WO2018163950A1 - イオントラップ装置 - Google Patents

イオントラップ装置 Download PDF

Info

Publication number
WO2018163950A1
WO2018163950A1 PCT/JP2018/007712 JP2018007712W WO2018163950A1 WO 2018163950 A1 WO2018163950 A1 WO 2018163950A1 JP 2018007712 W JP2018007712 W JP 2018007712W WO 2018163950 A1 WO2018163950 A1 WO 2018163950A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
voltage
ion trap
switching unit
switching
Prior art date
Application number
PCT/JP2018/007712
Other languages
English (en)
French (fr)
Inventor
一 狭間
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to US16/471,727 priority Critical patent/US10770281B2/en
Priority to JP2019504515A priority patent/JP6705553B2/ja
Priority to KR1020197028037A priority patent/KR20190121821A/ko
Priority to CN201880016430.9A priority patent/CN110383418B/zh
Priority to EP18763412.6A priority patent/EP3594992A4/en
Publication of WO2018163950A1 publication Critical patent/WO2018163950A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/022Circuit arrangements, e.g. for generating deviation currents or voltages ; Components associated with high voltage supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/426Methods for controlling ions
    • H01J49/427Ejection and selection methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0468Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components with means for heating or cooling the sample
    • H01J49/0486Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components with means for heating or cooling the sample with means for monitoring the sample temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/424Three-dimensional ion traps, i.e. comprising end-cap and ring electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/426Methods for controlling ions
    • H01J49/4295Storage methods

Definitions

  • the present invention relates to an ion trap apparatus that traps ions or selects ions by the action of a high-frequency electric field, and more particularly relates to an ion trap apparatus that uses a rectangular wave voltage as a voltage for generating a high-frequency electric field.
  • the present invention has been made in order to solve the above-mentioned problems, and the object of the present invention is to reduce not only the influence of time drift of ion ejection but also the influence caused by the difference in analysis conditions, thereby performing high-accuracy mass spectrometry. It is an object of the present invention to provide an ion trap apparatus capable of performing the above.
  • the switching unit includes a semiconductor switching element
  • the switching unit temperature adjusting means includes: d) a heat sink thermally connected to the semiconductor switching element; e) a heater for heating the heat sink; f) a temperature sensor for measuring the temperature of the heat sink; g) control means for controlling the heater so that the temperature measured by the temperature sensor approaches the target temperature; It is characterized by having.
  • each of the switching sections is composed of a plurality of (for example, three) switching elements connected in series. It was necessary to distribute the pressure.
  • the ion trap having such a configuration if the temperature adjustment by the heat sink, the heater, and the temperature sensor as described above is performed on all the switching elements included in each switching unit, the number of parts increases and the manufacturing cost increases. To do.
  • the rectangular wave voltage generator is h) a first voltage source for generating a DC voltage; i) a second voltage source for generating a DC voltage different from the first voltage source; j) a first switching unit for turning on and off a DC voltage output from the first voltage source; k) a second switching unit for turning on and off the DC voltage output from the second voltage source;
  • the rectangular wave voltage is generated by alternately turning on and off the first switching unit and the second switching unit, It is desirable that the first switching unit and the second switching unit are each configured by a single semiconductor switching element made of a silicon carbide semiconductor.
  • a switching element made of a silicon carbide (SiC) semiconductor has a higher withstand voltage than a switching element made of a normal silicon (Si) semiconductor (for example, with a Si-MOSFET having a withstand voltage of about 1200 V). Therefore, unlike the above-described general ion trap apparatus, it is not necessary to connect a plurality of semiconductor switching elements in series and distribute the voltage, so that each switching unit can be configured with a single semiconductor switching element. As a result, the number of heat sinks, heaters, and temperature sensors necessary for temperature control can be reduced, and it can be realized at low cost.
  • heat sinks are generally made of metals such as aluminum, iron, and copper that have excellent thermal conductivity, but these metals are also good conductors, so they are attached to switching elements that operate at high frequencies. If the heat sink functions as an antenna and emits high-frequency noise, or if a switching element with a different on / off voltage is attached to one heat sink, current flows between the switching elements via the heat sink. (The semiconductor switching element is packaged with an insulator, but a current flows when a switching operation at the MHz level is performed).
  • thermo insulation Since ceramics have high electrical insulation, it is possible to prevent the emission of high-frequency noise as described above by using a ceramic heat sink connected to the switching element.
  • a ceramic heat sink made of ceramics for example, a heat sink made of aluminum nitride (AluminumANitride, AlN) excellent in thermal conductivity and electrical insulation can be suitably used.
  • the ion trap apparatus according to the present invention can be configured such that a single heat sink is thermally connected to a plurality of semiconductor switching elements.
  • the ion trap device of the present invention by maintaining the switching unit at a constant temperature, the influence of the time drift of ion discharge when shifting from the standby state to the analysis state, The change in the amplitude of the rectangular wave voltage due to the difference in the analysis mode can be suppressed, and mass measurement with high accuracy becomes possible.
  • the principal part block diagram of the ion trap mass spectrometer provided with the ion trap apparatus which concerns on one Example of this invention. Sectional drawing which shows schematic structure of the heat sink, heater, temperature sensor, and switching element in the Example.
  • the principal part block diagram of the ion trap mass spectrometer provided with the ion trap apparatus which concerns on the other Example of this invention. Sectional drawing which shows schematic structure of the heat sink, heater, temperature sensor, and switching element in the Example.
  • the ion trap 2 is a three-dimensional quadrupole including an annular ring electrode 21 and an inlet side end cap electrode 22 and an outlet side end cap electrode 24 that are arranged so as to face each other.
  • the space surrounded by these three electrodes 21, 22, 24 is an ion trapping region.
  • An ion incident port 23 is bored substantially at the center of the entrance-side end cap electrode 22, and ions emitted from the ionization unit 1 pass through the ion incident port 23 and are introduced into the ion trap 2.
  • an ion emission port 25 is formed substantially at the center of the outlet-side end cap electrode 24, and ions discharged from the ion trap 2 through the ion emission port 25 reach the detection unit 3 and are detected.
  • the detection unit 3 includes a conversion dynode 31 that converts ions into electrons, and a secondary electron multiplier 32 that multiplies and detects electrons arriving from the conversion dynode 31, and detects according to the amount of incident ions.
  • the signal is sent to the data processing unit 8.
  • a main power supply unit 4 (corresponding to a rectangular wave voltage generation unit in the present invention) for driving the ion trap 2 includes a first voltage source 41 that generates a first voltage V H and a second voltage V L (V L ⁇ V L ⁇ V H ) generated second voltage source 42, first switching unit 43 and second switching unit 44 connected in series between the output terminal of first voltage source 41 and the output terminal of second voltage source 42, , And a rectangular wave-like output voltage V OUT is taken out from the connection connecting the switching units 43 and 44 in series and applied to the ring electrode 21.
  • the auxiliary power supply 5 applies a DC voltage or a rectangular wave voltage to the end cap electrodes 22 and 24, respectively.
  • the first voltage V H generated from the first voltage source 41 is about +1 kV
  • the second voltage V L generated from the second voltage source 42 is about ⁇ 1 kV.
  • the switching units 43 and 44 connected between the voltage sources 41 and 42 are required to have high pressure resistance. Therefore, in the ion trap device of the present embodiment, the first switching unit 43 and the second switching unit 44 are each a single semiconductor switching element made of silicon carbide (SiC), specifically, a SiC-MOSFET. It is composed. Since the SiC-MOSFET has a withstand voltage as high as 1200 V, it can be normally operated even if only one is disposed at each of the output terminal of the first voltage source 41 and the output terminal of the second voltage source 42.
  • the main power supply unit 4 is provided with a first heat sink 93a and a second heat sink 93b as a characteristic configuration in the present invention.
  • the heat sinks 93a and 93b are both made of aluminum nitride, which is a ceramic having excellent thermal conductivity.
  • the first heat sink 93a is attached to the first switching element 45, and the second heat sink 93b is the second switching element. 46 is attached.
  • the cross-sectional structure of these heat sinks is shown in FIG.
  • Each of the heat sinks 93a and 93b has a configuration in which a plurality of plate-like fins 97a and 97b are erected on the upper surface of the rectangular parallelepiped bases 96a and 96b.
  • the bases 96a and 96b are provided with holes extending from the side surfaces to the inside, and planar heaters 94a and 94b and temperature sensors 95a and 95b are inserted therein.
  • the temperature sensors 95a and 95b are disposed above the heaters 94a and 94b.
  • the positional relationship between the two is not limited to this, and for example, the temperature sensors 95a and 95b are disposed on the sides of the heaters 94a and 94b. 95b may be arranged.
  • the heaters 94a and 94b and the heat sinks 93a and 93b may be integrally formed by embedding the heaters 94a and 94b in the bases 96a and 96b when the heat sinks 93a and 93b are manufactured and then sintering aluminum nitride. .
  • the temperature sensors 95a and 95b and the heaters 94a and 94b are connected to the temperature control unit 9, respectively.
  • the timing signal generator 6 is a hardware logic circuit, and generates drive pulses for controlling on / off of the first switching unit 43 and the second switching unit 44 based on the frequency determined by the frequency determination unit 71. In addition to being applied to the main power supply unit 4, for example, a pulse obtained by dividing one of these drive pulses by an appropriate division ratio is applied to the auxiliary power supply unit 5.
  • the first switching unit 43 and the second switching unit 44 are driven so as to be alternately turned on (but not to be turned on at the same time). Since the first voltage V H is output when the first switching unit 43 is turned on and the second voltage V L is output when the second switching unit 44 is turned on, the output voltage V OUT is ideally high.
  • a rectangular wave voltage having a level of V H and a low level of V L is obtained.
  • the frequency of the pulse for driving the switching elements 45 and 46 is changed by the timing signal generator 6, the frequency of the rectangular wave voltage changes while the amplitude (voltage level) is kept constant.
  • a driving pulse having a predetermined frequency is supplied to the switching elements 45 and 46 by the timing signal generator 6, and a rectangular wave voltage having a frequency corresponding to the pulse is generated by the main power supply unit 4 and applied to the ring electrode 21.
  • a high-frequency electric field is formed in the ion trap 2, and ions in a predetermined mass-to-charge ratio range are stably trapped in the ion trap 2 by the action of the high-frequency electric field.
  • the setting of the target temperature T during temperature control will be described.
  • the frequency of the rectangular wave voltage applied to the ring electrode 21 is scanned.
  • the frequency change is sufficiently faster than the temperature change of the switching elements 45 and 46, and is repeated for one sample. Since the analysis is performed under the same analysis conditions, the temperatures reached by the switching units 43 and 44 are substantially determined corresponding to the analysis conditions of the repeated analysis.
  • the temperature of the switching elements 45 and 46 is maintained at the target temperature T in any of the analysis of the sample S1, the standby state, and the analysis of the sample S2.
  • the temperature of the switching elements 45 and 46 is maintained at the target temperature T in any of the analysis of the sample S1, the standby state, and the analysis of the sample S2.
  • a single heat sink 93 may be provided for the first switching unit 43 and the second switching unit 44.
  • the bottom surface of one heat sink 93 is attached to the switching element 45 of the first switching unit 43 and the switching element 46 of the second switching unit 44, the heater 94 and the temperature sensor 95 provided in the heat sink 93, and The temperature control unit 9 connected controls the temperature of the first switching unit 43 and the second switching unit 44.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

イオントラップ装置を、複数の電極を有するイオントラップ2と、直流電圧を発生する電圧源41、42とスイッチング部43、44とを含み、電圧源41、42で発生した直流電圧をスイッチング部43、44でスイッチングすることにより矩形波電圧を生成して前記複数の電極の少なくとも一つに印加する矩形波電圧発生部4と、スイッチング部43、44の温度が、イオントラップ2の動作時におけるスイッチング部43、44の最高到達温度よりも高く、スイッチング部43、44の動作可能温度の上限よりも低い温度である目標温度に維持されるようスイッチング部43、44を温調するスイッチング部温調手段9、93、94、95とを備えたものとする。これにより、イオン排出の時間ドリフトの影響や、分析条件の違いによる影響を受けることなく高精度な質量測定が可能となる。

Description

イオントラップ装置
 本発明は、高周波電場の作用によってイオンを捕捉したりイオンを選択したりするイオントラップ装置に関し、更に詳しくは、高周波電場を生成するための電圧として矩形波電圧を用いるイオントラップ装置に関する。
 質量分析装置においてイオントラップは、高周波電場の作用によりイオンを捕捉して閉じ込めたり、特定の質量電荷比(m/z)を持つイオンを選別したり、更にはそうして選別したイオンを開裂させたりするために用いられる。典型的なイオントラップは、内面が回転1葉双曲面形状である1個のリング電極と、このリング電極を挟んで対向して配置された内面が回転2葉双曲面形状である1対のエンドキャップ電極とから成る3次元四重極型のイオントラップであるが、これ以外に、平行配置された4本のロッド電極から成るリニア型のイオントラップも知られている。本明細書では、便宜上、「3次元四重極型」を例に挙げてイオントラップの説明を行う。
 従来の一般的なイオントラップでは、通常、リング電極に正弦波状の高周波電圧を印加することで、リング電極及びエンドキャップ電極で囲まれる空間にイオン捕捉用の高周波電場を形成し、この高周波電場によりイオンを振動させながら閉じ込めを行う。これに対し、近年、正弦波状の高周波電圧の代わりに矩形波電圧をリング電極に印加することでイオンの閉じ込めを行うイオントラップが開発されている(特許文献1、特許文献2、非特許文献1など参照)。この種のイオントラップは、通常、ハイ、ローの二値の電圧レベルを有する矩形波電圧が使用されることから、デジタルイオントラップ(DIT)とよばれる。
 従来のアナログ駆動方式のイオントラップでは、正弦波状の高周波電圧を発生するためにLC共振器を用いており、正弦波電圧の振幅を変化させることにより捕捉可能なイオンの質量電荷比範囲を制御している。一方、デジタルイオントラップでは、二つの直流電圧を高速にスイッチングすることで矩形波状の高周波電圧を発生しており、その矩形波電圧の振幅を一定に維持したまま周波数を変化させることにより、捕捉可能なイオンの質量電荷比範囲を制御する。したがって、アナログ駆動方式に比べてリング電極に印加する高電圧の振幅が小さくて済むので、高周波電圧発生回路を低コストで構成することができる。また、電極間での不所望な放電の発生も回避できるという利点もある。
 上記デジタルイオントラップにおいて、リング電極に印加される矩形波電圧の電圧レベルは一般的に±数百V~±数kVであり、またその周波数は数十kHz~数MHzと幅広い。このような矩形波電圧を発生するために、高周波電圧発生回路は、電力用MOSFETなどの高速の半導体スイッチング素子により正の電圧と負の電圧とを切り替える構成となっている(特許文献2、非特許文献1参照)。こうした半導体スイッチング素子(以下、単に「スイッチング素子」とよぶ)のスイッチング動作時には熱が発生するため、デジタルイオントラップ用のスイッチング素子の温度はかなり高くなり、その温度はスイッチング動作の周波数に依存して高くなる。
 上記のようなイオントラップを用いた質量分析装置では、従来一般に、分析を実行していない待機状態においては、イオントラップ内に残留している不所望のイオンを一掃するために、イオン捕捉時における通常の周波数範囲を大きく外れた低周波(例えば20kHz以下)の矩形波電圧がリング電極に印加される。そうした待機状態から分析が開始されると、リング電極に印加される矩形波電圧の周波数は高くなるため、スイッチング素子の温度は待機状態のときよりも上昇する。このような温度変化に伴い、例えばスイッチング素子のオン抵抗などの電気的特性が変化し、僅かではあるが矩形波電圧の振幅が変化する。そのため、分析時に矩形波電圧の周波数が低周波から高周波に切り替えられると、スイッチング素子の温度が上昇して安定するまで矩形波電圧の振幅も徐々に変化する(つまりドリフトする)ことになる。
 質量分析装置による分析では、一つのサンプルに対してイオンの生成→該イオンのイオントラップへの導入→質量走査によるイオンの排出及び検出、というプロセスを繰り返し実行し、各質量走査で得られた質量プロファイルをコンピュータで積算処理することでS/Nの高い質量スペクトルを得るのが一般的である(特許文献3など参照)。質量走査の際に或る質量電荷比を有するイオンがイオントラップから排出されるタイミングは、矩形波電圧の周波数と振幅とに依存する。そのため、上記のように温度変化に起因して矩形波電圧の振幅が徐々に変化してしまうと、同一質量電荷比のイオン排出の時間が質量走査を繰り返す毎に徐々にずれてしまう。こうしてズレが生じた質量プロファイルを積算した結果として、質量スペクトルの質量分解能は低下することになる。
 本願発明者は、特許文献4において、質量走査におけるイオン排出の時間ドリフトを低減する機能を備えたイオントラップ装置を提案している。同文献に記載のイオントラップ装置では、一つのサンプルの分析が終了してから次のサンプルの分析が開始されるまでの待機期間中に、次に実行する分析におけるスイッチング素子の到達温度を予測し、該温度を維持するために必要な周波数でスイッチング素子をオン・オフしておく。これにより、待機状態から次の分析に移行した際におけるスイッチング素子の温度変化を抑えることができ、該温度変化に起因するイオン排出の時間ドリフトを低減することができる(なお、イオントラップ内の残留イオンは、次の分析の実行直前に短時間だけ周波数を下げることにより一掃される)。
特表2007-527002号公報 特開2008-282594号公報 国際公開WO2008/129850号パンフレット 特開2011-023167号公報
古橋、竹下、小河、岩本、ディン、ギルズ、スミルノフ、「デジタルイオントラップ質量分析装置の開発」、島津評論、島津評論編集部、2006年3月31日、第62巻、第3・4号、pp.141-151
 しかしながら、分析条件(例えば、測定対象とする質量電荷比範囲や、質量分解能など)が相違すれば、分析実行時に高周波電圧発生回路からイオントラップを構成する電極に印加される矩形波電圧の周波数が相違し、そのために、その分析条件の下で質量走査を繰り返したときのスイッチング素子の到達温度も相違する。
 例えば、500m/z~3000m/zの範囲の質量走査を繰り返す測定モードAと、1000m/z~5000m/zの範囲の質量走査を繰り返す測定モードBがあったとする。両者は測定対象とする質量電荷比範囲が異なるため質量走査時におけるスイッチング動作の周波数範囲も異なり、その結果、分析実行時におけるスイッチング素子の到達温度も相違する(例えば測定モードAで80℃、測定モードBで120℃となる)。上述の通り、スイッチング素子の温度が変化すると得られる矩形波電圧の振幅が変化し、更に、質量走査時に或る質量電荷比を有するイオンがイオントラップから排出されるタイミングは、矩形波電圧の周波数だけでなく振幅にも依存するため、測定モードAと測定モードBでは、同じ質量電荷比(例えば2000m/z)のイオンをイオントラップから排出させるために必要なスイッチング動作の周波数が僅かに相違することとなる。そのため、精密質量測定を行う際には、予め、質量電荷比が既知の標準試料を各測定モードで測定し、測定モード毎にマススペクトルの質量電荷比軸を校正する操作(これを「質量キャリブレーション」とよぶ)を行う必要がある。しかし、こうした作業は煩雑であり、ユーザの負担が大きいという問題があった。
 本発明は上記課題を解決するために成されたものであり、その目的とするところは、イオン排出の時間ドリフトの影響だけでなく分析条件の違いによる影響をも低減して高精度な質量分析を行うことのできるイオントラップ装置を提供することにある。
上記課題を解決するために成された本発明に係るイオントラップ装置は、
 a)複数の電極を有するイオントラップと、
 b)直流電圧を発生する電圧源とスイッチング部とを含み、前記電圧源で発生した直流電圧を前記スイッチング部でスイッチングすることにより矩形波電圧を生成して前記複数の電極の少なくとも一つに印加する矩形波電圧発生部と、
 c)前記スイッチング部の温度が、前記イオントラップの動作時における該スイッチング部の最高到達温度よりも高く、該スイッチング部の動作可能温度の上限よりも低い温度である目標温度に維持されるよう、該スイッチング部を温調するスイッチング部温調手段と、
 を有することを特徴としている。
 ここで「イオントラップの動作時における該スイッチング部の最高到達温度」とは、スイッチング部を温調しない状態で、前記イオントラップ装置を用いて実行可能な各種分析条件における質量分析を実行した場合に、該スイッチング素子が到達する(安定する)温度のうちの最高値を意味し、例えば、予め実測により求めることができる。
 上記発明に係るイオントラップ装置では、矩形波電圧を生成するためのスイッチング部をほぼ一定の温度に維持することができる。その結果、待機状態から分析状態に移行した際もイオン排出の時間ドリフトが発生しないため、上述のように一つのサンプルに対して質量走査を繰り返し実行し、各質量走査で得られた質量プロファイルを積算してマススペクトルを生成する場合でも、質量分解能の高いマススペクトルを得ることができる。更に、本発明に係るイオントラップ装置によれば、分析条件の違いによるスイッチング部の到達温度の差が生じないため、測定モード毎に質量キャリブレーションを行うことなく高い質量精度を達成することができる。
 また、上記本発明に係るイオントラップ装置は、前記スイッチング部が半導体スイッチング素子を含むものであって、前記スイッチング部温調手段が、
 d)前記半導体スイッチング素子に熱的に接続されたヒートシンクと、
 e)前記ヒートシンクを加熱するヒータと、
 f)前記ヒートシンクの温度を測定する温度センサと、
 g)前記温度センサによって測定される温度が前記目標温度に近づくよう前記ヒータを制御する制御手段と、
 を有することを特徴としている。
 ここで、ヒートシンクが「半導体スイッチング素子に熱的に接続」されるとは、ヒートシンクが半導体スイッチング素子に直接当接した状態のほか、ヒートシンクが熱伝導性に優れた部材又は接着剤若しくはグリスなどを介して半導体スイッチング素子に接続された状態をも含む。
 なお、通常、イオントラップ装置では、矩形波電圧発生部(高周波電圧発生回路)において、値の異なる直流電圧を発生する二つの電圧源、例えば、+1kVの直流電圧を発生する第1電圧源と、-1kVの直流電圧を発生する第2電圧源が設けられており、第1電圧源から出力される電圧をオン・オフする第1スイッチング部と、第2電圧源から出力される電圧をオン・オフする第2スイッチング部とを交互にオン・オフすることで矩形波電圧を生成している。但し、一般的なイオントラップ装置で用いられるスイッチング素子であるSi-MOSFETは、耐圧400V程度であるため、前記各スイッチング部を、それぞれ直列に接続した複数個(例えば3個)のスイッチング素子で構成することで圧力を分配させる必要があった。しかしながら、こうした構成のイオントラップにおいて、各スイッチング部に含まれる全てのスイッチング素子に対して上記のようなヒートシンク、ヒータ、及び温度センサによる温調を行おうとすると、部品点数が多くなり製造コストが増大する。
 そこで、本発明に係るイオントラップは、前記矩形波電圧発生部が、
 h)直流電圧を発生する第1電圧源と、
 i)前記第1電圧源とは異なる直流電圧を発生する第2電圧源と、
 j)前記第1電圧源から出力される直流電圧をオン・オフする第1スイッチング部と、
 k)前記第2電圧源から出力される直流電圧をオン・オフする第2スイッチング部と、
 を含み、前記第1スイッチング部及び前記第2スイッチング部を交互にオン・オフすることによって前記矩形波電圧を生成するものであって、
 前記第1のスイッチング部及び前記第2のスイッチング部を、それぞれ炭化ケイ素半導体から成る単一の半導体スイッチング素子で構成されたものとすることが望ましい。
 炭化ケイ素(Silicon Carbide、SiC)半導体から成るスイッチング素子は、通常のケイ素(Silicon、Si)半導体から成るスイッチング素子に比べて耐圧性に優れている(例えば、Si-MOSFETで耐圧1200V程度)。そのため、上述の一般的なイオントラップ装置のように複数の半導体スイッチング素子を直列接続して電圧を分配する必要がないため、各スイッチング部を単一の半導体スイッチング素子で構成することができる。その結果、温調に必要なヒートシンク、ヒータ、温度センサの数を抑えることができ、低コストに実現することが可能となる。
 また、従来のヒートシンクは熱伝導性に優れたアルミニウム、鉄、銅などの金属から成るものが一般的であるが、これらの金属は良導電体でもあるため、高い周波数で動作するスイッチング素子に取り付けた場合、ヒートシンクがアンテナとして機能して高周波ノイズを放出してしまうという問題や、一つのヒートシンクにオン・オフする電圧の異なるスイッチング素子を取り付けるとヒートシンクを介して両スイッチング素子の間に電流が流れてしまうという問題がある(半導体スイッチング素子は絶縁体でパッケージングされているが、MHzレベルのスイッチング動作を行うと電流が流れる)。
 そこで、本発明に係るイオントラップ装置は、前記ヒートシンクとしてセラミックスから成るものを用いることが望ましい。
 セラミックスは電気絶縁性が高いため、スイッチング素子に接続するヒートシンクをセラミックスから成るものとすることにより、上述のような高周波ノイズの放出を防止することができる。なお、セラミックスから成るヒートシンクとしては、例えば、熱伝導性及び電気絶縁性に優れた窒化アルミニウム(Aluminum Nitride、AlN)から成るヒートシンクを好適に用いることができる。
 また、電気絶縁性に優れたセラミックス製のヒートシンクを用いることにより、異なる電圧をオン・オフする複数のスイッチング素子を一つのヒートシンクで温調しても、スイッチング素子間に電流が流れることがない。
 すなわち、本発明に係るイオントラップ装置は、複数の半導体スイッチング素子に対して単一のヒートシンクが熱的に接続されたものとすることができる。
 このような構成によれば、スイッチング素子の温調に用いるヒートシンク、ヒータ、及び温度センサの数を一層低減することができ、より低コストに製造することが可能となる。
 以上で説明した通り、本発明に係るイオントラップ装置によれば、スイッチング部を一定の温度に維持することにより、待機状態から分析状態に移行した際のイオン排出の時間ドリフトの影響や、分析時における分析モードの違いによる矩形波電圧の振幅の変化を抑えることができ、高精度な質量測定が可能となる。
本発明の一実施例に係るイオントラップ装置を備えたイオントラップ質量分析装置の要部構成図。 同実施例におけるヒートシンク、ヒータ、温度センサ、及びスイッチング素子の概略構成を示す断面図。 本発明の他の実施例に係るイオントラップ装置を備えたイオントラップ質量分析装置の要部構成図。 同実施例におけるヒートシンク、ヒータ、温度センサ、及びスイッチング素子の概略構成を示す断面図。
 本発明に係るイオントラップ装置を備えたイオントラップ質量分析装置の一実施例について、添付図面を参照して説明する。図1は本実施例によるイオントラップ質量分析装置の要部の構成図である。
 本実施例によるイオントラップ質量分析装置は、イオン化部1、イオントラップ2、検出部3、主電源部4、補助電源部5、タイミング信号発生部6、制御部7、データ処理部8、及び温度制御部9を備えている。
 イオン化部1はマトリックス支援レーザ脱離イオン化法(MALDI)を用いるものであり、パルス状のレーザ光を出射するレーザ照射部11、目的試料成分を含むサンプルSが付着されたサンプルプレート12、レーザ光の照射によってサンプルSから放出されたイオンを引き出す引き出し電極13、引き出されたイオンを案内するイオンレンズ14、などを含む。もちろん、イオン化部1は、MALDI以外の他のレーザイオン化法やレーザ光を用いないイオン化法を用いるものであっても構わない。
 イオントラップ2は、円環状の1個のリング電極21と、これを挟むように対向して配置された、入口側エンドキャップ電極22及び出口側エンドキャップ電極24とを備えた3次元四重極型のイオントラップであり、これら3個の電極21、22、24で囲まれた空間がイオン捕捉領域となる。入口側エンドキャップ電極22の略中央にはイオン入射口23が穿設され、イオン化部1から出射したイオンはイオン入射口23を通過してイオントラップ2内に導入される。一方、出口側エンドキャップ電極24の略中央にはイオン出射口25が穿設され、イオン出射口25を通ってイオントラップ2内から吐き出されたイオンは検出部3に到達して検出される。
 検出部3は、イオンを電子に変換するコンバージョンダイノード31と、コンバージョンダイノード31から到来する電子を増倍して検出する二次電子増倍管32とから成り、入射したイオンの量に応じた検出信号をデータ処理部8に送る。
 イオントラップ2を駆動するための主電源部4(本発明における矩形波電圧発生部に相当)は、第1電圧VHを発生する第1電圧源41と、第2電圧VL(VL<VH)発生する第2電圧源42と、第1電圧源41の出力端と第2電圧源42の出力端との間に直列に接続された第1スイッチング部43及び第2スイッチング部44と、を含み、両スイッチング部43、44を直列に接続する結線から矩形波状の出力電圧VOUTが取り出され、リング電極21に印加される。また、補助電源部5は、エンドキャップ電極22、24にそれぞれ直流電圧又は矩形波状の電圧を印加する。
 第1電圧源41から生じる第1電圧VHは+1kV程度であり、第2電圧源42から生じる第2電圧VLは-1kV程度である。そのため、これらの電圧源41、42の間に接続されるスイッチング部43、44には、高い耐圧性が要求される。そこで、本実施例のイオントラップ装置では、第1スイッチング部43及び第2スイッチング部44を、それぞれ炭化ケイ素(Silicon Carbide、SiC)から成る単一の半導体スイッチング素子、具体的にはSiC-MOSFETで構成している。SiC-MOSFETは、1200Vもの耐圧性を有するため、第1電圧源41の出力端と第2電圧源42の出力端に各一つだけ配置しても、正常に動作させることができる。このように、第1スイッチング部43及び第2スイッチング部44をそれぞれ単一の半導体スイッチング素子(以下、第1スイッチング素子45及び第2スイッチング素子46とよぶ)で構成することにより、後述するヒートシンク、ヒータ、及び温度センサの数を抑えることができる。
 更に、主電源部4には、本発明における特徴的な構成として、第1ヒートシンク93aと第2ヒートシンク93bが設けられている。これらのヒートシンク93a、93bは、いずれも熱伝導性に優れたセラミックスである窒化アルミニウムで構成されており、第1ヒートシンク93aは第1スイッチング素子45に取り付けられ、第2ヒートシンク93bは第2スイッチング素子46に取り付けられている。これらのヒートシンクの断面構造を図2に示す。ヒートシンク93a、93bは、いずれも直方体状の基部96a、96bの上面に板状のフィン97a、97bが複数枚立設された構成を有している。基部96a、96bには、その側面から内部に至る孔が設けられ、その内部に面状のヒータ94a、94bと温度センサ95a、95bが挿入されている。図2では、ヒータ94a、94bの上方に温度センサ95a、95bが配置されているが、両者の位置関係はこれに限定されるものではなく、例えばヒータ94a、94bの側方に温度センサ95a、95bを配置してもよい。なお、ヒートシンク93a、93bの製造時に基部96a、96b内にヒータ94a、94bを埋設してから窒化アルミニウムを焼結させることにより、ヒータ94a、94bとヒートシンク93a、93bを一体に形成してもよい。温度センサ95a、95bとヒータ94a、94bはそれぞれ温度制御部9に接続されている。
 温度制御部9は、ヒータ94a、94bに加熱電流を供給する電流発生部92と、マイクロコンピュータ等から成り、温度センサ95a、95bからの検出信号に基づいて前記加熱電流を調節する電流制御部91とを含む。
 制御部7はパーソナルコンピュータを中心に構成され、該パーソナルコンピュータに予めインストールされた制御/処理プログラムを実行することにより、その機能が達成される。制御部7は、特徴的な機能ブロックとして、周波数決定部71と、目標温度記憶部72とを含む。目標温度記憶部72には第1スイッチング部43及び第2スイッチング部44を温調する際の目標温度Tが記憶される。周波数決定部71はユーザにより設定された分析条件に基づき、第1スイッチング部43及び第2スイッチング部44に与える駆動パルスの周波数を決定する。
 タイミング信号発生部6はハードウエアによるロジック回路であり、周波数決定部71により決定された周波数に基づいて第1スイッチング部43及び第2スイッチング部44のオン・オフを制御するための駆動パルスを生成して主電源部4に加えるとともに、例えばこれら駆動パルスの一方を適宜の分周比で分周したパルスを補助電源部5に加える。第1スイッチング部43及び第2スイッチング部44は交互にオンするように(但し、少なくとも同時にオンすることがないように)駆動される。第1スイッチング部43がオンするとき第1電圧VHが出力され、第2スイッチング部44がオンするときに第2電圧VLが出力されるから、出力電圧VOUTは理想的には、ハイレベルがVH、ローレベルがVLである矩形波電圧となる。タイミング信号発生部6によりスイッチング素子45、46を駆動するパルスの周波数が変更されると、振幅(電圧レベル)が一定に維持されたまま矩形波電圧の周波数が変化する。
 本実施例に係るイオントラップ質量分析装置においてイオンを質量分析する際には、制御部7の制御の下にレーザ照射部11から短時間レーザ光を出射しサンプルSに当てる。レーザ光照射によりサンプルS中のマトリックスは急速に加熱され、目的成分を伴って気化する。この際に目的成分はイオン化される。発生したイオンはイオンレンズ14により形成される静電場によって収束され、イオン入射口23を経てイオントラップ2内に導入される。このとき、タイミング信号発生部6により所定周波数の駆動パルスがスイッチング素子45、46に供給され、これに応じた周波数の矩形波電圧が主電源部4で生成されてリング電極21に印加される。これにより、イオントラップ2には、高周波電場が形成され、該高周波電場の作用により、所定の質量電荷比範囲のイオンがイオントラップ2内に安定的に捕捉される。
 それから、イオン導入に先立ってイオントラップ2内に導入しておいたクーリングガスにイオンを接触させることでクーリングを行い、その後、タイミング信号発生部6からスイッチング素子45、46に供給する駆動パルスの周波数を連続的に変化させる。これにより、主電源部4からリング電極21に供給される矩形波電圧の周波数が操作され、イオン出射口25からイオンが質量電荷比順に排出される(この操作を「質量走査」とよぶ)。排出されたイオンは順次、検出部3で検出される。データ処理部8では1回の質量走査に対応して一つの質量プロファイルを取得する。
 上述したように1回のレーザ照射で発生するイオンの量はあまり多くないため、その後も、サンプルSへのレーザ光の照射から、イオントラップ2でのイオンの補足と質量走査、及び検出部3でのイオンの検出までの操作を所定回数(例えば10回)繰り返す(以下、これを「繰り返し分析」とよぶ)。データ処理部8では所定回数分の質量プロファイルを積算して質量スペクトルを作成する。イオントラップ2は一つのサンプルに対する一連の分析が終了すると、次のサンプルの分析まで待機状態となる。
 続いて、本実施例によるイオントラップ質量分析装置の特徴的動作である、スイッチング素子45、46の温調動作について説明する。
 本実施例のイオントラップ質量分析装置では、本発明におけるスイッチング部温調手段に相当する上述のヒートシンク93a、93b、ヒータ94a、94b、温度センサ95a、95b、及び温度制御部9により、スイッチング素子45、46が温調される。
 まず、温調時の目標温度Tの設定について説明する。質量走査の際にはリング電極21に印加される矩形波電圧の周波数が走査されるが、その周波数の変化はスイッチング素子45、46の温度変化に比べて十分に速く、また一つサンプルに対する繰り返し分析は同一分析条件の下で行われるから、繰り返し分析の分析条件に対応してスイッチング部43、44が到達する温度はほぼ決まる。そこで、例えば装置メーカにおいて、本実施例の質量分析装置で実行可能な分析条件においてスイッチング部43、44の到達温度が最も高くなる分析条件を特定し、該分析条件におけるスイッチング部43、44の到達温度とスイッチング部43、44が動作可能な温度の上限値との間の所定の温度を目標温度Tとして目標温度記憶部72に格納しておく。あるいは、これに代えて又は加えて、目標温度Tをユーザが設定できるようにしてもよい。この場合、制御部7に設けられた記憶部(図示略)に前記最高到達温度と前記動作可能温度の上限値とを格納しておき、分析実行前などに、該最高到達温度よりも高く該動作可能温度の上限値よりも低い温度範囲内で、ユーザからの目標温度Tの入力を受け付けるようにする。また、あるいは分析実行前に、これから実行する各質量分析の分析条件がユーザから設定された時点で、制御部7が該分析条件の中でスイッチング部43、44の到達温度が最も高くなる分析条件を特定し、該分析条件における到達温度よりも高くスイッチング素子の動作可能温度の上限値よりも低い温度範囲内で、ユーザから目標温度Tの入力を受け付けたり、制御部7が前記温度範囲内で目標温度Tを自動的に決定したりするようにしてもよい。
 ユーザから分析の開始が指示されると、制御部7は目標温度記憶部72に記憶された目標温度Tを温度制御部9に送出する。温度制御部9では、電流制御部91が、目標温度Tと温度センサ95a、95bによる検出温度とを比較し、その差が小さくなるようヒータ94a、94bに供給する加熱電流の値を調節する。電流発生部92は、電流制御部91の制御の下に加熱電流をヒータ94a、94bに供給する。その後、温度センサ95a、95bによる検出温度が目標温度Tに到達したら、温度制御部9による温調を継続しつつ、上述の手順で最初のサンプル(サンプルS1とよぶ)に対する一連の質量分析(繰り返し分析)を実行する。
 前記一連の質量分析が完了すると、温度制御部9による温調を継続しつつ、待機状態に移行する。このとき、イオントラップ2内に残留しているイオンを除去するべく、スイッチング素子45、46への駆動パルスの周波数が分析時よりも低周波(例えば20kHz以下)に下げられる。そして、再び駆動パルスの周波数を高周波に上げて、次のサンプル(サンプルS2とよぶ)に対する一連の質量分析を実行する。この間も温度制御部9による温調は継続される。その後は、上述のような待機状態と一連の分析とを交互に実行し、予め設定された全ての分析が完了した時点でスイッチング素子45、46の温調を終了する。
 以上の通り、本実施例によるイオントラップ装置を備えた質量分析装置では、サンプルS1の分析、待機状態、及びサンプルS2の分析のいずれにおいてもスイッチング素子45、46の温度が目標温度Tに維持される。これより、待機状態からサンプルS2の分析に移行した際もスイッチング素子45、46の温度変化がないため、時間ドリフトのない質量プロファイルを得ることができる。また、サンプルS1とサンプルS2の分析条件が異なっている場合でも、両サンプルの分析時におけるスイッチング素子45、46の温度には差が生じないため、従来のような分析条件毎の質量キャリブレーションを行うことなく、高精度な質量分析を行うことが可能となる。
 以上、本発明を実施するための形態について実施例を挙げて説明を行ったが、本発明は上記実施例に限定されるものではなく、本発明の趣旨の範囲で適宜変更が許容される。例えば、図3及び図4に示すように、第1スイッチング部43及び第2スイッチング部44に対して単一のヒートシンク93を設けた構成としてもよい。この場合、一つのヒートシンク93の底面を第1スイッチング部43のスイッチング素子45と第2スイッチング部44のスイッチング素子46に取り付け、該ヒートシンク93の内部に設けたヒータ94及び温度センサ95と、それらに接続された温度制御部9により、第1スイッチング部43及び第2スイッチング部44を温調する。このような構成によれば、ヒートシンク、ヒータ、及び温度センサの数を抑えることができ、より低コストに製造することができる。なお、この場合も、ヒートシンク93を電気絶縁性の高い窒化アルミニウムから成るものとすることが望ましい。これにより、高周波ノイズの放出を抑えられると共に、ヒートシンク93を介してスイッチング素子45、46の間に電流が流れるのを防止することができる。
 また、上記実施例では3次元四重極型のイオントラップを示したが、デジタル駆動方式であれば、リニア型のイオントラップにも本発明を適用することができる。
1…イオン化部
 11…レーザ照射部
 12…サンプルプレート
 13…引き出し電極
 14…イオンレンズ
2…イオントラップ
 21…リング電極
 22…入口側エンドキャップ電極
 24…出口側エンドキャップ電極
3…検出部
 31…コンバージョンダイノード
 32…二次電子増倍管
4…主電源部
 41…第1電圧源
 42…第2電圧源
 43…第1スイッチング部
  45…第1スイッチング素子
 44…第2スイッチング部
  46…第2スイッチング素子
5…補助電源部
6…タイミング信号発生部
7…制御部
 71…周波数決定部
 72…目標温度記憶部
8…データ処理部
9…温度制御部
 91…電流制御部
 92…電流発生部
93、93a、93b…ヒートシンク
 96、96a、96b…基部
 97、97a、97b…フィン
94、94a、94b…ヒータ
95、95a、95b…温度センサ

Claims (5)

  1.  a)複数の電極を有するイオントラップと、
     b)直流電圧を発生する電圧源とスイッチング部とを含み、前記電圧源で発生した直流電圧を前記スイッチング部でスイッチングすることにより矩形波電圧を生成して前記複数の電極の少なくとも一つに印加する矩形波電圧発生部と、
     c)前記スイッチング部の温度が、前記イオントラップの動作時における該スイッチング部の最高到達温度よりも高く、該スイッチング部の動作可能温度の上限よりも低い温度である目標温度に維持されるよう、該スイッチング部を温調するスイッチング部温調手段と、
     を有することを特徴とするイオントラップ装置。
  2.  前記スイッチング部が半導体スイッチング素子を含むものであって、
     前記スイッチング部温調手段が、
     d)前記半導体スイッチング素子に熱的に接続されたヒートシンクと、
     e)前記ヒートシンクを加熱するヒータと、
     f)前記ヒートシンクの温度を測定する温度センサと、
     g)前記温度センサによって測定される温度が前記目標温度に近づくよう前記ヒータを制御する制御手段と、
     を有することを特徴とする請求項1に記載のイオントラップ装置。
  3.  前記矩形波電圧発生部が、
     h)直流電圧を発生する第1電圧源と、
     i)前記第1電圧源とは異なる直流電圧を発生する第2電圧源と、
     j)前記第1電圧源から出力される直流電圧をオン・オフする第1スイッチング部と、
     k)前記第2電圧源から出力される直流電圧をオン・オフする第2スイッチング部と、
     を含み、前記第1スイッチング部及び前記第2スイッチング部を交互にオン・オフすることによって前記矩形波電圧を生成するものであって、
     前記第1のスイッチング部及び前記第2のスイッチング部が、それぞれ炭化ケイ素半導体から成る単一の半導体スイッチング素子で構成されていることを特徴とする請求項1に記載のイオントラップ装置。
  4.  前記ヒートシンクがセラミックスから成ることを特徴とする請求項2に記載のイオントラップ装置。
  5.  前記スイッチング部が前記半導体スイッチング素子を複数含むものであって、前記複数の半導体スイッチング素子のうちの少なくとも二つに対して単一の前記ヒートシンクが熱的に接続されていることを特徴とする請求項2に記載のイオントラップ装置。
PCT/JP2018/007712 2017-03-07 2018-03-01 イオントラップ装置 WO2018163950A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/471,727 US10770281B2 (en) 2017-03-07 2018-03-01 Ion trap device
JP2019504515A JP6705553B2 (ja) 2017-03-07 2018-03-01 イオントラップ装置
KR1020197028037A KR20190121821A (ko) 2017-03-07 2018-03-01 이온 트랩 장치
CN201880016430.9A CN110383418B (zh) 2017-03-07 2018-03-01 离子阱装置
EP18763412.6A EP3594992A4 (en) 2017-03-07 2018-03-01 ION TRAP DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017042631 2017-03-07
JP2017-042631 2017-03-07

Publications (1)

Publication Number Publication Date
WO2018163950A1 true WO2018163950A1 (ja) 2018-09-13

Family

ID=63448551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007712 WO2018163950A1 (ja) 2017-03-07 2018-03-01 イオントラップ装置

Country Status (6)

Country Link
US (1) US10770281B2 (ja)
EP (1) EP3594992A4 (ja)
JP (2) JP6705553B2 (ja)
KR (1) KR20190121821A (ja)
CN (1) CN110383418B (ja)
WO (1) WO2018163950A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114430857A (zh) * 2019-09-27 2022-05-03 株式会社岛津制作所 离子阱质谱分析仪、质谱分析方法以及控制程序

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019229803A1 (ja) * 2018-05-28 2019-12-05 株式会社島津製作所 分析装置
US20230335388A1 (en) * 2022-04-13 2023-10-19 Shimadzu Corporation Linear ion trap and method for operating the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527002A (ja) 2004-02-24 2007-09-20 シマヅ リサーチ ラボラトリー(ヨーロッパ)リミティド イオントラップ及びイオントラップ内のイオン開裂方法
WO2008129850A1 (ja) 2007-04-12 2008-10-30 Shimadzu Corporation イオントラップ質量分析装置
JP2008282594A (ja) 2007-05-09 2008-11-20 Shimadzu Corp イオントラップ型質量分析装置
JP2009277376A (ja) * 2008-05-12 2009-11-26 Shimadzu Corp 質量分析装置
JP2011023167A (ja) 2009-07-14 2011-02-03 Shimadzu Corp イオントラップ装置
JP2013073910A (ja) * 2011-09-29 2013-04-22 Shimadzu Corp イオントラップ質量分析装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070071646A1 (en) * 2005-09-29 2007-03-29 Schoen Alan E System and method for regulating temperature inside an instrument housing
EP2309531B1 (en) * 2008-06-20 2017-08-09 Shimadzu Corporation Mass spectrometer
JP5504969B2 (ja) * 2010-02-25 2014-05-28 株式会社島津製作所 質量分析装置
JP6544490B2 (ja) * 2016-08-22 2019-07-17 株式会社島津製作所 飛行時間型質量分析装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527002A (ja) 2004-02-24 2007-09-20 シマヅ リサーチ ラボラトリー(ヨーロッパ)リミティド イオントラップ及びイオントラップ内のイオン開裂方法
WO2008129850A1 (ja) 2007-04-12 2008-10-30 Shimadzu Corporation イオントラップ質量分析装置
JP2008282594A (ja) 2007-05-09 2008-11-20 Shimadzu Corp イオントラップ型質量分析装置
JP2009277376A (ja) * 2008-05-12 2009-11-26 Shimadzu Corp 質量分析装置
JP2011023167A (ja) 2009-07-14 2011-02-03 Shimadzu Corp イオントラップ装置
JP2013073910A (ja) * 2011-09-29 2013-04-22 Shimadzu Corp イオントラップ質量分析装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FURUHASHITAKESHITAOGAWAIWAMOTODINGGILESSMIRNOV: "Dejitaru Ion Torappu Shitsuryou Bunseki Souchi No Kaihatsu (Development of Digital Ion Trap Mass Spectrometer", SHIMADZU HYOURON (SHIMADZU REVIEW), SHIMADZU HYOURON HENSHUUBU, vol. 62, no. 3-4, 31 March 2006 (2006-03-31), pages 141 - 151
See also references of EP3594992A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114430857A (zh) * 2019-09-27 2022-05-03 株式会社岛津制作所 离子阱质谱分析仪、质谱分析方法以及控制程序

Also Published As

Publication number Publication date
CN110383418B (zh) 2021-06-25
US10770281B2 (en) 2020-09-08
JPWO2018163950A1 (ja) 2019-11-07
JP6705553B2 (ja) 2020-06-03
EP3594992A1 (en) 2020-01-15
CN110383418A (zh) 2019-10-25
JP2020021744A (ja) 2020-02-06
US20200090921A1 (en) 2020-03-19
EP3594992A4 (en) 2020-03-11
KR20190121821A (ko) 2019-10-28

Similar Documents

Publication Publication Date Title
WO2018163950A1 (ja) イオントラップ装置
JP5440449B2 (ja) イオントラップ質量分析装置
JP2007173228A (ja) タンデム型質量分析法のための分子活性化
WO2017122276A1 (ja) 飛行時間型質量分析装置
JP4941402B2 (ja) 質量分析装置
KR101122305B1 (ko) 질량 분석계의 제어 방법 및 질량 분석계
US8044349B2 (en) Mass spectrometer
US20070069120A1 (en) Method and apparatus for high-order differential mobility separations
EP2430404A1 (en) Ion population control in a mass spectrometer having mass-selective transfer optics
US8581180B2 (en) Method and device for measuring glow discharge spectrometry in pulsed mode
JP5407616B2 (ja) イオントラップ装置
US9570282B2 (en) Ionization within ion trap using photoionization and electron ionization
JP2002313276A (ja) イオントラップ型質量分析装置及び方法
US8513592B2 (en) Ion trap mass spectrometer
JPH113679A (ja) イオントラップ質量分析装置及びイオントラップ質量分析方法
JP5482135B2 (ja) イオントラップ質量分析装置
JP2006073390A (ja) 質量分析装置
JP7192736B2 (ja) リニアイオントラップ及びその操作方法
JP2021061108A5 (ja)
JP7074214B2 (ja) 質量分析装置
JP5146411B2 (ja) イオントラップ質量分析装置
JP5293562B2 (ja) イオントラップ質量分析装置
JP2008084850A (ja) イオントラップ飛行時間型質量分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504515

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197028037

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018763412

Country of ref document: EP

Effective date: 20191007