-catalyzed ethylene-based polyolefin is characterized by a narrow molecular weight distribution. In the present invention, the polydispersity (mass average molecular weight Mw / number average molecular weight Mn), which is an index of molecular weight distribution, is preferably 4.0 or less, More preferably 3.5 or less, and still more preferably 3.2 or less. For the purpose of improving moldability, those having relatively long chain branches introduced during polymerization or in subsequent steps are also preferably used. The metallocene-catalyzed ethylene-based polyolefin usually has a density of 0.89 to 0.95 g / cm 3 , preferably about 0.91 to 0.93 g / cm 3 and an MFR of 0.1 to 10 g / cm 3. 10 minutes, preferably about 0.3 to 5 g / 10 minutes.
 層B中にメタロセン触媒エチレン系ポリオレフィンが存在することは、以下の方法で確認することができる。すなわち、層Bを厚み100μmにガラスにて切断して試料とし、走査電子顕微鏡SEMに敷設して、生じた蛍光X線をエネルギー分配する分析器で測定し、Zr(ジルコニウム)またはHf(ハフニウム)のエネルギーに相当するピークの存在を確認する。 The presence of the metallocene-catalyzed ethylene-based polyolefin in layer B can be confirmed by the following method. That is, the layer B is cut into a glass having a thickness of 100 μm to form a sample, which is laid on a scanning electron microscope SEM and measured with an analyzer that distributes the generated fluorescent X-rays. Zr (zirconium) or Hf (hafnium) The presence of a peak corresponding to the energy of.
 メタロセン触媒エチレン系ポリオレフィンは、合成品を使用することができるが、市販品の中から選択して使用することもできる。市販品としては、宇部丸善ポリエチレン社製のユメリット(登録商標)、住友化学株式会社製のエクセレン(登録商標)、日本ポリエチレン株式会社製のハーモレックス(登録商標)及びカーネル(登録商標)などがある。 As the metallocene-catalyzed ethylene-based polyolefin, a synthetic product can be used, but it can also be selected from commercially available products. Commercially available products include Umerit (registered trademark) manufactured by Ube Maruzen Polyethylene Co., Ltd., Excellen (registered trademark) manufactured by Sumitomo Chemical Co., Ltd., Harmolex (registered trademark) manufactured by Nippon Polyethylene Co., Ltd., and Kernel (registered trademark). .
 上記LLDPE及びHDPEは柔軟なため、ウェハ研削時のクッション性が良好である。また、耐熱性の観点から、樹脂の融点は60℃以上が好ましい。
 各々の樹脂は、単独で基材2を構成する層として使用してもよく、樹脂同士を組み合わせてブレンドして用いてもよい。また、基材2を構成する層は、上記樹脂以外に、着色剤、酸化防止剤、帯電防止剤などの添加物を、必要に応じて物性に影響が出ない範囲で含有していてもよい。
Since the LLDPE and HDPE are flexible, they have good cushioning properties during wafer grinding. From the viewpoint of heat resistance, the melting point of the resin is preferably 60 ° C. or higher.
Each resin may be used alone as a layer constituting the substrate 2 or may be used by blending resins in combination. Moreover, the layer which comprises the base material 2 may contain additives, such as a coloring agent, antioxidant, and antistatic agent, in the range which does not affect a physical property as needed other than the said resin. .
 上記基材2の厚さは、特に限定されるものではないが、50~200μmが好ましく、80~180μmがより好ましい。
 上記層Aの厚さは、剛性の点から、20~100μmが好ましく、30~60μmがより好ましい。また、上記層Bの厚さは、柔軟性の点から、10~100μmが好ましく、20~80μmがより好ましい。
 基材2が、2層以上の層A、2層以上の層Bを有する場合は、「層Aの厚さ」、「層Bの厚さ」は、各層の合計厚さを意味する。
The thickness of the substrate 2 is not particularly limited, but is preferably 50 to 200 μm, and more preferably 80 to 180 μm.
The thickness of the layer A is preferably 20 to 100 μm and more preferably 30 to 60 μm from the viewpoint of rigidity. The thickness of the layer B is preferably 10 to 100 μm and more preferably 20 to 80 μm from the viewpoint of flexibility.
When the substrate 2 has two or more layers A and two or more layers B, “the thickness of layer A” and “the thickness of layer B” mean the total thickness of each layer.
 基材2の層構成としては、層A及び層Bを少なくとも1層ずつ含む複層構造である限り特に限定されるものではないが、層Aと層Bが隣接して積層された層構成が好ましく、層B/層A/層Bがこの順に積層された3層以上の層構成がより好ましく、層B/層A/層Bがこの順に積層された3層構成がさらに好ましい。ここで、層B及び層Bは、上記層Bを意味し、互いに同一の層であってもよく、異なる層であってもよい。 The layer structure of the substrate 2 is not particularly limited as long as it has a multilayer structure including at least one layer A and one layer B, but the layer structure in which the layer A and the layer B are laminated adjacent to each other. preferably, the layer B 1 / layer a / layer B 2 is 3 or more layers structure is more preferable are laminated in this order, more preferably 3-layer structure in which a layer B 1 / layer a / layer B 2 are laminated in this order . Here, the layer B 1 and the layer B 2 mean the layer B, and may be the same layer or different layers.
 基材2の粘着剤層3が設けられる側の表面には、粘着剤層3との密着性を向上させるために、コロナ処理やプライマー層を設ける等の処理を適宜施してもよい。 The surface of the substrate 2 on the side where the pressure-sensitive adhesive layer 3 is provided may be appropriately subjected to a treatment such as a corona treatment or a primer layer in order to improve the adhesion with the pressure-sensitive adhesive layer 3.
 上記基材2の製造方法は特に限定されない。押出・インフレーション・キャストなどの情報により作製することができる。また、独立に製膜したフィルムと他のフィルムとを接着剤等で貼り合わせて基材2とすることもできる。 The method for manufacturing the substrate 2 is not particularly limited. It can be produced by information such as extrusion, inflation and casting. Moreover, the film formed independently and another film can be bonded together with an adhesive etc., and it can also be set as the base material 2.
(粘着剤層3)
 本発明の半導体加工用粘着テープ1の粘着剤層3は、粘着剤を含有する層であればよく、例えば、粘着剤組成物を用いて形成される。この粘着剤組成物は、特に制限されず、通常のアクリル、ゴム、シリコーン等の粘着剤を含有する組成物が挙げられる。耐候性や価格等の点から、アクリル粘着剤が好適に用いられる。
(Adhesive layer 3)
The pressure-sensitive adhesive layer 3 of the semiconductor processing pressure-sensitive adhesive tape 1 of the present invention may be a layer containing a pressure-sensitive adhesive, and is formed using, for example, a pressure-sensitive adhesive composition. This pressure-sensitive adhesive composition is not particularly limited, and examples thereof include a composition containing a normal pressure-sensitive adhesive such as acrylic, rubber, and silicone. An acrylic pressure-sensitive adhesive is preferably used from the viewpoint of weather resistance and price.
 アクリル粘着剤としては、(メタ)アクリル酸エステルを構成成分として有する共重合体(以下、「(メタ)アクリル酸エステル共重合体」と称す。)を挙げることができる。また、(メタ)アクリル酸エステル共重合体以外に、後述する硬化剤を含有していてもよい。
 また、本発明においては(メタ)アクリル系単量体は、アクリル系単量体とメタクリル系単量体の両者を含むものとする。
Examples of the acrylic pressure-sensitive adhesive include a copolymer having a (meth) acrylic acid ester as a constituent component (hereinafter referred to as “(meth) acrylic acid ester copolymer”). Moreover, you may contain the hardening | curing agent mentioned later other than a (meth) acrylic acid ester copolymer.
In the present invention, the (meth) acrylic monomer includes both an acrylic monomer and a methacrylic monomer.
 上記(メタ)アクリル酸エステル共重合体の構成成分である(メタ)アクリル酸エステルとしては、例えば、メチル、エチル、n-プルピル、イソプルピル、n-ブチル、t-ブチル、イソブチル、アミル、イソアミル、ヘキシル、ヘプチル、シクロヘキシル、2-エチルヘキシル、オクチル、イソオクチル、ノニル、イソノニル、デシル、イソデシル、ウンデシル、ラウリル、トリデシル、テトラデシル、ステアリル、オクタデシル、及びドデシルなどの炭素数30以下、好ましくは炭素数4~18の直鎖又は分岐のアルキル基を有するアルキルアクリレート又はアルキルメタクリレートが挙げられる。これらアルキル(メタ)アクリレートは単独で用いてもよく、2種以上を併用してもよい。
 (メタ)アクリル系共重合体の構成成分中、上記(メタ)アクリル酸エステル成分の含有量は80質量%以上が好ましく、90質量%以上がより好ましく、95~99.9質量%がより好ましい。
Examples of the (meth) acrylic acid ester that is a constituent of the (meth) acrylic acid ester copolymer include methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, isobutyl, amyl, isoamyl, Hexyl, heptyl, cyclohexyl, 2-ethylhexyl, octyl, isooctyl, nonyl, isononyl, decyl, isodecyl, undecyl, lauryl, tridecyl, tetradecyl, stearyl, octadecyl, dodecyl and the like, preferably 4 to 18 carbon atoms And alkyl acrylate or alkyl methacrylate having a linear or branched alkyl group. These alkyl (meth) acrylates may be used alone or in combination of two or more.
In the constituent components of the (meth) acrylic copolymer, the content of the (meth) acrylic acid ester component is preferably 80% by mass or more, more preferably 90% by mass or more, and more preferably 95 to 99.9% by mass. .
 上記(メタ)アクリル酸エステル共重合体は、上記(メタ)アクリル酸エステル以外の構成成分を含んでいてもよい。
 その他の構成成分としては、例えば、(メタ)アクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、イタコン酸、マレイン酸、フマル酸、及びクロトン酸などのカルボキシル基含有モノマー、無水マレイン酸や無水イタコン酸などの酸無水物モノマー、ヒドロキシアルキル(メタ)アクリレート(好ましくは、上記アルキル(メタ)アクリレートがヒドロキシ基で置換されたもの)などのヒドロキシル基含有モノマー、スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート及び(メタ)アクリロイルオキシナフタレンスルホン酸などのスルホン酸基含有モノマー、2-ヒドロキシエチルアクリロイルホスフェートなどのリン酸基含有モノマー、(メタ)アクリルアミド、(メタ)アクリル酸N-ヒドロキシメチルアミド、(メタ)アクリル酸アルキルアミノアルキルエステル(例えば、ジメチルアミノエチルメタクリレート、t-ブチルアミノエチルメタクリレート等)、N-ビニルピロリドン、アクリロイルモルホリン、酢酸ビニル、スチレン、アクリロニトリル等が挙げられる。これら構成成分は単独で用いてもよく、2種以上を併用してもよい。
The (meth) acrylic acid ester copolymer may contain components other than the (meth) acrylic acid ester.
Other components include, for example, (meth) acrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, and carboxyl group-containing monomers such as crotonic acid, maleic anhydride Acid anhydride monomers such as acid and itaconic anhydride, hydroxyl group-containing monomers such as hydroxyalkyl (meth) acrylate (preferably those in which the alkyl (meth) acrylate is substituted with a hydroxy group), styrene sulfonic acid, allyl sulfone Sulfonic acid group-containing mono-acids such as acid, 2- (meth) acrylamide-2-methylpropanesulfonic acid, (meth) acrylamidepropanesulfonic acid, sulfopropyl (meth) acrylate and (meth) acryloyloxynaphthalenesulfonic acid -Phosphoric acid group-containing monomers such as 2-hydroxyethylacryloyl phosphate, (meth) acrylamide, (meth) acrylic acid N-hydroxymethylamide, (meth) acrylic acid alkylaminoalkyl esters (for example, dimethylaminoethyl methacrylate, t -Butylaminoethyl methacrylate), N-vinylpyrrolidone, acryloylmorpholine, vinyl acetate, styrene, acrylonitrile and the like. These structural components may be used alone or in combination of two or more.
 粘着剤層3の固形成分中、(メタ)アクリル系共重合体の含有量(後述する硬化剤ないし光重合性化合物と反応する前の状態に換算した含有量)は80質量%以上が好ましく、90質量%以上がより好ましく、95~99.9質量%がより好ましい。 In the solid component of the pressure-sensitive adhesive layer 3, the content of the (meth) acrylic copolymer (content converted to a state before reacting with a curing agent or a photopolymerizable compound described later) is preferably 80% by mass or more, 90% by mass or more is more preferable, and 95 to 99.9% by mass is more preferable.
 硬化剤としては、特開2007-146104号公報に記載の硬化剤を使用することができる。例えば、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,3-ビス(N,N-ジグリシジルアミノメチル)トルエン、1,3-ビス(N,N-ジグリシジルアミノメチル)ベンゼン、N,N,N,N’-テトラグリシジル-m-キシレンジアミンなどの分子中に2個以上のエポキシ基を有するエポキシ化合物、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネートなどの分子中に2個以上のイソシアネート基を有するイソシアネート系化合物、テトラメチロール-トリ-β-アジリジニルプロピオネート、トリメチロール-トリ-β-アジリジニルプロピオネート、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、トリメチロールプロパン-トリ-β-(2-メチルアジリジン)プロピオネートなどの分子中に2個以上のアジリジニル基を有するアジリジン系化合物等が挙げられる。硬化剤の含有量は、所望の粘着力に応じて調整すれば良く、上記(メタ)アクリル酸エステル共重合体100質量部に対して、0.01~10質量部が好ましく、0.1~5質量部がより好ましい。 As the curing agent, a curing agent described in JP 2007-146104 A can be used. For example, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, 1,3-bis (N, N-diglycidylaminomethyl) toluene, 1,3-bis (N, N-diglycidylaminomethyl) ) Epoxy compounds having two or more epoxy groups in the molecule such as benzene, N, N, N, N′-tetraglycidyl-m-xylenediamine, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate , 1,3-xylylene diisocyanate, 1,4-xylene diisocyanate, diphenylmethane-4,4′-diisocyanate, etc., an isocyanate compound having two or more isocyanate groups in the molecule, tetramethylol-tri-β-aziridini Lupropionate, trimethylol-tri-β-aziridinylpropionate, Examples include aziridin compounds having two or more aziridinyl groups in the molecule, such as limethylolpropane-tri-β-aziridinylpropionate and trimethylolpropane-tri-β- (2-methylaziridine) propionate. . The content of the curing agent may be adjusted according to the desired adhesive strength, and is preferably 0.01 to 10 parts by weight, preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the (meth) acrylic acid ester copolymer. 5 parts by mass is more preferable.
 粘着剤層3は、上記粘着剤の他に、光重合性化合物と光重合開始剤を含有する、放射線硬化型粘着剤から構成されることも好ましい。粘着剤と光重合性化合物と光重合開始剤とを含有することで、放射線(好ましくは紫外線)を照射することにより硬化し、粘着剤層3の粘着力を低下させることができる。このような光重合性化合物としては、たとえば特開昭60-196956号公報および特開昭60-223139号公報に記載されている、光照射によって三次元網状化しうる分子内に光重合性炭素-炭素二重結合を少なくとも2個以上有する低分子量化合物やそれらを重合したオリゴマーを使用することができる。 The pressure-sensitive adhesive layer 3 is preferably composed of a radiation curable pressure-sensitive adhesive containing a photopolymerizable compound and a photopolymerization initiator in addition to the above pressure-sensitive adhesive. By containing an adhesive, a photopolymerizable compound, and a photopolymerization initiator, it can be cured by irradiation with radiation (preferably ultraviolet rays), and the adhesive strength of the adhesive layer 3 can be reduced. Examples of such a photopolymerizable compound include those described in JP-A-60-196956 and JP-A-60-223139, which have a photopolymerizable carbon in a molecule that can be three-dimensionally reticulated by light irradiation. A low molecular weight compound having at least two carbon double bonds or an oligomer obtained by polymerizing them can be used.
 上記光重合性化合物は、具体的には、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレートあるいは1,4-ブチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、エポキシ(メタ)アクリレート(エポキシ化合物の(メタ)アクリル酸付加体)、ポリエステル(メタ)アクリレート(ポリエステルの(メタ)アクリル酸付加体)、及びウレタン(メタ)アクリレート(ウレタンの(メタ)アクリル酸付加体)などが用いられる。 Specific examples of the photopolymerizable compound include trimethylolpropane tri (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, and dipentaerythritol monohydroxy. Penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, neopentyl glycol di (meth) acrylate or 1,4-butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, (poly ) Ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, epoxy (meth) acrylate ((meth) acrylic acid adduct of epoxy compound), poly Ester (meth) acrylates (the polyester (meth) acrylic acid adduct), and urethane (meth) acrylate ((meth) acrylic acid adduct of urethane) are used.
 上記光重合開始剤としては、特開2007-146104号公報又は特開2004-186429号公報に記載の光重合開始剤を使用することができる。具体的には、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、ベンゾフェノン、ミヒラーズケトン、クロロチオキサントン、ベンジルメチルケタール、α-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシメチルフェニルプロパン等を使用することができる。 As the photopolymerization initiator, the photopolymerization initiators described in JP2007-146104A or JP2004-186429A can be used. Specifically, isopropyl benzoin ether, isobutyl benzoin ether, benzophenone, Michler's ketone, chlorothioxanthone, benzylmethyl ketal, α-hydroxycyclohexyl phenyl ketone, 2-hydroxymethylphenylpropane, and the like can be used.
 上記放射線硬化型粘着剤としては、上記(メタ)アクリル酸エステル共重合体と、分子内に放射線重合性炭素-炭素二重結合を少なくとも2個以上有する低分子量化合物との組み合わせの他にも、(メタ)アクリル酸エステルを構成成分として有する共重合体であって、この共重合体を構成する繰り返し単位が放射線重合性炭素-炭素二重結合を有する(メタ)アクリル系共重合体(以下、「放射線重合性(メタ)アクリル系共重合体」と称す。)を用いることも好ましい。
 放射線重合性(メタ)アクリル系共重合体は、共重合体の分子中に、放射線、特に紫外線照射で重合反応することが可能な反応性の基を有する共重合体である。
 このような反応性の基とは、エチレン性不飽和基すなわち、炭素-炭素二重結合(エチレン性不飽和結合)を有する基であり、ビニル基、アリル基、スチリル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミノ基などが挙げられる。
As the radiation curable pressure-sensitive adhesive, in addition to the combination of the (meth) acrylic acid ester copolymer and a low molecular weight compound having at least two radiation polymerizable carbon-carbon double bonds in the molecule, A copolymer having (meth) acrylic acid ester as a constituent component, wherein the repeating unit constituting the copolymer has a radiation-polymerizable carbon-carbon double bond (hereinafter referred to as “a”). It is also preferable to use “radiation polymerizable (meth) acrylic copolymer”.
The radiation-polymerizable (meth) acrylic copolymer is a copolymer having a reactive group capable of undergoing a polymerization reaction upon irradiation with radiation, particularly ultraviolet rays, in the copolymer molecule.
Such a reactive group is an ethylenically unsaturated group, that is, a group having a carbon-carbon double bond (ethylenically unsaturated bond), such as vinyl group, allyl group, styryl group, (meth) acryloyloxy. Group, (meth) acryloylamino group and the like.
 上記の放射線重合性(メタ)アクリル系共重合体は、特に制限はなく、例えば、官能基aを有する(メタ)アクリル系共重合体と、該官能基aと反応し得る官能基bおよび放射線重合性炭素-炭素二重結合を有する化合物(以下、「官能基bを有する放射線重合性化合物」と称す。)とを反応させて得た(メタ)アクリル系共重合体を挙げることができる。 The radiation polymerizable (meth) acrylic copolymer is not particularly limited. For example, the (meth) acrylic copolymer having the functional group a, the functional group b capable of reacting with the functional group a, and radiation. A (meth) acrylic copolymer obtained by reacting a compound having a polymerizable carbon-carbon double bond (hereinafter referred to as “radiation polymerizable compound having a functional group b”) can be given.
 上記の炭素-炭素二重結合を有する(メタ)アクリル系共重合体としては、例えば、特開2014-192204号公報の段落番号[0036]~[0055]に記載のものと同様の材料を挙げることができる。 Examples of the (meth) acrylic copolymer having a carbon-carbon double bond include the same materials as those described in paragraphs [0036] to [0055] of JP-A-2014-192204. be able to.
 上記の官能基bを有する放射線重合性化合物において、官能基bは、カルボキシル基、水酸基、アミノ基、環状酸無水基、エポキシ基、イソシアネート基などを挙げることができる。具体的な官能基bを有する放射線重合性化合物としては、例えば、アクリル酸、メタクリル酸、けい皮酸、イタコン酸、フマル酸、フタル酸、2-ヒドロキシアルキルアクリレート類、2-ヒドロキシアルキルメタクリレート類、グリコールモノアクリレート類、グリコールモノメタクリレート類、N-メチロールアクリルアミド、N-メチロールメタクリルアミド、アリルアルコール、N-アルキルアミノエチルアクリレート類、N-アルキルアミノエチルメタクリレート類、アクリルアミド類、メタクリルアミド類、無水マレイン酸、無水イタコン酸、無水フマル酸、無水フタル酸、グリシジルアクリレート、グリシジルメタクリレート、アリルグリシジルエーテル、ポリイソシアネート化合物のイソシアネート基の一部を水酸基またはカルボキシル基および放射線重合性炭素-炭素二重結合を有する単量体でウレタン化したものなどを列挙することができる。 In the radiation-polymerizable compound having the functional group b, the functional group b includes a carboxyl group, a hydroxyl group, an amino group, a cyclic acid anhydride group, an epoxy group, an isocyanate group, and the like. Specific examples of the radiation polymerizable compound having a functional group b include acrylic acid, methacrylic acid, cinnamic acid, itaconic acid, fumaric acid, phthalic acid, 2-hydroxyalkyl acrylates, 2-hydroxyalkyl methacrylates, Glycol monoacrylates, glycol monomethacrylates, N-methylolacrylamide, N-methylolmethacrylamide, allyl alcohol, N-alkylaminoethyl acrylates, N-alkylaminoethyl methacrylates, acrylamides, methacrylamides, maleic anhydride Itaconic anhydride, fumaric anhydride, phthalic anhydride, glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether, hydroxyl group or a part of the isocyanate group of the polyisocyanate compound Carboxyl group and a radiation-polymerizable carbon - can enumerate such as those urethanization a monomer having a carbon-carbon double bond.
 上記の官能基aを有する(メタ)アクリル系共重合体と、上記の官能基bを有する放射線重合性化合物との反応において、未反応の官能基を残すことにより、酸価および水酸基価などを、適宜設定することができる。
 上記の放射線重合性(メタ)アクリル系共重合体は、各種の溶剤中で溶液重合することにより得ることができる。溶液重合で行う場合の有機溶剤としては、ケトン系、エステル系、アルコール系、芳香族系のものを使用することができる。一般にアクリル系重合体の良溶媒で、沸点60~120℃の溶剤を使用することが好ましい。例えば、トルエン、酢酸エチル、イソプロピルアルコール、ベンゼン、メチルセロソルブ、エチルセロソルブ、アセトン、メチルエチルケトンなどを使用することができる。重合開始剤としては、α,α’-アゾビスイソブチルニトリルなどのアゾビス系、ベンゾイルペルオキシドなどの有機過酸化物系などのラジカル発生剤を用いることができる。この際、必要に応じて触媒、重合禁止剤を併用することができ、重合温度および重合時間を調節することにより、所望の分子量の共重合体を得ることができる。なお、合成方法は、溶液重合に限定されるものではなく、塊状重合、懸濁重合など別の方法でもさしつかえない。
In the reaction between the (meth) acrylic copolymer having the functional group a and the radiation-polymerizable compound having the functional group b, by leaving an unreacted functional group, the acid value and the hydroxyl value can be determined. Can be set as appropriate.
The radiation-polymerizable (meth) acrylic copolymer can be obtained by solution polymerization in various solvents. As the organic solvent in the case of solution polymerization, a ketone, ester, alcohol, or aromatic solvent can be used. In general, it is preferable to use a good solvent for an acrylic polymer and a solvent having a boiling point of 60 to 120 ° C. For example, toluene, ethyl acetate, isopropyl alcohol, benzene, methyl cellosolve, ethyl cellosolve, acetone, methyl ethyl ketone, and the like can be used. As the polymerization initiator, radical generators such as azobis compounds such as α, α′-azobisisobutylnitrile and organic peroxide compounds such as benzoyl peroxide can be used. At this time, if necessary, a catalyst and a polymerization inhibitor can be used in combination, and a copolymer having a desired molecular weight can be obtained by adjusting the polymerization temperature and the polymerization time. The synthesis method is not limited to solution polymerization, and other methods such as bulk polymerization and suspension polymerization may be used.
 その他、粘着剤層3を構成する粘着剤組成物は、必要に応じて離型剤、粘着付与剤、粘着調整剤、界面活性剤等、あるいはその他の改質剤等を含有してもよい。また、無機化合物フィラーを含有してもよい。 In addition, the pressure-sensitive adhesive composition constituting the pressure-sensitive adhesive layer 3 may contain a release agent, a tackifier, a tackifier, a surfactant, or other modifiers as necessary. Moreover, you may contain an inorganic compound filler.
 粘着剤層3は、粘着剤組成物を剥離フィルム4上に塗布、乾燥させて基材2に転写することで形成することができる。本発明において粘着剤層3の厚さは、10~60μmが好ましく、20~50μmがより好ましい。厚すぎると、半導体ウェハ5(図2参照)表面への過度な密着、半導体ウェハ5表面の凸部51(図2参照)への埋め込みによって、半導体加工用粘着テープ1の剥離後に、半導体ウェハ5表面への糊残りが発生するおそれがある。上記上限値以下とすることにより、粘着剤の過剰な密着を抑制できる。薄すぎると、半導体ウェハ5表面の凸部51に粘着剤層3が追従できず、シリコンの研削屑を含んだ研削水が半導体加工用粘着テープ1と半導体ウェハ5との隙間から入り込んで半導体ウェハ5の回路面を汚染する、いわゆるシーページなどの要因となるおそれがある。 The pressure-sensitive adhesive layer 3 can be formed by applying the pressure-sensitive adhesive composition onto the release film 4, drying it, and transferring it to the substrate 2. In the present invention, the thickness of the pressure-sensitive adhesive layer 3 is preferably 10 to 60 μm, more preferably 20 to 50 μm. If it is too thick, the semiconductor wafer 5 will be peeled off after the adhesive tape 1 for semiconductor processing has been peeled off due to excessive adhesion to the surface of the semiconductor wafer 5 (see FIG. 2) and embedding in the convex portion 51 (see FIG. 2) of the surface of the semiconductor wafer 5. There is a risk of adhesive residue on the surface. By setting it to the upper limit value or less, excessive adhesion of the pressure-sensitive adhesive can be suppressed. If it is too thin, the pressure-sensitive adhesive layer 3 cannot follow the convex portion 51 on the surface of the semiconductor wafer 5, and grinding water containing silicon grinding waste enters through the gap between the semiconductor processing pressure-sensitive adhesive tape 1 and the semiconductor wafer 5. 5 may contaminate the circuit surface of 5 and cause so-called seapage.
(剥離フィルム4)
 剥離フィルム4は、セパレータや剥離層、剥離ライナーとも呼ばれ、放射線硬化型粘着剤層を保護する目的のため、また放射線硬化型粘着剤層を平滑にする目的のために、必要に応じて設けられる。剥離フィルム4の構成材料としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート等の合成樹脂フィルムや紙などが挙げられる。剥離フィルム4の表面には粘着剤層3からの剥離性を高めるため、必要に応じてシリコーン処理、長鎖アルキル処理、フッ素処理等の剥離処理が施されていてもよい。また、必要に応じて、粘着剤層3の環境紫外線による反応を防止するため、紫外線防止処理が施されていてもよい。剥離フィルム4の厚みは、通常10~50μmであり、好ましくは25~38μmである。
(Peeling film 4)
The release film 4 is also called a separator, a release layer, or a release liner, and is provided as necessary for the purpose of protecting the radiation curable pressure-sensitive adhesive layer and for the purpose of smoothing the radiation curable pressure-sensitive adhesive layer. It is done. Examples of the constituent material of the release film 4 include synthetic resin films such as polyethylene, polypropylene, and polyethylene terephthalate, and paper. The surface of the release film 4 may be subjected to release treatment such as silicone treatment, long-chain alkyl treatment, and fluorine treatment as necessary in order to enhance the peelability from the pressure-sensitive adhesive layer 3. Moreover, in order to prevent the reaction by the environmental ultraviolet-ray of the adhesive layer 3, the ultraviolet-ray prevention process may be performed as needed. The thickness of the release film 4 is usually 10 to 50 μm, preferably 25 to 38 μm.
[半導体デバイスの製造方法]
 本発明の半導体加工用粘着テープは、各チップの個片化予定領域に沿ってレーザーを照射して半導体ウェハ内部に改質層を形成した半導体ウェハ(以下、「半導体ウェハA」と称す。)、または、各チップの個片化予定領域に沿って機械的手段により溝を形成した半導体ウェハ(以下、「半導体ウェハB」と称す。)を、前記半導体ウェハの裏面研削によりチップへ個片化(分割)する半導体チップの製造に、好ましく用いられる。
 ここで、「半導体ウェハの裏面」とは、半導体ウェハがその表面に半導体素子の回路などが形成されたパターン面に対して、反対側に位置する面を意味する。パターン面とは、具体的には、半導体ウェハAにおける改質層形成面、半導体ウェハBにおける溝形成面である。
 「各チップの個片化予定領域」とは、ウェハのスクライブラインを意味する。
 また、「チップへ個片化」とは、半導体ウェハから半導体チップが個片化された状態を意味し、個片化された半導体チップが本発明の半導体加工用粘着テープ上に貼合されている状態を含む。
[Method for Manufacturing Semiconductor Device]
The pressure-sensitive adhesive tape for semiconductor processing of the present invention is a semiconductor wafer (hereinafter referred to as “semiconductor wafer A”) in which a modified layer is formed inside a semiconductor wafer by irradiating a laser along a region where each chip is to be separated. Alternatively, a semiconductor wafer (hereinafter referred to as “semiconductor wafer B”) in which a groove is formed by mechanical means along a region where each chip is to be singulated is divided into chips by grinding the back surface of the semiconductor wafer. It is preferably used for manufacturing a semiconductor chip to be (divided).
Here, the “back surface of the semiconductor wafer” means a surface of the semiconductor wafer that is located on the opposite side of the pattern surface on the surface of which the circuit of the semiconductor element is formed. Specifically, the pattern surface is a modified layer forming surface in the semiconductor wafer A and a groove forming surface in the semiconductor wafer B.
“Scheduled area of each chip” means a scribe line of a wafer.
In addition, “divided into chips” means a state where semiconductor chips are separated from a semiconductor wafer, and the separated semiconductor chips are bonded onto the adhesive tape for semiconductor processing of the present invention. Including the state.
 半導体ウェハAは、各チップの個片化予定領域に沿ってレーザーを照射して半導体ウェハ内部に改質層を形成した半導体ウェハである。レーザー照射により、半導体ウェハ5に厚みTの改質層を形成しておくことで、その後の半導体ウェハの裏面研削加工時に、半導体ウェハ5が上記厚みTと同じか上記厚みTよりも薄くなるように研削することで、半導体ウェハ5の薄膜化と半導体チップへの個片化を同時に行うことができる。厚みTは、裏面研削前の半導体ウェハの厚みよりも小さい限り特に制限はないが、ウェハの最終厚さより20~30μmほど大きいことが実際的である。
 この方式は、ステルスダイシングと先ダイシングを併せた方式で、狭スクライブ幅対応チップ個片化方式とも呼ばれる。この方式によれば、ウェハ裏面研削加工中に応力でシリコン(半導体ウェハ)の改質層が劈開し個片化するため、カーフ幅がゼロであり、チップ収率は高く、抗折強度も向上する。
 半導体ウェハBは、各チップの個片化予定領域に沿って機械的手段により溝を形成した半導体ウェハである。機械的手段(例えば、ダイシングブレード)により、半導体ウェハ5に厚みTの溝を形成しておくことで、その後の半導体ウェハの裏面研削加工時に、半導体ウェハ5が上記厚みTと同じか上記厚みTよりも薄くなるように研削することで、半導体ウェハ5の薄膜化と半導体チップへの個片化を同時に行うことができる。厚みTは、裏面研削前の半導体ウェハの厚みよりも小さい限り特に制限はないが、ウェハの最終厚さより20~30μmほど大きいことが実際的である。
 この方式は、DBG(先ダイシング)方式と呼ばれる。この方式によれば、チップ同士の間隔であるカーフ(スクライブライン、ストリートともいう)幅の狭小化に限界があるものの、チップの抗折強度がアップし、チップの破損を抑えることが可能である。
The semiconductor wafer A is a semiconductor wafer in which a modified layer is formed inside the semiconductor wafer by irradiating a laser along a region to be singulated of each chip. By laser irradiation, by forming the modified layer of a thickness T A to the semiconductor wafer 5, the back-side grinding of a subsequent semiconductor wafer, the semiconductor wafer 5 is than or equal the thickness T A and the thickness T A By grinding to be thin, the semiconductor wafer 5 can be thinned and separated into semiconductor chips at the same time. The thickness T A is not particularly limited as long as less than the thickness of back grinding the semiconductor wafer before, it is it is practical than the final thickness of the wafer greater the 20 ~ 30 [mu] m.
This method is a method that combines stealth dicing and tip dicing, and is also called a chip singulation method corresponding to a narrow scribe width. According to this method, the modified layer of silicon (semiconductor wafer) is cleaved and separated by stress during wafer back grinding, so the kerf width is zero, the chip yield is high, and the bending strength is improved. To do.
The semiconductor wafer B is a semiconductor wafer in which a groove is formed by mechanical means along a region to be singulated of each chip. By mechanical means (e.g., a dicing blade), by forming a groove in the thickness T B to the semiconductor wafer 5, the back-side grinding of a subsequent semiconductor wafer, the semiconductor wafer 5 is equal to or above the aforementioned thickness T B by grinding to be thinner than the thickness T B, it is possible to perform thinning of the semiconductor wafer 5 and the pieces of the semiconductor chips at the same time. The thickness T B is not particularly limited as long as less than the thickness of back grinding the semiconductor wafer before it is is practical than the final thickness of the wafer greater the 20 ~ 30 [mu] m.
This method is called a DBG (first dicing) method. According to this method, although there is a limit to narrowing the width of the kerf (also referred to as a scribe line or street) which is the distance between the chips, it is possible to increase the bending strength of the chip and to suppress the breakage of the chip. .
 本発明の半導体加工用粘着テープを使用する上記半導体チップの製造方法(半導体ウェハの加工方法)を、図2を参照して説明する。
 本発明の半導体加工用粘着テープ1は、粘着剤層3上に剥離フィルム4を有する場合は、剥離フィルム4を剥がして接着剤層3を剥き出しにし、基材2、粘着剤層3が積層された半導体加工用粘着テープ1を使用する(図2(a)参照)。本発明の半導体加工用粘着テープ1は半導体ウェハ5に、半導体ウェハ5の凸部51と粘着剤層3とが接するように貼合せ、凸部51が本発明の半導体加工用粘着テープ1で被覆された半導体ウェハ5を得る(図2(b)参照)。ここで、凸部51とは、半導体ウェハにおいて、個片化された際に半導体チップを構成し得る部分を意味し、通常、半導体素子の回路などが形成されたパターン面を有する。
The semiconductor chip manufacturing method (semiconductor wafer processing method) using the semiconductor processing adhesive tape of the present invention will be described with reference to FIG.
When the adhesive tape 1 for semiconductor processing of this invention has the peeling film 4 on the adhesive layer 3, the peeling film 4 is peeled off and the adhesive layer 3 is exposed, and the base material 2 and the adhesive layer 3 are laminated | stacked. The semiconductor processing adhesive tape 1 is used (see FIG. 2A). The adhesive tape 1 for semiconductor processing of the present invention is bonded to a semiconductor wafer 5 so that the convex portion 51 of the semiconductor wafer 5 and the adhesive layer 3 are in contact with each other, and the convex portion 51 is covered with the adhesive tape 1 for semiconductor processing of the present invention. Obtained semiconductor wafer 5 is obtained (see FIG. 2B). Here, the convex portion 51 means a portion that can constitute a semiconductor chip when separated into pieces in a semiconductor wafer, and usually has a pattern surface on which a circuit of a semiconductor element or the like is formed.
 この半導体ウェハ5の裏面を研磨機7により研削することで半導体ウェハ5を薄膜化し(図2(c)参照)、最終的に、パターン面を有する半導体チップに個片化される。
 個片化された半導体チップは、チャックテーブル上に吸着した状態での剥離テープによる剥離等の常法により、本発明の半導体加工用粘着テープ1からピックアップされる。この際、粘着剤層3が紫外線硬化型である場合には、紫外線照射により粘着剤層3の粘着力を低下させることで、個片化された半導体チップから粘着剤層3を容易に剥離することが可能となる。
The back surface of the semiconductor wafer 5 is ground by the polishing machine 7 to reduce the thickness of the semiconductor wafer 5 (see FIG. 2C), and finally is separated into semiconductor chips having a pattern surface.
The separated semiconductor chip is picked up from the semiconductor processing pressure-sensitive adhesive tape 1 of the present invention by a conventional method such as peeling with a peeling tape while adsorbed on the chuck table. At this time, when the pressure-sensitive adhesive layer 3 is an ultraviolet curable type, the pressure-sensitive adhesive layer 3 is easily peeled off from the separated semiconductor chip by reducing the adhesive force of the pressure-sensitive adhesive layer 3 by ultraviolet irradiation. It becomes possible.
 以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれらに限定されるものではない。
 なお、以下で使用する樹脂の密度は、JIS K7112により、また、樹脂のMFRは、JIS K7210により、温度190℃、荷重21.18Nでの値を、それぞれ測定した。
EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these.
The density of the resin used below was measured according to JIS K7112, and the MFR of the resin was measured according to JIS K7210 at a temperature of 190 ° C. and a load of 21.18 N.
<実施例1>
1.粘着剤組成物の調製
 アクリレートモノマーとして2-エチルヘキシルアクリレートを80質量部、官能基を持つアクリレートモノマーとして2-ヒドロキシエチルアクリレートを20質量部、メチルメタクリレート1質量部を構成成分とする(メタ)アクリル共重合体に対し、分子中に紫外線重合性炭素-炭素二重結合と、水酸基に反応するイソシアネート基とを有する2-イソシアナトエチルメタクリレートを3質量部反応させ、紫外線重合性炭素-炭素二重結合を有する(メタ)アクリル系共重合体を得た。この共重合体100質量部に対し、架橋剤としてイソシアネート化合物(日本ポリウレタン工業社製、商品名:コロネートL)0.9質量部と、光重合開始剤(BASF社製、商品名:イルガキュア184)5.0質量部とを混合し、紫外線硬化型の粘着剤組成物を得た。
2.基材の作製
 押出し法にて作製した、LLDPE(直鎖状低密度ポリエチレン、メタロセン触媒重合体)25μm、COP(環状オレフィンポリマー)50μm、LLDPE25μmがこの順に積層された、総厚100μmの基材を得た。ここで、COPのエチレン含有量は30質量%、MFRは0.8g/10minであった。また、LLDPEのMFRは2.5g/10min、密度は0.925g/cmであった。
3.半導体加工用粘着テープの作製
 離型処理が施されたPETフィルム(厚さ25μm)上に、上記粘着剤組成物を乾燥後の厚さが30μmとなるように塗工し、乾燥させて溶剤である酢酸エチルを蒸発させた後に、基材と貼り合わせて粘着剤を基材側に転写し、実施例1に係る半導体加工用粘着テープを得た。この半導体加工用粘着テープ1は、図1に示すように、基材フィルム2、粘着剤層3、剥離フィルム4がこの順に積層された構造を有する。また、基材フィルム2は、粘着剤層3側から順に、層B、層A、層Bがこの順に積層された構造を有する。
<Example 1>
1. Preparation of pressure-sensitive adhesive composition 80 parts by mass of 2-ethylhexyl acrylate as an acrylate monomer, 20 parts by mass of 2-hydroxyethyl acrylate as an acrylate monomer having a functional group, and 1 part by mass of methyl methacrylate as constituent components (meth) acrylic The polymer is reacted with 3 parts by mass of 2-isocyanatoethyl methacrylate having an ultraviolet-polymerizable carbon-carbon double bond in the molecule and an isocyanate group that reacts with a hydroxyl group, thereby producing an ultraviolet-polymerizable carbon-carbon double bond. A (meth) acrylic copolymer having the following was obtained. For 100 parts by mass of this copolymer, 0.9 part by mass of an isocyanate compound (trade name: Coronate L, manufactured by Nippon Polyurethane Industry Co., Ltd.) as a crosslinking agent, and a photopolymerization initiator (trade name: Irgacure 184, manufactured by BASF) 5.0 parts by mass was mixed to obtain an ultraviolet curable pressure-sensitive adhesive composition.
2. Preparation of base material A base material having a total thickness of 100 μm, prepared by an extrusion method, in which 25 μm of LLDPE (linear low density polyethylene, metallocene catalyst polymer), 50 μm of COP (cyclic olefin polymer), and 25 μm of LLDPE were laminated in this order. Obtained. Here, the ethylene content of COP was 30% by mass, and the MFR was 0.8 g / 10 min. Further, MFR of LLDPE was 2.5 g / 10 min, and the density was 0.925 g / cm 3 .
3. Preparation of pressure-sensitive adhesive tape for semiconductor processing The pressure-sensitive adhesive composition was applied on a PET film (thickness 25 μm) subjected to a release treatment so that the thickness after drying was 30 μm, dried and then used with a solvent. After evaporating some ethyl acetate, it was bonded to the base material, and the pressure-sensitive adhesive was transferred to the base material side to obtain a pressure-sensitive adhesive tape for semiconductor processing according to Example 1. As shown in FIG. 1, the semiconductor processing pressure-sensitive adhesive tape 1 has a structure in which a base film 2, a pressure-sensitive adhesive layer 3, and a release film 4 are laminated in this order. Furthermore, the substrate film 2 includes sequentially from the pressure-sensitive adhesive layer 3 side, the layer B 1, a layer A, a structure in which the layer B 2 are laminated in this order.
<実施例2>
 LLDPEを、MFRが4g/10minのLLDPE(メタロセン触媒重合体)に変更した以外は実施例1と同様の方法で、実施例2に係る半導体加工用粘着テープを得た。
<Example 2>
A semiconductor processing pressure-sensitive adhesive tape according to Example 2 was obtained in the same manner as in Example 1 except that LLDPE was changed to LLDPE (metallocene catalyst polymer) having an MFR of 4 g / 10 min.
<実施例3>
 基材の厚さを、LLDPE35μm、COP80μm、LLDPE35μmの総厚150μmに変更した以外は実施例2と同様の方法で、実施例3に係る半導体加工用粘着テープを得た。
<Example 3>
A pressure-sensitive adhesive tape for semiconductor processing according to Example 3 was obtained in the same manner as in Example 2 except that the thickness of the substrate was changed to 150 μm in total thickness of LLDPE 35 μm, COP 80 μm, and LLDPE 35 μm.
<実施例4>
 LLDPEを、MFRは7.0g/10min、密度は0.964g/cmのHDPEに変更し、COPを、エチレン含有量は35質量%、MFRは2.0g/10minのCOPに変更した以外は実施例1と同様の方法で、実施例4に係る半導体加工用粘着テープを得た。
<Example 4>
LLDPE was changed to HDPE with MFR of 7.0 g / 10 min and density of 0.964 g / cm 3 , except that COP was changed to COP with ethylene content of 35% by mass and MFR of 2.0 g / 10 min. A semiconductor processing pressure-sensitive adhesive tape according to Example 4 was obtained in the same manner as in Example 1.
<実施例5>
 LLDPEを、MFRが2.0g/10min、密度は0.918g/cmのLLDPE(メタロセン触媒重合体)に変更した以外は実施例1と同様の方法で、実施例5に係る半導体加工用粘着テープを得た。
<Example 5>
Adhesion for semiconductor processing according to Example 5 except that LLDPE was changed to LLDPE (metallocene catalyst polymer) having an MFR of 2.0 g / 10 min and a density of 0.918 g / cm 3. I got a tape.
<実施例6>
 LLDPEを、MFRが4.0g/10min、密度は0.944g/cmのLLDPEに変更し、基材の厚さを、LLDPE16μm、COP48μm、LLDPE16μmの総厚80μmに変更した以外は実施例1と同様の方法で、実施例6に係る半導体加工用粘着テープを得た。
<Example 6>
Example 1 except that LLDPE was changed to LLDPE with MFR of 4.0 g / 10 min and density of 0.944 g / cm 3 , and the thickness of the base material was changed to LLDPE of 16 μm, COP of 48 μm, and LLDPE of 16 μm, total thickness of 80 μm. By the same method, the adhesive tape for semiconductor processing which concerns on Example 6 was obtained.
<比較例1>
 LLDPEを、MFRは3.1g/10min、密度は0.925g/cmのLDPEに変更した以外は実施例1と同様の方法で、比較例1に係る半導体加工用粘着テープを得た。
<Comparative Example 1>
A pressure-sensitive adhesive tape for semiconductor processing according to Comparative Example 1 was obtained in the same manner as in Example 1 except that LLDPE was changed to LDPE having an MFR of 3.1 g / 10 min and a density of 0.925 g / cm 3 .
<比較例2>
 COPを、エチレン含有量は35質量%、MFRは2.0g/10minのCOPに変更した以外は比較例1と同様の方法で、比較例2に係る半導体加工用粘着テープを得た。
<Comparative example 2>
A pressure-sensitive adhesive tape for semiconductor processing according to Comparative Example 2 was obtained in the same manner as in Comparative Example 1 except that the COP was changed to a COP having an ethylene content of 35% by mass and an MFR of 2.0 g / 10 min.
<比較例3>
 LLDPEを、MFRは2.5g/10min、密度は0.928g/cmのエチレン酢酸ビニル共重合体に変更した以外は比較例1と同様の方法で、比較例3に係る半導体加工用粘着テープを得た。
<Comparative Example 3>
Adhesive tape for semiconductor processing according to Comparative Example 3, except that LLDPE was changed to an ethylene vinyl acetate copolymer having an MFR of 2.5 g / 10 min and a density of 0.928 g / cm 3. Got.
 得られた半導体加工用粘着テープについて、以下の評価を行った。 The following evaluation was performed about the obtained adhesive tape for semiconductor processing.
[1.層間密着性]
 層B及び層Bを構成する樹脂と、層Aを構成する樹脂を用いて、それぞれ縦1300mm、横25mm、厚さ100μmのフィルムを作製した。作製した2種類のフィルムの25mm×10mmの領域を重ね、220℃で5秒、熱圧着して、接合部を形成した。ストログラフ(東洋精機社製)で、速度300mm/min、剥離角度180°で剥離した際の剥離強度を測定した。剥離強度が5N以上のものを「○」、5N未満のものを「×」と評価した。
[1. Interlayer adhesion]
A film having a length of 1300 mm, a width of 25 mm, and a thickness of 100 μm was prepared using the resin constituting the layers B 1 and B 2 and the resin constituting the layer A, respectively. An area of 25 mm × 10 mm of the two types of produced films was overlapped and thermocompression bonded at 220 ° C. for 5 seconds to form a joint. The peel strength when peeled at a speed of 300 mm / min and a peel angle of 180 ° was measured with a strograph (manufactured by Toyo Seiki). The peel strength of 5N or more was evaluated as “◯”, and the peel strength of less than 5N was evaluated as “x”.
[2.耐熱性]
 表面が平滑な8インチのダミーウェハに、実施例、比較例に係る半導体加工用粘着テープの各テープの粘着剤層側を貼合し、ディスコ社製グラインダーDGP8760(商品名)を用いて、ウェハを厚さ50μmまで研削した。研削後、テープ側がホットプレートと接するようにしてホットプレートにて70℃まで加熱し、外観に変化が無かったものを「○」、変化があったもの「×」と評価した。
[2. Heat-resistant]
The adhesive layer side of each tape of the adhesive tape for semiconductor processing according to Examples and Comparative Examples is bonded to a 8-inch dummy wafer having a smooth surface, and the wafer is bonded using a disco grinder DGP8760 (trade name). Grinding to a thickness of 50 μm. After grinding, the tape side was heated to 70 ° C. with the hot plate so as to be in contact with the hot plate, and “◯” was evaluated when there was no change in appearance, and “X” when there was a change.
[3.剥離性]
 8インチのダミーウェハに、上記で作製した半導体加工用粘着テープ(以下、粘着テープと称す。)を貼合し、ディスコ社製グラインダーDGP8760(商品名)を用いて、ウェハを厚さ50μmまで研削した。研削後、粘着テープ側から高圧水銀灯を用いて、積算照射量500mJ/cmの紫外線を照射し、粘着剤層を硬化させて粘着力を低減させた後、粘着テープ面を上にした状態でチャックテーブル上に吸着し、剥離テープ(日東電工社製)を用いて粘着テープを剥離した。ウェハと粘着剤層の界面で剥離したものを「○」、剥離できなかったあるいはそれ以外の箇所で剥離したものを「×」と評価した。
[3. Peelability]
The adhesive tape for semiconductor processing (hereinafter referred to as “adhesive tape”) produced above was bonded to an 8-inch dummy wafer, and the wafer was ground to a thickness of 50 μm using a disco grinder DGP8760 (trade name). . After grinding, using a high-pressure mercury lamp from the adhesive tape side, irradiate ultraviolet rays with an integrated irradiation amount of 500 mJ / cm 2 to cure the adhesive layer and reduce the adhesive force, then with the adhesive tape surface facing up It was adsorbed on the chuck table, and the adhesive tape was peeled off using a peeling tape (manufactured by Nitto Denko Corporation). What was peeled off at the interface between the wafer and the pressure-sensitive adhesive layer was evaluated as “◯”, and those that could not be peeled off or peeled off at other locations were evaluated as “x”.
[4.クラック]
 チップの大きさが縦10mm×横12mmの、個片化予定領域に沿って深さ75μmの溝を形成した8インチのダミーウェハ(厚さ725μm)に、上記で作製した半導体加工用粘着テープ(以下、粘着テープと称す。)を、溝を形成した面側で貼合し、ディスコ社製グラインダーDGP8760(商品名)を用いて、ウェハを厚さ50μmまで研削し、チップを個片化した。研削後、粘着テープ側から高圧水銀灯を用いて、積算照射量500mJ/cmの紫外線を照射し、粘着剤層を硬化させて粘着力を低減させた後、粘着テープから各チップを剥離して、チップ端部のクラックを顕微鏡で観察した。クラックの発生したチップ数が10個以下のものを「○」、10~20個のものを「△」、20個以上のものを「×」と評価した。
[4. crack]
An 8-inch dummy wafer (thickness: 725 μm) formed with a groove of 75 μm depth along the planned individualization area with a chip size of 10 mm long × 12 mm wide (hereinafter referred to as an adhesive tape for semiconductor processing) , Referred to as an adhesive tape) was bonded on the surface side where the grooves were formed, and the wafer was ground to a thickness of 50 μm using a disco grinder DGP8760 (trade name) to separate the chips. After grinding, use a high-pressure mercury lamp from the adhesive tape side to irradiate ultraviolet rays with an integrated irradiation amount of 500 mJ / cm 2 to cure the adhesive layer and reduce the adhesive force, and then peel off each chip from the adhesive tape. The cracks at the end of the chip were observed with a microscope. When the number of cracked chips was 10 or less, “◯” was evaluated, 10 to 20 were evaluated as “Δ”, and 20 or more were evaluated as “X”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1から、本発明で規定する半導体加工用粘着テープである実施例1~6は、耐熱性、剥離性、層間密着性およびクラック発生の抑制のいずれも良好な結果を示した。対して、比較例1及び2の半導体加工用粘着テープは、剥離性および層間密着性に劣っており、比較例3の半導体加工用粘着テープは、層間密着性が劣っていた。 From Table 1 above, Examples 1 to 6, which are adhesive tapes for semiconductor processing specified in the present invention, showed good results in all of heat resistance, peelability, interlayer adhesion, and suppression of crack generation. On the other hand, the adhesive tape for semiconductor processing of Comparative Examples 1 and 2 was inferior in peelability and interlayer adhesion, and the adhesive tape for semiconductor processing in Comparative Example 3 was inferior in interlayer adhesion.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2017年3月10日に日本国で特許出願された特願2017-046435に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims priority based on Japanese Patent Application No. 2017-046435 filed in Japan on March 10, 2017, which is hereby incorporated herein by reference. Capture as part.
1 半導体加工用粘着テープ
2 基材
3 粘着剤層
4 剥離フィルム
5 半導体ウェハ
7 研磨機
51 凸部
DESCRIPTION OF SYMBOLS 1 Adhesive tape for semiconductor processing 2 Base material 3 Adhesive layer 4 Release film 5 Semiconductor wafer 7 Polishing machine 51 Convex part

Claims (5)

  1.  基材と、該基材の片面に設けられた粘着剤層とからなる粘着テープであって、前記基材が複層構造からなり、該複層構造の少なくとも1層が環状オレフィンポリマーを80質量%以上含有する層Aであって、該層Aとは別に、直鎖状低密度ポリエチレンまたは高密度ポリエチレンを含有する層Bを有することを特徴とする、半導体加工用粘着テープ。 A pressure-sensitive adhesive tape comprising a base material and a pressure-sensitive adhesive layer provided on one side of the base material, wherein the base material has a multi-layer structure, and at least one layer of the multi-layer structure is composed of 80 masses of a cyclic olefin polymer. % Of layer A, and a layer B containing linear low-density polyethylene or high-density polyethylene separately from the layer A, a pressure-sensitive adhesive tape for semiconductor processing.
  2.  前記直鎖状低密度ポリエチレンの密度が0.95g/cm以下であることを特徴とする、請求項1に記載の半導体加工用粘着テープ。 The pressure-sensitive adhesive tape for semiconductor processing according to claim 1, wherein the density of the linear low-density polyethylene is 0.95 g / cm 3 or less.
  3.  前記直鎖状低密度ポリエチレンのメルトフローレートが4.0g/10min以下であることを特徴とする、請求項1または2に記載の半導体加工用粘着テープ。 The pressure-sensitive adhesive tape for semiconductor processing according to claim 1 or 2, wherein the linear low-density polyethylene has a melt flow rate of 4.0 g / 10 min or less.
  4.  前記直鎖状低密度ポリエチレンが、メタロセンポリエチレンであることを特徴とする、請求項1~3のいずれか1項に記載の半導体加工用粘着テープ。 The pressure-sensitive adhesive tape for semiconductor processing according to any one of claims 1 to 3, wherein the linear low-density polyethylene is metallocene polyethylene.
  5.  各チップの個片化予定領域に沿ってレーザーを照射して半導体ウェハ内部に改質層を形成した半導体ウェハ、または、各チップの個片化予定領域に沿って機械的手段により溝を形成した半導体ウェハを、前記半導体ウェハの裏面研削によりチップへ個片化する半導体チップの製造に用いられることを特徴とする、請求項1~4のいずれか1項に記載の半導体加工用粘着テープ。 A semiconductor wafer in which a modified layer is formed inside the semiconductor wafer by irradiating a laser along the individual separation area of each chip, or a groove is formed by mechanical means along the individual separation area of each chip. The pressure-sensitive adhesive tape for semiconductor processing according to any one of claims 1 to 4, wherein the pressure-sensitive adhesive tape is used for manufacturing a semiconductor chip in which a semiconductor wafer is divided into chips by grinding the back surface of the semiconductor wafer.
PCT/JP2018/008737 2017-03-10 2018-03-07 Adhesive tape for semiconductor processing WO2018164175A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197017291A KR102267114B1 (en) 2017-03-10 2018-03-07 Adhesive tape for semiconductor processing
CN201880005072.1A CN110073470B (en) 2017-03-10 2018-03-07 Adhesive tape for semiconductor processing
MYPI2019005133A MY197838A (en) 2017-03-10 2018-03-07 Semiconductor-processing temporary-adhesive tape
SG11201907365RA SG11201907365RA (en) 2017-03-10 2018-03-07 Semiconductor-processing temporary-adhesive tape

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017046435A JP6667468B2 (en) 2017-03-10 2017-03-10 Adhesive tape for semiconductor processing
JP2017-046435 2017-03-10

Publications (1)

Publication Number Publication Date
WO2018164175A1 true WO2018164175A1 (en) 2018-09-13

Family

ID=63448766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008737 WO2018164175A1 (en) 2017-03-10 2018-03-07 Adhesive tape for semiconductor processing

Country Status (7)

Country Link
JP (1) JP6667468B2 (en)
KR (1) KR102267114B1 (en)
CN (1) CN110073470B (en)
MY (1) MY197838A (en)
SG (1) SG11201907365RA (en)
TW (1) TWI705119B (en)
WO (1) WO2018164175A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113366621A (en) * 2019-05-10 2021-09-07 昭和电工材料株式会社 Method for evaluating pickup property, die-cut and die-bond integrated film, method for evaluating die-cut and die-bond integrated film, method for sorting die-cut and die-bond integrated film, and method for manufacturing semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070092A (en) * 2013-09-27 2015-04-13 グンゼ株式会社 Substrate film for dicing
JP6068438B2 (en) * 2012-03-12 2017-01-25 リンテック株式会社 Backgrind sheet base material and pressure-sensitive adhesive sheet, base material and sheet manufacturing method, and workpiece manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140520A (en) 1997-07-23 1999-02-12 Toshiba Corp Method of dividing wafer and manufacture of semiconductor device
JP2001240842A (en) 2000-02-28 2001-09-04 Nitto Denko Corp Uv-curing type adhesive composition and its adhesive sheets
JP3408805B2 (en) 2000-09-13 2003-05-19 浜松ホトニクス株式会社 Cutting origin region forming method and workpiece cutting method
TW568825B (en) * 2001-07-10 2004-01-01 Rung-Wei Jeng Intelligent iterative learning method for controlling filling and pressure-maintaining of injection molding device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6068438B2 (en) * 2012-03-12 2017-01-25 リンテック株式会社 Backgrind sheet base material and pressure-sensitive adhesive sheet, base material and sheet manufacturing method, and workpiece manufacturing method
JP2015070092A (en) * 2013-09-27 2015-04-13 グンゼ株式会社 Substrate film for dicing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113366621A (en) * 2019-05-10 2021-09-07 昭和电工材料株式会社 Method for evaluating pickup property, die-cut and die-bond integrated film, method for evaluating die-cut and die-bond integrated film, method for sorting die-cut and die-bond integrated film, and method for manufacturing semiconductor device
CN113366621B (en) * 2019-05-10 2021-12-31 昭和电工材料株式会社 Method for evaluating pickup property, die-cut and die-bond integrated film, method for evaluating die-cut and die-bond integrated film, method for sorting die-cut and die-bond integrated film, and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
TWI705119B (en) 2020-09-21
SG11201907365RA (en) 2019-09-27
KR20190085059A (en) 2019-07-17
JP6667468B2 (en) 2020-03-18
JP2018152420A (en) 2018-09-27
TW201833276A (en) 2018-09-16
MY197838A (en) 2023-07-20
CN110073470B (en) 2023-10-17
KR102267114B1 (en) 2021-06-21
CN110073470A (en) 2019-07-30

Similar Documents

Publication Publication Date Title
JP5823591B1 (en) Adhesive tape for protecting semiconductor wafer surface and method for processing semiconductor wafer
JP4970863B2 (en) Workpiece processing method
JP4748518B2 (en) Dicing die bond tape and dicing tape
TWI385759B (en) Dicing die-bonding film, method of fixing work piece and semiconductor device
JP5781302B2 (en) Radiation curable pressure-sensitive adhesive composition and pressure-sensitive adhesive sheet
JP7079200B2 (en) Adhesive tape for protecting the surface of semiconductor wafers and processing methods for semiconductor wafers
JP5491049B2 (en) Substrate-less pressure-sensitive adhesive sheet for semiconductor wafer protection, semiconductor wafer back surface grinding method using the pressure-sensitive adhesive sheet, and method for producing the pressure-sensitive adhesive sheet
JP2005019666A (en) Method for grinding semiconductor wafer and adhesive sheet for grinding semiconductor wafer
JP4947564B2 (en) Adhesive sheet for semiconductor wafer processing
JP5697061B1 (en) Adhesive tape for semiconductor wafer processing and method for processing semiconductor wafer
WO2016148110A1 (en) Adhesive tape for semiconductor wafer processing
JP2018115332A (en) Pressure-sensitive adhesive tape and production method of semiconductor device
JP2006188607A (en) Removable adhesive sheet
JP5184664B2 (en) Dicing tape and semiconductor chip manufacturing method
JP2000355678A (en) Re-releasing type pressure-sensitive adhesive and re- releasing type pressure-sensitive adhesive sheet
JP2014192464A (en) Adhesive tape for protecting semiconductor wafer surface
JP2002203822A (en) Method for processing brittle member and both-side adhesive sheet
TWI304610B (en) Method of manufacturing a thin-film circuit substrate having penetrating structure, and protecting adhesive tape
WO2018164175A1 (en) Adhesive tape for semiconductor processing
JP2023043724A (en) Tape for semiconductor processing and method for manufacturing semiconductor chip
JP6678795B1 (en) Electronic component tape and electronic component processing method
TWI764114B (en) Tape for electronic parts and processing method of electronic parts
JP7475923B2 (en) Sheet for manufacturing semiconductor device and method for manufacturing the sheet for manufacturing semiconductor device.
TW202227571A (en) Semiconductor processing adhesive tape, and method for manufacturing semiconductor device
JP2023013022A (en) Adhesive tape for electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764717

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197017291

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18764717

Country of ref document: EP

Kind code of ref document: A1