WO2018161511A1 - 反应腔室的磁场产生机构和反应腔室 - Google Patents

反应腔室的磁场产生机构和反应腔室 Download PDF

Info

Publication number
WO2018161511A1
WO2018161511A1 PCT/CN2017/100723 CN2017100723W WO2018161511A1 WO 2018161511 A1 WO2018161511 A1 WO 2018161511A1 CN 2017100723 W CN2017100723 W CN 2017100723W WO 2018161511 A1 WO2018161511 A1 WO 2018161511A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
magnetic field
sub
reaction chamber
generating mechanism
Prior art date
Application number
PCT/CN2017/100723
Other languages
English (en)
French (fr)
Inventor
肖德志
琚里
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710308023.2A external-priority patent/CN108575042B/zh
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Publication of WO2018161511A1 publication Critical patent/WO2018161511A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Definitions

  • the present invention relates to the field of plasma processing technology, and in particular to a magnetic field generating mechanism and a reaction chamber of a reaction chamber.
  • ICP equipment can obtain high-density plasma at a lower working pressure, and has a simple structure and low cost. Therefore, ICP equipment is widely used. In processes such as plasma etching (IC), physical vapor deposition (PVD), plasma chemical vapor deposition (CVD), microelectromechanical systems (MEMS), and light emitting diodes (LEDs).
  • IC plasma etching
  • PVD physical vapor deposition
  • CVD plasma chemical vapor deposition
  • MEMS microelectromechanical systems
  • LEDs light emitting diodes
  • the ICP apparatus includes a reaction chamber 17 at the top of which is disposed a dielectric window 6 in which an intake duct 15 is provided for transporting process gases into the reaction chamber 17. Further, an excitation coil 5 is disposed above the dielectric window 6, and the excitation coil 5 is electrically connected to the RF power source 7 through the matching device 8 for exciting the process gas in the reaction chamber 17 to form a plasma 16, and the plasma 16 is diffused to The surface of the wafer 9 interacts with it to form an etched topography.
  • the above ICP apparatus has only the excitation coil 5 serving as a plasma source, the density and energy of the plasma are less adjustable, and the electron temperature is higher, causing a large surface damage to the wafer surface.
  • FIG. 2 it is a cross-sectional view of another conventional ICP device.
  • the ICP device adds a magnetic field generating structure to the above ICP device.
  • a dielectric cylinder 11 is disposed inside the side wall of the reaction chamber 17, and the magnetic field generating structure surrounds the coil 18 disposed outside the dielectric cylinder 11, and a DC power is supplied into the coil 18 to be in the reaction chamber.
  • An auxiliary magnetic field is formed in 17 which can restrain electrons in the plasma in the reaction chamber 17 to cause a convoluted collision. Thereby, the electron energy can be further consumed, thereby not only increasing the plasma density, but also reducing the electron temperature, thereby reducing wafer surface damage.
  • the magnetic field lines of the auxiliary magnetic field generated by the coil 18 are shown by solid arrows in FIG.
  • the direction of motion of the electrons constrained by the auxiliary magnetic field is indicated by the dashed arrow in FIG.
  • the distribution area of the electrons constrained by the auxiliary magnetic field is as shown by the chain line area in FIG.
  • the magnetic lines of force of the auxiliary magnetic field generated by the coil 18 are deflected with respect to the vertical direction only above and below the dielectric window 11, and the magnetic lines of force inside the dielectric window 11 are vertical, which makes the dielectric window 11 Internally, the direction of electron motion (vertically downward) is parallel to the direction of the magnetic lines of force, so that the electrons are not subjected to Lorentz forces, ie, are not constrained by the auxiliary magnetic field, resulting in a lower density of the plasma, and Since the electron energy is still high, there is still a problem that the surface damage caused by the wafer surface is large.
  • the present invention aims to at least solve one of the technical problems existing in the prior art, and proposes a magnetic field generating mechanism and a reaction chamber of a reaction chamber, which can not only improve the plasma density, but also improve the processing of the wafer surface.
  • the rate, and can lower the electron temperature, can reduce wafer surface damage.
  • a magnetic field generating mechanism for a reaction chamber comprising a coil surrounding the reaction chamber, the coil comprising a cylindrical spiral portion and a plurality of formed on the cylindrical spiral portion a plurality of sub coil portions, and a plurality of the sub coil portions are sequentially disposed along a spiral winding direction of the columnar spiral portion;
  • Each of the sub-coil portions is wound about a first axis that is inclined with respect to a vertical direction such that a total magnetic field strength vector of a magnetic field generated by the coil has a horizontal component.
  • each of the sub-coil portions includes a semicircular arc line body.
  • the columnar spiral portion includes a plurality of first single turn coils sequentially arranged in a vertical direction, and the sub coil portions on the same first single turn coil protrude from the first single turn coil
  • the direction is the same, and in each of the two adjacent first single-turn coils, the direction in which the sub-coil portion on one of the first single-turn coils protrudes from the first single-turn coil, And a direction in which the sub-coil portion on the other of the first single-turn coils protrudes from the first single-turn coil.
  • a plurality of the first single-turn coils have the same winding direction, and each of the first single-turn coils is connected end to end in sequence.
  • the columnar spiral portion includes a plurality of first single turn coils spaced apart in a vertical direction, and the sub coil portions on the same first single turn coil protrude from the first single turn coil
  • the directions are the same, and in each of the two adjacent first one-turn coils, the sub-coil portion on each of the two adjacent first one-turn coils is convex from the first single-turn coil The direction is the same.
  • each of the first single-turn coils is opposite, and each of the first single-turn coils is connected end to end in sequence.
  • each of the sub-coil portions includes a columnar spiral body, the columnar spiral body includes one or more second single-turn coils, and a plurality of the second single-turn coils are sequentially along the first axis distributed.
  • the angle between the first axis and the vertical direction is a right angle.
  • the magnetic field generating mechanism further includes a plurality of magnetic cores, each of the sub-coil portions being wound on one of the magnetic cores.
  • the material used for the magnetic core comprises aluminum, ceramic or copper.
  • the reaction chamber includes a medium cylinder, the coil is wrapped around the medium cylinder; and a plurality of side limbs protruding from the outer peripheral wall are disposed on an outer peripheral wall of the medium cylinder, and The magnetic core.
  • the media barrel is made of the same material as the side branches.
  • the magnetic field is adjusted in the said by setting a different total number of said sub-coils Uniform distribution of the reaction chamber.
  • the total magnetic field strength of the magnetic field is adjusted by adjusting the amount of current flowing into the coil.
  • the present invention also provides a reaction chamber comprising the above magnetic field generating mechanism provided by the present invention.
  • an inductively coupled plasma source is further included for exciting a process gas in the reaction chamber to form a plasma.
  • the magnetic field generating mechanism of the reaction chamber includes a columnar spiral portion and a plurality of sub-coil portions formed on the columnar spiral portion, and the plurality of sub-coil portions are sequentially disposed along a spiral winding direction of the columnar spiral portion.
  • each sub-coil portion is wound around a first axis that is inclined with respect to the vertical direction such that the total magnetic field strength vector of the magnetic field generated by the coil has a horizontal component that can cause electrons in the plasma to be vertical
  • the magnetic line is cut straight down and subjected to Lorentz force, so that the electrons can collide and collide, which consumes electron energy and lowers the temperature of the electron, thereby reducing wafer surface damage.
  • the electron cyclotron collision can also increase the plasma density, thereby increasing the processing rate on the wafer surface.
  • the invention provides a reaction chamber which can not only increase the plasma density by using the above magnetic field generating mechanism provided by the present invention, thereby improving the processing rate on the surface of the wafer, and lowering the temperature of the electron, thereby reducing the surface of the wafer. damage.
  • FIG. 1 is a cross-sectional view of a conventional ICP device
  • FIG. 2 is a cross-sectional view of another conventional ICP device
  • Figure 3 is a magnetic line diagram of the auxiliary magnetic field generated by the coil of Figure 2;
  • FIG. 4A is a cross-sectional view showing a magnetic field generating mechanism according to Embodiment 1 of the present invention.
  • FIG. 4B is a partial structural view of a coil used in Embodiment 1 of the present invention.
  • FIG. 4C is another partial structural view of a coil used in Embodiment 1 of the present invention.
  • 4D is still another partial structural view of a coil used in Embodiment 1 of the present invention.
  • 4E is a structural diagram of a magnetic core used in Embodiment 1 of the present invention.
  • 4F is a structural view of a dielectric cylinder used in Embodiment 1 of the present invention.
  • 4G is a magnetic line distribution diagram of a magnetic field generated by a coil used in Embodiment 1 of the present invention on a horizontal plane;
  • FIG. 5A is a partial structural view of a coil used in Embodiment 2 of the present invention.
  • 5B is another partial structural view of a coil used in Embodiment 2 of the present invention.
  • FIG. 6A is a partial structural view of a coil used in Embodiment 3 of the present invention.
  • FIG. 6B is a structural diagram of a sub-coil portion used in Embodiment 3 of the present invention.
  • Figure 7 is a cross-sectional view of a reaction chamber according to an embodiment of the present invention.
  • Figure 8 is a schematic view showing the structure of another medium cylinder.
  • Reaction chamber 17 dielectric window 6; intake duct 15; excitation coil 5; matching unit 8; radio frequency power supply 7; plasma 16; wafer 9; medium cylinder 11 in the background art; coil 18 in the background art;
  • the magnetic field generating mechanism of the reaction chamber includes a coil 1 surrounding the reaction chamber, as shown in FIG. 4A, the reaction chamber includes a medium cylinder 2, The coil 1 surrounds the periphery of the medium cylinder 2. Further, as shown in FIG. 4B, the coil 1 includes a columnar spiral portion 12 and a plurality of sub-coil portions 11 formed on the columnar spiral portion 12, wherein the structure of the columnar spiral portion 12 is columnar as a whole and surrounds The axis in the vertical direction is spirally wound, and as shown in FIG. 4A, the overall structure of the coil 1 is the structure of the columnar spiral portion 12.
  • the plurality of sub-coil portions 11 are sequentially disposed in the spiral winding direction of the columnar spiral portion 12, and preferably, the plurality of sub-coil portions 11 are evenly distributed with respect to the outer peripheral wall of the medium cylinder 2 to improve the generation in the medium cylinder 2.
  • each of the sub-coil portions 11 is wound around a first axis (not shown) which is inclined with respect to the vertical direction so that the total magnetic field strength vector of the magnetic field generated by the coil 1 has a horizontal component.
  • the angle between the first axis and the vertical direction is a right angle, that is, the first axis is horizontally disposed.
  • each of the sub-coil portions 11 is convex upward or downward with respect to the columnar spiral portion 12.
  • the magnetic field generating mechanism further includes a plurality of magnetic cores 3, each of which is wound around a magnetic core 3.
  • the magnetic core 3 may be a hollow or solid cylinder, and the radial cross-sectional shape of the cylinder may be circular, elliptical or diamond-shaped or any other shape.
  • the material used for the magnetic core 3 includes aluminum, ceramic or copper.
  • the magnetic core 3 can also adopt other materials such as iron, zinc, and the like.
  • the strength of the magnetic field generated by the sub-coil portion 11 can be enhanced, so that the magnetic field strength of the horizontal component can be enhanced.
  • a plurality of side limbs 20 projecting from the outer peripheral wall are provided on the outer peripheral wall of the medium cylinder 2 to serve as the magnetic core 3.
  • the material of the media cylinder 2 may be the same as that of the side branches 20, so that the two may be integrally formed.
  • the total magnetic field strength vector of the magnetic field generated by the coil 1 described above has a horizontal component, and the magnetic field line distribution of the horizontal component on the radial section of the dielectric cylinder 2 is as shown in Fig. 4G.
  • the electrons in the plasma can be cut perpendicular to the magnetic field and subjected to Lorentz force, so that the electrons can collide and collide, thereby consuming electron energy and reducing the electron temperature, thereby reducing the wafer. Surface damage.
  • the electron cyclotron collision can also increase the plasma density, thereby increasing the processing rate on the wafer surface.
  • electron cyclotron collision can increase the plasma density
  • electrons and ions in the plasma make a whirling motion
  • electrons and ions collide with electrically neutral molecules or atoms, converting electrically neutral molecules into atoms, or Converting an atom to an ion or changing the valence state of an ion can increase the plasma density.
  • electrons and ions in the plasma can also split larger groups into smaller volume groups during the swirling motion, which also increases the plasma density.
  • each sub-coil portion 11 is a semicircular arc line body that surrounds the first axis half-circle and protrudes upward with respect to the columnar spiral portion 12.
  • the columnar spiral portion 12 includes a plurality of first single turn coils spaced apart in the vertical direction, which is the pitch of the cylindrical spiral portion 12.
  • 4C shows two adjacent first one-turn coils, which are an upper first single-turn coil 12a and a lower first single-turn coil 12b, respectively, and a sub-coil portion 11a and a lower portion on the upper first single-turn coil 12a.
  • the sub-coil portions 11b on the first single-turn coil 12b are in one-to-one correspondence to improve the uniformity of distribution of the magnetic field in the reaction chamber, and the sub-coil portion 11a on the upper first single-turn coil 12a is from the first single-turn coil
  • the direction in which the projections 12a are the same is the same, and the direction in which the sub-coil portion 11b on the lower first single-turn coil 12b protrudes from the lower first single-turn coil 12b is the same.
  • Upper first one turn coil 12a and lower first The sub-coil portions (11a, 11b) on the single-turn coil 12b protrude in the same direction from the first one-turn coil in which they are located, that is, both protrude upward.
  • each sub-coil portion 11 of the sub-coil portion 1 is a semicircular arc line body.
  • the present invention is not limited thereto, and the actual configuration of the sub-coil portion 11 may be a circular arc body such as a quarter circle or a 1/8 circle.
  • the longer the arc length of the arc line body the larger the magnetic field distribution range formed by the arc line body.
  • the shorter the arc length of the arc line body the smaller the magnetic field distribution range formed by the arc line body. Based on this, different magnetic field distribution ranges can be obtained by setting arc lines of different arc lengths to meet different requirements.
  • 4D shows any three first single-turn coils of the columnar spiral portion 12 other than the uppermost layer and the lowermost first single-turn coil, respectively, the upper first single-turn coil 12c, and the first single turn The coil 12a and the lower first single turn coil 12b.
  • the winding directions of the three first single-turn coils are the same, that is, they are wound clockwise or counterclockwise around the axial direction of the medium cylinder 2, and the three first single-turn coils are connected end to end in sequence, specifically, the first single
  • the first end 121a of the turns coil 12a is connected to the tail end 122b of the lower first single turn coil 12b adjacent thereto, and the rear end 122a of the first single turn coil 12a and the upper first single turn coil 12c adjacent thereto
  • the leading end 121c is connected to realize the series connection of the respective first one-turn coils, and, as indicated by the arrows in Fig. 4C, the current directions in the respective first single-turn coils can be made the same.
  • the first end and the tail end are respectively an input end and an output end of the current.
  • the spacing between each adjacent two sub-coil portions 11 is equal to improve the uniformity of distribution of the magnetic field within the reaction chamber.
  • the structure of the columnar spiral portion 12 employed in the present embodiment is different from that of the above-described first embodiment in that: in each of the two adjacent first single-turn coils, the sub-coil portion on one of the first single-turn coils
  • the direction from which the first single turn coil protrudes is opposite to the direction in which the sub coil portion on the other first one turn coil protrudes from the first single turn coil. For example, as shown in FIG.
  • any two adjacent firsts The single turn coils are respectively the upper first single turn coil 12a and the lower first single turn coil 12b, wherein the sub coil portion 11a on the upper first single turn coil 12a protrudes upward from the upper first turn coil 12a; The sub-coil portion 11b on the first single-turn coil 12b protrudes downward from the lower first single-turn coil 12b.
  • FIG. 5B shows any of the first single-turn coils except the uppermost layer and the lowermost layer.
  • Two first single turn coils respectively an upper first single turn coil 12a and a lower first single turn coil 12b, wherein the winding directions of the two first single turn coils are opposite, for example, if the first single turn coil on v
  • the 12a is wound clockwise around the axis of the medium cylinder 2
  • the lower first single-turn coil 12b is wound counterclockwise around the axis of the medium cylinder 2.
  • a plurality of first single-turn coils are sequentially connected end to end, and as shown in FIG. 5B, the trailing end 122b of the lower first single-turn coil 12b is connected to the leading end 121a of the upper first single-turn coil 12a.
  • the structure of the columnar spiral portion 12 used in the present embodiment is different from that of the above embodiment 1-2 in that the specific structure of each sub-coil portion is a columnar spiral body 13 as shown in FIGS. 6A and 6B.
  • the columnar spiral body 13 includes one or more second single turn coils 131, and the plurality of second single turn coils 131 are sequentially distributed along the first axis 14.
  • the magnetic field distribution formed by the above-described columnar spiral body 13 is large, so that the restraining action on electrons in the plasma in the medium cylinder 2 can be enhanced.
  • the distribution uniformity of the magnetic field in the reaction chamber can be adjusted by setting the total number of different sub-coils 11; and/or the magnetic field can be adjusted by adjusting the magnitude of the current flowing into the coil 1.
  • Total magnetic field strength. Therefore, the magnetic field generating mechanism provided by the present invention can adjust the density and energy of the plasma to a large extent, thereby meeting the requirements of a complicated plasma etching process.
  • the total magnetic field strength vector of the magnetic field generated by the coil has a horizontal component, and the horizontal component can make the electrons in the plasma vertically downward.
  • the magnetic lines of force are cut and subjected to Lorentz force, so that the electrons can collide and collide, thereby consuming electron energy and reducing the temperature of the electrons, thereby reducing wafer surface damage.
  • the electron cyclotron collision can also increase the plasma density, thereby increasing the processing rate on the wafer surface.
  • an embodiment of the present invention further provides a reaction chamber including the magnetic field generating mechanism provided by the above various embodiments of the present invention.
  • the magnetic field generating mechanism is configured to form an auxiliary magnetic field in the reaction chamber, and the auxiliary magnetic field can restrain electrons in the plasma in the reaction chamber, so that the electrons can collide and collide, thereby consuming electron energy and reducing the temperature of the electron, thereby Reduce wafer surface damage.
  • the electron cyclotron collision can also increase the plasma density, thereby increasing the processing rate on the wafer surface.
  • the reaction chamber further includes an inductively coupled plasma source for exciting a process gas in the reaction chamber to form a plasma.
  • the reaction chamber includes a cavity 4 in which a dielectric window 6 is disposed, which partitions the internal space of the cavity 4 into a first sub-chamber 41 and a second sub-chamber 42.
  • the inductively coupled plasma source comprises an excitation coil 5 disposed in the first sub-chamber 41, the excitation coil 5 is connected to the excitation power source 7 through the upper matching unit 8, and the excitation power source 7 is used to supply the RF energy to the excitation coil 5.
  • the RF energy is fed into the second sub-chamber 42 through the dielectric window 6 to excite the process gas in the second sub-chamber 42 to form the plasma 16.
  • a medium cylinder 2 is disposed in the second sub-chamber 42 , and an annular space 15 is formed between the medium cylinder 2 and the inner wall of the second sub-chamber 42 , and the coil 1 of the magnetic field generating mechanism is located in the annular space 15 , and Surrounded by the media barrel 2.
  • the dielectric cylinder 2 is for coupling a magnetic field generated by the coil 1 of the magnetic field generating mechanism into the second sub-chamber 42.
  • the medium cylinder 2 can be adopted in the above embodiment 1.
  • the medium cylinder 2 has been described in detail in the above embodiment 1, and will not be described herein.
  • the reaction chamber further includes a susceptor 19 for carrying the wafer 9.
  • the susceptor 19 is connected to the RF power source 31 via a lower matcher 30.
  • the RF power source 31 is used to apply a radio frequency negative bias to the susceptor 19 to attract the plasma 16 to bombard the surface of the wafer 9.
  • the reaction chamber generates an plasma by using an inductively coupled plasma source.
  • plasma may be generated by any other means, for example, A plasma is generated using a capacitively coupled plasma source.
  • the reaction chamber provided by the embodiment of the present invention can increase the plasma density by using the magnetic field generating mechanism provided by the above various embodiments of the present invention, thereby improving the processing rate on the surface of the wafer and reducing the temperature of the electron. Can reduce wafer surface damage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)

Abstract

一种反应腔室(17)的磁场产生机构和反应腔室(17),其包括环绕在反应腔室(17)周围的线圈(1),该线圈(1)包括柱状螺旋线部(12)和在该柱状螺旋线部(12)上形成的多个子线圈部(11),且多个子线圈部(11)沿柱状螺旋线部(12)的螺旋缠绕方向依次设置;每个子线圈部(11)围绕第一轴线缠绕,第一轴线相对于竖直方向倾斜,以使由线圈(1)产生的磁场的总磁场强度矢量具有水平分量。该反应腔室(17)的磁场产生机构,其不仅可以提高等离子体密度,从而可以提高对晶圆表面的处理速率,而且可以降低电子温度,从而可以减少晶圆表面损伤。

Description

反应腔室的磁场产生机构和反应腔室 技术领域
本发明涉及等离子体处理技术领域,具体地,涉及一种反应腔室的磁场产生机构和反应腔室。
背景技术
在半导体的制造过程中,电感耦合等离子体(Inductively Coupled Plasma,以下简称ICP)设备可以在较低的工作气压下获得高密度的等离子体,而且结构简单、造价低,因此,ICP设备被广泛应用于等离子体刻蚀(IC)、物理气相沉积(PVD)、等离子体化学气相沉积(CVD)、微电子机械系统(MEMS)和发光二极管(LED)等工艺中。
如图1所示,为现有的一种ICP设备的剖视图。该ICP设备包括反应腔室17,在该反应腔室17的顶部设置有介质窗6,在该介质窗6中设置有进气管道15,用以向反应腔室17内输送工艺气体。并且,在介质窗6的上方设置有激励线圈5,该激励线圈5通过匹配器8和射频电源7电连接,用以激发反应腔室17内的工艺气体形成等离子体16,等离子体16扩散至晶圆9表面并与之相互作用,形成刻蚀形貌。
上述ICP设备仅具有用作等离子体源的激励线圈5,等离子体的密度和能量的可调节性较小,而且电子温度较高,对晶圆表面造成的表面损伤较大。
如图2所示,为现有的另一种ICP设备的剖视图。该ICP设备在上述ICP设备的基础上,增设了磁场产生结构。具体地,在反应腔室17的侧壁内侧设置有介质筒11,磁场产生结构为环绕设置在该介质筒11的外侧的线圈18,通过向该线圈18内通入直流电,可以在反应腔室17内形成辅助磁场,该辅助磁场可以对反应腔室17内的等离子体中的电子进行约束,使之回旋碰撞, 从而可以进一步消耗电子能量,进而不仅可以增加等离子体密度,而且可以减低电子温度,从而减少晶圆表面损伤。
上述磁场产生结构在实际应用中不可避免地存在以下问题:
由线圈18产生的辅助磁场的磁力线分布如图3中的实线箭头所示。受辅助磁场约束的电子的运动方向如图3中的虚线箭头所示。受辅助磁场约束的电子的分布区域如图3中的点划线区域所示。由图可知,由线圈18产生的辅助磁场的磁力线只在介质窗11的上方和下方相对于竖直方向发生偏转,而在介质窗11的内部的磁力线是竖直的,这使得在介质窗11的内部,电子的运动方向(竖直向下)与磁力线的方向相互平行,从而电子没有受到洛伦兹力,即不会受到辅助磁场的约束作用,进而造成在等离子体的密度较低,而且由于电子能量依然较高,因此仍然存在晶圆表面造成的表面损伤较大的问题。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提出了一种反应腔室的磁场产生机构和反应腔室,其不仅可以提高等离子体密度,从而可以提高对晶圆表面的处理速率,而且可以降低电子温度,从而可以减少晶圆表面损伤。
为实现本发明的目的而提供一种反应腔室的磁场产生机构,包括环绕在所述反应腔室周围的线圈,所述线圈包括柱状螺旋线部和在所述柱状螺旋线部上形成的多个子线圈部,且多个所述子线圈部沿所述柱状螺旋线部的螺旋缠绕方向依次设置;
每个所述子线圈部围绕第一轴线缠绕,所述第一轴线相对于竖直方向倾斜,以使由所述线圈产生的磁场的总磁场强度矢量具有水平分量。
优选的,每个所述子线圈部包括半圆形的圆弧线体。
优选的,所述柱状螺旋线部包括沿竖直方向依次分布的多个第一单匝线圈,同一所述第一单匝线圈上的所述子线圈部自所述第一单匝线圈凸出的方向相同,并且在每相邻的两个所述第一单匝线圈中,其中一个所述第一单匝线圈上的所述子线圈部自所述第一单匝线圈凸出的方向,与其中另一个所述第一单匝线圈上的所述子线圈部自所述第一单匝线圈凸出的方向相反。
优选的,多个所述第一单匝线圈的缠绕方向相同,且各个所述第一单匝线圈依次首尾连接。
优选的,所述柱状螺旋线部包括沿竖直方向间隔分布的多个第一单匝线圈,同一所述第一单匝线圈上的所述子线圈部自所述第一单匝线圈凸出的方向相同,并且在每相邻的两个所述第一单匝线圈中,每相邻的两个所述第一单匝线圈上的所述子线圈部自所述第一单匝线圈凸出的方向相同。
优选的,每个所述第一单匝线圈的缠绕方向相反,且各个所述第一单匝线圈依次首尾连接。
优选的,每个所述子线圈部包括柱状螺旋线体,所述柱状螺旋线体包括一个或多个第二单匝线圈,且多个所述第二单匝线圈沿所述第一轴线依次分布。
优选的,所述第一轴线与竖直方向之间的夹角为直角。
优选的,所述磁场产生机构还包括多个磁芯,每个所述子线圈部缠绕在一个所述磁芯上。
优选的,所述磁芯所采用的材料包括铝、陶瓷或铜。
优选的,所述反应腔室包括介质筒,所述线圈环绕在所述介质筒的周围;在所述介质筒的外周壁上设置有多个自所述外周壁凸出的侧肢,用作所述磁芯。
优选的,所述介质筒所采用的材料与所述侧枝所采用的材料相同。
优选的,通过设定不同的所述子线圈的总数量,来调节所述磁场在所述 反应腔室内的分布均匀性。
优选的,通过调节通入所述线圈中的电流大小,来调节所述磁场的总磁场强度。
作为另一个技术方案,本发明还提供一种反应腔室,包括本发明提供的上述磁场产生机构。
优选的,还包括电感耦合等离子体源,用于激发所述反应腔室内的工艺气体形成等离子体。
本发明的有益效果:
本发明提供的反应腔室的磁场产生机构,其线圈包括柱状螺旋线部和在该柱状螺旋线部上形成多个子线圈部,且多个子线圈部沿柱状螺旋线部的螺旋缠绕方向依次设置,并且每个子线圈部围绕第一轴线缠绕,该第一轴线相对于竖直方向倾斜,以使由线圈产生的磁场的总磁场强度矢量具有水平分量,该水平分量可以使等离子体中的电子在竖直向下运动时切割磁力线,受到洛伦兹力,从而使电子能够回旋碰撞,进而消耗了电子能量,降低了电子温度,从而可以减少晶圆表面损伤。而且,电子的回旋碰撞还可以提高等离子体密度,从而可以提高对晶圆表面的处理速率。
本发明提供的反应腔室,其通过采用本发明提供的上述磁场产生机构,不仅可以提高等离子体密度,从而可以提高对晶圆表面的处理速率,而且可以降低电子温度,从而可以减少晶圆表面损伤。
附图说明
图1为现有的一种ICP设备的剖视图;
图2为现有的另一种ICP设备的剖视图;
图3为由图2中的线圈产生的辅助磁场的磁力线分布图;
图4A为本发明实施例1提供的磁场产生机构的剖视图;
图4B为本发明实施例1采用的线圈的一种局部结构图;
图4C为本发明实施例1采用的线圈的另一种局部结构图;
图4D为本发明实施例1采用的线圈的又一种局部结构图;
图4E为本发明实施例1采用的磁芯的结构图;
图4F为本发明实施例1采用的介质筒的结构图;
图4G为由本发明实施例1采用的线圈产生的磁场在水平面上的磁力线分布图;
图5A为本发明实施例2采用的线圈的一种局部结构图;
图5B为本发明实施例2采用的线圈的另一种局部结构图;
图6A为本发明实施例3采用的线圈的一种局部结构图;
图6B为本发明实施例3采用的子线圈部的结构图;
图7为本发明实施例提供的反应腔室的剖视图;
图8为另一种介质筒的结构示意图。
其中的附图标记说明:
反应腔室17;介质窗6;进气管道15;激励线圈5;匹配器8;射频电源7;等离子体16;晶圆9;背景技术中的介质筒11;背景技术中的线圈18;本发明中的介质筒2;本发明中的线圈1;柱状螺旋线部12;子线圈部11;磁芯3;侧肢20;图4C中的上第一单匝线圈12a;图4C中的下第一单匝线圈12b;图4D中的上第一单匝线圈12c;图4D中的中第一单匝线圈12a;图4D中的下第一单匝线圈12b;图4D中的中第一单匝线圈12a的首端121a;图4D中的下第一单匝线圈12b的尾端122b;图4D中的中第一单匝线圈12a的尾端122a;图4D中的上第一单匝线圈12c的首端121c;图5A中的上第一单匝线圈12a上的子线圈部11a;图5A中的下第一单匝线圈12b上的子线圈部11b;图6A中的柱状螺旋线体13;腔体4;图7中的介质窗6;第一子腔室41;第二子腔室42;激励线圈5;上匹配器8;激励电源7;环形空间 15;图7中的基座19;下匹配器30;射频电源31。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明所提供的一种反应腔室的磁场产生机构和反应腔室作进一步详细描述。
实施例1
请一并参阅图4A-图4G,本实施例提供的反应腔室的磁场产生机构,其包括环绕在反应腔室周围的线圈1,如图4A所示,该反应腔室包括介质筒2,线圈1环绕在介质筒2的周围。并且,如图4B所示,线圈1包括柱状螺旋线部12和在该柱状螺旋线部12上形成的多个子线圈部11,其中,柱状螺旋线部12的结构在整体上呈柱状,且围绕竖直方向上的轴线螺旋缠绕,如图4A所示,线圈1的整体结构即为柱状螺旋线部12的结构。
如图4B所示,多个子线圈部11沿柱状螺旋线部12的螺旋缠绕方向依次设置,优选的,多个子线圈部11相对于介质筒2的外周壁均匀分布,以提高介质筒2内产生的磁场的分布均匀性。并且,每个子线圈部11围绕第一轴线(图中未示出)缠绕,该第一轴线相对于竖直方向倾斜,以使由线圈1产生的磁场的总磁场强度矢量具有水平分量。优选的,上述第一轴线与竖直方向之间的夹角为直角,即,第一轴线水平设置。在这种情况下,每个子线圈部11相对于柱状螺旋线部12朝上凸出或者朝下凸出。
优选的,如图4E所示,磁场产生机构还包括多个磁芯3,每个子线圈部11缠绕在一个磁芯3上。该磁芯3可以为空心或实心的柱体,该柱体的径向截面形状可以为圆形、椭圆形或者菱形或者其他任意形状。另外,磁芯3所采用的材料包括铝、陶瓷或铜。当然,在实际应用中,磁芯3也可以采用其他材料,如铁、锌等。
借助磁芯3,可以增强由子线圈部11产生的磁场强度,从而可以增强水平分量的磁场强度。
进一步优选的,如图4F所示,在介质筒2的外周壁上设置有多个自该外周壁凸出的侧肢20,用作上述磁芯3。另外,该介质筒2所采用的材料可以与侧枝20所采用的材料相同,从而二者可以一体成型。
当向线圈1中通入电流时,由上述线圈1产生的磁场的总磁场强度矢量具有水平分量,该水平分量在介质筒2的径向截面上的磁力线分布图如图4G所示。借助水平分量,可以使等离子体中的电子在竖直向下运动时切割磁力线,受到洛伦兹力,从而使电子能够回旋碰撞,进而消耗了电子能量,降低了电子温度,从而可以减少晶圆表面损伤。而且,电子的回旋碰撞还可以提高等离子体密度,从而可以提高对晶圆表面的处理速率。电子的回旋碰撞能够提高等离子体密度的原因是:当等离子体中的电子和离子作回旋运动时,电子和离子会碰撞电中性的分子或原子,使电中性的分子转换为原子,或者使原子转换为离子,或者使离子的价态发生变化,这些转换均能够增加等离子体密度。另外,等离子体中的电子和离子在作回旋运动的过程中,还能够使体积较大的基团分裂形成多个体积较小的基团,这也增加了等离子体密度。
在本实施例中,每个子线圈部11的具体结构为半圆形的圆弧线体,该圆弧线体围绕上述第一轴线半周,且相对于柱状螺旋线部12朝上凸出。而且,柱状螺旋线部12包括沿竖直方向间隔分布的多个第一单匝线圈,该间隔即为柱状螺旋线部12的螺距。图4C示出了任意相邻的两个第一单匝线圈,分别为上第一单匝线圈12a和下第一单匝线圈12b,上第一单匝线圈12a上的子线圈部11a与下第一单匝线圈12b上的子线圈部11b一一对应,以提高磁场在反应腔室内的分布均匀性,并且,上第一单匝线圈12a上的子线圈部11a自上第一单匝线圈12a凸出的方向相同,下第一单匝线圈12b上的子线圈部11b自下第一单匝线圈12b凸出的方向相同。上第一单匝线圈12a和下第一 单匝线圈12b上的子线圈部(11a,11b)自各自所在的第一单匝线圈凸出的方向相同,即,均朝上凸出。
需要说明的是,在本实施例中,子线圈部1每个子线圈部11的具体结构为半圆形的圆弧线体。但是本发明并不局限于此,在实际应用中,子线圈部11的具体结构还可以为1/4圆形或1/8圆形等的圆弧线体。当然,该圆弧线体的弧长越长,则由其形成的磁场分布范围越大,反之,圆弧线体的弧长越短,则由其形成的磁场分布范围越小。基于此,可以通过设定不同弧长的圆弧线体来获得不同的磁场分布范围,以满足不同的要求。
图4D示出了柱状螺旋线部12的除最上层和最下层的第一单匝线圈之外的任意三个第一单匝线圈,分别为上第一单匝线圈12c、中第一单匝线圈12a和下第一单匝线圈12b。其中,三个第一单匝线圈的缠绕方向相同,即,均围绕介质筒2的轴线方向顺时针或逆时针缠绕,并且三个第一单匝线圈依次首尾连接,具体地,中第一单匝线圈12a的首端121a和与之相邻的下第一单匝线圈12b的尾端122b连接,中第一单匝线圈12a的尾端122a和与之相邻的上第一单匝线圈12c的首端121c连接,从而实现各个第一单匝线圈的串接,并且,如图4C中的箭头所示,可以使各个第一单匝线圈中的电流方向相同。上述首端和尾端分别为电流的输入端和输出端。
优选的,各个相邻的两个子线圈部11之间的间隔相等,以提高磁场在反应腔室内的分布均匀性。
实施例2
本实施例采用的柱状螺旋线部12的结构与上述实施例1相比,其区别在于:在每相邻的两个第一单匝线圈中,其中一个第一单匝线圈上的子线圈部自第一单匝线圈凸出的方向,与其中另一个第一单匝线圈上的子线圈部自第一单匝线圈凸出的方向相反。例如,如图5A所示,任意相邻的两个第一 单匝线圈分别为上第一单匝线圈12a和下第一单匝线圈12b,其中,上第一单匝线圈12a上的子线圈部11a自上第一单匝线圈12a朝上凸出;下第一单匝线圈12b上的子线圈部11b自下第一单匝线圈12b朝下凸出。
需要说明的是,根据右手定则,若相邻的两个第一单匝线圈上的子线圈部11凸出的朝向相反,此时若通入相邻的两个第一单匝线圈中的电流方向相同,则会导致由相邻的两个第一单匝线圈上的子线圈部11产生的磁场相互抵消。在这种情况下,应使通入相邻的两个第一单匝线圈中的电流方向相反,具体地,图5B示出了除最上层和最下层的第一单匝线圈之外的任意两个第一单匝线圈,分别为上第一单匝线圈12a和下第一单匝线圈12b,其中,两个第一单匝线圈的缠绕方向相反,例如,若v上第一单匝线圈12a围绕介质筒2的轴线顺时针缠绕,则下第一单匝线圈12b围绕介质筒2的轴线逆时针缠绕。并且,多个第一单匝线圈依次首尾连接,如图5B所示,下第一单匝线圈12b的尾端122b与上第一单匝线圈12a的首端121a连接。
实施例3
本实施例采用的柱状螺旋线部12的结构与上述实施例1-2相比,其区别在于:如图6A和图6B所示,每个子线圈部的具体结构为柱状螺旋线体13,该柱状螺旋线体13包括一个或多个第二单匝线圈131,且多个第二单匝线圈131沿第一轴线14依次分布。由上述柱状螺旋线体13形成的磁场分布范围较大,从而可以增强对介质筒2内的等离子体中的电子的约束作用。
在上述各个实施例中,通过设定不同的子线圈11的总数量,可以调节磁场在反应腔室内的分布均匀性;和/或,通过调节通入线圈1中的电流大小,可以调节磁场的总磁场强度。由此,本发明提供的磁场产生机构可以对等离子体的密度和能量的可调节性较大,从而可以满足复杂的等离子体刻蚀工艺的要求。
综上所述,本发明上述各个实施例提供的反应腔室的磁场产生机构,其线圈产生的磁场的总磁场强度矢量具有水平分量,该水平分量可以使等离子体中的电子在竖直向下运动时切割磁力线,受到洛伦兹力,从而使电子能够回旋碰撞,进而消耗了电子能量,降低了电子温度,从而可以减少晶圆表面损伤。而且,电子的回旋碰撞还可以提高等离子体密度,从而可以提高对晶圆表面的处理速率。
作为另一个技术方案,本发明实施例还提供一种反应腔室,其包括本发明上述各个实施例提供的磁场产生机构。该磁场产生机构用于在反应腔室内形成辅助磁场,该辅助磁场能够对反应腔室内的等离子体中的电子进行约束,使电子能够回旋碰撞,从而消耗了电子能量,降低了电子温度,进而可以减少晶圆表面损伤。而且,电子的回旋碰撞还可以提高等离子体密度,从而可以提高对晶圆表面的处理速率。
在本实施例中,如图7所示,反应腔室还包括电感耦合等离子体源,用于激发该反应腔室内的工艺气体形成等离子体。具体地,反应腔室包括腔体4,在该腔体4中设置有介质窗6,该介质窗6将腔体4的内部空间分隔形成第一子腔室41和第二子腔室42,其中,上述电感耦合等离子体源包括设置在第一子腔室41中的激励线圈5,该激励线圈5通过上匹配器8与激励电源7连接,激励电源7用于向激励线圈5提供射频能量,该射频能量通过介质窗6馈入第二子腔室42,以激发该第二子腔室42中的工艺气体形成等离子体16。
在第二子腔室42中设置有介质筒2,该介质筒2与第二子腔室42的内壁之间形成有环形空间15,上述磁场产生机构的线圈1位于该环形空间15中,且环绕在介质筒2的周围。介质筒2用于将由磁场产生机构的线圈1产生的磁场耦合至第二子腔室42中。该介质筒2可以采用上述实施例1采用的 介质筒2,由于在上述实施例1中已有了详细描述,在此不再赘述。
另外,在本实施例中,反应腔室还包括基座19,用于承载晶圆9。该基座19通过下匹配器30与射频电源31连接。该射频电源31用于向基座19加载射频负偏压,以吸引等离子体16朝向晶圆9的表面轰击。
需要说明的是,在本实施例中,反应腔室采用电感耦合等离子体源产生等离子体,但是,本发明并不局限于此,在实际应用中,还可以采用其他任意方式产生等离子体,例如采用电容耦合等离子体源产生等离子体。
本发明实施例提供的反应腔室,其通过采用本发明上述各个实施例提供的磁场产生机构,不仅可以提高等离子体密度,从而可以提高对晶圆表面的处理速率,而且可以降低电子温度,从而可以减少晶圆表面损伤。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (16)

  1. 一种反应腔室的磁场产生机构,包括环绕在所述反应腔室周围的线圈,其特征在于,所述线圈包括柱状螺旋线部和在所述柱状螺旋线部上形成的多个子线圈部,且多个所述子线圈部沿所述柱状螺旋线部的螺旋缠绕方向依次设置;
    每个所述子线圈部围绕第一轴线缠绕,所述第一轴线相对于竖直方向倾斜,以使由所述线圈产生的磁场的总磁场强度矢量具有水平分量。
  2. 根据权利要求1所述的磁场产生机构,其特征在于,每个所述子线圈部包括半圆形的圆弧线体。
  3. 根据权利要求2所述的磁场产生机构,其特征在于,所述柱状螺旋线部包括沿竖直方向依次分布的多个第一单匝线圈,同一所述第一单匝线圈上的所述子线圈部自所述第一单匝线圈凸出的方向相同,并且在每相邻的两个所述第一单匝线圈中,其中一个所述第一单匝线圈上的所述子线圈部自所述第一单匝线圈凸出的方向,与其中另一个所述第一单匝线圈上的所述子线圈部自所述第一单匝线圈凸出的方向相反。
  4. 根据权利要求3所述的磁场产生机构,其特征在于,多个所述第一单匝线圈的缠绕方向相同,且各个所述第一单匝线圈依次首尾连接。
  5. 根据权利要求2所述的磁场产生机构,其特征在于,所述柱状螺旋线部包括沿竖直方向间隔分布的多个第一单匝线圈,同一所述第一单匝线圈上的所述子线圈部自所述第一单匝线圈凸出的方向相同,并且在每相邻的两个所述第一单匝线圈中,每相邻的两个所述第一单匝线圈上的所述子线圈部自所述第一单匝线圈凸出的方向相同。
  6. 根据权利要求5所述的磁场产生机构,其特征在于,每个所述第一单匝线圈的缠绕方向相反,且各个所述第一单匝线圈依次首尾连接。
  7. 根据权利要求1所述的磁场产生机构,其特征在于,每个所述子线圈部包括柱状螺旋线体,所述柱状螺旋线体包括一个或多个第二单匝线圈,且多个所述第二单匝线圈沿所述第一轴线依次分布。
  8. 根据权利要求1-7任意一项所述的磁场产生机构,其特征在于,所述第一轴线与竖直方向之间的夹角为直角。
  9. 根据权利要求1-7任意一项所述的磁场产生机构,其特征在于,所述磁场产生机构还包括多个磁芯,每个所述子线圈部缠绕在一个所述磁芯上。
  10. 根据权利要求9所述的磁场产生机构,其特征在于,所述磁芯所采用的材料包括铝、陶瓷或铜。
  11. 根据权利要求9所述的磁场产生机构,其特征在于,所述反应腔室包括介质筒,所述线圈环绕在所述介质筒的周围;在所述介质筒的外周壁上设置有多个自所述外周壁凸出的侧肢,用作所述磁芯。
  12. 根据权利要求11所述的磁场产生机构,其特征在于,所述介质筒所采用的材料与所述侧枝所采用的材料相同。
  13. 根据权利要求1所述的磁场产生机构,其特征在于,通过设定不同的所述子线圈的总数量,来调节所述磁场在所述反应腔室内的分布均匀性。
  14. 根据权利要求1所述的磁场产生机构,其特征在于,通过调节通入所述线圈中的电流大小,来调节所述磁场的总磁场强度。
  15. 一种反应腔室,其特征在于,包括权利要求1-14任意一项所述的磁场产生机构。
  16. 根据权利要求15所述的反应腔室,其特征在于,还包括电感耦合等离子体源,用于激发所述反应腔室内的工艺气体形成等离子体。
PCT/CN2017/100723 2017-03-09 2017-09-06 反应腔室的磁场产生机构和反应腔室 WO2018161511A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710138001 2017-03-09
CN201710138001.6 2017-03-09
CN201710308023.2 2017-05-04
CN201710308023.2A CN108575042B (zh) 2017-03-09 2017-05-04 一种线圈、介质筒和等离子体腔室

Publications (1)

Publication Number Publication Date
WO2018161511A1 true WO2018161511A1 (zh) 2018-09-13

Family

ID=63447208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100723 WO2018161511A1 (zh) 2017-03-09 2017-09-06 反应腔室的磁场产生机构和反应腔室

Country Status (1)

Country Link
WO (1) WO2018161511A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6247425B1 (en) * 1998-03-27 2001-06-19 Applied Materials, Inc. Method and apparatus for improving processing and reducing charge damage in an inductively coupled plasma reactor
WO2001067484A1 (en) * 2000-03-08 2001-09-13 University Of Ulster Magnetron sputter ion plating system
CN1614746A (zh) * 2003-11-04 2005-05-11 三星电子株式会社 螺旋谐振器型等离子体处理设备
CN1630936A (zh) * 2002-02-08 2005-06-22 权光虎 产生电感耦合等离子体的设备及其方法
CN103476196A (zh) * 2013-09-23 2013-12-25 中微半导体设备(上海)有限公司 等离子体处理装置及等离子体处理方法
US20160097118A1 (en) * 2014-10-01 2016-04-07 Seagate Technology Llc Inductively Coupled Plasma Enhanced Chemical Vapor Deposition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6247425B1 (en) * 1998-03-27 2001-06-19 Applied Materials, Inc. Method and apparatus for improving processing and reducing charge damage in an inductively coupled plasma reactor
WO2001067484A1 (en) * 2000-03-08 2001-09-13 University Of Ulster Magnetron sputter ion plating system
CN1630936A (zh) * 2002-02-08 2005-06-22 权光虎 产生电感耦合等离子体的设备及其方法
CN1614746A (zh) * 2003-11-04 2005-05-11 三星电子株式会社 螺旋谐振器型等离子体处理设备
CN103476196A (zh) * 2013-09-23 2013-12-25 中微半导体设备(上海)有限公司 等离子体处理装置及等离子体处理方法
US20160097118A1 (en) * 2014-10-01 2016-04-07 Seagate Technology Llc Inductively Coupled Plasma Enhanced Chemical Vapor Deposition

Similar Documents

Publication Publication Date Title
KR102223658B1 (ko) 플라즈마 소스 내에서 자기장들을 지향시키는 방법들, 및 연관된 시스템들
JP3987545B2 (ja) プラズマ処理用高周波誘導プラズマ源装置
JP5723130B2 (ja) プラズマ処理装置
KR101920842B1 (ko) 플라즈마 소스 디자인
US7952048B2 (en) Plasma source with discharge inducing bridge and plasma processing system using the same
US7255774B2 (en) Process apparatus and method for improving plasma production of an inductively coupled plasma
CA2386078C (en) Uniform gas distribution in large area plasma source
US20040255864A1 (en) ICP antenna and plasma generating apparatus using the same
US9269546B2 (en) Plasma reactor with electron beam plasma source having a uniform magnetic field
US7217337B2 (en) Plasma process chamber and system
KR100805557B1 (ko) 다중 마그네틱 코어가 결합된 유도 결합 플라즈마 소스
KR100698618B1 (ko) 플라즈마 가속장치 및 그것을 구비하는 플라즈마 처리시스템
TWI661747B (zh) 反應腔室的磁場產生機構和反應腔室
JP2004200169A (ja) 電磁気誘導加速器
WO2018161511A1 (zh) 反应腔室的磁场产生机构和反应腔室
KR100743842B1 (ko) 자속 채널에 결합된 플라즈마 챔버를 구비한 플라즈마반응기
KR101028215B1 (ko) 플라즈마 발생 장치
JP2000012296A (ja) プラズマ処理装置
KR20090073327A (ko) 고밀도 원격 플라즈마 처리 장치
KR20210102989A (ko) 플라즈마 프로세싱 챔버를 위한 피보나치 코일
JP2000315598A (ja) プラズマ処理装置
KR100785401B1 (ko) 유도 결합형 플라즈마 처리 장치
KR20070104704A (ko) 내장 마그네틱 코어를 갖는 유도 결합 플라즈마 소스
JP2000012295A (ja) プラズマ処理装置
JPH09326300A (ja) プラズマ発生方法及びプラズマ発生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899696

Country of ref document: EP

Kind code of ref document: A1