WO2018159966A1 - 세포 이동성 측정 방법 및 이를 이용한 세포 이동성 저해제의 스크리닝 방법 - Google Patents

세포 이동성 측정 방법 및 이를 이용한 세포 이동성 저해제의 스크리닝 방법 Download PDF

Info

Publication number
WO2018159966A1
WO2018159966A1 PCT/KR2018/002306 KR2018002306W WO2018159966A1 WO 2018159966 A1 WO2018159966 A1 WO 2018159966A1 KR 2018002306 W KR2018002306 W KR 2018002306W WO 2018159966 A1 WO2018159966 A1 WO 2018159966A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
mobility
dimensional structure
measuring
Prior art date
Application number
PCT/KR2018/002306
Other languages
English (en)
French (fr)
Inventor
남도현
공두식
유규하
Original Assignee
사회복지법인 삼성생명공익재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 사회복지법인 삼성생명공익재단 filed Critical 사회복지법인 삼성생명공익재단
Publication of WO2018159966A1 publication Critical patent/WO2018159966A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/4833Physical analysis of biological material of solid biological material, e.g. tissue samples, cell cultures
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/025Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/10Screening for compounds of potential therapeutic value involving cells

Definitions

  • the present invention relates to a method for measuring cell mobility using fluorescence observation of cells cultured in three dimensions, and a method for screening a cell mobility inhibitor using the same.
  • Cell migration refers to the migration of a series or individual cells by various physical, chemical, and biological stimuli. This cell migration is deeply involved in the treatment of various diseases and various biological phenomena such as angiogenesis, cancer metastasis, tissue development and differentiation, damaged tissue regeneration, immune response.
  • Korean Patent Publication No. 10-2014-0011325 discloses an assay chip for measuring cell migration using a nanofiber mat having a uniform thickness and cell fluorescence staining to measure three-dimensional movement of cells. This was limited in that only the up and down movement of the cells using the inducer could be confirmed.
  • the present invention provides a method for measuring cell mobility using a frequency ratio at which cells cultured in three dimensions in the structure of the upper portion of the micropillar chip move to the contact surface of the micropillar and the structure to adhere and grow through the fluorescence observation of the cell. At the same time, by observing and comparing the cell activity, it provides a tool for judging the efficacy of the drug, including the degree of inhibition of cell mobility and drug toxicity according to the drug concentration.
  • One aspect of the present invention includes the steps of (a) culturing a cell in a three-dimensional structure in contact with a micropillar chip and comprising an extracellular matrix; (b) fluorescing the cells in the three-dimensional structure and obtaining a fluorescence image of the cells; And (c) determining the movement of the cells by identifying the cells attached to the contact surface of the three-dimensional structure and the micropillar chip from the obtained fluorescence image.
  • the steps of (a) to (c) is performed two or more times, preferably 10 to 16 times to measure the frequency ratio of the attached cells (movement) of the cells It can be determined.
  • the extracellular matrix is any one selected from the group consisting of alginate, collagen, fibrin, fibrin, polyethyleneglycol, self-assembled peptides, and combinations thereof Can be.
  • One aspect of the present invention provides a method for producing a cell comprising: (a) culturing a cell in a three-dimensional construct in contact with the micropillar chip and comprising a candidate substance and an extracellular matrix of a cell mobility inhibitor; (b) fluorescing the cells in the three-dimensional structure, and obtaining a fluorescence image of the cells; (c) determining the mobility of the cells by identifying the cells attached to the contact surface of the three-dimensional structure and the micropillar chip from the obtained fluorescence image; And (d) measuring activity of the cells attached to the contact surface of the three-dimensional structure and the micropillar chip and the cells attached to the contact surface of the micropillar chip or the skeleton of the cells from the obtained fluorescence image. do.
  • One embodiment of the present invention determines the mobility and activity of the cells by performing the steps (a) to (d) two or more times, preferably 10 to 16 times to measure the frequency ratio and activity of the attached cells. can do.
  • the present invention is based on measuring the movement of cells in three dimensions. Provide a model that more closely simulates.
  • the present invention can determine the efficacy of the drug, including the degree of inhibition of cell mobility, drug toxicity, and the like, by observing and comparing cell mobility and cell activity, and rapid mass / high density screening of the drug ( It is expected to be applicable to high throughput / high contents screening.
  • FIG. 1 shows an example of a cell fluorescence image according to the three-dimensional cell mobility measurement method according to the present invention.
  • Figure 2 shows the results of measuring cell activity and cell mobility according to Ouabain (Ouabain) contained in the micropillar chip.
  • FIG. 3 shows the results of measuring cell activity and cell mobility according to geldanamycin included in the micropillar chip.
  • One aspect of the present invention provides a method for producing a cell comprising: (a) culturing a cell in a three-dimensional structure in contact with the micropillar chip and comprising an extracellular matrix; (b) fluorescing the cells in the three-dimensional structure, and obtaining a fluorescence image of the cells; And (c) determining the movement of the cells by identifying the cells attached to the contact surface of the three-dimensional structure and the micropillar chip from the obtained fluorescence image.
  • the method for measuring the mobility of cells according to the present invention includes (a) culturing the cells in a three-dimensional structure in contact with the top of the micropillar chip and comprising an extracellular matrix.
  • the term "cell” refers to a movable animal cell, preferably a mammalian cell, and more preferably may be a cancer cell including primary tumor cells, invasive cells and metastatic cells.
  • the cancer may be metastatic cancer or metastatic cancer, specifically, breast cancer, liver cancer, stomach cancer, colon cancer, bone cancer, pancreatic cancer, head or neck cancer, uterine cancer, ovarian cancer, rectal cancer, esophageal cancer, small intestine cancer, anal muscle cancer, Colon cancer, fallopian tube carcinoma, endometrial carcinoma, cervical carcinoma, vaginal carcinoma, vulvar carcinoma, Hodgkin's disease, prostate cancer, bladder cancer, kidney cancer, ureter cancer, renal cell carcinoma, renal pelvic carcinoma and central nervous system tumor It may be, but is not limited thereto.
  • the cells are preferably labeled with a fluorescent protein such as green fluorescent protein (GFP), and the labeling may be performed by inserting a gene of the fluorescent protein into a promoter or the like, or by antibody staining
  • the term "culture” refers to the growth, proliferation, differentiation or maintenance of cells used in an experiment under appropriate conditions known in the art (such as cell density, extracellular pH and oxygen concentration), depending on the cell used.
  • the culturing of the cells in step (a) is 24 to 60 hours, preferably 36 to 54 hours, more preferably 48 in a three-dimensional structure comprising an extracellular matrix. May proceed for a time.
  • the term "three-dimensional construct" refers to a three-dimensional space in which cells are cultured and migrated.
  • the three-dimensional structure may be a medium (medium) suitable for the culture of the cells, specifically a solid medium or a semi-solid medium, it is to observe the mobility of the cells themselves without the influence of external environmental factors.
  • the three-dimensional construct may comprise aqueous solutions or basic salt nutrients of salts and other components that provide the cells with certain bulk inorganic ions and water essential for normal cell metabolism and maintain osmotic balance within and outside the cells.
  • the three-dimensional structure includes a buffer system for maintaining the medium within at least one carbohydrate and / or physiological pH range as an energy source.
  • Examples of commercially available media that can be used as three-dimensional constructs include phosphate buffered saline (PBS), Dulbecco's Modified Eagle's Medium (DMEM), Minimum Essential Medium (MEM), Basal Medium Eagle (BME), RPMl 1640, Ham F-10, Ham F-12, ⁇ -Minimum Essential Medium ( ⁇ MEM), Glasgow Minimum Essential Medium (G-MEM), Iscove Modified Dulbecco's Medium, or Pluripotent Cells
  • PBS phosphate buffered saline
  • DMEM Dulbecco's Modified Eagle's Medium
  • MEM Minimum Essential Medium
  • BME Basal Medium Eagle
  • RPMl 1640 Ham F-10
  • ⁇ MEM ⁇ -Minimum Essential Medium
  • G-MEM Glasgow Minimum Essential Medium
  • Iscove Modified Dulbecco's Medium or Pluripotent Cells
  • General purpose media modified for use together such as, but not limited to, X-VIVO (Lonza) or hem
  • the three-dimensional structure comprises an extracellular matrix.
  • extracellular matrix refers to a complex structure around "cells” that support "cells” found in mammalian tissues in vivo and is often called connective tissue.
  • Natural extracellular matrix mainly contains differentiation proteins such as structural proteins such as collagen and elastin, fibrillin, fibronectin, laminin, enactin and proteoglycan. It consists of three major classes of biomolecules.
  • the extracellular matrix can be used to produce bio-like three-dimensional scaffolds in the laboratory, and the natural scaffolds that are used are mainly type 1 collagen, type IV collagen, laminin, It is a hydrogel of natural substance such as fibronectin or hyaluronic acid, and is a matrigel, alginate, collagen, fibrin, polyethyleneglycol, self-assembled peptide And it is preferably any one selected from the group consisting of a combination thereof, but is not limited thereto, preferably alginate.
  • the three-dimensional structure may further include supplementary components necessary for culturing the cells.
  • the three-dimensional structure may further include a candidate substance of the cell mobility inhibitor to be screened.
  • a candidate substance of the cell mobility inhibitor to be screened.
  • the three-dimensional structure is not affected by the shape and size, but may be preferably in the form of hemispheres, cylinders, cubes, cuboids, cones, polygonal pyramid, etc., more preferably hemispherical But it is not limited thereto.
  • micropillar chip is located under the three-dimensional structure to serve as a support, unlike the three-dimensional structure is not possible to move the cells inside the micropillar chip.
  • the micropillar chip may be immersed in the culture solution and the drug to culture the cells formed on the micropillar or to react with the drug.
  • the micropillar chip is manufactured by molding molding, and may be made of polystyrene (PS), polydimethylsiloxane (PDMS), or polyurethane acrylate (PUA), but is not limited thereto. no.
  • the micropillar chip is not affected by the shape and size, but may preferably be in the form of a cylinder, a polygonal cylinder, a cone, a polygonal pyramid, or the like, and more preferably, a cylindrical shape, but is not limited thereto.
  • fluorescence staining includes immunofluorescence staining that stains cells using a fluorescent dye, such as green or red, to visually identify living cells. The fluorescence image of the cell activity, the skeleton, etc. can be confirmed.
  • fluorescent material (calcein AM (Calcein AM), Fluorescein isothiocuanate (FITC), Paloidin (Phalloidin), fluorescein (fluorescein), rhodamine, TAMRA (6-carboxy-tetramethyl-rhodamine) , Cy-3, Cy-5, Texas Red, DAPI (4,6-diamidino-2-phenylindole) and Comarin]], Fluorescent dyes (Alexa Fluor 610, Alexa Fluor 647 (Life Technology) ), DyLight 633, DyLight 650, DyLight 680 (Thermo Fisher), TF5, TF6, TF7 (ACZO Biotech), etc., and particles containing fluorescent dyes (Flash Red (Bangs Labs), Dark Red, Infrared (Invitrogen) ), Sky Blue (Sperotech, etc.) may be used, but is not limited thereto.
  • the cells themselves may be cultured using cells labeled with green fluorescent protein (GFP).
  • GFP green fluorescent protein
  • genes encoding GFP can be introduced into cells (see Ogawa et al., Proc. Natl. Acad. Sci., 1995, 92: 11899-11903).
  • the term “contact surface” refers to a plane on which one surface of the three-dimensional structure and one surface of the micropillar chip are bonded.
  • the cells are moved to the lower part of the three-dimensional structure by gravity, and after reaching the contact surface, the cells do not move inside the micropillar chip but are attached to the contact surface and grow.
  • Method for measuring the mobility of cells comprises the steps of (b) fluorescence staining the cells in the three-dimensional structure and to obtain a fluorescent image of the cells; And (c) determining the movement of the cells by checking the cells attached to the contact surface of the three-dimensional structure and the micropillar from the obtained fluorescence image.
  • the cultured cells can be identified by fluorescence staining of a fluorescent protein coupled to separate living cells or when fluorescent images are taken in a direction parallel to the attachment surface of the three-dimensional structure and the micropillar chip, according to an embodiment of the present invention.
  • a fluorescent protein coupled to separate living cells
  • fluorescent images are taken in a direction parallel to the attachment surface of the three-dimensional structure and the micropillar chip, according to an embodiment of the present invention.
  • GFP is used as the fluorescent protein
  • cells in three-dimensional culture in the three-dimensional structure show bright fluorescence
  • cells attached to the adhesion surface show turbid fluorescence. Therefore, the movement of the cells can be confirmed through the presence of the object showing the cloudy fluorescence on the fluorescence image.
  • bright fluorescence has a circular shape
  • cloudy fluorescence has an elliptical shape that is widened because cells grow by attaching to the bottom of the micropillar.
  • the step (a) to (c) may be performed two or more times, preferably 10 to 16 times, more preferably 14 times, to determine the frequency ratio of the attached cells. have.
  • the frequency ratio of the cells is determined by the ratio of the number of times cells adhered to the contact surface with respect to the total number of measurements.
  • the two or more measurements may occur simultaneously or sequentially. Contrary to the determination of cell migration in a single sample, it is possible to further improve the accuracy and precision of experimental results by statistic of the results of several independent samples, preferably cultured under the same or similar conditions. .
  • One aspect of the present invention provides a method for producing a cell comprising: (a) culturing a cell in a three-dimensional construct in contact with the micropillar chip and comprising a candidate substance and an extracellular matrix of a cell mobility inhibitor; (b) fluorescing the cells in the three-dimensional structure, and obtaining a fluorescence image of the cells; (c) determining the mobility of the cells by identifying the cells attached to the contact surface of the three-dimensional structure and the micropillar chip from the obtained fluorescence image; And (d) measuring the activity of the cells attached to the contact surface of the three-dimensional structure and the micropillar chip and the cells not attached from the obtained fluorescence image.
  • the activity of the cell can be measured by observing the IC 50 value of the cell, but is not limited thereto.
  • A549 (commercial cell line) purchased from ATCC and RPMI culture (10% fetal bovine serum, 1% penicillin-streptomycin) were prepared.
  • the culture solution containing the cells (4 ⁇ 10 6 cells / ml) and 1.5 wt% alginate solution were mixed. 40nl to 1 ⁇ l of the cell mixture was dispensed into the wells, and the micropillar chips were placed in accordance with the water surface. After the alginate solidified (gelation), the micropillar was immersed in a well containing media or drug and placed in an incubator at 37 ° C., 5% CO 2 , and cultured or drug reacted for 72 hours.
  • the fluorescence image was taken in a direction parallel to the adhesive surface using a fluorescence microscope (see Fig. 1).
  • Example 2 with the addition of owavine, the IC 50 value based on cell mobility is 100 times smaller than the IC 50 value based on cell activity. It was confirmed that the mobility is reduced (see FIG. 2).
  • Example 3 in which geldanamycin was added, an IC 50 value based on cell mobility corresponds to about 1/2 of an IC 50 value based on cell activity, so that the cell was not necroticed by the drug. Although the mobility of is reduced, it was confirmed that the difference in concentration is not large (see Fig. 3).
  • fluorescence staining was performed in the same manner as in Experimental Example 1, and fluorescence images were taken in a direction parallel to the adhesive surface.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Optics & Photonics (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Cell Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

본 발명은 세포의 형광 관측을 통하여, 마이크로필라 칩(micropillar chip) 상부의 구조체에서 3차원으로 배양된 세포가 마이크로필라 칩과 구조체의 접촉면으로 이동하여 부착 성장하는 빈도비(frequency ratio)를 이용한 세포의 이동성 측정 방법에 관한 것으로, 이와 동시에 세포 활성도를 관측하여 비교함으로써, 약물 농도에 따른 세포 이동성의 저해 정도, 약물의 독성 등을 총괄한 약물의 효용성을 판단하는 도구를 제공한다.

Description

세포 이동성 측정 방법 및 이를 이용한 세포 이동성 저해제의 스크리닝 방법
본 발명은 3차원으로 배양된 세포의 형광 관측을 이용한 세포의 이동성 측정 방법 및 이를 이용한 세포 이동성 저해제의 스크리닝 방법에 관한 것이다.
세포 이동(cell migration)이란, 다양한 물리, 화학, 생물학적 자극에 의하여 일련 또는 개개의 세포가 이동하는 것을 지칭한다. 이러한 세포 이동은 신생혈관형성(angiogenesis), 암전이, 조직의 발생 및 분화, 손상조직 재생, 면역반응 등의 다양한 생물학적 현상과 다양한 질병의 치료에 깊게 연관되어 있다.
근래까지 세포 이동에 대한 연구는 대부분 체외 조직 배양 세포를 2차원 커버슬립(cover slip) 표면에 배양한 후 움직임을 관찰함으로써 수행되었다. 그러나 이러한 방법은 인체 등 생리적인 조건과는 상당히 차이가 있어 인체 내부 등에서 일어나는 현상을 예측하기 어려운 문제점이 있었다. 따라서, 생리적인 조건을 모사할 수 있는 장치, 기법 등이 요구되어 왔으며, 최근 3차원적인 체외 조직 배양 도구들이 사용이 활발해지고 있다.
또한, 한국 공개특허 제10-2014-0011325호는 균일한 두께를 갖는 나노섬유매트와 세포 형광 염색을 이용하여 세포의 3차원적 이동을 측정하는 세포이동 측정용 어세이 칩에 관하여 개시하고 있으나, 이는 유도 물질을 이용한 세포의 상하 이동 여부만을 확인할 수 있다는 점에서 한계가 있었다.
본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허 문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명 의 내용이 보다 명확하게 설명된다.
본 발명은 세포의 형광 관측을 통하여, 마이크로필라 칩 상부의 구조체에서 3차원으로 배양된 세포가 마이크로필라와 구조체의 접촉면으로 이동하여 부착 성장하는 빈도비를 이용한 세포의 이동성 측정 방법을 제공하며, 이와 동시에 세포활성도를 관측하여 비교함으로써, 약물 농도에 따른 세포 이동성의 저해 정도, 약물의 독성 등을 총괄한 약물의 효용성을 판단하는 도구를 제공한다.
본 발명의 일 양상은 (a) 마이크로필라 칩(micropillar chip)에 접촉되어 있고 세포외 기질(extracellular matrix)을 포함하는 3차원 구조체 내에서 세포를 배양하는 단계; (b) 상기 3차원 구조체 내 세포를 형광염색하고 세포의 형광 이미지를 획득하는 단계; 및 (c) 상기 획득한 형광 이미지로부터 상기 3차원 구조체와 마이크로필라 칩의 접촉면에 부착된 세포를 확인함으로써 상기 세포의 이동 여부를 판단하는 단계를 포함하는 세포의 이동성 측정 방법을 제공한다.
본 발명의 일 실시예에 따르면, 상기 단계 (a) 내지 (c)를 2회 이상, 바람직하게는 10 내지 16회 수행하여 상기 부착된 세포의 빈도비(frequency ratio)를 측정함으로써 상기 세포의 이동 여부를 판단할 수 있다.
본 발명의 일 실시예에 따르면, 상기 세포외 기질은 알지네이트(Alginate), 콜라겐(Collagen), 피브린(fibrin), 폴리에틸렌글리콜(polyethyleneglycol), 자가조립 펩타이드 및 이들의 조합으로 구성된 군으로부터 선택되는 어느 하나일 수 있다.
본 발명의 일 양상은 (a) 마이크로필라 칩에 접촉되어 있고 세포 이동성 저해제의 후보 물질 및 세포외 기질을 포함하는, 3차원 구조체 내에서 세포를 배양하는 단계; (b) 상기 3차원 구조체 내 세포를 형광염색하고, 세포의 형광 이미지를 획득하는 단계; (c) 상기 획득한 형광 이미지로부터 상기 3차원 구조체와 마이크로필라 칩의 접촉면에 부착된 세포를 확인함으로써 상기 세포의 이동성을 판단하는 단계; 및 (d) 상기 획득한 형광 이미지로부터 상기 3차원 구조체와 마이크로필라 칩의 접촉면에 부착된 세포와 부착되지 않은 세포의 활성도 또는 세포의 골격을 측정하는 단계를 포함하는 세포 이동성 저해제의 스크리닝 방법을 제공한다.
본 발명의 일 실시예는 상기 단계 (a) 내지 (d)를 2회 이상, 바람직하게는 10 내지 16회 수행하여 상기 부착된 세포의 빈도비 및 활성을 측정함으로써 상기 세포의 이동성 및 활성도를 판단할 수 있다.
기존의 세포 이동/침윤 실험(migration/invasion assay)이 세포의 움직임을 2차원으로 배양 및 분석함과 달리, 본 발명은 세포의 3차원에서의 움직임을 측정하는 것을 기본으로 하여, 인체 등 생물 환경을 보다 흡사하게 모사하는 모델을 제공한다. 또한, 기존에 1개의 웰에서만 측정했던 것과 달리, 수 개, 바람직하게는 14개의 복제된 웰에서의 세포 이동여부를 관찰하여 세포가 이동하여 마이크로필라 바닥에 부착되는 세포의 빈도비를 계산하므로, 세포 이동도 측정의 정확성과 정밀도를 높일 수 있다. 살아 있는 세포를 염색하기 때문에 세포의 이동도 뿐만 아니라 세포의 활성도 동시에 측정이 가능하다.
본 발명은 세포의 이동도 및 세포 활성도를 관측하여 비교함으로써, 약물 농도에 따른 세포 이동성의 저해 정도, 약물의 독성 등을 총괄한 약물의 효용성을 판단할 수 있으며, 약물의 고속대량/고집적 스크리닝(high throughput/high contents screening) 분야에 적용 가능할 것으로 예상된다.
도 1은 본 발명에 따른 3차원 세포 이동성 측정 방법에 따른 세포 형광 이미지의 예시를 나타낸다.
도 2는 마이크로필라 칩에 포함된 오아바인(Ouabain)에 따른 세포활성도 및 세포 이동성 측정 결과를 나타낸다.
도 3은 마이크로필라 칩에 포함된 겔다나마이신(Geldanamycin)에 따른 세포활성도 및 세포 이동성 측정 결과를 나타낸다.
이하에서는 본 발명에 따른 세포의 이동성 측정 방법을 상세히 설명한다.
본 발명의 일 양상은 (a) 마이크로필라 칩에 접촉되어 있고 세포외 기질을 포함하는 3차원 구조체 내에서 세포를 배양하는 단계; (b) 상기 3차원 구조체 내 세포를 형광염색하고, 세포의 형광 이미지를 획득하는 단계; 및 (c) 상기 획득한 형광 이미지로부터 상기 3차원 구조체와 마이크로필라 칩의 접촉면에 부착된 세포를 확인함으로써 상기 세포의 이동 여부를 판단하는 단계를 포함하는 세포의 이동성 측정 방법을 제공한다.
본 발명에 따른 세포의 이동성 측정 방법은 (a) 마이크로필라 칩 상단에 접촉되어 있고 세포외 기질을 포함하는 3차원 구조체 내에서 세포를 배양하는 단계를 포함한다.
본 명세서 사용되는 용어 "세포"는 이동이 가능한 동물세포, 바람직하게는 포유류 세포를 지칭하며, 보다 바람직하게는 원발성 종양 세포, 침습성 세포 및 전이성 세포를 포함하는 암세포일 수 있다. 상기 암은 전이성 암 또는 전이성 유발가능한 암인 것일 수 있으며, 구체적으로는 유방암, 간암, 위암, 결장암, 골암, 췌장암, 두부 또는 경부 암, 자궁암, 난소암, 직장암, 식도암, 소장암, 항문부근암, 결장암, 나팔관암종, 자궁내막암종, 자궁경부암종, 질암종, 음문암종, 호지킨병, 전립선암, 방광암, 신장암, 수뇨관암, 신장세포암종, 신장골반암종 및 중추신경계 종양으로 이루어진 군으로부터 선택될 수 있으나, 이에 한정되지 않는다. 상기 세포는 녹색형광단백질(GFP) 등 형광단백질로 표지된 것이 바람직하며, 상기 표지는 형광단백질의 유전자를 프로모터 등에 삽입하여 이식하거나 항체염색법에 의하여 수행될 수 있다.
본 명세서 사용되는 용어 "배양"은 사용되는 세포에 따라 당업계에 공지된 적절한 조건(세포의 밀도, 세포 외부의 pH 및 산소 농도 등) 하에서 실험에 사용된 세포를 성장, 증식, 분화 또는 유지시키는 것을 지칭한다. 본 발명의 일 실시예에 따르면, 상기 단계 (a)에서 세포의 배양은 세포외 기질을 포함하는 3차원 구조체 내에서 24시간 내지 60시간, 바람직하게는 36시간 내지 54시간, 보다 바람직하게는 48시간 동안 진행될 수 있다.
본 명세서 사용되는 용어 "3차원 구조체"는 세포가 배양 및 이동되는 3차원 공간을 지칭한다. 상기 3차원 구조체는 세포의 배양에 적합한 배지(medium)일 수 있고, 구체적으로 고체 배지 또는 반고체 배지인 것이 바람직하며, 이는 외부 환경 요인의 영향이 배제된 채 세포 자체의 이동성을 관찰하기 위함이다. 상기 3차원 구조체는 정상 세포 대사에 필수적인 특정 벌크 무기 이온 및 물과 함께 세포를 제공하고 세포 내외의 삼투압 균형을 유지하는 염 및 다른 구성요소의 수용액 또는 기본 염 영양소를 포함할 수 있다. 다양한 실시형태에서, 상기 3차원 구조체는 에너지 공급원으로서 적어도 하나의 탄수화물 및/또는 생리적 pH 범위 내에서 배지를 유지하기 위한 완충 시스템을 포함한다. 3차원 구조체로 사용 가능한, 상업적으로 입수가능한 배지의 예는 인산염 완충 식염수(PBS), 둘베코 변형 이글 배지(DMEM), 최소 필수 배지(MEM), 기본 배지 이글(Basal Medium Eagle: BME), RPMl 1640, 함(Ham)의 F-10, 함의 F-12, α-최소 필수 배지(αMEM), 글래스고(Glasgow)의 최소 필수 배지(G-MEM), 이스코브 변형 둘베코 배지, 또는 만능 세포와 함께 사용하기 위해 변형된 일반적 목적의 배지, 예컨대 X-VIVO (Lonza) 또는 조혈 기본 배지를 포함하나, 이에 한정되지 않는다.
본 발명의 일 실시예에서, 상기 3차원 구조체는 세포외 기질을 포함한다. 본 명세서 사용되는 용어 "세포외 기질"은 생체 내의 포유동물 조직에서 발견되는, 세포를 지지해 주는 세포 주변의 복잡한 구조체를 지칭하며, 흔히 결합 조직이라 불린다. 천연적인 세포외 기질은 주로 콜라겐(collagen) 및 엘라스틴(elastin) 등의 구조 단백질, 피브릴린(fibrillin), 피브로넥틴(fibronectin), 라미닌(laminin), 엔탁틴(entactin) 및 프로테오글리칸 등의 분화 단백질을 비롯한 주요한 3가지 부류의 생체분자로 이루어진다. 이러한 세포외 기질들을 이용하여 생체 유사의 3차원 스캐폴드를 실험실에서 제작할 수 있으며, 주로 사용되고 있는 자연적 스캐폴드는 제1형 콜라겐(type 1 collagen), 제4형 콜라겐(type Ⅳ collagen), 라미닌, 피브로넥틴 또는 히알루론산(hyaluronic acid)과 같은 천연물질의 하이드로겔(hydrogel)이며, 매트리젤(Matrigel), 알지네이트(alginate), 콜라겐(collagen), 피브린(fibrin), 폴리에틸렌글리콜(polyethyleneglycol), 자가조립 펩타이드 및 이들의 조합으로 구성된 군으로부터 선택되는 어느 하나인 것이 바람직하나, 이에 한정되는 것은 아니며, 바람직하게는 알지네이트이다. 상기 3차원 구조체는 이 외에 세포의 배양에 필요한 보충 성분들을 추가로 포함할 수 있다.
또한, 상기 3차원 구조체는 스크리닝의 대상이 되는 세포 이동성 저해제의 후보 물질을 추가로 포함할 수 있다. 본 발명에 따른 세포의 이동성 및 활성도를 측정 및 분석함으로써, 여러 후보 물질 중 세포에 대한 독성이 낮으면서 효과적으로 세포의 이동을 억제할 수 있는 물질을 선정할 수 있다. 상기 3차원 구조체에 포함된 세포 이동성 저해제에 의하여 세포의 이동이 중단된 경우, 세포는 3차원 구조체 내에서 3차원적으로만 성장하게 된다.
본 발명의 일 실시예에서, 상기 3차원 구조체는 형상 및 크기에 영향을 받지 않으나, 바람직하게는 반구, 원기둥, 정육면체, 직육면체, 원뿔, 다각뿔 등의 형태일 수 있고, 보다 바람직하게는 반구 형태일 수 있으나, 이에 한정되지 않는다.
본 명세서 사용되는 용어 "마이크로필라 칩"은 3차원 구조체의 하부에 위치하여 지지체의 역할을 하며, 3차원 구조체와 달리 마이크로필라 칩 내부에서는 세포의 이동이 불가능하다. , 마이크로필라 상에 세포가 형성된 후에 마이크로필라 칩을 배양액 및 약물에 담구어 마이크로필라 상에 형성된 세포를 배양하거나 약물과 반응시키는 역할을 할 수도 있다. 상기 마이크로필라 칩은 몰딩 성형을 이용하여 제조된 것으로, 폴리스티렌(polystyrene, PS), 폴리디메틸실록산(polydimethylsiloxane, PDMS) 또는 폴리우레탄 아크릴레이트(polyurethane acrylate, PUA)으로 제조될 수 있으나, 이에 한정되는 것은 아니다. 상기 마이크로필라 칩은 형상 및 크기에 영향을 받지 않으나, 바람직하게는 원기둥, 다각기둥, 원뿔, 다각뿔 등의 형태일 수 있고, 보다 바람직하게는 원기둥 형태일 수 있으나, 이에 한정되지 않는다.
본 명세서에서 사용되는 용어 "형광염색"은 살아있는 세포를 육안으로 확인할 수 있도록 녹색, 적색 등의 형광을 띄는 염색시약을 사용하여 세포를 염색하는 면역형광염색을 포함하는 것으로, 이를 촬영함으로써 수득한 세포의 형광 이미지를 통하여 세포의 활성도, 골격 등을 확인할 수 있다. 상기 형광염색을 위하여, 형광물질, (칼세인 AM(Calcein AM), FITC(Fluorescein isothiocuanate), 팔로딘(Phalloidin), 플루오레세인(fluorescein), 로다민, TAMRA(6-carboxy-tetramethyl-rhodamine), Cy-3, Cy-5, 텍사스레드(Texas Red), DAPI(4,6-diamidino-2-phenylindole) 및 코마린(Coumarin)], 형광 염료(Alexa Fluor 610, Alexa Fluor 647(Life Technology 사), DyLight 633, DyLight 650, DyLight 680(Thermo Fisher 사), TF5, TF6, TF7(ACZO Biotech) 등) 및 형광 염료를 내포한 입자(Flash Red(Bangs Labs 사), Dark Red, Infrared(Invitrogen 사), Sky Blue(Sperotech 사) 등) 등을 사용할 수 있으나, 이에 한정되지 않는다.
이와 동일한 효과를 수득하기 위하여, 세포를 배양 후 형광염색을 수행하는 대신, 세포 자체가 녹색 형광 단백질(GFP)로 표지된 세포를 사용하여 배양할 수도 있다. 이를 위하여, GFP를 암호화하는 유전자를 세포에 도입시킬 수 있다(문헌[Ogawa et al., Proc. Natl. Acad. Sci., 1995, 92:11899-11903] 참조).
본 명세서 사용되는 용어 "접촉면"은 상기 3차원 구조체의 일면과 마이크로필라 칩의 일면이 접합되는 평면을 지칭한다. 세포는 중력에 의하여 3차원 구조체의 하부로 이동하게 되며, 상기 접촉면에 도달한 이후에는 마이크로필라 칩 내부로 이동하지 못하고 접촉면에 부착되어 성장하게 된다.
본 발명에 따른 세포의 이동성 측정 방법은 (b) 상기 3차원 구조체 내 세포를 형광염색하고 세포의 형광 이미지를 획득하는 단계; 및 (c) 상기 획득한 형광 이미지로부터 상기 3차원 구조체와 마이크로필라의 접촉면에 부착된 세포를 확인함으로써 상기 세포의 이동 여부를 판단하는 단계를 포함한다.
상기 배양된 세포는 3차원 구조체와 마이크로필라 칩의 부착면에 평행한 방향으로 형광 이미지 촬영시 결합된 형광 단백질 또는 별도 살아있는 세포의 형광 염색에 의하여 식별이 가능하며, 본 발명의 일 실시예에 따르면, 형광단백질로 GFP를 사용한 경우, 3차원 구조체 내에 3차원적으로 배양 중인 세포는 밝은 형광을 나타내며, 부착면에 부착된 세포는 탁한 형광을 나타낸다. 따라서, 상기 형광 이미지 상의 탁한 형광을 보이는 개체의 존재를 통하여 세포의 이동을 확인할 수 있다. 또한, 밝은 형광은 원형을 띄는 반면, 탁한 형광은 세포가 마이크로필라의 바닥에 부착되어 자라기 때문에 넓게 펴진 타원 형상을 가진다.
본 발명의 일 실시예에 따르면, 상기 단계 (a) 내지 (c)를 2회 이상, 바람직하게는 10 내지 16회, 보다 바람직하게는 14회 수행하여 상기 부착된 세포의 빈도비를 측정할 수 있다. 상기 세포의 빈도비는 전체 측정 횟수에 대하여 접촉면에 부착된 세포가 존재하는 횟수의 비율로 결정된다. 상기 2회 이상의 측정은 동시에 일어나거나 순차적으로 일어날 수 있다. 종래 1회의 시료에서 세포의 이동 여부를 확인했던 것과 달리, 바람직하게는 동일 또는 유사한 조건 하에서 배양된, 수개의 독립된 시료에서의 결과값을 통계냄으로써, 실험 결과의 정확도 및 정밀도를 보다 향상시킬 수 있다.
본 발명의 일 양상은 (a) 마이크로필라 칩에 접촉되어 있고 세포 이동성 저해제의 후보 물질 및 세포외 기질을 포함하는, 3차원 구조체 내에서 세포를 배양하는 단계; (b) 상기 3차원 구조체 내 세포를 형광염색하고, 세포의 형광 이미지를 획득하는 단계; (c) 상기 획득한 형광 이미지로부터 상기 3차원 구조체와 마이크로필라 칩의 접촉면에 부착된 세포를 확인함으로써 상기 세포의 이동성을 판단하는 단계; 및 (d) 상기 획득한 형광 이미지로부터 상기 3차원 구조체와 마이크로필라 칩의 접촉면에 부착된 세포와 부착되지 않은 세포의 활성도를 측정하는 단계를 포함하는 세포 이동성 저해제의 스크리닝 방법을 제공한다.
상기 세포의 활성은 세포의 IC50 값을 관찰함으로써 측정할 수 있으나, 이에 한정되는 것은 아니다.
이하 하나 이상의 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1. 무처리된 마이크로필라 칩을 이용한 세포의 배양
세포를 배양하기 위하여, ATCC로부터 구매한 A549(상용 세포주)와 및 RPMI 배양액(10% fetal bovine serum, 1% penicillin-streptomycin)를 준비하였다.
상기 세포가 포함되어 있는 배양액(4×106cells/㎖)과 1.5중량%의 알지네이트 용액을 혼합하였다. 웰(well)에 상기 세포 혼합액 40nl 내지 1㎕를 분주하고, 수면에 맞추어 마이크로필라 칩을 올렸다. 알지네이트가 굳은 후(gelation), 상기 마이크로필라를 미디어 또는 약물이 들어있는 웰에 담구어서 이를 37℃, 5% CO2 농도의 배양기에 넣고 72시간 동안 세포를 배양 또는 약물 반응시켰다.
실시예 2. 오와바인이 포함된 마이크로필라 칩을 이용한 세포의 배양
배양액에 오와바인을 최고농도 20μM에서 3배씩 희석하여 총 12개의 농도(0.11nM, 0.34nM, 1nM, 3nM, 9nM, 27nM, 82nM, 247nM, 741nM, 2.22μM, 6.67μM 및 20μM)로 각 웰에 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 조합된 구조체를 제조하고 세포를 배양하였다.
실시예 3. 겔다나마이신이 포함된 마이크로필라 칩을 이용한 세포의 배양
배양액에 겔다나마이신을 최고농도 20μM에서 3배씩 희석하여 총 12개의 농도(0.11nM, 0.34nM, 1nM, 3nM, 9nM, 27nM, 82nM, 247nM, 741nM, 2.22μM, 6.67μM 및 20μM)로 각 웰에 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 조합된 구조체를 제조하고 세포를 배양하였다.
실험예 1. 배양된 세포의 형광 이미지 촬영을 통한 세포 이동성 및 활성 측정
실시예 1 내지 3에서 각각 배양시킨 조합된 구조체로부터 마이크로필라 칩을 제거한 후, 형광 현미경을 이용하여 접착면에 평행한 방향으로 형광 이미지를 촬영하였다(도 1 참조).
특히, 오와바인 및 겔다나마이신, 두 약물을 12개의 농도로 마이크로필라 칩에 첨가하여 칼세인 AM을 이용하여 세포의 활성과 이동을 동시에 측정하여 비교하였다 세포의 활성은 각 마이크로필라 칩에서 살아있는 세포(녹색 형광)의 강도를 측정하여 정량화하였고, 세포의 이동성은 14개의 동일 조건을 가진 마이크로필라 칩에서 세포가 부착면에 부착이 일어난 마이크로필라 칩의 수를 측정하여 정량화하였다.
상기 실험을 통하여, 오와바인을 첨가한 실시예 2에서는 세포 이동성을 기준으로 하는 IC50 값이 세포 활성을 기준으로 하는 IC50 값보다 100배 작게 나와, 세포가 약물에 의해 괴사되기 전에 세포의 이동성이 감소한다는 것을 확인할 수 있었다(도 2 참조). 이에 비하여, 겔다나마이신을 첨가한 실시예 3에서는 세포 이동성을 기준으로 하는 IC50 값이 세포 활성을 기준으로 하는 IC50 값의 약 1/2에 해당하여, 세포가 약물에 의해 괴사되기 전에 세포의 이동성이 감소하기는 하나, 그 농도차이가 크지 않음을 확인할 수 있었다(도 3 참조).
실험예 2. 배양된 세포의 형광 이미지 촬영을 통한 세포 골격 측정
형광 염색 시약으로서 팔로딘을 사용할 것을 제외하고는 상기 실험예 1과 동일한 방법으로 형광염색으로 수행하여, 접착면에 평행한 방향으로 형광 이미지를 촬영하였다.
실험 결과, 이동 후 세포의 골격을 확인하였으며, 이를 통하여 세포 형상을 확인할 수 있었다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로, 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (7)

  1. (a) 마이크로필라 칩(micropillar chip)에 접촉되어 있고 세포외 기질(extracellular matrix)을 포함하는 3차원 구조체 내에서 세포를 배양하는 단계;
    (b) 상기 3차원 구조체 내 세포를 형광염색하고 세포의 형광 이미지를 획득하는 단계; 및
    (c) 상기 획득한 형광 이미지로부터 상기 3차원 구조체와 마이크로필라 칩의 접촉면에 부착된 세포를 확인함으로써 상기 세포의 이동 여부를 판단하는 단계
    를 포함하는 세포의 이동성 측정 방법.
  2. 제 1 항에 있어서,
    상기 단계 (a) 내지 (c)를 2회 이상 수행하여 상기 부착된 세포의 빈도비(frequency ratio)를 측정함으로써 상기 세포의 이동 여부를 판단하는 것을 특징으로 하는 세포의 이동성 측정 방법.
  3. 제 1 항에 있어서,
    상기 단계 (a) 내지 (c)를 10 내지 16회 수행하여 상기 부착된 세포의 빈도비를 측정함으로써 상기 세포의 이동 여부를 판단하는 것을 특징으로 하는 세포의 이동성 측정 방법.
  4. 제 1 항에 있어서,
    상기 세포외 기질은 알지네이트(Alginate), 콜라겐(Collagen), 피브린(fibrin), 폴리에틸렌글리콜(polyethyleneglycol), 자가조립 펩타이드 및 이들의 조합으로 구성된 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 세포의 이동성 측정 방법.
  5. (a) 마이크로필라 칩에 접촉되어 있고 세포 이동성 저해제의 후보 물질 및 세포외 기질을 포함하는, 3차원 구조체 내에서 세포를 배양하는 단계;
    (b) 상기 3차원 구조체 내 세포를 형광염색하고, 세포의 형광 이미지를 획득하는 단계;
    (c) 상기 획득한 형광 이미지로부터 상기 3차원 구조체와 마이크로필라 칩의 접촉면에 부착된 세포를 확인함으로써 상기 세포의 이동성을 판단하는 단계; 및
    (d) 상기 획득한 형광 이미지로부터 상기 3차원 구조체와 마이크로필라 칩의 접촉면에 부착된 세포와 부착되지 않은 세포의 활성도 또는 세포의 골격을 측정하는 단계
    를 포함하는 세포 이동성 저해제의 스크리닝 방법.
  6. 제 5 항에 있어서,
    상기 단계 (a) 내지 (d)를 2회 이상 수행하여 상기 부착된 세포의 빈도비 및 활성을 측정함으로써 상기 세포의 이동성 및 활성도를 판단하는 것을 특징으로 하는 세포 이동성 저해제의 스크리닝 방법.
  7. 제 5 항에 있어서,
    상기 단계 (a) 내지 (c)를 10 내지 16회 수행하여 상기 부착된 세포의 빈도비 및 활성을 측정함으로써 상기 세포의 이동성 및 활성도를 판단하는 것을 특징으로 하는 세포 이동성 저해제의 스크리닝 방법.
PCT/KR2018/002306 2017-02-28 2018-02-26 세포 이동성 측정 방법 및 이를 이용한 세포 이동성 저해제의 스크리닝 방법 WO2018159966A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170026770A KR102069726B1 (ko) 2017-02-28 2017-02-28 세포 이동성 측정 방법 및 이를 이용한 세포 이동성 저해제의 스크리닝 방법
KR10-2017-0026770 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159966A1 true WO2018159966A1 (ko) 2018-09-07

Family

ID=63371302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002306 WO2018159966A1 (ko) 2017-02-28 2018-02-26 세포 이동성 측정 방법 및 이를 이용한 세포 이동성 저해제의 스크리닝 방법

Country Status (2)

Country Link
KR (1) KR102069726B1 (ko)
WO (1) WO2018159966A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12092575B2 (en) 2021-05-14 2024-09-17 MBD Co., Ltd. Measuring method of cell migration using the rate of cell invasion
KR102562056B1 (ko) 2021-05-14 2023-08-01 엠비디 주식회사 세포 침습 비율을 이용한 세포이동 측정방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030032048A1 (en) * 2000-11-08 2003-02-13 Enoch Kim Device for arraying biomolecules and for monitoring cell motility in real-time
KR20120026999A (ko) * 2010-09-10 2012-03-20 이무렬 마이크로 어레이 세포칩
KR20120044650A (ko) * 2010-10-28 2012-05-08 삼성전기주식회사 세포칩
US20130244889A1 (en) * 2011-09-01 2013-09-19 Agency For Science, Technology And Research Construct for promoting absorption of molecules by a cell and methods of using the construct
KR101410293B1 (ko) * 2014-01-29 2014-06-20 한국산업기술대학교산학협력단 세포이동 측정용 어세이 칩 및 이를 이용한 세포이동 측정 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007020302B4 (de) 2007-04-20 2012-03-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verbesserte dreidimensionale biokompatible Gerüststruktur, die Nanopartikel beinhaltet
KR20140011325A (ko) 2011-01-28 2014-01-28 메르크 파텐트 게엠베하 플라반트렌 유도체 및 유기 반도체로서의 이의 용도
KR20140135101A (ko) * 2013-05-14 2014-11-25 재단법인 의약바이오컨버젼스연구단 3차원 콜라겐 겔 환경 내에서 배양된 세포를 이용한 암 세포의 전이성 모니터링 방법
KR20160083828A (ko) * 2016-06-27 2016-07-12 재단법인 의약바이오컨버젼스연구단 3차원 콜라겐 겔 환경 내에서 배양된 세포를 이용한 암 세포의 전이성 모니터링 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030032048A1 (en) * 2000-11-08 2003-02-13 Enoch Kim Device for arraying biomolecules and for monitoring cell motility in real-time
KR20120026999A (ko) * 2010-09-10 2012-03-20 이무렬 마이크로 어레이 세포칩
KR20120044650A (ko) * 2010-10-28 2012-05-08 삼성전기주식회사 세포칩
US20130244889A1 (en) * 2011-09-01 2013-09-19 Agency For Science, Technology And Research Construct for promoting absorption of molecules by a cell and methods of using the construct
KR101410293B1 (ko) * 2014-01-29 2014-06-20 한국산업기술대학교산학협력단 세포이동 측정용 어세이 칩 및 이를 이용한 세포이동 측정 방법

Also Published As

Publication number Publication date
KR102069726B1 (ko) 2020-01-23
KR20180099377A (ko) 2018-09-05

Similar Documents

Publication Publication Date Title
Seo et al. High-throughput approaches for screening and analysis of cell behaviors
ES2307969T3 (es) Cultivo celular.
ES2439940T3 (es) Complejo que comprende un microvehículo que tiene una carga positiva conjugada con una marca cargada negativamente, cuya marca es una microesfera, cuya microesfera no está revestida con proteínas, y usos del mismo
US20050147959A1 (en) Tissue analogs for in vitro testing and method of use therefor
CN106574292A (zh) 利用作为指示剂的miRNA的表达区分期望的细胞类型的方法
JP6817610B2 (ja) 三次元培養表皮モデル及びその製造方法、ならびに三次元培養表皮モデルの使用方法
Chandrasekaran et al. Enriching and characterizing cancer stem cell sub-populations in the WM115 melanoma cell line
Isyar et al. A practical way to prepare primer human chondrocyte culture
WO2014200997A2 (en) Method for preparing three-dimensional, organotypic cell cultures and uses thereof
WO2018159966A1 (ko) 세포 이동성 측정 방법 및 이를 이용한 세포 이동성 저해제의 스크리닝 방법
Yoshida et al. Spheroid cultures of primary urothelial cancer cells: cancer tissue-originated spheroid (CTOS) method
Zhang et al. Bone-on-a-chip platforms and integrated biosensors: Towards advanced in vitro bone models with real-time biosensing
Piscitelli et al. Culture and characterization of mammary cancer stem cells in mammospheres
Roopesh et al. High‐throughput production of liver parenchymal microtissues and enrichment of organ‐specific functions in gelatin methacrylamide microenvironment
Gayraud-Morel et al. Isolation of muscle stem cells from mouse skeletal muscle
CN101336293A (zh) 用于鉴定细胞信号转导调节物的方法
US12092575B2 (en) Measuring method of cell migration using the rate of cell invasion
JP7251595B2 (ja) 薬剤耐性を有する細胞を作製する方法、及び抗ガン剤をスクリーニングするための方法
US20220349875A1 (en) Method to independently analyze multiple biological processes in encapsulated 3d cell co-cultures
Espinoza-Sánchez et al. Analyzing the communication between monocytes and primary breast cancer cells in an extracellular matrix extract (ECME)-based three-dimensional system
JP7224584B2 (ja) 皮膚感作性評価方法
CN112921000B (zh) 一种构建胶质瘤体外3d培养和分析体系的方法及应用
KR102331027B1 (ko) 자궁-난소 바이오칩
Schwietzer et al. A tractable microscopy-and flow cytometry-based method to measure natural killer cell-mediated killing and infiltration of tumor spheroids
Ravid-Hermesh et al. Analysis of cancer cell invasion and anti-metastatic drug screening using hydrogel micro-chamber array (HMCA)-based plates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18760489

Country of ref document: EP

Kind code of ref document: A1