WO2018159611A1 - 光学表示体および光学表示装置 - Google Patents

光学表示体および光学表示装置 Download PDF

Info

Publication number
WO2018159611A1
WO2018159611A1 PCT/JP2018/007257 JP2018007257W WO2018159611A1 WO 2018159611 A1 WO2018159611 A1 WO 2018159611A1 JP 2018007257 W JP2018007257 W JP 2018007257W WO 2018159611 A1 WO2018159611 A1 WO 2018159611A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image
optical
optical display
fourier transform
Prior art date
Application number
PCT/JP2018/007257
Other languages
English (en)
French (fr)
Inventor
鈴木 慎一郎
和輝 佐久間
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2018159611A1 publication Critical patent/WO2018159611A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/50Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F19/00Advertising or display means not otherwise provided for
    • G09F19/12Advertising or display means not otherwise provided for using special optical effects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F19/00Advertising or display means not otherwise provided for
    • G09F19/12Advertising or display means not otherwise provided for using special optical effects
    • G09F19/18Advertising or display means not otherwise provided for using special optical effects involving the use of optical projection means, e.g. projection of images on clouds
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F19/00Advertising or display means not otherwise provided for
    • G09F19/22Advertising or display means on roads, walls or similar surfaces, e.g. illuminated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2103/00Exterior vehicle lighting devices for signalling purposes
    • F21W2103/60Projection of signs from lighting devices, e.g. symbols or information being projected onto the road

Definitions

  • the present invention relates to an optical display body and an optical display device that display an optical image on, for example, a road surface.
  • Patent Document 1 is an optical device that is mounted on a moving body and illuminates a road surface, and a laser light source and laser light emitted from the laser light source are incident and light is emitted by emitting light to the road surface.
  • An optical device having an optical element for performing the above is disclosed.
  • Patent Document 2 discloses a road surface drawing lamp unit having a semiconductor light emitting element that is a light source and a plurality of diffraction grating portions that transmit light emitted from the semiconductor light emitting element to the front of the vehicle.
  • the optical device disclosed in Patent Document 1 describes that a hologram can be used as an optical element.
  • the hologram used as the optical element include an embossed hologram, a volume hologram, an electronic hologram, and a Fourier transform hologram that is a computer-generated hologram.
  • an optical display device When using an optical display device to display vehicle approach information, course information, etc. on the road surface as an optical image, a pedestrian in the vicinity of the vehicle, a driver of a vehicle following the vehicle, etc.
  • the brightness of the optical image is required to be high enough that the route information and the like can be sufficiently recognized visually.
  • the inventors of the present invention have repeatedly studied the luminance of the light image displayed on the road surface by the optical display device. For example, in a bright environment such as outdoors in the daytime, the light is displayed on the road surface due to the influence of sunlight or the like. We found a problem that the optical image was not fully recognized visually.
  • An object of the present invention is to provide an optical display body and an optical display device capable of displaying an optical image.
  • the present invention is an optical display used in an optical display device for a vehicle, and has a transmission Fourier transform hologram region in which a Fourier transform image obtained by Fourier transforming an original image is recorded. Is a region where light incident from the light source is transmitted and converted into an optical image, and the ratio of the number of pixels of the original picture of the original image to the total number of pixels of the original image is 1200/1 million or less.
  • An optical display is provided.
  • the luminance of the optical image can be improved without increasing the amount of energy of light emitted from the light source. it can. Therefore, for example, by mounting the optical display of the present invention on a vehicle, a light image such as course information can be displayed on the road surface with a desired luminance even in a relatively bright environment such as outdoors in the daytime. Thus, a pedestrian, a driver of the following vehicle, and the like can fully recognize the light image visually.
  • 50% or more of all the optical image patterns represented by the optical image include an optical axis of zero-order light when the light from the light source passes through the transmission Fourier transform hologram region, and the transmission type.
  • the angle formed with the light beam having the largest angle with respect to the optical axis of the zeroth-order light is located in a region within a range of ⁇ 5 °. It is preferable to do. Since 50% or more of all the optical image patterns represented by the optical image are located within a predetermined range centered on the 0th order light, the luminance of the optical image is increased without increasing the amount of light emitted from the light source. It is because it can improve more effectively.
  • the present invention is an optical display used in an optical display device for a vehicle, and has a transmission Fourier transform hologram region in which a Fourier transform image obtained by Fourier transforming an original image is recorded. Is a region where light incident from the light source is transmitted and converted into a light image, and 50% or more of all the light image patterns represented by the light image pass through the transmission Fourier transform hologram region by the light from the light source.
  • the optical axis of the 0th-order light when transmitted and the light beam having the largest angle with respect to the optical axis of the 0th-order light among the transmitted light when the light from the light source passes through the transmissive Fourier transform hologram region.
  • an optical display body characterized in that an angle formed is located in a region within a range of ⁇ 5 °.
  • the optical display of the present invention 50% or more of all the optical image patterns represented by the optical image are located within a predetermined range centered on the 0th order light, thereby increasing the amount of energy of light emitted from the light source.
  • the brightness of the optical image can be improved. Therefore, for example, by mounting the optical display of the present invention on a vehicle, a light image such as course information can be displayed on the road surface with a desired luminance even in a relatively bright environment such as outdoors in the daytime.
  • a pedestrian, a driver of the following vehicle, and the like can fully recognize the light image visually.
  • the present invention when 70% or more of all the optical image patterns represented by the optical image divide the optical image into two regions by an arbitrary straight line passing through the 0th-order light, one of the two regions is selected. It is preferably located in one region.
  • 70% or more positions of all the optical image patterns represented by the optical image on the front side of the optical display body 70% or more of all the optical image patterns represented by the optical image are displayed with high luminance. It becomes possible.
  • the present invention is an optical display device used in a vehicle, comprising: the above-described optical display body; and an optical display device comprising a light irradiator serving as a light source of light applied to the optical display body. provide.
  • the optical display body by using the above-described optical display body, it is possible to improve the brightness of the optical image without increasing the amount of light irradiated from the light source. Therefore, for example, by mounting the optical display device of the present invention on a vehicle, a light image such as route information can be displayed on the road surface with a desired luminance even in a relatively bright environment such as outdoors in the daytime. Thus, a pedestrian, a driver of the following vehicle, and the like can fully recognize the light image visually.
  • the present invention is an optical that can display a light image having high brightness to such an extent that information displayed as a light image can be sufficiently recognized visually even in a bright environment such as outdoors in the daytime.
  • the display body and the optical display device can be provided.
  • optical display of the present invention can be divided into the following first and second embodiments.
  • An optical display body is a member used in an optical display device for a vehicle, and includes a transmission type Fourier transform hologram region in which a Fourier transform image obtained by Fourier transforming an original image is recorded.
  • the Fourier transform hologram region is a region where light incident from a light source is transmitted and converted into an optical image, and the ratio of the number of pixels of the original picture of the original image to the total number of pixels of the original image is 1200/1 million or less. It is a member characterized by being.
  • the optical display body of the second embodiment is a member used in an optical display device for a vehicle, and has a transmission type Fourier transform hologram region in which a Fourier transform image obtained by Fourier transforming an original image is recorded,
  • the transmission type Fourier transform hologram region is a region where light incident from the light source is transmitted and converted into an optical image. More than 50% of all the optical image patterns represented by the optical image are converted into the transmission type Fourier transform hologram region.
  • the angle with respect to the optical axis of the 0th-order light It is a member characterized in that it is located in a region where the angle formed by the largest light beam is within a range of ⁇ 5 °.
  • optical display body of the present invention will be described separately for the first embodiment and the second embodiment described above.
  • An optical display body is a member used in an optical display device for a vehicle, and includes a transmission type Fourier transform hologram region in which a Fourier transform image obtained by performing a Fourier transform on an original image is recorded.
  • the transmission type Fourier transform hologram region is a region that transmits light incident from a light source and converts it into an optical image, and the ratio of the number of pixels of the original picture of the original image to the total number of pixels of the original image is 1200/100. It is a member characterized by being 10,000 or less.
  • FIG. 1 is an explanatory diagram for explaining the optical display body of this embodiment.
  • the original image 10 ′ on which a predetermined original pattern 20 ′ is drawn is subjected to Fourier transform, thereby having a transmission type Fourier transform hologram region in which the Fourier transform image 10 is recorded.
  • the optical display body 1 can be obtained.
  • the Fourier transform image 10 recorded in the transmission type Fourier transform hologram region has a concavo-convex structure on the surface as shown in the enlarged view showing the cross section along the line AA.
  • the Fourier transform image includes a large number of curved or linear convex portions or concave portions extending in parallel in a specific direction.
  • the concavo-convex structure shown in FIG. 1 is an example showing a four-value Fourier transform image based on the data of the original image.
  • FIG. 2 is an explanatory diagram for explaining the optical display body of the present embodiment, and is an explanatory diagram showing an example in which a light image is projected through the optical display body 1 shown in FIG.
  • the optical display of this embodiment when the optical display of this embodiment is irradiated with light from the light source 30, the light enters the transmission Fourier transform hologram area of the optical display 1 and is recorded in the transmission Fourier transform hologram area.
  • Light is scattered by the Fourier transform image 10 and converted into a desired light image 20.
  • the optical image pattern of the optical image 20 displayed by the optical display 1 is composed of a large number of dots as shown in the enlarged view of FIG.
  • the incidence of light on the optical display may be from the uneven surface side where the Fourier transform image is recorded, or from the opposite side of the uneven surface.
  • symbol 20X of FIG. 2 shows 0th-order light.
  • the optical display 1 is mounted on the rear side of the vehicle 100 so that the route information and the like are displayed as a light image on the road surface, and the driver of the pedestrian or the following vehicle Can inform you.
  • symbol which is not demonstrated in FIG. 3, since it can be the same as that of FIG. 2 mentioned above, description here is abbreviate
  • the optical display 1 is mounted on a vehicle 100 and vehicle approach information, course information, and the like are displayed as light images on the road surface to inform pedestrians, drivers of other vehicles, and the like.
  • the technique is proposed in Patent Documents 1 and 2 described above, for example.
  • the inventors of the present invention focused on and examined the ease of viewing the light image displayed on the road surface. As a result, they discovered a problem that the light image displayed on the road surface differs depending on the surrounding brightness. Specifically, for example, in an environment where the surroundings are dark such as at night, the light image displayed on the road surface looks bright and can be sufficiently recognized visually, whereas the surroundings such as daytime are relatively bright.
  • the inventors of the present invention have studied the above problems and found that the light image displayed on the road surface is difficult to see in a bright environment due to the low brightness of the light image.
  • the driving power of the optical display body is supplied from the vehicle battery, so that the optical display body is irradiated with light in order to improve the brightness of the light image displayed on the road surface.
  • the light having a high amount of energy may be emitted from pedestrians and other vehicles. There is a risk of getting directly into the eyes of the driver.
  • the inventors of the present invention made further studies on the above problems.
  • the number of pixels of the original pattern of the original image to the total number of pixels of the original image within a predetermined range, it is possible to improve the brightness of the light image without increasing the amount of light emitted from the light source.
  • a new finding is obtained that the luminance of the optical image can be improved by relatively reducing the number of pixels of the original picture 20 ′ relative to the total number of pixels of the original image 10 ′ shown in FIG. It was.
  • the effect that the luminance of the light image can be improved.
  • the ratio of the light intensity A of the light incident on the optical display body and the light intensity B emitted from the optical display body when the optical display body is irradiated with light from the light source is B / A.
  • B / A was within the range of 0.5 to 0.65.
  • the said ratio changes with the original designs of the original image recorded on the optical display body, as mentioned above, the light intensity radiate
  • the luminance per pixel of the optical image displayed by the optical display body is B / N, where N is the number of pixels of the original picture of the original image. Then, it is estimated that the luminance per pixel of the optical image can be increased by reducing the number of pixels of the original pattern of the original image.
  • the inventors of the present invention actually created an optical display and compared the number of pixels of the original picture of the original image with respect to the ratio of the total number of pixels of the original image. Specifically, under the condition that the total number of pixels of the original image is 1 million pixels and the output of the laser light source is 50 mW, the luminance of the light image can be adjusted to what extent the number of pixels of the original image of the original image is. We examined whether it could be improved. As a result, it was found that the brightness of the light image can be improved when the number of pixels of the light image is 3000 pixels or less. Therefore, in this aspect, the ratio of the number of pixels of the original picture of the original image to the total number of pixels of the original image is set to 3000/1 million or less.
  • the ratio of the number of pixels of the optical image to the total number of pixels of the original image is preferably 1200/1 million or less, more preferably 500/1 million or less, particularly 100. / 1 million or less is preferable. This is because the luminance of the light image can be improved more effectively, and the light image can be sufficiently recognized visually even in a bright environment.
  • the ratio of the number of pixels of the optical image to the total number of pixels of the original image in this aspect can be calculated as follows. That is, since the original image is usually a monochrome bitmap file, it is possible to count the total number of pixels of the original image and the number of images of the original picture of the original image. Therefore, the ratio can be calculated using the total number of pixels of the obtained original image and the number of pixels of the original picture of the original image.
  • the inventors of the present invention also evaluated the ratio of the number of pixels of the optical image to the total number of pixels of the original image from the following method. That is, the light intensity of one pixel in various light image pixel numbers was measured under conditions where the total number of pixels of the original image was 1 million pixels and the output of the laser light source was 50 mW. As a result, a graph as shown in FIG. 4 was obtained. At this time, in the area surrounded by the broken line in FIG. 4, that is, in the area where the number of pixels of the optical image is 1200 pixels or less, the luminance of the optical image can be dramatically improved. Based on this result, in this aspect, the ratio of the number of pixels of the optical image to the total number of pixels of the original image is defined as 1200/1 million or less.
  • 50% or more of all the optical image patterns represented by the optical image include the optical axis of the zero-order light when the light from the light source transmits through the transmission Fourier transform hologram region, and Of the transmitted light when the light from the light source is transmitted through the transmission Fourier transform hologram area, the angle formed by the light beam having the largest angle with respect to the optical axis of the 0th-order light is within a range of ⁇ 5 °. It is preferable to be located at. Since 50% or more of all the optical image patterns represented by the optical image are located within a predetermined range centered on the 0th order light, the luminance of the optical image is increased without increasing the amount of light emitted from the light source. It is because it can improve more effectively. In addition, since specific description is described in the section of “B. Second Embodiment” described later, description thereof is omitted here.
  • the optical image 20 is divided into two regions, and arbitrary straight lines passing through the 0th-order light 20X are, for example, straight lines denoted by reference signs L 1 , L 2 and L 3.
  • the optical image is divided into two regions by a straight line that maximizes the ratio of the optical image pattern in one of the two regions.
  • FIG. 5B shows a pattern when the optical image 20 is divided into two regions by the straight lines L 1 , L 2 and L 3 in FIG. As shown in FIG.
  • FIG. 5 (a), the (b), the divided light image 20 into two regions by a straight line L 1 an optical image pattern 20 as a more than 70% of all light image pattern representing the optical image 20 L1 is designed to be located in one region, and the optical image pattern 20 L1 is arranged on the near side of the optical display 1 so that the optical image pattern 20 L1 is displayed with high luminance. It becomes possible. This is based on the knowledge that, for example, the intensity of light in the region indicated by Ra in FIG.
  • the effect of the present invention can be made more remarkable.
  • the “predetermined area on the front side of the optical display body” means an arbitrary straight line for dividing the optical image into two areas and an optical display body closer to the optical display body when the optical display body is parallel. Refers to an area.
  • region R a light image pattern 20 L1 of the light image shown in FIG. 5 (b) is located Point to.
  • the light image in this embodiment is composed of a large number of dots, and means 70% or more of all dots constituting all the light images displayed at this time. To do.
  • the ratio in all the light image patterns which a light image represents can be calculated by counting the number of dots which comprise a light image pattern, for example.
  • defining the ratio of “70% or more of all the light image patterns represented by the light image” and the ratio of the light image pattern improves the luminance of 70% or more of all the light image patterns represented by the light image. This is intended to improve the luminance of at least the main part of the optical image displayed by the optical display. For example, as shown in FIGS. 6 (a) and 6 (b), the fact that 70% or more of the optical image pattern can be recognized makes it possible to roughly grasp the meaning of the optical image pattern.
  • 70% or more of all the light image patterns represented by the light image may be located in a predetermined region, but in particular, it may be 80% or more of all the light image patterns represented by the light image. In particular, 90% or more of all the optical image patterns represented by the optical image is preferable. In this embodiment, it is most preferable that all the optical image patterns represented by the optical image are located in a predetermined region.
  • the optical display body of this aspect when used in a vehicle, the route information and the like can be clearly displayed as a light image on the road surface, and visibility of drivers of pedestrians and other vehicles can be improved.
  • symbol which is not demonstrated in FIG. 6 (a), (b), since it can be made the same as that of FIG. 2, description here is abbreviate
  • the optical image patterns represented by the optical image divide the optical image into two regions by an arbitrary straight line passing through the 0th-order light, it is in one of the two regions.
  • the specific position can be appropriately selected according to the position of the original pattern in the original image, the direction of the light image pattern to be displayed, and the like. Specifically, when a straight line passing through the center of the original image is drawn and the original image is divided into two regions by the straight line, the original pattern is arranged in one of the two regions.
  • the orientation of the optical display body is adjusted so that the straight line is parallel to the projection surface, and the optical display body is irradiated with light from the light source. Then, in the optical image displayed by the optical display, it is possible to arrange the optical pattern in a region closer to the optical display than the straight line that passes through the zero-order light and is horizontal to the optical display.
  • the optical display of this aspect has a transmission Fourier transform hologram region in which a Fourier transform image obtained by Fourier transforming the original image is recorded.
  • a transmission type Fourier transform hologram region is a region where light incident from a light source is transmitted and converted into an optical image.
  • the transmission type Fourier transform hologram region in this aspect a Fourier transform image obtained by Fourier transforming the original image is recorded, and usually has a concavo-convex structure on the surface.
  • the optical display body of this aspect can diffract the light incident from the light source in a plurality of directions and convert it into a desired light image based on the original image by the concavo-convex structure on the surface of the transmission Fourier transform hologram region. That is, the transmission type Fourier transform hologram region in this aspect functions as a Fourier transform lens.
  • the above function may be described as a Fourier transform lens function.
  • the concavo-convex structure on the surface of the transmission Fourier transform hologram region is a multi-valued Fourier transform image based on the data of the original image displayed as an optical image.
  • Such a concavo-convex structure is usually composed of a large number of convex or concave portions that are curved or straight and extend in parallel in a specific direction.
  • the difference in level of the concavo-convex structure on the surface of the transmission type Fourier transform hologram region is not particularly limited as long as it can convert incident light into a desired optical image.
  • the height difference of the concavo-convex structure can be in the range of 0.5 ⁇ m to 1.5 ⁇ m, and preferably in the range of 0.6 ⁇ m to 1.2 ⁇ m.
  • incident light can be stably converted into a desired light image.
  • the height difference of the concavo-convex structure refers to a distance from the surface of the highest convex portion to the surface of the deepest concave portion in the concavo-convex structure, for example, a distance indicated by a symbol T in FIG.
  • Transmission Fourier transform hologram area in this embodiment may be composed of a single Fourier transform domain R 1, as shown in FIG. 7 (b), a single It may be composed of a large Fourier transform region R 2 in which a plurality of one Fourier transform region R 1 is arranged and enlarged.
  • the arrow denoted by reference numeral 20 in FIG. 7 (a), (b) is an optical image which is expressed by the Fourier transform domain R 2 single Fourier transform domain R 1 or large format.
  • the transmission Fourier transform hologram region is a large Fourier transform region.
  • the optical image displayed by the optical display of this aspect can be enlarged, and the visibility can be further improved.
  • the light source that irradiates light to the transmission Fourier transform hologram region is usually a point light source.
  • the point light source include a laser light source.
  • the wavelength of the point light source is not particularly limited, and it is preferable that the transmission type Fourier transform hologram region can exhibit the Fourier transform lens function well.
  • the wavelength of the point light source may be monochromatic light of one wavelength, light including multiple wavelengths, or white light.
  • the transmission type Fourier transform hologram region in this aspect has a concavo-convex structure on the surface.
  • the layer in which the concavo-convex structure in the transmission Fourier transform hologram region is formed may be hereinafter referred to as a hologram layer.
  • the hologram layer is denoted by reference numeral 11 as shown in FIG.
  • the hologram layer in this embodiment is preferably made of a material that can form a concavo-convex structure on the surface as a transmission Fourier transform hologram region and can exhibit a desired Fourier transform lens function. Moreover, it is preferable that the hologram layer in this aspect is comprised from the material which shows a predetermined refractive index.
  • the refractive index of the hologram layer is not particularly limited because it can be appropriately selected according to the use of the optical display of this embodiment.
  • standard of the refractive index of a hologram layer can be suitably selected, for example from the range of 400 nm or more and 750 nm or less, and is not specifically limited.
  • the refractive index at a wavelength of 555 nm is preferably in the range of 1.3 to 2.0, particularly preferably in the range of 1.33 to 1.8.
  • the refractive index of the hologram layer can be measured using, for example, a spectroscopic ellipsometer.
  • a resin material used for forming a general relief hologram can be cited.
  • the resin material include a thermosetting resin, a thermoplastic resin, an ultraviolet curable resin, and an ionizing radiation curable resin.
  • the hologram layer in this aspect may contain other materials as necessary in addition to the materials described above.
  • Other materials include, for example, photopolymerization initiators, polymerization inhibitors, deterioration inhibitors, plasticizers, lubricants, colorants such as dyes and pigments, extenders and fillers such as resins to prevent blocking, interfaces, etc.
  • additives such as an activator, an antifoaming agent, a leveling agent, and a thixotropic agent.
  • the hologram layer in this embodiment is usually formed on a transparent substrate described later.
  • the thickness of the hologram layer is preferably in the range of 0.1 ⁇ m to 50 ⁇ m, and more preferably in the range of 0.3 ⁇ m to 10 ⁇ m.
  • the size and the like of the hologram layer can be appropriately adjusted according to the use and the like of the optical display body of this aspect.
  • the optical display body only needs to have a transmission type Fourier transform hologram region. Therefore, the entire surface of the optical display member may be a transmission Fourier transform hologram region, and a part of the optical display member may be a transmission Fourier transform hologram region.
  • the optical display body of this aspect should just have the transmission Fourier-transform hologram area
  • arbitrary members that can constitute the optical display body of this aspect will be described.
  • Transparent base material In the optical display of this aspect, the surface opposite to the concavo-convex structure formed on the surface as the transmission Fourier transform hologram region in the hologram layer, that is, the concavo-convex structure of the hologram layer was formed. You may have a transparent base material in the surface on the opposite side to the side. By having a transparent base material, the thermal strength or mechanical strength of the optical display of this embodiment can be increased.
  • a transparent substrate may be provided on the surface opposite to the side where the concavo-convex structure of the hologram layer is formed” is opposite to the side where the concavo-convex structure of the hologram layer is formed.
  • a mode in which a transparent base material is directly disposed on the side surface, or a mode in which a transparent base material is disposed on another surface opposite to the side on which the concavo-convex structure of the hologram layer is formed via another member Is included.
  • the transparent substrate in this embodiment preferably has a visible light transmittance of 80% or more, and more preferably 90% or more. Since the visible light transmittance of the transparent base material is within the above range, when light is irradiated from the side where the transparent base material of the optical display body is disposed, the transmission type Fourier transform hologram region is passed through the transparent base material. The light can be sufficiently transmitted up to the hologram layer on which is formed. On the other hand, when light is irradiated from the side opposite to the side on which the transparent base material of the optical display body is disposed, the light image converted by the transmission Fourier transform hologram region is displayed on the region through the transparent base material. Can do.
  • the visible light transmittance of the transparent substrate can be measured, for example, by a test method for the total light transmittance of a plastic transparent substrate in accordance with JIS K7361-1.
  • the transparent substrate in this aspect preferably has a relatively low haze value.
  • a specific haze value of the transparent substrate for example, it is preferably within a range of 0.01% or more and 5% or less, and particularly preferably within a range of 0.01% or more and 3% or less. In the range of 0.01% to 1.5%, it is preferable.
  • the haze value of the transparent substrate is within the above range, the optical image converted by the transmission Fourier transform hologram region can be displayed favorably.
  • the haze value of a transparent base material it can measure based on JISK7136, for example.
  • the material for the transparent substrate in this embodiment it is preferable to select a material having the predetermined visible light transmittance and haze value as described above.
  • resin films such as polyethylene terephthalate, polycarbonate, acrylic resin, cycloolefin resin, polyester resin, polystyrene resin, and acrylic styrene resin, and glass such as quartz glass, Pyrex (registered trademark), and synthetic quartz plate.
  • resin films such as polyethylene terephthalate, polycarbonate, acrylic resin, cycloolefin resin, polyester resin, polystyrene resin, and acrylic styrene resin, and glass such as quartz glass, Pyrex (registered trademark), and synthetic quartz plate.
  • the transparent base material in this aspect preferably contains a flame retardant.
  • a flame retardant includes, for example, phosphorus flame retardants, nitrogen flame retardants, metal salt flame retardants, hydroxide flame retardants, inorganic flame retardants such as antimony flame retardants, and silicone flame retardants.
  • Specific flame retardants include, for example, phosphorus flame retardants, nitrogen flame retardants, metal salt flame retardants, hydroxide flame retardants, inorganic flame retardants such as antimony flame retardants, and silicone flame retardants. Arbitrary flame retardants etc. are mentioned.
  • the content of the flame retardant in the transparent substrate is preferably not particularly limited so that the transparent substrate can achieve the above-described predetermined visible light transmittance and haze value.
  • the transparent substrate in this embodiment may contain an ultraviolet absorber, a heat ray absorber, and the like. Deterioration of the hologram layer can be suppressed when the optical display body is exposed to ultraviolet rays, heat rays, or the like.
  • the thickness of the transparent substrate in this embodiment is preferably a thickness that can provide rigidity and strength that can support the hologram layer.
  • the thickness of the transparent substrate is preferably in the range of, for example, 5 ⁇ m to 500 ⁇ m, and more preferably in the range of 10 ⁇ m to 100 ⁇ m.
  • a transparent base material it can change suitably according to the usage type etc. of the optical display body of this aspect.
  • the transparent base material in this embodiment may be subjected to a surface treatment in order to improve the adhesion with other members.
  • a surface treatment examples include corona treatment.
  • the optical display body of this aspect may have an adhesive layer on any one surface.
  • the optical display body of this aspect by having an adhesive layer on one surface of the optical display body, the optical display body of this aspect can be attached to a predetermined position, for example, in front of or behind the vehicle.
  • the optical display body of this embodiment may have an adhesive layer on either surface” refers to the following embodiment.
  • the hologram layer is bonded to the surface opposite to the concavo-convex structure formed on the surface as the transmission Fourier transform hologram region, that is, the surface opposite to the side where the concavo-convex structure of the hologram layer is formed. It may have a layer.
  • the hologram layer may have an adhesive layer on the surface of the concavo-convex structure side formed on the surface as the transmission Fourier transform hologram region, that is, the surface on the side where the concavo-convex structure of the hologram layer is formed.
  • an adhesive layer may be formed so as to fill the concavo-convex structure of the hologram layer, but at this time, a predetermined Fourier transform hologram area of the hologram layer and the adhesive layer are not separated. A difference in refractive index is necessary. This is because the light from the light source can be favorably converted into an optical image by the transmission type Fourier transform hologram area of the hologram layer.
  • the adhesive layer is formed on the surface of the hologram layer opposite to the concavo-convex structure formed on the surface as the transmission Fourier transform hologram region, that is, on the surface opposite to the side where the concavo-convex structure of the hologram layer is formed.
  • the adhesive layer 12 may be formed on the surface of the hologram layer 11 opposite to the side on which the concavo-convex structure is formed.
  • the adhesive layer 12 may be formed on the surface of the hologram layer 11 opposite to the side on which the concavo-convex structure is formed via the transparent base material 13. Point to.
  • the hologram layer may have an adhesive layer on the surface of the concavo-convex structure formed on the surface as the transmission Fourier transform hologram region, that is, the surface of the hologram layer on which the concavo-convex structure is formed.
  • the adhesive layer 12 may be formed on the surface of the hologram layer 11 on which the concavo-convex structure is formed, as shown in FIGS.
  • symbol 13 shown in FIG.9 (b) is a transparent base material.
  • the hologram layer 11 is interposed between the hologram layer and the adhesive layer. Requires a predetermined refractive index difference.
  • the “predetermined refractive index difference” is preferably a refractive index difference that allows the light from the light source to be scattered by the concavo-convex structure of the hologram layer to display a desired optical image, for example.
  • the adhesive layer in this aspect preferably has high transparency.
  • the visible light transmittance is preferably 80% or more, and more preferably 90% or more.
  • the visible light transmittance of the adhesive layer can be measured by, for example, a test method for the total light transmittance of a plastic-transparent material according to JIS K7361-1.
  • the adhesive layer in this aspect preferably has a relatively low haze value.
  • the specific haze value of the adhesive layer is, for example, preferably in the range of 0.01% to 5%, more preferably in the range of 0.01% to 3%, particularly 0. It is preferable to be within the range of 0.01% or more and 1.5% or less.
  • the haze value of the adhesive layer can be measured in accordance with, for example, JIS K7136.
  • the adhesive layer in this embodiment may be an adhesive layer having adhesiveness, or a re-peeling adhesive layer having both adhesive properties and re-peeling properties.
  • the adhesive layer in the present embodiment is an adhesive layer
  • the members constituting the optical display member of the present embodiment may be firmly attached to each other, or the optical display member may be firmly attached to the adherend. it can.
  • the adhesive layer in this embodiment is a re-peeling adhesion layer
  • the optical display of this embodiment can be bonded to a desired member.
  • Such a re-peeling adhesion layer can easily repeat adhesion and peeling without leaving a mark due to an adhesive or the like on the adherend, and can minimize the influence on the adherend.
  • the adhesive layer in this embodiment may contain an ultraviolet absorber or an infrared absorber as necessary.
  • an ultraviolet absorber or an infrared absorber in the adhesive layer, it is possible to prevent the optical display body of this embodiment from being deteriorated by irradiation with ultraviolet rays or infrared rays.
  • the adhesive layer in this aspect may contain a flame retardant. It is suitable when the optical display body of this aspect is used for applications such as vehicles that require flame retardancy. About the kind of flame retardant, since it can be made to be the same as that of the content described in the above-mentioned "(1) Transparent base material” section, description here is abbreviate
  • the thickness of the adhesive layer in the present embodiment can be appropriately adjusted according to the use of the optical display body of the present embodiment, and is not particularly limited.
  • the specific thickness of the adhesive layer is, for example, preferably in the range of 1 ⁇ m to 500 ⁇ m, and more preferably in the range of 2 ⁇ m to 50 ⁇ m.
  • the thickness of the adhesive layer is within the above range, light shielding by the adhesive layer can be suppressed. Therefore, it is possible to suppress a decrease in luminance of the light image converted by the optical display body of this aspect.
  • An optical display body is a member used in an optical display device for a vehicle, and includes a transmission type Fourier transform hologram region in which a Fourier transform image obtained by Fourier transforming an original image is recorded.
  • the transmission type Fourier transform hologram region is a region where light incident from the light source is transmitted and converted into an optical image. More than 50% of all the optical image patterns represented by the optical image are converted into the transmission type Fourier transform hologram region.
  • the angle with respect to the optical axis of the 0th-order light It is a member characterized in that it is located in a region where the angle formed by the largest light beam is within a range of ⁇ 5 °.
  • the inventors of the present invention made further studies on the same problems as those described in the section “A. First Embodiment” above.
  • the optical axis of the zeroth order light when the light from the light source passes through the transmission Fourier transform hologram region and 50% or more of all the optical image patterns represented by the light image, and the transmission Fourier transform.
  • the angle formed by the light beam having the largest angle with respect to the optical axis of the 0th-order light is located in an area within a range of ⁇ 5 °.
  • the pitch of the concavo-convex structure formed on the surface of the transmission type Fourier transform hologram region is such that the optical image displayed by irradiating light to the transmission type Fourier transform hologram region has an optical image pattern separated from the 0th order light.
  • it tends to be smaller. That is, in order to display an optical pattern located at a position away from the 0th-order light, it is necessary to make the concavo-convex structure in the transmission Fourier transform hologram region more finely designed.
  • the concavo-convex structure in the transmission Fourier transform hologram region is comparatively small and fine with a width of the concave portion of about 3 ⁇ m.
  • the reproducibility at the time of forming the concave portion in the concave-convex structure from the original mold to the resin tends to be lowered. Therefore, in order to display an optical image pattern separated from the 0th-order light, it is necessary to form a fine concavo-convex structure as a transmission type Fourier transform hologram region, but it is difficult to maintain a desired reproducibility. For this reason, it is considered that the brightness of the light image pattern located in the region close to the 0th-order light is improved.
  • “50% or more of all the optical image patterns represented by the optical image” means, for example, that the optical image in this aspect is composed of a large number of dots as shown in FIG. Means 50% or more of all dots constituting all light images.
  • the ratio in all the light image patterns which a light image represents can be calculated by counting the number of dots which comprise a light image pattern, for example.
  • defining “50% or more of all the light image patterns represented by the light image” and the ratio of the light image pattern improves the luminance of 50% or more of all the light image patterns represented by the light image. By doing so, it is intended to improve the luminance of at least the main part of the optical image displayed by the optical display. For example, as shown in FIGS. 6A and 6B, 50% or more of the optical image pattern can be recognized, so that the meaning of the optical image pattern can be roughly grasped.
  • 50% or more of all the light image patterns represented by the light image may be located in a predetermined region, but among them, 60% or more of all the light image patterns represented by the light image are preferable. In particular, it is preferably 70% or more, more preferably 80% or more, of all the light image patterns represented by the light image. In this embodiment, it is most preferable that all the optical image patterns represented by the optical image are located in a predetermined region.
  • 50% or more of all the optical image patterns represented by the optical image are the optical axis of the zero-order light when the light from the light source passes through the transmission type Fourier transform hologram region, and the transmission type.
  • the angle formed with the light beam having the largest angle with respect to the optical axis of the zeroth-order light is located in a region within a range of ⁇ 5 °.
  • the predetermined position is the optical axis H of the 0th-order light 20X and the transmission Fourier transform hologram area.
  • the transmitted light when the light from the light source 30 is transmitted, it indicates a region R ab in which the angle formed by the light beams Ha and Hb having the largest angle with respect to the optical axis H of the zero-order light 20X is within a range of ⁇ 5 °. .
  • a light source with ⁇ 532 nm was used.
  • the optical display of this aspect has a transmission Fourier transform hologram region in which a Fourier transform image obtained by Fourier transforming the original image is recorded.
  • a transmission type Fourier transform hologram region is a region where light incident from a light source is transmitted and converted into an optical image.
  • the transmission Fourier transform hologram region in this aspect can be the same as that described in the section “A. First Embodiment 1. Transmission Fourier Transform Hologram Region”. Is omitted.
  • optical display body of this aspect should just have the transmission Fourier-transform hologram area
  • the transmission Fourier transform hologram region in this aspect can be the same as the contents described in the above section “A. First embodiment 2. Arbitrary member”, so description thereof is omitted here. .
  • the optical display of the present invention is suitable for displaying a light image in a relatively bright environment such as outdoors in the daytime, for example.
  • the optical display body of the present invention can be mounted on a vehicle.
  • the vehicle travels only with the driving force of the gasoline engine, the vehicle that travels with the gasoline engine and the motor driving force, the vehicle that travels only with the driving force of the motor, or the driving force of the diesel engine.
  • Vehicles are included.
  • the optical display of the present invention can be mounted on a two-wheeled vehicle or the like.
  • motorcycles include not only motorcycles but also bicycles. That is, the optical display body of the present invention can be mounted on various moving bodies.
  • the manufacturing method of the optical display body of the present invention may be any method as long as the above-described desired optical display body can be obtained, and generally known methods can be employed. Note that a specific method for manufacturing an optical display can be the same as that disclosed in, for example, Japanese Patent Application Laid-Open No. 2015-060113, and thus description thereof is omitted here.
  • An optical display apparatus is an apparatus used in a vehicle, and includes the above-described optical display body and an irradiation member serving as a light source of light irradiated on the optical display body. It is.
  • optical display body in this invention can be divided into the following 1st embodiment and 2nd embodiment.
  • An optical display body is a member used in an optical display device for a vehicle, and includes a transmission type Fourier transform hologram region in which a Fourier transform image obtained by Fourier transforming an original image is recorded.
  • the Fourier transform hologram region is a region where light incident from a light source is transmitted and converted into an optical image, and the ratio of the number of pixels of the original picture of the original image to the total number of pixels of the original image is 1200/1 million or less. It is a member characterized by being.
  • the optical display body of the second embodiment is a member used in an optical display device for a vehicle, and has a transmission type Fourier transform hologram region in which a Fourier transform image obtained by Fourier transforming an original image is recorded,
  • the transmission type Fourier transform hologram region is a region where light incident from the light source is transmitted and converted into an optical image. More than 50% of all the optical image patterns represented by the optical image are converted into the transmission type Fourier transform hologram region.
  • the angle with respect to the optical axis of the 0th-order light It is a member characterized in that it is located in a region where the angle formed by the largest light beam is within a range of ⁇ 5 °.
  • optical display body of the first embodiment and the optical display body of the second embodiment are described in “I. Optical display body A. First embodiment” and “I. Optical display body B. Second embodiment”. Since it can be the same as the content described in the section, the description here is omitted.
  • the irradiation member in this invention is a member used as the light source of the light irradiated to an optical display body.
  • the irradiation member in the present invention is not particularly limited as long as it is a member that can display a desired optical image by irradiating light to the transmission Fourier transform hologram region in the optical display body.
  • the irradiation member which can irradiate a laser beam is mentioned, for example.
  • the light irradiated by the irradiation member used in the present invention usually has a wavelength region in the visible light region.
  • the specific wavelength range of light can be appropriately selected according to the optical image to be displayed by the optical display, the use of the optical display device, and the like, and is not particularly limited.
  • the luminance of the light image displayed from the optical display device can be improved.
  • the “intensity of light irradiated from the irradiation member” can be appropriately adjusted according to the use of the optical display device of the present invention, and is not particularly limited.
  • an optical image having a predetermined brightness can be displayed by the optical display device, and when the optical display device is used in a vehicle, when it enters the eyes of a pedestrian or the driver of another vehicle,
  • the light intensity is preferably such that it does not adversely affect the human body. Specifically, it is preferably within a range of 0.1 mW to 5 mW.
  • optical display device of the present invention only needs to have the optical display body and the irradiation member described above, and may also have arbitrary members as necessary. Hereinafter, arbitrary members in the present invention will be described.
  • the optical display device may have a mirror that reflects light serving as a light source irradiated from the irradiation member.
  • Examples of the mirror in the present invention include a galvano mirror, a Micro Electro Mechanical System scanner called MEMS, a polygon mirror, and the like. Note that a specific mirror can be the same as the content disclosed in, for example, Japanese Patent Laid-Open No. 2016-88397, and thus description thereof is omitted here.
  • the optical display device may have a control unit.
  • the control unit for example, it is possible to control the light emitted from the irradiation member.
  • the control unit includes a central processing unit called a CPU, a read only memory called a ROM holding a program operating on the CPU, and a random access memory called a RAM which is a work area of the CPU.
  • a CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • Etc. a general-purpose information processing mechanism.
  • the control unit cooperates and operates with each connected component. Note that a specific control unit can be the same as the content disclosed in, for example, Japanese Patent Application Laid-Open No. 2016-88397, and the description thereof is omitted here.
  • the optical display device may have an imaging unit.
  • the optical display device of the present invention includes the imaging unit, for example, when the optical display device is installed in a vehicle, it is possible to acquire moving image images in front of or behind the vehicle.
  • the moving image acquired by the imaging unit is transmitted to the above-described control unit, and image analysis is performed in the control unit, and for example, a vehicle in front of or behind the vehicle can be extracted. Therefore, when the optical display device of the present invention is installed in a vehicle, it is possible to display accurate information on the vehicle in front of and behind the vehicle.
  • a specific imaging unit can be the same as the content disclosed in, for example, Japanese Patent Application Laid-Open No. 2016-88397, and thus description thereof is omitted here.
  • the optical display device may have a ranging unit.
  • the optical display device of the present invention includes the distance measuring unit, for example, when the optical display device is installed in a vehicle, the distance between the vehicle in front of and behind the vehicle can be measured.
  • approach information and the like can be displayed for other vehicles based on the distance measured by the distance measuring unit.
  • a specific distance measuring unit can be the same as that disclosed in, for example, Japanese Patent Laid-Open No. 2016-88397, and thus description thereof is omitted here.
  • the optical display apparatus may have a steering sensor.
  • the steering sensor is a sensor that detects an operation of a steering mounted on the vehicle.
  • the steering angle detected by the driver can be detected by the steering sensor, and the detected data can be transmitted to the control unit described above. Therefore, by having the steering sensor, it is possible to determine an action such as the driver trying to change the lane, and to notify the driver of the following vehicle that the lane change is to be performed.
  • a specific steering sensor can be the same as the content disclosed in, for example, Japanese Patent Application Laid-Open No. 2016-88397, and thus the description thereof is omitted here.
  • the optical display device of the present invention is suitable for displaying a light image in a relatively bright environment such as outdoors in the daytime. Specifically, it can be used for a vehicle.
  • description here is abbreviate
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.
  • the resist layer was exposed to 7 patterns created by a computer to easily solubilize the exposed portion of the resist resin. Thereafter, the developer was sprayed (spray development) to remove the easily soluble portion, and a resist pattern was formed.
  • the portion of the chromium thin film not covered with the resist was removed by dry etching to expose the quartz substrate.
  • the exposed quartz substrate was etched to form a recess in the quartz substrate.
  • the resist thin film was dissolved and removed to obtain an original plate having a concave portion formed by etching the quartz base material and a convex portion in which the quartz substrate and the chromium thin film remained without being etched.
  • a polycarbonate sheet having a thickness of 0.5 mm was prepared as a transparent substrate.
  • a composition for forming a hologram layer UV curable acrylate resin: refractive index 1.52, measurement wavelength 633 nm
  • the above-described original plate having unevenness was placed on the coating film and pressed.
  • mold of the original was formed.
  • stacking, pressing, curing and peeling of the original plate were repeated to form a concavo-convex structure in a 15 mm square region.
  • an Al layer having a film thickness of 100 nm was formed on the entire surface of the hologram layer on the uneven surface side by a sputtering method to obtain an optical display.
  • the laser was Coherent Genesis TM 532-1000 S and the output was 50 mW.
  • a screen is installed at a position 1 m from the optical display body so that the laser light transmitted through the optical display body is formed as a predetermined optical image, and an optical power meter 8230E manufactured by ADC Corporation is installed. Used to measure the light intensity of the light image. The result is as described in FIG.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Holo Graphy (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

本発明は、車両用の光学表示装置に用いられる光学表示体であって、原画像をフーリエ変換したフーリエ変換像が記録された透過型フーリエ変換ホログラム領域を有し、上記透過型フーリエ変換ホログラム領域は、光源から入射した光を透過させて光像へ変換する領域であり、上記原画像の全画素数に対する上記光像の画素数の比率は、1200/100万以下であることを特徴とする光学表示体を提供する。

Description

光学表示体および光学表示装置
 本発明は、例えば路面等に光像を表示する光学表示体および光学表示装置に関する。
 近年、車両の前方や後方に、車両の接近情報や進路情報等を路面に表示する光学表示装置を備える技術が注目されている。当該技術により、例えば、車両同士や車両と歩行者との接触事故等の発生を抑制することが可能となる。
 例えば、特許文献1には、移動体に搭載され、路面を照明する光学装置であって、レーザー光源と、上記レーザー光源から射出されたレーザー光が入射され、路面に光を出射することで照明を行う光学素子とを有する光学装置について開示されている。また、特許文献2には、光源である半導体発光素子と、上記半導体発光素子からの出射光を車両の前方に透過させる複数の回折格子部とを有する路面描画用灯具ユニットについて開示されている。
 ところで、特許文献1に開示された光学装置では、光学素子としてホログラムを用いることができる旨記載されている。また、特許文献1においては、光学素子として用いられるホログラムについて、例えば、エンボスホログラム、体積型ホログラム、電子ホログラム、計算機合成ホログラムであるフーリエ変換ホログラム等が挙げられている。
特開2016-88397号公報 特開2016-135629号公報
 光学表示装置を用いて、車両の接近情報や進路情報等を光像として路面に表示するにあたっては、当該車両付近にいる歩行者や、当該車両の後続車両の運転手等が、当該接近情報や進路情報等を目視により十分に認識できる程度に、光像の輝度が高いことが求められる。本発明の発明者等は、光学表示装置により路面に表示される光像の輝度について検討を重ねたところ、例えば、昼間の屋外等の明るい環境下では、太陽光等の影響により、路面に表示された光像を目視により十分に認識することができないという課題を発見した。
 本発明は、上記課題に鑑みてなされたものであり、例えば、昼間の屋外等の明るい環境下でも、光像として表示された情報を目視により十分に認識することができる程度に、高い輝度を有する光像を表示することが可能な光学表示体および光学表示装置を提供することを主目的とする。
 本発明は、車両用の光学表示装置に用いられる光学表示体であって、原画像をフーリエ変換したフーリエ変換像が記録された透過型フーリエ変換ホログラム領域を有し、上記透過型フーリエ変換ホログラム領域は、光源から入射した光を透過させて光像へ変換する領域であり、上記原画像の全画素数に対する上記原画像の原絵柄の画素数の比率は、1200/100万以下であることを特徴とする光学表示体を提供する。
 本発明によれば、原画像の全画素数に対する光像の画素数を所定の範囲とすることで、光源から照射される光のエネルギー量を増やすことなく、光像の輝度を向上させることができる。したがって、例えば、本発明の光学表示体を車両に搭載することで、昼間の屋外等の比較的明るい環境下であっても、進路情報等の光像を所望の輝度で路面に表示することができ、歩行者や後続車両の運転手等が、当該光像を目視により十分に認識することが可能となる。
 本発明においては、上記光像が表す全ての光像絵柄の50%以上は、上記透過型フーリエ変換ホログラム領域を上記光源からの光が透過したときの0次光の光軸と、上記透過型フーリエ変換ホログラム領域を上記光源からの光が透過したときの透過光のうち、上記0次光の光軸に対する角度が最も大きい光線とのなす角度が、±5°の範囲内となる領域に位置することが好ましい。光像が表わす全ての光像絵柄の50%以上が、0次光を中心とした所定の範囲内に位置することにより、光源から照射される光のエネルギー量を増やすことなく、光像の輝度をより効果的に向上させることができるからである。
 本発明は、車両用の光学表示装置に用いられる光学表示体であって、原画像をフーリエ変換したフーリエ変換像が記録された透過型フーリエ変換ホログラム領域を有し、上記透過型フーリエ変換ホログラム領域は、光源から入射した光を透過させて光像へ変換する領域であり、上記光像が表す全ての光像絵柄の50%以上が、上記透過型フーリエ変換ホログラム領域を上記光源からの光が透過したときの0次光の光軸と、上記透過型フーリエ変換ホログラム領域を上記光源からの光が透過したときの透過光のうち、上記0次光の光軸に対する角度が最も大きい光線とのなす角度が、±5°の範囲内となる領域に位置することを特徴とする光学表示体を提供する。
 本発明によれば、光像が表わす全ての光像絵柄の50%以上が、0次光を中心とした所定の範囲内に位置することにより、光源から照射される光のエネルギー量を増やすことなく、光像の輝度を向上させることができる。したがって、例えば、本発明の光学表示体を車両に搭載することで、昼間の屋外等の比較的明るい環境下であっても、進路情報等の光像を所望の輝度で路面に表示することができ、歩行者や後続車両の運転手等が、当該光像を目視により十分に認識することが可能となる。
 本発明においては、上記光像が表す全ての光像絵柄の70%以上が、上記光像を、0次光を通る任意の直線により2つの領域に分けたとき、上記2つの領域のいずれか一方の領域に位置することが好ましい。光像が表す全ての光像絵柄の70%以上の位置を、光学表示体の手前側に配置することで、当該光像が表す全ての光像絵柄の70%以上を、高い輝度で表示することが可能となる。
 本発明は、車両に用いられる光学表示装置であって、上述した光学表示体と、上記光学表示体に照射される光の光源となる光照射部とを有することを特徴とする光学表示装置を提供する。
 本発明によれば、上述した光学表示体を用いることで、光源から照射される光のエネルギー量を増やすことなく、光像の輝度を向上させることができる。したがって、例えば、本発明の光学表示装置を車両に搭載することで、昼間の屋外等の比較的明るい環境下であっても、進路情報等の光像を所望の輝度で路面に表示することができ、歩行者や後続車両の運転手等が、当該光像を目視により十分に認識することが可能となる。
 本発明は、例えば、昼間の屋外等の明るい環境下でも、光像として表示された情報を目視により十分に認識することができる程度に、高い輝度を有する光像を表示することが可能な光学表示体および光学表示装置を提供することができるという効果を奏する。
本発明の光学表示体を説明するための説明図である。 本発明の光学表示体を説明するための説明図である。 本発明の光学表示体を搭載した車両を示す概略斜視図である。 原画像の全画素数に対する光像の画素数の比率を示すグラフである。 本発明の光学表示体を説明するための説明図である。 本発明の光学表示体を用いて表示された光像を説明するための説明図である。 本発明の光学表示体を説明するための説明図である。 本発明の光学表示体の一例を示す概略斜視図である。 本発明の光学表示体の他の例を示す概略斜視図である。 本発明の光学表示体を説明するための説明図である。
 以下、本発明の光学表示体および光学表示装置について説明する。
I.光学表示体
 本発明の光学表示体は、次の第1実施態様および第2実施態様に分けることができる。
 第1実施態様の光学表示体は、車両用の光学表示装置に用いられる部材であって、原画像をフーリエ変換したフーリエ変換像が記録された透過型フーリエ変換ホログラム領域を有し、上記透過型フーリエ変換ホログラム領域は、光源から入射した光を透過させて光像へ変換する領域であり、上記原画像の全画素数に対する上記原画像の原絵柄の画素数の比率は、1200/100万以下であることを特徴とする部材である。
 また、第2実施態様の光学表示体は、車両用の光学表示装置に用いられる部材であって、原画像をフーリエ変換したフーリエ変換像が記録された透過型フーリエ変換ホログラム領域を有し、上記透過型フーリエ変換ホログラム領域は、光源から入射した光を透過させて光像へ変換する領域であり、上記光像が表す全ての光像絵柄の50%以上が、上記透過型フーリエ変換ホログラム領域を上記光源からの光が透過したときの0次光の光軸と、上記透過型フーリエ変換ホログラム領域を上記光源からの光が透過したときの透過光のうち、上記0次光の光軸に対する角度が最も大きい光線とのなす角度が、±5°の範囲内となる領域に位置することを特徴とする部材である。
 以下、本発明の光学表示体について、上述した第1実施態様および第2実施態様に分けて説明する。
A.第1実施態様
 本態様の光学表示体は、車両用の光学表示装置に用いられる部材であって、原画像をフーリエ変換したフーリエ変換像が記録された透過型フーリエ変換ホログラム領域を有し、上記透過型フーリエ変換ホログラム領域は、光源から入射した光を透過させて光像へ変換する領域であり、上記原画像の全画素数に対する上記原画像の原絵柄の画素数の比率は、1200/100万以下であることを特徴とする部材である。
 以下、本態様の光学表示体を、図面等を参照しながら説明する。但し、本発明は多くの異なる態様で実施することが可能であり、以下に例示する実施の態様の記載内容に限定して解釈されるものではない。また、図面は説明をより明確にするため、実施の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。
 図1は、本態様の光学表示体を説明するための説明図である。図1に例示するように、本態様においては、所定の原絵柄20’が描画された原画像10’をフーリエ変換することで、フーリエ変換像10が記録された透過型フーリエ変換ホログラム領域を有する光学表示体1を得ることができる。透過型フーリエ変換ホログラム領域に記録されたフーリエ変換像10は、A-A線断面を示す拡大図のように、表面が凹凸構造を有する。具体的には、フーリエ変換像は、特定の方向に並列して延びる曲線状または直線状の多数の凸部または凹部から構成される。なお、図1に示す凹凸構造は、原画像のデータに基づいて4値化されたフーリエ変換像を示す例である。
 図2は、本態様の光学表示体を説明するための説明図であり、図1に示す光学表示体1に光を透過させて光像を映し出す一例を示す説明図である。図2に例示するように、本態様の光学表示体に、光源30から光を照射すると、光学表示体1の透過型フーリエ変換ホログラム領域に光が入射し、透過型フーリエ変換ホログラム領域に記録されたフーリエ変換像10により光が散乱して所望の光像20へ変換される。ここで、光学表示体1によって表示された光像20の光像絵柄は、図2の拡大図で示すように、多数のドットにより構成される。なお、光学表示体への光の入射は、フーリエ変換像が記録された凹凸面側からであっても良く、あるいは、凹凸面とは反対側からであっても良い。また、図2の符号20Xは0次光を示す。
 本態様においては、例えば、図3に示すように、光学表示体1を車両100の後方に搭載することで、進路情報等を光像として路面に表示して、歩行者や後続車両の運転手に対して知らせることができる。なお、図3において説明していない符号については、上述した図2と同様とすることができるため、ここでの記載は省略する。
 図3に示すように、光学表示体1を車両100に搭載して、車両の接近情報や進路情報等を光像として路面に表示し、歩行者や他の車両の運転手等に対して知らせる技術は、例えば上述した特許文献1、2にて提案されている。一方、本発明の発明者等は、路面に表示される光像の見やすさについて着目し検討した。その結果、路面に表示される光像は、周囲の明るさ応じて見え方に違いが生じるという課題を発見した。具体的には、例えば、夜間等の周囲が暗い環境下では、路面に表示される光像は明るく見え、目視により十分に認識することができるのに対し、昼間等の周囲が比較的明るい環境下では、路面に表示される光像を目視により十分に認識することができないという課題を発見した。そこで本発明の発明者等は、上記課題について検討を重ねたところ、周囲が明るい環境下において、路面に表示される光像が見えにくいのは、光像の輝度が低いことに起因するという知見を得た。しかしながら、光学表示体を車両に搭載する場合、光学表示体の駆動電力は車両のバッテリーから供給されるため、路面に表示される光像の輝度を向上させために、光学表示体に光を照射する光源のエネルギー量を上げることには限界がある。また、仮に光学表示体に光を照射する光源のエネルギー量を上げて、路面に表示される光像の輝度を向上させたとしても、高いエネルギー量を有する光が、歩行者や他の車両の運転手等の目に直接入り込むおそれがある。
 そこで本発明の発明者等は、上記課題について更なる検討を重ねた。その結果、原画像の全画素数に対する原画像の原絵柄の画素数を所定の範囲とすることで、光源から照射される光のエネルギー量を増やすことなく、光像の輝度を向上させることができるという新たな知見を得た。具体的には、図1に示す原画像10’の全画素数に対する原絵柄20’の画素数を、比較的少なくすることにより、光像の輝度を向上させることができるという新たな知見を得た。
 このように、本態様においては、原画像の全画素数に対する原画像の原絵柄の画素数が、比較的少ない所定の範囲である場合に、光像の輝度を向上させることができるという効果を奏するが、この理由としては、次のようなことが推測される。すなわち、光学表示体に光源から光を照射した際の、光学表示体に入射する光の光強度Aと、光学表示体から出射する光強度Bとの割合をB/Aとする。ここで、実験により上記割合B/Aを調べたところ、B/Aは0.5以上0.65以下の範囲内となった。なお、当該割合は、光学表示体に記録された原画像の原絵柄により変化するが、上述のように、光学表示体から出射する光強度は、光学表示体に入射した光強度よりも減少することが分かる。次に、光学表示体により表示される光像の1画素あたりの輝度は、原画像の原絵柄の画素数をNとしたとき、B/Nとなる。そうすると、原画像の原絵柄の画素数を少なくなることで、光像の1画素あたりの輝度を高くすることができると推測される。
 次に、本発明の発明者等は、原画像の全画素数に対する原画像の原絵柄の画素数の比率について、実際に光学表示体を作成して目視により比較実験を行った。具体的には、原画像の全画素数が100万画素であり、レーザー光源の出力が50mWの条件下にて、原画像の原絵柄の画素数がどの程度であれば、光像の輝度を向上することができるかを検討した。その結果、光像の画素数が3000画素以下のときに、光像の輝度を向上することができることが分かった。したがって、本態様においては、原画像の全画素数に対する原画像の原絵柄の画素数の比率を、3000/100万以下とする。また、本発明においては、中でも、原画像の全画素数に対する光像の画素数の比率を、1200/100万以下とすることが好ましく、中でも500/100万以下とすることが好ましく、特に100/100万以下とすることが好ましい。光像の輝度をより効果的に向上させることができ、周囲が明るい環境下でも目視により光像を十分に認識することができるからである。
 なお、本態様における原画像の全画素数に対する光像の画素数の比率は、次のようにして算出することができる。すなわち、原画像は、通常、モノクロのビットマップファイルであるため、原画像の全画素数および原画像の原絵柄の画像数を数えることが可能である。そのため、得られた原画像の全画素数および原画像の原絵柄の画素数を用いて、上記比率を算出することが可能となる。
 また、本発明の発明者等は、原画像の全画素数に対する光像の画素数の比率について、次のような方法からも評価した。すなわち、原画像の全画素数が100万画素であり、レーザー光源の出力が50mWの条件下にて、様々な光像の画素数における1画素の光強度を測定した。その結果、図4に示すようなグラフが得られた。このとき、図4において破線で囲った領域、すなわち、光像の画素数が1200画素以下の領域では、光像の輝度を飛躍的に向上させることができた。この結果に基づいて、本態様においては、上記原画像の全画素数に対する上記光像の画素数の比率を、1200/100万以下と規定する。
 また、本態様においては、上記光像が表す全ての光像絵柄の50%以上は、上記透過型フーリエ変換ホログラム領域を上記光源からの光が透過したときの0次光の光軸と、上記透過型フーリエ変換ホログラム領域を上記光源からの光が透過したときの透過光のうち、上記0次光の光軸に対する角度が最も大きい光線とのなす角度が、±5°の範囲内となる領域に位置することが好ましい。光像が表わす全ての光像絵柄の50%以上が、0次光を中心とした所定の範囲内に位置することにより、光源から照射される光のエネルギー量を増やすことなく、光像の輝度をより効果的に向上させることができるからである。なお、具体的な説明については、後述する「B.第2実施態様」の項に記載するため、ここでの記載は省略する。
 さらに、本態様においては、上記光像が表す全ての光像絵柄の70%以上が、上記光像を、0次光を通る任意の直線により2つの領域に分けたとき、上記2つの領域のいずれか一方の領域に位置することが好ましい。
 ここで、「光像が表わす全ての光像絵柄の70%以上が、光像を、0次光を通る任意の直線により2つの領域に分けたとき、2つの領域のいずれか一方の領域に位置する」とは、次のようなことを意味する。まず、「光像を、0次光を通る任意の直線により2つの領域に分ける」とは、0次光を通る直線であって、かつ、光像を2つの領域に分けたときに、いずれか一方の領域で、光像が表わす光像絵柄の割合が最大となるような直線を引いて、光像を2つの領域に分けることを意味する。したがって、本態様における「光像が表わす全ての光像絵柄の70%以上が、光像を、0次光を通る任意の直線により2つの領域に分けたとき、2つの領域のいずれか一方の領域に位置する」とは、上述したような直線を引いたときに、2つの領域のうちのいずれか一方の領域で最大となる、光像が表わす光像絵柄の割合が70%以上となることを意味する。
 具体的には、図5(a)に示すように、光像20を2つの領域に分け、0次光20Xを通る任意の直線は、例えば符号L、LおよびLで示す直線が挙げられるが、本態様においては、2つの領域のうちいずれか一方の領域において、光像絵柄の割合が最大となる直線により、光像を2つの領域に分けることとなる。図5(b)は、図5(a)における直線L、LおよびLにより光像20を2つの領域に分けたときの絵柄を示す。図5(b)に示すように、直線L、LおよびLにより光像20を2つの領域に分けたとき、2つの領域のうちのいずれか一方の領域に位置する光像20の光像絵柄の割合は、直線Lにより光像20を2つの領域に分けたときの光像20の光像絵柄20L1が、直線L、Lにより光像20を2つの領域に分けたときの光像20の光像絵柄20L2、20L3に比べて大きく、最大となることが分かる。したがって、図5(a)においては、直線Lにより、光像20を2つの領域に分けることとなる。なお、図5において説明していない符号については、上述した図2と同様とすることができるため、ここでの記載は省略する。
 本態様においては、0次光を通る任意の線により、光学表示体によって表示された光像を2つの領域に分けたとき、2つの領域のいずれか一方の領域に、光像が表す全ての光像絵柄の70%以上が位置することで、次のような効果を奏する。例えば、図5(a)、(b)に示すように、直線Lにより光像20を2つの領域に分け、光像20が表す全ての光像絵柄の70%以上となる光像絵柄20L1が一方の領域に位置するように設計し、当該光像絵柄20L1が、光学表示体1の手前側となるように配置することで、当該光像絵柄20L1を、高い輝度で表示することが可能となる。これは、光の強度は、距離の自乗に反比例するため、例えば図5のRで示す領域の光の強度は、Rで示す領域の光の強度より高くなるという知見に基づいており、光像が表す全ての光像絵柄の70%以上を光学表示体の手前側の所定の領域に配置することで、本発明の効果をより顕著なものとすることができる。
 ここで、「光学表示体の手前側の所定の領域」とは、光像を2つの領域に分けるための任意の直線と、光学表示体とを平行にしたとき、光学表示体より近い方の領域を指す。したがって、例えば図5(a)に示すように、直線Lと光学表示体1とを平行にしたときの、図5(b)で示す光像の光像絵柄20L1が位置する領域Rを指す。
 また、「光像が表す全ての光像絵柄の70%以上」とは、次のようなことを意味する。例えば、本態様における光像は、図2に示すように、多数のドットにより構成されるが、このとき表示される全ての光像を構成する全てのドットのうちの70%以上のドットを意味する。なお、光像が表わす全ての光像絵柄における割合は、例えば、光像絵柄を構成するドットの数を数えることにより算出することができる。
 本態様において、「光像が表す全ての光像絵柄の70%以上」と光像絵柄の割合を規定することは、当該光像が表す全ての光像絵柄の70%以上の輝度を向上させることで、光学表示体により表示される光像の、少なくとも主要となる部分の輝度を向上させることを意図している。例えば、図6(a)、(b)に示すように、光像絵柄の70%以上が認識できることで、当該光像絵柄の意味合いを概ね把握することが可能であることに起因する。
 本態様においては、光像が表す全ての光像絵柄の70%以上が、所定の領域に位置していれば良いが、中でも光像が表す全ての光像絵柄の80%以上であることが好ましく、特に光像が表す全ての光像絵柄の90%以上であることが好ましい。また、本態様においては、光像が表わす全ての光像絵柄が所定の領域に位置していることが最も好ましい。光像が表す全ての光像絵柄の上記割合が、所定の領域に位置していることにより、当該領域が光学表示体の手前側となるように光学表示体を設置することで、より多くの光像絵柄の輝度を向上させることができる。したがって、例えば、本態様の光学表示体を車両に用いた際に、進路情報等を光像として路面に明確に表示し、歩行者や他の車両の運転手の視認性を向上することができる。なお、図6(a)、(b)において説明していない符号については、図2と同様とすることができるため、ここでの記載は省略する。
 本態様において、光像が表す全ての光像絵柄の70%以上が、光像を、0次光を通る任意の直線により2つの領域に分けたとき、2つの領域のいずれか一方の領域に位置するためには、本態様の光学表示体に記録する原画像の原絵柄の位置を調整することが好ましい。なお、具体的な位置については、原画像における原絵柄の位置や、表示しようとする光像絵柄の方向等に応じて適宜選択することができる。具体的には、原画像の中心を通る直線を引き、当該直線により原画像を2つの領域に分けたとき、2つの領域のいずれか一方の領域に原絵柄を配置する。次いで、当該直線が投影面と水平になるように光学表示体の向きを調整し、光学表示体に光源からの光を照射する。そうすると、光学表示体により表示された光像において、0次光を通りかつ光学表示体に水平となる直線よりも、光学表示体側の領域に、光学絵柄を配置することが可能となる。
 以下、本態様の光学表示体について詳細に説明する。
1.透過型フーリエ変換ホログラム領域
 本態様の光学表示体は、原画像をフーリエ変換したフーリエ変換像が記録された透過型フーリエ変換ホログラム領域を有する。このような透過型フーリエ変換ホログラム領域は、光源から入射した光を透過させて光像へ変換する領域である。
 本態様における透過型フーリエ変換ホログラム領域は、原画像をフーリエ変換したフーリエ変換像が記録されており、通常、表面に凹凸構造を有する。本態様の光学表示体は、透過型フーリエ変換ホログラム領域の表面の凹凸構造により、光源から入射した光を複数の方向に回折し、原画像に基づく所望の光像へと変換することができる。すなわち、本態様における透過型フーリエ変換ホログラム領域は、フーリエ変換レンズとして機能する。なお、上記機能について、フーリエ変換レンズ機能と称して説明する場合がある。
 透過型フーリエ変換ホログラム領域の表面の凹凸構造は、光像として表示される原画像のデータに基づいて多値化されたフーリエ変換像である。このような凹凸構造は、通常、特定の方向に並列して延びる曲線状または直線状の多数の凸部または凹部から構成される。
 透過型フーリエ変換ホログラム領域の表面の凹凸構造の高低差は、入射した光を所望の光像に変換することができる程度であれば良く、特に限定されない。具体的な凹凸構造の高低差としては、例えば、0.5μm以上1.5μm以下の範囲内とすることができ、中でも0.6μm以上1.2μm以下の範囲内であることが好ましい。凹凸構造の高低差が上記範囲内であることにより、入射した光を安定的に所望の光像へと変換することが可能である。なお、ここでの凹凸構造の高低差とは、凹凸構造において最も高い凸部の表面から最も深い凹部の表面までの距離を指し、例えば、図1の符号Tで示す距離とする。
 本態様における透過型フーリエ変換ホログラム領域は、例えば、図7(a)に示すように、単一のフーリエ変換領域Rから構成されていても良く、図7(b)に示すように、単一のフーリエ変換領域Rを複数配列して拡大した大判のフーリエ変換領域Rから構成されていても良い。なお、図7(a)、(b)の符号20で示す矢印は、単一のフーリエ変換領域Rまたは大判のフーリエ変換領域Rにより発現される光像である。本態様においては、透過型フーリエ変換ホログラム領域が、大判のフーリエ変換領域であることが好ましい。本態様の光学表示体により表示される光像を拡大させることができ、より視認性を向上させることが可能となる。
 本態様において、透過型フーリエ変換ホログラム領域に光を照射する光源は、通常、点光源である。点光源としては、例えば、レーザー光源が挙げられる。点光源の波長は特に限定されず、透過型フーリエ変換ホログラム領域がフーリエ変換レンズ機能を良好に発揮できることが好ましい。本態様においては、点光源の波長が、一波長の単色光であっても良く、多波長を含む光であっても良く、さらには白色光であっても良い。
 本態様における透過型フーリエ変換ホログラム領域は、表面に凹凸構造を有する。ここで、透過型フーリエ変換ホログラム領域の凹凸構造が形成される層を、以下、ホログラム層と称して説明する場合がある。ホログラム層は、例えば、図1に示すように符号11とする。
 本態様におけるホログラム層は、透過型フーリエ変換ホログラム領域として表面に凹凸構造を形成することができ、所望のフーリエ変換レンズ機能を発揮することができる材料から構成されることが好ましい。また、本態様におけるホログラム層は、所定の屈折率を示す材料から構成されることが好ましい。ホログラム層の屈折率は、本態様の光学表示体の用途等に応じて適宜選択することができるため、特に限定されない。また、ホログラム層の屈折率の基準となる波長は、例えば400nm以上750nm以下の範囲内から適宜選択することができ、特に限定されない。本態様においては、中でも、波長555nmにおける屈折率が1.3以上2.0以下の範囲内であることが好ましく、特に1.33以上1.8以下の範囲内であることが好ましい。なお、ホログラム層の屈折率は、例えば分光エリプソメーターを用いて測定することができる。
 本態様におけるホログラム層の材料としては、例えば、一般的なレリーフ型ホログラムの形成に用いられる樹脂材料が挙げられる。具体的な樹脂材料としては、例えば、熱硬化性樹脂、熱可塑性樹脂、紫外線硬化性樹脂、電離放射線硬化型樹脂等が挙げられる。
 本態様におけるホログラム層は、上述した材料以外にも、必要に応じてその他の材料を含んでいても良い。その他の材料としては、例えば、光重合開始剤、重合禁止剤、劣化防止剤、可塑剤、滑剤、染料や顔料等の着色剤、増量やブロッキング防止等の体質顔料や樹脂等の充填剤、界面活性剤、消泡剤、レベリング剤、チクソトロピー性付与剤等の添加剤が挙げられる。
 本態様におけるホログラム層は、通常、後述する透明基材上に形成される。ホログラム層の厚みは、例えば、0.1μm以上50μm以下の範囲内であることが好ましく、中でも0.3μm以上10μm以下の範囲内であることが好ましい。また、ホログラム層の大きさ等については、本態様の光学表示体の用途等に応じて適宜調整することができる。
 本態様においては、光学表示体が透過型フーリエ変換ホログラム領域を有していれば良い。そのため、光学表示体の全面が透過型フーリエ変換ホログラム領域であっても良く、光学表示体の一部が透過型フーリエ変換ホログラム領域であっても良い。
2.任意の部材
 本態様の光学表示体は、上述した透過型フーリエ変換ホログラム領域を有していれば良い。したがって、本態様の光学表示体は、例えば、透過型フーリエ変換ホログラム領域となる凹凸構造が表面に形成されたホログラム層のみから構成されていても良く、あるいは、上記ホログラム層と任意の部材とから構成されていても良い。
 以下、本態様の光学表示体を構成することができる任意の部材について説明する。
(1)透明基材
 本態様の光学表示体は、ホログラム層において、透過型フーリエ変換ホログラム領域として表面に形成された凹凸構造とは反対側の面、すなわち、ホログラム層の凹凸構造が形成された側とは反対側の面に、透明基材を有していても良い。透明基材を有することにより、本態様の光学表示体の熱的強度または機械的強度を高めることができる。
 ここで、「ホログラム層の凹凸構造が形成された側とは反対側の面に、透明基材を有していても良い。」とは、ホログラム層の凹凸構造が形成された側とは反対側の面に、直接透明基材が配置されている態様や、ホログラム層の凹凸構造が形成された側とは反対側の面に、他の部材を介して透明基材が配置されている態様を包含する。
 本態様における透明基材は、可視光透過率が80%以上であることが好ましく、中でも90%以上であることが好ましい。透明基材の可視光透過率が上記範囲内であることにより、光学表示体の透明基材が配置された側から光を照射したときに、透明基材を介して、透過型フーリエ変換ホログラム領域が形成されたホログラム層まで、十分に光を透過させることができる。一方、光学表示体の透明基材が配置された側とは反対側から光を照射したときには、透過型フーリエ変換ホログラム領域により変換された光像を、透明基材を介して領域に表示することができる。したがって、透過型フーリエ変換ホログラム領域により変換された光像の輝度を向上させることが可能となる。なお、透明基材の可視光透過率については、例えば、JIS K7361-1に準拠したプラスチックー透明基材の全光透過率の試験方法により測定することができる。
 本態様における透明基材は、ヘイズ値が比較的低いことが好ましい。具体的な透明基材のヘイズ値としては、例えば、0.01%以上5%以下の範囲内であることが好ましく、中でも0.01%以上3%以下の範囲内であることが好ましく、特に、0.01%以上1.5%以下の範囲内であることが好ましい。透明基材のヘイズ値が上記範囲内であることにより、透過型フーリエ変換ホログラム領域により変換される光像を、良好に表示することができる。なお、透明基材のヘイズ値については、例えば、JIS K7136に準拠して測定することができる。
 本態様における透明基材の材料としては、上述したような所定の可視光透過率およびヘイズ値を有する材料を選択することが好ましい。具体的には、ポリエチレンテレフタレート、ポリカーボネート、アクリル樹脂、シクロオレフィン樹脂、ポリエステル樹脂、ポリスチレン樹脂、アクリルスチレン樹脂等の樹脂フィルム、石英ガラス、パイレックス(登録商標)、合成石英板等のガラスが挙げられる。本態様においては、軽量かつ破損等の危険性が低いという観点から、樹脂フィルムを用いることが好ましく、複屈折性の面からポリカーボネートを選択することがより好ましい。
 本態様における透明基材は、難燃剤を含んでいることが好ましい。車両等の難燃性が求められる用途に好適であるからである。具体的な難燃剤としては、例えば、リン系難燃剤、窒素系難燃剤、金属塩系難燃剤、水酸化物系難燃剤、アンチモン系難燃剤等の無機系難燃剤、シリコーン系難燃剤等の任意の難燃剤等が挙げられる。また、透明基材における難燃剤の含有量については、透明基材が上述した所定の可視光透過率およびヘイズ値を達成することができる程度であることが好ましく、特に限定されない。
 本態様における透明基材は、紫外線吸収剤、熱線吸収剤等を含んでいても良い。光学表示体に紫外線および熱線等が当たることにより、ホログラム層が劣化することを抑制することできる。
 本態様における透明基材の厚みは、ホログラム層を支持することができる程度の剛性および強度を有することができる程度の厚みであることが好ましい。透明基材の厚みは、例えば、5μm以上500μm以下の範囲内であることが好ましく、中でも10μm以上100μm以下の範囲内であることが好ましい。また、透明基材の形状については、本態様の光学表示体の使用形態等に応じて適宜変更することができる。
 本態様における透明基材は、他の部材との密着性を向上させるために、表面処理を施しても良い。透明基材への表面処理としては、例えば、コロナ処理が挙げられる。
(2)接着層
 本態様の光学表示体は、いずれか一方の面に接着層を有していても良い。本態様においては、光学表示体のいずれか一方の面に接着層を有することにより、本態様の光学表示体を、例えば、車両の前方や後方等、所定の位置に貼り付けることができる。
 ここで、「本態様の光学表示体は、いずれか一方の面に接着層を有していても良い」とは、次のような態様を指す。具体的には、ホログラム層において、透過型フーリエ変換ホログラム領域として表面に形成された凹凸構造とは反対側の面、すなわちホログラム層の凹凸構造が形成された側とは反対側の面に、接着層を有していても良い。また、ホログラム層において、透過型フーリエ変換ホログラム領域として表面に形成された凹凸構造側の面、すなわちホログラム層の凹凸構造が形成された側の面に、接着層を有していても良い。なお、後者である場合には、ホログラム層の凹凸構造を埋めるように接着層を形成しても良いが、このとき、ホログラム層の透過型フーリエ変換ホログラム領域と接着層との間には所定の屈折率差が必要である。ホログラム層の透過型フーリエ変換ホログラム領域により、光源からの光を、良好に光像へ変換することができるからである。
 また、「ホログラム層において、透過型フーリエ変換ホログラム領域として表面に形成された凹凸構造とは反対側の面、すなわちホログラム層の凹凸構造が形成された側とは反対側の面に、接着層を有していても良い」とは、例えば、図8(a)に示すように、ホログラム層11の凹凸構造が形成された側とは反対側の面に接着層12が形成されていても良いことや、図8(b)に示すように、ホログラム層11の凹凸構造が形成された側とは反対側の面に透明基材13を介して接着層12が形成されていても良いことを指す。次に、「ホログラム層において、透過型フーリエ変換ホログラム領域として表面に形成された凹凸構造側の面、すなわちホログラム層の凹凸構造が形成された側の面に、接着層を有していても良い」とは、例えば、図9(a)、(b)に示すように、ホログラム層11の凹凸構造が形成された側の面に接着層12が形成されていても良いことを指す。なお、図9(b)に示す符号13は、透明基材である。
 本態様において、例えば、図9(a)、(b)に示すように、ホログラム層11の凹凸構造が形成された側の面に接着層12を有する場合、ホログラム層と接着層との間には、所定の屈折率差が必要である。ここで、「所定の屈折率差」とは、例えば、ホログラム層の凹凸構造により光源からの光が散乱し、所望の光像を表示することができる程度の屈折率差であることが好ましい。
 本態様における接着層は、透明性が高いことが好ましい。具体的には、可視光透過率が80%以上であることが好ましく、中でも90%以上であることが好ましい。接着層の可視光透過率が上記範囲内であることにより、接着層による光の遮蔽を抑制することできる。したがって、本態様の光学表示体により変換された光像の輝度の低下を抑制することが可能となる。なお、接着層の可視光透過率は、例えば、JIS K7361-1に準拠するプラスチックー透明材料の全光透過率の試験方法により測定することができる。
 本態様における接着層は、ヘイズ値が比較的低いことが好ましい。具体的な接着層のヘイズ値としては、例えば、0.01%以上5%以下の範囲内であることが好ましく、中でも0.01%以上3%以下の範囲内であることが好ましく、特に0.01%以上1.5%以下の範囲内であることが好ましい。接着層のヘイズ値が上記範囲内であることにより、接着層による光の遮蔽を抑制することできる。したがって、本態様の光学表示体により変換された光像の輝度の低下を抑制することが可能となる。なお、接着層のヘイズ値は、例えば、JIS K7136に準拠して測定することができる。
 本態様における接着層は、粘着性を有する粘着層であっても良く、密着性および再剥離性の双方の特性を有する再剥離密着層であっても良い。本態様における接着層が粘着層である場合には、本態様の光学表示体を構成する各部材同士を強固に貼りつけたり、または、光学表示体を被着体へと強固に貼りつけたりすることができる。一方、本態様における接着層が再剥離密着層である場合には、本態様の光学表示体を所望の部材に貼り合せることができる。このような再剥離密着層は、被着体に粘着剤等による痕を残すことなく、容易に密着および剥離を繰り返すことができ、被着体への影響を最小限に抑えることができる。
 本態様における接着層は、必要に応じて紫外線吸収剤や赤外線吸収剤を含んでいても良い。接着層中に紫外線吸収剤や赤外線吸収剤が含まれていることにより、本態様の光学表示体が紫外線や赤外線の照射により劣化することを抑制することができる。
 本態様における接着層は、難燃剤を含んでいても良い。本態様の光学表示体を、難燃性が求められる車両等の用途に用いる際に好適である。難燃剤の種類については、上記「(1)透明基材」の項で記載した内容と同様とすることができるため、ここでの記載は省略する。また、本態様における接着層は、粘着性付与剤や粘着性調整剤等を含んでいても良い。
 本態様における接着層の厚みは、本態様の光学表示体の用途等に応じて適宜調整することができ、特に限定されない。接着層の具体的な厚みとしては、例えば、1μm以上500μm以下の範囲内とすることが好ましく、中でも2μm以上50μm以下の範囲内とすることが好ましい。接着層の厚みが上記範囲内であることにより、接着層による光の遮蔽を抑制することできる。したがって、本態様の光学表示体により変換された光像の輝度の低下を抑制することが可能となる。
B.第2実施態様
 本態様の光学表示体は、車両用の光学表示装置に用いられる部材であって、原画像をフーリエ変換したフーリエ変換像が記録された透過型フーリエ変換ホログラム領域を有し、上記透過型フーリエ変換ホログラム領域は、光源から入射した光を透過させて光像へ変換する領域であり、上記光像が表す全ての光像絵柄の50%以上が、上記透過型フーリエ変換ホログラム領域を上記光源からの光が透過したときの0次光の光軸と、上記透過型フーリエ変換ホログラム領域を上記光源からの光が透過したときの透過光のうち、上記0次光の光軸に対する角度が最も大きい光線とのなす角度が、±5°の範囲内となる領域に位置することを特徴とする部材である。
 なお、本態様の光学表示体についての図面を用いた説明は、上記「A.第1実施態様」の項に記載した図1~図3の説明と同様とすることができるため、ここでの記載は省略する。
 本発明の発明者等は、上記「A.第1実施態様」の項で示した課題と同様の課題について更なる検討を重ねた。その結果、上記光像が表す全ての光像絵柄の50%以上が、上記透過型フーリエ変換ホログラム領域を上記光源からの光が透過したときの0次光の光軸と、上記透過型フーリエ変換ホログラム領域を上記光源からの光が透過したときの透過光のうち、上記0次光の光軸に対する角度が最も大きい光線とのなす角度が、±5°の範囲内となる領域に位置することで、光源から照射される光のエネルギー量を増やすことなく、光像の輝度を向上させることができるという新たな知見を得た。具体的には、図2に示す光像20が表す全ての光像絵柄の50%以上が、符号20Xで表す0次光の近くに表示させることにより、当該50%以上の光像が表す光像絵柄の輝度を向上させることができるという新たな知見を得た。0次光の近くに表示される光像絵柄の輝度が向上する理由としては、次のようなことが考えられる。
 透過型フーリエ変換ホログラム領域の表面に形成される凹凸構造のピッチは、当該透過型フーリエ変換ホログラム領域に光を照射して表示される光像において、0次光から離れた光像絵柄がある場合に、小さくなる傾向にある。すなわち、0次光から離れた位置にある光学絵柄を表示するためには、透過型フーリエ変換ホログラム領域における凹凸構造をより細かな設計にする必要がある。一方、透過型フーリエ変換ホログラム領域における凹凸構造は、凹部の幅で約3μm程度と、比較的小さく細やかである。ここで、上記凹凸構造における凹部は、元型から樹脂に賦型する際の再現性が低下しやすい。そのため、0次光から離れた光像絵柄を表示するためは、透過型フーリエ変換ホログラム領域として細やかな凹凸構造を形成する必要があるが、所望の再現性を保つことが困難となる。このようなことから、0次光に近い領域に位置する光像絵柄の方が、輝度が向上すると考えられる。
 ここで、「光像が表す全ての光像絵柄の50%以上」とは、例えば、本態様における光像は、図2に示すように、多数のドットにより構成されるが、このとき表示される全ての光像を構成する全てのドットのうちの50%以上のドットを意味する。なお、光像が表わす全ての光像絵柄における割合は、例えば、例えば、光像絵柄を構成するドットの数を数えることにより算出することができる。
 本態様においては、「光像が表す全ての光像絵柄の50%以上」と光像絵柄の割合を規定することは、当該光像が表す全ての光像絵柄の50%以上の輝度を向上させることで、光学表示体により表示される光像の、少なくとも主要となる部分の輝度を向上させることを意図している。例えば、図6(a)、(b)に示すように、光像絵柄の50%以上が認識できることで、当該光像絵柄の意味合いを概ね把握することが可能であることに起因する。
 本態様においては、光像が表す全ての光像絵柄の50%以上が所定の領域に位置していれば良いが、中でも光像が表す全ての光像絵柄の60%以上であることが好ましく、特に光像が表す全ての光像絵柄の70%以上、さらには80%以上であることが好ましい。また、本態様においては、光像が表わす全ての光像絵柄が所定の領域に位置していることが最も好ましい。より多くの光像絵柄の輝度を向上させることで、例えば、本態様の光学表示体を車両に用いた際に、進路情報等を光像として路面に明確に表示し、歩行者や他の車両の運転手の視認性を向上することができる。なお、図6(a)、(b)において説明していない符号については、図2と同様とすることができるため、ここでの記載は省略する。
 また、本態様において、光像が表す全ての光像絵柄の50%以上が、上記透過型フーリエ変換ホログラム領域を上記光源からの光が透過したときの0次光の光軸と、上記透過型フーリエ変換ホログラム領域を上記光源からの光が透過したときの透過光のうち、上記0次光の光軸に対する角度が最も大きい光線とのなす角度が、±5°の範囲内となる領域に位置する。上記所定の位置とは、すなわち、図10に示すように、透過型フーリエ変換ホログラム領域を光源30からの光が透過したとき、0次光20Xの光軸Hと、透過型フーリエ変換ホログラム領域を光源30からの光が透過したときの透過光のうち、0次光20Xの光軸Hに対する角度が最も大きい光線Ha、Hbとのなす角度が±5°の範囲内となる領域Rabを指す。なお、図10では、λ=532nmの光源を使用した。
 また、本態様においては、上記光像が表す全ての光像絵柄の70%以上が、上記光像を、0次光を通る任意の直線により2つの領域に分けたとき、上記2つの領域のいずれか一方の領域に位置することが好ましい。なお、具体的な説明については、「A.第1実施態様」の項に記載した内容と同様とすることができるため、ここでの記載は省略する。
 以下、本態様の光学表示体について詳細に説明する。
1.透過型フーリエ変換ホログラム領域
 本態様の光学表示体は、原画像をフーリエ変換したフーリエ変換像が記録された透過型フーリエ変換ホログラム領域を有する。このような透過型フーリエ変換ホログラム領域は、光源から入射した光を透過させて光像へ変換する領域である。
 なお、本態様における透過型フーリエ変換ホログラム領域については、上記「A.第1実施態様 1.透過型フーリエ変換ホログラム領域」の項に記載した内容と同様とすることができるため、ここでの記載は省略する。
2.任意の部材
 本態様の光学表示体は、上述した透過型フーリエ変換ホログラム領域を有していれば良い。したがって、本発明の光学表示体は、例えば、透過型フーリエ変換ホログラム領域となる凹凸構造が表面に形成されたホログラム層のみから構成されていても良く、あるいは、上記ホログラム層と任意の部材とから構成されていても良い。
 なお、本態様における透過型フーリエ変換ホログラム領域については、上記「A.第1実施態様 2.任意の部材」の項に記載した内容と同様とすることができるため、ここでの記載は省略する。
C.用途
 本発明の光学表示体は、例えば、昼間の屋外等の比較的明るい環境下にて光像を表示する際に好適である。具体的には、本発明の光学表示体は、車両に搭載することができる。ここで、車両には、ガソリンエンジンの駆動力のみで走行する車両や、ガソリンエンジンとモーター駆動力で走行する車両、モーターの駆動力のみで走行する車両や、あるいはディーゼルエンジンの駆動力により走行する車両等が含まれる。さらに、本発明の光学表示体は、二輪車等にも搭載することができる。なお、二輪車には自動二輪車だけでなく、自転車も含まれる。すなわち本発明の光学表示体は、種々の移動体に搭載することが可能である。
D.光学表示体の製造方法
 本発明の光学表示体の製造方法としては、上述した所望の光学表示体が得られる方法であれば良く、一般的に公知の方法を採用することができる。なお、具体的な光学表示体の製造方法については、例えば、特開2015-060113号公報に開示された内容と同様とすることができるため、ここでの記載は省略する。
II.光学表示装置
 本発明の光学表示装置は、車両に用いられる装置であって、上述した光学表示体と、光学表示体に照射される光の光源となる照射部材とを有することを特徴とする装置である。
 以下、本発明における光学表示体および照射部材について説明する。
A.光学表示体
 本発明における光学表示体は、次の第1実施態様および第2実施態様に分けることができる。
 第1実施態様の光学表示体は、車両用の光学表示装置に用いられる部材であって、原画像をフーリエ変換したフーリエ変換像が記録された透過型フーリエ変換ホログラム領域を有し、上記透過型フーリエ変換ホログラム領域は、光源から入射した光を透過させて光像へ変換する領域であり、上記原画像の全画素数に対する上記原画像の原絵柄の画素数の比率は、1200/100万以下であることを特徴とする部材である。
 また、第2実施態様の光学表示体は、車両用の光学表示装置に用いられる部材であって、原画像をフーリエ変換したフーリエ変換像が記録された透過型フーリエ変換ホログラム領域を有し、上記透過型フーリエ変換ホログラム領域は、光源から入射した光を透過させて光像へ変換する領域であり、上記光像が表す全ての光像絵柄の50%以上が、上記透過型フーリエ変換ホログラム領域を上記光源からの光が透過したときの0次光の光軸と、上記透過型フーリエ変換ホログラム領域を上記光源からの光が透過したときの透過光のうち、上記0次光の光軸に対する角度が最も大きい光線とのなす角度が、±5°の範囲内となる領域に位置することを特徴とする部材である。
 なお、第1実施態様の光学表示体および第2実施態様の光学表示体については、上記「I.光学表示体 A.第1実施態様」および「I.光学表示体 B.第2実施態様」の項に記載した内容と同様とすることができるため、ここでの記載は省略する。
B.照射部材
 本発明における照射部材は、光学表示体に照射される光の光源となる部材である。
 本発明における照射部材は、光学表示体における透過型フーリエ変換ホログラム領域に光を照射することで、所望の光像を表示することができる部材であれば特に限定されない。本発明においては、例えば、レーザー光を照射することが可能な照射部材が挙げられる。
 本発明において用いられる照射部材により照射される光は、通常、可視光領域に波長域を有する。なお、具体的な光の波長域は、光学表示体により表示しようとする光像や光学表示装置の用途等に応じて適宜選択することができ、特に限定されない。
 本発明においては、照射部材から照射される光の強度が所定の範囲内であっても、光学表示装置より表示される光像の輝度の向上させることができるという効果を奏する。ここで、「照射部材から照射される光の強度」は、本発明の光学表示装置の用途等に応じて適宜調整することができ、特に限定されない。例えば、光学表示装置により所定の輝度を有する光像を表示することができ、かつ、光学表示装置を車両に用いる際には、歩行者や他の車両の運転手の目に入射した際に、人体に悪影響を及ぼさない程度の光強度であることが好ましい。具体的には、0.1mW以上5mW以下の範囲内であることが好ましい。
C.任意の部材
 本発明の光学表示装置は、上述した光学表示体および照射部材を有していれば良く、その他にも必要に応じて任意の部材を有していても良い。
 以下、本発明における任意の部材について説明する。
1.ミラー
 本発明においては、光学表示装置が、照射部材から照射される光源となる光を反射させるミラーを有していても良い。
 本発明におけるミラーとしては、例えば、ガルバノミラーやMEMSと称されるMicro Electro Mechanical Systemスキャナ、ポリゴンミラー等が挙げられる。なお、具体的なミラーについては、例えば、特開2016-88397号公報に開示された内容と同様とすることができるため、ここでの記載は省略する。
2.制御部
 本発明においては、光学表示装置が、制御部を有していても良い。本発明の光学表示装置が制御部を有することにより、例えば、照射部材から照射される光の制御を行うことができる。
 本発明における制御部は、CPUと称されるCentral Processing Unitと、CPU上で動作するプログラムを保持するROMと称されるRead Only Memoryと、CPUのワークエリアであるRAMと称されるRandom Access Memory等から構成される汎用の情報処理機構である。制御部は、接続される各構成と協働および動作する。なお、具体的な制御部については、例えば、特開2016-88397号公報に開示された内容と同様とすることができるため、ここでの記載は省略する。
3.撮像部
 本発明においては、光学表示装置が、撮像部を有していても良い。本発明の光学表示装置が撮像部を有することにより、例えば、光学表示装置を車両に設置した際に、当該車両の前方や後方の動画画像を取得することが可能となる。
 本発明においては、撮像部により取得した動画は、上述した制御部に送信されて、制御部において画像解析が行われ、例えば、車両の前方や後方の車両を抽出することができる。したがって、本発明の光学表示装置を車両に設置した際には、車両の前方や後方の車両に対し、正確な情報を表示することが可能となる。なお、具体的な撮像部については、例えば、特開2016-88397号公報に開示された内容と同様とすることができるため、ここでの記載は省略する。
4.測距部
 本発明において、光学表示装置が、測距部を有していても良い。本発明の光学表示装置が測距部を有することにより、例えば、光学表示装置を車両に設置した際に、当該車両の前方や後方の車両との間の距離を測定することができる。
 本発明においては、測距部により測定した距離に基づいて、他の車両に対して接近情報等を表示することができる。なお、具体的な測距部については、例えば、特開2016-88397号公報に開示された内容と同様とすることができるため、ここでの記載は省略する。
5.ステアリングセンサ
 本発明において、光学表示装置が、ステアリングセンサを有していても良い。ステアリングセンサは、車両に搭載されるステアリングの操作を検知するセンサである。
 本発明においては、ステアリングセンサにより、ドライバーによるステアリング操舵角度を検知し、検知したデータを上述した制御部に送信することができる。したがって、ステアリングセンサを有することにより、運転手が車線変更を行おうとしている等の動作を判定することができ、後続車両の運転手に対して車線変更を行う旨を知らせることができる。なお、具体的なステアリングセンサについては、例えば、特開2016-88397号公報に開示された内容と同様とすることができるため、ここでの記載は省略する。
D.用途
 本発明の光学表示装置は、例えば、昼間の屋外等の比較的明るい環境下にて光像を表示する際に好適である。具体的には、車両に用いることができる。なお、具体的な用途については、上記「I.光学表示体 C.用途」の項に記載した内容と同様とすることができるため、ここでの記載は省略する。
 本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
(原画像の原絵柄の作成)
 画像編集ソフトphotoshop CC 2017を用いて原画像を作成した。原画像の全画素数を約100万画素とし、原絵柄をおよそ50画素、1200画素、2000画素、2500画素、4500画素、11500画素、17000画素で作成した。このようにして、計7パターンの原画像を作成した。
(透過型フーリエ変換ホログラム領域の作成)
 得られた計7パターンの原画像をフーリエ変換し、得られたフーリエ変換像を計算して深さ情報を得た。その深さ情報に基づいて、計7パターンの計算機パターンを作成した。次に、合成石英からなる基板を準備し、石英基材上に、表面低反射クロム薄膜が積層されたフォトマスクブランク板のクロム薄膜を得た。得られたフォトマスクブランク板のクロム薄膜上に、ドライエッチング用レジストをスピンナーにより回転塗布した。ドライエッチング用レジストとしては日本ゼオン(株)製ZEP7000を使用し、400nmの厚みとなるように形成した。このレジスト層に対し、電子線描画装置(MEBES4500:ETEC社製)を用い、計算機で作成した7パターンを露光し、レジスト樹脂の露光部分を易溶化した。その後、現像液を噴霧し(スプレー現像)して易溶化部分を除去し、レジストパターンを形成した。
 続いて、形成されたレジストパターンを利用して、ドライエッチングによりレジストで被覆されていない部分のクロム薄膜をエッチング除去し、石英基材を露出させた。次いで、露出した石英基材をエッチングし、石英基材に凹部を形成した。その後、レジスト薄膜を溶解除去することにより、石英基材がエッチングされて生じた凹部と、石英基板およびクロム薄膜がエッチングされずに残存している凸部とを有する原版を得た。
 次いで、透明基材として、厚み0.5mmのポリカーボネートシートを準備した。透明基材上に、ホログラム層形成用組成物(UV硬化性アクリレート樹脂:屈折率1.52 測定波長633nm)を滴下し、上記組成物の塗膜を形成した。その後、上記塗膜上に凹凸を有する上述した原版を積置し、押圧した。次に、活性放射線を照射して上記塗膜を硬化させた後剥離させ、原版の凹凸型を反転させた凹凸構造を形成した。その後、原版の積置、押圧、硬化および剥離を繰り返し、凹凸構造を15mm角の領域内に形成した。
 次いで、ホログラム層の凹凸表面側の全面に膜厚100nmのAl層をスパッタリング法により形成し、光学表示体を得た。
(評価)
 得られた光学表示体に対して、垂直となるように、波長λ=532nmのグリーンレーザーを照射した。レーザーはコヒレント社GenesisTM532-1000 Sを用い出力は50mWとした。光学表示体を透過したレーザー光が、所定の光像として結像するよう光学表示体から1mの位置に光学表示体と水平となるようスクリーンを設置し、株式会社エーディーシー製光パワーメータ8230Eを用い、光像の光強度を測定した。結果は、図4で説明した通りである。
 1   … 光学表示体
 11  … ホログラム層
 12  … 接着層
 13  … 透明基材
 10’ … 原画像
 10  … フーリエ変換像
 20’ … 原画像の絵柄
 20  … 光像
 20X … 0次光
 30  … 光源
 100 … 車両

Claims (5)

  1.  車両用の光学表示装置に用いられる光学表示体であって、
     原画像をフーリエ変換したフーリエ変換像が記録された透過型フーリエ変換ホログラム領域を有し、
     前記透過型フーリエ変換ホログラム領域は、光源から入射した光を透過させて光像へ変換する領域であり、
     前記原画像の全画素数に対する前記原画像の原絵柄の画素数の比率は、1200/100万以下であることを特徴とする光学表示体。
  2.  前記光像が表す全ての光像絵柄の50%以上は、前記透過型フーリエ変換ホログラム領域を前記光源からの光が透過したときの0次光の光軸と、前記透過型フーリエ変換ホログラム領域を前記光源からの光が透過したときの透過光のうち、前記0次光の光軸に対する角度が最も大きい光線とのなす角度が、±5°の範囲内となる領域に位置することを特徴とする請求項1に記載の光学表示体。
  3.  車両用の光学表示装置に用いられる光学表示体であって、
     原画像をフーリエ変換したフーリエ変換像が記録された透過型フーリエ変換ホログラム領域を有し、
     前記透過型フーリエ変換ホログラム領域は、光源から入射した光を透過させて光像へ変換する領域であり、
     前記光像が表す全ての光像絵柄の50%以上が、前記透過型フーリエ変換ホログラム領域を前記光源からの光が透過したときの0次光の光軸と、前記透過型フーリエ変換ホログラム領域を前記光源からの光が透過したときの透過光のうち、前記0次光の光軸に対する角度が最も大きい光線とのなす角度が、±5°の範囲内となる領域に位置することを特徴とする光学表示体。
  4.  前記光像が表す全ての光像絵柄の70%以上が、前記光像を、0次光を通る任意の直線により2つの領域に分けたとき、前記2つの領域のいずれか一方の領域に位置することを特徴とする請求項1から請求項3までのいずれかの請求項に記載の光学表示体。
  5.  車両に用いられる光学表示装置であって、
     請求項1から請求項4までのいずれかの請求項に記載の光学表示体と、
     前記光学表示体に照射される光の光源となる光照射部と
     を有することを特徴とする光学表示装置。
PCT/JP2018/007257 2017-02-28 2018-02-27 光学表示体および光学表示装置 WO2018159611A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017037499A JP2018141927A (ja) 2017-02-28 2017-02-28 光学表示体および光学表示装置
JP2017-037499 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159611A1 true WO2018159611A1 (ja) 2018-09-07

Family

ID=63371050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007257 WO2018159611A1 (ja) 2017-02-28 2018-02-27 光学表示体および光学表示装置

Country Status (2)

Country Link
JP (1) JP2018141927A (ja)
WO (1) WO2018159611A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6915346B2 (ja) * 2017-03-31 2021-08-04 大日本印刷株式会社 ホログラム構造体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016088397A (ja) * 2014-11-07 2016-05-23 大日本印刷株式会社 光学装置及び光学装置が搭載された車両
WO2016208594A1 (ja) * 2015-06-22 2016-12-29 大日本印刷株式会社 照明装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016088397A (ja) * 2014-11-07 2016-05-23 大日本印刷株式会社 光学装置及び光学装置が搭載された車両
WO2016208594A1 (ja) * 2015-06-22 2016-12-29 大日本印刷株式会社 照明装置

Also Published As

Publication number Publication date
JP2018141927A (ja) 2018-09-13

Similar Documents

Publication Publication Date Title
US7251077B2 (en) Diffuse reflector and method
JP5912040B2 (ja) 虚像を表示する光学素子の製造プロセス
US8840146B2 (en) Optically effective surface relief microstructures and method of making them
JP4905053B2 (ja) Ovd媒体及びovd媒体を含むカード状情報媒体
US20110109965A1 (en) Optical elements for showing virtual images
CN104428694A (zh) 利用菲涅尔透镜膜的装饰性膜制品
CN104010823A (zh) 具有纳米颗粒墨料的光学安全装置
JP4821192B2 (ja) 計算機ホログラム光学素子
JP6686323B2 (ja) ホログラム構造体
JP2020008599A (ja) 導光板、導光板モジュール、画像表示装置および導光板の製造方法
JP2012078447A (ja) 表示体及びラベル付き物品
US10675906B2 (en) Hologram structure
WO2018159611A1 (ja) 光学表示体および光学表示装置
JP2017072694A (ja) ホログラム構造体
JP2021177248A (ja) ホログラム構造体
US11294108B2 (en) Display
KR20190010095A (ko) 3차원 홀로그램 디스플레이 장치
JP6686322B2 (ja) ホログラム構造体
US20180329127A1 (en) Method for producing a beam shaping holographic optical element
JP2017072693A (ja) ホログラム構造体
JP6676951B2 (ja) 表示体
JP6455076B2 (ja) ホログラム積層体および情報記録媒体
WO2024070912A1 (ja) 真贋判定方法、隠蔽シールおよび真贋判定システム
JP2020109534A (ja) ホログラム構造体
JP2010115880A (ja) 表示体、その製造方法及び読取方法、並びに判別方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761223

Country of ref document: EP

Kind code of ref document: A1