WO2018159650A1 - グアニジン誘導体及びその医薬用途 - Google Patents

グアニジン誘導体及びその医薬用途 Download PDF

Info

Publication number
WO2018159650A1
WO2018159650A1 PCT/JP2018/007416 JP2018007416W WO2018159650A1 WO 2018159650 A1 WO2018159650 A1 WO 2018159650A1 JP 2018007416 W JP2018007416 W JP 2018007416W WO 2018159650 A1 WO2018159650 A1 WO 2018159650A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
reaction
reference example
methyl
terphenyl
Prior art date
Application number
PCT/JP2018/007416
Other languages
English (en)
French (fr)
Inventor
佳孝 沼尻
慶一 沖村
絢ヌネッツ 浅場
徹郎 是枝
克彦 伊関
和之 徳丸
康文 後藤
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2018513568A priority Critical patent/JPWO2018159650A1/ja
Publication of WO2018159650A1 publication Critical patent/WO2018159650A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/155Amidines (), e.g. guanidine (H2N—C(=NH)—NH2), isourea (N=C(OH)—NH2), isothiourea (—N=C(SH)—NH2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/34Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
    • A61K31/341Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide not condensed with another ring, e.g. ranitidine, furosemide, bufetolol, muscarine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/38Heterocyclic compounds having sulfur as a ring hetero atom
    • A61K31/381Heterocyclic compounds having sulfur as a ring hetero atom having five-membered rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C279/00Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups
    • C07C279/20Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups containing any of the groups, X being a hetero atom, Y being any atom, e.g. acylguanidines
    • C07C279/22Y being a hydrogen or a carbon atom, e.g. benzoylguanidines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/50Compounds containing any of the groups, X being a hetero atom, Y being any atom
    • C07C311/52Y being a hetero atom
    • C07C311/64X and Y being nitrogen atoms, e.g. N-sulfonylguanidine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/23Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
    • C07C323/39Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton at least one of the nitrogen atoms being part of any of the groups, X being a hetero atom, Y being any atom
    • C07C323/43Y being a hetero atom
    • C07C323/44X or Y being nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/64Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/30Hetero atoms other than halogen
    • C07D333/34Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/38Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals

Definitions

  • the present invention relates to a guanidine derivative and a pharmaceutical use thereof.
  • Mucosa-associated lymphoid tissue lymphoma transcription protein 1 (hereinafter referred to as MALT1) is a cysteine protease, and a nuclear factor kappa-light-chain-enhancer is known as a nuclease.
  • NF- ⁇ B signaling is activated by degrading proteins such as A20 and CYLD (Non-patent Documents 1 and 2).
  • the NF- ⁇ B signal controls immune responses such as survival, differentiation, and activation of B cells and T cells.
  • various autoimmune diseases It is known that it can develop.
  • MALT lymphoma and activated B-cell-like diffuse large B-cell lymphoma ABSC-DLBCL
  • the protease activity of MALT1 is enhanced and is involved in the development of diseases accompanied by immune abnormalities (non-patented) Reference 3).
  • MALT1 gene Mocosa-associated lymphphoid transcription gene 1; hereinafter referred to as MALT1 gene
  • Non-patent Document 5 autoimmune disease-like pathologies such as these occur spontaneously.
  • Non-patent Document 6 examples of compounds that inhibit the protease activity of MALT1 include oligopeptide compounds Z-VRPR-fmk (Non-patent Document 6), phenylfuran derivatives (Patent Document 1), phenothiazine derivatives (Patent Document 2), triazole derivatives ( Non-patent document 7), ⁇ -lapachone derivative (non-patent document 8) and pyrazolopyrimidine derivative (patent document 3) are known.
  • a compound having a terphenyl skeleton for example, as a compound having a cannabinoid 1 receptor antagonistic action, a terphenyl carboxamide derivative (Patent Document 4) is used, and as a compound having a cyclooxygenase inhibitory action, Reference 5) reports a terphenylacetic acid derivative (Patent Document 6) as a compound having a ⁇ -secretase inhibitory action.
  • Patent Documents 1 to 6 and Non-Patent Documents 1 to 8 do not describe that a guanidine derivative having a terphenyl skeleton inhibits the protease activity of MALT1, and do not suggest its possibility.
  • an object of the present invention is to provide a compound that inhibits the protease activity of MALT1 and exhibits a therapeutic or preventive effect against autoimmune diseases such as psoriasis.
  • R 1 and R 2 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, an alkylthio group having 1 to 3 carbon atoms, cyano group, Group, a methoxycarbonyl group or a hydroxy group
  • R 3 represents a hydrogen atom or a halogen atom
  • R 4 represents a hydrogen atom, a halogen atom, an alkoxy group having 1 to 3 carbon atoms or a hydroxy group
  • A represents Represents S ( ⁇ O) 2 or C ( ⁇ O)
  • R 5 is a cycloalkyl group having 3 to 6 carbon atoms, one hydrogen atom is substituted with a halogen atom or an alkoxy group having 1 to 3 carbon atoms.
  • An aryl is a cycloalkyl group having 3 to 6 carbon atoms, one hydrogen atom is substituted with a halogen
  • R 1 is a chlorine atom, a methyl group, a methoxy group, a methylthio group, a methoxycarbonyl group or a hydroxy group
  • R 2 is a fluorine atom, a chlorine atom, a methyl group A methoxy group or a cyano group
  • R 3 is a hydrogen atom or a fluorine atom
  • R 4 is a hydrogen atom, a fluorine atom, a methoxy group or a hydroxy group
  • A is S ( ⁇ O) 2 .
  • R 5 is a phenyl group or a 5-membered heteroaryl group in which one hydrogen atom may be substituted with an alkoxy group having 1 to 3 carbon atoms
  • R 6 is a hydrogen atom or a methyl group It is preferable.
  • R 1 is a chlorine atom, a methoxy group or a methoxycarbonyl group
  • R 2 is a chlorine atom, a methoxy group or a cyano group
  • R 3 is A hydrogen atom
  • R 4 is a hydrogen atom
  • A is S ( ⁇ O) 2
  • R 5 is a phenyl group, a 3-methoxyphenyl group, a 2-thienyl group or a 2-furyl group.
  • R 6 is more preferably a hydrogen atom.
  • a high MALT1 inhibitory activity can be expected, and an excellent therapeutic or preventive effect in autoimmune diseases can be expected.
  • the present invention also provides a medicament and a MALT1 inhibitor containing as an active ingredient a guanidine derivative represented by the above general formula (I) or a pharmacologically acceptable salt thereof.
  • the above medicament is preferably a therapeutic or prophylactic agent for autoimmune diseases, and the therapeutic or prophylactic agent for autoimmune diseases is more preferably a therapeutic or prophylactic agent for psoriasis.
  • the guanidine derivative of the present invention or a pharmacologically acceptable salt thereof has an action of strongly inhibiting the protease activity of MALT1, and can exhibit a therapeutic effect or a preventive effect against autoimmune diseases such as psoriasis.
  • the guanidine derivative of the present invention is characterized by being represented by the following general formula (I).
  • R 1 and R 2 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, an alkylthio group having 1 to 3 carbon atoms, cyano group, Group, a methoxycarbonyl group or a hydroxy group
  • R 3 represents a hydrogen atom or a halogen atom
  • R 4 represents a hydrogen atom, a halogen atom, an alkoxy group having 1 to 3 carbon atoms or a hydroxy group
  • A represents Represents S ( ⁇ O) 2 or C ( ⁇ O)
  • R 5 is a cycloalkyl group having 3 to 6 carbon atoms, one hydrogen atom is substituted with a halogen atom or an alkoxy group having 1 to 3 carbon atoms.
  • Halogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • Alkyl group having 1 to 3 carbon atoms means a methyl group, an ethyl group, a propyl group, or an isopropyl group.
  • C3-C6 cycloalkyl group means a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, or a cyclohexyl group.
  • Alkoxy group having 1 to 3 carbon atoms means a methoxy group, an ethoxy group, a propoxy group or an isopropoxy group.
  • Alkylthio group having 1 to 3 carbon atoms means methylthio group, ethylthio group, propylthio group or isopropylthio group.
  • aryl group means a monocyclic or bicyclic aromatic hydrocarbon group, and examples thereof include a phenyl group or a naphthyl group (for example, a 1-naphthyl group or a 2-naphthyl group).
  • heteroaryl group is a 4-membered to 7-membered monocyclic ring containing 1 to 4 heteroatoms selected from a nitrogen atom, an oxygen atom and an optionally oxidized sulfur atom as a ring-constituting atom.
  • An aromatic heterocyclic group or a condensed aromatic heterocyclic group is meant.
  • a furyl group for example, 2-furyl group or 3-furyl group
  • a thienyl group for example, 2-thienyl group or 3-thienyl group
  • a pyridyl group for example, 2-pyridyl group, 3-pyridyl group, or 4 -Pyridyl group
  • pyrimidinyl group eg 2-pyrimidinyl group, 4-pyrimidinyl group, 5-pyrimidinyl group or 6-pyrimidinyl group
  • pyrrolyl group eg 1-pyrrolyl group, 2-pyrrolyl group or 3-pyrrolyl group
  • Imidazolyl group for example, 1-imidazolyl group, 2-imidazolyl group, 4-imidazolyl group or 5-imidazolyl group
  • pyrazolyl group for example, 1-pyrazolyl group, 3-pyrazolyl group or 4-pyrazolyl group
  • thiazolyl Group for example, 2-thiazolyl group, 4-
  • aryl group in which one hydrogen atom may be substituted with a halogen atom or an alkoxy group having 1 to 3 carbon atoms refers to the case where the substitutable position of the group is not substituted and the case where it is substituted.
  • a monocyclic or bicyclic aromatic hydrocarbon group is included.
  • a phenyl group, a naphthyl group for example, 1-naphthyl group or 2-naphthyl group
  • a fluorophenyl group for example, 2-fluorophenyl group, 3-fluorophenyl group or 4-fluorophenyl group
  • a chlorophenyl group for example, 2-chlorophenyl group or 3-chlorophenyl group
  • bromophenyl group for example, 2-bromophenyl group
  • iodophenyl group for example, 2-iodophenyl group
  • methoxyphenyl group for example, 2-methoxyphenyl group, 3-methoxyphenyl group or 4-methoxyphenyl group
  • ethoxyphenyl group for example, 2-ethoxyphenyl group or 3-methoxyphenyl group
  • propoxyphenyl group for example, 2-propoxyphenyl group
  • isopropoxyphenyl group for example, 2-propoxyphen
  • a heteroaryl group in which one hydrogen atom may be substituted with a halogen atom means a nitrogen atom as a ring atom including a case where the substitutable position of the group is not substituted and a case where it is substituted; Means a 4- to 7-membered monocyclic aromatic heterocyclic group or condensed aromatic heterocyclic group containing 1 to 4 heteroatoms selected from an oxygen atom and an optionally oxidized sulfur atom .
  • a furyl group for example, 2-furyl group or 3-furyl group
  • a thienyl group for example, 2-thienyl group or 3-thienyl group
  • a pyridyl group for example, 2-pyridyl group, 3-pyridyl group, or 4 -Pyridyl group
  • pyrimidinyl group eg 2-pyrimidinyl group, 4-pyrimidinyl group, 5-pyrimidinyl group or 6-pyrimidinyl group
  • pyrrolyl group eg 1-pyrrolyl group, 2-pyrrolyl group or 3-pyrrolyl group
  • Imidazolyl group for example, 1-imidazolyl group, 2-imidazolyl group, 4-imidazolyl group or 5-imidazolyl group
  • pyrazolyl group for example, 1-pyrazolyl group, 3-pyrazolyl group or 4-pyrazolyl group
  • thiazolyl Group for example, 2-thiazolyl group, 4-
  • a phenyl group in which one hydrogen atom may be substituted with an alkoxy group having 1 to 3 carbon atoms means a phenyl group, a 2-methoxyphenyl group, a 3-methoxyphenyl group, a 4-methoxyphenyl group, 2 -Ethoxyphenyl group, 3-ethoxyphenyl group, 4-ethoxyphenyl group, 2-propoxyphenyl group, 3-propoxyphenyl group, 4-propoxyphenyl group, 2-isopropoxyphenyl group, 3-isopropoxyphenyl group or 4 Means an isopropoxyphenyl group;
  • the “5-membered heteroaryl group” is a 5-membered aromatic heterocycle containing 1 to 4 heteroatoms selected from a nitrogen atom, an oxygen atom and an optionally oxidized sulfur atom as a ring-constituting atom. Means group.
  • furyl group for example, 2-furyl group or 3-furyl group
  • thienyl group for example, 2-thienyl group or 3-thienyl group
  • pyrrolyl group for example, 1-pyrrolyl group, 2-pyrrolyl group, 3 -Pyrrolyl group
  • imidazolyl group for example, 1-imidazolyl group, 2-imidazolyl group, 4-imidazolyl group or 5-imidazolyl group
  • pyrazolyl group for example, 1-pyrazolyl group, 3-pyrazolyl group or 4-pyrazolyl group
  • Thiazolyl group eg 2-thiazolyl group, 4-thiazolyl group or 5-thiazolyl group
  • isothiazolyl group eg 3-isothiazolyl group, 4-isothiazolyl group or 5-isothiazolyl group
  • oxazolyl group eg 2 -Oxazolyl group, 4-oxazolyl group or 5-oxazolyl group
  • R 1 is preferably a chlorine atom, a methyl group, a methoxy group, a methylthio group, a methoxycarbonyl group or a hydroxy group, and a chlorine atom, a methoxy group or a methoxycarbonyl More preferably, it is a group.
  • R 2 is preferably a fluorine atom, a chlorine atom, a methyl group, a methoxy group or a cyano group, and more preferably a chlorine atom, a methoxy group or a cyano group.
  • R 3 is preferably a hydrogen atom or a fluorine atom, and more preferably a hydrogen atom.
  • R 4 is preferably a hydrogen atom, a fluorine atom, a methoxy group or a hydroxy group, more preferably a hydrogen atom.
  • A is preferably S ( ⁇ O) 2 .
  • R 5 is preferably a phenyl group or a 5-membered heteroaryl group in which one hydrogen atom may be substituted with an alkoxy group having 1 to 3 carbon atoms, such as a phenyl group, a 3-methoxyphenyl group, 2 More preferred is a thienyl group or a 2-furyl group.
  • R 6 is preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
  • the compounds described in Table 1-1 and Table 1-2 include pharmacologically acceptable salts thereof.
  • the guanidine derivative represented by the above general formula (I) may have optical isomers or diastereomers, but the guanidine derivative represented by the above general formula (I) is not limited to a single isomer. Also included are racemic and diastereomeric mixtures.
  • guanidine derivative represented by the above general formula (I) other tautomers and geometric isomers may exist depending on the type of the substituent. In this specification, although it may describe only with one form of those isomers, these isomers are also included in this invention, and what isolate
  • the guanidine moiety of the guanidine derivative represented by the above general formula (I) there can exist three isomers having different double bond positions as shown in the following scheme 1.
  • each isomer there can be E-isomers and Z-isomers based on the geometry of the double bond. The present invention includes all these isomers.
  • the structure in the formula is a partial representation of the guanidine moiety of the guanidine derivative represented by the above general formula (I). The bond indicated by the wavy line can take either E or Z configuration. Is shown.
  • the present invention also includes prodrugs of guanidine derivatives represented by the above general formula (I).
  • the prodrug of the guanidine derivative represented by the above general formula (I) is a compound that is enzymatically or chemically converted into the guanidine derivative represented by the above general formula (I) in vivo.
  • the active body of the prodrug of the guanidine derivative represented by the above general formula (I) is the guanidine derivative represented by the above general formula (I), but the prodrug of the guanidine derivative represented by the above general formula (I).
  • the drug itself may have activity.
  • Examples of the group that forms a prodrug of the guanidine derivative represented by the above general formula (I) include known documents (for example, “Development of Pharmaceuticals”, Hirokawa Shoten, 1990, Vol. 7, p.163-198, and Progress. in Medicine, Vol. 5, 1985, p. 2157-2161).
  • Examples of the “pharmacologically acceptable salt” of the guanidine derivative represented by the above general formula (I) include hydrochloride, sulfate, nitrate, hydrobromide, hydroiodide, and phosphoric acid.
  • Inorganic acid salts or oxalates such as salt, malonate, citrate, fumarate, lactate, malate, succinate, tartrate, acetate, trifluoroacetate, maleate, glucone Acid salt, benzoate, ascorbate, glutarate, mandelate, phthalate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate, camphorsulfonate, Organic salts such as aspartate, glutamate or cinnamate are listed, but hydrochloride, sulfate, hydrobromide, maleate, benzoate or methanesulfonate is preferred. .
  • the guanidine derivative represented by the above general formula (I) may be a crystal, and the guanidine derivative represented by the above general formula (I) may be a single crystal form or a crystal form mixture. Is included.
  • the guanidine derivative represented by the above general formula (I) may be a pharmaceutically acceptable cocrystal or cocrystal salt.
  • co-crystals or co-crystal salts are two or more unique at room temperature, each having different physical properties (eg structure, melting point, heat of fusion, hygroscopicity, solubility or stability). It means a crystalline substance composed of a solid.
  • the cocrystal or cocrystal salt can be produced according to a known cocrystallization method.
  • the guanidine derivative represented by the above general formula (I) or a pharmacologically acceptable salt thereof may be an anhydride, or may form a hydrate or a solvate.
  • the guanidine derivative represented by the above general formula (I) may be labeled with one or more isotopes, and examples of the labeled isotopes include 2 H, 3 H, 13 C, 14 C, 15 N, 15 O, 17 O, 18 O and / or 125 I.
  • the guanidine derivative represented by the above general formula (I) can be produced by an appropriate method based on characteristics derived from the basic skeleton and the type of substituent.
  • the starting materials and reagents used for the production of these compounds can be generally purchased or can be produced by known methods.
  • guanidine derivative represented by the above general formula (I) and the intermediates and starting materials used for the production thereof can be isolated and purified by known means.
  • Known means for isolation and purification include, for example, solvent extraction, recrystallization or chromatography.
  • each isomer can be obtained as a single compound by a known method.
  • Known methods include, for example, crystallization, enzyme resolution, or chiral chromatography.
  • L is a leaving group such as a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, an alkylthio group having 1 to 12 carbon atoms such as a methylthio group, an ethylthio group or a dodecylthio group, a phenoxy group, etc.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom
  • an alkylthio group having 1 to 12 carbon atoms such as a methylthio group, an ethylthio group or a dodecylthio group, a phenoxy group, etc.
  • Alkylsulfonyloxy groups such as aryloxy group, methanesulfonyloxy group, ethanesulfonyloxy group or trifluoromethanesulfonyloxy group, alkylsulfonylamino groups such as trifluoromethanesulfonylamino group, imidazol-1-yl group or pyrazol-1-yl An azolyl group such as a group;
  • the terphenyl derivative (IV-a) can be obtained by a coupling reaction of a dihalobenzene derivative (II) and a phenylboronic acid derivative (III-a) in the presence of a metal catalyst and a base.
  • the amount of the phenylboronic acid derivative (III-a) used for the coupling reaction is preferably 1 to 20 equivalents and more preferably 2 to 5 equivalents with respect to the dihalobenzene derivative (II).
  • Examples of the metal catalyst used in the coupling reaction include 1,1′-bis (diphenylphosphino) ferrocenedichloropalladium (II) dichloromethane adduct, palladium (II) chloride, palladium (II) acetate, bis (dibenzylideneacetone). ) Palladium (0), tetrakistriphenylphosphine palladium (0) or dichlorobistriphenylphosphine palladium (0), but 1,1′-bis (diphenylphosphino) ferrocenedichloropalladium (II) dichloromethane adduct or tetrakis Triphenylphosphine palladium (0) is preferred.
  • the amount of the metal catalyst used in the coupling reaction is preferably 0.01 to 5 equivalents, more preferably 0.025 to 0.5 equivalents, relative to the dihalobenzene derivative (II).
  • a ligand may be further used.
  • the ligand used include triphenylphosphine, tri-tert-butylphosphine, and 2-dicyclohexylphosphino-2 ', 6'-dimethoxybiphenyl.
  • Examples of the base used for the coupling reaction include organic bases such as triethylamine or N, N-diisopropylethylamine, inorganic bases such as sodium carbonate, potassium carbonate or cesium carbonate, lithium such as lithium hexamethyldisilazide or lithium diisopropylamide.
  • organic bases such as triethylamine or N, N-diisopropylethylamine
  • inorganic bases such as sodium carbonate, potassium carbonate or cesium carbonate
  • lithium such as lithium hexamethyldisilazide or lithium diisopropylamide.
  • metal alkoxides such as amide, sodium tert-butoxide or potassium tert-butoxide or mixtures thereof, but inorganic bases such as sodium carbonate, potassium carbonate or cesium carbonate are preferred.
  • the amount of the base used for the coupling reaction is preferably 1 to 20 equivalents, more preferably 2 to 6 equivalents with respect to the dihalobenzene derivative (II).
  • the reaction solvent used in the coupling reaction is appropriately selected depending on the type of reagent used, but is not particularly limited as long as it does not inhibit the reaction.
  • tetrahydrofuran, 1,4-dioxane, ethylene glycol dimethyl ether Or ether solvents such as dimethoxyethane, nitrile solvents such as acetonitrile or propionitrile, aromatic hydrocarbon solvents such as benzene or toluene, N, N-dimethylformamide (hereinafter DMF), N, N-dimethylacetamide (Hereinafter referred to as DMA) or aprotic polar solvent such as dimethyl sulfoxide (hereinafter referred to as DMSO), water or a mixed solvent thereof, such as tetrahydrofuran, 1,4-dioxane, ethylene glycol dimethyl ether or dimethoxyethane
  • Aromatic hydrocarbon solvents such as ethereal solvents or benzene or tol
  • the reaction temperature of the coupling reaction is preferably 0 to 200 ° C, more preferably 50 to 150 ° C.
  • the reaction time of the coupling reaction is appropriately selected according to the reaction temperature and other conditions, but is preferably 1 to 30 hours.
  • the dihalobenzene derivative (II) and the phenylboronic acid derivative (III-a) used for the coupling reaction can be purchased, or can be produced by a known method or a method analogous thereto.
  • the terphenyl derivative (Va) can be obtained by a halogenation reaction of the terphenyl derivative (IV-a).
  • halogenating agent used in the halogenation reaction examples include bromine, iodine, N-bromosuccinimide, N-chlorosuccinimide, or 1,3-dibromo-5,5-dimethylhydantoin, and N-bromosuccinimide or N -Chlorosuccinimide is preferred.
  • the amount of the halogenating agent used in the halogenation reaction is preferably 0.5 to 1000 equivalents, more preferably 0.8 to 100 equivalents, relative to the terphenyl derivative (IV-a).
  • a radical initiator may be used if desired.
  • the radical initiator used includes, for example, azobisisobutyronitrile, benzoyl peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, triethylborane or diethylzinc, but azobisisobutyronitrile or benzoyl peroxide Is preferred.
  • a reaction solvent may be used if desired.
  • the reaction solvent to be used is appropriately selected depending on the type of reagent to be used, but is not particularly limited as long as it does not inhibit the reaction.
  • alcohol solvents such as methanol, ethanol, isopropyl alcohol, or tert-butyl alcohol
  • Aromatic hydrocarbon solvents such as benzene or fluorobenzene
  • chlorinated solvents such as carbon tetrachloride, chloroform or 1,2-dichloroethane, or mixed solvents thereof, including carbon tetrachloride, chloroform or 1,2- Chlorinated solvents such as dichloroethane are preferred.
  • the reaction temperature of the halogenation reaction is preferably ⁇ 50 ° C. to 200 ° C., more preferably 0 ° C. to 150 ° C.
  • the reaction time of the halogenation reaction varies depending on the reaction conditions, but is preferably 1 to 30 hours.
  • N- (terphenylmethyl) phthalimide derivative (VI) can be obtained by a substitution reaction between the terphenyl derivative (Va) and potassium phthalimide.
  • the amount of potassium phthalimide used for the substitution reaction is preferably 0.5 to 100 equivalents, more preferably 0.8 to 10 equivalents, relative to the terphenyl derivative (Va).
  • the reaction solvent used for the substitution reaction is not particularly limited as long as it does not inhibit the reaction.
  • an alcohol solvent such as methanol, ethanol, isopropyl alcohol, or tert-butyl alcohol, or an aprotic such as DMF, DMA, or DMSO.
  • Polar solvents, ether solvents such as diethyl ether, tetrahydrofuran, dimethoxyethane or 1,4-dioxane, aromatic hydrocarbon solvents such as toluene or xylene, or mixed solvents thereof, such as DMF, DMA or DMSO Are preferred aprotic polar solvents.
  • the reaction temperature of the substitution reaction is preferably ⁇ 30 ° C. to 300 ° C., more preferably 0 ° C. to 150 ° C.
  • the reaction time for the substitution reaction varies depending on the reaction conditions, but is preferably 1 to 30 hours.
  • the terphenylmethylamine derivative (VII-a) can be obtained by deprotecting the N- (terphenylmethyl) phthalimide derivative (VI) in the presence of hydrazine monohydrate.
  • the amount of hydrazine monohydrate used in the deprotection reaction is preferably 0.5 to 100 equivalents, more preferably 0.8 to 10 equivalents, relative to the N- (terphenylmethyl) phthalimide derivative (VI).
  • the reaction solvent used in the deprotection reaction is not particularly limited as long as it does not inhibit the reaction.
  • alcohol solvents such as methanol, ethanol, isopropyl alcohol, or tert-butyl alcohol
  • non-solvents such as DMF, DMA, or DMSO
  • Protic polar solvents, ether solvents such as diethyl ether, tetrahydrofuran, dimethoxyethane or 1,4-dioxane, aromatic hydrocarbon solvents such as toluene or xylene, or mixed solvents thereof include methanol, ethanol, isopropyl Alcohol solvents such as alcohol or tert-butyl alcohol are preferred.
  • the reaction temperature of the deprotection reaction is preferably ⁇ 30 ° C. to 300 ° C., more preferably 0 ° C. to 150 ° C.
  • the reaction time for the deprotection reaction varies depending on the reaction conditions, but is preferably 1 to 30 hours.
  • the terphenyl methyl azide derivative (VIII-a) can be obtained by a substitution reaction between the terphenyl derivative (Va) and sodium azide.
  • the amount of sodium azide used in the substitution reaction is preferably 0.5 to 100 equivalents, more preferably 0.8 to 10 equivalents, relative to the terphenyl derivative (Va).
  • the reaction solvent used for the substitution reaction is not particularly limited as long as it does not inhibit the reaction.
  • an alcohol solvent such as methanol, ethanol, isopropyl alcohol, or tert-butyl alcohol, or an aprotic such as DMF, DMA, or DMSO.
  • Polar solvents ether solvents such as diethyl ether, tetrahydrofuran, dimethoxyethane or 1,4-dioxane, aromatic hydrocarbon solvents such as toluene or xylene, or a mixed solvent thereof, but non-solvents such as DMA or DMSO Protic polar solvents are preferred.
  • the reaction temperature of the substitution reaction is preferably ⁇ 30 ° C. to 300 ° C., more preferably 0 ° C. to 150 ° C.
  • the reaction time for the substitution reaction varies depending on the reaction conditions, but is preferably 1 to 30 hours.
  • the terphenylmethylamine derivative (VII-a) can be obtained by a reduction reaction of the terphenylmethyl azide derivative (VIII-a).
  • Examples of the reagent used for the reduction reaction include lithium aluminum hydride, triphenylphosphine, and tributylphosphine, and triphenylphosphine is preferable.
  • the amount of the reagent used for the reduction reaction is preferably 0.25 to 100 equivalents, more preferably 0.5 to 10 equivalents, relative to the terphenylmethyl azide derivative (VIII-a).
  • the reaction solvent used for the reduction reaction is appropriately selected depending on the type of reagent used, but is not particularly limited as long as it does not inhibit the reaction.
  • tetrahydrofuran, 1,4-dioxane, ethylene glycol dimethyl ether or dimethoxy examples include ether solvents such as ethane, aromatic hydrocarbon solvents such as benzene or toluene, alcohol solvents such as methanol or ethanol, water, or a mixed solvent thereof.
  • ether solvents such as ethane
  • aromatic hydrocarbon solvents such as benzene or toluene
  • alcohol solvents such as methanol or ethanol
  • water or a mixed solvent thereof.
  • Tetrahydrofuran, 1,4-dioxane, ethylene glycol dimethyl ether Alternatively, a mixed solvent of an ether solvent such as dimethoxyethane and water is preferable.
  • the reaction temperature of the reduction reaction is preferably 0 to 200 ° C, more preferably 10 to 100 ° C.
  • the reaction time of the reduction reaction varies depending on the reaction conditions, but is preferably 1 to 30 hours.
  • the guanidine derivative (Xa) can be obtained by a guanidination reaction between a terphenylmethylamine derivative (VII-a) and a guanidinating agent (IX).
  • the amount of the guanidinating agent (IX) used for the guanidination reaction is preferably 0.5 to 10 equivalents and more preferably 1 to 3 equivalents with respect to the terphenylmethylamine derivative (VII-a).
  • a base may be used if desired.
  • the base to be used include organic bases such as triethylamine, N, N-diisopropylethylamine or pyridine, inorganic bases such as sodium hydrogen carbonate or potassium carbonate, and mixtures thereof.
  • organic bases such as triethylamine, N, N-diisopropylethylamine or the like
  • organic bases such as pyridine are preferred.
  • the reaction solvent used in the guanidinolation reaction is appropriately selected depending on the type of reagent used, but is not particularly limited as long as it does not inhibit the reaction.
  • nitrile solvents such as acetonitrile or propionitrile, DMF
  • An aprotic polar solvent such as DMA or DMSO
  • an ether solvent such as diethyl ether, tetrahydrofuran, dimethoxyethane or 1,4-dioxane
  • an ester solvent such as ethyl acetate or propyl acetate
  • dichloromethane chloroform or 1,2-
  • a chlorinated solvent such as dichloroethane or a mixed solvent thereof may be mentioned, but an ether solvent such as diethyl ether, tetrahydrofuran, dimethoxyethane or 1,4-dioxane is preferred.
  • the reaction temperature of the guanidinolysis reaction is preferably 0 to 300 ° C, more preferably 30 to 200 ° C.
  • the reaction time of the guanidinolysis reaction varies depending on the reaction conditions, but is preferably 1 to 30 hours.
  • the guanidinating agent (IX) used for the guanidination reaction can be purchased or produced by a known method (for example, Nikola et al., Chemmed Chem, 2011, Vol. 6, 1727-1738) or a method analogous thereto. be able to.
  • the guanidine derivative (Ia) can be obtained by deprotecting the guanidine derivative (Xa) in the presence of an acid.
  • Examples of the acid used for the deprotection reaction include hydrochloric acid, 10 wt% hydrogen chloride / methanol solution, 4 mol / L hydrogen chloride / ethyl acetate solution, trifluoroacetic acid or hydrofluoric acid, but 4 mol / L hydrochloric acid / Ethyl acetate solution or trifluoroacetic acid is preferred.
  • the amount of acid used for the deprotection reaction is preferably 0.5 to 1000 equivalents, more preferably 1 to 100 equivalents, relative to the guanidine derivative (Xa).
  • the reaction solvent used in the deprotection reaction is appropriately selected depending on the type of reagent used, but is not particularly limited as long as it does not inhibit the reaction.
  • diethyl ether, tetrahydrofuran, dimethoxyethane, or 1,4 -Ether solvents such as dioxane
  • ester solvents such as ethyl acetate or propyl acetate
  • chlorine solvents such as dichloromethane, chloroform or 1,2-dichloroethane
  • alcohol solvents such as methanol or ethanol, or a mixed solvent thereof.
  • ester solvents such as ethyl acetate or propyl acetate or chlorine solvents such as dichloromethane, chloroform or 1,2-dichloroethane are preferred.
  • the reaction temperature for the deprotection reaction is preferably ⁇ 78 ° C. to 200 ° C., more preferably ⁇ 20 ° C. to 100 ° C.
  • the reaction time for the deprotection reaction varies depending on the reaction conditions, but is preferably 1 to 50 hours.
  • the carbamic imido acid derivative (XII) can be obtained by a carbamimidation reaction of a terphenyl methylamine derivative (VII-a) and a carboximidic acid derivative (XI).
  • the amount of the carboximidic acid derivative (XI) used for the carbamimidation reaction is preferably 0.5 to 10 equivalents, more preferably 1 to 3 equivalents, relative to the terphenylmethylamine derivative (VII-a).
  • a base may be used if desired.
  • the base to be used include organic bases such as triethylamine, N, N-diisopropylethylamine or pyridine, inorganic bases such as sodium hydrogen carbonate or potassium carbonate, and mixtures thereof.
  • organic bases such as triethylamine, N, N-diisopropylethylamine or the like
  • organic bases such as pyridine are preferred.
  • the reaction solvent used for the carbamimidation reaction is appropriately selected depending on the type of reagent used, but is not particularly limited as long as it does not inhibit the reaction.
  • nitrile solvents such as acetonitrile or propionitrile, DMF
  • An aprotic polar solvent such as DMA or DMSO
  • an ether solvent such as diethyl ether, tetrahydrofuran, dimethoxyethane or 1,4-dioxane
  • an ester solvent such as ethyl acetate or propyl acetate
  • dichloromethane chloroform or 1,2-
  • a chlorinated solvent such as dichloroethane or a mixed solvent thereof may be mentioned, but an ether solvent such as diethyl ether, tetrahydrofuran, dimethoxyethane or 1,4-dioxane is preferred.
  • the reaction temperature of the carbamimidation reaction is preferably 0 to 300 ° C, more preferably 30 to 200 ° C.
  • the reaction time of the carbamimidation reaction varies depending on the reaction conditions, but is preferably 1 to 30 hours.
  • the carboximidic acid derivative (XI) used for the carbamimidation reaction can be purchased, or can be produced by a known method or a method analogous thereto.
  • the guanidine derivative (Ib) can be obtained by a guanidinolation reaction between a carbamic imido acid derivative (XII) and an amine derivative (XIII).
  • the amount of the amine derivative (XIII) used in the guanidinolation reaction is preferably 0.5 to 100 equivalents, more preferably 1 to 20 equivalents, relative to the carbamic imido acid derivative (XII).
  • the reaction solvent used in the guanidinolation reaction is appropriately selected depending on the type of reagent used, but is not particularly limited as long as it does not inhibit the reaction.
  • nitrile solvents such as acetonitrile or propionitrile, DMF
  • An aprotic polar solvent such as DMA or DMSO
  • an ether solvent such as diethyl ether, tetrahydrofuran, dimethoxyethane or 1,4-dioxane
  • an ester solvent such as ethyl acetate or propyl acetate
  • dichloromethane chloroform or 1,2-
  • a chlorinated solvent such as dichloroethane or a mixed solvent thereof may be mentioned, and a nitrile solvent such as acetonitrile or propionitrile is preferable.
  • the reaction temperature of the guanidinolysis reaction is preferably 0 to 300 ° C, more preferably 30 to 200 ° C.
  • the reaction time of the guanidinolysis reaction varies depending on the reaction conditions, but is preferably 1 to 30 hours.
  • the amine derivative (XIII) used for the guanidinolation reaction can be purchased, or can be produced by a known method or a method analogous thereto.
  • the guanidine derivative (XV) can be obtained by a guanidination reaction between a terphenylmethylamine derivative (VII-a) and a guanidinating agent (XIV).
  • the amount of the guanidinating agent (XIV) used for the guanidination reaction is preferably 0.5 to 10 equivalents, more preferably 1 to 3 equivalents, relative to the terphenylmethylamine derivative (VII-a).
  • a base may be used if desired.
  • the base to be used include organic bases such as triethylamine, N, N-diisopropylethylamine or pyridine, inorganic bases such as sodium hydrogen carbonate or potassium carbonate, and mixtures thereof.
  • organic bases such as triethylamine, N, N-diisopropylethylamine or the like
  • organic bases such as pyridine are preferred.
  • the reaction solvent used in the guanidinolation reaction is appropriately selected depending on the type of reagent used, but is not particularly limited as long as it does not inhibit the reaction.
  • nitrile solvents such as acetonitrile or propionitrile, DMF
  • An aprotic polar solvent such as DMA or DMSO
  • an ether solvent such as diethyl ether, tetrahydrofuran, dimethoxyethane or 1,4-dioxane
  • an ester solvent such as ethyl acetate or propyl acetate
  • dichloromethane chloroform or 1,2-
  • a chlorinated solvent such as dichloroethane or a mixed solvent thereof may be mentioned, but an ether solvent such as diethyl ether, tetrahydrofuran, dimethoxyethane or 1,4-dioxane is preferred.
  • the reaction temperature of the guanidinolysis reaction is preferably 0 to 300 ° C, more preferably 30 to 200 ° C.
  • the reaction time of the guanidinolysis reaction varies depending on the reaction conditions, but is preferably 1 to 30 hours.
  • the guanidinating agent (XIV) used for the guanidination reaction can be purchased, or can be produced by a known method or a method analogous thereto.
  • the guanidine derivative (XVI) can be obtained by deprotecting the guanidine derivative (XV) in the presence of an acid.
  • the conditions of the reagent, reagent amount, reaction solvent, reaction temperature, and reaction time in this step are the same as in step 1-8.
  • the guanidine derivative (Ic) can be obtained by an acylation reaction between the guanidine derivative (XVI) and the acylating agent (XVII).
  • the amount of acylating agent (XVII) used in the acylation reaction is preferably 0.5 to 10 equivalents, more preferably 1 to 3 equivalents, relative to the guanidine derivative (XVI).
  • a base may be used if desired.
  • the base to be used include organic bases such as triethylamine, N, N-diisopropylethylamine or pyridine, alkali metal hydroxides such as sodium hydroxide, potassium hydroxide or lithium hydroxide, sodium hydrogen carbonate or potassium hydrogen carbonate, etc.
  • Alkali metal carbonates such as sodium carbonate, sodium carbonate and potassium carbonate, or a mixture thereof, and alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide are preferred.
  • the reaction solvent used in the acylation reaction is appropriately selected depending on the type of reagent used, but is not particularly limited as long as it does not inhibit the reaction.
  • nitrile solvents such as acetonitrile or propionitrile, DMF , Aprotic polar solvents such as DMA or DMSO
  • ether solvents such as diethyl ether, tetrahydrofuran, dimethoxyethane or 1,4-dioxane
  • ester solvents such as ethyl acetate or propyl acetate
  • ketone solvents such as acetone or methyl ethyl ketone
  • Water or a mixed solvent thereof is preferable, and a mixed solvent of water and an ether solvent such as diethyl ether, tetrahydrofuran, dimethoxyethane, or 1,4-dioxane is preferable.
  • the reaction temperature of the acylation reaction is preferably ⁇ 78 ° C. to 100 ° C., more preferably ⁇ 20 ° C. to 50 ° C.
  • the reaction time of the acylation reaction varies depending on the reaction conditions, but is preferably 1 to 30 hours.
  • the acylating agent (XVII) used in the acylation reaction can be purchased, or can be produced by a known method or a method analogous thereto.
  • Biphenylaniline derivative (XIX) can be obtained by coupling reaction of aniline derivative (XVIII) and phenylboronic acid derivative (III-b) in the presence of a metal catalyst and a base.
  • the amount of the phenylboronic acid derivative (III-b) used for the coupling reaction is preferably 0.5 to 10 equivalents, more preferably 1 to 3 equivalents, relative to the aniline derivative (XVIII).
  • Examples of the metal catalyst used in the coupling reaction include 1,1′-bis (diphenylphosphino) ferrocenedichloropalladium (II) dichloromethane adduct, palladium (II) chloride, palladium (II) acetate, bis (dibenzylideneacetone). ) Palladium (0), tetrakistriphenylphosphine palladium (0) or dichlorobistriphenylphosphine palladium (0), but 1,1′-bis (diphenylphosphino) ferrocenedichloropalladium (II) dichloromethane adduct or tetrakis Triphenylphosphine palladium (0) is preferred.
  • the amount of the metal catalyst used in the coupling reaction is preferably 0.01 to 2.5 equivalents, more preferably 0.025 to 0.5 equivalents relative to the aniline derivative (XVIII).
  • a ligand may be further used.
  • the ligand used include triphenylphosphine and tri-tert-butylphosphine.
  • Examples of the base used for the coupling reaction include organic bases such as triethylamine or N, N-diisopropylethylamine, inorganic bases such as sodium carbonate, potassium carbonate or cesium carbonate, lithium such as lithium hexamethyldisilazide or lithium diisopropylamide.
  • organic bases such as triethylamine or N, N-diisopropylethylamine
  • inorganic bases such as sodium carbonate, potassium carbonate or cesium carbonate
  • lithium such as lithium hexamethyldisilazide or lithium diisopropylamide.
  • metal alkoxides such as amide, sodium tert-butoxide or potassium tert-butoxide or mixtures thereof, but inorganic bases such as sodium carbonate, potassium carbonate or cesium carbonate are preferred.
  • the amount of base used for the coupling reaction is preferably 0.5 to 20 equivalents, more preferably 1 to 3 equivalents, relative to the aniline derivative (XVIII).
  • the reaction solvent used in the coupling reaction is appropriately selected depending on the type of reagent used, but is not particularly limited as long as it does not inhibit the reaction.
  • tetrahydrofuran, 1,4-dioxane, ethylene glycol dimethyl ether Or ether solvents such as dimethoxyethane, nitrile solvents such as acetonitrile or propionitrile, aromatic hydrocarbon solvents such as benzene or toluene, aprotic polar solvents such as DMF, DMA or DMSO, water, or a mixture thereof
  • the solvent include a mixed solvent of water such as tetrahydrofuran, 1,4-dioxane, ethylene glycol dimethyl ether or dimethoxyethane and water.
  • the reaction temperature of the coupling reaction is preferably 0 to 200 ° C, more preferably 50 to 150 ° C.
  • the reaction time of the coupling reaction is appropriately selected according to the reaction temperature and other conditions, but is preferably 1 to 30 hours.
  • the aniline derivative (XVIII) and the phenylboronic acid derivative (III-b) used for the coupling reaction can be purchased, or can be produced by a known method or a method analogous thereto.
  • Biphenyl derivative (XX) can be obtained by the Sandmeyer reaction of biphenylaniline derivative (XIX).
  • diazonium reagent used in the Sandmeyer reaction examples include sodium nitrite, tert-butyl nitrite, and amyl nitrite.
  • the amount of the diazonium reagent used in the Sandmeyer reaction is preferably 0.5 to 1000 equivalents, more preferably 0.8 to 100 equivalents, relative to the biphenylaniline derivative (XIX).
  • the amount of the halogenating agent used in the Sandmeyer reaction is preferably 0.5 to 1000 equivalents, more preferably 0.8 to 100 equivalents, relative to the biphenylaniline derivative (XIX).
  • an acid may be used if desired.
  • the acid to be used include hydrochloric acid, hydrobromic acid, and tetrafluoroboric acid.
  • a reaction solvent may be used if desired.
  • the reaction solvent to be used is appropriately selected depending on the type of reagent to be used, but is not particularly limited as long as it does not inhibit the reaction, and examples thereof include tetrahydrofuran, 1,4-dioxane, ethylene glycol dimethyl ether, dimethoxyethane, and the like.
  • examples include ether solvents, nitrile solvents such as acetonitrile or propionitrile, aprotic polar solvents such as DMF, DMA or DMSO, water or mixed solvents thereof, nitrile solvents such as acetonitrile or propionitrile, or Water is preferred.
  • the reaction temperature of the Sandmeyer reaction is preferably ⁇ 50 ° C. to 200 ° C., more preferably ⁇ 20 ° C. to 100 ° C.
  • the reaction time of the Sandmeyer reaction is preferably 1 to 30 hours, although it varies depending on the reaction conditions.
  • Step 2-3 Biphenyl derivative (XXI) can be obtained by a halogenation reaction of biphenyl derivative (XX).
  • the conditions of the reagent, the amount of the reagent, the reaction solvent, the reaction temperature, and the reaction time in this step are the same as in Step 1-2.
  • the biphenylmethyl azide derivative (XXIV) can be obtained by a substitution reaction between the biphenyl derivative (XXI) and sodium azide.
  • the conditions for the amount of reagent, reaction solvent, reaction temperature, and reaction time in this step are the same as in step 1-5.
  • Biphenylmethyl alcohol derivative (XXIII) can be obtained by coupling reaction of benzyl alcohol derivative (XXII) and phenylboronic acid derivative (III-b) in the presence of a metal catalyst and a base.
  • the conditions of the reagent, the amount of the reagent, the reaction solvent, the reaction temperature, and the reaction time in this step are the same as in Step 2-1.
  • the benzyl alcohol derivative (XXII) used for the coupling reaction can be purchased, or can be produced by a known method or a method analogous thereto.
  • Biphenylmethyl azide derivative (XXIV) can be obtained by azidation reaction of biphenylmethyl alcohol derivative (XXIII) with diphenylphosphoric acid azide or bis (p-nitrophenyl) phosphoric acid azide in the presence of diazabicycloundecene. .
  • the amount of diazabicycloundecene used in the azidation reaction is preferably 0.5 to 10 equivalents and more preferably 2 to 5 equivalents with respect to the biphenylmethyl alcohol derivative (XXIII).
  • the amount of diphenyl phosphoric acid azide or bis (p-nitrophenyl) phosphoric acid azide used in the azidation reaction is preferably 0.5 to 10 equivalents, more preferably 2 to 5 equivalents, relative to the biphenylmethyl alcohol derivative (XXIII). .
  • the reaction solvent used in the azidation reaction is appropriately selected depending on the type of reagent used, but is not particularly limited as long as it does not inhibit the reaction.
  • a ether solvent such as dimethoxyethane, an aromatic hydrocarbon solvent such as benzene or toluene, or a mixed solvent thereof may be mentioned, and an aromatic hydrocarbon solvent such as benzene or toluene is preferable.
  • the reaction temperature of the azidation reaction is preferably 0 to 200 ° C, more preferably 20 to 100 ° C.
  • the reaction time of the azidation reaction is appropriately selected according to the reaction temperature and other conditions, but is preferably 1 to 30 hours.
  • Step 2-7) The biphenylmethylamine derivative (XXV-a) can be obtained by the reduction reaction of the biphenylmethyl azide derivative (XXIV).
  • the conditions of the reagent, reagent amount, reaction solvent, reaction temperature, and reaction time in this step are the same as in step 1-6.
  • Step 2-8) The guanidine derivative (XXVI-a) can be obtained by a guanidination reaction between a biphenylmethylamine derivative (XXV-a) and a guanidinating agent (IX).
  • the conditions for the amount of reagent, reaction solvent, reaction temperature, and reaction time in this step are the same as in step 1-7.
  • Step 2-9 The guanidine derivative (XXVII-a) can be obtained by deprotecting the guanidine derivative (XXVI-a) in the presence of an acid.
  • the conditions of the reagent, reagent amount, reaction solvent, reaction temperature, and reaction time in this step are the same as in step 1-8.
  • the guanidine derivative (Id) can be obtained by a coupling reaction of the guanidine derivative (XXVII-a) and the phenylboronic acid derivative (III-a) in the presence of a metal catalyst and a base.
  • the method is the same as that in Step 2-1, except that the phenylboronic acid derivative (III-a) is used instead of the phenylboronic acid derivative (III-b).
  • the biphenylaniline derivative (XXIX) can be obtained by a coupling reaction between the haloaniline derivative (XXVIII) and the phenylboronic acid derivative (III-a) in the presence of a metal catalyst and a base.
  • the method is the same as that in Step 2-1, except that the phenylboronic acid derivative (III-a) is used instead of the phenylboronic acid derivative (III-b).
  • the haloaniline derivative (XXVIII) used for the coupling reaction can be purchased, or can be produced by a known method or a method analogous thereto.
  • Step 3-2 The biphenyl nitrile derivative (XXX) can be obtained by the Sandmeyer reaction of the biphenyl aniline derivative (XXIX).
  • the conditions of the reagent, reagent amount, reaction solvent, reaction temperature, and reaction time in this step are the same as in Step 2-2.
  • Step 3-3 Biphenylmethylamine derivative (XXV-b) can be obtained by reduction reaction of biphenylnitrile derivative (XXX).
  • Examples of the reagent used for the reduction reaction include lithium aluminum hydride, borane tetrahydrofuran complex, a combination of cobalt chloride (II) hexahydrate and sodium borohydride, or a combination of nickel chloride and sodium borohydride.
  • the amount of the reagent used for the reduction reaction is preferably 0.25 to 100 equivalents, more preferably 0.5 to 10 equivalents, relative to the biphenylnitrile derivative (XXX).
  • the reaction solvent used for the reduction reaction is appropriately selected depending on the type of reagent used, but is not particularly limited as long as it does not inhibit the reaction.
  • tetrahydrofuran, 1,4-dioxane, ethylene glycol dimethyl ether or dimethoxy examples include ether solvents such as ethane, aromatic hydrocarbon solvents such as benzene or toluene, alcohol solvents such as methanol or ethanol, water, or a mixed solvent thereof.
  • ether solvent such as dimethoxyethane or an alcohol solvent such as methanol or ethanol is preferable.
  • the reaction temperature of the reduction reaction is preferably ⁇ 78 ° C. to 100 ° C., more preferably ⁇ 30 ° C. to 50 ° C.
  • the reaction time of the reduction reaction varies depending on the reaction conditions, but is preferably 10 minutes to 10 hours.
  • the guanidine derivative (XXVI-b) can be obtained by a guanidination reaction between a biphenylmethylamine derivative (XXV-b) and a guanidinating agent (IX).
  • the conditions for the amount of reagent, reaction solvent, reaction temperature, and reaction time in this step are the same as in step 1-7.
  • Step 3-5 The guanidine derivative (XXVII-b) can be obtained by deprotecting the guanidine derivative (XXVI-b) in the presence of an acid.
  • the conditions of the reagent, reagent amount, reaction solvent, reaction temperature, and reaction time in this step are the same as in step 1-8.
  • the guanidine derivative (Ie) can be obtained by a coupling reaction of the guanidine derivative (XXVII-b) and the phenylboronic acid derivative (III-b) in the presence of a metal catalyst and a base.
  • the conditions of the reagent, the amount of the reagent, the reaction solvent, the reaction temperature, and the reaction time in this step are the same as in Step 2-1.
  • the terphenyl nitrile derivative (XXXI) can be obtained by a coupling reaction of the biphenyl nitrile derivative (XXX) and the phenylboronic acid derivative (III-b) in the presence of a metal catalyst and a base.
  • the conditions of the reagent, the amount of the reagent, the reaction solvent, the reaction temperature, and the reaction time in this step are the same as in Step 2-1.
  • Step 3-8 The terphenyl methylamine derivative (VII-b) can be obtained by the reduction reaction of the terphenyl nitrile derivative (XXXI).
  • the conditions of the reagent, reagent amount, reaction solvent, reaction temperature, and reaction time in this step are the same as in Step 3-3.
  • the guanidine derivative (Xb) can be obtained by a guanidination reaction between a terphenylmethylamine derivative (VII-b) and a guanidinating agent (IX).
  • the conditions for the amount of reagent, reaction solvent, reaction temperature, and reaction time in this step are the same as in step 1-7.
  • Step 3-10) The guanidine derivative (Ie) can be obtained by deprotecting the guanidine derivative (Xb) in the presence of an acid.
  • the conditions of the reagent, reagent amount, reaction solvent, reaction temperature, and reaction time in this step are the same as in step 1-8.
  • the medicament and MALT1 inhibitor of the present invention are characterized by containing a guanidine derivative (I) or a pharmacologically acceptable salt thereof as an active ingredient.
  • MALT1 inhibition means inhibiting the protease activity of MALT1.
  • MALT1 inhibitor means a compound having an action of inhibiting the protease activity of MALT1 to eliminate or attenuate the activity.
  • Autoimmune disease is a general term for diseases that cause symptoms when the immune system responds excessively to normal cells and tissues and attacks them. For example, psoriasis, multiple sclerosis Disease, rheumatism, inflammatory bowel disease, systemic lupus erythematosus, ankylosing spondylitis, uveitis or rheumatic polymyalgia.
  • Psoriasis is an inflammatory disease of the skin accompanied by infiltration and activation of immune cells and accompanying epidermal thickening. Typically, white scales are thickly deposited on the red rash at various locations throughout the body, resulting in the symptoms of desquamation. Examples of psoriasis include psoriasis vulgaris, pustular psoriasis, arthritic psoriasis, trichome psoriasis, and psoriatic erythroderma.
  • the guanidine derivative (I) or a pharmacologically acceptable salt thereof is characterized by suppressing the function of MALT1 by inhibiting the protease activity of MALT1, that is, the substrate cleavage activity. Therefore, the guanidine derivative (I) or a pharmacologically acceptable salt thereof is a medicament for a disease, particularly a therapeutic agent for an autoimmune disease, which can be expected to improve the disease state or ameliorate symptoms by inhibiting the protease activity of MALT1. Alternatively, it can be used as a prophylactic agent, and can be suitably used as a therapeutic or prophylactic agent for psoriasis.
  • the guanidine derivative (I) or a pharmacologically acceptable salt thereof has an action of inhibiting the protease activity of MALT1.
  • the in vitro test include a method for evaluating cleavage of a substrate (for example, BCL10 protein) by MALT1 (Cancer Cell, 2012, Vol. 22, p. 825-837). Further, the NF- ⁇ B transcription activity inhibitory action caused by inhibiting the protease activity of MALT1 can be evaluated using a reporter gene assay (WO 2009/065897).
  • the guanidine derivative (I) or a pharmacologically acceptable salt thereof suppresses the function of MALT1 using IL-2 (interleukin-2) using a lymphocyte cell line (for example, Jurkat T cell).
  • IL-2 interleukin-2
  • a lymphocyte cell line for example, Jurkat T cell
  • IL-2 production as an index for example, Jurkat T cell is co-stimulated with Phorbol 12-myristate 13-acetate and Ionomycin, or co-stimulated with CD3 and CD28, depending on MALT1
  • IL-2 production induced by sterilization Cancer Cell, 2012, Vol. 22, p. 825-837.
  • guanidine derivative (I) or a pharmacologically acceptable salt thereof is effective for the treatment or prevention of an autoimmune disease.
  • pathological models include the imiquimod-induced psoriasis model (The Journal of Dermatological Science, 2013, Vol. 71, No. 1, p. 29-36), experimental autoimmune encephalomyelitis model (Journal of NeuroscienceResearch). 2006, 84, p. 1225-1234), collagen arthritis model (Annual Review of Immunology, 1984, 2, p. 199-218), dextran sulfate sodium-induced colitis model (Laboratory Investigation, 1993).
  • the effectiveness of the guanidine derivative (I) or a pharmacologically acceptable salt thereof for the treatment or prevention of an autoimmune disease can be determined by, for example, reducing the protease activity of MALT1 or MALT1 using the above in vitro test. It is possible to evaluate using a decrease in NF- ⁇ B transcriptional activity or a decrease in IL-2 production, which is an index of the function of MALT1, caused by inhibiting the protease activity.
  • the effectiveness of treating or preventing psoriasis can be reduced by using the above-mentioned imiquimod-induced psoriasis model, for example, by reducing the thickness of the auricle that increases with the progression of symptoms in the psoriasis model. It can be evaluated as an indicator.
  • Guanidine derivative (I) or a pharmacologically acceptable salt thereof is administered to mammals (eg, mouse, rat, hamster, rabbit, dog, cat, monkey, cow, sheep or human), particularly human. In some cases, it can be used as a useful medicament (in particular, a therapeutic or prophylactic agent for autoimmune diseases).
  • mammals eg, mouse, rat, hamster, rabbit, dog, cat, monkey, cow, sheep or human
  • a useful medicament in particular, a therapeutic or prophylactic agent for autoimmune diseases.
  • the guanidine derivative (I) or a pharmacologically acceptable salt thereof When used clinically as a pharmaceutical, the guanidine derivative (I) or a pharmacologically acceptable salt thereof may be used as it is, Additives such as a form, a stabilizer, a preservative, a buffer, a solubilizer, an emulsifier, a diluent or an isotonic agent may be mixed as appropriate. Moreover, said pharmaceutical can be manufactured by a normal method, using these pharmacologically acceptable carriers as appropriate.
  • Examples of the above-mentioned pharmaceutical administration forms include oral preparations such as tablets, capsules, granules, powders or syrups, parenteral preparations such as inhalants, injections, suppositories or liquids, or topical administration. , Ointments, creams or patches. Further, it may be a known continuous preparation.
  • the above-mentioned medicament preferably contains 0.00001 to 90% by weight, more preferably 0.01 to 70% by weight, of the guanidine derivative (I) or a pharmacologically acceptable salt thereof.
  • the dose is appropriately selected according to the patient's symptoms, age and weight, and administration method.
  • the daily active ingredient amount for adults is 0.1 ⁇ g to 1 g per day for injections, and for oral agents. 1 ⁇ g to 10 g per day is preferable, and in the case of a patch, 1 ⁇ g to 10 g is preferable per day, and can be administered once or several times.
  • Examples of the pharmacologically acceptable carrier or diluent of the above-mentioned pharmaceutical include, for example, binders (syrup, gelatin, gum arabic, sorbitol, polyvinyl chloride, tragacanth, etc.), excipients (sugar, lactose, corn starch, calcium phosphate, etc. Sorbitol, glycine, etc.) or lubricants (magnesium stearate, polyethylene glycol, talc, silica, etc.).
  • the above medicines may be used in combination with or in combination with other drugs in order to supplement or enhance the therapeutic effect or preventive effect or reduce the dose.
  • the commercially available compound was used about the compound which is not described in the synthesis method by the compound used for the synthesis
  • “Room temperature” in the following examples and reference examples usually means about 10 to about 35 ° C.
  • the solvent name shown in the NMR data indicates the solvent used for the measurement.
  • the 400 MHz NMR spectrum was measured using a JNM-ECS400 type nuclear magnetic resonance apparatus or a JNM-ECZ400S type nuclear magnetic resonance apparatus (JEOL Ltd.).
  • the chemical shift is represented by ⁇ (unit: ppm) based on tetramethylsilane, and the signals are s (single line), d (double line), t (triple line), q (quadruplex line), quint, respectively.
  • Silica gel was silica gel 60 (Merck), amine silica gel was amine silica gel DM1020 (Fuji Silysia Chemical), and flash chromatography was YFLCW-prep2XY (Yamazen). Monowave 300 (Anton Paar) was used as the microwave synthesizer.
  • N- (benzenesulfonyl) -N ′-(tert-butoxycarbonyl) -S-methylisothiourea (0.033 g) synthesized in Reference Example 11 was added.
  • the reaction mixture was stirred at 50 ° C. for 4 hours and then concentrated under reduced pressure.
  • the obtained crude product was purified by silica gel chromatography (n-hexane / ethyl acetate) to obtain the title compound (0.048 g).
  • Example 1 N- (Amino (((4,4 ′′ -dichloro- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methyl) amino) methylene) benzenesulfone Synthesis of amide: 2-Benzenesulfonyl-1- (tert-butoxycarbonyl) -3-((4,4 ′′ -dichloro- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4 synthesized in Reference Example 15 '-Yl) methyl) guanidine (0.048 g) was dissolved in dichloromethane (1 mL), and trifluoroacetic acid (0.3 mL) was added.
  • the reaction mixture was stirred at room temperature for 3 hours, saturated aqueous sodium hydrogen carbonate solution was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure.
  • the obtained crude product was purified by silica gel chromatography (chloroform / methanol) to obtain the title compound (hereinafter, the compound of Example 1) (0.041 g).
  • Example 2 N- (Amino (((4,4 ′′ -Dichloro- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methyl) amino) methylene) thiophene- Synthesis of 2-sulfonamide: 1- (tert-Butoxycarbonyl) -3-((4,4 ′′ -dichloro- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methyl synthesized in Reference Example 16 ) -2- (Thiophen-2-sulfonyl) guanidine (0.094 g) was used in the same manner as in Example 1 to obtain the title compound (hereinafter referred to as the compound of Example 2) (0.072 g).
  • Example 3 N- (Amino (((4,4 ′′ -Dichloro- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methyl) amino) methylene) furan- Synthesis of 2-sulfonamide: 1- (tert-Butoxycarbonyl) -3-((4,4 ′′ -dichloro- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methyl synthesized in Reference Example 17 ) -2- (furan-2-sulfonyl) guanidine (0.065 g) was used in the same manner as in Example 1 to obtain the title compound (hereinafter referred to as the compound of Example 3) (0.051 g).
  • Example 4 N- (Amino (((4,4 ′′ -dimethoxy- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methyl) amino) methylene) benzenesulfone Synthesis of amide: 2-Benzenesulfonyl-1- (tert-butoxycarbonyl) -3-((4,4 ′′ -dimethoxy- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4 synthesized in Reference Example 18
  • the title compound (hereinafter referred to as the compound of Example 4) (0.052 g) was obtained in the same manner as in Example 1 using '-yl) methyl) guanidine (0.16 g).
  • the reaction mixture was warmed to room temperature, water was added, and the mixture was extracted with ethyl acetate.
  • the organic layer was washed with a saturated aqueous sodium bicarbonate solution, a saturated aqueous sodium thiosulfate solution and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure.
  • the obtained crude product was purified by silica gel chromatography (n-hexane / ethyl acetate) to obtain the title compound (2.5 g).
  • the reaction mixture was cooled to room temperature and extracted with ethyl acetate.
  • the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure.
  • the obtained crude product was purified by silica gel column chromatography (n-hexane / ethyl acetate), and the obtained solid was washed with ethanol to give the title compound (0.34 g).
  • the reaction mixture was cooled to room temperature and extracted with ethyl acetate.
  • the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure.
  • the obtained crude product was purified by silica gel column chromatography (n-hexane / ethyl acetate) to obtain the title mixture (0.25 g).
  • Reference Example 30 Synthesis of 4 ′-(azidomethyl) -2′-bromo- [1,1′-biphenyl] -4-carbonitrile: 2′-Bromo-4 ′-(hydroxymethyl)-[1,1′-biphenyl] -4-carbonitrile (0.24 g) synthesized in Reference Example 27 was dissolved in toluene (8 mL), and then diphenylphosphorus was added. Acid azide (0.27 mL) and diazabicycloundecene (0.19 mL) were added, and the mixture was stirred at 80 ° C. for 1 hr. The reaction mixture was allowed to cool to room temperature, and the organic layer was separated.
  • N- (benzenesulfonyl) -N ′-(tert-butoxycarbonyl) -S-methylisothiourea (0.20 g) synthesized in Reference Example 11 was added, and the mixture was stirred at 60 ° C. for 19 hours.
  • the reaction mixture was cooled to room temperature, water was added, and the mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure.
  • the obtained crude product was purified by silica gel column chromatography (n-hexane / ethyl acetate) to obtain the title compound (0.30 g).
  • Example 7 N- (Amino (((4-Cyano-4 ′′ -methoxy- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methyl) amino) methylene) Synthesis of benzenesulfonamide: N- (amino (((2-bromo-4′-cyano- [1,1′-biphenyl] -4-yl) methyl) amino) methylene) benzenesulfonamide (0.029 g) synthesized in Reference Example 37 4-methoxyphenylboronic acid (0.019 g) and tetrakis (triphenylphosphine) palladium (0) (0.004 g) were added to 1,4-dioxane (0.6 mL) and a 2 mol / L aqueous sodium bicarbonate solution (0.09 mL).
  • Example 8 N- (Amino (((4-Cyano-4 ′′ -methyl- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methyl) amino) methylene) Synthesis of benzenesulfonamide: N- (amino ((((2-bromo-4′-cyano- [1,1′-biphenyl] -4-yl) methyl) amino) methylene) benzenesulfonamide (0.050 g) synthesized in Reference Example 37 and Using 4-methylphenylboronic acid (0.029 g), the title compound (hereinafter, the compound of Example 8) (0.036 g) was obtained in the same manner as in Example 7.
  • Example 9 N- (Amino (((4 ′′ -Chloro-4-cyano- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methyl) amino) methylene) Synthesis of benzenesulfonamide: N- (amino ((((2-bromo-4′-cyano- [1,1′-biphenyl] -4-yl) methyl) amino) methylene) benzenesulfonamide (0.050 g) synthesized in Reference Example 37 and Using 4-chlorophenylboronic acid (0.033 g), the title compound (hereinafter, the compound of Example 9) (0.013 g) was obtained in the same manner as in Example 7.
  • Example 10 N- (Amino (((4-Chloro-4 ′′-(methylthio)-[1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methyl) amino) Synthesis of methylene) benzenesulfonamide: N- (amino (((4′-chloro-2-iodo- [1,1′-biphenyl] -4-yl) methyl) amino) methylene) benzenesulfonamide (0.060 g) synthesized in Reference Example 38 and Using 4-methylthiophenylboronic acid (0.038 g), the title compound (hereinafter, the compound of Example 10) (0.054 g) was obtained in the same manner as in Example 7.
  • Example 12 N- (Amino (((4-Chloro-4 ′′ -hydroxy- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methyl) amino) methylene) Synthesis of benzenesulfonamide: N- (amino (((4′-chloro-2-iodo- [1,1′-biphenyl] -4-yl) methyl) amino) methylene) benzenesulfonamide (0.20 g) synthesized in Reference Example 38 and Using 4-hydroxyphenylboronic acid (0.11 g), the title compound (hereinafter, the compound of Example 12) (0.13 g) was obtained in the same manner as in Example 7.
  • Example 13 N- (Amino (((4 ′′ -Chloro-4-fluoro- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methyl) amino) methylene) Synthesis of benzenesulfonamide: N- (amino (((2-bromo-4′-fluoro- [1,1′-biphenyl] -4-yl) methyl) amino) methylene) benzenesulfonamide (0.060 g) synthesized in Reference Example 39 Using 4-chlorophenylboronic acid (0.028 g), the title compound (hereinafter, the compound of Example 13) (0.053 g) was obtained in the same manner as in Example 7.
  • Example 14 N- (Amino (((4 ′′ -Chloro-4-methyl- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methyl) amino) methylene) Synthesis of benzenesulfonamide: N- (amino (((2-bromo-4′-methyl- [1,1′-biphenyl] -4-yl) methyl) amino) methylene) benzenesulfonamide (0.030 g) synthesized in Reference Example 40 Using 4-chlorophenylboronic acid (0.021 g), the title compound (hereinafter, the compound of Example 14) (0.018 g) was obtained in the same manner as in Example 7.
  • Reference Example 48 Synthesis of 4 ′-(aminomethyl) -4 ′′ -chloro- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4-carbonitrile: 4 ′-(azidomethyl) -4 ′′ -chloro- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4-carbonitrile (0.070 g) synthesized in Reference Example 47 was added to tetrahydrofuran (2 mL). Then, triphenylphosphine (0.11 g) and water (0.18 mL) were added, and the mixture was stirred at 60 ° C. for 1 hour.
  • Example 15 N- (Amino (((4-Chloro-4 ′′ -methoxy- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methyl) amino) methylene) Synthesis of benzenesulfonamide: 2-Benzenesulfonyl-1- (tert-butoxycarbonyl) -3-((4-chloro-4 ′′ -methoxy- [1,1 ′: 2 ′, 1 ′′ -terphenyl]) synthesized in Reference Example 49 -4′-yl) methyl) guanidine (0.085 g) was used in the same manner as in Example 1 to obtain the title compound (hereinafter, the compound of Example 15) (0.056 g).
  • Example 16 N- (Amino (((4 ′′ -Methoxy-4-methyl- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methyl) amino) methylene) Synthesis of benzenesulfonamide: 2-Benzenesulfonyl-1- (tert-butoxycarbonyl) -3-((4-fluoro-4 ′′ -methoxy- [1,1 ′: 2 ′, 1 ′′ -terphenyl]) synthesized in Reference Example 50 -4′-yl) methyl) guanidine (0.085 g) was used in the same manner as in Example 1 to obtain the title compound (hereinafter referred to as the compound of Example 16) (0.060 g).
  • Example 17 N- (Amino (((4-Fluoro-4 ′′ -methoxy- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methyl) amino) methylene) Synthesis of benzenesulfonamide: 2-Benzenesulfonyl-1- (tert-butoxycarbonyl) -3-((4-fluoro-4 ′′ -methoxy- [1,1 ′: 2 ′, 1 ′′ -terphenyl]) synthesized in Reference Example 52
  • the title compound (hereinafter referred to as the compound of Example 17) (0.035 g) was obtained in the same manner as in Example 1 using -4′-yl) methyl) guanidine (0.065 g).
  • Example 18 N- (Amino (((4-Chloro-4 ′′ -methoxy- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methyl) amino) methylene) Synthesis of -3-methoxybenzenesulfonamide: 1- (tert-Butoxycarbonyl) -3-((4-chloro-4 ′′ -methoxy- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl synthesized in Reference Example 53 ) Methyl) -2- (3-methoxybenzenesulfonyl) guanidine (0.032 g) was used in the same manner as in Example 1 to obtain the title compound (hereinafter referred to as the compound of Example 18) (0.024 g).
  • Example 19 N- (Amino (((4 ′′ -Chloro-4-cyano- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methyl) amino) methylene) Synthesis of -3-methoxybenzenesulfonamide: 1- (tert-Butoxycarbonyl) -3-((4 ′′ -chloro-4-cyano- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl synthesized in Reference Example 54 ) Methyl) -2- (3-methoxybenzenesulfonyl) guanidine (0.041 g) was used in the same manner as in Example 1 to obtain the title compound (hereinafter referred to as the compound of Example 19) (0.027 g).
  • Example 20 N- (Amino (((4-Chloro-4 ′′ -methoxy- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methyl) amino) methylene) Synthesis of thiophene-2-sulfonamide: 1- (tert-Butoxycarbonyl) -3-((4-chloro-4 ′′ -methoxy- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl synthesized in Reference Example 55 ) Methyl) -2- (thiophen-2-sulfonyl) guanidine (0.045 g) was used in the same manner as in Example 1 to obtain the title compound (hereinafter referred to as the compound of Example 20) (0.021 g).
  • Example 21 N- (Amino (((4 ′′ -Chloro-4-cyano- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methyl) amino) methylene) Synthesis of thiophene-2-sulfonamide: 1- (tert-Butoxycarbonyl) -3-((4 ′′ -chloro-4-cyano- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl synthesized in Reference Example 56 ) Methyl) -2- (thiophen-2-sulfonyl) guanidine (0.037 g) was used in the same manner as in Example 1 to obtain the title compound (hereinafter referred to as the compound of Example 21) (0.027 g).
  • Example 22 N- (Amino (((4-Chloro-6′-fluoro-4 ′′ -methoxy- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methyl Synthesis of) amino) methylene) benzenesulfonamide: N- (amino ((((5-fluoro-6-iodo-4′-methoxy- [1,1′-biphenyl] -3-yl) methyl) amino) methylene) benzenesulfonamide (0) synthesized in Reference Example 61 .050g) and 4-chlorophenylboronic acid (0.029g) were used in the same manner as in Example 7 to obtain the title compound (hereinafter referred to as the compound of Example 22) (0.025g).
  • Example 23 N- (Amino (((4-Cyano-6′-fluoro-4 ′′ -methoxy- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methyl Synthesis of) amino) methylene) benzenesulfonamide: N- (amino ((((5-fluoro-6-iodo-4′-methoxy- [1,1′-biphenyl] -3-yl) methyl) amino) methylene) benzenesulfonamide (0) synthesized in Reference Example 61 0.050) and 4-cyanophenylboronic acid (0.027 g) were used in the same manner as in Reference Example 7 to obtain the title compound (hereinafter, the compound of Example 23) (0.030 g).
  • the reaction mixture was cooled to room temperature, filtered through celite, ethyl acetate was added to the filtrate, the organic layer was washed with water, saturated aqueous sodium hydrogen carbonate, 10 wt% aqueous sodium thiosulfate, saturated brine, and dried over anhydrous sodium sulfate. Then, it concentrated under reduced pressure. The obtained crude product was purified by silica gel column chromatography (n-hexane / ethyl acetate) to obtain the title compound (0.31 g).
  • Reference Example 65 Synthesis of 4′-azidomethyl-4-chloro-5′-fluoro-4 ′′ -methoxy-1,1 ′: 2 ′, 1 ′′ -terphenyl: 4-chloro-5′-fluoro-4 ′′ -methoxy-4′-methyl-1,1 ′ synthesized in Reference Example 64: 2 ′, 1 ′′ -terphenyl (0.30 g), azobisisobuty Ronitrile (0.015 g) and N-bromosuccinimide (0.20 g) were suspended in carbon tetrachloride (4.5 mL) and stirred at 80 ° C. for 3 hours.
  • the reaction mixture was cooled to room temperature, filtered through celite, and the filtrate was concentrated under reduced pressure.
  • the obtained crude product was dissolved in DMF (5 mL), sodium azide (0.090 g) was added, and the mixture was stirred at 60 ° C. for 16 hr. Ethyl acetate and n-hexane were added to the reaction mixture, and the organic layer was washed with water and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure.
  • the obtained crude product was purified by silica gel column chromatography (n-hexane / ethyl acetate) to obtain the title compound (0.19 g).
  • Example 24 N- (Amino (((4-chloro-5′-fluoro-4 ′′ -methoxy- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methyl Synthesis of) amino) methylene) benzenesulfonamide: 2-Benzenesulfonyl-1- (tert-butoxycarbonyl) -3-((4-chloro-5′-fluoro-4 ′′ -methoxy- [1,1 ′: 2 ′, 1 ′) synthesized in Reference Example 66
  • the title compound (hereinafter referred to as the compound of Example 24) (0.056 g) was obtained in the same manner as in Example 1 using '-terphenyl] -4'-yl) methyl) guanidine (0.10 g).
  • Reference Example 68 Synthesis of 4,4 ′′ -dichloro- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-ol: 4,4 ′′ -dichloro- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-carbaldehyde (0.40 g) synthesized in Reference Example 67 was dissolved in dichloromethane (12 mL). Metachloroperbenzoic acid (0.42 g) was added and stirred at room temperature for 23 hours. A 10 wt% aqueous sodium thiosulfate solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate.
  • the organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure.
  • the obtained crude product was dissolved in methanol (10 mL), potassium carbonate (0.34 g) was added, and the mixture was stirred at room temperature for 15 hours.
  • a saturated aqueous ammonium chloride solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate.
  • the organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure.
  • the obtained crude product was purified by silica gel column chromatography (n-hexane / ethyl acetate) to obtain the title compound (0.24 g).
  • Reference Example 69 Synthesis of 4,4 ′′ -dichloro-4′-methoxy-1,1 ′: 2 ′, 1 ′′ -terphenyl: 4,4 ′′ -Dichloro- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-ol (0.18 g) synthesized in Reference Example 68 was dissolved in DMF (3.0 mL). Potassium carbonate (0.15 g) and methyl iodide (0.10 g) were added, and the mixture was stirred at room temperature for 13 hours. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate.
  • Reference Example 70 Synthesis of 4′-bromo-4,4 ′′ -dichloro-5′-methoxy-1,1 ′: 2 ′, 1 ′′ -terphenyl: 4,4 ′′ -Dichloro-4′-methoxy-1,1 ′: 2 ′, 1 ′′ -terphenyl (0.090 g) synthesized in Reference Example 69 was dissolved in DMF (2.0 mL), and N -Bromosuccinimide (0.053 g) was added at 0 ° C. and stirred at 60 ° C. for 24 hours. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate.
  • Reference Example 71 Synthesis of 4,4 ′′ -dichloro-5′-methoxy- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-carboxylic acid: 4′-Bromo-4,4 ′′ -dichloro-5′-methoxy-1,1 ′: 2 ′, 1 ′′ -terphenyl (0.085 g) synthesized in Reference Example 70 was added to tetrahydrofuran (2.0 mL). N-Butyllithium (2.6 mol / L, n-hexane solution, 0.096 mL) was added at ⁇ 78 ° C., and the mixture was stirred at ⁇ 78 ° C. for 10 minutes.
  • N-Butyllithium 2.6 mol / L, n-hexane solution, 0.096 mL
  • Reference Example 72 Synthesis of (4,4 ′′ -dichloro-5′-methoxy- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methanol: 4,4 ′′ -Dichloro-5′-methoxy- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-carboxylic acid (0.063 g) synthesized in Reference Example 71 was added to tetrahydrofuran (2 0.02), borane tetrahydrofuran complex (0.92 mol / L tetrahydrofuran solution, 0.37 mL) was added at 0 ° C., and the mixture was stirred at room temperature for 5 hours.
  • Reference Example 73 Synthesis of 4 ′-(azidomethyl) -4,4 ′′ -dichloro-5′-methoxy-1,1 ′: 2 ′, 1 ′′ -terphenyl: (4,4 ′′ -Dichloro-5′-methoxy- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methanol (0.042 g) synthesized in Reference Example 72 was dissolved in toluene. (2.0 mL), bis (p-nitrophenyl) phosphoric azide (0.064 g) and diazabicycloundecene (0.027 g) were added, and the mixture was stirred at 70 ° C. for 23 hours.
  • Reference Example 74 Synthesis of (4,4 ′′ -dichloro-5′-methoxy- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methanamine: 4 ′-(azidomethyl) -4,4 ′′ -dichloro-5′-methoxy-1,1 ′: 2 ′, 1 ′′ -terphenyl (0.023 g) synthesized in Reference Example 73 was added to tetrahydrofuran (1. (0 mL), triphenylphosphine (0.024 g) and water (0.022 g) were added, and the mixture was stirred at 60 ° C. for 4 hours.
  • Example 25 N- (Amino (((4,4 ′′ -Dichloro-5′-methoxy- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methyl) amino Synthesis of) methylene) benzenesulfonamide: 2-Benzenesulfonyl-1- (tert-butoxycarbonyl) -3-((4,4 ′′ -dichloro-5′-methoxy- [1,1 ′: 2 ′, 1 ′′-) synthesized in Reference Example 75
  • the title compound (hereinafter, the compound of Example 25) (0.015 g) was obtained in the same manner as in Example 1 using terphenyl] -4′-yl) methyl) guanidine (0.018 g).
  • Example 26 N- (Amino (((4,4 ′′ -dichloro-5′-hydroxy- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methyl) amino Synthesis of) methylene) benzenesulfonamide:
  • the compound of Example 25 (0.010 g) was dissolved in dichloromethane (1.0 mL), boron tribromide (1.0 mol / L dichloromethane solution, 0.12 mL) was added at ⁇ 78 ° C., and 0 ° C. for 5 hours. Stir. Water was added to the reaction mixture, and the mixture was extracted with chloroform. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure.
  • Example 27 N- (amino (((4,4 ′′ -dichloro- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methyl) amino) methylene) benzamide] Synthesis: 1- (tert-Butoxycarbonyl) -3-((4,4 ′′ -dichloro- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methyl synthesized in Reference Example 78 ) -2-Benzoylguanidine (0.14 g) was used in the same manner as in Example 1 to obtain the title compound (hereinafter referred to as the compound of Example 27) (0.11 g).
  • Example 28 N- (amino (((4,4 ′′ -dichloro- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methyl) amino) methylene) thiophene- Synthesis of 2-carboxylic amide: 1- (tert-Butoxycarbonyl) -3-((4,4 ′′ -dichloro- [1,1 ′: 2 ′, 1 ′′ -terphenyl] -4′-yl) methyl synthesized in Reference Example 78 ) -2- (2-thiophenecarbonyl) guanidine (0.053 g) was used in the same manner as in Example 1 to obtain the title compound (hereinafter referred to as the compound of Example 28) (0.036 g).
  • Example 29 Evaluation of inhibition of protease activity of MALT1:
  • the guanidine derivative (I) or a pharmacologically acceptable salt thereof inhibits the protease activity of MALT1 according to the method described in the literature (Cancer Cell, 2012, Vol. 22, p.825-837). Evaluation was performed in an in vitro experimental system. That is, it was evaluated by measuring the degree of decrease of the fluorescence value by the compound with respect to the increase of the fluorescence value caused by cleaving the artificial peptide substrate fluorescently labeled by the recombinant MALT1.
  • A) Production of recombinant GST-fused MALT1 A vector in which the full-length cDNA of the human MALT1 gene (GenBank accession number: AB02618.1) amplified by PCR is incorporated into the SalI site downstream of the GST gene of the pGEX6P3 vector (GE Healthcare) (hereinafter referred to as “in frame”) PGEX6P3-MALT1 vector). Subsequently, the pGEX6P3-MALT1 vector was transformed into Escherichia coli for protein expression (BL21-RIL-codon plus-DE3, Agilent), then subjected to ampicillin resistance screening and analysis by colony PCR, and an E. coli strain expressing recombinant GST-fused MALT1.
  • Got. Protein expression was induced with isopropyl- ⁇ -thiogalactopyranoside. After induction of expression, the E. coli precipitate was recovered from the E. coli culture solution by centrifugation, and the E. coli precipitate was disrupted and centrifuged to obtain a supernatant. The supernatant was purified using a GSTrap FF column (GE Health Care) to obtain a recombinant GST-fused MALT1.
  • the fluorescence value of the first measurement was “F1”, and the fluorescence value of the second measurement was “F2”.
  • F2-F1 of “test compound non-added (DMSO only added), enzyme-free and substrate-added well” is “Fback”, and “test compound non-added (DMSO only added), enzyme-added and substrate-added well”
  • F2-F1 is “Fpositive”
  • F2-F1 of “well of test compound addition, enzyme addition and substrate addition” is “Fsample”
  • the IC 50 value of each test compound is shown in Table 2. As is clear from the results in Table 2, it was shown that the guanidine derivative (I) of the present invention or a pharmacologically acceptable salt thereof has an action of inhibiting the protease activity of MALT1.
  • Example 30 Inhibitory effect of pinna thickening in imiquimod-induced psoriasis model mice: The fact that the guanidine derivative (I) or a pharmacologically acceptable salt thereof exerts a therapeutic effect on psoriasis, which is one of autoimmune diseases, is described in the literature (The Journal of Dermatological Science, 2014, 76th). Vol. 2, No. 2, p. 96-103), and evaluated in an in vivo experimental system using imiquimod-induced psoriasis model mice. That is, it evaluated by verifying the inhibitory effect by the compound with respect to the thickening of the auricle, using the thickness of the auricle as the symptom progression of the imiquimod-induced psoriasis model as an index.
  • mice 7-week-old BALB / c male mice (Nippon Charles River Co., Ltd.) were used at 8 weeks of age after preliminary breeding.
  • 5 mg of Beserna cream 5% once a day for 8 days from the first day of imiquimod administration (day 0 after induction) to day 7 after induction was applied (imiquimod dose 0.25 mg / body / day).
  • the administration solvent was prepared by adding Tween 20 to a 0.5% (w / v) methylcellulose aqueous solution to a final concentration of 0.025% (v / v).
  • the test compound was suspended in the administration solvent and used as the administration drug solution.
  • the administered drug solution was orally administered once a day for 4 days from the 4th day to the 7th day after the induction (dosing volume was 10 mL / kg).
  • the compound of Example 1 was used as the test compound, and the group to which the compound of Example 1 was administered was designated as the compound administration group of Example 1.
  • a group to which only the administration solvent was similarly administered was provided as a solvent administration group.
  • the thickness of the auricle before administration of imiquimod on the induction day (before induction) and the thickness of the auricle on the 8th day after induction were measured using a digital micrometer (Mitutoyo Co., Ltd.), and the change (8 days after induction).
  • the thickness of the auricle of the eye—the thickness of the auricle before induction) was used as an index for evaluation of drug efficacy.
  • Statistical analysis was performed using statistical analysis software EXSAS (ver. 9.3). Between the solvent administration group and each group of the compound of Example 1, the Williams test (one side) was carried out after confirming equal dispersion by the Bartlet test.
  • the evaluation results of the compound of Example 1 are shown in FIG.
  • the vertical axis of the figure represents the change in thickness of the pinna ( ⁇ m)
  • the horizontal axis “solvent” represents the solvent administration group
  • “compound of Example 1” represents the compound administration group of Example 1.
  • “*” In the figure indicates a statistically significant (P ⁇ 0.025) difference compared to the solvent administration group.
  • the thickness of the auricle in the solvent administration group increased by 192 ⁇ m.
  • the changes in the thickness of the pinna of the group in which the compound of Example 1 was orally administered at 30 mg / kg (once a day) or 100 mg / kg (once a day) were only increased by 170 ⁇ m and 133 ⁇ m, respectively.
  • the 100 mg / kg (once a day) administration group there was a statistically significant decrease compared to the change in pinna thickness in the solvent administration group.
  • guanidine derivative (I) or a pharmacologically acceptable salt thereof of the present invention has an action of strongly inhibiting the protease activity of MALT1, it can be used as a therapeutic or prophylactic agent for autoimmune diseases such as psoriasis.

Abstract

本発明は、MALT1のプロテアーゼ活性を阻害し、乾癬等の自己免疫疾患に対して治療効果又は予防効果を発揮するグアニジン骨格を有する化合物を提供することを目的としている。本発明は、下式に代表されるグアニジン誘導体又はその薬理学的に許容される塩を提供する。

Description

グアニジン誘導体及びその医薬用途
 本発明は、グアニジン誘導体及びその医薬用途に関する。
 Mucosa-associated lymphoid tissue lymphoma translocation protein 1(以下、MALT1)は、システインプロテアーゼであり、nuclear factor kappa-light-chain-enhancer of activated B cells(以下、NF-κB)の転写活性のネガティブフィードバック機構を司るA20やCYLD等のタンパク質を分解することにより、NF-κBのシグナル伝達を活性化する(非特許文献1及び2)。
 NF-κBシグナルは、B細胞及びT細胞の生存、分化、活性化等の免疫応答を制御するが、MALT1のプロテアーゼ活性の亢進によってNF-κBシグナルが過剰に活性化すると、様々な自己免疫疾患を発症し得ることが知られている。例えば、MALTリンパ腫や活性化B細胞様びまん性大細胞型B細胞リンパ腫(ABC-DLBCL)では、MALT1のプロテアーゼ活性が亢進しており、免疫異常を伴う疾患の発症に関与している(非特許文献3)。
 また、多発性硬化症の代表的な動物モデルである実験的自己免疫性脳脊髄炎モデルでは、MALT1遺伝子(Mucosa-associated lymphoid tissue lymphoma translocation gene 1;以下、MALT1遺伝子)を欠損させると、その病態が完全に抑制されることが報告されている。このため、MALT1のプロテアーゼ活性の阻害は、多発性硬化症の治療や予防に有効であるとの報告もある(非特許文献4)。
 さらに、MALT1によって分解され、不活化するA20やCYLD等のタンパク質と自己免疫疾患との関連性についても報告されており、例えば、A20をコードする遺伝子を欠損したマウスでは、リウマチや乾癬、大腸炎といった自己免疫疾患様病態が自然発症することが報告されている(非特許文献5)。
 MALT1のプロテアーゼ活性を阻害する化合物としては、例えば、オリゴペプチド化合物であるZ-VRPR-fmk(非特許文献6)、フェニルフラン誘導体(特許文献1)、フェノチアジン誘導体(特許文献2)、トリアゾール誘導体(非特許文献7)、β-ラパコン誘導体(非特許文献8)及びピラゾロピリミジン誘導体(特許文献3)が知られている。
 一方、テルフェニル骨格を有する化合物としては、例えば、カンナビノイド1受容体拮抗作用を有する化合物として、テルフェニルカルボキサミド誘導体(特許文献4)が、シクロオキシゲナーゼ阻害作用を有する化合物として、テルフェニルメタンスルホン誘導体(特許文献5)が、γ-セクレターゼ阻害作用を有する化合物として、テルフェニル酢酸誘導体(特許文献6)が報告されている。
国際公開第2009/065897号 国際公開第2013/017637号 国際公開第2015/181747号 国際公開第2003/084943号 国際公開第1996/010012号 国際公開第2006/008558号
Beyaertら、Nature Immunology、2008年、第9巻、p.263―271 Beyaertら、The EMBO Journal、2011年、第30巻、p.1742―1752 Staudtら、Nature、2006年、第441巻、p.106-110 Makら、The Journal of Clinical Investigation、2012年、第122巻、p.4698―4709 Maら、Science、2000年、第289巻、p.2350-2354 Thomeら、Nature Immunology、2008年、第9巻、p.272―281 Melnickら、Cancer Cell、2012年、第22巻、p.812―824 Limら、Journal of Medicinal Chemistry、2015年、第58巻、p.8491-8502
 しかしながら、特許文献1~6及び非特許文献1~8には、テルフェニル骨格を有するグアニジン誘導体がMALT1のプロテアーゼ活性を阻害することについての記載はなく、その可能性についての示唆もされていない。
 そこで本発明は、MALT1のプロテアーゼ活性を阻害し、乾癬等の自己免疫疾患に対して治療効果又は予防効果を発揮する化合物を提供することを目的とする。
 本発明者らは、上記課題を達成するために鋭意研究を重ねた結果、MALT1のプロテアーゼ活性を阻害する作用を有する新規なグアニジン誘導体を見出すに至った。
 すなわち、本発明は、以下の一般式(I)で示されるグアニジン誘導体又はその薬理学的に許容される塩を提供する。
Figure JPOXMLDOC01-appb-C000002
[式中、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のアルキルチオ基、シアノ基、メトキシカルボニル基又はヒドロキシ基を表し、Rは、水素原子又はハロゲン原子を表し、Rは、水素原子、ハロゲン原子、炭素数1~3のアルコキシ基又はヒドロキシ基を表し、Aは、S(=O)又はC(=O)を表し、Rは、炭素数3~6のシクロアルキル基、1個の水素原子がハロゲン原子若しくは炭素数1~3のアルコキシ基で置換されていてもよいアリール基又は1個の水素原子がハロゲン原子で置換されていてもよいヘテロアリール基を表し、Rは、水素原子又は炭素数1~3のアルキル基を表す。]
 上記の一般式(I)で示されるグアニジン誘導体において、Rは、塩素原子、メチル基、メトキシ基、メチルチオ基、メトキシカルボニル基又はヒドロキシ基であり、Rは、フッ素原子、塩素原子、メチル基、メトキシ基又はシアノ基であり、Rは、水素原子又はフッ素原子であり、Rは、水素原子、フッ素原子、メトキシ基又はヒドロキシ基であり、Aは、S(=O)であり、Rは、1個の水素原子が炭素数1~3のアルコキシ基で置換されていてもよいフェニル基又は5員環ヘテロアリール基であり、Rは、水素原子又はメチル基であることが好ましい。
 この場合、高いMALT1阻害活性が期待できる。
 また、上記の一般式(I)で示されるグアニジン誘導体において、Rは、塩素原子、メトキシ基又はメトキシカルボニル基であり、Rは、塩素原子、メトキシ基又シアノ基であり、Rは、水素原子であり、Rは、水素原子であり、Aは、S(=O)であり、Rは、フェニル基、3-メトキシフェニル基、2-チエニル基又は2-フリル基であり、Rは、水素原子であることがより好ましい。
 この場合、高いMALT1阻害活性が期待でき、さらに自己免疫疾患における優れた治療効果又は予防効果が期待できる。
 また、本発明は、上記の一般式(I)で示されるグアニジン誘導体又はその薬理学的に許容される塩を有効成分として含有する、医薬及びMALT1阻害剤を提供する。
 上記の医薬は、自己免疫疾患の治療剤又は予防剤であることが好ましく、上記の自己免疫疾患の治療剤又は予防剤としては、乾癬の治療剤又は予防剤であることがより好ましい。
 本発明のグアニジン誘導体又はその薬理学的に許容される塩は、MALT1のプロテアーゼ活性を強力に阻害する作用を有し、乾癬等の自己免疫疾患に対して治療効果又は予防効果を発揮できる。
イミキモド誘発乾癬モデルマウスにおける耳介の厚みに対する実施例1の化合物の作用を示す図である。
 本発明のグアニジン誘導体は、以下の一般式(I)で示されることを特徴としている。
Figure JPOXMLDOC01-appb-C000003
[式中、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のアルキルチオ基、シアノ基、メトキシカルボニル基又はヒドロキシ基を表し、Rは、水素原子又はハロゲン原子を表し、Rは、水素原子、ハロゲン原子、炭素数1~3のアルコキシ基又はヒドロキシ基を表し、Aは、S(=O)又はC(=O)を表し、Rは、炭素数3~6のシクロアルキル基、1個の水素原子がハロゲン原子若しくは炭素数1~3のアルコキシ基で置換されていてもよいアリール基又は1個の水素原子がハロゲン原子で置換されていてもよいヘテロアリール基を表し、Rは、水素原子又は炭素数1~3のアルキル基を表す。]
 本明細書で使用する次の用語は、特に断りがない限り、下記の定義のとおりである。
 「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を意味する。
 「炭素数1~3のアルキル基」とは、メチル基、エチル基、プロピル基又はイソプロピル基を意味する。
 「炭素数3~6のシクロアルキル基」とは、シクロプロピル基、シクロブチル基、シクロペンチル基又はシクロヘキシル基を意味する。
 「炭素数1~3のアルコキシ基」とは、メトキシ基、エトキシ基、プロポキシ基又はイソプロポキシ基を意味する。
 「炭素数1~3のアルキルチオ基」とは、メチルチオ基、エチルチオ基、プロピルチオ基又はイソプロピルチオ基を意味する。
 「アリール基」とは、単環式又は二環式の芳香族炭化水素基を意味し、例えば、フェニル基又はナフチル基(例えば、1-ナフチル基又は2-ナフチル基)が挙げられる。
 「ヘテロアリール基」とは、環構成原子として窒素原子、酸素原子及び酸化されていてもよい硫黄原子から選ばれるヘテロ原子を1個~4個含有する、4員~7員の、単環式芳香族複素環基又は縮合芳香族複素環基を意味する。例えば、フリル基(例えば、2-フリル基又は3-フリル基)、チエニル基(例えば、2-チエニル基又は3-チエニル基)、ピリジル基(例えば、2-ピリジル基、3-ピリジル基又は4-ピリジル基)、ピリミジニル基(例えば、2-ピリミジニル基、4-ピリミジニル基、5-ピリミジニル基又は6-ピリミジニル基)、ピロリル基(例えば、1-ピロリル基、2-ピロリル基又は3-ピロリル基)、イミダゾリル基(例えば、1-イミダゾリル基、2-イミダゾリル基、4-イミダゾリル基又は5-イミダゾリル基)、ピラゾリル基(例えば、1-ピラゾリル基、3-ピラゾリル基又は4-ピラゾリル基)、チアゾリル基(例えば、2-チアゾリル基、4-チアゾリル基又は5-チアゾリル基)、イソチアゾリル基(例えば、3-イソチアゾリル基、4-イソチアゾリル基又は5-イソチアゾリル基)、オキサゾリル基(例えば、2-オキサゾリル基、4-オキサゾリル基又は5-オキサゾリル基)、イソオキサゾリル基(例えば、3-イソオキサゾリル基、4-イソオキサゾリル基又は5-イソオキサゾリル基)、オキサジアゾリル基(例えば、1,2,4-オキサジアゾール-5-イル基又は1,3,4-オキサジアゾール-2-イル基)、チアジアゾリル基(例えば、1,3,4-チアジアゾール-2-イル基)、トリアゾリル(例えば、1,2,4-トリアゾール-1-イル基、1,2,4-トリアゾール-3-イル基、1,2,3-トリアゾール-1-イル基、1,2,3-トリアゾール-2-イル基又は1,2,3-トリアゾール-4-イル基)、テトラゾリル基(例えば、テトラゾール-1-イル基又はテトラゾール-5-イル基)、トリアジニル基(例えば、1,2,4-トリアジン-1-イル基又は1,2,4-トリアジン-3-イル基)、キノリル基(例えば、2-キノリル基、3-キノリル基、4-キノリル基又は6-キノリル基)、イソキノリル基(例えば、3-イソキノリル基)、キナゾリル基(例えば、2-キナゾリル基又は4-キナゾリル基)、ベンゾフリル基(例えば、2-ベンゾフリル基又は3-ベンゾフリル基)、ベンゾチエニル基(例えば、2-ベンゾチエニル基又は3-ベンゾチエニル基)、ベンズオキサゾリル基(例えば、2-ベンズオキサゾリル基)、ベンゾチアゾリル基(例えば、2-ベンゾチアゾリル基)、ベンズイミダゾリル基(例えば、ベンズイミダゾール-1-イル基、ベンズイミダゾール-2-イル基又はベンズイミダゾール-5-イル基)、インドリル基(例えば、インドール-1-イル基、インドール-2-イル基、インドール-3-イル基又はインドール-5-イル基)、インダゾリル基(例えば、1H-インダゾール-3-イル基)、ピロロピラジニル基(例えば、1H-ピロロ[2,3-b]ピラジン-2-イル基又は1H-ピロロ[2,3-b]ピラジン-6-イル基)、イミダゾピリジル基(例えば、1H-イミダゾ[4,5-b]ピリジン-2-イル基、1H-イミダゾ[4,5-c]ピリジン-2-イル基又は2H-イミダゾ[1,2-a]ピリジン-3-イル基)、イミダゾピラジニル基(例えば、1H-イミダゾ[4,5-b]ピラジン-2-イル基)、ピラゾロピリジル基(例えば、1H-ピラゾロ[4,3-c]ピリジン-3-イル基)又はピラゾロチエニル基(例えば、2H-ピラゾロ[3,4-b]チオフェン-2-イル基)が挙げられる。
 「1個の水素原子がハロゲン原子若しくは炭素数1~3のアルコキシ基で置換されていてもよいアリール基」とは、基の置換可能な位置が置換されていない場合と置換されている場合を含む単環式又は二環式の芳香族炭化水素基を意味する。例えば、フェニル基、ナフチル基(例えば、1-ナフチル基又は2-ナフチル基)、フルオロフェニル基(例えば、2-フルオロフェニル基、3-フルオロフェニル基又は4-フルオロフェニル基)、クロロフェニル基(例えば、2-クロロフェニル基又は3-クロロフェニル基)、ブロモフェニル基(例えば、2-ブロモフェニル基)、ヨードフェニル基(例えば、2-ヨードフェニル基)、メトキシフェニル基(例えば、2-メトキシフェニル基、3-メトキシフェニル基又は4-メトキシフェニル基)、エトキシフェニル基(例えば、2-エトキシフェニル基又は3-メトキシフェニル基)、プロポキシフェニル基(例えば、2-プロポキシフェニル基)、イソプロポキシフェニル基(例えば、2-イソプロポキシフェニル基又は3-イソプロポキシフェニル基)、フルオロナフチル基(例えば、2-フルオロナフタレン-1-イル基又は1-フルオロナフタレン-2-イル基)、クロロナフチル基(例えば、2-クロロナフタレン-1-イル基)、ブロモナフチル基(例えば、2-ブロモナフタレン-1-イル基)、メトキシナフチル基(例えば、2-メトキシナフタレン-1-イル基)又はエトキシナフチル基(例えば、2-エトキシナフタレン-1-イル基)などが挙げられる。
 「1個の水素原子がハロゲン原子で置換されていてもよいヘテロアリール基」とは、基の置換可能な位置が置換されていない場合と置換されている場合を含む環構成原子として窒素原子、酸素原子及び酸化されていてもよい硫黄原子から選ばれるヘテロ原子を1個~4個含有する、4員~7員の、単環式芳香族複素環基又は縮合芳香族複素環基を意味する。例えば、フリル基(例えば、2-フリル基又は3-フリル基)、チエニル基(例えば、2-チエニル基又は3-チエニル基)、ピリジル基(例えば、2-ピリジル基、3-ピリジル基又は4-ピリジル基)、ピリミジニル基(例えば、2-ピリミジニル基、4-ピリミジニル基、5-ピリミジニル基又は6-ピリミジニル基)、ピロリル基(例えば、1-ピロリル基、2-ピロリル基又は3-ピロリル基)、イミダゾリル基(例えば、1-イミダゾリル基、2-イミダゾリル基、4-イミダゾリル基又は5-イミダゾリル基)、ピラゾリル基(例えば、1-ピラゾリル基、3-ピラゾリル基又は4-ピラゾリル基)、チアゾリル基(例えば、2-チアゾリル基、4-チアゾリル基又は5-チアゾリル基)、イソチアゾリル基(例えば、3-イソチアゾリル基、4-イソチアゾリル基又は5-イソチアゾリル基)、オキサゾリル基(例えば、2-オキサゾリル基、4-オキサゾリル基又は5-オキサゾリル基)、イソオキサゾリル基(例えば、3-イソオキサゾリル基、4-イソオキサゾリル基又は5-イソオキサゾリル基)、オキサジアゾリル基(例えば、1,2,4-オキサジアゾール-5-イル基又は1,3,4-オキサジアゾール-2-イル基)、チアジアゾリル基(例えば、1,3,4-チアジアゾール-2-イル基)、トリアゾリル(例えば、1,2,4-トリアゾール-1-イル基、1,2,4-トリアゾール-3-イル基、1,2,3-トリアゾール-1-イル基、1,2,3-トリアゾール-2-イル基又は1,2,3-トリアゾール-4-イル基)、テトラゾリル基(例えば、テトラゾール-1-イル基又はテトラゾール-5-イル基)、トリアジニル基(例えば、1,2,4-トリアジン-1-イル基又は1,2,4-トリアジン-3-イル基)、キノリル基(例えば、2-キノリル基、3-キノリル基、4-キノリル基又は6-キノリル基)、イソキノリル基(例えば、3-イソキノリル基)、キナゾリル基(例えば、2-キナゾリル基又は4-キナゾリル基)、ベンゾフリル基(例えば、2-ベンゾフリル基又は3-ベンゾフリル基)、ベンゾチエニル基(例えば、2-ベンゾチエニル基又は3-ベンゾチエニル基)、ベンズオキサゾリル基(例えば、2-ベンズオキサゾリル基)、ベンゾチアゾリル基(例えば、2-ベンゾチアゾリル基)、ベンズイミダゾリル基(例えば、ベンズイミダゾール-1-イル基、ベンズイミダゾール-2-イル基又はベンズイミダゾール-5-イル基)、インドリル基(例えば、インドール-1-イル基、インドール-2-イル基、インドール-3-イル基又はインドール-5-イル基)、インダゾリル基(例えば、1H-インダゾール-3-イル基)、ピロロピラジニル基(例えば、1H-ピロロ[2,3-b]ピラジン-2-イル基又は1H-ピロロ[2,3-b]ピラジン-6-イル基)、イミダゾピリジル基(例えば、1H-イミダゾ[4,5-b]ピリジン-2-イル基、1H-イミダゾ[4,5-c]ピリジン-2-イル基又は2H-イミダゾ[1,2-a]ピリジン-3-イル基)、イミダゾピラジニル基(例えば、1H-イミダゾ[4,5-b]ピラジン-2-イル基)、ピラゾロピリジル基(例えば、1H-ピラゾロ[4,3-c]ピリジン-3-イル基)、ピラゾロチエニル基(例えば、2H-ピラゾロ[3,4-b]チオフェン-2-イル基)、クロロフリル基(例えば、3-クロロフラン-2-イル基、4-クロロフラン-2-イル基又は5-クロロフラン-2-イル基)、クロロチエニル基(例えば、3-クロロチオフェン-2-イル基、4-クロロチオフェン-2-イル基、5-クロロチオフェン-2-イル基)、フルオロピリジル基(例えば、3-フルオロピリジン-2-イル基、4-フルオロピリジン-2-イル基、5-フルオロピリジン-2-イル基又は6-フルオロピリジン-2-イル基)、クロロピリジル基(例えば、3-クロロピリジン-2-イル基)、クロロピリミジニル基(例えば、2-クロロピリミジン-4-イル基)又はクロロキノリル基(例えば、3-クロロキノリン-2-イル基)などが挙げられる。
 「1個の水素原子が炭素数1~3のアルコキシ基で置換されていてもよいフェニル基」とは、フェニル基、2-メトキシフェニル基、3-メトキシフェニル基、4-メトキシフェニル基、2-エトキシフェニル基、3-エトキシフェニル基、4-エトキシフェニル基、2-プロポキシフェニル基、3-プロポキシフェニル基、4-プロポキシフェニル基、2-イソプロポキシフェニル基、3-イソプロポキシフェニル基又は4-イソプロポキシフェニル基を意味する。
 「5員環へテロアリール基」とは、環構成原子として窒素原子、酸素原子及び酸化されていてもよい硫黄原子から選ばれるヘテロ原子を1個~4個含有する、5員環芳香族複素環基を意味する。例えば、フリル基(例えば、2-フリル基又は3-フリル基)、チエニル基(例えば、2-チエニル基又は3-チエニル基)、ピロリル基(例えば、1-ピロリル基、2-ピロリル基又は3-ピロリル基)、イミダゾリル基(例えば、1-イミダゾリル基、2-イミダゾリル基、4-イミダゾリル基又は5-イミダゾリル基)、ピラゾリル基(例えば、1-ピラゾリル基、3-ピラゾリル基又は4-ピラゾリル基)、チアゾリル基(例えば、2-チアゾリル基、4-チアゾリル基又は5-チアゾリル基)、イソチアゾリル基(例えば、3-イソチアゾリル基、4-イソチアゾリル基又は5-イソチアゾリル基)、オキサゾリル基(例えば、2-オキサゾリル基、4-オキサゾリル基又は5-オキサゾリル基)、イソオキサゾリル基(例えば、3-イソオキサゾリル基、4-イソオキサゾリル基又は5-イソオキサゾリル基)、オキサジアゾリル基(例えば、1,2,4-オキサジアゾール-5-イル基又は1,3,4-オキサジアゾール-2-イル基)、チアジアゾリル基(例えば、1,3,4-チアジアゾール-2-イル基)、トリアゾリル(例えば、1,2,4-トリアゾール-1-イル基、1,2,4-トリアゾール-3-イル基、1,2,3-トリアゾール-1-イル基、1,2,3-トリアゾール-2-イル基又は1,2,3-トリアゾール-4-イル基)、テトラゾリル基(例えば、テトラゾール-1-イル基又はテトラゾール-5-イル基)が挙げられる。
 上記の一般式(I)で示されるグアニジン誘導体において、Rは、塩素原子、メチル基、メトキシ基、メチルチオ基、メトキシカルボニル基又はヒドロキシ基であることが好ましく、塩素原子、メトキシ基又はメトキシカルボニル基であることがさらに好ましい。
 Rは、フッ素原子、塩素原子、メチル基、メトキシ基又はシアノ基であることが好ましく、塩素原子、メトキシ基又シアノ基であることがより好ましい。
 Rは、水素原子又はフッ素原子であることが好ましく、水素原子であることがより好ましい。
 Rは、水素原子、フッ素原子、メトキシ基又はヒドロキシ基であることが好ましく、水素原子であることがより好ましい。
 Aは、S(=O)であることが好ましい。
 Rは、1個の水素原子が炭素数1~3のアルコキシ基で置換されていてもよいフェニル基又は5員環ヘテロアリール基であることが好ましく、フェニル基、3-メトキシフェニル基、2-チエニル基又は2-フリル基であることがより好ましい。
 Rは、水素原子又はメチル基であることが好ましく、水素原子であることがより好ましい。
 上記の一般式(I)で示されるグアニジン誘導体の好ましい化合物の具体例を表1-1及び表1-2に示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表1-1及び表1-2に記載される化合物は、その薬理学的に許容される塩も包含する。
 上記の一般式(I)で示されるグアニジン誘導体は、光学異性体又はジアステレオマーが存在する場合があるが、上記の一般式(I)で示されるグアニジン誘導体は、単一異性体のみならず、ラセミ体及びジアステレオマー混合物も包含する。
 また、上記の一般式(I)で示されるグアニジン誘導体には、置換基の種類によっては他の互変異性体や幾何異性体が存在する場合もある。本明細書中、それらの異性体の一形態のみで記載することがあるが、本発明にはこれらの異性体も包含し、異性体の分離したもの、あるいは混合物も包含する。例えば、上記の一般式(I)で示されるグアニジン誘導体のグアニジン部位においては、以下のスキーム1に示す、二重結合の位置が異なる3つの異性体が存在しうる。更に、各々の異性体において、二重結合の幾何配置に基づくE-異性体及びZ-異性体が存在しうる。本発明は、これらの全ての異性体を包含する。
Figure JPOXMLDOC01-appb-C000006
(式中の構造は、上記の一般式(I)で示されるグアニジン誘導体のグアニジン部位を部分的に表記したものである。波線で記載した結合はE体、Z体いずれの配置も取りうることを示す。)
 また、本発明は、上記の一般式(I)で示されるグアニジン誘導体のプロドラッグが含まれる。上記の一般式(I)で示されるグアニジン誘導体のプロドラッグとは、生体内で酵素的又は化学的に、上記の一般式(I)で示されるグアニジン誘導体に変換される化合物である。上記の一般式(I)で示されるグアニジン誘導体のプロドラッグの活性本体は、上記の一般式(I)で示されるグアニジン誘導体であるが、上記の一般式(I)で示されるグアニジン誘導体のプロドラッグそのものが活性を有していてもよい。
 上記の一般式(I)で示されるグアニジン誘導体のプロドラッグを形成する基としては、公知文献(例えば、「医薬品の開発」、広川書店、1990年、第7巻、p.163―198及びProgress in Medicine、第5巻、1985年、p.2157―2161)に記載の基が挙げられる。
 上記の一般式(I)で示されるグアニジン誘導体の「薬理学的に許容される塩」としては、例えば、塩酸塩、硫酸塩、硝酸塩、臭化水素酸塩、ヨウ化水素酸塩若しくはリン酸塩等の無機酸塩又はシュウ酸塩、マロン酸塩、クエン酸塩、フマル酸塩、乳酸塩、リンゴ酸塩、コハク酸塩、酒石酸塩、酢酸塩、トリフルオロ酢酸塩、マレイン酸塩、グルコン酸塩、安息香酸塩、アスコルビン酸塩、グルタル酸塩、マンデル酸塩、フタル酸塩、メタンスルホン酸塩、エタンスルホン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩、カンファースルホン酸塩、アスパラギン酸塩、グルタミン酸塩若しくはケイ皮酸塩等の有機酸塩が挙げられるが、塩酸塩、硫酸塩、臭化水素酸塩、マレイン酸塩、安息香酸塩又はメタンスルホン酸塩が好ましい。
 上記の一般式(I)で示されるグアニジン誘導体は、結晶であってもよく、結晶形が単一であっても結晶形混合物であっても上記の一般式(I)で示されるグアニジン誘導体に包含される。
 上記の一般式(I)で示されるグアニジン誘導体は、薬学的に許容され得る共結晶又は共結晶塩であってもよい。ここで、共結晶又は共結晶塩とは、各々が異なる物理的特性(例えば、構造、融点、融解熱、吸湿性、溶解性又は安定性)を持つ、室温で二種又はそれ以上の独特な固体から構成される結晶性物質を意味する。共結晶又は共結晶塩は、公知の共結晶化法に従い製造することができる。
 上記の一般式(I)で示されるグアニジン誘導体又はその薬理学的に許容される塩は、無水物であってもよいし、水和物又は溶媒和物を形成してもよい。
 上記の一般式(I)で示されるグアニジン誘導体は、一つ以上の同位元素で標識されていてもよく、標識される同位元素としては、例えば、H、H、13C、14C、15N、15O、17O、18O及び/又は125Iが挙げられる。
 上記の一般式(I)で示されるグアニジン誘導体は、その基本骨格や置換基の種類に由来する特徴に基づいた適切な方法で製造することができる。なお、これらの化合物の製造に使用する出発物質と試薬は、一般に購入することができるか又は公知の方法で製造できる。
 上記の一般式(I)で示されるグアニジン誘導体並びにその製造に使用する中間体及び出発物質は、公知の手段によって単離精製することができる。単離精製のための公知の手段としては、例えば、溶媒抽出、再結晶又はクロマトグラフィーが挙げられる。
 上記の一般式(I)で示されるグアニジン誘導体が、光学異性体又は立体異性体を含有する場合には、公知の方法により、それぞれの異性体を単一化合物として得ることができる。公知の方法としては、例えば、結晶化、酵素分割又はキラルクロマトグラフィーが挙げられる。
 以下、本発明化合物の代表的な製造法を説明する。なお、以下のスキーム中の化合物は、塩を形成している場合も含み、このような塩としては、例えば、上記の一般式(I)で示されるグアニジン誘導体における塩と同様のものが用いられる。本発明の製造方法は以下に示した例には限定されない。
製造方法1
 上記の一般式(I)で示されるグアニジン誘導体(以下、グアニジン誘導体(I))において、R=Rであるグアニジン誘導体(I-a)、(I-b)又は(I-c)は、例えば、スキーム2に記載の方法により得ることができる。
Figure JPOXMLDOC01-appb-C000007
[式中、Halは、ハロゲン原子を表し、Lは、それぞれ独立して、脱離基を表し、その他の各記号は、上記の定義と同義である。]
 Lは、脱離基であり、例えば、フッ素原子、塩素原子、臭素原子若しくはヨウ素原子等のハロゲン原子、メチルチオ基、エチルチオ基若しくはドデシルチオ基等の炭素数1~12のアルキルチオ基、フェノキシ基等のアリールオキシ基、メタンスルホニルオキシ基、エタンスルホニルオキシ基若しくはトリフルオロメタンスルホニルオキシ基等のアルキルスルホニルオキシ基、トリフルオロメタンスルホニルアミノ基等のアルキルスルホニルアミノ基又はイミダゾール-1-イル基若しくはピラゾール-1-イル基等のアゾリル基が挙げられる。
(工程1-1)
 テルフェニル誘導体(IV-a)は、金属触媒及び塩基存在下、ジハロベンゼン誘導体(II)とフェニルボロン酸誘導体(III-a)とのカップリング反応により得ることができる。
 カップリング反応に用いるフェニルボロン酸誘導体(III-a)の量は、ジハロベンゼン誘導体(II)に対して1~20当量が好ましく、2~5当量がより好ましい。
 カップリング反応に用いる金属触媒としては、例えば、1,1’-ビス(ジフェニルホスフィノ)フェロセンジクロロパラジウム(II)ジクロロメタン付加物、塩化パラジウム(II)、酢酸パラジウム(II)、ビス(ジベンジリデンアセトン)パラジウム(0)、テトラキストリフェニルホスフィンパラジウム(0)又はジクロロビストリフェニルホスフィンパラジウム(0)が挙げられるが、1,1’-ビス(ジフェニルホスフィノ)フェロセンジクロロパラジウム(II)ジクロロメタン付加物又はテトラキストリフェニルホスフィンパラジウム(0)が好ましい。
 カップリング反応に用いる金属触媒の量は、ジハロベンゼン誘導体(II)に対して0.01~5当量が好ましく、0.025~0.5当量がより好ましい。
 カップリング反応は、さらに配位子を用いてもよい。用いる配位子としては、例えば、トリフェニルホスフィン、トリ-tert-ブチルホスフィン又は2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニルが挙げられる。
 カップリング反応に用いる塩基としては、例えば、トリエチルアミン若しくはN,N-ジイソプロピルエチルアミン等の有機塩基、炭酸ナトリウム、炭酸カリウム若しくは炭酸セシウム等の無機塩基、リチウムヘキサメチルジシラジド若しくはリチウムジイソプロピルアミド等のリチウムアミド、ナトリウムtert-ブトキシド若しくはカリウムtert-ブトキシド等の金属アルコキシド又はそれらの混合物が挙げられるが、炭酸ナトリウム、炭酸カリウム又は炭酸セシウム等の無機塩基が好ましい。
 カップリング反応に用いる塩基の量は、ジハロベンゼン誘導体(II)に対して1~20当量が好ましく、2~6当量がより好ましい。
 カップリング反応に用いる反応溶媒としては、用いる試薬の種類等に応じて適宜選択されるが、反応を阻害しないものであれば特に限定されず、例えば、テトラヒドロフラン、1,4-ジオキサン、エチレングリコールジメチルエーテル若しくはジメトキシエタン等のエーテル系溶媒、アセトニトリル若しくはプロピオニトリル等のニトリル系溶媒、ベンゼン若しくはトルエン等の芳香族炭化水素系溶媒、N,N-ジメチルホルムアミド(以下、DMF)、N,N-ジメチルアセトアミド(以下、DMA)若しくはジメチルスルホキシド(以下、DMSO)等の非プロトン性極性溶媒、水又はそれらの混合溶媒が挙げられるが、テトラヒドロフラン、1,4-ジオキサン、エチレングリコールジメチルエーテル若しくはジメトキシエタン等のエーテル系溶媒又はベンゼン若しくはトルエン等の芳香族炭化水素系溶媒が好ましい。
 カップリング反応の反応温度は、0~200℃が好ましく、50~150℃がより好ましい。
 カップリング反応の反応時間は、反応温度等の条件に応じて適宜選択されるが、1~30時間が好ましい。
 カップリング反応に用いるジハロベンゼン誘導体(II)及びフェニルボロン酸誘導体(III-a)は、購入することができるか又は公知の方法若しくはそれに準じた方法で製造することができる。
(工程1-2)
 テルフェニル誘導体(V-a)は、テルフェニル誘導体(IV-a)のハロゲン化反応により得ることができる。
 ハロゲン化反応に用いるハロゲン化剤としては、例えば、臭素、ヨウ素、N-ブロモスクシンイミド、N-クロロスクシンイミド又は1,3-ジブロモ-5,5-ジメチルヒダントインが挙げられるが、N-ブロモスクシンイミド又はN-クロロスクシンイミドが好ましい。
 ハロゲン化反応に用いるハロゲン化剤の量は、テルフェニル誘導体(IV-a)に対して0.5~1000当量が好ましく、0.8~100当量がより好ましい。
 ハロゲン化反応は、所望によりラジカル開始剤を用いてもよい。用いるラジカル開始剤としては、例えば、アゾビスイソブチロニトリル、過酸化ベンゾイル、tert-ブチルヒドロペルオキシド、クメンヒドロペルオキシド、トリエチルボラン又はジエチル亜鉛が挙げられるが、アゾビスイソブチロニトリル又は過酸化ベンゾイルが好ましい。
 ハロゲン化反応は、所望により反応溶媒を用いてもよい。用いる反応溶媒としては、用いる試薬の種類に応じて適宜選択されるが、反応を阻害しないものであれば特に限定されず、例えば、メタノール、エタノール、イソプロピルアルコール若しくはtert-ブチルアルコール等のアルコール系溶媒、ベンゼン若しくはフルオロベンゼン等の芳香族炭化水素系溶媒、四塩化炭素、クロロホルム若しくは1,2-ジクロロエタン等の塩素系溶媒又はそれらの混合溶媒が挙げられるが、四塩化炭素、クロロホルム若しくは1,2-ジクロロエタン等の塩素系溶媒が好ましい。
 ハロゲン化反応の反応温度は、-50℃~200℃が好ましく、0℃~150℃がより好ましい。
 ハロゲン化反応の反応時間は、反応条件によっても異なるが、1~30時間が好ましい。
(工程1-3)
 N-(テルフェニルメチル)フタルイミド誘導体(VI)は、テルフェニル誘導体(V-a)とフタルイミドカリウムとの置換反応により得ることができる。
 置換反応に用いるフタルイミドカリウムの量は、テルフェニル誘導体(V-a)に対して0.5~100当量が好ましく、0.8~10当量がより好ましい。
 置換反応に用いる反応溶媒としては、反応を阻害しないものであれば特に限定されず、例えば、メタノール、エタノール、イソプロピルアルコール若しくはtert-ブチルアルコール等のアルコール系溶媒、DMF、DMA若しくはDMSO等の非プロトン性極性溶媒、ジエチルエーテル、テトラヒドロフラン、ジメトキシエタン若しくは1,4-ジオキサン等のエーテル系溶媒、トルエン若しくはキシレン等の芳香族炭化水素系溶媒又はそれらの混合溶媒が挙げられるが、DMF、DMA又はDMSO等の非プロトン性極性溶媒が好ましい。
 置換反応の反応温度は、-30℃~300℃が好ましく、0℃~150℃がより好ましい。
 置換反応の反応時間は、反応条件によっても異なるが、1~30時間が好ましい。
(工程1-4)
 テルフェニルメチルアミン誘導体(VII-a)は、ヒドラジン一水和物存在下、N-(テルフェニルメチル)フタルイミド誘導体(VI)の脱保護反応により得ることができる。
 脱保護反応に用いるヒドラジン一水和物の量は、N-(テルフェニルメチル)フタルイミド誘導体(VI)に対して0.5~100当量が好ましく、0.8~10当量がより好ましい。
 脱保護反応に用いる反応溶媒としては、反応を阻害しないものであれば特に限定されず、例えば、メタノール、エタノール、イソプロピルアルコール若しくはtert-ブチルアルコール等のアルコール系溶媒、DMF、DMA若しくはDMSO等の非プロトン性極性溶媒、ジエチルエーテル、テトラヒドロフラン、ジメトキシエタン若しくは1,4-ジオキサン等のエーテル系溶媒、トルエン若しくはキシレン等の芳香族炭化水素系溶媒又はそれらの混合溶媒が挙げられるが、メタノール、エタノール、イソプロピルアルコール又はtert-ブチルアルコール等のアルコール系溶媒が好ましい。
 脱保護反応の反応温度は、-30℃~300℃が好ましく、0℃~150℃がより好ましい。
 脱保護反応の反応時間は、反応条件によっても異なるが、1~30時間が好ましい。
(工程1-5)
 テルフェニルメチルアジド誘導体(VIII-a)は、テルフェニル誘導体(V-a)とアジ化ナトリウムとの置換反応により得ることができる。
 置換反応に用いるアジ化ナトリウムの量は、テルフェニル誘導体(V-a)に対して0.5~100当量が好ましく、0.8~10当量がより好ましい。
 置換反応に用いる反応溶媒としては、反応を阻害しないものであれば特に限定されず、例えば、メタノール、エタノール、イソプロピルアルコール若しくはtert-ブチルアルコール等のアルコール系溶媒、DMF、DMA若しくはDMSO等の非プロトン性極性溶媒、ジエチルエーテル、テトラヒドロフラン、ジメトキシエタン若しくは1,4-ジオキサン等のエーテル系溶媒、トルエン若しくはキシレン等の芳香族炭化水素系溶媒又はそれらの混合溶媒が挙げられるが、DMA又はDMSO等の非プロトン性極性溶媒が好ましい。
 置換反応の反応温度は、-30℃~300℃が好ましく、0℃~150℃がより好ましい。
 置換反応の反応時間は、反応条件によっても異なるが、1~30時間が好ましい。
(工程1-6)
 テルフェニルメチルアミン誘導体(VII-a)は、テルフェニルメチルアジド誘導体(VIII-a)の還元反応により得ることができる。
 還元反応に用いる試薬としては、例えば、水素化アルミニウムリチウム、トリフェニルホスフィン又はトリブチルホスフィンが挙げられるが、トリフェニルホスフィンが好ましい。
 還元反応に用いる試薬の量は、テルフェニルメチルアジド誘導体(VIII-a)に対して0.25~100当量が好ましく、0.5~10当量がより好ましい。
 還元反応に用いる反応溶媒としては、用いる試薬の種類に応じて適宜選択されるが、反応を阻害しないものであれば特に限定されず、例えば、テトラヒドロフラン、1,4-ジオキサン、エチレングリコールジメチルエーテル若しくはジメトキシエタン等のエーテル系溶媒、ベンゼン若しくはトルエン等の芳香族炭化水素系溶媒、メタノール若しくはエタノール等のアルコール系溶媒、水又はそれらの混合溶媒が挙げられるが、テトラヒドロフラン、1,4-ジオキサン、エチレングリコールジメチルエーテル又はジメトキシエタン等のエーテル系溶媒と水との混合溶媒が好ましい。
 還元反応の反応温度は、0~200℃が好ましく、10~100℃がより好ましい。
 還元反応の反応時間は、反応条件によっても異なるが、1~30時間が好ましい。
(工程1-7)
 グアニジン誘導体(X-a)は、テルフェニルメチルアミン誘導体(VII-a)とグアニジノ化剤(IX)とのグアニジノ化反応により得ることができる。
 グアニジノ化反応に用いるグアニジノ化剤(IX)の量は、テルフェニルメチルアミン誘導体(VII-a)に対して0.5~10当量が好ましく、1~3当量がより好ましい。
 グアニジノ化反応は、所望により塩基を用いてもよい。用いる塩基としては、例えば、トリエチルアミン、N,N-ジイソプロピルエチルアミン若しくはピリジン等の有機塩基、炭酸水素ナトリウム若しくは炭酸カリウム等の無機塩基又はそれらの混合物が挙げられるが、トリエチルアミン、N,N-ジイソプロピルエチルアミン又はピリジン等の有機塩基が好ましい。
 グアニジノ化反応に用いる反応溶媒としては、用いる試薬の種類に応じて適宜選択されるが、反応を阻害しないものであれば特に限定されず、例えば、アセトニトリル若しくはプロピオニトリル等のニトリル系溶媒、DMF、DMA若しくはDMSO等の非プロトン性極性溶媒、ジエチルエーテル、テトラヒドロフラン、ジメトキシエタン若しくは1,4-ジオキサン等のエーテル系溶媒、酢酸エチル若しくは酢酸プロピル等のエステル系溶媒、ジクロロメタン、クロロホルム若しくは1,2-ジクロロエタン等の塩素系溶媒又はそれらの混合溶媒が挙げられるが、ジエチルエーテル、テトラヒドロフラン、ジメトキシエタン又は1,4-ジオキサン等のエーテル系溶媒が好ましい。
 グアニジノ化反応の反応温度は、0~300℃が好ましく、30~200℃がより好ましい。
 グアニジノ化反応の反応時間は、反応条件によっても異なるが、1~30時間が好ましい。
 グアニジノ化反応に用いるグアニジノ化剤(IX)は、購入することができるか又は公知の方法(例えば、Nikolaら、ChemMedChem、2011年、第6巻、1727-1738)若しくはそれに準じた方法で製造することができる。
(工程1-8)
 グアニジン誘導体(I-a)は、酸存在下、グアニジン誘導体(X-a)の脱保護反応により得ることができる。
 脱保護反応に用いる酸としては、例えば、塩酸、10重量%塩化水素/メタノール溶液、4mol/L塩化水素/酢酸エチル溶液、トリフルオロ酢酸又はフッ化水素酸が挙げられるが、4mol/L塩酸/酢酸エチル溶液又はトリフルオロ酢酸が好ましい。
 脱保護反応に用いる酸の量は、グアニジン誘導体(X-a)に対して0.5~1000当量が好ましく、1~100当量がより好ましい。
 脱保護反応に用いる反応溶媒としては、用いる試薬の種類等に応じて適宜選択されるが、反応を阻害しないものであれば特に限定されず、例えば、ジエチルエーテル、テトラヒドロフラン、ジメトキシエタン若しくは1,4-ジオキサン等のエーテル系溶媒、酢酸エチル若しくは酢酸プロピル等のエステル系溶媒、ジクロロメタン、クロロホルム若しくは1,2-ジクロロエタン等の塩素系溶媒、メタノール若しくはエタノール等のアルコール系溶媒又はそれらの混合溶媒が挙げられるが、酢酸エチル若しくは酢酸プロピル等のエステル系溶媒又はジクロロメタン、クロロホルム若しくは1,2-ジクロロエタン等の塩素系溶媒が好ましい。
 脱保護反応の反応温度は、-78℃~200℃が好ましく、-20℃~100℃がより好ましい。
 脱保護反応の反応時間は、反応条件によっても異なるが、1~50時間が好ましい。
(工程1-9)
 カルバムイミド酸誘導体(XII)は、テルフェニルメチルアミン誘導体(VII-a)とカルボンイミド酸誘導体(XI)とのカルバムイミド化反応により得ることができる。
 カルバムイミド化反応に用いるカルボンイミド酸誘導体(XI)の量は、テルフェニルメチルアミン誘導体(VII-a)に対して0.5~10当量が好ましく、1~3当量がより好ましい。
 カルバムイミド化反応は、所望により塩基を用いてもよい。用いる塩基としては、例えば、トリエチルアミン、N,N-ジイソプロピルエチルアミン若しくはピリジン等の有機塩基、炭酸水素ナトリウム若しくは炭酸カリウム等の無機塩基又はそれらの混合物が挙げられるが、トリエチルアミン、N,N-ジイソプロピルエチルアミン又はピリジン等の有機塩基が好ましい。
 カルバムイミド化反応に用いる反応溶媒としては、用いる試薬の種類に応じて適宜選択されるが、反応を阻害しないものであれば特に限定されず、例えば、アセトニトリル若しくはプロピオニトリル等のニトリル系溶媒、DMF、DMA若しくはDMSO等の非プロトン性極性溶媒、ジエチルエーテル、テトラヒドロフラン、ジメトキシエタン若しくは1,4-ジオキサン等のエーテル系溶媒、酢酸エチル若しくは酢酸プロピル等のエステル系溶媒、ジクロロメタン、クロロホルム若しくは1,2-ジクロロエタン等の塩素系溶媒又はそれらの混合溶媒が挙げられるが、ジエチルエーテル、テトラヒドロフラン、ジメトキシエタン又は1,4-ジオキサン等のエーテル系溶媒が好ましい。
 カルバムイミド化反応の反応温度は、0~300℃が好ましく、30~200℃がより好ましい。
 カルバムイミド化反応の反応時間は、反応条件によっても異なるが、1~30時間が好ましい。
 カルバムイミド化反応に用いるカルボンイミド酸誘導体(XI)は、購入することができるか又は公知の方法若しくはそれに準じた方法で製造することができる。
(工程1-10)
 グアニジン誘導体(I-b)は、カルバムイミド酸誘導体(XII)とアミン誘導体(XIII)とのグアニジノ化反応により得ることができる。
 グアニジノ化反応に用いるアミン誘導体(XIII)の量は、カルバムイミド酸誘導体(XII)に対して0.5~100当量が好ましく、1~20当量がより好ましい。
 グアニジノ化反応に用いる反応溶媒としては、用いる試薬の種類に応じて適宜選択されるが、反応を阻害しないものであれば特に限定されず、例えば、アセトニトリル若しくはプロピオニトリル等のニトリル系溶媒、DMF、DMA若しくはDMSO等の非プロトン性極性溶媒、ジエチルエーテル、テトラヒドロフラン、ジメトキシエタン若しくは1,4-ジオキサン等のエーテル系溶媒、酢酸エチル若しくは酢酸プロピル等のエステル系溶媒、ジクロロメタン、クロロホルム若しくは1,2-ジクロロエタン等の塩素系溶媒又はそれらの混合溶媒が挙げられるが、アセトニトリル又はプロピオニトリル等のニトリル系溶媒が好ましい。
 グアニジノ化反応の反応温度は、0~300℃が好ましく、30~200℃がより好ましい。
 グアニジノ化反応の反応時間は、反応条件によっても異なるが、1~30時間が好ましい。
 グアニジノ化反応に用いるアミン誘導体(XIII)は、購入することができるか又は公知の方法若しくはそれに準じた方法で製造することができる。
(工程1-11)
 グアニジン誘導体(XV)は、テルフェニルメチルアミン誘導体(VII-a)とグアニジノ化剤(XIV)とのグアニジノ化反応により得ることができる。
 グアニジノ化反応に用いるグアニジノ化剤(XIV)の量は、テルフェニルメチルアミン誘導体(VII-a)に対して0.5~10当量が好ましく、1~3当量がより好ましい。
 グアニジノ化反応は、所望により塩基を用いてもよい。用いる塩基としては、例えば、トリエチルアミン、N,N-ジイソプロピルエチルアミン若しくはピリジン等の有機塩基、炭酸水素ナトリウム若しくは炭酸カリウム等の無機塩基又はそれらの混合物が挙げられるが、トリエチルアミン、N,N-ジイソプロピルエチルアミン又はピリジン等の有機塩基が好ましい。
 グアニジノ化反応に用いる反応溶媒としては、用いる試薬の種類に応じて適宜選択されるが、反応を阻害しないものであれば特に限定されず、例えば、アセトニトリル若しくはプロピオニトリル等のニトリル系溶媒、DMF、DMA若しくはDMSO等の非プロトン性極性溶媒、ジエチルエーテル、テトラヒドロフラン、ジメトキシエタン若しくは1,4-ジオキサン等のエーテル系溶媒、酢酸エチル若しくは酢酸プロピル等のエステル系溶媒、ジクロロメタン、クロロホルム若しくは1,2-ジクロロエタン等の塩素系溶媒又はそれらの混合溶媒が挙げられるが、ジエチルエーテル、テトラヒドロフラン、ジメトキシエタン又は1,4-ジオキサン等のエーテル系溶媒が好ましい。
 グアニジノ化反応の反応温度は、0~300℃が好ましく、30~200℃がより好ましい。
 グアニジノ化反応の反応時間は、反応条件によっても異なるが、1~30時間が好ましい。
 グアニジノ化反応に用いるグアニジノ化剤(XIV)は、購入することができるか又は公知の方法若しくはそれに準じた方法で製造することができる。
(工程1-12)
 グアニジン誘導体(XVI)は、酸存在下、グアニジン誘導体(XV)の脱保護反応により得ることができる。本工程における、試薬、試薬の量、反応溶媒、反応温度及び反応時間の条件は、工程1-8と同様である。
(工程1-13)
 グアニジン誘導体(I-c)は、グアニジン誘導体(XVI)とアシル化剤(XVII)とのアシル化反応により得ることができる。
 アシル化反応に用いるアシル化剤(XVII)の量は、グアニジン誘導体(XVI)に対して0.5~10当量が好ましく、1~3当量がより好ましい。
 アシル化反応は、所望により塩基を用いてもよい。用いる塩基としては、例えば、トリエチルアミン、N,N-ジイソプロピルエチルアミン若しくはピリジン等の有機塩基、水酸化ナトリウム、水酸化カリウム若しくは水酸化リチウム等のアルカリ金属の水酸化物、炭酸水素ナトリウム若しくは炭酸水素カリウム等のアルカリ金属炭酸水素塩、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩又はそれらの混合物が挙げられるが、水酸化ナトリウム、水酸化カリウム又は水酸化リチウム等のアルカリ金属の水酸化物が好ましい。
 アシル化反応に用いる反応溶媒としては、用いる試薬の種類に応じて適宜選択されるが、反応を阻害しないものであれば特に限定されず、例えば、アセトニトリル若しくはプロピオニトリル等のニトリル系溶媒、DMF、DMA若しくはDMSO等の非プロトン性極性溶媒、ジエチルエーテル、テトラヒドロフラン、ジメトキシエタン若しくは1,4-ジオキサン等のエーテル系溶媒、酢酸エチル若しくは酢酸プロピル等のエステル系溶媒、アセトン若しくはメチルエチルケトン等のケトン系溶媒、水又はそれらの混合溶媒が挙げられるが、ジエチルエーテル、テトラヒドロフラン、ジメトキシエタン又は1,4-ジオキサン等のエーテル系溶媒と水の混合溶媒が好ましい。
 アシル化反応の反応温度は、-78℃~100℃が好ましく、-20℃~50℃がより好ましい。
 アシル化反応の反応時間は、反応条件によっても異なるが、1~30時間が好ましい。
 アシル化反応に用いるアシル化剤(XVII)は、購入することができるか又は公知の方法若しくはそれに準じた方法で製造することができる。
製造方法2
 グアニジン誘導体(I)において、R=Hであるグアニジン誘導体(I-d)は、例えば、スキーム3に記載の方法により得ることができる。
Figure JPOXMLDOC01-appb-C000008
[式中、各記号は、上記の定義と同義である。]
(工程2-1)
 ビフェニルアニリン誘導体(XIX)は、金属触媒及び塩基存在下、アニリン誘導体(XVIII)とフェニルボロン酸誘導体(III-b)とのカップリング反応により得ることができる。
 カップリング反応に用いるフェニルボロン酸誘導体(III-b)の量は、アニリン誘導体(XVIII)に対して0.5~10当量が好ましく、1~3当量がより好ましい。
 カップリング反応に用いる金属触媒としては、例えば、1,1’-ビス(ジフェニルホスフィノ)フェロセンジクロロパラジウム(II)ジクロロメタン付加物、塩化パラジウム(II)、酢酸パラジウム(II)、ビス(ジベンジリデンアセトン)パラジウム(0)、テトラキストリフェニルホスフィンパラジウム(0)又はジクロロビストリフェニルホスフィンパラジウム(0)が挙げられるが、1,1’-ビス(ジフェニルホスフィノ)フェロセンジクロロパラジウム(II)ジクロロメタン付加物又はテトラキストリフェニルホスフィンパラジウム(0)が好ましい。
 カップリング反応に用いる金属触媒の量は、アニリン誘導体(XVIII)に対して0.01~2.5当量が好ましく、0.025~0.5当量がより好ましい。
 カップリング反応は、さらに配位子を用いてもよい。用いる配位子としては、例えば、トリフェニルホスフィン又はトリ-tert-ブチルホスフィンが挙げられる。
 カップリング反応に用いる塩基としては、例えば、トリエチルアミン若しくはN,N-ジイソプロピルエチルアミン等の有機塩基、炭酸ナトリウム、炭酸カリウム若しくは炭酸セシウム等の無機塩基、リチウムヘキサメチルジシラジド若しくはリチウムジイソプロピルアミド等のリチウムアミド、ナトリウムtert-ブトキシド若しくはカリウムtert-ブトキシド等の金属アルコキシド又はそれらの混合物が挙げられるが、炭酸ナトリウム、炭酸カリウム又は炭酸セシウム等の無機塩基が好ましい。
 カップリング反応に用いる塩基の量は、アニリン誘導体(XVIII)に対して0.5~20当量が好ましく、1~3当量がより好ましい。
 カップリング反応に用いる反応溶媒としては、用いる試薬の種類等に応じて適宜選択されるが、反応を阻害しないものであれば特に限定されず、例えば、テトラヒドロフラン、1,4-ジオキサン、エチレングリコールジメチルエーテル若しくはジメトキシエタン等のエーテル系溶媒、アセトニトリル若しくはプロピオニトリル等のニトリル系溶媒、ベンゼン若しくはトルエン等の芳香族炭化水素系溶媒、DMF、DMA若しくはDMSO等の非プロトン性極性溶媒、水又はそれらの混合溶媒が挙げられるが、テトラヒドロフラン、1,4-ジオキサン、エチレングリコールジメチルエーテル若しくはジメトキシエタン等のエーテル系溶媒と水の混合溶媒が好ましい。
 カップリング反応の反応温度は、0~200℃が好ましく、50~150℃がより好ましい。
 カップリング反応の反応時間は、反応温度等の条件に応じて適宜選択されるが、1~30時間が好ましい。
 カップリング反応に用いるアニリン誘導体(XVIII)及びフェニルボロン酸誘導体(III-b)は、購入することができるか又は公知の方法若しくはそれに準じた方法で製造することができる。
(工程2-2)
 ビフェニル誘導体(XX)は、ビフェニルアニリン誘導体(XIX)のザンドマイヤー反応により得ることができる。
 ザンドマイヤー反応に用いるジアゾニウム化試薬としては、例えば、亜硝酸ナトリウム、亜硝酸tert-ブチル又は亜硝酸アミルなどが挙げられる。
 ザンドマイヤー反応に用いるジアゾニウム化試薬の量は、ビフェニルアニリン誘導体(XIX)に対して0.5~1000当量が好ましく、0.8~100当量がより好ましい。
 ザンドマイヤー反応に用いるハロゲン化剤としては、例えば、ヨウ化カリウム、ヨウ化銅(I)、臭化銅(I)又は塩化銅(I)などが挙げられる。
 ザンドマイヤー反応に用いるハロゲン化剤の量は、ビフェニルアニリン誘導体(XIX)に対して0.5~1000当量が好ましく、0.8~100当量がより好ましい。
 ザンドマイヤー反応は、所望により酸を用いてもよい。用いる酸としては、例えば、塩酸、臭化水素酸又はテトラフルオロホウ酸が挙げられる。
 ザンドマイヤー反応は、所望により反応溶媒を用いてもよい。用いる反応溶媒としては、用いる試薬の種類に応じて適宜選択されるが、反応を阻害しないものであれば特に限定されず、例えば、テトラヒドロフラン、1,4-ジオキサン、エチレングリコールジメチルエーテル若しくはジメトキシエタン等のエーテル系溶媒、アセトニトリル若しくはプロピオニトリル等のニトリル系溶媒、DMF、DMA若しくはDMSO等の非プロトン性極性溶媒、水又はそれらの混合溶媒が挙げられるが、アセトニトリル若しくはプロピオニトリル等のニトリル系溶媒又は水が好ましい。
 ザンドマイヤー反応の反応温度は、-50℃~200℃が好ましく、-20℃~100℃がより好ましい。
 ザンドマイヤー反応の反応時間は、反応条件によっても異なるが、1~30時間が好ましい。
(工程2-3)
 ビフェニル誘導体(XXI)は、ビフェニル誘導体(XX)のハロゲン化反応により得ることができる。本工程における、試薬、試薬の量、反応溶媒、反応温度及び反応時間の条件は、工程1-2と同様である。
(工程2-4)
 ビフェニルメチルアジド誘導体(XXIV)は、ビフェニル誘導体(XXI)とアジ化ナトリウムとの置換反応により得ることができる。本工程における、試薬の量、反応溶媒、反応温度及び反応時間の条件は、工程1-5と同様である。
(工程2-5)
 ビフェニルメチルアルコール誘導体(XXIII)は、金属触媒及び塩基存在下、ベンジルアルコール誘導体(XXII)とフェニルボロン酸誘導体(III-b)とのカップリング反応により得ることができる。本工程における、試薬、試薬の量、反応溶媒、反応温度及び反応時間の条件は、工程2-1と同様である。
 カップリング反応に用いるベンジルアルコール誘導体(XXII)は、購入することができるか又は公知の方法若しくはそれに準じた方法で製造することができる。
(工程2-6)
 ビフェニルメチルアジド誘導体(XXIV)は、ジアザビシクロウンデセン存在下、ビフェニルメチルアルコール誘導体(XXIII)とジフェニルリン酸アジド又はビス(p-ニトロフェニル)リン酸アジドとのアジド化反応により得ることができる。
 アジド化反応に用いるジアザビシクロウンデセンの量は、ビフェニルメチルアルコール誘導体(XXIII)に対して0.5~10当量が好ましく、2~5当量がより好ましい。
 アジド化反応に用いるジフェニルリン酸アジド又はビス(p-ニトロフェニル)リン酸アジドの量は、ビフェニルメチルアルコール誘導体(XXIII)に対して0.5~10当量が好ましく、2~5当量がより好ましい。
 アジド化反応に用いる反応溶媒としては、用いる試薬の種類等に応じて適宜選択されるが、反応を阻害しないものであれば特に限定されず、例えば、テトラヒドロフラン、1,4-ジオキサン、エチレングリコールジメチルエーテル若しくはジメトキシエタン等のエーテル系溶媒、ベンゼン若しくはトルエン等の芳香族炭化水素系溶媒又はそれらの混合溶媒が挙げられるが、ベンゼン又はトルエン等の芳香族炭化水素系溶媒が好ましい。
 アジド化反応の反応温度は、0~200℃が好ましく、20~100℃がより好ましい。
 アジド化反応の反応時間は、反応温度等の条件に応じて適宜選択されるが、1~30時間が好ましい。
(工程2-7)
 ビフェニルメチルアミン誘導体(XXV-a)は、ビフェニルメチルアジド誘導体(XXIV)の還元反応により得ることができる。本工程における、試薬、試薬の量、反応溶媒、反応温度及び反応時間の条件は、工程1-6と同様である。
(工程2-8)
 グアニジン誘導体(XXVI-a)は、ビフェニルメチルアミン誘導体(XXV-a)とグアニジノ化剤(IX)とのグアニジノ化反応により得ることができる。本工程における、試薬の量、反応溶媒、反応温度及び反応時間の条件は、工程1-7と同様である。
(工程2-9)
 グアニジン誘導体(XXVII-a)は、酸存在下、グアニジン誘導体(XXVI-a)の脱保護反応により得ることができる。本工程における、試薬、試薬の量、反応溶媒、反応温度及び反応時間の条件は、工程1-8と同様である。
(工程2-10)
 グアニジン誘導体(I-d)は、金属触媒及び塩基存在下、グアニジン誘導体(XXVII-a)とフェニルボロン酸誘導体(III-a)とのカップリング反応により得ることができる。フェニルボロン酸誘導体(III-b)の代わりにフェニルボロン酸誘導体(III-a)を用いる以外は、工程2-1と同様の方法である。
製造方法3
 グアニジン誘導体(I)において、R=Hであるグアニジン誘導体(I-e)は、例えば、スキーム4に記載の方法により得ることができる。
Figure JPOXMLDOC01-appb-C000009
[式中、各記号は、上記の定義と同義である。]
(工程3-1)
 ビフェニルアニリン誘導体(XXIX)は、金属触媒及び塩基存在下、ハロアニリン誘導体(XXVIII)とフェニルボロン酸誘導体(III-a)とのカップリング反応により得ることができる。フェニルボロン酸誘導体(III-b)の代わりにフェニルボロン酸誘導体(III-a)を用いる以外は、工程2-1と同様の方法である。
 カップリング反応に用いるハロアニリン誘導体(XXVIII)は、購入することができるか又は公知の方法若しくはそれに準じた方法で製造することができる。
(工程3-2)
 ビフェニルニトリル誘導体(XXX)は、ビフェニルアニリン誘導体(XXIX)のザンドマイヤー反応により得ることができる。本工程における、試薬、試薬の量、反応溶媒、反応温度及び反応時間の条件は、工程2-2と同様である。
(工程3-3)
 ビフェニルメチルアミン誘導体(XXV-b)は、ビフェニルニトリル誘導体(XXX)の還元反応により得ることができる。
 還元反応に用いる試薬としては、例えば、水素化アルミニウムリチウム、ボランテトラヒドロフラン錯体、塩化コバルト(II)六水和物と水素化ホウ素ナトリウムの組み合わせ又は塩化ニッケルと水素化ホウ素ナトリウムの組み合わせが挙げられる。
 還元反応に用いる試薬の量は、ビフェニルニトリル誘導体(XXX)に対して0.25~100当量が好ましく、0.5~10当量がより好ましい。
 還元反応に用いる反応溶媒としては、用いる試薬の種類に応じて適宜選択されるが、反応を阻害しないものであれば特に限定されず、例えば、テトラヒドロフラン、1,4-ジオキサン、エチレングリコールジメチルエーテル若しくはジメトキシエタン等のエーテル系溶媒、ベンゼン若しくはトルエン等の芳香族炭化水素系溶媒、メタノール若しくはエタノール等のアルコール系溶媒、水又はそれらの混合溶媒が挙げられるが、テトラヒドロフラン、1,4-ジオキサン、エチレングリコールジメチルエーテル若しくはジメトキシエタン等のエーテル系溶媒又はメタノール若しくはエタノール等のアルコール系溶媒が好ましい。
 還元反応の反応温度は、-78℃~100℃が好ましく、-30℃~50℃がより好ましい。
 還元反応の反応時間は、反応条件によっても異なるが、10分間~10時間が好ましい。
(工程3-4)
 グアニジン誘導体(XXVI-b)は、ビフェニルメチルアミン誘導体(XXV-b)とグアニジノ化剤(IX)とのグアニジノ化反応により得ることができる。本工程における、試薬の量、反応溶媒、反応温度及び反応時間の条件は、工程1-7と同様である。
(工程3-5)
 グアニジン誘導体(XXVII-b)は、酸存在下、グアニジン誘導体(XXVI-b)の脱保護反応により得ることができる。本工程における、試薬、試薬の量、反応溶媒、反応温度及び反応時間の条件は、工程1-8と同様である。
(工程3-6)
 グアニジン誘導体(I-e)は、金属触媒及び塩基存在下、グアニジン誘導体(XXVII-b)とフェニルボロン酸誘導体(III-b)とのカップリング反応により得ることができる。本工程における、試薬、試薬の量、反応溶媒、反応温度及び反応時間の条件は、工程2-1と同様である。
(工程3-7)
 テルフェニルニトリル誘導体(XXXI)は、金属触媒及び塩基存在下、ビフェニルニトリル誘導体(XXX)とフェニルボロン酸誘導体(III-b)とのカップリング反応により得ることができる。本工程における、試薬、試薬の量、反応溶媒、反応温度及び反応時間の条件は、工程2-1と同様である。
(工程3-8)
 テルフェニルメチルアミン誘導体(VII-b)は、テルフェニルニトリル誘導体(XXXI)の還元反応により得ることができる。本工程における、試薬、試薬の量、反応溶媒、反応温度及び反応時間の条件は、工程3-3と同様である。
(工程3-9)
 グアニジン誘導体(X-b)は、テルフェニルメチルアミン誘導体(VII-b)とグアニジノ化剤(IX)とのグアニジノ化反応により得ることができる。本工程における、試薬の量、反応溶媒、反応温度及び反応時間の条件は、工程1-7と同様である。
(工程3-10)
 グアニジン誘導体(I-e)は、酸存在下、グアニジン誘導体(X-b)の脱保護反応により得ることができる。本工程における、試薬、試薬の量、反応溶媒、反応温度及び反応時間の条件は、工程1-8と同様である。
 本発明の医薬及びMALT1阻害剤は、グアニジン誘導体(I)又はその薬理学的に許容される塩を有効成分として含有することを特徴としている。
 「MALT1阻害」とは、MALT1のプロテアーゼ活性を阻害することを意味する。
 「MALT1阻害剤」とは、MALT1のプロテアーゼ活性を阻害して、その活性を消失又は減弱する作用を有する化合物を意味する。
 「自己免疫疾患」とは、免疫系が自身の正常な細胞や組織に対してまで過剰に反応し攻撃を加えてしまうことで症状を来す疾患の総称であり、例えば、乾癬、多発性硬化症、リウマチ、炎症性腸疾患、全身性エリテマトーデス、強直性脊椎炎、ぶどう膜炎又はリウマチ性多発性筋痛症が挙げられる。
 「乾癬」とは、免疫細胞の浸潤及び活性化とそれに伴う表皮肥厚を伴う皮膚の炎症性疾患である。典型的には、全身の色々な場所で赤い発疹の上に白色の鱗屑が厚く付着し、それがはがれ落ちる落屑という症状が起こる。乾癬としては、例えば、尋常性乾癬、膿庖性乾癬、関節症性乾癬、滴状乾癬、乾癬性紅皮症が挙げられる。
 グアニジン誘導体(I)又はその薬理学的に許容される塩は、MALT1のプロテアーゼ活性、すなわち、基質切断活性を阻害することにより、MALT1の機能を抑制することを特徴としている。したがって、グアニジン誘導体(I)又はその薬理学的に許容される塩は、MALT1のプロテアーゼ活性を阻害することによって病態の改善又は症状の寛解が期待できる疾患に対する医薬、特に、自己免疫疾患の治療剤又は予防剤として用いることができ、乾癬の治療剤又は予防剤として好適に用いることができる。
 グアニジン誘導体(I)又はその薬理学的に許容される塩が、MALT1のプロテアーゼ活性を阻害する作用を有することは、in vitro試験を用いて評価できる。in vitro試験としては、例えば、MALT1による基質(例えば、BCL10タンパク質)の切断を評価する方法(Cancer Cell、2012年、第22巻、p.825―837)が挙げられる。また、MALT1のプロテアーゼ活性を阻害することによって引き起こされるNF-κB転写活性阻害作用は、レポータージーンアッセイを用いて評価することができる(国際公開第2009/065897号)。
 グアニジン誘導体(I)又はその薬理学的に許容される塩が、MALT1の機能を抑制することは、リンパ球細胞株(例えば、Jurkat T cell)を用いて、IL-2(インターロイキン-2)の産生量を指標に評価することができる。IL-2産生を指標にした方法としては、例えば、Jurkat T cellを、Phorbol 12-myristate 13-acetateとIonomycinとで共刺激すること、又は、CD3とCD28とで共刺激することによって、MALT1依存的に誘発されるIL-2産生を測定する方法が挙げられる(Cancer Cell、2012年、第22巻、p.825―837)。
 グアニジン誘導体(I)又はその薬理学的に許容される塩が、自己免疫疾患の治療又は予防に有効であることは、病態モデルを用いて評価できる。病態モデルとしては、例えば、イミキモド誘発乾癬モデル(The Journal of Dermatological Science、2013年、第71巻、第1号、p.29―36)、実験的自己免疫性脳脊髄炎モデル(Journal of Neuroscience Research、2006年、第84巻、p.1225―1234)、コラーゲン関節炎モデル(Annual Review of Immunology、1984年、第2巻、p.199―218)、デキストラン硫酸ナトリウム誘発大腸炎モデル(Laboratory Investigation、1993年、第69巻、p.238―249)、全身性エリテマトーデスの自然発症モデル(Nature、2000年、第404巻、p.995―999)、強直性脊椎炎モデル(Arthritis Research & Therapy、2012年、第14巻、p.253―265)又は実験的自己免疫性ぶどう膜炎モデル(Journal of Immunology、2006年、第36巻、p.3071―3081)が挙げられる。
 グアニジン誘導体(I)又はその薬理学的に許容される塩の、自己免疫疾患の治療又は予防に対する有効性は、上記のin vitro試験を用いて、例えば、MALT1のプロテアーゼ活性の低下、又は、MALT1のプロテアーゼ活性を阻害することによって引き起こされるNF-κB転写活性の低下若しくはMALT1の機能の指標であるIL-2産生量の低下を指標に評価することができる。また、自己免疫疾患の一つである、乾癬の治療又は予防に対する有効性は、上記のイミキモド誘発乾癬モデルを用いて、例えば、乾癬モデルの症状進行に伴って増加する耳介の厚みの低下を指標に評価することができる。
 グアニジン誘導体(I)又はその薬理学的に許容される塩は、哺乳動物(例えば、マウス、ラット、ハムスター、ウサギ、イヌ、ネコ、サル、ウシ、ヒツジ又はヒト)、特にヒトに対して投与した場合に、有用な医薬(特に、自己免疫疾患の治療剤又は予防剤)として用いることができる。グアニジン誘導体(I)又はその薬理学的に許容される塩を医薬として臨床で使用する際には、グアニジン誘導体(I)又はその薬理学的に許容される塩をそのまま用いてもよいし、賦形剤、安定化剤、保存剤、緩衝剤、溶解補助剤、乳化剤、希釈剤又は等張化剤等の添加剤が適宜混合されていてもよい。また、上記の医薬は、これらの薬理学的に許容される担体を適宜用いて、通常の方法によって製造することができる。上記の医薬の投与形態としては、例えば、錠剤、カプセル剤、顆粒剤、散剤若しくはシロップ剤等による経口剤、吸入剤、注射剤、座剤若しくは液剤等による非経口剤又は局所投与をするための、軟膏剤、クリーム剤若しくは貼付剤が挙げられる。また、公知の持続型製剤としても構わない。
 上記の医薬は、グアニジン誘導体(I)又はその薬理学的に許容される塩を、0.00001~90重量%含有することが好ましく、0.01~70重量%含有することがより好ましい。用量は、患者の症状、年齢及び体重、並びに投与方法に応じて適宜選択されるが、成人に対する1日の有効成分量として、注射剤の場合1日あたり0.1μg~1g、経口剤の場合1日あたり1μg~10g、貼付剤の場合1日あたり1μg~10gが好ましく、それぞれ1回又は数回に分けて投与することができる。
 上記の医薬の薬理学的に許容される担体又は希釈剤としては、例えば、結合剤(シロップ、ゼラチン、アラビアゴム、ソルビトール、ポリビニルクロリド又はトラガント等)、賦形剤(砂糖、乳糖、コーンスターチ、リン酸カルシウム、ソルビトール又はグリシン等)又は滑沢剤(ステアリン酸マグネシウム、ポリエチレングリコール、タルク又はシリカ等)を挙げることができる。
 上記の医薬は、その治療効果若しくは予防効果の補完又は増強あるいは投与量の低減のために、他の薬剤と適量配合又は併用して使用しても構わない。
 以下、実施例及び参考例を用いて本発明を詳細に説明するが、本発明は、これらに限定されるものではない。
 なお、実施例化合物の合成に使用される化合物で合成法の記載のないものについては、市販の化合物を使用した。以下の実施例及び参考例中の「室温」は通常約10~約35℃を意味する。NMRデータ中に示される溶媒名は、測定に使用した溶媒を示す。また、400MHzNMRスペクトルは、JNM-ECS400型核磁気共鳴装置又はJNM-ECZ400S型核磁気共鳴装置(日本電子社)を用いて測定した。ケミカルシフトは、テトラメチルシランを基準として、δ(単位:ppm)で表し、シグナルはそれぞれs(一重線)、d(二重線)、t(三重線)、q(四重線)、quint(五重線)、sept(七重線)、m(多重線)、br(幅広)、dd(二重二重線)、dt(二重三重線)、ddd(二重二重二重線)、dq(二重四重線)、td(三重二重線)、tt(三重三重線)で表した。H-NMRにおいて、水酸基、アミノ基、カルボキシル基等のプロトンが非常に緩やかなピークであった場合は記載していない。ESI-MSスペクトルは、AgilentTechnologies1200Series、G6130A(AgilentTechnologies社)を用いて測定した。シリカゲルは、シリカゲル60(メルク社)を用い、アミンシリカゲルは、アミンシリカゲルDM1020(富士シリシア化学社)を用い、フラッシュクロマトグラフィーは、YFLCW-prep2XY(山善社)を用いた。マイクロウェーブ合成装置は、Monowave300(アントンパール社)を用いた。
(参考例1)4,4’’-ジクロロ-4’-メチル-1,1’:2’,1’’-テルフェニルの合成:
Figure JPOXMLDOC01-appb-C000010
 3,4-ジブロモトルエン(5.0g)、4-クロロフェニルボロン酸(7.8g)、炭酸カリウム(8.3g)、ジクロロビストリフェニルホスフィンパラジウム(II)(0.70g)及びトリフェニルホスフィン(0.53g)を1,4-ジオキサン(80mL)及び水(10mL)に懸濁させ、系中をアルゴン置換した後、100℃で17時間撹拌した。反応混合物を室温まで冷却した後、水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。得られた粗生成物をシリカゲルクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することで表題化合物(5.0g)を得た。
H-NMR(CDCl)δ:2.43(3H,s),7.01-7.06(4H,m),7.18-7.29(5H,m),7.34-7.57(2H,m).
(参考例2)4,4’’-ジメトキシ-4’-メチル-1,1’:2’,1’’-テルフェニルの合成:
Figure JPOXMLDOC01-appb-C000011
 3,4-ジブロモトルエン(0.50g)、4-メトキシフェニルボロン酸(0.73g)、リン酸カリウム(1.06g)、酢酸パラジウム(0.009g)及び2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル(0.033g)をトルエン(8mL)及び水(0.8mL)に懸濁させ、系中をアルゴン置換した後、100℃で7時間撹拌した。反応混合物を室温まで冷却した後、水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。得られた粗生成物をシリカゲルクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することで表題化合物(0.61g)を得た。
H-NMR(CDCl)δ:2.42(3H,s),3.78(3H,s),3.78(3H,s),6.75-6.77(4H,m),7.05-7.06(4H,m),7.20-7.28(3H,m).
(参考例3)4’-(ブロモメチル)-4,4’’-ジクロロ-1,1’:2’,1’’-テルフェニルの合成:
Figure JPOXMLDOC01-appb-C000012
 参考例1で合成した4,4’’-ジクロロ-4’-メチル-1,1’:2’,1’’-テルフェニル(5.0g)、アゾビスイソブチロニトリル(0.078g)及びN-ブロモスクシンイミド(3.1g)を四塩化炭素(80mL)に懸濁させ、70℃で15時間撹拌した。反応混合物を室温まで冷却した後、セライトろ過し、ろ液を減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することで表題化合物(6.0g)を得た。
H-NMR(CDCl)δ:4.57(2H,s),7.03-7.05(4H,m),7.19-7.25(4H,m),7.31-7.47(3H,m).
(参考例4)4’-(ブロモメチル)-4,4’’-ジメトキシ-1,1’:2’,1’’-テルフェニルの合成:
Figure JPOXMLDOC01-appb-C000013
 参考例2で合成した4,4’’-ジメトキシ-4’-メチル-1,1’:2’,1’’-テルフェニル(0.61g)を用い、実施例3と同様にして、表題化合物(0.68g)を得た。
(参考例5)2-((4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)イソインドリン-1,3-ジオンの合成:
Figure JPOXMLDOC01-appb-C000014
 参考例3で合成した4’-(ブロモメチル)-4,4’’-ジクロロ-1,1’:2’,1’’-テルフェニル(6.0g)をDMF(50mL)に溶解させた後、フタルイミドカリウム(3.7g)を加え、60℃で12時間撹拌した。反応混合物を室温まで冷却した後、水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。粗生成物をn-ヘキサン/酢酸エチルで洗浄することで表題化合物(4.5g)を得た。
H-NMR(CDCl)δ:4.91(2H,s),6.98-7.04(4H,m),7.18-7.20(4H,m),7.33(1H,d,J=7.8Hz),7.44(1H,d,J=1.8Hz),7.49(1H,dd,J=7.8,1.8Hz),7.72-7.75(2H,m),7.85-7.88(2H,m).
MS(ESI)[M+H]:458.
(参考例6)2-((4,4’’-ジメトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)イソインドリン-1,3-ジオンの合成:
Figure JPOXMLDOC01-appb-C000015
 参考例4で合成した4’-(ブロモメチル)-4,4’’-ジメトキシ-1,1’:2’,1’’-テルフェニル(0.68g)を用い、参考例5と同様にして、表題化合物(0.50g)を白色固体として得た。
H-NMR(CDCl)δ:3.77(3H,s),3.78(3H,s),4.91(2H,s),6.73-6.76(4H,m),7.00-7.05(4H,m),7.32(1H,m),7.43(2H,m),7.72(2H,m),7.80(2H,m).
MS(ESI)[M+H]:450.
(参考例7)(4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メタンアミンの合成:
Figure JPOXMLDOC01-appb-C000016
 参考例5で合成した2-((4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)イソインドリン-1,3-ジオン(0.10g)をエタノール(2mL)に溶解させた後、ヒドラジン一水和物(0.032g)を加え、50℃で5時間撹拌した。反応混合物を室温まで冷却した後、ジクロロメタンを加え、析出した固体をろ別した。ろ液を濃縮し、クロロホルムを加えた後に、水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮することで表題化合物(0.071g)を得た。
H-NMR(CDCl)δ:3.96(2H,s),7.03-7.07(4H,m),7.19-7.23(4H,m),7.34-7.42(3H,m).
(参考例8)(4,4’’-ジメトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メタンアミンの合成:
Figure JPOXMLDOC01-appb-C000017
 参考例6で合成した2-((4,4’’-ジメトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)イソインドリン-1,3-ジオン(0.68g)をエタノール(2mL)及び1,2-ジクロロエタン(2mL)に溶解させた後、ヒドラジン一水和物(0.15g)を加え、60℃で15時間撹拌した。反応混合物を室温まで冷却した後、ジクロロメタンを加え、析出した固体をろ別した。ろ液を濃縮し、クロロホルムを加えた後に、水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮することで表題化合物(0.20g)を得た。
H-NMR(CDCl)δ:3.78(3H,s),3.79(3H,s),3.94(2H,s),6.76-6.78(4H,m),7.05-7.08(4H,m),7.33-7.36(3H,m).
MS(ESI)[M+H]:320.
(参考例9)S-メチルイソチオ尿素ヨウ化水素酸塩の合成:
Figure JPOXMLDOC01-appb-C000018
 チオアミド(10.0g)をメタノール(100mL)に溶解させた後、ヨウ化メチル(19.0g)を加えた。1時間加熱還流した後、反応混合物を減圧濃縮することで表題化合物(27.6g)を得た。
H-NMR(DMSO-d)δ:2.57(3H,s),8.89(4H,s).
(参考例10)N-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素の合成:
Figure JPOXMLDOC01-appb-C000019
 参考例9で合成したS-メチルイソチオ尿素ヨウ化水素酸塩(28.0g)及びトリエチルアミン(18mL)をジクロロメタン(250mL)に溶解させた後、二炭酸ジ-tert-ブチル(28mL)を加えた。反応混合物を室温で一晩撹拌した後、水を加え、クロロホルムで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧濃縮した。得られた固体を酢酸エチルで洗浄することで表題化合物(24.0g)を得た。
H-NMR(CDCl)δ:1.51(9H,s),2.46(3H,s).
(参考例11)N-(ベンゼンスルホニル)-N’-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素の合成:
Figure JPOXMLDOC01-appb-C000020
 水素化ナトリウム(ミネラルオイル中55重量%,2.5g)をDMF(100mL)に懸濁させた後、参考例10で合成したN-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素(10.0g)を加えた。4℃に冷却した後、塩化ベンゼンスルホニル(8.1mL)をゆっくり滴下した。反応混合物を室温まで昇温させた後、3時間撹拌した。反応混合物を氷水/酢酸エチル/n-ヘキサン(100mL/50mL/50mL)に加え、有機層を分液した。水層を酢酸エチル/n-ヘキサン(1/1、v/v)で抽出し、有機層をあわせた後、水及び飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することで表題化合物(4.8g)を得た。
H-NMR(CDCl)δ:1.52(9H,s),2.29(3H,s),7.50-7.62(3H,m),7.93-7.96(2H,m),10.33(1H,s).
(参考例12)N-(3-メトキシベンゼンスルホニル)-N’-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素の合成:
Figure JPOXMLDOC01-appb-C000021
 参考例10で合成したN-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素(0.50g)及び塩化3-メトキシベンゼンスルホニル(0.29g)を用い、参考例11と同様にして、表題化合物(0.90g)を得た。
H-NMR(CDCl)δ:2.30(3H,s),3.87(3H,s),7.12(1H,m),7.40-7.46(2H,m),7.52(1H,m),10.31(1H,brs).
MS(ESI)[M+Na]:383.
(参考例13)N-((チオフェン-2-イル)スルホニル)-N’-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素の合成:
Figure JPOXMLDOC01-appb-C000022
 参考例10で合成したN-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素(0.20g)と塩化2-チオフェンスルホニル(0.23g)を用い、参考例11と同様にして、表題化合物(0.10g)を得た。
H-NMR(CDCl)δ:1.52(9H,s),2.34(3H,s),7.08(1H,dd,J=5.0,3.8Hz),7.61(1H,dd,J=5.0,1.3Hz),7.68(1H,dd,J=3.8,1.3Hz),10.20(1H,brs).
(参考例14)N-((2-フリル)スルホニル)-N’-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素の合成:
Figure JPOXMLDOC01-appb-C000023
 参考例10で合成したN-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素(0.20g)と塩化フラン-2-スルホニル(0.21g)を用い、参考例11と同様にして、表題化合物(0.11g)を得た。
H-NMR(CDCl)δ:1.53(9H,s),2.34(3H,s),6.52(1H,dd,J=3.6,1.8Hz),7.08(1H,dd,J=3.6,0.9Hz),7.57(1H,dd,J=1.8,0.9Hz),10.25(1H,s).
(参考例15)2-ベンゼンスルホニル-1-(tert-ブトキシカルボニル)-3-((4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)グアニジンの合成:
Figure JPOXMLDOC01-appb-C000024
 参考例7で合成した(4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メタンアミン(0.030g)をテトラヒドロフラン(1mL)に溶解させた後、参考例11で合成したN-(ベンゼンスルホニル)-N’-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素(0.033g)を加えた。反応混合物を50℃で4時間撹拌した後、減圧濃縮した。得られた粗生成物をシリカゲルクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することで表題化合物(0.048g)を得た。
H-NMR(CDCl)δ:1.50(9H,s),4.58(2H,d,J=5.4Hz),6.94-6.97(2H,m),6.98-7.02(2H,m),7.18-7.23(5H,m),7.28-7.29(2H,m),7.38(2H,m),7.47(1H,m),7.83-7.85(2H,m),8.93(1H,t,J=5.4Hz),10.00(1H,s).
(参考例16)1-(tert-ブトキシカルボニル)-3-((4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)-2-(チオフェン-2-スルホニル)グアニジンの合成:
Figure JPOXMLDOC01-appb-C000025
 参考例7で合成した(4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メタンアミン(0.050g)及び参考例13で合成したN-((チオフェン-2-イル)スルホニル)-N’-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素(0.062g)を用い、参考例15と同様にして、表題化合物(0.094g)を得た。
H-NMR(CDCl)δ:1.51(9H,s)4.27(2H,d,J=5.5Hz),6.76-6.83(1H,m),6.91-6.96(4H,m),7.05-7.51(9H,m).
(参考例17)1-(tert-ブトキシカルボニル)-3-((4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)-2-(フラン-2-スルホニル)グアニジンの合成:
Figure JPOXMLDOC01-appb-C000026
 参考例7で合成した(4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メタンアミン(0.035g)及び参考例14で合成したN-((2-フリル)スルホニル)-N’-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素(0.038g)を用い、参考例15と同様にして、表題化合物(0.066g)を得た。
H-NMR(CDCl)δ:1.51(9H,s),4.35(2H,d,J=5.9Hz),6.29(1H,m),6.73(1H,m),6.91-6.95(4H,m),7.12-7.27(8H,m).
(参考例18)2-ベンゼンスルホニル-1-(tert-ブトキシカルボニル)-3-((4,4’’-ジメトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)グアニジンの合成:
Figure JPOXMLDOC01-appb-C000027
 参考例8で合成した(4,4’’-ジメトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メタンアミン(0.083g)及び参考例11で合成したN-(ベンゼンスルホニル)-N’-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素(0.084g)を用い、参考例15と同様にして、表題化合物(0.16g)を得た。
MS(ESI)[M+H]:602.
(実施例1)N-(アミノ(((4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミドの合成:
Figure JPOXMLDOC01-appb-C000028
 参考例15で合成した2-ベンゼンスルホニル-1-(tert-ブトキシカルボニル)-3-((4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)グアニジン(0.048g)をジクロロメタン(1mL)に溶解させた後、トリフルオロ酢酸(0.3mL)を加えた。反応混合物を室温で3時間撹拌した後、飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧濃縮した。得られた粗生成物をシリカゲルクロマトグラフィー(クロロホルム/メタノール)で精製することで表題化合物(以下、実施例1の化合物)(0.041g)を得た。
H-NMR(CDCl)δ:4.45(2H,d,J=5.9Hz),6.10(1H,brs),6.93-6.95(2H,m),6.97-7.00(2H,m),7.19-7.24(6H,m),7.29-7.47(4H,m),7.79-7.80(2H,m).
MS(ESI)[M+H]:510.
(実施例2)N-(アミノ(((4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)アミノ)メチレン)チオフェン-2-スルホンアミドの合成:
Figure JPOXMLDOC01-appb-C000029
 参考例16で合成した1-(tert-ブトキシカルボニル)-3-((4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)-2-(チオフェン-2-スルホニル)グアニジン(0.094g)を用い、実施例1と同様にして、表題化合物(以下、実施例2の化合物)(0.072g)を得た。
H-NMR(CDCl)δ:4.41(2H,d,J=5.5Hz),6.47(3H,brs),6.83(1H,m),6.91-6.98(4H,m),7.07-7.53(9H,m).
(実施例3)N-(アミノ(((4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)アミノ)メチレン)フラン-2-スルホンアミドの合成:
Figure JPOXMLDOC01-appb-C000030
 参考例17で合成した1-(tert-ブトキシカルボニル)-3-((4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)-2-(フラン-2-スルホニル)グアニジン(0.065g)を用い、実施例1と同様にして、表題化合物(以下、実施例3の化合物)(0.051g)を得た。
H-NMR(CDCl)δ:4.47(2H,d,J=5.9Hz),6.31(1H,m),6.75(1H,m),6.98-6.99(4H,m),7.17-7.27(8H,m).
(実施例4)N-(アミノ(((4,4’’-ジメトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミドの合成:
Figure JPOXMLDOC01-appb-C000031
 参考例18で合成した2-ベンゼンスルホニル-1-(tert-ブトキシカルボニル)-3-((4,4’’-ジメトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)グアニジン(0.16g)を用い、実施例1と同様にして、表題化合物(以下、実施例4の化合物)(0.052g)を得た。
H-NMR(CDCl)δ:3.79(3H,s),3.79(3H,s),4.44(2H,d,J=5.9Hz),5.90(2H,brs),6.75-6.77(4H,m),6.96-7.04(4H,m),7.18-7.21(2H,m),7.35-7.44(4H,m),7.85-7.86(2H,m).
MS(ESI)[M+H]:502.
(参考例19)ベンゼンスルホニルカルボンイミド酸ジフェニルの合成:
Figure JPOXMLDOC01-appb-C000032
 ジクロロジフェノキシメタン(5.7g)及びベンゼンスルホンアミド(7.3g)を酢酸エチル(25mL)に懸濁させた後、反応混合物を25時間加熱還流した。反応混合物を室温まで冷却した後、飽和炭酸水素ナトリウム水溶液及び水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧濃縮した。残渣をジクロロメタンに懸濁し、不溶物をろ別した。ろ液を減圧濃縮し、得られた粗生成物をシリカゲルクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製した後、得られた固体を再結晶(n-ヘキサン/酢酸エチル)することで表題化合物(2.4g)を得た。
H-NMR(CDCl)δ:7.07-7.09(4H,m),7.27-7.29(2H,m)7.35-7.39(4H,m),7.46-7.50(2H,m),7.57(1H,m),7.94-7.96(2H,m).
MS(ESI):354(M+H).
(参考例20)N-((4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)-N’-(ベンゼンスルホニル)カルバムイミド酸フェニルの合成:
Figure JPOXMLDOC01-appb-C000033
 参考例7で合成した(4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メタンアミン(0.050g)をテトラヒドロフラン(0.8mL)に溶解させた後、参考例19で合成したベンゼンスルホニルカルボンイミド酸ジフェニル(0.057g)を加えた。反応混合物を一晩撹拌した後、減圧濃縮した。得られた粗生成物をシリカゲルクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することで表題化合物(0.094g)を得た。
H-NMR(CDCl)δ:4.69(2H,d,J=5.9Hz),6.92-6.95(2H,m),7.00-7.07(4H,m),7.22-7.24(5H,m),7.29-7.41(7H,m),7.49(1H,m),7.74-7.76(2H,m),8.03(1H,t,J=5.7Hz).
(実施例5)N-((((4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)アミノ)(メチルアミノ)メチレン)ベンゼンスルホンアミドの合成:
Figure JPOXMLDOC01-appb-C000034
 参考例20で合成したN-((4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)-N’-(ベンゼンスルホニル)カルバムイミド酸フェニル(0.089g)をアセトニトリル(1.6mL)に溶解させた後、2mol/Lメチルアミン/テトラヒドロフラン溶液(0.04mL)を加え、マイクロウェーブ照射下150℃で30分間加熱撹拌した。反応混合物を室温まで冷却した後、減圧濃縮した。得られた固体を酢酸エチルで洗浄することで表題化合物(以下、実施例5の化合物)(0.059g)を得た。
H-NMR(DMSO-d)δ:2.73(3H,s),4.43(2H,d,J=5.9Hz),7.03(2H,d,J=7.3Hz),7.09(2H,d,J=7.3Hz),7.20-7.27(3H,m),7.30-7.37(7H,m),7.45(1H,t,J=7.3Hz),7.61-7.68(3H,m).
(参考例21)1,2-ビス(tert-ブトキシカルボニル)-3-((4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)グアニジンの合成:
Figure JPOXMLDOC01-appb-C000035
 参考例7で合成した(4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メタンアミン(0.15g)及び(((tert-ブトキシカルボニル)イミノ)(1H-ピラゾール-1-イル)メチル)カルバミン酸tert-ブチル(0.21g)をアセトニトリル(4.0mL)に溶解させ、45℃で3時間撹拌した。反応混合物を室温まで冷却した後、減圧濃縮した。得られた粗生成物をシリカゲルクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することで表題化合物(0.26g)を得た。
H-NMR(CDCl)δ:1.48-1.54(18H,m),4.69(2H,d,J=5.0Hz),7.03-7.05(3H,m),7.20-7.22(4H,m),7.34-7.42(4H,m),8.65(1H,t,J=5.0Hz).
(参考例22)1-((4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)グアニジンの合成:
Figure JPOXMLDOC01-appb-C000036
 参考例21で合成した1,2-ビス(tert-ブトキシカルボニル)-3-((4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)グアニジン(0.26g)をジクロロメタン(4.5mL)に溶解させた後、トリフルオロ酢酸(1.7mL)を加え、室温で15時間撹拌した。反応混合物に飽和炭酸水素ナトリウム水溶液で中和し、クロロホルムで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。得られた粗生成物をシリカゲルクロマトグラフィー(クロロホルム/メタノール)で精製することで表題化合物(0.17g)を得た。
H-NMR(CDCl)δ:3.59(1H,brs),4.31(2H,d,J=5.5Hz),6.92-7.05(4H,m),7.12-7.17(4H,m),7.22-7.25(2H,m),7.32(1H,m),8.24(1H,t,J=5.5Hz).
(実施例6)N-(アミノ(((4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)アミノ)メチレン)シクロプロパンカルボン酸アミドの合成:
Figure JPOXMLDOC01-appb-C000037
 参考例22で合成した1-((4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)グアニジン(0.032g)をテトラヒドロフラン(1.0mL)に溶解させた後、1mol/L水酸化ナトリウム水溶液(0.35mL)及びシクロプロパンカルボニルクロリド(0.019g)を加えた。3時間撹拌した後、反応混合物に水を加え、クロロホルムで抽出した。有機層を飽和食塩水で洗浄し、硫酸ナトリウムで乾燥した後、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール)で精製することで表題化合物(以下、実施例6の化合物)(0.018g)を得た。
H-NMR(CDCl)δ:0.77-0.79(2H,m),0.93-0.98(2H,m),1.66(1H,m),4.48(2H,s),7.01-7.03(4H,m),7.20-7.22(4H,m),7.30-7.42(3H,m).
(参考例23)4’-クロロ-4-メチル-[1,1’-ビフェニル]-2-アミンの合成:
Figure JPOXMLDOC01-appb-C000038
 3-アミノ-4-ブロモトルエン(2.0g)、4-クロロフェニルボロン酸(2.2g)、炭酸カリウム(4.5g)及びテトラキストリフェニルホスフィンパラジウム(0)(0.62g)を1,4-ジオキサン(45mL)及び水(4.5mL)に懸濁させ、系中をアルゴン置換した後、90℃で17時間撹拌した。反応混合物を室温まで放冷した後、水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。得られた粗生成物をシリカゲルクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することで表題化合物(2.0g)を得た。
H-NMR(CDCl)δ:2.31(3H,s),3.68(2H,s),6.60(1H,s),6.65(1H,d,J=7.7Hz),6.99(1H,d,J=7.7Hz),7.38-7.40(4H,m).
MS(ESI)[M+H]:218.
(参考例24)4’-クロロ-2-ヨード-4-メチル-1,1’-ビフェニルの合成:
Figure JPOXMLDOC01-appb-C000039
 参考例23で合成した4’-クロロ-4-メチル-[1,1’-ビフェニル]-2-アミン(2.0g)をアセトン(18mL)及び水(45mL)に溶解させた。0℃に冷却した後、硫酸(6.2g)及び亜硝酸ナトリウム(1.9g)を加え、0℃で1時間撹拌した。ヨウ化カリウム(7.4g)を加え、さらに0℃で1時間撹拌した。反応混合物を室温まで昇温した後、水を加え、酢酸エチルで抽出した。有機層を飽和炭酸水素ナトリウム水溶液、飽和チオ硫酸ナトリウム水溶液及び飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。得られた粗生成物をシリカゲルクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することで表題化合物(2.5g)を得た。
H-NMR(CDCl)δ:2.35(3H,s),7.15-7.20(2H,m),7.25-7.27(2H,m),7.37-7.39(2H,m),7.79(1H,s).
(参考例25)4-(ブロモメチル)-4’-クロロ-2-ヨード-1,1’-ビフェニルの合成:
Figure JPOXMLDOC01-appb-C000040
 参考例24で合成した4’-クロロ-2-ヨード-4-メチル-1,1’-ビフェニル(2.5g)を用い、参考例3と同様にして、表題化合物(1.8g)を得た。
H-NMR(CDCl)δ:4.46(2H,s),7.23-7.28(3H,m),7.40-7.42(3H,m),7.98(1H,d,J=1.8Hz).
(参考例26)4-(アジドメチル)-4’-クロロ-2-ヨード-1,1’-ビフェニルの合成:
Figure JPOXMLDOC01-appb-C000041
 参考例25で合成した4-(ブロモメチル)-4’-クロロ-2-ヨード-1,1’-ビフェニル(1.8g)及びアジ化ナトリウム(0.56g)をDMF(40mL)に懸濁させ、60℃で3時間撹拌した。反応混合物を室温まで冷却した後、水を加え、酢酸エチルで抽出した。有機層を水及び飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮することで表題化合物(1.6g)を得た。
H-NMR(CDCl)δ:4.36(2H,s),7.26-7.32(3H,m),7.34-7.36(1H,m),7.40-7.42(2H,m),7.92(1H,d,J=1.8Hz).
(参考例27)2’-ブロモ-4’-(ヒドロキシメチル)-[1,1’-ビフェニル]-4-カルボニトリルの合成:
Figure JPOXMLDOC01-appb-C000042
 (3-ブロモ-4-ヨードフェニル)メタノール(0.60g)、4-シアノフェニルボロン酸(0.30g)及び[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物(0.078g)を1,4-ジオキサン(10mL)及び2mol/L炭酸水素ナトリウム水溶液(2.9mL)に懸濁させ、系中をアルゴン置換した後、80℃で15時間撹拌した。反応混合物を室温まで冷却した後、酢酸エチルで抽出した。有機層を無水硫酸ナトリウムで乾燥した後、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製した後、得られた固体をエタノールで洗浄することで表題化合物(0.34g)を得た。
H-NMR(CDCl)δ:1.81(1H,t,J=5.9Hz),4.76(2H,d,J=5.9Hz),7.29(1H,d,J=7.7Hz),7.40(1H,dd,J=7.7,1.4Hz),7.51-7.54(2H,m),7.71-7.74(3H,m).
MS(ESI)[M+H]:288.
(参考例28)(2-ブロモ-4’-フルオロ-[1,1’-ビフェニル]-4-イル)メタノールの合成:
Figure JPOXMLDOC01-appb-C000043
 (3-ブロモ-4-ヨードフェニル)メタノール(0.50g)及び4-フルオロフェニルボロン酸(0.24g)を用い、参考例27と同様にして、表題化合物(0.38g)を得た。
H-NMR(CDCl)δ:1.78(1H,t,J=5.9Hz),4.73(2H,d,J=5.9Hz),7.09-7.14(2H,m),7.30(1H,d,J=7.8Hz),7.35-7.38(3H,m),7.70(1H,brs).
(参考例29)(2-ブロモ-4’-メチル-[1,1’-ビフェニル]-4-イル)メタノールの合成:
Figure JPOXMLDOC01-appb-C000044
 (3-ブロモ-4-ヨードフェニル)メタノール(0.30g)、4-メチルフェニルボロン酸(0.14g)及びテトラキス(トリフェニルホスフィン)パラジウム(0)(0.11g)を1,4-ジオキサン(5mL)及び2mol/L炭酸水素ナトリウム水溶液(1.4mL)に懸濁させ、系中をアルゴン置換した後、100℃で16時間撹拌した。反応混合物を室温まで冷却した後、酢酸エチルで抽出した。有機層を無水硫酸ナトリウムで乾燥した後、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することで表題混合物(0.25g)を得た。
(参考例30)4’-(アジドメチル)-2’-ブロモ-[1,1’-ビフェニル]-4-カルボニトリルの合成:
Figure JPOXMLDOC01-appb-C000045
 参考例27で合成した2’-ブロモ-4’-(ヒドロキシメチル)-[1,1’-ビフェニル]-4-カルボニトリル(0.24g)をトルエン(8mL)に溶解させた後、ジフェニルリン酸アジド(0.27mL)及びジアザビシクロウンデセン(0.19mL)を加え、80℃で1時間撹拌した。反応混合物を室温まで放冷した後、有機層を分液した。有機層を1mol/L塩酸及び水で洗浄し、硫酸ナトリウムで乾燥させた後、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することで表題化合物(0.17g)を得た。
H-NMR(DMSO-d)δ:4.56(2H,s),7.46(1H,d,J=7.8Hz),7.51(1H,dd,J=7.8,1.6Hz),7.63(2H,dt,J=8.4,1.8Hz),7.81(1H,d,J=1.6Hz),7.95(2H,dt,J=8.4,1.8Hz).
(参考例31)4-(アジドメチル)-2-ブロモ-4’-フルオロ-1,1’-ビフェニルの合成:
Figure JPOXMLDOC01-appb-C000046
 参考例28で合成した(2-ブロモ-4’-フルオロ-[1,1’-ビフェニル]-4-イル)メタノール(0.38g)を用い、参考例30と同様にして、表題化合物(0.37g)を得た。
H-NMR(CDCl)δ:4.54(2H,s),7.08-7.15(2H,m),7.28-7.36(4H,m),7.67(1H,brs).
(参考例32)4-(アジドメチル)-2-ブロモ-4’-メチル-1,1’-ビフェニルの合成:
Figure JPOXMLDOC01-appb-C000047
 参考例29で合成した(2-ブロモ-4’-メチル-[1,1’-ビフェニル]-4-イル)メタノール(0.25g)を用い、参考例30と同様にして、表題化合物(0.19g)を得た。
(参考例33)2-ベンゼンスルホニル-3-((2-ブロモ-4’-シアノ-[1,1’-ビフェニル]-4-イル)メチル)-1-(tert-ブトキシカルボニル)グアニジンの合成:
Figure JPOXMLDOC01-appb-C000048
 参考例30で合成した4’-(アジドメチル)-2’-ブロモ-[1,1’-ジフェニル]-4-カルボニトリル(0.17g)をテトラヒドロフラン(2.7mL)に溶解させた後、トリフェニルホスフィン(0.28g)及び水(0.54mL)を加え、60℃で3時間撹拌した。さらに、参考例11で合成したN-(ベンゼンスルホニル)-N’-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素(0.20g)を加え、60℃で19時間撹拌した。反応混合物を室温に冷却した後、水を加え、酢酸エチルで抽出した。有機層を無水硫酸ナトリウムで乾燥した後、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することで表題化合物(0.30g)を得た。
H-NMR(CDCl)δ:1.52(9H,s),4.53(2H,d,J=5.8Hz),7.17(1H,d,J=8.0Hz),7.25(1H,dd,J=8.0,1.8Hz),7.42-7.55(6H,m),7.71-7.74(2H,m),7.84-7.86(2H,m),8.94(1H,t,J=5.8Hz),10.00(1H,s).
(参考例34)2-ベンゼンスルホニル-1-(tert-ブトキシカルボニル)-3-((4’-クロロ-2-ヨード-[1,1’-ビフェニル]-4-イル)メチル)グアニジンの合成:
Figure JPOXMLDOC01-appb-C000049
 参考例26で合成した4-(アジドメチル)-4’-クロロ-2-ヨード-1,1’-ビフェニル(1.6g)及び参考例11で合成したN-(ベンゼンスルホニル)-N’-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素(1.6g)を用い、参考例33と同様にして、表題化合物(2.2g)を得た。
H-NMR(CDCl)δ:1.51(9H,s),4.49(2H,d,J=5.5Hz),7.13-7.15(1H,m),7.21-7.25(3H,m),7.38-7.54(5H,m),7.80(1H,d,J=1.8Hz),7.84-7.87(2H,m),8.91(1H,t,J=5.5Hz),9.99(1H,s)
(参考例35)2-ベンゼンスルホニル-3-((2-ブロモ-4’-フルオロ-[1,1’-ビフェニル]-4-イル)メチル)-1-(tert-ブトキシカルボニル)グアニジンの合成:
Figure JPOXMLDOC01-appb-C000050
 参考例31で合成した4-(アジドメチル)-2-ブロモ-4’-フルオロ-1,1’-ビフェニル(0.37g)及び参考例11で合成したN-(ベンゼンスルホニル)-N’-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素(0.40g)を用い、参考例33と同様にして、表題化合物(0.53g)を得た。
H-NMR(CDCl)δ:1.52(9H,s),4.51(2H,d,J=5.5Hz),7.09-7.21(4H,m),7.32-7.34(2H,m),7.43-7.53(4H,m),7.85(2H,m),8.92(1H,m),9.99(1H,s).
(参考例36)2-ベンゼンスルホニル-3-((2-ブロモ-4’-メチル-[1,1’-ビフェニル]-4-イル)メチル)-1-(tert-ブトキシカルボニル)グアニジンの合成:
Figure JPOXMLDOC01-appb-C000051
 参考例32で合成した4-(アジドメチル)-2-ブロモ-4’-メチル-1,1’-ビフェニル(0.19g)及び参考例11で合成したN-(ベンゼンスルホニル)-N’-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素(0.21g)を用い、参考例33と同様にして、表題化合物(0.17g)を得た。
H-NMR(CDCl)δ:1.51(9H,s),2.41(3H,s),4.51(2H,d,J=5.7Hz),7.18-7.19(2H,m),7.24-7.26(4H,m),7.42-7.47(2H,m),7.48-7.52(2H,m),7.82-7.85(2H,m),8.92(1H,t,J=5.7Hz),9.99(1H,s).
(参考例37)N-(アミノ(((2-ブロモ-4’-シアノ-[1,1’-ビフェニル]-4-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミドの合成:
Figure JPOXMLDOC01-appb-C000052
 参考例33で合成した2-ベンゼンスルホニル-3-((2-ブロモ-4’-シアノ-[1,1’-ビフェニル]-4-イル)メチル)-1-(tert-ブトキシカルボニル)グアニジン(0.30g)を用い、実施例1と同様にして、表題化合物(0.22g)を得た。
H-NMR(CDCl)δ:4.45(2H,d,J=5.9Hz),6.05(3H,brs),7.21(1H,d,J=8.2Hz),7.23-7.26(1H,m),7.46-7.50(5H,m),7.54(1H,s),7.73(2H,dd,J=7.1,1.8Hz),7.86(2H,d,J=7.1Hz).
MS(ESI)[M+H]:469.
(参考例38)N-(アミノ(((4’-クロロ-2-ヨード-[1,1’-ビフェニル]-4-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミドの合成:
Figure JPOXMLDOC01-appb-C000053
 参考例34で合成した2-ベンゼンスルホニル-1-(tert-ブトキシカルボニル)-3-((4’-クロロ-2-ヨード-[1,1’-ビフェニル]-4-イル)メチル)グアニジン(2.1g)を用い、実施例1と同様にして、表題化合物(1.7g)を得た。
H-NMR(DMSO-d)δ:4.32(2H,d,J=5.5Hz),6.83(1H,brs),7.22-7.27(2H,m),7.31-7.39(3H,m),7.47-7.55(6H,m),7.70(2H,brs),7.82(1H,s).
(参考例39)N-(アミノ(((2-ブロモ-4’-フルオロ-[1,1’-ビフェニル]-4-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミドの合成:
Figure JPOXMLDOC01-appb-C000054
 参考例35で合成した2-ベンゼンスルホニル-3-((2-ブロモ-4’-フルオロ-[1,1’-ビフェニル]-4-イル)メチル)-1-(tert-ブトキシカルボニル)グアニジン(0.53g)を用い、実施例1と同様にして、表題化合物(0.29g)を得た。
H-NMR(CDCl)δ:4.42(2H,d,J=5.9Hz),6.13(2H,brs),7.08-7.22(4H,m),7.30-7.34(2H,m),7.41-7.52(4H,m),7.83-7.84(2H,m). 
MS(ESI)[M+H]:462.
(参考例40)N-(アミノ(((2-ブロモ-4’-メチル-[1,1’-ビフェニル]-4-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミドの合成:
Figure JPOXMLDOC01-appb-C000055
 参考例36で合成した2-ベンゼンスルホニル-3-((2-ブロモ-4’-メチル-[1,1’-ビフェニル]-4-イル)メチル)-1-(tert-ブトキシカルボニル)グアニジン(0.16g)を用い、実施例1と同様にして、表題化合物(0.11g)を得た。
H-NMR(DMSO-d)δ:2.36(3H,s),4.34(2H,d,J=5.9Hz),6.84(1H,brs),7.22-7.26(7H,m),7.45-7.54(5H,m),7.69(2H,brs).
MS(ESI)[M+H]:458.
(実施例7)N-(アミノ(((4-シアノ-4’’-メトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミドの合成:
Figure JPOXMLDOC01-appb-C000056
 参考例37で合成したN-(アミノ(((2-ブロモ-4’-シアノ-[1,1’-ビフェニル]-4-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミド(0.029g)、4-メトキシフェニルボロン酸(0.019g)及びテトラキス(トリフェニルホスフィン)パラジウム(0)(0.004g)を1,4-ジオキサン(0.6mL)及び2mol/L炭酸水素ナトリウム水溶液(0.09mL)に懸濁させ、系中をアルゴン置換した後、100℃で16時間撹拌した。反応混合物を室温まで冷却した後、酢酸エチルで抽出した。有機層を無水硫酸ナトリウムで乾燥した後、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール)で精製した後、得られた固体を再結晶(メタノール)することで表題化合物(以下、実施例7の化合物)(0.013g)を得た。
H-NMR(CDCl)δ:3.79(3H,s),4.47(2H,d,J=5.9Hz),6.07(1H,brs),6.75(2H,dd,J=6.6,2.0Hz),6.90-6.92(2H,m),7.19(2H,dd,J=6.6,2.0Hz),7.24-7.37(5H,m),7.43-7.48(1H,m),7.51(2H,dd,J=6.6,2.0Hz),7.81-7.84(2H,m).
MS(ESI)[M+H]:497.
(実施例8)N-(アミノ(((4-シアノ-4’’-メチル-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミドの合成:
Figure JPOXMLDOC01-appb-C000057
 参考例37で合成したN-(アミノ(((2-ブロモ-4’-シアノ-[1,1’-ビフェニル]-4-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミド(0.050g)及び4-メチルフェニルボロン酸(0.029g)を用い、実施例7と同様にして、表題化合物(以下、実施例8の化合物)(0.036g)を得た。
H-NMR(CDCl)δ:2.32(3H,s),4.46(2H,d,J=5.1Hz),6.20(3H,brs),6.87(2H,d,J=8.2Hz),7.01(2H,d,J=8.2Hz),7.18(2H,d,J=8.2Hz),7.23-7.34(5H,m),7.43(1H,t,J=7.3Hz),7.49(2H,t,J=5.1Hz),7.79(2H,d,J=7.8Hz).
MS(ESI)[M+H]:481.
(実施例9)N-(アミノ(((4’’-クロロ-4-シアノ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミドの合成:
Figure JPOXMLDOC01-appb-C000058
 参考例37で合成したN-(アミノ(((2-ブロモ-4’-シアノ-[1,1’-ビフェニル]-4-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミド(0.050g)及び4-クロロフェニルボロン酸(0.033g)を用い、実施例7と同様にして、表題化合物(以下、実施例9の化合物)(0.013g)を得た。
H-NMR(CDCl)δ:4.48(2H,d,J=5.9Hz),6.06(3H,brs),6.93(2H,dt,J=8.8,2.3Hz),7.16-7.21(4H,m),7.24-7.38(5H,m),7.43-7.48(1H,m),7.51-7.53(2H,m),7.80-7.83(2H,m).
MS(ESI)[M+H]:501.
(実施例10)N-(アミノ(((4-クロロ-4’’-(メチルチオ)-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミドの合成:
Figure JPOXMLDOC01-appb-C000059
 参考例38で合成したN-(アミノ(((4’-クロロ-2-ヨード-[1,1’-ビフェニル]-4-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミド(0.060g)及び4-メチルチオフェニルボロン酸(0.038g)を用い、実施例7と同様にして、表題化合物(以下、実施例10の化合物)(0.054g)を得た。
H-NMR(CDCl)δ:2.46(3H,s),4.44(2H,d,J=5.5Hz),6.92-6.94(2H,m),7.00-7.02(2H,m),7.06-7.09(2H,m),7.18-7.22(4H,m),7.26-7.45(4H,m),7.79-7.80(2H,m).
(実施例11)4’’-クロロ-5’-((2-(ベンゼンスルホニル)グアニジノ)メチル)-[1,1’:2’,1’’-テルフェニル]-4-カルボン酸メチルの合成:
Figure JPOXMLDOC01-appb-C000060
 参考例38で合成したN-(アミノ(((4’-クロロ-2-ヨード-[1,1’-ビフェニル]-4-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミド(0.50g)及び4-メトキシカルボニルフェニルボロン酸(0.34g)を用い、実施例7と同様にして、表題化合物(以下、実施例11の化合物)(0.38g)を得た。
H-NMR(CDCl)δ:3.91(3H,s),4.47(2H,d,J=5.9Hz),6.16(3H,brs),6.95-7.00(2H,m),7.08(2H,d,J=8.8Hz),7.17(2H,dt,J=8.8,2.2Hz),7.23(1H,d,J=1.4Hz),7.25-7.27(1H,m),7.30-7.35(3H,m),7.43(1H,m),7.79(2H,d,J=7.3Hz),7.87(2H,d,J=8.2Hz).
MS(ESI)[M+H]:534.
(実施例12)N-(アミノ(((4-クロロ-4’’-ヒドロキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミドの合成:
Figure JPOXMLDOC01-appb-C000061
 参考例38で合成したN-(アミノ(((4’-クロロ-2-ヨード-[1,1’-ビフェニル]-4-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミド(0.20g)及び4-ヒドロキシフェニルボロン酸(0.11g)を用い、実施例7と同様にして、表題化合物(以下、実施例12の化合物)(0.13g)を得た。
H-NMR(DMSO-d)δ:4.38(2H,d,J=6.4Hz),6.64(2H,d,J=8.2Hz),6.77(3H,brs),6.82(2H,d,J=8.2Hz),7.08(2H,dd,J=6.4,1.8Hz),7.20(2H,d,J=6.4Hz),7.27(1H,d,J=8.2Hz),7.32(2H,t,J=4.1Hz),7.40(2H,s),7.49(1H,t,J=7.3Hz),7.68(2H,s),9.44(1H,s).
MS(ESI)[M+H]:492.
(実施例13)N-(アミノ(((4’’-クロロ-4-フルオロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミドの合成:
Figure JPOXMLDOC01-appb-C000062
 参考例39で合成したN-(アミノ(((2-ブロモ-4’-フルオロ-[1,1’-ビフェニル]-4-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミド(0.060g)及び4-クロロフェニルボロン酸(0.028g)を用いて、実施例7と同様にして、表題化合物(以下、実施例13の化合物)(0.053g)を得た。
H-NMR(CDCl)δ:4.45(2H,d,J=5.9Hz),6.23(2H,brs),6.89-7.03(6H,m),7.15-7.33(7H,m),7.42-7.43(1H,m),7.76-7.78(2H,m). 
MS(ESI)[M+H]:494.
(実施例14)N-(アミノ(((4’’-クロロ-4-メチル-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミドの合成:
Figure JPOXMLDOC01-appb-C000063
 参考例40で合成したN-(アミノ(((2-ブロモ-4’-メチル-[1,1’-ビフェニル]-4-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミド(0.030g)及び4-クロロフェニルボロン酸(0.021g)を用い、実施例7と同様にして、表題化合物(以下、実施例14の化合物)(0.018g)を得た。
H-NMR(CDCl)δ:2.32(3H,s),4.45(2H,d,J=5.5Hz),6.01(3H,brs),6.94-6.98(4H,m),7.04(2H,d,J=7.8Hz),7.15-7.19(3H,m),7.23(1H,dd,J=7.8,1.8Hz),7.32-7.37(3H,m),7.45(1H,m),7.80-7.83(2H,m).
MS(ESI)[M+H]:490.
(参考例41)6-アミノ-4’-メトキシ-[1,1’-ビフェニル]-3-カルボニトリルの合成:
Figure JPOXMLDOC01-appb-C000064
 4-アミノ-3-ヨードベンゾニトリル(2.0g)、4-メトキシフェニルボロン酸(1.5g)、炭酸カリウム(2.8g)及びテトラキストリフェニルホスフィンパラジウム(0)(0.24g)を1,4-ジオキサン(24mL)に懸濁させ、系中をアルゴン置換した後、100℃で16時間撹拌した。反応混合物を室温まで冷却した後、セライトろ過し、ろ液を減圧濃縮した。得られた粗生成物をn-ヘキサン/酢酸エチルにより、再結晶させることで表題化合物(1.7g)を白色固体として得た。
H-NMR(CDCl)δ:3.86(3H,s),4.23(2H,s),6.72(2H,d,J=8.7Hz),6.99-7.01(2H,m),7.33-7.37(3H,m).
(参考例42)6-ヨード-4’-メトキシ-[1,1’-ビフェニル]-3-カルボニトリルの合成:
Figure JPOXMLDOC01-appb-C000065
 参考例41で合成した6-アミノ-4’-メトキシ-[1,1’-ビフェニル]-3-カルボニトリル(0.50g)をアセトン(4mL)に溶解させ、水(10mL)、硫酸(0.80mL)加えた後、0℃で亜硝酸ナトリウム(0.46g)水溶液(5mL)をゆっくり加えた。反応混合物を室温まで昇温させた後、4時間撹拌した。反応混合物に酢酸エチル、n-ヘキサンを加え、有機層を水、飽和重曹水、10重量%チオ硫酸ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することで表題化合物(0.57g)を得た。
H-NMR(CDCl)δ:3.88(3H,s),6.98(2H,d,J=8.2Hz),7.24-7.27(3H,m),7.55(1H,d,J=1.8Hz),8.08(1H,d,J=8.2Hz).
(参考例43)4-クロロ-4’’-メトキシ-[1,1’:2’,1’’-テルフェニル]-4’-カルボニトリルの合成:
Figure JPOXMLDOC01-appb-C000066
 参考例42で合成した6-ヨード-4’-メトキシ-[1,1’-ビフェニル]-3-カルボニトリル(0.30g)及び4-クロロフェニルボロン酸(0.18g)を用い、参考例41と同様にして、表題化合物(0.22g)を得た。
H-NMR(CDCl)δ:3.80(3H,s),6.79-6.81(2H,m),7.00-7.06(4H,m),7.23-7.25(2H,m),7.46(1H,d,J=7.8Hz),7.65(1H,dd,J=7.8,1.8Hz),7.69(1H,d,J=1.8Hz).
(参考例44)4’’-メトキシ-4-メチル-[1,1’:2’,1’’-テルフェニル]-4’-カルボニトリルの合成:
Figure JPOXMLDOC01-appb-C000067
 参考例42で合成した6’-ヨード-4’-メトキシ-[1,1’-ビフェニル]-3-カルボニトリル(0.20g)及び4-メチルフェニルボロン酸(0.11g)を用い、参考例41と同様にして、表題化合物(0.15g)を得た。
H-NMR(CDCl)δ:2.33(3H,s),3.80(3H,s),6.79(2H,m),7.00-7.08(6H,m),7.47(1H,d,J=7.8Hz),7.63(1H,dd,J=7.8,1.8Hz),7.67(1H,d,J=1.8Hz).
(参考例45)4-フルオロ-4’’-メトキシ-[1,1’:2’,1’’-テルフェニル]-4’-カルボニトリルの合成:
Figure JPOXMLDOC01-appb-C000068
 参考例42で合成した6-ヨード-4’-メトキシ-[1,1’-ビフェニル]-3-カルボニトリル(0.3g)及び4-フルオロフェニルボロン酸(0.25g)を用い、参考例41と同様にして、表題化合物(0.27g)を得た。
H-NMR(CDCl)δ:3.80(3H,s),6.79(2H,td,J=5.8,3.5Hz),6.92-7.01(4H,m),7.06-7.12(2H,m),7.46(1H,d,J=7.8Hz),7.65(1H,dd,J=8.0,1.6Hz),7.68(1H,d,J=1.4Hz).
MS(ESI)[M+H]:304.
(参考例46)4’’-クロロ-4’-(ヒドロキシメチル)-[1,1’:2’,1’’-テルフェニル]-4-カルボニトリルの合成:
Figure JPOXMLDOC01-appb-C000069
 参考例27で合成した2’-ブロモ-4’-(ヒドロキシメチル)-[1,1’-ビフェニル]-4-カルボニトリル(0.31g)及び4-クロロフェニルボロン酸(0.23g)を用い、参考例41と同様にして、表題化合物(0.3g)を得た。
H-NMR(CDCl)δ:1.85(1H,t,J=5.9Hz),4.81(2H,d,J=5.9Hz),7.03(2H,m),7.20-7.23(4H,m),7.39-7.54(5H,m).
(参考例47)4’-(アジドメチル)-4’’-クロロ-[1,1’:2’,1’’-テルフェニル]-4-カルボニトリルの合成:
Figure JPOXMLDOC01-appb-C000070
 参考例46で合成した4’’-クロロ-4’-(ヒドロキシメチル)-[1,1’:2’,1’’-テルフェニル]-4-カルボニトリル(0.29g)を用い、参考例30と同様にして、表題化合物(0.28g)を得た。
H-NMR(CDCl)δ:4.36(2H,s),7.02(2H,m),7.19-7.24(4H,m),7.36-7.53(5H,m).
(参考例48)4’-(アミノメチル)-4’’-クロロ-[1,1’:2’,1’’-テルフェニル]-4-カルボニトリルの合成:
Figure JPOXMLDOC01-appb-C000071
 参考例47で合成した4’-(アジドメチル)-4’’-クロロ-[1,1’:2’,1’’-テルフェニル]-4-カルボニトリル(0.070g)をテトラヒドロフラン(2mL)に溶解させた後、トリフェニルホスフィン(0.11g)及び水(0.18mL)を加え、60℃で1時間撹拌した。反応混合物を室温に放冷した後、水を加え、酢酸エチルで抽出した。有機層を無水硫酸ナトリウムで乾燥した後、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール)で精製することで表題化合物(0.055g)を得た。
H-NMR(CDCl)δ:3.98(2H,s),7.03(2H,dt,J=9.0,2.3Hz),7.21-7.23(4H,m),7.36-7.39(2H,m),7.41-7.44(1H,m),7.51-7.54(2H,m).
MS(ESI)[M+H]:319.
(参考例49)2-ベンゼンスルホニル-1-(tert-ブトキシカルボニル)-3-((4-クロロ-4’’-メトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)グアニジンの合成:
Figure JPOXMLDOC01-appb-C000072
1.還元反応
 参考例43で合成した4-クロロ-4’’-メトキシ-[1,1’:2’,1’’-テルフェニル]-4’-カルボニトリル(0.22g)をエタノール(5mL)に溶解させ、0℃で塩化コバルト(II)六水和物(0.33g)、水素化ホウ素ナトリウム(0.26g)を加えた後、0℃で1時間撹拌した。氷冷下、反応混合物に飽和酒石酸カリウムナトリウム水溶液、酢酸エチルを加え、室温で1時間撹拌した。分液し、水層を酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮することで(4-クロロ-4’’-メトキシ-[1,1’:2’、1’’-テルフェニル]-4’-イル)メタンアミンを得た。
2.グアニジノ化反応
 還元反応の粗生成物をテトラヒドロフラン(2mL)に溶解させた後、参考例11で合成したN-(ベンゼンスルホニル)-N’-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素(0.067g)を加えた。反応混合物を60℃で20時間撹拌した後、減圧濃縮した。得られた粗生成物をシリカゲルクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することで表題化合物(0.087g)を得た。
H-NMR(CDCl)δ:1.50(9H,s),3.80(3H,s),4.58(2H,d,J=5.5Hz),6.76(2H,m),6.95(2H,m),7.02(2H,m),7.18-7.28(5H,m),7.37-7.50(3H,m),7.85(2H,m),8.92(1H,t,J=5.5Hz),9.99(1H,s).
(参考例50)2-ベンゼンスルホニル-1-(tert-ブトキシカルボニル)-3-((4’’-メトキシ-4-メチル-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)グアニジンの合成:
Figure JPOXMLDOC01-appb-C000073
 参考例44で合成した4’’-メトキシ-4-メチル-[1,1’:2’,1’’-テルフェニル]-4’-カルボニトリル(0.15g)及び参考例11で合成したN-(ベンゼンスルホニル)-N’-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素(0.084g)を用い、参考例49と同様にして、表題化合物(0.089g)を得た。
MS(ESI)[M+H]:586.
(参考例51)(4-フルオロ-4’’-メトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メタンアミンの合成:
Figure JPOXMLDOC01-appb-C000074
 参考例45で合成した4-フルオロ-4’’-メトキシ-[1,1’:2’,1’’-テルフェニル]-4’-カルボニトリル(0.27g)をメタノール(4.4mL)に溶解させた後、塩化コバルト(II)六水和物(0.23g)及び水素化ホウ素ナトリウム(0.33g)を0℃で加えた。室温で1時間撹拌した後、反応混合物に酒石酸カリウムナトリウム水溶液と酢酸エチルを加えた。室温で1時間撹拌した後、反応混合物を酢酸エチルで抽出した。有機層を無水硫酸ナトリウムで乾燥した後、減圧濃縮することで表題化合物(0.27g)を得た。
H-NMR(CDCl)δ:3.78(3H,s),3.94(2H,s),6.76(2H,d,J=8.7Hz),6.91(2H,t,J=8.7Hz),7.02-7.10(4H,m),7.32-7.36(3H,m).
MS(ESI)[M+H]:304.
(参考例52)2-ベンゼンスルホニル-1-(tert-ブトキシカルボニル)-3-((4-フルオロ-4’’-メトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)グアニジンの合成:
Figure JPOXMLDOC01-appb-C000075
 参考例51で合成した(4-フルオロ-4’’-メトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メタンアミン(0.27g)及び参考例11で合成したN-(ベンゼンスルホニル)-N’-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素(0.059g)を用い、参考例15と同様にして、表題化合物(0.065g)を得た。
H-NMR(CDCl)δ:1.50(9H,s),3.79(3H,s),4.58(2H,d,J=5.7Hz),6.75(2H,td,J=5.8,3.5Hz),6.89-6.97(4H,m),7.03-7.07(2H,m),7.22-7.25(2H,m),7.28(1H,d,J=7.8Hz),7.37-7.42(2H,m),7.45-7.50(1H,m),7.83-7.86(2H,m),8.91(1H,t,J=5.7Hz),9.99(1H,s).
MS(ESI)[M+H]:590.
(参考例53)1-(tert-ブトキシカルボニル)-3-((4-クロロ-4’’-メトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)-2-(3-メトキシベンゼンスルホニル)グアニジンの合成:
Figure JPOXMLDOC01-appb-C000076
 参考例43で合成した4-クロロ-4’’-メトキシ-[1,1’:2’,1’’-テルフェニル]-4’-カルボニトリル(0.053g)及び参考例12で合成したN-(3-メトキシベンゼンスルホニル)-N’-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素(0.071g)を用い、参考例49と同様にして、表題化合物(0.069g)を得た。
H-NMR(CDCl)δ:1.50(9H,s),3.79(6H,s),4.59(2H,d,J=5.5Hz),6.74-6.77(2H,m),6.95(2H,td,J=5.8,3.5Hz),7.00-7.04(3H,m),7.19-7.31(6H,m),7.39-7.43(2H,m),8.91(1H,t,J=5.5Hz),9.97(1H,s).
MS(ESI)[M+H]:636.
(参考例54)1-(tert-ブトキシカルボニル)-3-((4’’-クロロ-4-シアノ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)-2-(3-メトキシベンゼンスルホニル)グアニジンの合成:
Figure JPOXMLDOC01-appb-C000077
 参考例48で合成した4’-(アミノメチル)-4’’-クロロ-[1,1’:2’,1’’-テルフェニル]-4-カルボニトリル(0.027g)及び参考例12で合成したN-(3-メトキシベンゼンスルホニル)-N’-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素(0.037g)を用い、参考例15と同様にして、表題化合物(0.041g)を得た。
H-NMR(CDCl)δ:1.51(9H,s),3.79(3H,s),4.60(2H,d,J=5.9Hz),6.93(2H,dt,J=9.0,2.3Hz),7.00-7.03(1H,m),7.17-7.22(4H,m),7.26-7.32(4H,m),7.38-7.43(2H,m),7.52-7.55(2H,m),8.94(1H,t,J=5.5Hz),9.98(1H,s).
(参考例55)1-(tert-ブトキシカルボニル)-3-((4-クロロ-4’’-メトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)-2-(チオフェン-2-スルホニル)グアニジンの合成:
Figure JPOXMLDOC01-appb-C000078
 参考例43で合成した4-クロロ-4’’-メトキシ-[1,1’:2’,1’’-テルフェニル]-4’-カルボニトリル(0.05g)及び参考例13で合成したN-((チオフェン-2-イル)スルホニル)-N’-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素(0.062g)を用い、参考例49と同様にして、表題化合物(0.045g)を得た。
H-NMR(CDCl)δ:1.50(9H,s),3.80(3H,s),4.61(2H,d,J=5.4Hz),6.77(2H,dt,J=9.5,2.5Hz),6.95-7.00(3H,m),7.04(2H,dt,J=8.8,2.3Hz),7.20(2H,dt,J=8.8,2.3Hz),7.26-7.32(3H,m),7.42(1H,dd,J=5.0,1.4Hz),7.53(1H,dd,J=3.7,1.4Hz),8.95(1H,t,J=5.4Hz),9.86(1H,s).
MS(ESI)[M+Na]:634.
(参考例56)1-(tert-ブトキシカルボニル)-3-((4’’-クロロ-4-シアノ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)-2-(チオフェン-2-スルホニル)グアニジンの合成:
Figure JPOXMLDOC01-appb-C000079
 参考例48で合成した4’-(アミノメチル)-4’’-クロロ-[1,1’:2’,1’’-テルフェニル]-4-カルボニトリル(0.028g)及び参考例13で合成したN-((チオフェン-2-イル)スルホニル)-N’-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素(0.036g)を用い、参考例15と同様にして、表題化合物(0.037g)を得た。
H-NMR(CDCl)δ:1.50(9H,s),4.63(2H,d,J=5.5Hz),6.95-7.00(3H,m),7.19-7.23(4H,m),7.32-7.37(3H,m),7.42(1H,dd,J=4.8,1.1Hz),7.52-7.55(3H,m),8.99(1H,t,J=5.7Hz),9.87(1H,s).
(実施例15)N-(アミノ(((4-クロロ-4’’-メトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミドの合成:
Figure JPOXMLDOC01-appb-C000080
 参考例49で合成した2-ベンゼンスルホニル-1-(tert-ブトキシカルボニル)-3-((4-クロロ-4’’-メトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)グアニジン(0.085g)を用い、実施例1と同様にして、表題化合物(以下、実施例15の化合物)(0.056g)を得た。
H-NMR(CDCl)δ:3.79(3H,s)4.44(2H,d,J=5.5Hz),6.76(2H,m),6.94(2H,m),7.02(2H,m),7.17-7.29(5H,m),7.33-7.46(3H,m),7.81-7.82(2H,m).
MS(ESI)[M+H]:506.
(実施例16)N-(アミノ(((4’’-メトキシ-4-メチル-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミドの合成:
Figure JPOXMLDOC01-appb-C000081
 参考例50で合成した2-ベンゼンスルホニル-1-(tert-ブトキシカルボニル)-3-((4-フルオロ-4’’-メトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)グアニジン(0.085g)を用い、実施例1と同様にして、表題化合物(以下、実施例16の化合物)(0.060g)を得た。
H-NMR(CDCl)δ:2.31(3H,s),3.78(3H,s),4.44(2H,d,J=5.5Hz),6.75(2H,m),6.99-7.02(6H,m),7.20(2H,m),7.34-7.44(4H,m),7.84(2H,m).
MS(ESI)[M+H]:486.
(実施例17)N-(アミノ(((4-フルオロ-4’’-メトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミドの合成:
Figure JPOXMLDOC01-appb-C000082
 参考例52で合成した2-ベンゼンスルホニル-1-(tert-ブトキシカルボニル)-3-((4-フルオロ-4’’-メトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)グアニジン(0.065g)を用い、実施例1と同様にして、表題化合物(以下、実施例17の化合物)(0.035g)を得た。
H-NMR(CDCl)δ:3.78(3H,s),4.44(2H,d,J=5.4Hz),6.04(3H,brs),6.74(2H,d,J=8.6Hz),6.89-6.95(4H,m),7.04(2H,dd,J=8.6,5.7Hz),7.19-7.22(2H,m),7.29(1H,d,J=7.7Hz),7.35(2H,t,J=7.7Hz),7.45(1H,t,J=7.2Hz),7.82(2H,d,J=7.7Hz).
MS(ESI)[M+H]:490.
(実施例18)N-(アミノ(((4-クロロ-4’’-メトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)アミノ)メチレン)-3-メトキシベンゼンスルホンアミドの合成:
Figure JPOXMLDOC01-appb-C000083
 参考例53で合成した1-(tert-ブトキシカルボニル)-3-((4-クロロ-4’’-メトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)-2-(3-メトキシベンゼンスルホニル)グアニジン(0.032g)を用い、実施例1と同様にして、表題化合物(以下、実施例18の化合物)(0.024g)を得た。
H-NMR(CDCl)δ:3.75(3H,s),3.79(3H,s),4.44(2H,d,J=5.5Hz),6.05(3H,brs),6.75(2H,d,J=8.7Hz),6.92-6.95(2H,m),6.97-7.02(3H,m),7.18-7.22(4H,m),7.25-7.29(2H,m),7.38(1H,m),7.40(1H,d,J=7.8Hz).
MS(ESI)[M+H]:536.
(実施例19)N-(アミノ(((4’’-クロロ-4-シアノ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)アミノ)メチレン)-3-メトキシベンゼンスルホンアミドの合成:
Figure JPOXMLDOC01-appb-C000084
 参考例54で合成した1-(tert-ブトキシカルボニル)-3-((4’’-クロロ-4-シアノ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)-2-(3-メトキシベンゼンスルホニル)グアニジン(0.041g)を用い、実施例1と同様にして、表題化合物(以下、実施例19の化合物)(0.027g)を得た。
H-NMR(CDCl)δ:3.78(3H,s),4.49(2H,d,J=5.9Hz),5.98(3H,brs),6.93(2H,dt,J=8.8,2.3Hz),6.99-7.01(1H,m),7.17-7.22(4H,m),7.25-7.35(4H,m),7.38-7.43(2H,m),7.53(2H,dd,J=6.6,2.1Hz).
MS(ESI)[M+H]:531.
(実施例20)N-(アミノ(((4-クロロ-4’’-メトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)アミノ)メチレン)チオフェン-2-スルホンアミドの合成:
Figure JPOXMLDOC01-appb-C000085
 参考例55で合成した1-(tert-ブトキシカルボニル)-3-((4-クロロ-4’’-メトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)-2-(チオフェン-2-スルホニル)グアニジン(0.045g)を用い、実施例1と同様にして、表題化合物(以下、実施例20の化合物)(0.021g)を得た。
H-NMR(CDCl)δ:3.79(3H,s),4.46(2H,d,J=5.5Hz),6.08(3H,brs),6.76(2H,d,J=8.7Hz),6.91(1H,dd,J=4.8,3.9Hz),6.94-6.98(2H,m),7.02(2H,d,J=8.2Hz),7.16-7.26(4H,m),7.30(1H,d,J=7.8Hz),7.35(1H,dd,J=4.8,1.1Hz),7.47(1H,d,J=3.2Hz).
MS(ESI)[M+H]:512.
(実施例21)N-(アミノ(((4’’-クロロ-4-シアノ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)アミノ)メチレン)チオフェン-2-スルホンアミドの合成:
Figure JPOXMLDOC01-appb-C000086
 参考例56で合成した1-(tert-ブトキシカルボニル)-3-((4’’-クロロ-4-シアノ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)-2-(チオフェン-2-スルホニル)グアニジン(0.037g)を用い、実施例1と同様にして、表題化合物(以下、実施例21の化合物)(0.027g)を得た。
H-NMR(CDCl)δ:4.52(2H,d,J=5.9Hz),5.94(3H,brs),6.94-6.98(3H,m),7.18-7.24(4H,m),7.29(1H,s),7.32-7.36(2H,m),7.39(1H,dd,J=5.0,1.4Hz),7.51-7.55(3H,m).
MS(ESI)[M+H]:507.
(参考例57)6-アミノ-5-フルオロ-4’-メトキシ-[1,1’-ビフェニル]-3-カルボニトリルの合成:
Figure JPOXMLDOC01-appb-C000087
 4-アミノ-3-ブロモ-5-フルオロベンゾニトリル(1.5g)及び4-メトキシフェニルボロン酸(1.1g)を用い、参考例41と同様にして、表題化合物(1.36g)を得た。
H-NMR(CDCl)δ:3.87(3H,s),4.33(2H,brs),7.02(2H,td,J=5.8,3.5Hz),7.21-7.22(1H,m),7.23-7.26(1H,m),7.33(2H,td,J=5.8,3.5Hz).
MS(ESI)[M+H]:243.
(参考例58)5-フルオロ-6-ヨード-4’-メトキシ-[1,1’-ビフェニル]-3-カルボニトリルの合成:
Figure JPOXMLDOC01-appb-C000088
 参考例57で合成した6-アミノ-5-フルオロ-4’-メトキシ-[1,1’-ビフェニル]-3-カルボニトリル(1.36g)を用い、参考例42と同様にして、表題化合物(0.62g)を得た。
H-NMR(CDCl)δ:3.88(3H,s),6.97-7.01(2H,m),7.23-7.28(3H,m),7.37(1H,brs).
(参考例59)(5-フルオロ-6-ヨード-4’-メトキシ-[1,1’-ビフェニル]-3-イル)メタンアミンの合成:
Figure JPOXMLDOC01-appb-C000089
 参考例58で合成した5-フルオロ-6-ヨード-4’-メトキシ-[1,1’-ビフェニル]-3-カルボニトリル(0.20g)をテトラヒドロフラン(2.8mL)に溶解させた後、1mol/Lボランテトラヒドロフラン錯体/テトラヒドロフラン溶液(1.5mL)を0℃で加えた。40℃で1時間撹拌した後、2時間加熱還流した。反応溶液に2mol/L塩酸(1.7mL)を加え、75℃でさらに1時間撹拌した。反応混合物を室温に冷却した後、2.7mol/L水酸化カリウム水溶液で中和し、酢酸エチルで抽出した。有機層を無水硫酸ナトリウムで乾燥した後、減圧濃縮することで、表題化合物(0.17g)を得た。
H-NMR(CDCl)δ:3.87(3H,s),3.88(2H,s),6.96(2H,td,J=5.9,3.6Hz),7.01-7.06(2H,m),7.25-7.29(2H,m).
MS(ESI)[M+H]:358.
(参考例60)2-ベンゼンスルホニル-1-(tert-ブトキシカルボニル)-3-((5-フルオロ-6-ヨード-4’-メトキシ-[1,1’-ビフェニル]-3-イル)メチル)グアニジンの合成:
Figure JPOXMLDOC01-appb-C000090
 参考例59で合成した(5-フルオロ-6-ヨード-4’-メトキシ-[1,1’-ビフェニル]-3-イル)メタンアミン(0.17g)と参考例11で合成したN-(ベンゼンスルホニル)-N’-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素(0.10g)を用い、参考例15と同様にして、表題化合物(0.20g)を得た。
H-NMR(CDCl)δ:1.51(9H,s),3.87(3H,s),4.48(2H,d,J=5.9Hz),6.83(1H,dd,J=8.2,1.8Hz),6.93-6.96(3H,m),7.17(2H,td,J=5.8,3.5Hz),7.37-7.41(2H,m),7.48-7.52(1H,m),7.75(2H,dd,J=8.5,1.1Hz),8.94(1H,t,J=5.7Hz),9.97(1H,s).
MS(ESI)[M+H]:640.
(参考例61)N-(アミノ(((5-フルオロ-6-ヨード-4’-メトキシ-[1,1’-ビフェニル]-3-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミドの合成:
Figure JPOXMLDOC01-appb-C000091
 参考例60で合成した2-ベンゼンスルホニル-1-(tert-ブトキシカルボニル)-3-((5-フルオロ-6-ヨード-4’-メトキシ-[1,1’-ビフェニル]-3-イル)メチル)グアニジン(0.20g)を用い、実施例1と同様にして、表題化合物(0.17g)を得た。
H-NMR(CDCl)δ:3.86(3H,s),4.36(2H,d,J=5.5Hz),6.19(3H,brs),6.80(1H,d,J=8.2Hz),6.91-6.94(3H,m),7.16(2H,d,J=8.7Hz),7.35(2H,t,J=7.8Hz),7.45-7.48(1H,m),7.73(2H,d,J=7.8Hz).
MS(ESI)[M+H]:540.
(実施例22)N-(アミノ(((4-クロロ-6’-フルオロ-4’’-メトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミドの合成:
Figure JPOXMLDOC01-appb-C000092
 参考例61で合成したN-(アミノ(((5-フルオロ-6-ヨード-4’-メトキシ-[1,1’-ビフェニル]-3-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミド(0.050g)及び4-クロロフェニルボロン酸(0.029g)を用い、実施例7と同様にして、表題化合物(以下、実施例22の化合物)(0.025g)を得た。
H-NMR(CDCl)δ:3.77(3H,s),4.44(2H,d,J=5.9Hz),6.16(3H,brs),6.71(2H,dt,J=9.4,2.5Hz),6.89(2H,dt,J=9.4,2.5Hz),6.93(1H,dd,J=9.6,1.4Hz),6.98-7.04(3H,m),7.22(2H,dt,J=8.8,2.2Hz),7.35(2H,t,J=7.5Hz),7.45(1H,t,J=7.5Hz),7.79-7.83(2H,m).
MS(ESI)[M+H]:524.
(実施例23)N-(アミノ(((4-シアノ-6’-フルオロ-4’’-メトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミドの合成:
Figure JPOXMLDOC01-appb-C000093
 参考例61で合成したN-(アミノ(((5-フルオロ-6-ヨード-4’-メトキシ-[1,1’-ビフェニル]-3-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミド(0.050g)及び4-シアノフェニルボロン酸(0.027g)を用い、参考例7と同様にして、表題化合物(以下、実施例23の化合物)(0.030g)を得た。
H-NMR(CDCl)δ:3.78(3H,s),4.47(2H,d,J=5.9Hz),6.15(3H,brs),6.72(2H,d,J=8.7Hz),6.86(2H,d,J=8.7Hz),6.97(1H,d,J=11.0Hz),7.07(1H,s),7.19(2H,d,J=7.8Hz),7.37(2H,t,J=7.8Hz),7.46(1H,t,J=7.3Hz),7.53(2H,d,J=8.2Hz),7.83(2H,d,J=7.3Hz).
MS(ESI)[M+H]:515.
(参考例62)4-フルオロ-4’-メトキシ-5-メチル-[1,1’-ビフェニル]-2-アミンの合成:
Figure JPOXMLDOC01-appb-C000094
 2-ブロモ-5-フロオロ-4-メチルアニリン(1.0g)及び4-メトキシフェニルボロン酸(0.89g)を用いて参考例41と同様にして、表題化合物(1.0g)を得た。
H-NMR(CDCl)δ:2.18(3H,s),3.85(3H,s),6.44(1H,d,J=11.4Hz),6.89(1H,d,J=8.7Hz),6.96(2H,m),7.32(2H,m).
MS(ESI)[M+H]:232.
(参考例63)4-フルオロ-2-ヨード-4’-メトキシ-5-メチル-1,1’-ビフェニルの合成:
Figure JPOXMLDOC01-appb-C000095
 参考例62で合成した4-フルオロ-4’-メトキシ-5-メチル-[1,1’-ビフェニル]-2-アミン(1.0g)及びヨウ化銅(I)をアセトニトリル(20mL)に懸濁させた後、亜硝酸アミル(0.76g)を加え、60℃で5時間撹拌した。反応混合物を室温まで冷却した後、セライトろ過し、ろ液に酢酸エチルを加え、有機層を水、飽和重曹水、10重量%チオ硫酸ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することで表題化合物(0.31g)を得た。
H-NMR(CDCl)δ:2.24(3H,d,J=1.4Hz),3.86(3H,s),6.94(2H,m),7.11(1H,d,J=8.2Hz),7.23(2H,m),7.56(1H,d,J=8.7Hz).
(参考例64)4-クロロ-5’-フルオロ-4’’-メトキシ-4’-メチル-1,1’:2’,1’’-テルフェニルの合成:
Figure JPOXMLDOC01-appb-C000096
 参考例63で合成した4-フルオロ-2-ヨード-4’-メトキシ-5-メチル-1,1’-ビフェニル(0.31g)及び4-クロロフェニルボロン酸(0.20g)を用い、参考例41と同様にして、表題化合物(0.32g)を得た。
H-NMR(CDCl)δ:2.20(3H,d,J=1.3Hz),3.80(3H,s),6.80(2H,m),6.96-7.10(4H,m),7.15(1H,d,J=10.5Hz),7.22(2H,m),7.38(1H,d,J=8.0Hz).
(参考例65)4’-アジドメチル-4-クロロ-5’-フルオロ-4’’-メトキシ-1,1’:2’,1’’-テルフェニルの合成:
Figure JPOXMLDOC01-appb-C000097
 参考例64で合成した4-クロロ-5’-フルオロ-4’’-メトキシ-4’-メチル-1,1’:2’,1’’-テルフェニル(0.30g)、アゾビスイソブチロニトリル(0.015g)及びN-ブロモスクシンイミド(0.20g)を四塩化炭素(4.5mL)に懸濁させ、80℃で3時間撹拌した。反応混合物を室温まで冷却した後、セライトろ過し、ろ液を減圧濃縮した。得られた粗生成物をDMF(5mL)に溶解させ、アジ化ナトリウム(0.090g)を加え、60℃で16時間撹拌した。反応混合物に酢酸エチル及びn-ヘキサンを加え、有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することで表題化合物(0.19g)を得た。
H-NMR(CDCl)δ:3.79(3H,s),4.47(2H,s),6.78(2H,m),6.97-7.07(4H,m),7.13(1H,d,J=10.5Hz),7.21(2H,m),7.35(1H,d,J=7.3Hz).
(参考例66)2-ベンゼンスルホニル-1-(tert-ブトキシカルボニル)-3-((4-クロロ-5’-フルオロ-4’’-メトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)グアニジンの合成:
Figure JPOXMLDOC01-appb-C000098
 参考例65で合成した4’-アジドメチル-4-クロロ-5’-フルオロ-4’’-メトキシ-1,1’:2’,1’’-テルフェニル(0.070g)及び参考例11で合成したN-(ベンゼンスルホニル)-N’-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素(0.063g)を用いて、参考例15と同様にして、表題化合物(0.10g)を得た。
H-NMR(CDCl)δ:1.50(9H,s),3.80(3H,s),4.62(2H,d,J=5.5Hz),6.75(2H,m),6.87(2H,m),7.01(2H,m),7.06(1H,d,J=10.5Hz),7.18-7.45(6H,m),7.83(2H,m),8.94(1H,t,J=5.5Hz),9.95,(1H,s). 
(実施例24)N-(アミノ(((4-クロロ-5’-フルオロ-4’’-メトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミドの合成:
Figure JPOXMLDOC01-appb-C000099
 参考例66で合成した2-ベンゼンスルホニル-1-(tert-ブトキシカルボニル)-3-((4-クロロ-5’-フルオロ-4’’-メトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)グアニジン(0.10g)を用い、実施例1と同様にして、表題化合物(以下、実施例24の化合物)(0.056g)を得た。
H-NMR(CDCl)δ:3.80(3H,s),4.50(2H,d,J=5.5Hz),5.99(2H,brs),6.75(2H,m),6.89(2H,m),7.01(2H,m),7.07(1H,d,J=10.5Hz),7.19-7.43(6H,m),7.83(2H,m). 
MS(ESI)[M+H]:524.
(参考例67)4,4''-ジクロロ-[1,1':2',1''-テルフェニル]-4'-カルボアルデヒドの合成:
Figure JPOXMLDOC01-appb-C000100
 3,4-ジブロモベンズアルデヒド(2.0g)、4-クロロフェニルボロン酸(3.0g)、炭酸ナトリウム(2.2g)及びテトラキストリフェニルホスフィンパラジウム(0.70g)を1,4-ジオキサン(32mL)と水(4.0mL)に懸濁させ、系中をアルゴン置換した後、100℃で66時間撹拌した。反応混合物を室温まで放冷した後、水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することで表題化合物(1.4g)を得た。
H-NMR(CDCl)δ:7.06-7.09(4H,m),7.24-7.27(4H,m),7.56(1H,d,J=7.8Hz),7.90(1H,J=1.4Hz),7.93(1H,dd,J=7.8,1.8Hz),10.10(1H,s).
(参考例68)4,4''-ジクロロ-[1,1':2',1''-テルフェニル]-4'-オールの合成:
Figure JPOXMLDOC01-appb-C000101
 参考例67で合成した4,4''-ジクロロ-[1,1':2',1''-テルフェニル]-4'-カルボアルデヒド(0.40g)をジクロロメタン(12mL)に溶解させ、メタクロロ過安息香酸(0.42g)を加え、室温で23時間撹拌した。反応混合物に10重量%チオ硫酸ナトリウム水溶液を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧濃縮した。得られた粗生成物をメタノール(10mL)に溶解させ、炭酸カリウム(0.34g)を加え、室温で15時間撹拌した。反応混合物に飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することで表題化合物(0.24g)を得た。
H-NMR(CDCl)δ:5.07(1H,s),6.86(1H,d,J=2.7Hz),6.90(1H,dd,J=8.2,2.7Hz),7.00(2H,d,J=8.2Hz),7.04(2H,d,J=8.2Hz),7.12-7.22(4H,m),7.25-7.26(1H,m).
(参考例69)4,4''-ジクロロ-4'-メトキシ-1,1':2',1''-テルフェニルの合成:
Figure JPOXMLDOC01-appb-C000102
 参考例68で合成した4,4''-ジクロロ-[1,1':2',1''-テルフェニル]-4'-オール(0.18g)をDMF(3.0mL)に溶解させ、炭酸カリウム(0.15g)及びヨウ化メチル(0.10g)を加え、室温で13時間撹拌した。反応混合物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することで表題化合物(0.15g)を得た。
H-NMR(CDCl)δ:3.87(3H,s),6.91(1H,d,J=2.7Hz),6.97(1H,dd,J=8.6,2.7Hz),7.00(2H,d,J=8.2Hz),7.06(2H,d,J=8.2Hz),7.18(2H,d,J=8.2Hz),7.21(2H,d,J=8.6Hz),7.31(1H,d,J=8.6Hz).
(参考例70)4'-ブロモ-4,4''-ジクロロ-5'-メトキシ-1,1':2',1''-テルフェニルの合成:
Figure JPOXMLDOC01-appb-C000103
 参考例69で合成した4,4''-ジクロロ-4'-メトキシ-1,1':2',1''-テルフェニル(0.090g)をDMF(2.0mL)に溶解させ、N-ブロモスクシンイミド(0.053g)を0℃で加え、60℃で24時間撹拌した。反応混合物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することで表題化合物(0.087g)を得た。
H-NMR(CDCl)δ:3.95(3H,s)6.87(1H,s),6.99(2H,d,J=8.2Hz),7.05(2H,d,J=8.2Hz),7.19(2H,d,J=8.6Hz),7.23(2H,d,J=8.2Hz),7.58(1H,s).
(参考例71)4,4''-ジクロロ-5'-メトキシ-[1,1':2',1''-テルフェニル]-4'-カルボン酸の合成:
Figure JPOXMLDOC01-appb-C000104
 参考例70で合成した4'-ブロモ-4,4''-ジクロロ-5'-メトキシ-1,1':2',1''-テルフェニル(0.085g)をテトラヒドロフラン(2.0mL)に溶解させ、n-ブチルリチウム(2.6mol/L、n-ヘキサン溶液、0.096mL)を-78℃で加え、-78℃で10分間撹拌した。反応溶液に二酸化炭素をバブリングした後、室温に昇温し、30分間撹拌した。反応混合物に1mol/L塩酸を加え、析出した固体をろ取し、表題化合物(0.063g)を得た。
H-NMR(CDCl)δ:4.15(3H,s),7.01-7.09(5H,m),7.21(2H,d,J=8.6Hz),7.27(2H,d,J=8.2Hz),8.22(1H,s).
(参考例72)(4,4''-ジクロロ-5'-メトキシ-[1,1':2',1''-テルフェニル]-4'-イル)メタノールの合成:
Figure JPOXMLDOC01-appb-C000105
 参考例71で合成した4,4''-ジクロロ-5'-メトキシ-[1,1':2',1''-テルフェニル]-4'-カルボン酸(0.063g)をテトラヒドロフラン(2.0mL)に溶解させ、ボランテトラヒドロフラン錯体(0.92mol/Lテトラヒドロフラン溶液、0.37mL)を0℃で加え、室温で5時間撹拌した。反応混合物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することで表題化合物(0.042g)を得た。
H-NMR(CDCl)δ:2.30(1H,t,J=6.3Hz),3.93(3H,s),4.76(2H,d,5.9Hz),6.88(1H,s),7.01(2H,d,J=8.6Hz),7.06(2H,d,J=8.2Hz),7.18(2H,d,J=8.6Hz),7.22(2H,d,J=8.2Hz),7.32(1H,s). 
(参考例73)4'-(アジドメチル)-4,4''-ジクロロ-5'-メトキシ-1,1':2',1''-テルフェニルの合成:
Figure JPOXMLDOC01-appb-C000106
 参考例72で合成した(4,4''-ジクロロ-5'-メトキシ-[1,1':2',1''-テルフェニル]-4'-イル)メタノール(0.042g)をトルエン(2.0mL)に溶解させ、ビス(p-ニトロフェニル)リン酸アジド(0.064g)とジアザビシクロウンデセン(0.027g)を加え、70℃で23時間撹拌した。反応混合物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することで表題化合物(0.033g)を得た。
H-NMR(CDCl)δ:3.92(3H,s),4.43(2H,s),6.90(1H,s),7.01(2H,d,J=8.2Hz),7.07(2H,d,J=8.6Hz),7.19(2H,d,J=8.2Hz),7.23(2H,d,J=8.2Hz),7.27(1H,s).
(参考例74)(4,4''-ジクロロ-5'-メトキシ-[1,1':2',1''-テルフェニル]-4'-イル)メタンアミンの合成:
Figure JPOXMLDOC01-appb-C000107
 参考例73で合成した4'-(アジドメチル)-4,4''-ジクロロ-5'-メトキシ-1,1':2',1''-テルフェニル(0.023g)をテトラヒドロフラン(1.0mL)に溶解させ、トリフェニルホスフィン(0.024g)と水(0.022g)を加え、60℃で4時間撹拌した。反応混合物を減圧濃縮し、得られた粗生成物をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール)で精製することで表題化合物(0.022g)を得た。
H-NMR(CDCl)δ:3.90(2H,s),3.91(3H,s),6.85(1H,s),7.01(2H,d,J=8.6Hz),7.06(2H,d,J=8.6Hz),7.18(2H,d,J=8.6Hz),7.22(2H,d,J=8.2Hz),7.26(1H,s). 
(参考例75)2-ベンゼンスルホニル-1-(tert-ブトキシカルボニル)-3-((4,4’’-ジクロロ-5’-メトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)グアニジンの合成:
Figure JPOXMLDOC01-appb-C000108
 参考例74で合成した(4,4''-ジクロロ-5'-メトキシ-[1,1':2',1''-テルフェニル]-4'-イル)メタンアミン(0.022g)及び参考例11で合成したN-(ベンゼンスルホニル)-N’-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素(0.084g)を用い、参考例15と同様にして、表題化合物(0.018g)を得た。
MS(ESI)[M+H]:640.
(実施例25)N-(アミノ(((4,4''-ジクロロ-5'-メトキシ-[1,1':2',1''-テルフェニル]-4'-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミドの合成:
Figure JPOXMLDOC01-appb-C000109
 参考例75で合成した2-ベンゼンスルホニル-1-(tert-ブトキシカルボニル)-3-((4,4’’-ジクロロ-5’-メトキシ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)グアニジン(0.018g)を用い、実施例1と同様にして、表題化合物(以下、実施例25の化合物)(0.015g)を得た。
H-NMR(CDCl)δ:3.90(3H,s),4.40(2H,d,J=5.9Hz),6.19(2H,brs),6.86(1H,s),6.90(2H,d,J=8.2Hz),7.03(2H,t,J=7.7Hz),7.15(2H,d,J=8.6Hz),7.21-7.24(3H,m),7.31(2H,t,J=7.7Hz),7.41(1H,t,J=7.5Hz),7.81-8.84(2H,m).
MS(ESI)[M+H]:540.
(実施例26)N-(アミノ(((4,4''-ジクロロ-5'-ヒドロキシ-[1,1':2',1''-テルフェニル]-4'-イル)メチル)アミノ)メチレン)ベンゼンスルホンアミドの合成:
Figure JPOXMLDOC01-appb-C000110
 実施例25の化合物(0.010g)をジクロロメタン(1.0mL)に溶解させ、三臭化ホウ素(1.0mol/Lジクロロメタン溶液、0.12mL)を-78℃で加え、0℃で5時間撹拌した。反応混合物に水を加え、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥した後、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することで表題化合物(以下、実施例26の化合物)(0.002g)を得た。
H-NMR(DMSO-d)δ:4.31(2H,d,J=5.4Hz),6.82(1H,s),6.94(2H,d,J=8.2Hz),7.05-7.09(3H,m),7.28-7.37(6H,m),7.46(1H,t,J=7.5Hz),7.66-7.69(2H,m). 
MS(ESI)[M+H]:526.
(参考例76)N-ベンゾイル-N’-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素の合成:
Figure JPOXMLDOC01-appb-C000111
 参考例10で合成したN-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素(0.20g)をジクロロメタン(3mL)に溶解させた後、N,N-ジイソプロピルエチルアミン(0.22mL)及び塩化ベンゾイル(0.15mL)を加えた。室温で一晩撹拌した後、水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することで表題化合物(0.091g)を得た。
H-NMR(CDCl)δ:1.53(9H,s),2.59(3H,s),7.43-7.48(2H,m),7.50-7.57(1H,m),8.27-8.29(2H,m).
(参考例77)N-(2-チオフェンカルボニル)-N’-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素の合成:
Figure JPOXMLDOC01-appb-C000112
 参考例10で合成したN-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素(0.20g)と塩化チオフェン-2-カルボニル(0.19g)を用い、参考例76と同様にして、表題化合物(0.27g)を得た。
H-NMR(CDCl)δ:1.52(9H,s),2.55(3H,s),7.11-7.13(1H,m),7.58(1H,dd,J=4.9,1.2Hz),7.89(1H,dd,J=3.9,1.2Hz),12.39(1H,brs).
(参考例78)1-(tert-ブトキシカルボニル)-3-((4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)-2-ベンゾイルグアニジンの合成:
Figure JPOXMLDOC01-appb-C000113
 参考例7で合成した(4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メタンアミン(0.080g)及び参考例76で合成したN-ベンゾイル-N’-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素(0.079g)を用い、参考例15と同様にして、表題化合物(0.14g)を得た。
MS(ESI)[M+H]:574.
(参考例79)1-(tert-ブトキシカルボニル)-3-((4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)-2-(2-チオフェンカルボニル)グアニジンの合成:
Figure JPOXMLDOC01-appb-C000114
 参考例7で合成した(4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メタンアミン(0.050g)及び参考例77で合成したN-(2-チオフェンカルボニル)-N’-(tert-ブトキシカルボニル)-S-メチルイソチオ尿素(0.050g)を用い、参考例15と同様にして、表題化合物(0.056g)を得た。
MS(ESI)[M+H]:580.
(実施例27)N-(アミノ(((4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)アミノ)メチレン)ベンズアミドの合成:
Figure JPOXMLDOC01-appb-C000115
 参考例78で合成した1-(tert-ブトキシカルボニル)-3-((4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)-2-ベンゾイルグアニジン(0.14g)を用い、実施例1と同様にして、表題化合物(以下、実施例27の化合物)(0.11g)を得た。
H-NMR(CDCl)δ:4.52(2H,s),7.01-7.03(4H,m),7.20-7.22(4H,m),7.34-7.48(6H,m),8.17-8.18(2H,m).
(実施例28)N-(アミノ(((4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)アミノ)メチレン)チオフェン-2-カルボン酸アミドの合成:
Figure JPOXMLDOC01-appb-C000116
 参考例78で合成した1-(tert-ブトキシカルボニル)-3-((4,4’’-ジクロロ-[1,1’:2’,1’’-テルフェニル]-4’-イル)メチル)-2-(2-チオフェンカルボニル)グアニジン(0.053g)を用い、実施例1と同様にして、表題化合物(以下、実施例28の化合物)(0.036g)を得た。
H-NMR(CDCl)δ:4.54(2H,brs),7.01-7.06(5H,m),7.20-7.22(4H,m),7.37-7.40(4H,m),7.76(1H,dd,J=3.7,1.4Hz).
MS(ESI)[M+H]:480.
(実施例29)MALT1のプロテアーゼ活性阻害評価:
 グアニジン誘導体(I)又はその薬理学的に許容される塩が、MALT1のプロテアーゼ活性を阻害することは、文献(Cancer Cell、2012年、第22巻、p.825―837)記載の方法に準じ、in vitroの実験系で評価した。すなわち、リコンビナントMALT1が蛍光標識した人工ペプチド基質を切断することで生じる蛍光値の上昇に対する、化合物による蛍光値の低下の度合いを測定することで評価した。
A)リコンビナントGST融合MALT1の作製:
 PCRにて増幅したヒトMALT1遺伝子(GenBankアクセッション番号:AB026118.1)の全長cDNAを、pGEX6P3ベクター(GE Healthcare)のGST遺伝子の下流に存在するSalIサイトにインフレームとなるよう組み込んだベクター(以下、pGEX6P3―MALT1ベクター)を作製した。次いで、pGEX6P3―MALT1ベクターをタンパク質発現用大腸菌(BL21-RIL-codon plus-DE3、Agilent)にトランスフォームした後、アンピシリン耐性スクリーニング及びコロニーPCRによる解析を行って、リコンビナントGST融合MALT1を発現する大腸菌株を得た。タンパク質の発現誘導はイソプロピル-β-チオガラクトピラノシドで行った。発現誘導後、大腸菌の培養液から遠心により大腸菌沈殿物を回収し、大腸菌沈殿物を破砕後、遠心して上清を得た。上清を、GSTrap FFカラム(GE Health Care)を用いて精製し、リコンビナントGST融合MALT1を得た。
B)MALT1のプロテアーゼ活性阻害評価:
 1検体当たり、89μLの酵素溶液(4.8μg/mL GST融合MALT1、50mmol/L MES、150mmol/L NaCl、10% sucrose、0.1% CHAPS、10mmol/L ジチオトレイトール、1mol/L tri-ammonium citrate)に、各濃度の被験化合物(DMSO希釈溶液)を1μLずつ添加し、混合液とした。混合液を、室温で30分間インキュベートした後、混合液の蛍光値を測定した(1回目測定の蛍光値)(Ex:380nm、Em:460nm;Envision(Perkin Elmer))。次に、混合液に200μmol/Lの基質(Ac-LRSR-AMC、SM Biochemicals)を10μL添加し(最終濃度:20μmol/L)、30℃で80分間インキュベートして反応させた後、その反応液の蛍光値を測定した(2回目測定の蛍光値)(Ex:380nm、Em:460nm;Envision(Perkin Elmer))。なお、「被験化合物非添加(DMSOのみ添加)、酵素非添加かつ基質添加のウェル」、及び、「被験化合物非添加(DMSOのみ添加)、酵素添加かつ基質添加のウェル」を設けた。
 1回目測定の蛍光値を「F1」、2回目測定の蛍光値を「F2」とした。「被験化合物非添加(DMSOのみ添加)、酵素非添加かつ基質添加のウェル」のF2―F1を「Fback」とし、「被験化合物非添加(DMSOのみ添加)、酵素添加かつ基質添加のウェル」のF2―F1を「Fpositive」、「被験化合物添加、酵素添加かつ基質添加のウェル」のF2―F1を「Fsample」として、被験化合物によるMALT1のプロテアーゼ活性阻害率(%)を次の式で算出した。
 阻害率(%)=100×(1―(Fsample―Fback)/(Fpositive―Fback))
 各被験化合物のIC50値を表2に示す。表2の結果から明らかな通り、本発明のグアニジン誘導体(I)又はその薬理学的に許容される塩が、MALT1のプロテアーゼ活性を阻害する作用を有することが示された。
Figure JPOXMLDOC01-appb-T000117
(実施例30)イミキモド誘発乾癬モデルマウスにおける耳介の肥厚の抑制効果:
 グアニジン誘導体(I)又はその薬理学的に許容される塩が、自己免疫疾患の一つである乾癬に対して治療効果を発揮することは、文献(The Journal of Dermatological Science、2014年、第76巻、第2号、p.96-103)に準じた方法により、イミキモド誘発乾癬モデルマウスを用いたin vivoの実験系で評価した。すなわち、イミキモド誘発乾癬モデルの症状進行に伴って増加する耳介の厚みを指標として、耳介の肥厚に対する化合物による抑制効果を検証することで評価した。
 7週齢のBALB/c系雄性マウス(日本チャールス・リバー株式会社)を、予備飼育の後、8週齢で使用した。乾癬様症状の誘発の為、イミキモド初回投与日(以下、誘発後0日目)から、誘発後7日目までの8日間、1日1回、マウスの両耳に5mgずつ、ベセルナクリーム5%を、塗布した(イミキモド投与量0.25mg/body/day)。投与溶媒は、0.5%(w/v)メチルセルロース水溶液に最終濃度0.025%(v/v)となるようTween20を加え作製した。被験化合物は、投与溶媒に懸濁し、投与薬液とした。投与薬液を、誘発後4日目から7日目までの4日間、午前に1日1回、経口投与した(投与容量は10mL/kg)。被験化合物として、実施例1の化合物を用い、実施例1の化合物を投与した群を実施例1の化合物投与群とした。なお、投与溶媒のみを同様に投与した群を溶媒投与群として設けた。
 誘発日のイミキモド投与前(誘発前)の耳介の厚みと、誘発後8日目の耳介の厚みを、デジタルマイクロメーター(株式会社ミツトヨ)を用いて測定し、その変化(誘発後8日目の耳介の厚み-誘発前の耳介の厚み)を薬効評価の指標とした。統計解析は、統計解析ソフトEXSAS(ver.9.3)を用い実施した。溶媒投与群と実施例1の化合物の各群間ではBartlet検定により等分散を確認後、Williams検定(片側)を実施した。
 実施例1の化合物の評価結果を図1に示す。図の縦軸は、耳介の厚み変化(μm)を示し、横軸の「溶媒」は溶媒投与群を示し、「実施例1の化合物」は実施例1の化合物投与群を示す。図中の「*」は、溶媒投与群と比較して統計学的に有意(P<0.025)な差であることを示す。
 溶媒投与群の耳介の厚みは192μm増加した。これに対し、実施例1の化合物を30mg/kg(1日1回)、又は100mg/kg(1日1回)で経口投与した群の耳介の厚み変化はそれぞれ170μm、133μmの増加に留まり、100mg/kg(1日1回)投与群では、溶媒投与群の耳介の厚み変化と比較して、統計学的に有意に減少した。
 この結果から、本発明のグアニジン誘導体(I)又はその薬理学的に許容される塩が、乾癬に対する治療効果を発揮することが示された。
 本発明のグアニジン誘導体(I)又はその薬理学的に許容される塩は、MALT1のプロテアーゼ活性を強力に阻害する作用を有するため、乾癬等の自己免疫疾患の治療剤又は予防剤として利用できる。
 

Claims (7)

  1.  以下の一般式(I)で示されるグアニジン誘導体又はその薬理学的に許容される塩。
    Figure JPOXMLDOC01-appb-C000001
    [式中、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のアルキルチオ基、シアノ基、メトキシカルボニル基又はヒドロキシ基を表し、
     Rは、水素原子又はハロゲン原子を表し、
     Rは、水素原子、ハロゲン原子、炭素数1~3のアルコキシ基又はヒドロキシ基を表し、
     Aは、S(=O)又はC(=O)を表し、
     Rは、炭素数3~6のシクロアルキル基、1個の水素原子がハロゲン原子若しくは炭素数1~3のアルコキシ基で置換されていてもよいアリール基又は1個の水素原子がハロゲン原子で置換されていてもよいヘテロアリール基を表し、
     Rは、水素原子又は炭素数1~3のアルキル基を表す。]
  2.  Rは、塩素原子、メチル基、メトキシ基、メチルチオ基、メトキシカルボニル基又はヒドロキシ基であり、
     Rは、フッ素原子、塩素原子、メチル基、メトキシ基又はシアノ基であり、
     Rは、水素原子又はフッ素原子であり、
     Rは、水素原子、フッ素原子、メトキシ基又はヒドロキシ基であり、
     Aは、S(=O)であり、
     Rは、1個の水素原子が炭素数1~3のアルコキシ基で置換されていてもよいフェニル基又は5員環ヘテロアリール基であり、
     Rは、水素原子又はメチル基である、請求項1記載のグアニジン誘導体又はその薬理学的に許容される塩。
  3.  Rは、塩素原子、メトキシ基又はメトキシカルボニル基であり、
     Rは、塩素原子、メトキシ基又シアノ基であり、
     Rは、水素原子であり、
     Rは、水素原子であり、
     Aは、S(=O)であり、
     Rは、フェニル基、3-メトキシフェニル基、2-チエニル基又は2-フリル基であり、
     Rは、水素原子である、請求項1記載のグアニジン誘導体又はその薬理学的に許容される塩。
  4.  請求項1~3のいずれか一項記載のグアニジン誘導体又はその薬理学的に許容される塩を有効成分として含有する、医薬。
  5.  請求項1~3のいずれか一項記載のグアニジン誘導体又はその薬理学的に許容される塩を有効成分として含有する、Mucosa-associated lymphoid tissue lymphoma translocation protein 1阻害剤。
  6.  請求項1~3のいずれか一項記載のグアニジン誘導体又はその薬理学的に許容される塩を有効成分として含有する、自己免疫疾患の治療剤又は予防剤。
  7.  請求項1~3のいずれか一項記載のグアニジン誘導体又はその薬理学的に許容される塩を有効成分として含有する、乾癬の治療剤又は予防剤。
PCT/JP2018/007416 2017-02-28 2018-02-28 グアニジン誘導体及びその医薬用途 WO2018159650A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018513568A JPWO2018159650A1 (ja) 2017-02-28 2018-02-28 グアニジン誘導体及びその医薬用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-036494 2017-02-28
JP2017036494 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159650A1 true WO2018159650A1 (ja) 2018-09-07

Family

ID=63370289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007416 WO2018159650A1 (ja) 2017-02-28 2018-02-28 グアニジン誘導体及びその医薬用途

Country Status (2)

Country Link
JP (1) JPWO2018159650A1 (ja)
WO (1) WO2018159650A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10662156B2 (en) * 2016-07-29 2020-05-26 Toray Industries, Inc. Guanidine derivative and medical use thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003503311A (ja) * 1999-04-14 2003-01-28 ノバルティス アクチエンゲゼルシャフト 置換アゾール類
JP2005534620A (ja) * 2002-04-11 2005-11-17 サノフィ−アベンティス テルフェニル誘導体、それらの製造およびそれらを含む組成物
JP2008516934A (ja) * 2004-10-18 2008-05-22 サノフイ−アベンテイス ピリジン誘導体並びにこの製造及び治療用途
JP2014521678A (ja) * 2011-08-02 2014-08-28 ヘルムホルツ ツェントラム ミュンヘン ドイチェス フォーシュングスツェントラム フュール ゲズントハイト ウント ウンヴェルト ゲーエムベーハー フェノチアジン誘導体によるmalt1プロテアーゼの選択的阻害
WO2015181747A1 (en) * 2014-05-28 2015-12-03 Novartis Ag Novel pyrazolo pyrimidine derivatives and their use as malt1 inhibitors
JP2015536990A (ja) * 2012-11-09 2015-12-24 コーネル・ユニバーシティーCornell University Malt1の低分子阻害剤
WO2017057695A1 (ja) * 2015-09-30 2017-04-06 東レ株式会社 ジフェニルピラゾール誘導体及びその医薬用途
JP2017214315A (ja) * 2016-05-31 2017-12-07 東レ株式会社 ジフェニルピラゾール誘導体及びその医薬用途
WO2018021520A1 (ja) * 2016-07-29 2018-02-01 東レ株式会社 グアニジン誘導体及びその医薬用途

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003503311A (ja) * 1999-04-14 2003-01-28 ノバルティス アクチエンゲゼルシャフト 置換アゾール類
JP2005534620A (ja) * 2002-04-11 2005-11-17 サノフィ−アベンティス テルフェニル誘導体、それらの製造およびそれらを含む組成物
JP2008516934A (ja) * 2004-10-18 2008-05-22 サノフイ−アベンテイス ピリジン誘導体並びにこの製造及び治療用途
JP2014521678A (ja) * 2011-08-02 2014-08-28 ヘルムホルツ ツェントラム ミュンヘン ドイチェス フォーシュングスツェントラム フュール ゲズントハイト ウント ウンヴェルト ゲーエムベーハー フェノチアジン誘導体によるmalt1プロテアーゼの選択的阻害
JP2015536990A (ja) * 2012-11-09 2015-12-24 コーネル・ユニバーシティーCornell University Malt1の低分子阻害剤
WO2015181747A1 (en) * 2014-05-28 2015-12-03 Novartis Ag Novel pyrazolo pyrimidine derivatives and their use as malt1 inhibitors
WO2017057695A1 (ja) * 2015-09-30 2017-04-06 東レ株式会社 ジフェニルピラゾール誘導体及びその医薬用途
JP2017214315A (ja) * 2016-05-31 2017-12-07 東レ株式会社 ジフェニルピラゾール誘導体及びその医薬用途
WO2018021520A1 (ja) * 2016-07-29 2018-02-01 東レ株式会社 グアニジン誘導体及びその医薬用途

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10662156B2 (en) * 2016-07-29 2020-05-26 Toray Industries, Inc. Guanidine derivative and medical use thereof

Also Published As

Publication number Publication date
JPWO2018159650A1 (ja) 2019-12-19

Similar Documents

Publication Publication Date Title
JP6266568B2 (ja) カルシウム放出依存性カルシウムチャネルのピラゾール誘導体モジュレータおよび非小細胞肺癌の治療方法
JP6927042B2 (ja) グアニジン誘導体及びその医薬用途
US9682967B2 (en) N-substituted-5-substituted phthalamic acids as sortilin inhibitors
WO2017057695A1 (ja) ジフェニルピラゾール誘導体及びその医薬用途
AU2007248341B2 (en) Benzimidazole modulators of VR1
AU2012259234A1 (en) Novel imidazole derivatives useful for the treatment of arthritis
JP2009501236A (ja) ヒストンデアセチラーゼ阻害剤
CA2404226A1 (en) Furoisoquinoline derivatives, process for producing the same and use thereof
JP2008540574A (ja) ヒストンデアセチラーゼ阻害剤
JP2003511414A (ja) FabI阻害剤
US20050176792A1 (en) Ketone substituted benzimidazole compounds
US6730684B1 (en) Fab I inhibitors
JP2009511559A (ja) 炎症の治療に有用なベンゾオキサゾール類
TW200927729A (en) 4-heteroaryl-substituted phenoxyphenylacetic acid derivatives
WO2013056684A2 (zh) 做为dhodh抑制剂的噻唑衍生物及其应用
WO2013075596A1 (zh) 作为dhodh抑制剂的五元二氢杂环酮类衍生物及应用
KR20220024216A (ko) 아스타신 프로테이나제의 헤테로방향족 억제제
CZ20014637A3 (cs) Substituované fenoxyoctové kyseliny
CA2883221A1 (en) Benzofurazan anti-amyloid compounds and methods
WO2018159650A1 (ja) グアニジン誘導体及びその医薬用途
WO2011078360A1 (ja) アミド化合物
US10383850B2 (en) Indazole and indole derivatives as inhibitors of retinoic acid related orphan receptor gamma (ROR gamma) for the treatment of immune-related diseases
WO2003053976A1 (en) PIPAZOLO [1,5-a] PYRIMIDINE DERIVATIVES AS MODULATORS OF PPAR
TW201602089A (zh) 多環性herg活化劑
JP2017214315A (ja) ジフェニルピラゾール誘導体及びその医薬用途

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018513568

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761357

Country of ref document: EP

Kind code of ref document: A1