WO2018163950A1 - イオントラップ装置 - Google Patents
イオントラップ装置 Download PDFInfo
- Publication number
- WO2018163950A1 WO2018163950A1 PCT/JP2018/007712 JP2018007712W WO2018163950A1 WO 2018163950 A1 WO2018163950 A1 WO 2018163950A1 JP 2018007712 W JP2018007712 W JP 2018007712W WO 2018163950 A1 WO2018163950 A1 WO 2018163950A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- voltage
- ion trap
- switching unit
- switching
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/26—Mass spectrometers or separator tubes
- H01J49/34—Dynamic spectrometers
- H01J49/42—Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/022—Circuit arrangements, e.g. for generating deviation currents or voltages ; Components associated with high voltage supply
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/26—Mass spectrometers or separator tubes
- H01J49/34—Dynamic spectrometers
- H01J49/42—Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
- H01J49/426—Methods for controlling ions
- H01J49/427—Ejection and selection methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/04—Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
- H01J49/0468—Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components with means for heating or cooling the sample
- H01J49/0486—Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components with means for heating or cooling the sample with means for monitoring the sample temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/26—Mass spectrometers or separator tubes
- H01J49/34—Dynamic spectrometers
- H01J49/42—Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
- H01J49/4205—Device types
- H01J49/424—Three-dimensional ion traps, i.e. comprising end-cap and ring electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/26—Mass spectrometers or separator tubes
- H01J49/34—Dynamic spectrometers
- H01J49/42—Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
- H01J49/426—Methods for controlling ions
- H01J49/4295—Storage methods
Definitions
- the present invention relates to an ion trap apparatus that traps ions or selects ions by the action of a high-frequency electric field, and more particularly relates to an ion trap apparatus that uses a rectangular wave voltage as a voltage for generating a high-frequency electric field.
- the present invention has been made in order to solve the above-mentioned problems, and the object of the present invention is to reduce not only the influence of time drift of ion ejection but also the influence caused by the difference in analysis conditions, thereby performing high-accuracy mass spectrometry. It is an object of the present invention to provide an ion trap apparatus capable of performing the above.
- the switching unit includes a semiconductor switching element
- the switching unit temperature adjusting means includes: d) a heat sink thermally connected to the semiconductor switching element; e) a heater for heating the heat sink; f) a temperature sensor for measuring the temperature of the heat sink; g) control means for controlling the heater so that the temperature measured by the temperature sensor approaches the target temperature; It is characterized by having.
- each of the switching sections is composed of a plurality of (for example, three) switching elements connected in series. It was necessary to distribute the pressure.
- the ion trap having such a configuration if the temperature adjustment by the heat sink, the heater, and the temperature sensor as described above is performed on all the switching elements included in each switching unit, the number of parts increases and the manufacturing cost increases. To do.
- the rectangular wave voltage generator is h) a first voltage source for generating a DC voltage; i) a second voltage source for generating a DC voltage different from the first voltage source; j) a first switching unit for turning on and off a DC voltage output from the first voltage source; k) a second switching unit for turning on and off the DC voltage output from the second voltage source;
- the rectangular wave voltage is generated by alternately turning on and off the first switching unit and the second switching unit, It is desirable that the first switching unit and the second switching unit are each configured by a single semiconductor switching element made of a silicon carbide semiconductor.
- a switching element made of a silicon carbide (SiC) semiconductor has a higher withstand voltage than a switching element made of a normal silicon (Si) semiconductor (for example, with a Si-MOSFET having a withstand voltage of about 1200 V). Therefore, unlike the above-described general ion trap apparatus, it is not necessary to connect a plurality of semiconductor switching elements in series and distribute the voltage, so that each switching unit can be configured with a single semiconductor switching element. As a result, the number of heat sinks, heaters, and temperature sensors necessary for temperature control can be reduced, and it can be realized at low cost.
- heat sinks are generally made of metals such as aluminum, iron, and copper that have excellent thermal conductivity, but these metals are also good conductors, so they are attached to switching elements that operate at high frequencies. If the heat sink functions as an antenna and emits high-frequency noise, or if a switching element with a different on / off voltage is attached to one heat sink, current flows between the switching elements via the heat sink. (The semiconductor switching element is packaged with an insulator, but a current flows when a switching operation at the MHz level is performed).
- thermo insulation Since ceramics have high electrical insulation, it is possible to prevent the emission of high-frequency noise as described above by using a ceramic heat sink connected to the switching element.
- a ceramic heat sink made of ceramics for example, a heat sink made of aluminum nitride (AluminumANitride, AlN) excellent in thermal conductivity and electrical insulation can be suitably used.
- the ion trap apparatus according to the present invention can be configured such that a single heat sink is thermally connected to a plurality of semiconductor switching elements.
- the ion trap device of the present invention by maintaining the switching unit at a constant temperature, the influence of the time drift of ion discharge when shifting from the standby state to the analysis state, The change in the amplitude of the rectangular wave voltage due to the difference in the analysis mode can be suppressed, and mass measurement with high accuracy becomes possible.
- the principal part block diagram of the ion trap mass spectrometer provided with the ion trap apparatus which concerns on one Example of this invention. Sectional drawing which shows schematic structure of the heat sink, heater, temperature sensor, and switching element in the Example.
- the principal part block diagram of the ion trap mass spectrometer provided with the ion trap apparatus which concerns on the other Example of this invention. Sectional drawing which shows schematic structure of the heat sink, heater, temperature sensor, and switching element in the Example.
- the ion trap 2 is a three-dimensional quadrupole including an annular ring electrode 21 and an inlet side end cap electrode 22 and an outlet side end cap electrode 24 that are arranged so as to face each other.
- the space surrounded by these three electrodes 21, 22, 24 is an ion trapping region.
- An ion incident port 23 is bored substantially at the center of the entrance-side end cap electrode 22, and ions emitted from the ionization unit 1 pass through the ion incident port 23 and are introduced into the ion trap 2.
- an ion emission port 25 is formed substantially at the center of the outlet-side end cap electrode 24, and ions discharged from the ion trap 2 through the ion emission port 25 reach the detection unit 3 and are detected.
- the detection unit 3 includes a conversion dynode 31 that converts ions into electrons, and a secondary electron multiplier 32 that multiplies and detects electrons arriving from the conversion dynode 31, and detects according to the amount of incident ions.
- the signal is sent to the data processing unit 8.
- a main power supply unit 4 (corresponding to a rectangular wave voltage generation unit in the present invention) for driving the ion trap 2 includes a first voltage source 41 that generates a first voltage V H and a second voltage V L (V L ⁇ V L ⁇ V H ) generated second voltage source 42, first switching unit 43 and second switching unit 44 connected in series between the output terminal of first voltage source 41 and the output terminal of second voltage source 42, , And a rectangular wave-like output voltage V OUT is taken out from the connection connecting the switching units 43 and 44 in series and applied to the ring electrode 21.
- the auxiliary power supply 5 applies a DC voltage or a rectangular wave voltage to the end cap electrodes 22 and 24, respectively.
- the first voltage V H generated from the first voltage source 41 is about +1 kV
- the second voltage V L generated from the second voltage source 42 is about ⁇ 1 kV.
- the switching units 43 and 44 connected between the voltage sources 41 and 42 are required to have high pressure resistance. Therefore, in the ion trap device of the present embodiment, the first switching unit 43 and the second switching unit 44 are each a single semiconductor switching element made of silicon carbide (SiC), specifically, a SiC-MOSFET. It is composed. Since the SiC-MOSFET has a withstand voltage as high as 1200 V, it can be normally operated even if only one is disposed at each of the output terminal of the first voltage source 41 and the output terminal of the second voltage source 42.
- the main power supply unit 4 is provided with a first heat sink 93a and a second heat sink 93b as a characteristic configuration in the present invention.
- the heat sinks 93a and 93b are both made of aluminum nitride, which is a ceramic having excellent thermal conductivity.
- the first heat sink 93a is attached to the first switching element 45, and the second heat sink 93b is the second switching element. 46 is attached.
- the cross-sectional structure of these heat sinks is shown in FIG.
- Each of the heat sinks 93a and 93b has a configuration in which a plurality of plate-like fins 97a and 97b are erected on the upper surface of the rectangular parallelepiped bases 96a and 96b.
- the bases 96a and 96b are provided with holes extending from the side surfaces to the inside, and planar heaters 94a and 94b and temperature sensors 95a and 95b are inserted therein.
- the temperature sensors 95a and 95b are disposed above the heaters 94a and 94b.
- the positional relationship between the two is not limited to this, and for example, the temperature sensors 95a and 95b are disposed on the sides of the heaters 94a and 94b. 95b may be arranged.
- the heaters 94a and 94b and the heat sinks 93a and 93b may be integrally formed by embedding the heaters 94a and 94b in the bases 96a and 96b when the heat sinks 93a and 93b are manufactured and then sintering aluminum nitride. .
- the temperature sensors 95a and 95b and the heaters 94a and 94b are connected to the temperature control unit 9, respectively.
- the timing signal generator 6 is a hardware logic circuit, and generates drive pulses for controlling on / off of the first switching unit 43 and the second switching unit 44 based on the frequency determined by the frequency determination unit 71. In addition to being applied to the main power supply unit 4, for example, a pulse obtained by dividing one of these drive pulses by an appropriate division ratio is applied to the auxiliary power supply unit 5.
- the first switching unit 43 and the second switching unit 44 are driven so as to be alternately turned on (but not to be turned on at the same time). Since the first voltage V H is output when the first switching unit 43 is turned on and the second voltage V L is output when the second switching unit 44 is turned on, the output voltage V OUT is ideally high.
- a rectangular wave voltage having a level of V H and a low level of V L is obtained.
- the frequency of the pulse for driving the switching elements 45 and 46 is changed by the timing signal generator 6, the frequency of the rectangular wave voltage changes while the amplitude (voltage level) is kept constant.
- a driving pulse having a predetermined frequency is supplied to the switching elements 45 and 46 by the timing signal generator 6, and a rectangular wave voltage having a frequency corresponding to the pulse is generated by the main power supply unit 4 and applied to the ring electrode 21.
- a high-frequency electric field is formed in the ion trap 2, and ions in a predetermined mass-to-charge ratio range are stably trapped in the ion trap 2 by the action of the high-frequency electric field.
- the setting of the target temperature T during temperature control will be described.
- the frequency of the rectangular wave voltage applied to the ring electrode 21 is scanned.
- the frequency change is sufficiently faster than the temperature change of the switching elements 45 and 46, and is repeated for one sample. Since the analysis is performed under the same analysis conditions, the temperatures reached by the switching units 43 and 44 are substantially determined corresponding to the analysis conditions of the repeated analysis.
- the temperature of the switching elements 45 and 46 is maintained at the target temperature T in any of the analysis of the sample S1, the standby state, and the analysis of the sample S2.
- the temperature of the switching elements 45 and 46 is maintained at the target temperature T in any of the analysis of the sample S1, the standby state, and the analysis of the sample S2.
- a single heat sink 93 may be provided for the first switching unit 43 and the second switching unit 44.
- the bottom surface of one heat sink 93 is attached to the switching element 45 of the first switching unit 43 and the switching element 46 of the second switching unit 44, the heater 94 and the temperature sensor 95 provided in the heat sink 93, and The temperature control unit 9 connected controls the temperature of the first switching unit 43 and the second switching unit 44.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Electron Tubes For Measurement (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
Description
a)複数の電極を有するイオントラップと、
b)直流電圧を発生する電圧源とスイッチング部とを含み、前記電圧源で発生した直流電圧を前記スイッチング部でスイッチングすることにより矩形波電圧を生成して前記複数の電極の少なくとも一つに印加する矩形波電圧発生部と、
c)前記スイッチング部の温度が、前記イオントラップの動作時における該スイッチング部の最高到達温度よりも高く、該スイッチング部の動作可能温度の上限よりも低い温度である目標温度に維持されるよう、該スイッチング部を温調するスイッチング部温調手段と、
を有することを特徴としている。
d)前記半導体スイッチング素子に熱的に接続されたヒートシンクと、
e)前記ヒートシンクを加熱するヒータと、
f)前記ヒートシンクの温度を測定する温度センサと、
g)前記温度センサによって測定される温度が前記目標温度に近づくよう前記ヒータを制御する制御手段と、
を有することを特徴としている。
h)直流電圧を発生する第1電圧源と、
i)前記第1電圧源とは異なる直流電圧を発生する第2電圧源と、
j)前記第1電圧源から出力される直流電圧をオン・オフする第1スイッチング部と、
k)前記第2電圧源から出力される直流電圧をオン・オフする第2スイッチング部と、
を含み、前記第1スイッチング部及び前記第2スイッチング部を交互にオン・オフすることによって前記矩形波電圧を生成するものであって、
前記第1のスイッチング部及び前記第2のスイッチング部を、それぞれ炭化ケイ素半導体から成る単一の半導体スイッチング素子で構成されたものとすることが望ましい。
11…レーザ照射部
12…サンプルプレート
13…引き出し電極
14…イオンレンズ
2…イオントラップ
21…リング電極
22…入口側エンドキャップ電極
24…出口側エンドキャップ電極
3…検出部
31…コンバージョンダイノード
32…二次電子増倍管
4…主電源部
41…第1電圧源
42…第2電圧源
43…第1スイッチング部
45…第1スイッチング素子
44…第2スイッチング部
46…第2スイッチング素子
5…補助電源部
6…タイミング信号発生部
7…制御部
71…周波数決定部
72…目標温度記憶部
8…データ処理部
9…温度制御部
91…電流制御部
92…電流発生部
93、93a、93b…ヒートシンク
96、96a、96b…基部
97、97a、97b…フィン
94、94a、94b…ヒータ
95、95a、95b…温度センサ
Claims (5)
- a)複数の電極を有するイオントラップと、
b)直流電圧を発生する電圧源とスイッチング部とを含み、前記電圧源で発生した直流電圧を前記スイッチング部でスイッチングすることにより矩形波電圧を生成して前記複数の電極の少なくとも一つに印加する矩形波電圧発生部と、
c)前記スイッチング部の温度が、前記イオントラップの動作時における該スイッチング部の最高到達温度よりも高く、該スイッチング部の動作可能温度の上限よりも低い温度である目標温度に維持されるよう、該スイッチング部を温調するスイッチング部温調手段と、
を有することを特徴とするイオントラップ装置。 - 前記スイッチング部が半導体スイッチング素子を含むものであって、
前記スイッチング部温調手段が、
d)前記半導体スイッチング素子に熱的に接続されたヒートシンクと、
e)前記ヒートシンクを加熱するヒータと、
f)前記ヒートシンクの温度を測定する温度センサと、
g)前記温度センサによって測定される温度が前記目標温度に近づくよう前記ヒータを制御する制御手段と、
を有することを特徴とする請求項1に記載のイオントラップ装置。 - 前記矩形波電圧発生部が、
h)直流電圧を発生する第1電圧源と、
i)前記第1電圧源とは異なる直流電圧を発生する第2電圧源と、
j)前記第1電圧源から出力される直流電圧をオン・オフする第1スイッチング部と、
k)前記第2電圧源から出力される直流電圧をオン・オフする第2スイッチング部と、
を含み、前記第1スイッチング部及び前記第2スイッチング部を交互にオン・オフすることによって前記矩形波電圧を生成するものであって、
前記第1のスイッチング部及び前記第2のスイッチング部が、それぞれ炭化ケイ素半導体から成る単一の半導体スイッチング素子で構成されていることを特徴とする請求項1に記載のイオントラップ装置。 - 前記ヒートシンクがセラミックスから成ることを特徴とする請求項2に記載のイオントラップ装置。
- 前記スイッチング部が前記半導体スイッチング素子を複数含むものであって、前記複数の半導体スイッチング素子のうちの少なくとも二つに対して単一の前記ヒートシンクが熱的に接続されていることを特徴とする請求項2に記載のイオントラップ装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/471,727 US10770281B2 (en) | 2017-03-07 | 2018-03-01 | Ion trap device |
JP2019504515A JP6705553B2 (ja) | 2017-03-07 | 2018-03-01 | イオントラップ装置 |
KR1020197028037A KR20190121821A (ko) | 2017-03-07 | 2018-03-01 | 이온 트랩 장치 |
CN201880016430.9A CN110383418B (zh) | 2017-03-07 | 2018-03-01 | 离子阱装置 |
EP18763412.6A EP3594992A4 (en) | 2017-03-07 | 2018-03-01 | ION TRAP DEVICE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017042631 | 2017-03-07 | ||
JP2017-042631 | 2017-03-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018163950A1 true WO2018163950A1 (ja) | 2018-09-13 |
Family
ID=63448551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/007712 WO2018163950A1 (ja) | 2017-03-07 | 2018-03-01 | イオントラップ装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10770281B2 (ja) |
EP (1) | EP3594992A4 (ja) |
JP (2) | JP6705553B2 (ja) |
KR (1) | KR20190121821A (ja) |
CN (1) | CN110383418B (ja) |
WO (1) | WO2018163950A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114430857A (zh) * | 2019-09-27 | 2022-05-03 | 株式会社岛津制作所 | 离子阱质谱分析仪、质谱分析方法以及控制程序 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019229803A1 (ja) * | 2018-05-28 | 2019-12-05 | 株式会社島津製作所 | 分析装置 |
US20230335388A1 (en) * | 2022-04-13 | 2023-10-19 | Shimadzu Corporation | Linear ion trap and method for operating the same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007527002A (ja) | 2004-02-24 | 2007-09-20 | シマヅ リサーチ ラボラトリー(ヨーロッパ)リミティド | イオントラップ及びイオントラップ内のイオン開裂方法 |
WO2008129850A1 (ja) | 2007-04-12 | 2008-10-30 | Shimadzu Corporation | イオントラップ質量分析装置 |
JP2008282594A (ja) | 2007-05-09 | 2008-11-20 | Shimadzu Corp | イオントラップ型質量分析装置 |
JP2009277376A (ja) * | 2008-05-12 | 2009-11-26 | Shimadzu Corp | 質量分析装置 |
JP2011023167A (ja) | 2009-07-14 | 2011-02-03 | Shimadzu Corp | イオントラップ装置 |
JP2013073910A (ja) * | 2011-09-29 | 2013-04-22 | Shimadzu Corp | イオントラップ質量分析装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070071646A1 (en) * | 2005-09-29 | 2007-03-29 | Schoen Alan E | System and method for regulating temperature inside an instrument housing |
EP2309531B1 (en) * | 2008-06-20 | 2017-08-09 | Shimadzu Corporation | Mass spectrometer |
JP5504969B2 (ja) * | 2010-02-25 | 2014-05-28 | 株式会社島津製作所 | 質量分析装置 |
JP6544490B2 (ja) * | 2016-08-22 | 2019-07-17 | 株式会社島津製作所 | 飛行時間型質量分析装置 |
-
2018
- 2018-03-01 EP EP18763412.6A patent/EP3594992A4/en not_active Withdrawn
- 2018-03-01 KR KR1020197028037A patent/KR20190121821A/ko not_active Application Discontinuation
- 2018-03-01 US US16/471,727 patent/US10770281B2/en active Active
- 2018-03-01 CN CN201880016430.9A patent/CN110383418B/zh active Active
- 2018-03-01 JP JP2019504515A patent/JP6705553B2/ja active Active
- 2018-03-01 WO PCT/JP2018/007712 patent/WO2018163950A1/ja unknown
-
2019
- 2019-10-29 JP JP2019196419A patent/JP2020021744A/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007527002A (ja) | 2004-02-24 | 2007-09-20 | シマヅ リサーチ ラボラトリー(ヨーロッパ)リミティド | イオントラップ及びイオントラップ内のイオン開裂方法 |
WO2008129850A1 (ja) | 2007-04-12 | 2008-10-30 | Shimadzu Corporation | イオントラップ質量分析装置 |
JP2008282594A (ja) | 2007-05-09 | 2008-11-20 | Shimadzu Corp | イオントラップ型質量分析装置 |
JP2009277376A (ja) * | 2008-05-12 | 2009-11-26 | Shimadzu Corp | 質量分析装置 |
JP2011023167A (ja) | 2009-07-14 | 2011-02-03 | Shimadzu Corp | イオントラップ装置 |
JP2013073910A (ja) * | 2011-09-29 | 2013-04-22 | Shimadzu Corp | イオントラップ質量分析装置 |
Non-Patent Citations (2)
Title |
---|
FURUHASHITAKESHITAOGAWAIWAMOTODINGGILESSMIRNOV: "Dejitaru Ion Torappu Shitsuryou Bunseki Souchi No Kaihatsu (Development of Digital Ion Trap Mass Spectrometer", SHIMADZU HYOURON (SHIMADZU REVIEW), SHIMADZU HYOURON HENSHUUBU, vol. 62, no. 3-4, 31 March 2006 (2006-03-31), pages 141 - 151 |
See also references of EP3594992A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114430857A (zh) * | 2019-09-27 | 2022-05-03 | 株式会社岛津制作所 | 离子阱质谱分析仪、质谱分析方法以及控制程序 |
Also Published As
Publication number | Publication date |
---|---|
CN110383418B (zh) | 2021-06-25 |
US10770281B2 (en) | 2020-09-08 |
JPWO2018163950A1 (ja) | 2019-11-07 |
JP6705553B2 (ja) | 2020-06-03 |
EP3594992A1 (en) | 2020-01-15 |
CN110383418A (zh) | 2019-10-25 |
JP2020021744A (ja) | 2020-02-06 |
US20200090921A1 (en) | 2020-03-19 |
EP3594992A4 (en) | 2020-03-11 |
KR20190121821A (ko) | 2019-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018163950A1 (ja) | イオントラップ装置 | |
JP5440449B2 (ja) | イオントラップ質量分析装置 | |
JP2007173228A (ja) | タンデム型質量分析法のための分子活性化 | |
WO2017122276A1 (ja) | 飛行時間型質量分析装置 | |
JP4941402B2 (ja) | 質量分析装置 | |
KR101122305B1 (ko) | 질량 분석계의 제어 방법 및 질량 분석계 | |
US8044349B2 (en) | Mass spectrometer | |
US20070069120A1 (en) | Method and apparatus for high-order differential mobility separations | |
EP2430404A1 (en) | Ion population control in a mass spectrometer having mass-selective transfer optics | |
US8581180B2 (en) | Method and device for measuring glow discharge spectrometry in pulsed mode | |
JP5407616B2 (ja) | イオントラップ装置 | |
US9570282B2 (en) | Ionization within ion trap using photoionization and electron ionization | |
JP2002313276A (ja) | イオントラップ型質量分析装置及び方法 | |
US8513592B2 (en) | Ion trap mass spectrometer | |
JPH113679A (ja) | イオントラップ質量分析装置及びイオントラップ質量分析方法 | |
JP5482135B2 (ja) | イオントラップ質量分析装置 | |
JP2006073390A (ja) | 質量分析装置 | |
JP7192736B2 (ja) | リニアイオントラップ及びその操作方法 | |
JP2021061108A5 (ja) | ||
JP7074214B2 (ja) | 質量分析装置 | |
JP5146411B2 (ja) | イオントラップ質量分析装置 | |
JP5293562B2 (ja) | イオントラップ質量分析装置 | |
JP2008084850A (ja) | イオントラップ飛行時間型質量分析装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18763412 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019504515 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197028037 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018763412 Country of ref document: EP Effective date: 20191007 |