WO2018159551A1 - 電力伝送システム - Google Patents

電力伝送システム Download PDF

Info

Publication number
WO2018159551A1
WO2018159551A1 PCT/JP2018/007018 JP2018007018W WO2018159551A1 WO 2018159551 A1 WO2018159551 A1 WO 2018159551A1 JP 2018007018 W JP2018007018 W JP 2018007018W WO 2018159551 A1 WO2018159551 A1 WO 2018159551A1
Authority
WO
WIPO (PCT)
Prior art keywords
code
power
modulation
circuit
current
Prior art date
Application number
PCT/JP2018/007018
Other languages
English (en)
French (fr)
Inventor
正拓 山岡
山本 温
元彦 藤村
太樹 西本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201880015359.2A priority Critical patent/CN110383626A/zh
Priority to US16/490,422 priority patent/US11201472B2/en
Priority to JP2019502987A priority patent/JP7065371B2/ja
Publication of WO2018159551A1 publication Critical patent/WO2018159551A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/34Arrangements for transfer of electric power between networks of substantially different frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/02Circuit arrangements for ac mains or ac distribution networks using a single network for simultaneous distribution of power at different frequencies; using a single network for simultaneous distribution of ac power and of dc power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/08Synchronising of networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/297Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal for conversion of frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00007Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission
    • H02J13/0001Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission using modification of a parameter of the network power signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/121Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using the power network as support for the transmission

Definitions

  • the present disclosure relates to a power transmission device that transmits power via a transmission line, a power reception device that receives power via a transmission line, and a power transmission system including the power transmission device and the power reception device.
  • self-sufficiency can be achieved by using a generator that uses natural energy and performing highly efficient power recovery in the electrical equipment that is the load. This is highly expected as a power transmission system for eliminating non-electrified areas such as desert oasis or remote islands.
  • Patent Documents 1 to 3 disclose power transmission systems that transmit power from a power source to a load via a power line.
  • a power transmission system transmits a power supplied from the power source via a transmission line, and receives the power via the transmission line and loads the power. And a power receiving device to be supplied.
  • a power transmission system when power is transmitted from the power transmission apparatus to the power reception apparatus, reliable synchronization among the power supply, the power transmission apparatus, the power reception apparatus, and the load may be required.
  • the frequency of the output power of the power supply, the operating frequency of the power transmitting device, the operating frequency of the power receiving device, and the frequency of the input power of the load at which the load can operate are inconsistent with other frequencies. The power transmission efficiency may be reduced.
  • An object of the present disclosure is to solve the above-described problems and to provide a power transmission device that is unlikely to cause a decrease in power transmission efficiency due to frequency mismatch and loss of synchronization with other components of the power transmission system. .
  • a power transmission device that transmits power to at least one power reception device via a transmission line, the power transmission device comprising: A code modulation circuit to which output power of a power supply is supplied, wherein a code modulation wave is generated by code-modulating the output power of the power supply using a modulation code based on a predetermined code sequence, and the code modulation wave is generated via the transmission path.
  • a code modulation circuit for transmitting a code-modulated wave to the power receiving device;
  • a control circuit for controlling the code modulation circuit, The control circuit sets the frequency of the modulation code to a multiple of the frequency of the output power of the power supply.
  • the power transmission device it is possible to make it difficult for the efficiency of power transmission to decrease due to frequency mismatch and loss of synchronization with other components of the power transmission system.
  • FIG. 1 is a block diagram illustrating a configuration of a power transmission system according to a first embodiment. It is a wave form diagram which shows the example of a signal waveform of the modulation current I2 of the electric power transmission system of FIG. It is a wave form diagram which shows the signal waveform example of the modulation current I2 of the communication system which concerns on a comparative example.
  • 2A and 2B are waveform diagrams showing exemplary signal waveforms in the power transmission system of FIG. 1, wherein FIG. 2A shows a signal waveform of a generated current I1, FIG. 2B shows a signal waveform of a modulated current I2, and FIG. The signal waveform of electric current I3 is shown.
  • FIG. 2 is a block diagram illustrating a configuration of a code modulator 2 in FIG.
  • FIG. 2 is a block diagram illustrating configurations of a code modulation circuit 23 and a code demodulation circuit 33 in FIG. 1.
  • FIG. 2 is a diagram illustrating an example of a modulation code of a code modulator 2 and a demodulation code of a code demodulator 4 according to a first embodiment that transmits DC power and receives DC power in the power transmission system of FIG. 1.
  • FIG. 4 is a diagram illustrating an example of a modulation code of a code modulator 2 and a demodulation code of a code demodulator 4 according to a second embodiment that transmits DC power and receives DC power in the power transmission system of FIG. 1.
  • FIG. 6 is a waveform diagram illustrating exemplary signal waveforms in the power transmission system according to the second embodiment, where (a) illustrates the signal waveform of the generated current I1, (b) illustrates the signal waveform of the modulation current I2, and (c). Indicates the signal waveform of the demodulated current I3.
  • FIG. 5 is a block diagram illustrating a configuration of a part of a code modulator 2A of a power transmission system according to a second embodiment.
  • FIG. 6 is a block diagram illustrating a partial configuration of a code demodulator 4A of the power transmission system according to the second embodiment.
  • FIG. 9 is a circuit diagram showing a configuration of a bidirectional switch circuit SS21A for a code modulation circuit 23A used in a power transmission system according to a modification of the second embodiment.
  • FIG. 10 is a circuit diagram illustrating a configuration of a bidirectional switch circuit SS22A for a code modulation circuit 23A used in a power transmission system according to a modification of the second embodiment.
  • FIG. 9 is a circuit diagram showing a configuration of a bidirectional switch circuit SS23A for a code modulation circuit 23A used in a power transmission system according to a modification of the second embodiment.
  • FIG. 10 is a circuit diagram illustrating a configuration of a bidirectional switch circuit SS24A for a code modulation circuit 23A used in a power transmission system according to a modification of the second embodiment.
  • FIG. 9 is a circuit diagram showing a configuration of a bidirectional switch circuit SS23A for a code modulation circuit 23A used in a power transmission system according to a modification of the second embodiment.
  • FIG. 10 is a circuit diagram illustrating a configuration of a bidirectional switch circuit SS24A for a code modulation circuit 23A used in a power transmission system according to a modification of the second
  • FIG. 9 is a circuit diagram showing a configuration of a bidirectional switch circuit SS31A for a code demodulating circuit 33A used in a power transmission system according to a modification of the second embodiment.
  • FIG. 10 is a circuit diagram showing a configuration of a bidirectional switch circuit SS32A for a code demodulation circuit 33A used in a power transmission system according to a modification of the second embodiment.
  • FIG. 10 is a circuit diagram illustrating a configuration of a bidirectional switch circuit SS33A for a code demodulating circuit 33A used in a power transmission system according to a modification of the second embodiment.
  • FIG. 10 is a circuit diagram showing a configuration of a bidirectional switch circuit SS34A for a code demodulating circuit 33A used in a power transmission system according to a modification of the second embodiment.
  • FIG. It is a block diagram which shows the structure of the electric power transmission system which concerns on Embodiment 3.
  • FIG. 16 is a diagram illustrating an example of a modulation code of a code modulator 2A-1 and a demodulation code of a code demodulator 4A-1 according to a fifth embodiment that transmits DC power and receives DC power in the power transmission system of FIG.
  • FIG. 16 is a diagram illustrating an example of a modulation code of a code modulator 2A-2 and a demodulation code of a code demodulator 4A-2 according to a sixth embodiment that transmits DC power and receives AC power in the power transmission system of FIG. It is a wave form diagram which shows the example signal waveform in the electric power transmission system which concerns on Embodiment 3, (a) shows the signal waveform of the generated current I11, (b) shows the signal waveform of the generated current I12, (c). Shows the signal waveform of the modulation current I2, (d) shows the signal waveform of the demodulation current I31, and (e) shows the signal waveform of the demodulation current I32.
  • 6 is a timing chart illustrating code modulation and code demodulation in a power transmission system according to a first example of Embodiment 4.
  • 10 is a timing chart showing code modulation and code demodulation in a power transmission system according to a second example of Embodiment 4.
  • 10 is a timing chart showing code modulation and code demodulation in a power transmission system according to a third example of Embodiment 4.
  • 6 is a timing chart showing code modulation and code demodulation in a power transmission system according to a first comparative example of Embodiment 4.
  • 10 is a timing chart illustrating code modulation and code demodulation in a power transmission system according to a second comparative example of the fourth embodiment.
  • FIG. 10 is a timing chart showing code modulation and code demodulation in a power transmission system according to a third comparative example of Embodiment 4.
  • FIG. 9 is a block diagram illustrating a configuration of a power transmission system according to a fifth embodiment. It is a block diagram which shows the structure of the code
  • FIG. 25 is a timing chart showing a first example of code modulation and code demodulation executed by the power transmission system of FIG. 24.
  • FIG. It is a timing chart which shows the 2nd Example of the code modulation and code demodulation which are performed by the power transmission system of FIG.
  • Japanese Patent Application Laid-Open No. 2004-228561 discloses a cooperation device that can realize power interchange between a plurality of power systems in a power transmission device.
  • the cooperation device includes a converter and an inverter.
  • the converter converts transmission power from alternating current to direct current, and transmits power to the cooperation device connected to a power system that receives power.
  • the inverter can convert the frequency to a desired frequency by an inverter, thereby providing power of the optimum frequency for the power system to which the linkage device is connected.
  • patent document 2 the structure provided with the electric power storage apparatus with respect to patent document 1 is disclosed.
  • Patent Document 3 discloses a method of transmitting power from a plurality of power transmission devices to a plurality of power reception devices in a power transmission device.
  • power transmission from the plurality of power transmission devices to the plurality of power reception devices is performed in a time-sharing manner.
  • control communication between the power transmission device and the power reception device is realized by wireless communication.
  • the cooperation apparatus includes an inverter and a converter, and basically, individual power transmission cables are required for all combinations between systems that perform power interchange. .
  • a method of reducing the power transmission cable depending on the configuration of the cooperation apparatus is also described, in any case, a large number of power transmission cables are required.
  • the laying cost is increased, the cable material cost is increased, and further, the cooperation device needs to be provided with the same number of inverter and converter pairs as the number of connected systems. From these, in addition to an increase in the cost of the cable, there is a risk of an increase in cost due to an increase in the scale of the cooperation device.
  • Patent Document 3 has an advantage that power can be accommodated in a time-sharing manner between a plurality of power transmission devices and power reception devices, and the number of power transmission cables can be reduced.
  • power transmission between multiple systems cannot be performed simultaneously by transmitting power in a time division manner. That is, there is a possibility that it cannot immediately respond to the power demand of the load connected to the power receiving side.
  • the time allocated to each power interchange is shortened, so that a large amount of power is transmitted in a pulse manner to the power transmission cable. Therefore, the power durability of the transmission cable is required, which may lead to an increase in cost.
  • Patent Documents 1 and 2 use a large number of power transmission cables, and the power transmission cable cannot be reduced by multiplexing power transmission. Further, in the cooperation device, a pair of an inverter and a converter is required for each power transmission cable, and it is impossible to reduce the scale of the cooperation device. For this reason, power interchange between many power systems has been difficult.
  • the power transmission cable can be reduced in time by performing a plurality of power interchanges on the power transmission cable in a time-sharing manner, but a transmission system that simultaneously performs a plurality of power interchanges cannot be provided.
  • the power transmission cable can be reduced, and the power interchange from the plurality of power transmission devices to the plurality of power receiving devices can be performed more reliably at the same time.
  • An object of the present disclosure is to provide a power transmission device, a power reception device, and a power transmission system that are unlikely to cause a decrease in efficiency of power transmission due to frequency mismatch and loss of synchronization with other components of the power transmission system. It is in.
  • the outline of the power transmission system will be described as the premise. Thereafter, in Embodiments 4 to 5, power transmission systems that solve the problems will be described.
  • FIG. FIG. 1 is a block diagram illustrating a configuration of the power transmission system according to the first embodiment.
  • the power transmission system according to the first embodiment includes a generator 1, a code modulator 2, a transmission path 3, a code demodulator 4, a load 5, and a controller 10.
  • the transmission path 3 is, for example, a wired or wireless transmission path including two power lines.
  • the controller 10 includes a control circuit 11 and a communication circuit 12.
  • the control circuit 11 communicates with the code modulator 2 and the code demodulator 4 via the communication circuit 12 and controls their operations.
  • the code modulator 2 operates as a power transmission device
  • the code demodulator 4 operates as a power reception device.
  • the code modulator 2 code-modulates the first power using a modulation code based on a predetermined code sequence to generate a code-modulated wave, and sends the code-modulated wave to the code demodulator 4 via the transmission path 3.
  • the code demodulator 4 receives a code modulation wave from the code modulator 2 via the transmission path 3, and demodulates the received code modulation wave based on the same code sequence as the code sequence of the modulation code used when code modulation is performed.
  • the code is demodulated using the code to generate the second power.
  • the first power is, for example, DC power generated by the generator 1, and is shown as a generated current I1 in FIG.
  • the code-modulated wave is code-modulated AC power and is shown as a modulation current I2 in FIG.
  • the second power is, for example, DC power supplied to the load 5 and is shown as a demodulated
  • the power meter 1m is a first power measuring unit that measures the amount of first power.
  • the power meter 1m is the amount of power generated by the generator 1 and measures the amount of DC power sent from the generator 1 to the code modulator 2.
  • the power meter 1m may be provided in the generator 1 or may be provided between the generator 1 and the code modulator 2.
  • the power meter 5m is a second power measuring unit that measures the amount of second power. That is, the power meter 5m measures the amount of DC power sent from the code demodulator 4 to the load 5, which is the amount of power used in the load 5.
  • the power meter 5m may be provided in the load 5 or may be provided between the code demodulator 4 and the load 5.
  • the amount of power measured by the power measuring devices 1m and 5m is transmitted to the controller 10.
  • the controller 10 controls the operations of the code modulator 2 and the code demodulator 4 based on the respective electric energy received from the power measuring devices 1m and 5m. For example, the controller 10 transmits a control signal including a synchronization signal for synchronizing the code modulator 2 and the code demodulator 4 to the code modulator 2 and the code demodulator 4, so that the power of the accurately synchronized power is transmitted.
  • a control signal including a synchronization signal for synchronizing the code modulator 2 and the code demodulator 4 to the code modulator 2 and the code demodulator 4, so that the power of the accurately synchronized power is transmitted.
  • the controller 10 sets the modulation code to the code modulator 2 and sets the demodulation code to the code demodulator 4 based on one code sequence.
  • the code sequence of the modulation code to be used for modulation in the code modulator 2 and the code sequence of the demodulated code to be used for demodulation in the code demodulator 4 are set in advance in the code modulator 2 and the code demodulator 4. Also good.
  • the controller 10 transmits a code sequence of a modulation code to be used for modulation in the code modulator 2 and a code sequence of a demodulated code to be used for demodulation in the code demodulator 4 in the control signal. Also good.
  • the controller 10 may generate code sequences in the code modulator 2 and the code demodulator 4 by transmitting only code sequence designation information without transmitting a code sequence in the control signal. In this case, it is possible to perform code modulation and code demodulation in synchronization with each other between the code modulator 2 and the code demodulator 4 which are opposed to each other.
  • FIG. 2 is a waveform diagram showing a signal waveform example of the modulation current I2 of the power transmission system of FIG.
  • FIG. 3 is a waveform diagram showing a signal waveform example of the modulation current I2 of the communication system according to the comparative example.
  • the code modulator 2 uses a modulation code based on a predetermined code sequence to code-modulate the current of the power generated in the generator 1.
  • the code modulator 2 generates an AC code-modulated wave composed of currents flowing in directions corresponding to the code values “1” and “ ⁇ 1”.
  • This code-modulated wave can transmit power even during a period in which a positive current flows or a period in which a negative current flows (for example, a period T01 in FIG. 2).
  • the DC power is code-modulated
  • the AC power may be code-modulated as shown in a second embodiment to be described later.
  • code modulation is usually performed using code values “1” and “0” as shown in FIG.
  • the code-modulated wave shown in FIG. 3 when the code value of the modulation code is “0” (for example, the period T02 in FIG. 3), the modulated current or voltage becomes 0, and there is a time during which no power is transmitted. End up. For this reason, there is a possibility that the transmission efficiency of the power may be reduced as a whole due to the time interval in which the power is not transmitted. That is, in the case of communication, it is desired that information such as data is transmitted accurately and synchronously. Therefore, it is sufficient that the code demodulator can accurately determine “0” or “1”.
  • FIG. 4 (a) to 4 (c) are waveform diagrams showing exemplary signal waveforms in the power transmission system of FIG. 4A shows a signal waveform of the generated current I1, FIG. 4B shows a signal waveform of the modulation current I2, and FIG. 4C shows a signal waveform of the demodulation current I3.
  • the generator 1 generates a DC generated current I1.
  • the code modulator 2 multiplies the generated current I1 by the modulation code m0 to generate an alternating modulation current I2.
  • the code demodulator 4 can multiply the modulation current I2 by the demodulation code d0 that is the same as the modulation code m0, thereby restoring the DC power generated by the generator 1 and supplying it to the load 5.
  • T10 indicates a period of one cycle of the modulation code m0 and the demodulation code d0, and the same applies to the following drawings.
  • the DC generated current I1 (FIG. 4 (a)) is multiplied by a modulation code m0 having a frequency of 35 kHz to obtain a modulation current I2 of a code-modulated wave (FIG. 4 (b)).
  • a modulation current I2 of a code-modulated wave (FIG. 4 (b)).
  • Each bit of the modulation code m0 and the demodulation code d0 has a code value “1” or “ ⁇ 1”.
  • the code value “1” indicates that the code modulator 2 outputs a current in the same direction as the input current
  • the code value “ ⁇ 1” indicates the code modulator 2 Indicates that a current in the direction opposite to the direction of the input current is output.
  • the code value “1” indicates that the code demodulator 4 outputs a current in the same direction as the input current
  • the code value “ ⁇ 1” indicates the code demodulator 4 Indicates that a current in the direction opposite to the direction of the input current is output.
  • the modulation code m0 and the demodulation code d0 are expressed by the following equations as an example.
  • the code modulator 2 and the code demodulator 4 As described above, by using the code modulator 2 and the code demodulator 4 according to the present embodiment, it is possible to realize DC power transmission that is accurately synchronized and has no power loss. Further, for example, by repeatedly using the modulation code m0 and the demodulation code d0, it is possible to efficiently transmit power in a longer time.
  • the modulation code m0 can be divided into the first code part m0a and the second code part m0b as shown in the following equation.
  • the code part m0b is generated by reversing the sign value of each bit of the code part m0a. That is, if the code value of a bit of the code part m0a is “1”, the code value of the corresponding bit of the code part m0b is “ ⁇ 1”. Similarly, if the code value of a bit of the code part m0a is “ ⁇ 1”, the code value of the corresponding bit of the code part m0b is “1”.
  • FIG. 5 is a block diagram showing the configuration of the code modulator 2 of FIG.
  • the code modulator 2 includes a control circuit 20, a communication circuit 21, a code generation circuit 22, and a code modulation circuit 23.
  • the communication circuit 21 receives the synchronization signal and the control signal including the code sequence or the designation information from the controller 10 and outputs the received signal to the control circuit 20.
  • the synchronization signal may be, for example, a trigger signal for modulation start and modulation end, or time information of a modulation start time and a modulation end time.
  • the control circuit 20 Based on the control signal, the control circuit 20 generates a modulation code based on a predetermined code sequence by the code generation circuit 22 and outputs the modulation code to the code modulation circuit 23, and controls the operation start and operation end of the code modulation circuit 23. To do.
  • the code modulation circuit 23 has input terminals T1 and T2 connected to the generator 1 and output terminals T3 and T4 connected to the transmission path 3.
  • FIG. 6 is a block diagram showing the configuration of the code demodulator 4 of FIG.
  • the code demodulator 4 includes a control circuit 30, a communication circuit 31, a code generation circuit 32, and a code demodulation circuit 33.
  • the communication circuit 31 receives a synchronization signal and a control signal including a code sequence or designation information from the controller 10 and outputs the received signal to the control circuit 30.
  • the synchronization signal may be, for example, a trigger signal for starting demodulation and ending demodulation, or may be time information of demodulation starting time and demodulation ending time.
  • the control circuit 30 Based on the control signal, the control circuit 30 causes the code generation circuit 32 to generate a demodulated code based on a predetermined code sequence and output the demodulated code to the code demodulation circuit 33, and controls the operation start and operation end of the code demodulation circuit 33. To do.
  • the code demodulating circuit 33 has input terminals T11 and T12 connected to the transmission line 3, and output terminals T13 and T14 connected to the load 5.
  • control signal from the controller 10 to the code modulator 2 and the code demodulator 4 may be transmitted through a control signal line different from the transmission path 3. It may be multiplexed with a code modulation wave by a predetermined multiplexing method and transmitted. In the latter case, the number of cables used for communication from the controller 10 to the code modulator 2 and the code demodulator 4 can be reduced, and the cost can be reduced.
  • FIG. 7 is a block diagram showing the configuration of the code modulation circuit 23 and the code demodulation circuit 33 in FIG.
  • the code modulation circuit 23 includes four switch circuits SS1 to SS4 connected in a bridge shape.
  • Each of the switch circuits SS1 to SS4 includes directional switch elements S1 to S4 made of, for example, MOS transistors.
  • the code demodulation circuit 33 includes four switch circuits SS11 to SS14 connected in a bridge shape.
  • Each of the switch circuits SS11 to SS14 includes directional switch elements S11 to S14 formed of, for example, MOS transistors.
  • the code generation circuit 22 generates predetermined modulation codes m1 and m2 under the control of the control circuit 20 and outputs them to the code modulation circuit 23 in order to operate the code modulator 2 according to the modulation code m0 as described above. .
  • the switch elements S1, S4 of the code modulation circuit 23 are controlled according to the modulation code m1
  • the switch elements S2, S3 of the code modulation circuit 23 are controlled according to the modulation code m2.
  • Each modulation code m1, m2 has code values “1” and “0”.
  • each of the switch elements S1 to S4 is turned on when a signal of a code value “1” is input to each of the switch elements S1 to S4, and each of the switch elements S1 to S4 is input when a signal of a code value “0” is input. S4 is turned off.
  • the switch elements other than the switch elements S1 to S4 described in this specification operate in the same manner.
  • each of the switch elements S1 to S4 has directionality as follows. When the switch element S1 is on, the generated current input from the terminal T1 is output to the terminal T3.
  • the switch element S3 When the switch element S3 is on, the generated current input from the terminal T1 is output to the terminal T4, and the switch element S2 is When ON, the modulation current input from the terminal T3 is output to the terminal T2, and when the switch element S4 is ON, the modulation current input from the terminal T4 is output to the terminal T2.
  • the code generation circuit 32 generates predetermined demodulated codes d1 and d2 under the control of the control circuit 30 and outputs them to the code demodulation circuit 33 in order to operate the code demodulator 4 according to the demodulated code d0 as described above. .
  • the switch elements S11 and S14 of the code demodulation circuit 33 are controlled according to the demodulation code d2, and the switch elements S12 and S13 of the code demodulation circuit 33 are controlled according to the demodulation code d1.
  • Each demodulated code d1, d2 has code values “1” and “0”.
  • each of the switch elements S11 to S14 has directionality as follows. When the switch element S11 is turned on, the modulation current input from the terminal T12 is output to the terminal T13.
  • FIG. 8A is a diagram illustrating an example of the modulation code of the code modulator 2 and the demodulation code of the code demodulator 4 according to the first embodiment that transmits DC power and receives DC power in the power transmission system of FIG. 8A shows an example of the modulation codes m1 and m2 input to the switch elements S1 to S4 of the code modulator 2, and the demodulated codes d1 and d2 input to the switch elements S11 to S14 of the code demodulator 4. .
  • the modulation code m1 and the demodulation code d1 are the same as each other, and each comprises a code sequence c1a. Also, the modulation code m2 and the demodulation code d2 are identical to each other, and each consists of a code sequence c1b.
  • the code value of a certain bit of the code sequence c1a is “1”
  • the code value of the corresponding bit of the code sequence c1b is “0”
  • the code value of a bit of the code sequence c1a is “0”
  • the code sequences c1a and c1b are set so that the code value of the corresponding bit of the code sequence c1b is “1”.
  • the switch elements S11 to S14 are turned on or off in response to the demodulated codes d1 and d2 in synchronization with the code modulation circuit 23.
  • the switch elements S12 and S13 are turned on or off by the same demodulation code d1 as the modulation code m1
  • the switch elements S11 and S14 are turned on or off by the same demodulation code d2 as the modulation code m2.
  • the demodulation code d1 when the code value of the modulation code m1 is “0” and the code value of the modulation code m2 is “1”, that is, when the modulation current I2 in the negative direction flows through the transmission line 3, the demodulation code d1 The code value of “1” is “0” and the code value of the demodulation code d1 is “1”. Accordingly, when the switch elements S11 and S14 are turned on and the switch elements S12 and S13 are turned off, the output terminals T13 and T14 of the code demodulation circuit 33 are demodulated in the positive direction, that is, in the direction of the solid arrow. A current I3 flows.
  • the code modulator 2 operates equivalently according to the modulation code m0 of the equation (1)
  • the code demodulator 4 Operates according to the demodulated code d0 in equation (2).
  • FIG. 8B is a diagram illustrating an example of the modulation code of the code modulator 2 and the demodulation code of the code demodulator 4 according to the second embodiment that transmits DC power and receives DC power in the power transmission system of FIG.
  • the code sequences c1a and c1b when the number of bits having the code value “1” and the number of bits having the code value “0” are the same, the code-modulated modulation current I2 flowing through the transmission line 3 is averaged. There is no DC component, only AC components. However, depending on the code sequence, the number of bits having a code value “1” and the number of bits having a code value “0” are different from each other, and a DC component may be generated.
  • the number of bits having a code value “1” and a code value “0” are obtained by concatenating the code sequence and a code sequence obtained by inverting the code value of each bit.
  • a modulation code and a demodulation code having the same number of bits can be generated.
  • the modulation code m1 and the demodulation code d1 are set to a code sequence [c1a c1b] obtained by concatenating the code sequence c1a and the code sequence c1b, the modulation code m2 and the demodulation code d2 are converted into the code sequence c1b and the code sequence c1a.
  • the concatenated code sequence [c1b c1a] is used.
  • the average value of the code-modulated modulation current I2 flowing through the transmission line 3 becomes 0, and the modulation current I2 includes only an AC component.
  • the generator 1 or the load 5 may be a power storage device such as a battery or a capacitor.
  • a power storage device such as a battery or a capacitor.
  • Embodiment 2 demonstrates the electric power transmission system which carries out code modulation
  • the power transmission system according to the second embodiment includes a code modulator 2A and a code demodulator 4A described later with reference to FIGS. 10 and 11 instead of the code modulator 2 and the code demodulator 4 of FIG.
  • the power transmission system which concerns on Embodiment 2 is comprised similarly to the power transmission system which concerns on Embodiment 1.
  • FIG. 9A to 9C are waveform diagrams illustrating exemplary signal waveforms in the power transmission system according to the second embodiment, and FIG. 9A illustrates a signal waveform of the generated current I1.
  • (B) shows the signal waveform of the modulation current I2
  • FIG. 9 (c) shows the signal waveform of the demodulation current I3. That is, FIG. 9 shows that an alternating current (single-phase alternating current) generated current I1 is code-modulated by the code modulator 2A, and then the modulated current I2 is transmitted through the transmission line 3, and the modulated current I2 is encoded by the code demodulator 4A. It is an example of a signal waveform when demodulating.
  • the generator 1 generates an alternating generation current I1.
  • the AC generated current I1 has a rectangular waveform with a frequency of 5 kHz that periodically repeats positive and negative in 200 microseconds.
  • the code modulator 2A generates the AC modulation current I2 by multiplying the power generation current I1 by the modulation code m0 in the same manner as when the DC power generation current I1 shown in FIG. 4 is code-modulated.
  • the code demodulator 4A can multiply the modulation current I2 by the same demodulation code d0 as the modulation code m0, thereby restoring the AC power generated by the generator 1 and supplying it to the load 5.
  • the frequencies of the modulation code m0 and the demodulation code d0 are set higher than the frequency of the generated current I1 and the frequency of the demodulation current I3.
  • the AC generated current I1 (FIG. 9A) is multiplied by a modulation code m0 having a frequency of 35 kHz to obtain a modulation current I2 of the code modulation wave (FIG. 9B).
  • Each bit of the modulation code m0 and the demodulation code d0 has a code value “1” or “ ⁇ 1”.
  • the generated current I1 is positive (a period of 0 to 100 ⁇ s in FIG. 9A) and the generated current I1 is a negative period (100 to 200 ⁇ in FIG. 9A).
  • the sign value “1” or “ ⁇ 1” has different meanings.
  • the code value “1” indicates that the code modulator 2A outputs a current in the same direction as the input current, and the code value “ ⁇ 1”. Indicates that the code modulator 2A outputs a current in the direction opposite to the direction of the input current.
  • the code value “1” for the demodulation code d0 indicates that the code demodulator 4A outputs a current in the same direction as the input current
  • the code value “ "-1” indicates that the code demodulator 4A outputs a current in the direction opposite to the direction of the input current.
  • the code value “1” indicates that the code modulator 2A outputs a current in the opposite direction to the input current
  • the code value “ ⁇ 1”. Indicates that the code modulator 2A outputs a current in the same direction as the input current.
  • the code value “1” indicates that the code demodulator 4A outputs a current in the direction opposite to the direction of the input current.
  • “-1” indicates that the code demodulator 4A outputs a current in the same direction as the input current.
  • the modulation code m0 and the demodulation code d0 are expressed by the following equations as an example.
  • the modulation current I2 of the code modulation wave generated by the modulation code m0 is multiplied by the demodulation code d0. This multiplication is expressed by the following equation.
  • FIG. 10 is a block diagram showing a partial configuration of the code modulator 2A of the power transmission system according to the second embodiment.
  • the code modulator 2A of FIG. 10 includes a code generation circuit 22A and a code modulation circuit 23A instead of the code generation circuit 22 and the code modulation circuit 23 of FIG.
  • the code modulator 2A in FIG. 10 further includes a control circuit 20 and a communication circuit 21 in the same manner as the code modulator 2 in FIG. 5, but these are omitted in FIG. 10 for simplicity of illustration.
  • the code generation circuit 22A and the code modulation circuit 23A in FIG. 10 differ from the code generation circuit 22 and the code modulation circuit 23 in FIG. (1)
  • the code generation circuit 22A generates four modulation codes m1 to m4 instead of the two modulation codes m1 and m2, and outputs them to the code modulation circuit 23A.
  • the code modulation circuit 23A includes four bidirectional switch circuits SS21 to SS24 connected in a bridge form instead of the unidirectional switch circuits SS1 to SS4.
  • the code generation circuit 22A generates predetermined modulation codes m1 to m4 under the control of the control circuit 20 and outputs them to the code modulation circuit 23A in order to operate the code modulator 2A according to the modulation code m0 as described above. .
  • Each modulation code m1 to m4 has code values “1” and “0”.
  • the switch circuit SS21 has a reverse direction and is connected in parallel to the switch element S1 in addition to the switch element S1 of FIG.
  • a switch element S21 that is turned on / off in response to m3 is provided.
  • the switch circuit SS22 has a reverse direction to the switch element S2 and is connected in parallel, and is turned on / off in response to the modulation code m4.
  • the switch element S22 is provided.
  • the switch circuit SS23 has a reverse direction to the switch element S3 and is connected in parallel, and is turned on / off in response to the modulation code m4.
  • the switch element S23 is provided.
  • the switch circuit SS24 has a reverse direction to the switch element S4 and is connected in parallel, and is turned on / off in response to the modulation code m3.
  • the switch element S24 is provided. Note that each of the switch elements S21 to S24 is composed of, for example, a MOS transistor.
  • the code modulation circuit 23 ⁇ / b> A has terminals T ⁇ b> 1 and T ⁇ b> 2 connected to the generator 1 and terminals T ⁇ b> 3 and T ⁇ b> 4 connected to the transmission path 3.
  • AC power from the generator 1 is input to the code modulation circuit 23 ⁇ / b> A.
  • the code modulation circuit 23 ⁇ / b> A code-modulates the AC power, and then outputs a code-modulated modulated wave to the transmission path 3.
  • FIG. 11 is a block diagram showing a partial configuration of the code demodulator 4A of the power transmission system according to the second embodiment.
  • the code demodulator 4A shown in FIG. 11 includes a code generation circuit 32A and a code demodulation circuit 33A instead of the code generation circuit 32 and the code demodulation circuit 33 shown in FIG.
  • the code demodulator 4A in FIG. 11 further includes a control circuit 30 and a communication circuit 31 in the same manner as the code demodulator 4 in FIG. 5, but these are omitted in FIG. 11 for simplicity of illustration.
  • the code generation circuit 32A and the code demodulation circuit 33A in FIG. 11 are different from the code generation circuit 32 and the code demodulation circuit 33 in FIG. (1)
  • the code generating circuit 32A generates four demodulated codes d1 to d4 instead of the two demodulated codes d1 and d2, and outputs them to the code demodulating circuit 33A.
  • the code demodulating circuit 33A includes four bidirectional switch circuits SS31 to SS34 connected in a bridge form instead of the unidirectional switch circuits SS11 to SS14.
  • the code generation circuit 32A generates predetermined demodulated codes d1 to d4 under the control of the control circuit 30 in order to operate the code demodulator 4A according to the demodulated code d0 as described above, and outputs it to the code demodulation circuit 33A.
  • Each demodulated code d1 to d4 has code values “1” and “0”.
  • the switch circuit SS31 has a reverse direction and is connected in parallel to the switch element S11 in addition to the switch element S11 of FIG. 7 which is turned on / off in response to the demodulated code d2.
  • a switch element S31 that is turned on / off in response to d4 is provided.
  • the switch circuit SS32 has a reverse direction to the switch element S12 and is connected in parallel, and is turned on / off in response to the demodulation code d3.
  • the switch element S32 is provided.
  • the switch circuit SS33 has a reverse direction and is connected in parallel, and is turned on and off in response to the demodulation code d3.
  • the switch element S33 is provided.
  • the switch circuit SS34 has a reverse direction and is connected in parallel, and is turned on / off in response to the demodulation code d4.
  • the switch element S34 is provided.
  • Each of the switch elements S31 to S34 is composed of, for example, a MOS transistor.
  • the code demodulation circuit 33 ⁇ / b> A has terminals T ⁇ b> 11 and T ⁇ b> 12 connected to the transmission path 3 and terminals T ⁇ b> 13 and T ⁇ b> 14 connected to the load 5.
  • the code demodulating circuit 33A receives an AC code-modulated wave from the transmission line 3.
  • the code demodulating circuit 33A code-demodulates the code-modulated wave to AC demodulated power, and then outputs the code-modulated wave to the load 5.
  • FIG. 12A is a diagram illustrating an example of a modulation code of the code modulator 2A and a demodulation code of the code demodulator 4A according to Example 3 that transmits AC power and receives AC power in the power transmission system according to the second embodiment. . That is, FIG. 12A shows the modulation codes m1 to m4 input to the bidirectional switch circuits SS21 to SS24 of the code modulation circuit 23A and the demodulation code d1 input to the bidirectional switch circuits SS31 to SS34 of the code demodulation circuit 33A. An example of d4 is shown.
  • the modulation code m1 and the demodulation code d1 are the same, and the modulation code m2 and the demodulation code d2 are the same.
  • the modulation code m3 and the demodulation code d3 are the same, and the modulation code m4 and the demodulation code d4 are the same.
  • FIG. 12A shows a case where the time lengths of the code sequence c1a and the code sequence c1b are made to coincide with the half cycle of the AC generated current I1.
  • the modulation codes m1 and m2 are made up of code sequences c1a and c1b, respectively, while the code values of the modulation codes m3 and m4 Is always "0".
  • the AC generated current I1 is negative (in the example of FIG.
  • the code values of the modulation codes m1 and m2 are always “0”, while the modulation codes m3 and m4 are respectively It consists of code sequences c1a and c1b.
  • modulation codes m1 to m4 for one cycle are generated.
  • the switch elements S1 to S4 are turned on / off according to the modulation codes m1 and m2, while the switch elements S21 to S24 are disconnected and no current flows.
  • the switch elements S1 to S4 are disconnected and no current flows, while the switch elements S21 to S24 are turned on / off according to the modulation codes m3 and m4.
  • the demodulation codes d1 to d4 for one period are also generated by concatenating the bits in the first half of each period and the bits in the second half of each period.
  • the modulation current I2 flows through the transmission line 3 in the positive direction, that is, in the direction of the solid line arrow A1.
  • the modulation current I2 flows through the transmission line 3 in the negative direction, that is, in the direction of the dotted arrow A2.
  • the modulation current I2 flows in the negative direction, that is, in the direction of the one-dot chain line arrow B1.
  • the modulation current I2 flows through the transmission line 3 in the positive direction, that is, in the direction of the two-dot chain arrow B2.
  • the code modulation circuit 23 ⁇ / b> A has an AC modulation current as shown in FIG. 9B in each of the positive period and the negative period of the AC generated current I ⁇ b> 1. I2 can be generated.
  • the generated current I1 flows in the positive direction at the input terminals T1, T2 of the code modulation circuit 23A, that is, in the direction of the solid line arrow A1.
  • the AC modulation current I2 flowing in the positive direction and the negative direction is input to the input terminals T11 and T12 of the code demodulation circuit 33A via the transmission path 3.
  • the demodulating current I3 flows in the positive direction, that is, in the direction of the solid arrow C1 at the output terminals T13 and T14 of the code demodulating circuit 33A.
  • the code values of the demodulated code d3 and demodulated code d4 are all “0”, and the switch elements S31 to S34 are all turned off.
  • the generated current I1 flows in the positive direction at the input terminals T1 and T2 of the code modulation circuit 23A and flows in the positive direction at the input terminals T11 and T12 of the code demodulation circuit 33A, that is, in the direction of the solid arrow C1.
  • the operation of the code demodulating circuit 33A when the current I2 is input will be described.
  • the code value of the code sequence c1a is “1”
  • the code value of the code sequence c1b is “0”.
  • the switch elements S12 and S13 to which the code value “1” of the demodulation code d1 is input are turned on, and the switch elements S11 and S14 to which the code value “0” of the demodulation code d2 is input are turned off. Therefore, the demodulation current I3 flows in the positive direction, that is, in the direction of the solid arrow C1 through the output terminals T13 and T14.
  • the generated current I1 flows in the positive direction at the input terminals T1 and T2 of the code modulation circuit 23A, and flows in the negative direction at the input terminals T11 and T12 of the code demodulation circuit 33A, that is, in the direction of the dotted arrow C2.
  • the operation of the code demodulation circuit 33A when the modulation current I2 is input will be described.
  • the code value of the code sequence c1a is “0”
  • the code value of the code sequence c1b is “1”.
  • the switch elements S12 and S13 to which the code value “0” of the demodulation code d1 is input are turned off, and the switch elements S11 and S14 to which the code value “1” of the demodulation code d2 is input are turned on. Therefore, the demodulated current I3 flows through the output terminals T13 and T14 in the positive direction, that is, in the direction of the solid line arrow C1. As a result, when a positive current of the AC generated current I1 is input to the code modulation circuit 23A, the code demodulation circuit 33A has a correct positive polarity as shown in FIG. 9C. The demodulated current I3 thus demodulated can be output to the load 5.
  • the generated current I1 flows in the negative direction at the input terminals T1 and T2 of the code modulation circuit 23A, that is, in the direction of the one-dot chain line arrow B1.
  • the AC modulation current I2 flowing in the positive direction and the negative direction is input to the input terminals T11 and T12 of the code demodulation circuit 33A via the transmission path 3.
  • the demodulating current I3 flows in the negative direction, that is, in the direction of the dotted arrow C2 at the output terminals T13 and T14 of the code demodulating circuit 33A.
  • the code values of the demodulated codes d1 and d2 are all “0”, and the switch elements S11 to S14 are all turned off.
  • the modulation current I1 flows in the negative direction at the input terminals T1 and T2 of the code modulation circuit 23A, and flows in the negative direction at the input terminals T11 and T12 of the code demodulation circuit 33A, that is, in the direction of the dotted arrow C2.
  • the operation of the code demodulating circuit 33A when the current I2 is input will be described.
  • the code value of the code sequence c1a is “1”
  • the code value of the code sequence c1b is “0”.
  • the switch elements S32 and S33 to which the code value “1” of the demodulation code d3 is input are turned on, and the switch elements S31 and S34 to which the code value “0” of the demodulation code d4 is input are turned off. Accordingly, the demodulation current I3 flows in the negative direction, that is, in the direction of the dotted arrow C2 in the output terminals T13 and T14.
  • the generated current I1 flows in the negative direction at the input terminals T1 and T2 of the code modulation circuit 23A, and flows in the positive direction at the input terminals T11 and T12 of the code demodulation circuit 33A, that is, in the direction of the solid line arrow C1.
  • the operation of the code demodulation circuit 33A when the modulation current I2 is input will be described.
  • the code value of the code sequence c1a is “0”
  • the code value of the code sequence c1b is “1”.
  • the switch elements S32 and S33 to which the code value “0” of the demodulation code d3 is input are turned off, and the switch elements S31 and S34 to which the code value “1” of the demodulation code d4 is input are turned on. Therefore, the demodulation current I3 flows in the negative direction, that is, in the direction of the dotted arrow C2 through the output terminals T13 and T14.
  • the code demodulation circuit 33A has a correct negative polarity as shown in FIG. 9C.
  • the demodulated current I3 thus demodulated can be output to the load 5.
  • the code modulator 2A operates equivalently according to the modulation code m0 of the equation (6)
  • the code demodulator 4A Operates according to the demodulated code d0 in equation (7).
  • FIG. 12B is a diagram illustrating an example of the modulation code of the code modulator 2A and the demodulation code of the code demodulator 4A according to Example 4 that transmits DC power and receives DC power in the power transmission system according to the second embodiment.
  • the code modulation circuit 23A of FIG. 10 and the code demodulation circuit 33A of FIG. 11 as shown in FIG. 12B, the code values of the modulation codes m3 and m4 and the demodulation codes d3 and d4 are always set to “0”.
  • the switch elements S21 to S24 and S31 to S34 are turned off. Accordingly, the code modulation circuit 23A of FIG. 10 and the code demodulation circuit 33A of FIG.
  • the DC power transmission shown in FIG. 4 can be realized by generating the modulation codes m1 and m2 and the demodulation codes d1 and d2 from the code sequences c1a and c1b.
  • the code modulation circuit 23A in FIG. 10 and the code demodulation circuit 33A in FIG. 11 are used to perform DC power transmission and AC power transmission.
  • An excellent power transmission system capable of supporting both can be realized.
  • the DC generator 1 includes, for example, a solar power generator.
  • the AC generator 1 includes, for example, a generator by rotation of a turbine such as thermal power, hydraulic power, wind power, nuclear power, and tidal power.
  • the power transmission system according to the second embodiment uses the same modulation code and demodulation code to modulate and transmit the DC generated current I1 and demodulate it to the DC demodulated current I3.
  • the AC generated current I1 can be modulated and transmitted, and demodulated into an AC demodulated current I3.
  • the power transmission system according to the second embodiment can modulate and transmit the DC generated current I1 by using a demodulation code different from the modulation code, and can demodulate it into the AC demodulated current I3.
  • the AC generated current I1 can be modulated and transmitted, and demodulated to a DC demodulated current I3.
  • the code modulation circuit 23A in FIG. 10 and the code demodulation circuit 33A in FIG. 11 are reversible because they include bidirectional switch circuits SS21 to SS24 and SS31 to SS34. That is, the code modulation circuit 23A can also operate as a code demodulation circuit, and demodulates the modulation current input from the terminals T3 and T4 and outputs it from the terminals T1 and T2.
  • the code demodulation circuit 33A can also operate as a code modulation circuit, modulates the generated current input from the terminals T13 and T14, and outputs the modulated current from the terminals T11 and T12. As a result, power can be transmitted from the code demodulator 4A including the code demodulation circuit 33A to the code modulator 2A including the code modulation circuit 23A.
  • each of the bidirectional switch circuits SS21 to SS34 has a pair of switch elements (S1, S21; S2, S22; S3, respectively) connected in parallel so as to flow currents in opposite directions. S23; S4, S24; S11, S31; S12, S32; S13, S33; S14, S34).
  • the bidirectional switch circuits SS21 to SS34 are each composed of a pair of switch elements (S41, S51; S42, S52; S43, S53; S44, S4) connected in series as shown in FIGS. 13A to 14D below. It can also be configured by S54).
  • 13A to 14D the direction from top to bottom in each figure is referred to as “positive direction”, and the direction from bottom to top is referred to as “negative direction”.
  • FIG. 13A is a circuit diagram showing a configuration of a bidirectional switch circuit SS21A for the code modulation circuit 23A used in the power transmission system according to the modification of the second embodiment.
  • a switch circuit SS21A corresponds to the switch circuit SS21 of FIG. (1)
  • a switching element S41 that is connected in parallel with a diode D1 that conducts a current in the negative direction and that is turned on / off based on the modulation code m1
  • a diode D11 for passing a current in the positive direction is connected in parallel, and a switch element S51 that is turned on / off based on the modulation code m3 is connected in series.
  • FIG. 13B is a circuit diagram showing a configuration of a bidirectional switch circuit SS22A for the code modulation circuit 23A used in the power transmission system according to the modification of the second embodiment.
  • the switch circuit SS22A corresponds to the switch circuit SS22 of FIG. (1)
  • a switching element S42 that is connected in parallel with a diode D2 that conducts a current in the negative direction and that is turned on / off based on the modulation code m2
  • a diode D12 that conducts current in the positive direction is connected in parallel, and a switch element S52 that is turned on / off based on the modulation code m4 is connected in series.
  • FIG. 13C is a circuit diagram illustrating a configuration of a bidirectional switch circuit SS23A for the code modulation circuit 23A used in the power transmission system according to the modification of the second embodiment.
  • a switch circuit SS23A corresponds to the switch circuit SS23 of FIG. (1)
  • a switching element S43 that is connected in parallel with a diode D3 for passing a current in the negative direction and that is turned on / off based on the modulation code m2
  • a diode D13 that conducts current in the positive direction is connected in parallel, and a switch element S53 that is turned on / off based on the modulation code m4 is connected in series.
  • FIG. 13D is a circuit diagram illustrating a configuration of a bidirectional switch circuit SS24A for the code modulation circuit 23A used in the power transmission system according to the modification of the second embodiment.
  • the switch circuit SS24A corresponds to the switch circuit SS24 of FIG. (1)
  • a switching element S44 that is connected in parallel with a diode D4 that conducts a current in the negative direction and that is turned on / off based on the modulation code m1
  • a diode D14 that conducts current in the positive direction is connected in parallel
  • a switch element S54 that is turned on / off based on the modulation code m3 is connected in series.
  • FIG. 14A is a circuit diagram showing a configuration of a bidirectional switch circuit SS31A for the code demodulation circuit 33A used in the power transmission system according to the modification of the second embodiment.
  • a switch circuit SS31A corresponds to the switch circuit SS31 of FIG. (1)
  • a switching element S61 that is connected in parallel with a diode D31 that conducts a current in the positive direction and that is turned on / off based on a demodulation code d2
  • a diode D21 that conducts a current in the negative direction is connected in parallel, and a switch element S71 that is turned on / off based on the demodulation code d4 is connected in series.
  • FIG. 14B is a circuit diagram showing a configuration of a bidirectional switch circuit SS32A for the code demodulation circuit 33A used in the power transmission system according to the modification of the second embodiment.
  • the switch circuit SS32A corresponds to the switch circuit SS32 of FIG. (1)
  • a switch element S62 connected in parallel with D32 for passing a current in the positive direction and turned on / off based on the demodulation code d1
  • a diode D22 that conducts current in the negative direction is connected in parallel, and a switch element S72 that is turned on / off based on the demodulation code d3 is connected in series.
  • FIG. 14C is a circuit diagram showing a configuration of a bidirectional switch circuit SS33A for the code demodulation circuit 33A used in the power transmission system according to the modification of the second embodiment.
  • the switch circuit SS33A corresponds to the switch circuit SS33 of FIG. (1)
  • a switching element S63 which is connected in parallel with a diode D33 for passing a current in the positive direction and is turned on / off based on the demodulation code d1
  • a diode D23 that conducts current in the negative direction is connected in parallel, and a switch element S73 that is turned on / off based on the demodulation code d3 is connected in series.
  • FIG. 14D is a circuit diagram showing a configuration of a bidirectional switch circuit SS34A for the code demodulation circuit 33A used in the power transmission system according to the modification of the second embodiment.
  • the switch circuit SS34A corresponds to the switch circuit SS34 of FIG. (1)
  • a switching element S64 that is connected in parallel with a diode D34 that conducts a current in the positive direction and is turned on / off based on a demodulation code d2
  • a diode D24 that conducts current in the negative direction is connected in parallel, and a switch element S74 that is turned on / off based on the demodulation code d4 is connected in series.
  • the switch elements S41 to S74 are composed of, for example, MOS transistors, and parasitic (body) diodes D1 to D34 of the MOS transistors can be used in parallel.
  • the switch circuits SS21A to SS34A in FIGS. 13A to 14D is realized by, for example, a MOS transistor switch element and one diode
  • one bidirectional switch circuit SS21A to SS34A requires two MOS transistors and two diodes.
  • a package incorporating a reverse characteristic diode with good characteristics is prevalent in MOS transistors, and if this is used, one bidirectional switch circuit SS21A to SS34A can be constituted by two switch elements, and the size can be reduced. Become.
  • Embodiment 3 FIG. In the first and second embodiments, the power transmission system that transmits power from one generator 1 to one load 5 has been described. On the other hand, Embodiment 3 demonstrates the electric power transmission system which transmits electric power to several load from several generators.
  • FIG. 15 is a block diagram illustrating a configuration of the power transmission system according to the third embodiment.
  • the power transmission system according to the third embodiment includes a plurality of generators 1-1 and 1-2, a plurality of code modulators 2A-1 and 2A-2, a transmission path 3, and a plurality of code demodulations.
  • the controller 10A includes a control circuit 11 and a communication circuit 12A.
  • the control circuit 11 communicates with the code modulators 2A-1, 2A-2 and the code demodulators 4A-1, 4A-2 via the communication circuit 12A, and controls their operations.
  • the code modulators 2A-1 and 2A-2 each operate as a power transmission device, and the code demodulators 4A-1 and 4A-2 each operate as a power reception device.
  • Each of the code modulators 2A-1 and 2A-2 code-modulates the first power using a modulation code based on a predetermined code sequence to generate a code-modulated wave, The modulated wave is transmitted to one of the code demodulators 4A-1 and 4A-2 via the transmission path 3.
  • Each one of the code demodulators 4A-1 and 4A-2 receives a code modulated wave from one code modulator of the code modulators 2A-1 and 2A-2 via the transmission path 3.
  • the received code-modulated wave is code-demodulated using a demodulated code based on the same code sequence as the code sequence of the modulation code used when code-modulating to generate second power.
  • the first power is, for example, power generated by the generators 1-1 and 1-2, and is shown as generated currents I11 and I12 in FIG.
  • the code-modulated wave is code-modulated AC power and is shown as a modulation current I2 in FIG.
  • the second power is, for example, power supplied to the loads 5-1 and 5-2, and is shown as demodulated currents I31 and I32 in FIG.
  • the code modulators 2A-1 and 2A-2 and the code demodulators 4A-1 and 4A-2 in FIG. 15 are configured in the same manner as the code modulator 2A and the code demodulator 4A according to the second embodiment. To work.
  • the 15 further includes power measuring devices 1m-1, 1m-2, 5m-1, and 5m-2.
  • the power measuring devices 1m-1 and 1m-2 are first power measuring means for measuring the power amount of the first power. That is, the power measuring devices 1m-1 and 1m-2 are the amounts of power generated by the generators 1-1 and 1-2, and from the generators 1-1 and 1-2 to the code modulators 2A-1 and 2A-2. Measure the amount of power sent.
  • the power measuring devices 5m-1 and 5m-2 are second power measuring means for measuring the amount of second power. In other words, the power measuring devices 5m-1 and 5m-2 transmit the power consumption in the loads 5-1 and 5-2 from the code demodulators 4A-1 and 4A-2 to the loads 5-1 and 5-2. Measure the amount of power generated. The amount of power measured by the power measuring devices 1m-1, 1m-2, 5m-1, 5m-2 is transmitted to the controller 10A.
  • the controller 10A Based on the amounts of power received from the power measuring devices 1m-1, 1m-2, 5m-1, and 5m-2, the controller 10A performs code modulators 2A-1, 2A-2 and code demodulator 4A-1, Controls the operation of 4A-2. For example, the controller 10A sends a control signal including a synchronization signal for synchronizing the code modulators 2A-1, 2A-2 and the code demodulator 4A-1, 4A-2 to the code modulators 2A-1, 2A-2. And code modulation and code demodulation of the power synchronized accurately.
  • the controller 10A transmits the code sequence of the modulation code or the designation information thereof to the code modulator to which power is to be transmitted among the code modulators 2A-1 and 2A-2, while the code demodulator 4A-1, 4A. -2, the code sequence of the demodulated code or its designation information is transmitted to the code demodulator that should receive power. For example, when transmitting power from the code modulator 2A-1 to the code demodulator 4A-1, the controller 10A sets the modulation code in the code modulator 2A-1 based on one code sequence, and sets the demodulated code. Set to code demodulator 4A-1.
  • the controller 10A sets the modulation code to the code modulator 2A-2 based on another different code sequence, and demodulates it.
  • the code is set in the code demodulator 4A-2.
  • Code modulators 2A-1, 2A-2 and code demodulators 4A-1, 4A-2 for transmitting the power generated by the generators 1-1, 1-2 to the loads 5-1, 5-2 An exemplary operation is described below.
  • Embodiment 3 shows a case where the output power of the generators 1-1 and 1-2 is direct current, the input power of the load 5-1 is direct current, and the input power to the load 5-2 is alternating current. That is, the power transmission from the generator 1-2 to the load 5-2 is a conversion operation from direct current to alternating current.
  • FIG. 16A is a diagram showing an example of the modulation code of the code modulator 2A-1 and the demodulation code of the code demodulator 4A-1 according to the third embodiment that transmits DC power and receives DC power in the power transmission system of FIG. It is.
  • FIG. 16B shows an example of the modulation code of the code modulator 2A-2 and the demodulation code of the code demodulator 4A-2 according to the third embodiment that transmits DC power and receives AC power in the power transmission system of FIG.
  • FIG. 16B shows an example of the modulation code of the code modulator 2A-2 and the demodulation code of the code demodulator 4A-2 according to the third embodiment that transmits DC power and receives AC power in the power transmission system of FIG.
  • FIG. 16A shows modulation codes and demodulation codes input to the switch elements S1 to S44 of the code modulator 2A-1 and code demodulator 4A-1.
  • the modulation codes m1a to m4a correspond to the modulation codes m1 to m4 of the code modulation circuit 23A shown in FIG. 10, respectively
  • the demodulation codes d1a to d4a are the demodulation codes of the code demodulation circuit 33A shown in FIG. This corresponds to d1 to d4.
  • the modulation codes m1a to m4a correspond to the modulation codes m1 to m4 of the code modulation circuit 23A shown in FIG. 10
  • the demodulation codes d1a to d4a are the demodulation codes of the code demodulation circuit 33A shown in FIG. This corresponds to d1 to d4.
  • the switch elements S21 to S24 and S31 to S34 are turned off by always setting the code values of the modulation codes m3a and m4a and the demodulation codes d3a and d4a to “0”. Further, the modulation codes m1a and m2a and the demodulation codes d1a and d2a are generated from the code sequence c1a and the code sequence c1b as described with reference to FIG. 12B.
  • FIG. 16B shows modulation codes and demodulation codes input to switch elements S1 to S44 of code modulator 2A-2 and code demodulator 4A-2.
  • the modulation codes m1b to m4b correspond to the modulation codes m1 to m4 of the code modulation circuit 23A shown in FIG. 10, respectively
  • the demodulation codes d1b to d4b are the demodulation codes of the code demodulation circuit 33A shown in FIG. This corresponds to d1 to d4.
  • the switch elements S21 to S24 are turned off by always setting the code values of the modulation codes m3b and m4b to “0”.
  • Modulation codes m1b and m2b and demodulation codes d1b to d4b are generated from a code sequence c2a and a code sequence c2b.
  • the principle of current code modulation and code demodulation is the same as in the first and second embodiments, and a description thereof will be omitted here.
  • FIG. 17A to FIG. 17E are waveform diagrams showing exemplary signal waveforms in the power transmission system according to the third embodiment.
  • 17A shows a signal waveform of the generated current I11
  • FIG. 17B shows a signal waveform of the generated current I12
  • FIG. 17C shows a signal waveform of the modulated current I2
  • FIG. Shows the signal waveform of the demodulated current I31
  • FIG. 17E shows the signal waveform of the demodulated current I32.
  • the DC generated current I11 is code-modulated by the code modulator 2A-1 to become an AC code-modulated wave.
  • the DC generated current I12 is code-modulated by the code modulator 2A-2 to become an AC code-modulated wave.
  • the code modulated wave generated by the code modulator 2A-1 and the code modulated wave generated by the code modulator 2A-2 are transmitted as a modulated current I2 synthesized with each other as shown in FIG. It is transmitted via path 3.
  • the code modulators 2A-1 and 2A-2 have the same configuration, and are configured similarly to the code modulator 2A of FIG.
  • the code demodulators 4A-1 and 4A-2 also have the same configuration, and are configured similarly to the code demodulator 4A of FIG.
  • the difference between the code modulators 2A-1 and 2A-2 and the difference between the code demodulators 4A-1 and 4A-2 are that the code sequences c1a and c1b and the code sequences c2a and c2b are different from each other. It is in use.
  • the code modulator 2A-1 and code demodulator 4A-1 use code sequences c1a and c1b
  • the code modulator 2A-2 and code demodulator 4A-2 use code sequences c2a and c2b.
  • the code sequences c1a and c2a are orthogonal to each other, and therefore the code sequences c1b and c2b are also orthogonal to each other.
  • seven Gold sequences are used, and different Gold sequences are set as code sequences c1a and c2a.
  • the code demodulators 4A-1 and 4A-2 demodulate the power generated by the corresponding code modulators 2A-1 and 2A-2 from the modulation current I2 by using code sequences c1a and c2a orthogonal to each other. Can be taken out. As a result, as shown in FIGS. 17D and 17E, the generated currents I11 and I12 input to the code modulators 2A-1 and 2A-2 are transmitted as code-modulated waves. Corresponding code demodulators 4A-1 and 4A-2 accurately demodulate and output as demodulated currents I31 and I32. As a result, demodulated currents I31 and I32 having a desired waveform (direct current or alternating current) and a desired magnitude are supplied to the loads 5-1 and 5-2, respectively.
  • the code modulators 2A-1 and 2A-2 and the code demodulators 4A-1 and 4A-2 are used to multiplex 2 signals in one transmission line 3. It is possible to perform two power transmissions simultaneously and to separate the transmitted power. Accordingly, it is possible to realize an excellent power transmission system capable of simultaneously transmitting a current having a desired magnitude from the two generators 1-1 and 1-2 to the two loads 5-1 and 5-2.
  • the generators 1-1 and 1-2 can determine which instantaneous power is measured by the code modulators 2A-1 and 2A-2 or the code demodulators 4A-1 and 4A-2 and compared with the code sequence. It is possible to grasp how much power is transmitted to the load. As a result, when a plurality of different generators 1-1 and 1-2 having different power generation costs are connected, an electric power business that imposes an electricity charge according to the generators 1-1 and 1-2 of the transmission source Can be realized. Alternatively, in a system in which the transmission efficiency varies depending on which generator 1-1, 1-2 to which load 5-1, 5-2 power is sent, by managing and analyzing the information of power transmission, Optimal power supply can be realized.
  • the code modulators 2A-1 and 2A-2 and the code demodulators 4A-1 and 4A-2 are used, so that one or more generators 1-1 and 1 are used.
  • -2 can provide a power transmission system capable of efficiently supplying power to one or more loads 5-1 and 5-2.
  • the power transmission system including the two generators 1-1 and 1-2 and the two loads 5-1 and 5-2 has been described as an example. However, the present disclosure is limited to this. It is not a thing.
  • a configuration including one generator 1-1 and two or more loads 5-1 and 5-2, and further two or more generators 1-1 and 1-2 and two or more loads 5-1 , 5-2, a power transmission system can be configured. In this case, a large number of power transmissions can be performed together in one transmission line 3, and there are effects such as a reduction in the installation cost of the transmission line 3 and a reduction in cost due to a reduction in the number of transmission lines 3.
  • the code modulators 2A-1 and 2A-2 in FIG. 15 are configured by the code modulation circuit 23A shown in FIG. 10 as an example, but the present invention is not limited to this.
  • the code modulators 2A-1 and 2A-2 may be configured using the code modulation circuit 23 shown in FIG.
  • the code demodulator 4A-1 and 4A-2 may be configured using the code demodulator circuit 33 shown in FIG.
  • the circuit configurations of the code modulators 2A-1 and 2A-2 and the code demodulators 4A-1 and 4A-2 can be simplified, so that the number of parts can be reduced, the cost can be reduced, and the apparatus There is an effect that downsizing can be realized.
  • the power transmission system may receive power supply from an arbitrary number of generators having DC output power and an arbitrary number of generators having AC output power.
  • the power transmission system may supply power to an arbitrary number of loads having DC input power and an arbitrary number of loads having AC input power.
  • the power transmission system by using code modulation and code demodulation, power transmission from a DC power source to a DC load, and power transmission from a DC power source to an AC load,
  • the power transmission from the AC power source to the DC load and the power transmission from the AC power source to the AC load can be simultaneously performed on one transmission path.
  • Embodiment 4 The frequency of the output power of the generator 1, the operating frequency of the code modulators 2 and 2A, the operating frequency of the code demodulators 4 and 4A, and the frequency of the input power of the load 5 at which the load 5 can operate. May be inconsistent with other frequencies, the efficiency of power transmission may be reduced.
  • the operating frequency of the code modulators 2 and 2 ⁇ / b> A particularly includes the frequency of the modulation code (for example, the frequency in units of one period of the modulation code such as the equations (1) and (6)).
  • the operating frequency of the code demodulator 4 or 4A particularly includes the frequency of the demodulated code (for example, the frequency in units of one cycle of the demodulated code such as the equations (2) and (7)).
  • the power transmission system according to Embodiment 4 is configured in the same manner as the power transmission system according to Embodiment 2, for example.
  • the control circuit 11 of the controller 10 has a frequency of output power of the generator 1 (frequency of generated current) and a frequency of input power of the load 5 at which the load 5 can operate (required by the load 5; Load frequency to be supplied to the load 5).
  • the control circuit 11 of the controller 10 may receive the frequency of the generated current from the generator 1, the code modulator 2A, or other information source via the communication circuit 12, and the load 5, the code demodulator 4A, or The frequency of the load current may be received from another information source.
  • FIG. 18 is a timing chart showing code modulation and code demodulation in the power transmission system according to the first example of the fourth embodiment.
  • the control circuit 20 of the code modulator 2A sets the frequency of the modulation code to a multiple of the frequency of the generated current under the control of the controller 10.
  • the control circuit 30 of the code demodulator 4A sets the frequency of the demodulated code to a multiple of the frequency of the load current.
  • “multiple” represents a positive integer multiple such as 1 ⁇ , 2 ⁇ , or 3 ⁇ .
  • a modulation code and a demodulation code of 20 Hz may be used.
  • FIG. 19 is a timing chart illustrating code modulation and code demodulation in the power transmission system according to the second example of the fourth embodiment.
  • the control circuit 11 of the controller 10 determines the frequency of the modulation code of the code modulator 2A and the frequency of the demodulation code of the code demodulator 4A as the generated current.
  • a common multiple of the load current frequency For example, when the frequency of the generated current is 5 Hz and the frequency of the load current is 4 Hz, a modulation code and a demodulation code of 20 Hz may be used.
  • the power transmission system according to the fourth embodiment is connected to a plurality of code modulators 2A connected to one or a plurality of generators 1 and / or one or a plurality of loads 5 as in the third embodiment.
  • a plurality of code demodulators 4A may be included.
  • the control circuit 11 of the controller 10 sets the frequency of the modulation code of each code modulator 2A and the frequency of the demodulation code of each code demodulator 4A to a common multiple of the frequency of each generated current and the frequency of each load current. .
  • the generated current is code-modulated without waste, Electric power can be supplied to the target load 5 without waste.
  • the control circuit 11 of the controller 10 may set the frequency of the modulation code of each code modulator 2A and the frequency of the demodulation code of each code demodulator 4A to the least common multiple of the frequency of each generated current and the frequency of each load current. Good. As a result, an increase in switching frequency is minimized, so that an increase in switching loss can be minimized.
  • FIG. 20 is a timing chart illustrating code modulation and code demodulation in the power transmission system according to the third example of the fourth embodiment.
  • at least one of the frequency of the generated current and the frequency of the load current may be 0 Hz (direct current).
  • the generated current can be code-modulated without waste, and power can be supplied to the target load 5 without waste.
  • FIG. 21 is a timing chart showing code modulation and code demodulation in the power transmission system according to the first comparative example of the fourth embodiment.
  • the frequency of the generated current is 4 Hz
  • the frequency of the load current is 5 Hz
  • the frequencies of the modulation code and the demodulation code are 5 Hz.
  • the frequency of the generated current and the frequency of the modulation code do not match, it is not possible to transmit the power in the hatched portion of the modulation current. As a result, the power of the hatched portion of the demodulated current cannot be supplied to the load 5.
  • FIG. 22 is a timing chart showing code modulation and code demodulation in the power transmission system according to the second comparative example of the fourth embodiment.
  • the frequency of the generated current is 4 Hz
  • the load current is direct current
  • the frequencies of the modulation code and the demodulation code are 5 Hz.
  • the power of the hatched portion of the modulation current cannot be transmitted.
  • the power of the hatched portion of the demodulated current cannot be supplied to the load 5.
  • FIG. 23 is a timing chart illustrating code modulation and code demodulation in the power transmission system according to the third comparative example of the fourth embodiment.
  • the frequency of the generated current is 5 Hz
  • the frequency of the load current is 4 Hz
  • the frequencies of the modulation code and the demodulation code are 5 Hz.
  • the generated current can be code-modulated without loss and transmitted from the code modulator 2A to the code demodulator 4A.
  • the frequency of the load current and the frequency of the demodulated code do not coincide, Part of the power cannot be supplied to the load 5.
  • the power transmission system it is possible to prevent a decrease in efficiency of power transmission due to frequency mismatch and loss of synchronization with other components of the power transmission system, and at least the efficiency of power transmission. Can be made less likely to occur.
  • Embodiment 5 The generated current, modulation code, demodulation code, and load current may be synchronized for some reason even when the frequencies of the generated current, modulation code, demodulation code, and load current are in agreement with each other or even in a multiple relationship. May be lost.
  • the fifth embodiment it will be described that the reduction in efficiency of power transmission due to such loss of synchronization is less likely to occur.
  • FIG. 24 is a block diagram illustrating a configuration of a power transmission system according to the fifth embodiment.
  • the power transmission system according to the fifth embodiment includes a generator 1, a code modulator 2B, a transmission path 3, a code demodulator 4B, a load 5, and a controller 10B.
  • FIG. 25 is a block diagram showing a configuration of the code modulator 2B of FIG.
  • the code modulator 2B includes a control circuit 20B, a communication circuit 21, a code generation circuit 22A, a code modulation circuit 23A, and a current measuring device 2m.
  • the code generation circuit 22A and the code modulation circuit 23A are configured in the same manner as the corresponding components according to the second embodiment.
  • the current measuring device 2m measures the current value of the generated current.
  • the control circuit 20B sends the measured current value of the generated current to the controller 10B via the communication circuit 21.
  • FIG. 26 is a block diagram showing a configuration of the code demodulator 4B of FIG.
  • the code demodulator 4B includes a control circuit 30B, a communication circuit 31, a code generation circuit 32A, a code demodulation circuit 33A, and a current measuring device 4m.
  • the code generation circuit 32A and the code demodulation circuit 33A are configured similarly to the corresponding components according to the second embodiment.
  • the current measuring device 4m measures the current value of the load current.
  • the control circuit 30B sends the measured load current value to the controller 10B via the communication circuit 31.
  • the controller 10B includes a control circuit 11B and a communication circuit 12B.
  • the control circuit 11B communicates with the code modulator 2B and the code demodulator 4B via the communication circuit 12B, and controls their operations.
  • the control circuit 11B of the controller 10B detects the moment when the polarity of the generated current changes based on the current value of the generated current, thereby calculating the phase and frequency of the generated current.
  • the control circuit 11B of the controller 10B is a time interval of a predetermined number of bits in one period of the modulation code, and the polarity of the generated current changes.
  • the code modulator 2B is instructed to stop the code modulation of the generated current over a time interval including the moment. This time interval may be a 1-bit time interval including the moment when the polarity of the generated current changes, or may be a time interval of a predetermined number of bits including the preceding and succeeding bits.
  • the control circuit 20B of the code modulator 2B stops the code modulation of the generated current over a time period including the moment when the polarity of the generated current changes under the control of the controller 10B.
  • the control circuit 11B of the controller 10B detects the moment when the polarity of the load current changes based on the current value of the load current, and thereby calculates the phase and frequency of the load current.
  • the control circuit 11B of the controller 10B changes the polarity of the load current in a time interval of a predetermined number of bits in one cycle of the demodulated code.
  • the code demodulator 4B is instructed to stop the code demodulation of the modulation current over a time interval including the moment. This time interval may be a 1-bit time interval including the moment when the polarity of the load current changes, or may be a time interval of a predetermined number of bits including the preceding and succeeding bits.
  • the control circuit 30B of the code demodulator 4B stops the code demodulation of the modulation current over the time interval including the moment when the polarity of the load current changes under the control of the controller 10B.
  • FIG. 27 is a timing chart showing a first example of code modulation and code demodulation executed by the power transmission system of FIG.
  • the frequency of the modulation code does not match a multiple of the frequency of the generated current (for example, 4 times)
  • the generated current is changed over the time interval (for example, 1-bit time interval) including the moment when the polarity of the generated current changes. Stop code modulation.
  • the modulation current becomes zero and the demodulation current also becomes zero.
  • FIG. 28 is a timing chart showing a second embodiment of code modulation and code demodulation executed by the power transmission system of FIG.
  • the frequency of the demodulated code does not match a multiple (for example, 4 times) of the frequency of the load current
  • the modulation current of the modulation current over the time interval for example, 1-bit time interval
  • the demodulation current becomes zero.
  • the power transmission system it is possible to make it difficult to reduce the efficiency of power transmission due to loss of synchronization of the generated current, modulation code, demodulation code, and load current.
  • the controller 10B may acquire the current value of the generated current directly from the generator 1, and may acquire the current value of the load current directly from the load 5.
  • a plurality of code modulators may use the same code sequence, and a plurality of code demodulators may use the same code sequence.
  • power may be transmitted from one code modulator to a plurality of code demodulators, power may be transmitted from a plurality of code modulators to one code demodulator, and a plurality of codes from a plurality of code modulators. The power may be transmitted to the code demodulator.
  • the power transmission device, power reception device, and power transmission system according to aspects of the present disclosure have the following configurations.
  • the power transmission device is: A power transmission device that transmits power to at least one power reception device via a transmission line, the power transmission device comprising: A code modulation circuit to which output power of a power supply is supplied, wherein a code modulation wave is generated by code-modulating the output power of the power supply using a modulation code based on a predetermined code sequence, and the code modulation wave is generated via the transmission path.
  • a code modulation circuit for transmitting a code-modulated wave to the power receiving device;
  • a control circuit for controlling the code modulation circuit, The control circuit sets the frequency of the modulation code to a multiple of the frequency of the output power of the power supply.
  • the power receiving device is A power reception device that receives a code-modulated wave including power code-modulated using a modulation code based on a predetermined code sequence from at least one power transmission device via a transmission line, the power reception device comprising: A code demodulating circuit connected to a load, wherein the code modulated wave is code demodulated using a demodulated code based on the same code sequence as the code sequence of the modulation code used when code modulating the received code modulated wave Code demodulating circuit for generating demodulated power and supplying the demodulated power to the load; A control circuit for controlling the code demodulation circuit, The control circuit sets the frequency of the demodulation code to a multiple of the frequency of input power of the load at which the load can operate.
  • the power transmission system is One or more power transmission devices according to the first aspect; One or more power receivers according to the second aspect; A power transmission system including a controller, The one or more power transmitters are connected to one or more power sources, the one or more power receivers are connected to one or more loads; The controller is A communication circuit that receives a frequency of output power of each power source and a frequency of input power of each load; A control circuit for controlling each power transmission device and each power reception device via the communication circuit; The control circuit of the controller includes the frequency of the modulation code of each power transmission device and the frequency of the demodulation code of each power reception device, the frequency of output power of each power source and the frequency of input power of each load. Set to a common multiple.
  • the power transmission device is the power transmission system according to the third aspect,
  • the control circuit of the controller includes the frequency of the modulation code of each power transmission device and the frequency of the demodulation code of each power reception device, the frequency of output power of each power source and the frequency of input power of each load. Set to the least common multiple.
  • the power transmission device is A power transmission device that transmits power to at least one power reception device via a transmission line, the power transmission device comprising: A code modulation circuit to which output power of a power supply is supplied, wherein a code modulation wave is generated by code-modulating the output power of the power supply using a modulation code based on a predetermined code sequence, and the code modulation wave is generated via the transmission path.
  • a code modulation circuit for transmitting a code-modulated wave to the power receiving device;
  • a control circuit for controlling the code modulation circuit,
  • the control circuit is a time interval of a predetermined number of bits in one period of the modulation code when the modulation code is not synchronized with the output power of the power supply, and the output power of the power supply
  • the code modulation of the output power of the power supply is stopped over a time interval including the moment when the polarity of the power supply changes.
  • the power receiving device is A power reception device that receives a code-modulated wave including power code-modulated using a modulation code based on a predetermined code sequence from at least one power transmission device via a transmission line, the power reception device comprising: A code demodulating circuit connected to a load, wherein the code modulated wave is code demodulated using a demodulated code based on the same code sequence as the code sequence of the modulation code used when code modulating the received code modulated wave Code demodulating circuit for generating demodulated power and supplying the demodulated power to the load; A control circuit for controlling the code demodulation circuit, When the demodulated code is not synchronized with the input power of the load, the control circuit is a time interval of a predetermined number of bits in one cycle of the demodulated code, and the input power of the load The code demodulation of the code-modulated wave is stopped over a time interval including the moment when the polarity of the code changes.
  • the power transmission system according to the seventh aspect is A power transmission device according to a fifth aspect; A power receiving apparatus according to a sixth aspect.
  • the power transmission system according to the present disclosure is useful for transmitting power from generators such as solar power generation, wind power generation, and hydroelectric power generation to loads such as railways and EV vehicles.

Abstract

伝送路(3)を介して少なくとも1つの符号復調器(4A)に電力を送信する電力送信装置であって、符号変調器(2A)は、発電電流が供給される符号変調回路(23A)であって、所定の符号系列に基づく変調符号を用いて発電電流を符号変調して変調電流を生成し、伝送路(3)を介して変調電流を符号復調器(4A)に送信する符号変調回路(23A)と、符号変調回路(23A)を制御する制御回路(20)とを備える。制御回路(20)は、変調符号の周波数を発電電流の周波数の倍数に設定する。

Description

電力伝送システム
 本開示は、伝送路を介して電力を送信する電力送信装置と、伝送路を介して電力を受信する電力受信装置と、電力送信装置及び電力受信装置を含む電力伝送システムとに関する。
 近年、電力会社が提供する火力発電、水力発電、及び原子力発電等の従来からの電力供給に加え、太陽光発電、風力発電、及びバイオ燃料発電などに代表される再生可能エネルギー電源の導入が加速している。また、現在敷設されている大規模な商用電力網とは別に、遠距離送電による損失を軽減させることを目的として、電力の地産地消を実現する局所的な小規模電力網の導入が世界的に広がりつつある。
 小規模電力網では、自然エネルギーを利用した発電機を使用し、負荷となる電気設備において高効率な電力回収をおこなうことで電力自給が可能になる。これは、砂漠のオアシス又は離島等の無電化地域を解消するための電力伝送システムとして期待が高い。
 例えば特許文献1~3は、電力線を介して電源から負荷に電力を伝送する電力伝送システムを開示している。
特許第5612718号公報 特許第5612920号公報 特開2011-91954号公報
 電力伝送システムは、電力線を介して電源から負荷に電力を伝送するために、電源から供給された電力を伝送路を介して送信する電力送信装置と、伝送路を介して電力を受信して負荷に供給する電力受信装置とを含む。このような電力伝送システムにおいて電力送信装置から電力受信装置に電力を伝送するとき、電源、電力送信装置、電力受信装置、及び負荷の間の確実な同期が求められる場合がある。電源の出力電力の周波数、電力送信装置の動作周波数、電力受信装置の動作周波数、及び負荷が動作可能な負荷の入力電力の周波数のうちの少なくとも1つの周波数が他の周波数に対して不一致しているとき、電力伝送の効率が低下するおそれがある。
 本開示の目的は以上の問題点を解決し、電力伝送システムの他の構成要素との周波数の不一致及び同期の喪失などによる電力伝送の効率の低下を生じにくい電力送信装置を提供することにある。
 本開示の一態様に係る電力送信装置は、
 伝送路を介して少なくとも1つの電力受信装置に電力を送信する電力送信装置であって、前記電力送信装置は、
 電源の出力電力が供給される符号変調回路であって、所定の符号系列に基づく変調符号を用いて前記電源の出力電力を符号変調して符号変調波を生成し、前記伝送路を介して前記符号変調波を前記電力受信装置に送信する符号変調回路と、
 前記符号変調回路を制御する制御回路とを備え、
 前記制御回路は、前記変調符号の周波数を前記電源の出力電力の周波数の倍数に設定する。
 これらの包括的かつ特定の態様は、システムにより、方法により、又はシステム及び方法の任意の組み合わせにより実現してもよい。
 本開示の一態様に係る電力送信装置によれば、電力伝送システムの他の構成要素との周波数の不一致及び同期の喪失などによる電力伝送の効率の低下を生じにくくすることができる。
実施形態1に係る電力伝送システムの構成を示すブロック図である。 図1の電力伝送システムの変調電流I2の信号波形例を示す波形図である。 比較例に係る通信システムの変調電流I2の信号波形例を示す波形図である。 図1の電力伝送システムにおける例示的な信号波形を示す波形図であり、(a)は発電電流I1の信号波形を示し、(b)は変調電流I2の信号波形を示し、(c)は復調電流I3の信号波形を示す。 図1の符号変調器2の構成を示すブロック図である。 図1の符号復調器4の構成を示すブロック図である。 図1の符号変調回路23及び符号復調回路33の構成を示すブロック図である。 図1の電力伝送システムにおいて直流電力を送電して直流電力を受電する実施例1に係る符号変調器2の変調符号及び符号復調器4の復調符号の一例を示す図である。 図1の電力伝送システムにおいて直流電力を送電して直流電力を受電する実施例2に係る符号変調器2の変調符号及び符号復調器4の復調符号の一例を示す図である。 実施形態2に係る電力伝送システムにおける例示的な信号波形を示す波形図であり、(a)は発電電流I1の信号波形を示し、(b)は変調電流I2の信号波形を示し、(c)は復調電流I3の信号波形を示す。 実施形態2に係る電力伝送システムの符号変調器2Aの一部の構成を示すブロック図である。 実施形態2に係る電力伝送システムの符号復調器4Aの一部の構成を示すブロック図である。 実施形態2に係る電力伝送システムにおいて交流電力を送電して交流電力を受電する実施例3に係る符号変調器2Aの変調符号及び符号復調器4Aの復調符号の一例を示す図である。 実施形態2に係る電力伝送システムにおいて直流電力を送電して直流電力を受電する実施例4に係る符号変調器2Aの変調符号及び符号復調器4Aの復調符号の一例を示す図である。 実施形態2の変形例に係る電力伝送システムにおいて用いる符号変調回路23Aのための双方向性スイッチ回路SS21Aの構成を示す回路図である。 実施形態2の変形例に係る電力伝送システムにおいて用いる符号変調回路23Aのための双方向性スイッチ回路SS22Aの構成を示す回路図である。 実施形態2の変形例に係る電力伝送システムにおいて用いる符号変調回路23Aのための双方向性スイッチ回路SS23Aの構成を示す回路図である。 実施形態2の変形例に係る電力伝送システムにおいて用いる符号変調回路23Aのための双方向性スイッチ回路SS24Aの構成を示す回路図である。 実施形態2の変形例に係る電力伝送システムにおいて用いる符号復調回路33Aのための双方向性スイッチ回路SS31Aの構成を示す回路図である。 実施形態2の変形例に係る電力伝送システムにおいて用いる符号復調回路33Aのための双方向性スイッチ回路SS32Aの構成を示す回路図である。 実施形態2の変形例に係る電力伝送システムにおいて用いる符号復調回路33Aのための双方向性スイッチ回路SS33Aの構成を示す回路図である。 実施形態2の変形例に係る電力伝送システムにおいて用いる符号復調回路33Aのための双方向性スイッチ回路SS34Aの構成を示す回路図である。 実施形態3に係る電力伝送システムの構成を示すブロック図である。 図15の電力伝送システムにおいて直流電力を送電して直流電力を受電する実施例5に係る符号変調器2A-1の変調符号及び符号復調器4A-1の復調符号の一例を示す図である。 図15の電力伝送システムにおいて直流電力を送電して交流電力を受電する実施例6に係る符号変調器2A-2の変調符号及び符号復調器4A-2の復調符号の一例を示す図である。 実施形態3に係る電力伝送システムにおける例示的な信号波形を示す波形図であり、(a)は発電電流I11の信号波形を示し、(b)は発電電流I12の信号波形を示し、(c)は変調電流I2の信号波形を示し、(d)は復調電流I31の信号波形を示し、(e)は復調電流I32の信号波形を示す。 実施形態4の第1の実施例に係る電力伝送システムにおける符号変調及び符号復調を示すタイミングチャートである。 実施形態4の第2の実施例に係る電力伝送システムにおける符号変調及び符号復調を示すタイミングチャートである。 実施形態4の第3の実施例に係る電力伝送システムにおける符号変調及び符号復調を示すタイミングチャートである。 実施形態4の第1の比較例に係る電力伝送システムにおける符号変調及び符号復調を示すタイミングチャートである。 実施形態4の第2の比較例に係る電力伝送システムにおける符号変調及び符号復調を示すタイミングチャートである。 実施形態4の第3の比較例に係る電力伝送システムにおける符号変調及び符号復調を示すタイミングチャートである。 実施形態5に係る電力伝送システムの構成を示すブロック図である。 図24の符号変調器2Bの構成を示すブロック図である。 図24の符号復調器4Bの構成を示すブロック図である。 図24の電力伝送システムによって実行される符号変調及び符号復調の第1の実施例を示すタイミングチャートである。 図24の電力伝送システムによって実行される符号変調及び符号復調の第2の実施例を示すタイミングチャートである。
本開示の基礎となった知見.
 特許文献1では、電力伝送装置において複数の電力系統間において電力の融通を実現可能な連携装置が開示されている。特許文献1では、前記連携装置はコンバータとインバータを備え、送電するときには前記コンバータにより送電電力を交流から直流に変換し、電力を受け取る電力系統に接続された連携装置に電力を送電する。前記電力を受け取る電力系統の連携装置では、インバータにより所望の周波数に変換することで、前記連携装置が接続される電力系統に最適な周波数の電力を提供できる。また、特許文献2では、特許文献1に対して、電力貯蔵装置を備えた構成が開示されている。
 一方、特許文献3では、電力伝送装置において複数の送電装置から複数の受電装置への電力を伝送する方法が開示されている。特許文献3では、前記複数の送電装置から、前記複数の受電装置への電力の伝送は時分割で行う。なお、特許文献3では、電力融通を実現するに当たって、前記送電装置及び受電装置間の制御通信は、無線通信で行うことで実現している。
 しかしながら、特許文献1及び特許文献2において、前記連携装置は、インバータとコンバータを備え、且つ、基本的には電力融通を行う系統間の全ての組み合わせに対して個別の電力伝送ケーブルが必要になる。連携装置の構成により、電力伝送ケーブルを減らす方法も記載されているが、いずれにしても多数の電力伝送ケーブルが必要になる。これにより、敷設コストの増加、ケーブルの材料費の増加、さらには、連携装置には、接続される系統の数と同じ数のインバータとコンバータの組を備える必要がある。これらより、ケーブルのコストの増加に加え、連携装置の規模の増大によるコストの増加の恐れがある。
 また、特許文献3は、複数の送電装置と受電装置間において時分割で電力を融通することが可能であり、電力伝送ケーブルの本数が少なくてすむという利点がある。しかしながら、時分割で送電することにより、複数系統間での電力の融通を同時に行うことができない。すなわち、受電側に接続された負荷の電力の要求に即座に対応できない恐れがあった。さらには、多数の電力融通を実施する場合には、1つあたりの電力融通に割り振られる時間が短くなるので、パルス的に大きな電力が電力伝送ケーブルに送電される。したがって、送ケーブルの耐電力性が求められ、コストの増加に繋がる恐れがあった。また、電力を受電できない時間帯が生じるので、受電装置に大きな電力のバッファ機能が必要となる恐れがあった。さらには、時分割での電力融通を実現するためには、複数の送電装置及び受電送置間で時間的な同期が必要であり、これを実現するためには非常に精度の高い機器間制御が求められ、システム全体としてコストの増加に繋がる恐れがあった。
 前記のように、特許文献1、2はいずれも、多数の電力伝送ケーブルを用いており電力伝送の多重化による電力伝送ケーブルの省線化が実現できない。さらに、連携装置においては、電力伝送ケーブルごとにインバータとコンバータの組が必要になり、連携装置の規模を小さくすることは不可能である。このため、多くの電力系統間での電力融通は困難であった。一方、特許文献3では、電力伝送ケーブルに、複数の電力融通を時分割で行うことにより、電力伝送ケーブルの省線化が図れるが、複数の電力融通を同時に行う伝送システムを提供できない。従って、送電装置及び受電装置の小型・薄型化を図りつつ、電力伝送ケーブルの省線化を実現し、且つ、複数の送電装置から複数の受電装置への電力融通を同時に、より確実に行うことができる電力伝送システムが望まれている。
 さらに、前述のように、電力伝送システムの他の構成要素との周波数の不一致及び同期の喪失などによる電力伝送の効率の低下を生じにくい電力伝送システムが求められる。
 以上の考察により、本発明者らは、以下の発明の各態様を想到するに至った。
 以下、本開示に係る実施形態について図面を参照して説明する。なお、以下の各実施形態において、同様の構成要素については同一の符号を付している。
 本開示の目的は、電力伝送システムの他の構成要素との周波数の不一致及び同期の喪失などによる電力伝送の効率の低下を生じにくい電力送信装置、電力受信装置、及び電力伝送システムを提供することにある。実施形態1~3では、その前提として、電力伝送システムの概要について説明する。その後、実施形態4~5において、課題を解決する電力伝送システムについて説明する。
実施形態1.
 図1は実施形態1に係る電力伝送システムの構成を示すブロック図である。図1において、実施形態1に係る電力伝送システムは、発電機1と、符号変調器2と、伝送路3と、符号復調器4と、負荷5と、コントローラ10とを備える。伝送路3は、例えば、2本の電力線を含む有線又は無線の伝送路である。
 コントローラ10は、制御回路11及び通信回路12を備える。制御回路11は、通信回路12を介して符号変調器2及び符号復調器4と通信し、それらの動作を制御する。
 図1の電力伝送システムにおいて、符号変調器2は電力送信装置として動作し、符号復調器4は電力受信装置として動作する。符号変調器2は、第1の電力を、所定の符号系列に基づく変調符号を用いて符号変調して符号変調波を生成し、符号変調波を、伝送路3を介して符号復調器4に送信する。符号復調器4は、符号変調器2から伝送路3を介して符号変調波を受信し、受信した符号変調波を、符号変調したときに用いた変調符号の符号系列と同じ符号系列に基づく復調符号を用いて符号復調して第2の電力を生成する。第1の電力は、例えば、発電機1で発電された直流電力であり、図1では発電電流I1として示す。符号変調波は、符号変調された交流電力であり、図1では変調電流I2として示す。第2の電力は、例えば、負荷5に供給される直流電力であり、図1では復調電流I3として示す。
 図1の電力伝送システムは、さらに、電力測定器1m,5mを備える。電力測定器1mは、第1の電力の電力量を測定する第1の電力測定手段である。すなわち、電力測定器1mは、発電機1の発電量であり、発電機1から符号変調器2へ送られる直流電力の電力量を測定する。電力測定器1mは、発電機1に設けられてもよく、発電機1と符号変調器2との間に設けられてもよい。電力測定器5mは、第2の電力の電力量を測定する第2の電力測定手段である。すなわち、電力測定器5mは、負荷5における電力使用量である、符号復調器4から負荷5へ送られる直流電力の電力量を測定する。電力測定器5mは、負荷5に設けられてもよく、符号復調器4と負荷5との間に設けられてもよい。電力測定器1m,5mによって測定された電力量はコントローラ10に送信される。
 コントローラ10は、電力測定器1m,5mから受信した各電力量に基づいて、符号変調器2と符号復調器4の動作を制御する。例えば、コントローラ10は、符号変調器2及び符号復調器4を互いに同期させるための同期信号を含む制御信号を符号変調器2及び符号復調器4に送信し、これにより、正確に同期した電力の符号変調及び符号復調を実現する。
 コントローラ10は、1つの符号系列に基づいて、変調符号を符号変調器2に設定し、復調符号を符号復調器4に設定する。符号変調器2において変調に用いるための変調符号の符号系列、並びに、符号復調器4において復調に用いるための復調符号の符号系列は、符号変調器2及び符号復調器4において予め設定されていてもよい。また、例えば、コントローラ10は、上記制御信号において、符号変調器2において変調に用いるための変調符号の符号系列、並びに、符号復調器4において復調に用いるための復調符号の符号系列を送信してもよい。さらに、コントローラ10は、上記制御信号において、符号系列を送信せずに、符号系列の指定情報のみを送信して符号変調器2及び符号復調器4において符号系列を生成してもよい。この場合、対向する符号変調器2と符号復調器4との間で正確に同期して符号変調及び符号復調することができる。
 図2は図1の電力伝送システムの変調電流I2の信号波形例を示す波形図である。また、図3は比較例に係る通信システムの変調電流I2の信号波形例を示す波形図である。
 図1の符号変調器2は、予め決められた符号系列に基づく変調符号を用いて、発電機1において発電された電力の電流を符号変調する。このとき、図2に示すように、符号変調器2は、「1」と「-1」の符号値に対応する向きに流れる電流からなる、交流の符号変調波を生成する。この符号変調波は、正の電流が流れる期間であっても、負の電流が流れる期間(例えば、図2の期間T01)であっても、電力を伝送可能である。なお、実施形態1では、一例として直流電力を符号変調する例を示すが、後述する実施形態2に示すように交流電力を符号変調してもよい。
 例えば通信で使用される比較例に係るデータ伝送システムでは、通常、図3に示すように、「1」と「0」の符号値を用いて符号変調がなされる。しかしながら、図3に示す符号変調波では、変調符号の符号値が「0」のとき(例えば、図3の期間T02)に変調された電流もしくは電圧が0となり、電力が伝送されない時間が生じてしまう。このため、この電力が伝送されない時間の区間により、全体的に電力の伝送効率の低下を招いてしまう恐れがあった。すなわち、通信の場合には、データ等の情報を正確に同期して伝送することが望まれるので、符号復調器で「0」もしくは「1」と正確に判別できればよかったが、電力の伝送では、エネルギーの高効率利用の観点で、この電力が伝送されない時間の区間による電力の損失は許容することができなかった。以上により、図2に示すように、「1」と「-1」の符号値に対応する向きに流れる交流の符号変調波を用いることで、比較例よりも高い伝送効率で電力を伝送できる。
 図4(a)~図4(c)は図1の電力伝送システムにおける例示的な信号波形を示す波形図である。図4(a)は発電電流I1の信号波形を示し、図4(b)は変調電流I2の信号波形を示し、図4(c)は復調電流I3の信号波形を示す。発電機1は直流の発電電流I1を生成する。符号変調器2は、変調符号m0を発電電流I1に乗算することで、交流の変調電流I2を生成する。符号復調器4は、変調符号m0と同一の復調符号d0を変調電流I2に乗算し、これにより、発電機1で発電された直流の電力を復元して負荷5に供給することができる。
 なお、図4において、T10は変調符号m0及び復調符号d0の1周期分の期間を示し、以下の図面においても同様である。
 図4の信号波形例では、直流の発電電流I1(図4(a))に対して、周波数35kHzを有する変調符号m0を乗算して、符号変調波の変調電流I2(図4(b))を生成した。この場合、変調符号m0の各ビットの時間長は、1/(35kHz)/2=14.2マイクロ秒であった。
 変調符号m0及び復調符号d0の各ビットは符号値「1」又は「-1」を有する。ここで、変調符号m0について、符号値「1」は、符号変調器2が入力された電流の向きと同じ向きの電流を出力することを示し、符号値「-1」は、符号変調器2が入力された電流の向きと逆向きの電流を出力することを示す。同様に、復調符号d0について、符号値「1」は、符号復調器4が入力された電流の向きと同じ向きの電流を出力することを示し、符号値「-1」は、符号復調器4が入力された電流の向きと逆向きの電流を出力することを示す。
 変調符号m0及び復調符号d0はそれぞれ一例として次式で表される。
m0=[1 -1 1 1 1 -1 -1 -1 1 -1 -1 -1 1 1]
   (1)
d0=m0
=[1 -1 1 1 1 -1 -1 -1 1 -1 -1 -1 1 1]
   (2)
 次いで、変調符号m0によって生成された符号変調波の変調電流I2に対して復調符号d0を乗算する。この乗算は次式により表される。
m0×d0
=[1 1 1 1 1 1 1 1 1 1 1 1 1 1]
   (3)
 式(3)から明らかなように、元の発電電流I1と同じ直流の復調電流I3(図4(c))が得られることがわかる。
 以上説明したように、本実施形態に係る符号変調器2及び符号復調器4を用いることで、正確に同期しかつ電力損失のない直流の電力伝送を実現できる。また、例えば上述の変調符号m0及び復調符号d0を繰り返して使用することにより、より長い時間での電力の伝送を効率よく行うことが可能になる。
 さらに、変調符号m0は、その前半の符号部分m0aと、その後半の符号部分m0bとに次式のように分割することができる。
m0a=[1 -1 1 1 1 -1 -1]   (4)
m0b=[-1 1 -1 -1 -1 1 1]   (5)
 ここで、符号部分m0bは、符号部分m0aの各ビットの符号値をそれぞれ符号反転して生成される。すなわち、符号部分m0aのあるビットの符号値が「1」であれば、符号部分m0bの対応するビットの符号値は「-1」である。同様に、符号部分m0aのあるビットの符号値が「-1」であれば、符号部分m0bの対応するビットの符号値は「1」である。
 図5は図1の符号変調器2の構成を示すブロック図である。図5において、符号変調器2は、制御回路20と、通信回路21と、符号生成回路22と、符号変調回路23とを備える。通信回路21は、コントローラ10から、同期信号と、符号系列又はその指定情報を含む制御信号とを受信して、制御回路20に出力する。ここで、同期信号は、例えば、変調開始及び変調終了のトリガー信号であってもよく、変調開始時刻及び変調終了時刻の時間情報であってもよい。制御回路20は、上記制御信号に基づいて、符号生成回路22により所定の符号系列に基づく変調符号を生成させて符号変調回路23に出力させるとともに、符号変調回路23の動作開始及び動作終了を制御する。なお、符号変調回路23は、発電機1に接続された入力端子T1,T2と、伝送路3に接続された出力端子T3,T4とを有する。
 図6は図1の符号復調器4の構成を示すブロック図である。図6において、符号復調器4は、制御回路30と、通信回路31と、符号生成回路32と、符号復調回路33とを備える。通信回路31は、コントローラ10から、同期信号と、符号系列又はその指定情報を含む制御信号とを受信して、制御回路30に出力する。ここで、同期信号は、例えば、復調開始及び復調終了のトリガー信号であってもよく、復調開始時刻及び復調終了時刻の時間情報であってもよい。制御回路30は、上記制御信号に基づいて、符号生成回路32により所定の符号系列に基づく復調符号を生成させて符号復調回路33に出力させるとともに、符号復調回路33の動作開始及び動作終了を制御する。なお、符号復調回路33は、伝送路3に接続された入力端子T11,T12と、負荷5に接続された出力端子T13,T14とを有する。
 なお、図1の電力伝送システムにおいて、コントローラ10から符号変調器2及び符号復調器4への制御信号は、伝送路3とは異なる制御信号回線で伝送されてもよく、伝送路3を用いて符号変調波と所定の多重化方式で多重化して伝送されてもよい。後者の場合において、コントローラ10から符号変調器2及び符号復調器4への通信に使用するケーブルを削減し、コストを低減することができる。
 図7は図1の符号変調回路23及び符号復調回路33の構成を示すブロック図である。図7において、符号変調回路23は、ブリッジ形状で接続された4個のスイッチ回路SS1~SS4を備える。スイッチ回路SS1~SS4はそれぞれ、例えばMOSトランジスタで構成された方向性スイッチ素子S1~S4を備える。また、符号復調回路33は、ブリッジ形状で接続された4個のスイッチ回路SS11~SS14を備える。スイッチ回路SS11~SS14はそれぞれ、例えばMOSトランジスタで構成された方向性スイッチ素子S11~S14を備える。
 符号生成回路22は、前述のように符号変調器2を変調符号m0に従って動作させるために、制御回路20の制御下で所定の変調符号m1,m2を生成して、符号変調回路23に出力する。符号変調回路23のスイッチ素子S1,S4は変調符号m1に従って制御され、符号変調回路23のスイッチ素子S2,S3は変調符号m2に従って制御される。各変調符号m1,m2は符号値「1」及び「0」を有する。例えば、各スイッチ素子S1~S4に符号値「1」の信号が入力されるときに各スイッチ素子S1~S4はオンされ、符号値「0」の信号が入力されるときに各スイッチ素子S1~S4はオフされる。なお、本明細書において説明するスイッチ素子S1~S4以外のスイッチ素子についても以下同様に動作する。ここで、各スイッチ素子S1~S4は以下のように方向性を有する。スイッチ素子S1はオンのときに端子T1から入力される発電電流を端子T3に出力し、スイッチ素子S3はオンのときに端子T1から入力される発電電流を端子T4に出力し、スイッチ素子S2はオンのときに端子T3から入力される変調電流を端子T2に出力し、スイッチ素子S4はオンのときに端子T4から入力される変調電流を端子T2に出力する。
 符号生成回路32は、前述のように符号復調器4を復調符号d0に従って動作させるために、制御回路30の制御下で所定の復調符号d1,d2を生成して、符号復調回路33に出力する。符号復調回路33のスイッチ素子S11,S14は復調符号d2に従って制御され、符号復調回路33のスイッチ素子S12,S13は復調符号d1に従って制御される。各復調符号d1,d2は符号値「1」及び「0」を有する。ここで、各スイッチ素子S11~S14は以下のように方向性を有する。スイッチ素子S11はオンされるときに端子T12から入力される変調電流を端子T13に出力し、スイッチ素子S13はオンされるときに端子T11から入力される変調電流を端子T13に出力し、スイッチ素子S12はオンされるときに端子T14から入力される復調電流を端子T12に出力し、スイッチ素子S14はオンされるときに端子T14から入力される復調電流を端子T11に出力する。
 なお、図7の表記においては、符号復調器4のスイッチ素子S11~S14において電流が流れる方向は、符号変調器2のスイッチ素子S1~S4において電流が流れる方向と逆向きとなるように記載した。
 図8Aは図1の電力伝送システムにおいて直流電力を送電して直流電力を受電する実施例1に係る符号変調器2の変調符号及び符号復調器4の復調符号の一例を示す図である。すなわち、図8Aは、符号変調器2のスイッチ素子S1~S4に入力される変調符号m1とm2、及び符号復調器4のスイッチ素子S11~S14に入力される復調符号d1とd2の一例を示す。
 図8Aに示すように、変調符号m1と復調符号d1は互いに同一であり、それぞれ符号系列c1aからなる。また、変調符号m2と復調符号d2は互いに同一であり、それぞれ符号系列c1bからなる。また、符号系列c1aのあるビットの符号値が「1」のとき、符号系列c1bの対応するビットの符号値を「0」とし、符号系列c1aのあるビットの符号値が「0」のとき、符号系列c1bの対応するビットの符号値を「1」とするように、符号系列c1a及びc1bを設定する。
 従って、図7のスイッチ素子S1~S4、S11~S14のうち、符号系列c1aのあるビットの符号値が入力されるスイッチ素子がオンされるときに、符号系列c1bの対応するビットの符号値が入力されるスイッチ素子がオフされる。また、符号系列c1aのあるビットの符号値が入力されるスイッチ素子がオフされるとき、符号系列c1bの対応するビットの符号値が入力されるスイッチ素子がオンされる。
 図7の符号変調回路23においては、スイッチ素子S1,S4がオンされるとき、スイッチ素子S2,S3がオフされ、スイッチ素子S1,S4がオフされるとき、スイッチ素子S2,S3がオンされる。これにより、スイッチ素子S1,S4がオンされかつスイッチ素子S2,S3がオフされるとき、伝送路3には正の向きに、すなわち実線矢印の向きに変調電流I2が流れる。一方、スイッチ素子S1,S4がオフされかつスイッチ素子S2,S3がオンされるとき、伝送路3には負の向きに、すなわち点線矢印の向きに変調電流I2が流れる。これにより、図4に示すように、符号変調器2に直流の発電電流I1が入力されたとき、交流に変調した変調電流I2を伝送路3に伝送することができる。
 図7の符号復調回路33においては、符号変調回路23と同期して復調符号d1,d2に応答してスイッチ素子S11~S14がオン又はオフされる。ここで、変調符号m1と同じ復調符号d1によりスイッチ素子S12,S13がオン又はオフされ、変調符号m2と同じ復調符号d2によりスイッチ素子S11,S14がオン又はオフされる。これにより、変調符号m1の符号値が「1」であり、かつ変調符号m2の符号値が「0」であるとき、すなわち伝送路3に正の向きの変調電流I2が流れるときは、復調符号d1の符号値が「1」となり、かつ復調符号d1の符号値が「0」となる。従って、スイッチ素子S13,S12がオンされかつスイッチ素子S11,S14がオフされることにより、符号復調回路33の出力端子T13,T14に正の向きに、すなわち実線矢印の向きに復調電流I3が流れる。また、変調符号m1の符号値が「0」であり、かつ変調符号m2の符号値が「1」であるとき、すなわち伝送路3に負の向きの変調電流I2が流れるときは、復調符号d1の符号値が「0」となり、かつ復調符号d1の符号値が「1」となる。従って、スイッチ素子S11,S14がオンされかつスイッチ素子S12,S13がオフされることにより、この場合も、符号復調回路33の出力端子T13,T14に正の向きに、すなわち実線矢印の向きに復調電流I3が流れる。
 以上説明したように、図8Aの変調符号m1,m2及び復調符号d1,d2を用いることにより、等価的に、符号変調器2は式(1)の変調符号m0に従って動作し、符号復調器4は式(2)の復調符号d0に従って動作する。
 以上説明したように、図7及び図8Aによれば、符号変調器2に直流の発電電流I1が入力されたとき、符号復調器4から、符号変調器2に入力される発電電流I1と同じ直流の復調電流I3を引き出すことが可能になる。従って、本実施形態1によれば、直流の発電電流I1を交流の変調電流I2に符号変調した後、変調電流I2を伝送路3を介して伝送し、変調電流I2を直流の復調電流I3に復調することができる。
 図8Bは図1の電力伝送システムにおいて直流電力を送電して直流電力を受電する実施例2に係る符号変調器2の変調符号及び符号復調器4の復調符号の一例を示す図である。符号系列c1aとc1bに関して、符号値「1」を有するビットの個数と符号値「0」を有するビットの個数が同じ場合には、伝送路3に流れる符号変調された変調電流I2は平均的に直流成分がなく、交流成分のみとなる。しかしながら、符号系列によっては、符号値「1」を有するビットの個数と符号値「0」を有するビットの個数とが互いに異なり、直流成分が生じる場合もある。このような符号系列を用いる場合、当該符号系列と、その各ビットの符号値を反転した符号系列とを連結することにより、符号値「1」を有するビットの個数と符号値「0」を有するビットの個数が同じである変調符号及び復調符号を生成することができる。図8Bの例では、変調符号m1と復調符号d1を、符号系列c1aと符号系列c1bを連結した符号系列[c1a c1b]とし、変調符号m2と復調符号d2を、符号系列c1bと符号系列c1aを連結した符号系列[c1b c1a]にする。これにより、伝送路3に流れる符号変調された変調電流I2の平均値は0になり、変調電流I2は交流成分のみを含む。
 なお、発電機1もしくは負荷5は、電池、コンデンサ等の蓄電装置であってもよい。本実施形態の電力伝送システムに蓄電装置を組み込むことにより、電力消費の少ない、あるいは電力消費のない時間帯に発電された電力を有効に活用することができるようになり、全体での電力効率を向上できる。
実施形態2.
 実施形態1では、直流の発電電流を符号変調して伝送する電力伝送システムについて説明した。一方、実施形態2では、交流の発電電流を符号変調して伝送する電力伝送システムについて説明する。
 実施形態2に係る電力伝送システムは、図1の符号変調器2及び符号復調器4に代えて、図10及び図11を参照して後述する符号変調器2A及び符号復調器4Aを備える。他の部分については、実施形態2に係る電力伝送システムは、実施形態1に係る電力伝送システムと同様に構成される。
 図9(a)~図9(c)は実施形態2に係る電力伝送システムにおける例示的な信号波形を示す波形図であり、図9(a)は発電電流I1の信号波形を示し、図9(b)は変調電流I2の信号波形を示し、図9(c)は復調電流I3の信号波形を示す。すなわち、図9は、交流(単相交流)の発電電流I1を符号変調器2Aにより符号変調した後、変調電流I2を伝送路3を介して伝送し、変調電流I2を符号復調器4Aにより符号復調したときの信号波形例である。
 発電機1は交流の発電電流I1を生成する。ここで、交流の発電電流I1は、一例として、200マイクロ秒で正と負を周期的に繰り返す、周波数5kHzの矩形波形を有する。このときも、図4に示した直流の発電電流I1を符号変調したときと同様に、符号変調器2Aは、変調符号m0を発電電流I1に乗算することで、交流の変調電流I2を生成する。符号復調器4Aは、変調符号m0と同一の復調符号d0を変調電流I2に乗算し、これにより、発電機1で発電された交流電力を復元して負荷5に供給することができる。
 変調符号m0及び復調符号d0の周波数は、発電電流I1の周波数及び復調電流I3の周波数よりも高く設定される。図9の信号波形例では、交流の発電電流I1(図9(a))に対して、周波数35kHzを有する変調符号m0を乗算して、符号変調波の変調電流I2(図9(b))を生成した。この場合、変調符号m0の各ビットの時間長は、1/(35kHz)/2=14.2マイクロ秒であった。
 変調符号m0及び復調符号d0の各ビットは符号値「1」又は「-1」を有する。交流の発電電流I1を伝送する場合、発電電流I1が正の期間(図9(a)の0~100μ秒の期間)と、発電電流I1が負の期間(図9(a)の100~200μ秒の期間)とで、符号値「1」又は「-1」は異なる意味を有する。発電電流I1が正の期間において、変調符号m0について、符号値「1」は、符号変調器2Aが入力された電流の向きと同じ向きの電流を出力することを示し、符号値「-1」は、符号変調器2Aが入力された電流の向きと逆向きの電流を出力することを示す。同様に、発電電流I1が正の期間において、復調符号d0について、符号値「1」は、符号復調器4Aが入力された電流の向きと同じ向きの電流を出力することを示し、符号値「-1」は、符号復調器4Aが入力された電流の向きと逆向きの電流を出力することを示す。発電電流I1が負の期間において、変調符号m0について、符号値「1」は、符号変調器2Aが入力された電流の向きと逆向きの電流を出力することを示し、符号値「-1」は、符号変調器2Aが入力された電流の向きと同じ向きの電流を出力することを示す。同様に、発電電流I1が負の期間において、復調符号d0について、符号値「1」は、符号復調器4Aが入力された電流の向きと逆向きの電流を出力することを示し、符号値「-1」は、符号復調器4Aが入力された電流の向きと同じ向きの電流を出力することを示す。
 変調符号m0及び復調符号d0はそれぞれ一例として次式で表される。
m0=[1 -1 1 1 1 -1 -1 -1 1 -1 -1 -1 1 1]
   (6)
d0=m0
=[1 -1 1 1 1 -1 -1 -1 1 -1 -1 -1 1 1]
   (7)
 実施形態1に係る符号復調と同様に、変調符号m0によって生成された符号変調波の変調電流I2に対して復調符号d0を乗算する。この乗算は次式により表される。
m0×d0
=[1 1 1 1 1 1 1 1 1 1 1 1 1 1]
   (8)
 式(8)から明らかなように、元の発電電流I1と同じ交流の復調電流I3(図8(c))が得られることがわかる。
 以上説明したように、本実施形態に係る符号変調及び符号復調の方法を用いることで、正確に同期しかつ電力損失のない電力伝送を実現できる。また、前記の変調符号m0及び復調符号d0を繰り返して使用することにより、より長い時間での電力の伝送を効率よく行うことが可能になる。
 図10は実施形態2に係る電力伝送システムの符号変調器2Aの一部の構成を示すブロック図である。図10の符号変調器2Aは、図5の符号生成回路22及び符号変調回路23に代えて、符号生成回路22A及び符号変調回路23Aを備える。図10の符号変調器2Aは、図5の符号変調器2と同様に制御回路20及び通信回路21をさらに備えるが、図10では図示の簡単化のためにこれらを省略する。
 図10の符号生成回路22A及び符号変調回路23Aは、図7の符号生成回路22及び符号変調回路23と比較して以下の点が異なる。
(1)符号生成回路22Aは、2つの変調符号m1,m2に代えて、4個の変調符号m1~m4を生成して符号変調回路23Aに出力する。
(2)符号変調回路23Aは、一方向性スイッチ回路SS1~SS4に代えてそれぞれ、ブリッジ形式で接続された4個の双方向性スイッチ回路SS21~SS24を備える。
 符号生成回路22Aは、前述のように符号変調器2Aを変調符号m0に従って動作させるために、制御回路20の制御下で所定の変調符号m1~m4を生成して、符号変調回路23Aに出力する。各変調符号m1~m4は符号値「1」及び「0」を有する。
 符号変調回路23Aにおいて、スイッチ回路SS21は、変調符号m1に応答してオンオフされる図7のスイッチ素子S1に加えて、スイッチ素子S1とは逆方向性を有しかつ並列に接続され、変調符号m3に応答してオンオフされるスイッチ素子S21を備える。スイッチ回路SS22は、変調符号m2に応答してオンオフされる図7のスイッチ素子S2に加えて、スイッチ素子S2とは逆方向性を有しかつ並列に接続され、変調符号m4に応答してオンオフされるスイッチ素子S22を備える。スイッチ回路SS23は、変調符号m2に応答してオンオフされる図7のスイッチ素子S3に加えて、スイッチ素子S3とは逆方向性を有しかつ並列に接続され、変調符号m4に応答してオンオフされるスイッチ素子S23を備える。スイッチ回路SS24は、変調符号m1に応答してオンオフされる図7のスイッチ素子S4に加えて、スイッチ素子S4とは逆方向性を有しかつ並列に接続され、変調符号m3に応答してオンオフされるスイッチ素子S24を備える。なお、スイッチ素子S21~S24はそれぞれ、例えばMOSトランジスタで構成される。符号変調回路23Aは、発電機1に接続された端子T1,T2と、伝送路3に接続された端子T3,T4を有する。符号変調回路23Aには発電機1からの交流電力が入力され、符号変調回路23Aは交流電力を符号変調した後、符号変調された変調波を伝送路3に出力する。
 図11は実施形態2に係る電力伝送システムの符号復調器4Aの一部の構成を示すブロック図である。図11の符号復調器4Aは、図6の符号生成回路32及び符号復調回路33に代えて、符号生成回路32A及び符号復調回路33Aを備える。図11の符号復調器4Aは、図5の符号復調器4と同様に制御回路30及び通信回路31をさらに備えるが、図11では図示の簡単化のためにこれらを省略する。
 図11の符号生成回路32A及び符号復調回路33Aは、図7の符号生成回路32及び符号復調回路33と比較して以下の点が異なる。
(1)符号生成回路32Aは、2つの復調符号d1,d2に代えて、4個の復調符号d1~d4を生成して符号復調回路33Aに出力する。
(2)符号復調回路33Aは、一方向性スイッチ回路SS11~SS14に代えてそれぞれ、ブリッジ形式で接続された4個の双方向性スイッチ回路SS31~SS34を備える。
 符号生成回路32Aは、前述のように符号復調器4Aを復調符号d0に従って動作させるために、制御回路30の制御下で所定の復調符号d1~d4を生成して、符号復調回路33Aに出力する。各復調符号d1~d4は符号値「1」及び「0」を有する。
 符号復調回路33Aにおいて、スイッチ回路SS31は、復調符号d2に応答してオンオフされる図7のスイッチ素子S11に加えて、スイッチ素子S11とは逆方向性を有しかつ並列に接続され、復調符号d4に応答してオンオフされるスイッチ素子S31を備える。スイッチ回路SS32は、復調符号d1に応答してオンオフされる図7のスイッチ素子S12に加えて、スイッチ素子S12とは逆方向性を有しかつ並列に接続され、復調符号d3に応答してオンオフされるスイッチ素子S32を備える。スイッチ回路SS33は、復調符号d1に応答してオンオフされる図7のスイッチ素子S13に加えて、スイッチ素子S13とは逆方向性を有しかつ並列に接続され、復調符号d3に応答してオンオフされるスイッチ素子S33を備える。スイッチ回路SS34は、復調符号d2に応答してオンオフされる図7のスイッチ素子S14に加えて、スイッチ素子S14とは逆方向性を有しかつ並列に接続され、復調符号d4に応答してオンオフされるスイッチ素子S34を備える。なお、スイッチ素子S31~S34はそれぞれ、例えばMOSトランジスタで構成される。符号復調回路33Aは、伝送路3に接続された端子T11,T12と、負荷5に接続された端子T13,T14を有する。符号復調回路33Aには伝送路3からの交流の符号変調波が入力され、符号復調回路33Aは符号変調波を交流の復調電力に符号復調した後、負荷5に出力する。
 図12Aは実施形態2に係る電力伝送システムにおいて交流電力を送電して交流電力を受電する実施例3に係る符号変調器2Aの変調符号及び符号復調器4Aの復調符号の一例を示す図である。すなわち、図12Aは、符号変調回路23Aの双方向性スイッチ回路SS21~SS24に入力される変調符号m1~m4、及び符号復調回路33Aの双方向性スイッチ回路SS31~SS34に入力される復調符号d1~d4の一例を示す。
 図12Aに示すように、変調符号m1と復調符号d1は互いに同一であり、変調符号m2と復調符号d2は互いに同一である。同様に、変調符号m3と復調符号d3は互いに同一であり、変調符号m4と復調符号d4は互いに同一である。また、直流電力の伝送のときと同様に、符号系列c1aのあるビットの符号値が「1」のとき、符号系列c1bの対応するビットの符号値を「0」とし、符号系列c1aのあるビットの符号値が「0」のとき、符号系列c1bの対応するビットの符号値を「1」とするように、符号系列c1a及びc1bを設定する。
 図12Aでは、符号系列c1aと符号系列c1bの時間長を交流の発電電流I1の半周期と一致させる場合を示した。交流の発電電流I1が正の期間(図12Aの例では、各周期の前半の期間)において、変調符号m1,m2はそれぞれ符号系列c1a,c1bからなり、一方、変調符号m3,m4の符号値は常に「0」である。交流の発電電流I1が負の期間(図12Aの例では、各周期の後半の期間)において、変調符号m1,m2の符号値は常に「0」であり、一方、変調符号m3,m4はそれぞれ符号系列c1a,c1bからなる。各周期の前半の期間のビットと各周期の後半の期間のビットとを連結することにより、1周期分の変調符号m1~m4がそれぞれ生成される。これにより、各周期の前半の期間では、スイッチ素子S1~S4は変調符号m1,m2に従ってオンオフされ、一方、スイッチ素子S21~S24は切断されて電流が流れない。また、各周期の後半の期間では、スイッチ素子S1~S4は切断されて電流が流れず、一方、スイッチ素子S21~S24は変調符号m3,m4に従ってオンオフされる。変調符号m1~m4と同様に、1周期分の復調符号d1~d4もまた、各周期の前半の期間のビットと各周期の後半の期間のビットとを連結することにより生成される。
 ここで、符号変調回路23Aの動作について以下説明する。
 まず、入力端子T1,T2において正の向きに、すなわち実線矢印A1の向きに発電電流I1が流れる場合の動作について説明する。この場合、変調符号m1の符号値「1」が入力されるスイッチ素子S1,S4がオンされるときに、変調符号m2の符号値「0」が入力されるスイッチ素子S2,S3がオフされる。また、変調符号m1の符号値「0」が入力されるスイッチ素子S1,S4がオフされるとき、変調符号m2の符号値「1」が入力されるスイッチ素子S2,S3がオンされる。これにより、スイッチ素子S1,S4がオンでかつスイッチ素子S2,S3がオフのとき、伝送路3には正の向きに、すなわち実線矢印A1の向きに変調電流I2が流れる。一方、スイッチ素子S1,S4がオフでかつスイッチ素子S2,S3がオンのとき、伝送路3には負の向きに、すなわち点線矢印A2の向きに変調電流I2が流れる。これにより、交流の発電電流I1のうちの正の期間の電流が符号変調回路23Aに入力されているとき、図9(b)に示すように、交流の変調電流I2を伝送路3に伝送することができる。
 次に、入力端子T1,T2において負の向きに、すなわち一点鎖線矢印B1の向きに発電電流I1が流れる場合の動作について以下説明する。この場合、変調符号m3の符号値「1」が入力されるスイッチ素子S21,S24がオンされるときに、変調符号m4の符号値「0」が入力されるスイッチ素子S22,S23がオフされる。また、変調符号m3の符号値「0」が入力されるスイッチ素子S21,S24がオフされるとき、変調符号m4の符号値「1」が入力されるスイッチ素子S22,S23がオンされる。これにより、スイッチ素子S21,S24がオンでかつスイッチ素子S22,S23がオフのとき、伝送路3には負の向きに、すなわち一点鎖線矢印B1の向きに変調電流I2が流れる。一方、スイッチ素子S21,S24がオフでかつスイッチ素子S22,S23がオンのとき、伝送路3には正の向きに、すなわち二点鎖線矢印B2の向きに変調電流I2が流れる。これにより、交流の発電電流I1のうちの負の期間の電流が符号変調回路23Aに入力されているとき、図9(b)に示すように、交流の変調電流I2を伝送路3に伝送することができる。
 図10を参照して説明したように、符号変調回路23Aは、交流の発電電流I1のうちの正の期間及び負の期間のそれぞれにおいて、図9(b)に示すように、交流の変調電流I2を生成することができる。
 次に、図11の符号復調回路33Aの動作について以下説明する。
 まず、符号変調回路23Aの入力端子T1,T2において正の向きに、すなわち実線矢印A1の向きに発電電流I1が流れる場合を考える。このとき、符号復調回路33Aの入力端子T11,T12には、伝送路3を介して、正の向き及び負の向きに流れる交流の変調電流I2が入力される。符号復調回路33Aが正しく復調動作を行った場合には、符号復調回路33Aの出力端子T13,T14において正の向きに、すなわち実線矢印C1の向きに復調電流I3が流れることになる。以下、これらの動作について説明する。この場合には、復調符号d3と復調符号d4の符号値はすべて「0」であり、スイッチ素子S31~S34はすべてオフされる。
 まず、符号変調回路23Aの入力端子T1,T2において正の向きに発電電流I1が流れ、かつ、符号復調回路33Aの入力端子T11,T12において正の向きに、すなわち実線矢印C1の向きに流れる変調電流I2が入力された場合の符号復調回路33Aの動作について説明する。この場合、符号系列c1aの符号値は「1」であり、符号系列c1bの符号値は「0」である。従って、復調符号d1の符号値「1」が入力されるスイッチ素子S12,S13はオンされ、復調符号d2の符号値「0」が入力されるスイッチ素子S11,S14はオフされる。従って、出力端子T13,T14には正の向きに、すなわち実線矢印C1の向きに復調電流I3が流れる。
 次に、符号変調回路23Aの入力端子T1,T2において正の向きに発電電流I1が流れ、かつ、符号復調回路33Aの入力端子T11,T12において負の向きに、すなわち点線矢印C2の向きに流れる変調電流I2が入力された場合の符号復調回路33Aの動作について説明する。この場合、符号系列c1aの符号値は「0」であり、符号系列c1bの符号値は「1」である。従って、復調符号d1の符号値「0」が入力されるスイッチ素子S12,S13はオフされ、復調符号d2の符号値「1」が入力されるスイッチ素子S11,S14はオンされる。従って、出力端子T13,T14には正の向きに、すなわち実線矢印C1の向きに復調電流I3が流れることになる。これにより、交流の発電電流I1のうちの正の期間の電流が符号変調回路23Aに入力されているとき、符号復調回路33Aにより、図9(c)に示すように、正しく正の極性を有するように復調された復調電流I3を負荷5に出力することができる。
 次に、符号変調回路23Aの入力端子T1,T2において負の向きに、すなわち一点鎖線矢印B1の向きに発電電流I1が流れる場合を考える。この場合も、符号復調回路33Aの入力端子T11,T12には、伝送路3を介して、正の向き及び負の向きに流れる交流の変調電流I2が入力される。符号復調回路33Aが正しく復調動作を行った場合には、符号復調回路33Aの出力端子T13,T14において負の向きに、すなわち点線矢印C2の向きに復調電流I3が流れることになる。以下、これらの動作について説明する。この場合には、復調符号d1とd2の符号値はすべて「0」であり、スイッチ素子S11~S14はすべてオフされる。
 まず、符号変調回路23Aの入力端子T1,T2において負の向きに発電電流I1が流れ、かつ、符号復調回路33Aの入力端子T11,T12において負の向きに、すなわち点線矢印C2の向きに流れる変調電流I2が入力された場合の符号復調回路33Aの動作について説明する。この場合、符号系列c1aの符号値は「1」であり、符号系列c1bの符号値は「0」である。従って、復調符号d3の符号値「1」が入力されるスイッチ素子S32,S33がオンされ、復調符号d4の符号値「0」が入力されるスイッチ素子S31,S34はオフされる。従って、出力端子T13,T14には負の向きに、すなわち点線矢印C2の向きに復調電流I3が流れる。
 次に、符号変調回路23Aの入力端子T1,T2において負の向きに発電電流I1が流れ、かつ、符号復調回路33Aの入力端子T11,T12において正の向きに、すなわち実線矢印C1の向きに流れる変調電流I2が入力された場合の符号復調回路33Aの動作について説明する。この場合、符号系列c1aの符号値は「0」であり、符号系列c1bの符号値は「1」である。従って、復調符号d3の符号値「0」が入力されるスイッチ素子S32,S33はオフされ、復調符号d4の符号値「1」が入力されるスイッチ素子S31,S34はオンされる。従って、出力端子T13,T14には負の向きに、すなわち点線矢印C2の向きに復調電流I3が流れることになる。これにより、交流の発電電流I1のうちの負の期間の電流が符号変調回路23Aに入力されているとき、符号復調回路33Aにより、図9(c)に示すように、正しく負の極性を有するように復調された復調電流I3を負荷5に出力することができる。
 以上説明したように、図12Aの変調符号m1~m4及び復調符号d1~d4を用いることにより、等価的に、符号変調器2Aは式(6)の変調符号m0に従って動作し、符号復調器4Aは式(7)の復調符号d0に従って動作する。
 以上説明したように、図10、図11、及び図12Aによれば、符号変調器2Aに交流の発電電流I1が入力されたとき、符号復調器4Aから、符号変調器2Aに入力される発電電流I1と同じ交流の復調電流I3を引き出すことが可能になる。従って、本実施形態2によれば、交流の発電電流I1を交流の変調電流I2に符号変調した後、変調電流I2を伝送路3を介して伝送し、変調電流I2を交流の復調電流I3に復調することができる。
 図12Bは実施形態2に係る電力伝送システムにおいて直流電力を送電して直流電力を受電する実施例4に係る符号変調器2Aの変調符号及び符号復調器4Aの復調符号の一例を示す図である。ここで、図10の符号変調回路23Aと図11の符号復調回路33Aにおいて、図12Bに示すように、変調符号m3、m4及び復調符号d3、d4の符号値を常に「0」に設定することによりスイッチ素子S21~S24,S31~S34をオフにする。これにより、図10の符号変調回路23Aと図11の符号復調回路33Aを、図7の符号変調回路23と符号復調回路33としてそれぞれ動作させることができる。従って、図12Bに示すように、変調符号m1,m2及び復調符号d1,d2を符号系列c1a,c1bから生成することで、図4に示した直流電力伝送を実現することができる。このように、変調符号m1~m4及び復調符号d1~d4を変更することで、図10の符号変調回路23Aと図11の符号復調回路33Aを用いて、直流の電力伝送及び交流の電力伝送の両方をサポートすることが可能な優れた電力伝送システムを実現できる。
 直流の発電機1は、例えば、太陽光発電装置を含む。交流の発電機1は、例えば、火力、水力、風力、原子力、潮力等のタービン等の回転による発電機を含む。
 上述のように、実施形態2に係る電力伝送システムは、互いに同一の変調符号及び復調符号を用いることにより、直流の発電電流I1を変調して伝送し、直流の復調電流I3に復調することができ、さらに、交流の発電電流I1を変調して伝送し、交流の復調電流I3に復調することができる。また、実施形態2に係る電力伝送システムは、変調符号とは異なる復調符号を用いることにより、直流の発電電流I1を変調して伝送し、交流の復調電流I3に復調することができ、さらに、交流の発電電流I1を変調して伝送し、直流の復調電流I3に復調することができる。
 図10の符号変調回路23A及び図11の符号復調回路33Aは、双方向性スイッチ回路SS21~SS24,SS31~SS34を備えているので、可逆である。すなわち、符号変調回路23Aは、符号復調回路としても動作可能であり、端子T3,T4から入力された変調電流を復調して端子T1,T2から出力する。符号復調回路33Aは、符号変調回路としても動作可能であり、端子T13,T14から入力された発電電流を変調して端子T11,T12から出力する。これにより、符号復調回路33Aを備えた符号復調器4Aから、符号変調回路23Aを備えた符号変調器2Aへ、電力を伝送することができる。
 図10~図11では、双方向性スイッチ回路SS21~SS34はそれぞれ、互いに逆の向きの電流を流すように並列に接続された各1対のスイッチ素子(S1,S21;S2,S22;S3,S23;S4,S24;S11,S31;S12,S32;S13,S33;S14,S34)により構成された例を示した。代替として、双方向性スイッチ回路SS21~SS34は、以下の図13A~図14Dに示すように直列に接続された各1対のスイッチ素子(S41,S51;S42,S52;S43,S53;S44,S54)によっても構成することができる。図13A~図14Dにおいて、各図において上から下に向かう方向を「正方向」といい、下から上に向かう方向を「負方向」という。
 図13Aは実施形態2の変形例に係る電力伝送システムにおいて用いる符号変調回路23Aのための双方向性スイッチ回路SS21Aの構成を示す回路図である。図13Aにおいて、スイッチ回路SS21Aは、図10のスイッチ回路SS21に対応し、
(1)負方向に電流を流すダイオードD1が並列に接続され、変調符号m1に基づいてオンオフするスイッチ素子S41と、
(2)正方向に電流を流すダイオードD11が並列に接続され、変調符号m3に基づいてオンオフするスイッチ素子S51と
が直列に接続されて構成される。
 図13Bは実施形態2の変形例に係る電力伝送システムにおいて用いる符号変調回路23Aのための双方向性スイッチ回路SS22Aの構成を示す回路図である。図13Bにおいて、スイッチ回路SS22Aは、図10のスイッチ回路SS22に対応し、
(1)負方向に電流を流すダイオードD2が並列に接続され、変調符号m2に基づいてオンオフするスイッチ素子S42と、
(2)正方向に電流を流すダイオードD12が並列に接続され、変調符号m4に基づいてオンオフするスイッチ素子S52と
が直列に接続されて構成される。
 図13Cは実施形態2の変形例に係る電力伝送システムにおいて用いる符号変調回路23Aのための双方向性スイッチ回路SS23Aの構成を示す回路図である。図13Cにおいて、スイッチ回路SS23Aは、図10のスイッチ回路SS23に対応し、
(1)負方向に電流を流すダイオードD3が並列に接続され、変調符号m2に基づいてオンオフするスイッチ素子S43と、
(2)正方向に電流を流すダイオードD13が並列に接続され、変調符号m4に基づいてオンオフするスイッチ素子S53と
が直列に接続されて構成される。
 図13Dは実施形態2の変形例に係る電力伝送システムにおいて用いる符号変調回路23Aのための双方向性スイッチ回路SS24Aの構成を示す回路図である。図13Dにおいて、スイッチ回路SS24Aは、図10のスイッチ回路SS24に対応し、
(1)負方向に電流を流すダイオードD4が並列に接続され、変調符号m1に基づいてオンオフするスイッチ素子S44と、
(2)正方向に電流を流すダイオードD14が並列に接続され、変調符号m3に基づいてオンオフするスイッチ素子S54と
が直列に接続されて構成される。
 図14Aは実施形態2の変形例に係る電力伝送システムにおいて用いる符号復調回路33Aのための双方向性スイッチ回路SS31Aの構成を示す回路図である。図14Aにおいて、スイッチ回路SS31Aは、図11のスイッチ回路SS31に対応し、
(1)正方向に電流を流すダイオードD31が並列に接続され、復調符号d2に基づいてオンオフするスイッチ素子S61と、
(2)負方向に電流を流すダイオードD21が並列に接続され、復調符号d4に基づいてオンオフするスイッチ素子S71と
が直列に接続されて構成される。
 図14Bは実施形態2の変形例に係る電力伝送システムにおいて用いる符号復調回路33Aのための双方向性スイッチ回路SS32Aの構成を示す回路図である。図14Bにおいて、スイッチ回路SS32Aは、図11のスイッチ回路SS32に対応し、
(1)正方向に電流を流すD32が並列に接続され、復調符号d1に基づいてオンオフするスイッチ素子S62と、
(2)負方向に電流を流すダイオードD22が並列に接続され、復調符号d3に基づいてオンオフするスイッチ素子S72と
が直列に接続されて構成される。
 図14Cは実施形態2の変形例に係る電力伝送システムにおいて用いる符号復調回路33Aのための双方向性スイッチ回路SS33Aの構成を示す回路図である。図14Cにおいて、スイッチ回路SS33Aは、図11のスイッチ回路SS33に対応し、
(1)正方向に電流を流すダイオードD33が並列に接続され、復調符号d1に基づいてオンオフするスイッチ素子S63と、
(2)負方向に電流を流すダイオードD23が並列に接続され、復調符号d3に基づいてオンオフするスイッチ素子S73と
が直列に接続されて構成される。
 図14Dは実施形態2の変形例に係る電力伝送システムにおいて用いる符号復調回路33Aのための双方向性スイッチ回路SS34Aの構成を示す回路図である。図14Dにおいて、スイッチ回路SS34Aは、図11のスイッチ回路SS34に対応し、
(1)正方向に電流を流すダイオードD34が並列に接続され、復調符号d2に基づいてオンオフするスイッチ素子S64と、
(2)負方向に電流を流すダイオードD24が並列に接続され、復調符号d4に基づいてオンオフするスイッチ素子S74と
が直列に接続されて構成される。
 図13A~図14Dにおいて、スイッチ素子S41~S74は例えばMOSトランジスタで構成され、それぞれ並列にMOSトランジスタの寄生(ボディ)ダイオードD1~D34を使用することも可能である。図13A~図14Dの各スイッチ回路SS21A~SS34Aを、例えばMOSトランジスタのスイッチ素子と1つのダイオードで実現すると、1つの双方向性スイッチ回路SS21A~SS34Aで2つのMOSトランジスタと2つのダイオードが必要になる。一方、MOSトランジスタには特性の良い逆特性ダイオードが内蔵されたパッケージが普及しており、これを用いれば2つのスイッチ素子で1つの双方向性スイッチ回路SS21A~SS34Aを構成でき小型化が可能となる。
実施形態3.
 実施形態1及び2では、1つの発電機1から1つの負荷5に電力を伝送する電力伝送システムについて説明した。一方、実施形態3では、複数の発電機から複数の負荷に電力を伝送する電力伝送システムについて説明する。
 図15は実施形態3に係る電力伝送システムの構成を示すブロック図である。図15において、実施形態3に係る電力伝送システムは、複数の発電機1-1,1-2と、複数の符号変調器2A-1,2A-2と、伝送路3と、複数の符号復調器4A-1,4A-2と、複数の負荷5-1,5-2と、コントローラ10Aとを備える。
 コントローラ10Aは、制御回路11及び通信回路12Aを備える。制御回路11は、通信回路12Aを介して符号変調器2A-1,2A-2及び符号復調器4A-1,4A-2と通信し、それらの動作を制御する。
 図15の電力伝送システムにおいて、符号変調器2A-1,2A-2は電力送信装置としてそれぞれ動作し、符号復調器4A-1,4A-2は電力受信装置としてそれぞれ動作する。符号変調器2A-1,2A-2のうちの各1つの符号変調器は、第1の電力を、所定の符号系列に基づく変調符号を用いて符号変調して符号変調波を生成し、符号変調波を、伝送路3を介して符号復調器4A-1,4A-2のうちの1つの符号復調器に送信する。符号復調器4A-1,4A-2のうちの各1つの符号復調器は、符号変調器2A-1,2A-2のうちの1つの符号変調器から伝送路3を介して符号変調波を受信し、受信した符号変調波を、符号変調したときに用いた変調符号の符号系列と同じ符号系列に基づく復調符号を用いて符号復調して第2の電力を生成する。第1の電力は、例えば、発電機1-1,1-2で発電された電力であり、図15では発電電流I11,I12として示す。符号変調波は、符号変調された交流電力であり、図15では変調電流I2として示す。第2の電力は、例えば、負荷5-1,5-2に供給される電力であり、図1では復調電流I31,I32として示す。
 ここで、図15の符号変調器2A-1,2A-2及び符号復調器4A-1,4A-2は、実施形態2に係る符号変調器2A及び符号復調器4Aと同様に構成され、同様に動作する。
 図15の電力伝送システムは、さらに、電力測定器1m-1,1m-2,5m-1,5m-2を備える。電力測定器1m-1,1m-2は、第1の電力の電力量を測定する第1の電力測定手段である。すなわち、電力測定器1m-1,1m-2は、発電機1-1,1-2の発電量であり、発電機1-1,1-2から符号変調器2A-1,2A-2へ送られる電力の電力量を測定する。電力測定器5m-1,5m-2は、第2の電力の電力量を測定する第2の電力測定手段である。すなわち、電力測定器5m-1,5m-2は、負荷5-1,5-2における電力使用量である、符号復調器4A-1,4A-2から負荷5-1,5-2へ送られる電力の電力量を測定する。電力測定器1m-1,1m-2,5m-1,5m-2によって測定された電力量はコントローラ10Aに送信される。
 コントローラ10Aは、電力測定器1m-1,1m-2,5m-1,5m-2から受信した各電力量に基づいて、符号変調器2A-1,2A-2及び符号復調器4A-1,4A-2の動作を制御する。例えば、コントローラ10Aは、符号変調器2A-1,2A-2及び符号復調器4A-1,4A-2を互いに同期させるための同期信号を含む制御信号を符号変調器2A-1,2A-2及び符号復調器4A-1,4A-2に送信し、これにより、正確に同期した電力の符号変調及び符号復調を実現する。
 コントローラ10Aは、符号変調器2A-1,2A-2のうち、電力を送信すべき符号変調器に対して変調符号の符号系列又はその指定情報を送信する一方、符号復調器4A-1,4A-2のうち、電力を受信すべき符号復調器に対して復調符号の符号系列又はその指定情報を送信する。例えば、符号変調器2A-1から符号復調器4A-1に電力を伝送する場合、コントローラ10Aは、1つの符号系列に基づいて、変調符号を符号変調器2A-1に設定し、復調符号を符号復調器4A-1に設定する。それと同時に符号変調器2A-2から符号復調器4A-2に電力を伝送する場合、コントローラ10Aは、異なるもう1つの符号系列に基づいて、変調符号を符号変調器2A-2に設定し、復調符号を符号復調器4A-2に設定する。複数の符号変調器2A-1,2A-2から複数の符号復調器4A-1,4A-2に同時に電力を伝送する場合、互いに低相関である(例えば、互いに直交する)複数の符号系列を用いてもよい。
 これにより、複数の発電機1-1,1-2から複数の負荷5-1,5-2へ電力を伝送することができる。
 発電機1-1,1-2で発電された電力を負荷5-1,5-2へ伝送するための符号変調器2A-1,2A-2及び符号復調器4A-1,4A-2の例示的な動作について、以下に説明する。
 実施形態3において、発電機1-1及び1-2の出力電力が直流であり、負荷5-1の入力電力が直流であり、負荷5-2への入力電力が交流である場合を示す。すなわち、発電機1-2から負荷5-2への電力伝送が、直流から交流への変換動作となる。
 図16Aは図15の電力伝送システムにおいて直流電力を送電して直流電力を受電する実施形態3に係る符号変調器2A-1の変調符号及び符号復調器4A-1の復調符号の一例を示す図である。また、図16Bは図15の電力伝送システムにおいて直流電力を送電して交流電力を受電する実施形態3に係る符号変調器2A-2の変調符号及び符号復調器4A-2の復調符号の一例を示す図である。
 図16Aは、符号変調器2A-1及び符号復調器4A-1のスイッチ素子S1~S44に入力される変調符号及び復調符号を示す。ここで、変調符号m1a~m4aは、それぞれ図10に示した符号変調回路23Aの変調符号m1~m4に対応し、復調符号d1a~d4aは、それぞれ図11に示した符号復調回路33Aの復調符号d1~d4に対応する。この場合、図12Bを用いて説明した通り、変調符号m3a、m4a及び復調符号d3a、d4aの符号値を常に「0」に設定することによりスイッチ素子S21~S24,S31~S34はオフされる。また、変調符号m1a、m2a及び復調符号d1a、d2aは、図12Bを用いて説明した通り、符号系列c1aと符号系列c1bから生成される。
 さらに、図16Bに、符号変調器2A-2と符号復調器4A-2のスイッチ素子S1~S44に入力される変調符号及び復調符号を示す。ここで、変調符号m1b~m4bは、それぞれ図10に示した符号変調回路23Aの変調符号m1~m4に対応し、復調符号d1b~d4bは、それぞれ図11に示した符号復調回路33Aの復調符号d1~d4に対応する。この場合、変調符号m3b、m4bの符号値を常に「0」に設定することによりスイッチ素子S21~S24はオフされる。また、変調符号m1b、m2b及び復調符号d1b~d4bは、符号系列c2aと符号系列c2bから生成される。電流の符号変調及び符号復調の原理は、実施形態1~2と同様であるので、ここでは説明は省略する。
 以下では、図17を参照して、複数の発電機1-1,1-2から複数の負荷5-1,5-2に電力を伝送する動作について説明する。
 図17(a)~図17(e)は、実施形態3に係る電力伝送システムにおける例示的な信号波形を示す波形図である。図17(a)は発電電流I11の信号波形を示し、図17(b)は発電電流I12の信号波形を示し、図17(c)は変調電流I2の信号波形を示し、図17(d)は復調電流I31の信号波形を示し、図17(e)は復調電流I32の信号波形を示す。
 直流の発電電流I11は、符号変調器2A-1により符号変調されて交流の符号変調波になる。同様に、直流の発電電流I12は、符号変調器2A-2により符号変調されて交流の符号変調波になる。符号変調器2A-1により生成された符号変調波と、符号変調器2A-2により生成された符号変調波とは、図17(c)に示すように、互いに合成された変調電流I2として伝送路3を介して伝送される。
 上述の通り、符号変調器2A-1及び2A-2は互いに同一の構成を有し、それぞれ図10の符号変調器2Aと同様に構成される。また、符号復調器4A-1と4A-2もまた互いに同一の構成を有し、それぞれ図11の符号復調器4Aと同様に構成される。符号変調器2A-1と2A-2の間の相違点、及び、符号復調器4A-1と4A-2の間の相違点は、互いに異なる符号系列c1a,c1bと符号系列c2a,c2bとを用いていることにある。符号変調器2A-1及び符号復調器4A-1は符号系列c1a,c1bを使用し、符号変調器2A-2及び符号復調器4A-2は符号系列c2a,c2bを使用する。ここで、符号系列c1aとc2aは互いに直交し、従って、符号系列c1bとc2bもまた互いに直交する。ここでは、7段のGold系列を用い、互いに異なるGold系列を符号系列c1a,c2aとして設定した。
 符号復調器4A-1,4A-2は、互いに直交した符号系列c1a,c2aを用いることにより、変調電流I2から、対応する符号変調器2A-1,2A-2で生成された電力をそれぞれ復調して取り出すことができる。これにより、図17(d)と図17(e)に示したように、符号変調器2A-1,2A-2に入力された発電電流I11,I12は、符号変調波として伝送された後、対応する符号復調器4A-1,4A-2において復調電流I31,I32として正確に復調されて出力される。これにより、所望の波形(直流又は交流)及び所望の大きさを持った復調電流I31,I32が負荷5-1と5-2にそれぞれ供給される。
 以上説明したように、本実施形態によれば、符号変調器2A-1,2A-2と符号復調器4A-1,4A-2を用いることで、1つの伝送路3において多重化された2つの電力伝送を同時に行い、そして、伝送された電力を分離することが可能になる。従って、2つの発電機1-1,1-2から2つの負荷5-1,5-2に所望の大きさの電流を同時に伝送可能な優れた電力伝送システムを実現できる。
 なお、符号変調器2A-1と2A-2あるいは符号復調器4A-1と4A-2で瞬時電力を測定し、符号系列と照らし合わせることにより、どの発電機1-1,1-2からどの負荷にどれだけの電力が伝送されたのかを把握することが可能となる。これにより、異なる発電コストを有する複数の異なる発電機1-1,1-2が接続された場合に、送電元の発電機1-1,1-2に応じた電気料金を課すような電力ビジネスの運営を実現できる。あるいは、どの発電機1-1,1-2からどの負荷5-1,5-2に電力を送るかによって送電効率が変わるようなシステムでは、電力伝送の情報を管理して分析することにより、最適な電力供給を実現できる。
 以上説明したように、本実施形態によれば、符号変調器2A-1,2A-2及び符号復調器4A-1,4A-2を用いることで、1つ以上の発電機1-1,1-2から1つ以上の負荷5-1,5-2に対して電力を効率よく供給可能な電力伝送システムを提供することが可能になる。
 以上の実施形態では、2つの発電機1-1,1-2と2つの負荷5-1,5-2を備えた電力伝送システムを例に挙げて説明したが、本開示はこれに限られるものではない。1つの発電機1-1と2つ以上の負荷5-1,5-2を備えた構成、更には、2つ以上の発電機1-1,1-2と2つ以上の負荷5-1,5-2で構成される電力伝送システムを構成することも可能である。この場合には、多数の電力伝送を1つの伝送路3にまとめて行うことが可能となり、伝送路3の敷設コストの減少、伝送路3の本数削減によるコスト減少等の効果がある。
 上述の実施形態の説明では、図15における符号変調器2A-1,2A-2は一例として図10に示した符号変調回路23Aで構成した場合を示したが、これに限られるものではない。例えば、発電機1-1,1-2の出力電力が直流の場合には、符号変調器2A-1,2A-2は図7に示した符号変調回路23を用いて構成してもよい。また、負荷5-1,5-2への入力電力が直流の場合には、符号復調器4A-1,4A-2は図7に示した符号復調回路33を用いて構成してもよい。これらの場合は、符号変調器2A-1,2A-2及び符号復調器4A-1,4A-2の回路構成を簡略化することができるので、部品点数が削減され、コストの削減及び装置の小型化を実現できるという効果がある。
 なお、実施形態3では、一例として、直流の出力電力を有する2つの発電機から、直流の入力電力を有する1つの負荷と、交流の入力電力を有する1つの負荷とに電力を伝送する電力伝送システムについて説明したが、これに限られるものではない。電力伝送システムは、直流の出力電力を有する任意個数の発電機と、交流の出力電力を有する任意個数の発電機とから電力供給を受けてもよい。また、電力伝送システムは、直流の入力電力を有する任意個数の負荷と、交流の入力電力を有する任意個数の負荷とに電力を供給してもよい。
 自然エネルギーの大半を占める太陽光発電では直流の電力が生成される。その一方で、風力及び地熱発電では交流の電力が生成される。この場合、電力網内に直流と交流の電源が混ざり合うことは望ましくないので、従来の電力伝送システムでは、発電機(電源)及び負荷を直流あるいは交流に揃える必要がある。
 これに対して、本実施形態に係る電力伝送システムでは、符号変調及び符号復調を用いることにより、直流の電源から直流の負荷への電力伝送と、直流の電源から交流の負荷への電力伝送と、交流の電源から直流の負荷への電力伝送と、交流の電源から交流の負荷への電力伝送とを、1つの伝送路上で同時に行うことができる。
 これにより、実施形態1から3における電力伝送システムにおいて、電力の符号変調及び符号復調を正確に実現する電力伝送に加え、複数の電力伝送を1つの伝送路で多重化して同時に行うことを可能にする優れた電力伝送システムを提供することができる。
実施形態4.
 発電機1の出力電力の周波数、符号変調器2,2Aの動作周波数、符号復調器4,4Aの動作周波数、及び負荷5が動作可能な負荷5の入力電力の周波数のうちの少なくとも1つの周波数が他の周波数に対して不一致しているとき、電力伝送の効率が低下するおそれがある。ここで、符号変調器2,2Aの動作周波数は、特に変調符号の周波数(例えば、式(1)、式(6)などの変調符号の1周期を単位とする周波数)を含む。また、符号復調器4,4Aの動作周波数は、特に復調符号の周波数(例えば、式(2)、式(7)などの復調符号の1周期を単位とする周波数)を含む。
 実施形態4では、電力伝送システムの各構成要素間における周波数の不一致及び同期の喪失などによる電力伝送の効率の低下を生じにくくすることについて説明する。
 実施形態4に係る電力伝送システムは、例えば、実施形態2に係る電力伝送システムと同様に構成される。ここで、コントローラ10の制御回路11は、発電機1の出力電力の周波数(発電電流の周波数)と、負荷5が動作可能な負荷5の入力電力の周波数(負荷5によって要求される、すなわち、負荷5に供給すべき負荷電流の周波数)とをさらに取得する。コントローラ10の制御回路11は、通信回路12を介して、発電機1、符号変調器2A、又は他の情報源から発電電流の周波数を受信してもよく、負荷5、符号復調器4A、又は他の情報源から負荷電流の周波数を受信してもよい。
 図18は、実施形態4の第1の実施例に係る電力伝送システムにおける符号変調及び符号復調を示すタイミングチャートである。符号変調器2Aの制御回路20は、コントローラ10の制御下で、変調符号の周波数を発電電流の周波数の倍数に設定する。符号復調器4Aの制御回路30は、コントローラ10の制御下で、復調符号の周波数を負荷電流の周波数の倍数に設定する。ここで、「倍数」は、1倍、2倍、3倍などの正整数倍を表す。例えば、発電電流の周波数及び負荷電流の周波数がそれぞれ5Hzである場合、20Hzの変調符号及び復調符号を用いてもよい。
 図19は、実施形態4の第2の実施例に係る電力伝送システムにおける符号変調及び符号復調を示すタイミングチャートである。例えば、発電電流の周波数と負荷電流の周波数とが不一致している場合、コントローラ10の制御回路11は、符号変調器2Aの変調符号の周波数及び符号復調器4Aの復調符号の周波数を、発電電流の周波数及び負荷電流の周波数の公倍数に設定する。例えば、発電電流の周波数が5Hzであり、負荷電流の周波数が4Hzである場合、20Hzの変調符号及び復調符号を用いてもよい。
 実施形態4に係る電力伝送システムは、実施形態3と同様に、1つ又は複数の発電機1に接続された複数の符号変調器2A、及び/又は、1つ又は複数の負荷5に接続された複数の符号復調器4Aを含んでいてもよい。この場合、コントローラ10の制御回路11は、各符号変調器2Aの変調符号の周波数及び各符号復調器4Aの復調符号の周波数を、各発電電流の周波数及び各負荷電流の周波数の公倍数に設定する。
 実施形態4に係る電力伝送システムによれば、発電電流の周波数及び負荷電流の周波数に対して変調符号の周波数及び復調符号の周波数を適切に設定することにより、発電電流を無駄なく符号変調し、目的の負荷5に無駄なく電力を供給することができる。
 コントローラ10の制御回路11は、各符号変調器2Aの変調符号の周波数及び各符号復調器4Aの復調符号の周波数を、各発電電流の周波数及び各負荷電流の周波数の最小公倍数に設定してもよい。これにより、スイッチング周波数の増大が最小化されるので、スイッチング損失の増大を最小化することができる。
 図20は、実施形態4の第3の実施例に係る電力伝送システムにおける符号変調及び符号復調を示すタイミングチャートである。実施形態4では、発電電流の周波数及び負荷電流の周波数のうちの少なくとも一方は0Hz(直流)であってもよい。この場合も、発電電流を無駄なく符号変調し、目的の負荷5に無駄なく電力を供給することができる。
 図21は、実施形態4の第1の比較例に係る電力伝送システムにおける符号変調及び符号復調を示すタイミングチャートである。図21の場合、例えば、発電電流の周波数は4Hzであり、負荷電流の周波数は5Hzであり、変調符号及び復調符号の周波数は5Hzである。この場合、発電電流の周波数と変調符号の周波数とが不一致しているので、変調電流のハッチング部分の電力を伝送することができない。これにより、復調電流のハッチング部分の電力を負荷5に供給することができない。
 図22は、実施形態4の第2の比較例に係る電力伝送システムにおける符号変調及び符号復調を示すタイミングチャートである。図22の場合、例えば、発電電流の周波数は4Hzであり、負荷電流は直流であり、変調符号及び復調符号の周波数は5Hzである。この場合もまた、発電電流の周波数と変調符号の周波数とが不一致しているので、変調電流のハッチング部分の電力を伝送することができない。これにより、復調電流のハッチング部分の電力を負荷5に供給することができない。
 図23は、実施形態4の第3の比較例に係る電力伝送システムにおける符号変調及び符号復調を示すタイミングチャートである。図23の場合、例えば、発電電流の周波数は5Hzであり、負荷電流の周波数は4Hzであり、変調符号及び復調符号の周波数は5Hzである。この場合、発電電流を無駄なく符号変調して符号変調器2Aから符号復調器4Aに伝送することができるが、負荷電流の周波数と復調符号の周波数とが不一致しているので、復調電流のハッチング部分の電力を負荷5に供給することができない。
 実施形態4に係る電力伝送システムによれば、電力伝送システムの他の構成要素との周波数の不一致及び同期の喪失などによる電力伝送の効率の低下を防止することができ、少なくとも、電力伝送の効率の低下を生じにくくすることができる。
実施形態5.
 発電電流、変調符号、復調符号、及び負荷電流の各周波数が互いに一致しているとき又は公倍数の関係にあっても、何らかの原因により、発電電流、変調符号、復調符号、及び負荷電流の同期が失われる可能性がある。実施形態5では、このような同期の喪失などによる電力伝送の効率の低下を生じにくくすることについて説明する。
 図24は、実施形態5に係る電力伝送システムの構成を示すブロック図である。図24において、実施形態5に係る電力伝送システムは、発電機1と、符号変調器2Bと、伝送路3と、符号復調器4Bと、負荷5と、コントローラ10Bとを備える。
 図25は、図24の符号変調器2Bの構成を示すブロック図である。符号変調器2Bは、制御回路20Bと、通信回路21と、符号生成回路22Aと、符号変調回路23Aと、電流測定器2mとを備える。符号生成回路22A及び符号変調回路23Aは、実施形態2に係る対応する構成要素と同様に構成される。電流測定器2mは、発電電流の電流値を測定する。制御回路20Bは、測定された発電電流の電流値を、通信回路21を介してコントローラ10Bに送る。
 図26は、図24の符号復調器4Bの構成を示すブロック図である。符号復調器4Bは、制御回路30Bと、通信回路31と、符号生成回路32Aと、符号復調回路33Aと、電流測定器4mとを備える。符号生成回路32A及び符号復調回路33A、実施形態2に係る対応する構成要素と同様に構成される。電流測定器4mは、負荷電流の電流値を測定する。制御回路30Bは、測定された負荷電流の電流値を、通信回路31を介してコントローラ10Bに送る。
 コントローラ10Bは、制御回路11Bび通信回路12Bを備える。制御回路11Bは、通信回路12Bを介して符号変調器2B及び符号復調器4Bと通信し、それらの動作を制御する。
 コントローラ10Bの制御回路11Bは、発電電流の電流値に基づいて、発電電流の極性が変化する瞬間を検出し、これにより、発電電流の位相及び周波数を計算する。コントローラ10Bの制御回路11Bは、変調符号が発電電流に対して同期していないとき、変調符号の1周期のうちの予め決められたビット数の時間区間であって、発電電流の極性が変化する瞬間を含む時間区間にわたって、発電電流の符号変調を停止するように符号変調器2Bに指示する。この時間区間は、発電電流の極性が変化する瞬間を含む1ビットの時間区間であってもよく、その前後のビットを含む所定ビット数の時間区間であってもよい。符号変調器2Bの制御回路20Bは、コントローラ10Bの制御下で、発電電流の極性が変化する瞬間を含む時間区間にわたって、発電電流の符号変調を停止する。
 コントローラ10Bの制御回路11Bは、負荷電流の電流値に基づいて、負荷電流の極性が変化する瞬間を検出し、これにより、負荷電流の位相及び周波数を計算する。コントローラ10Bの制御回路11Bは、復調符号が負荷電流に対して同期していないとき、復調符号の1周期のうちの予め決められたビット数の時間区間であって、負荷電流の極性が変化する瞬間を含む時間区間にわたって、変調電流の符号復調を停止するように符号復調器4Bに指示する。この時間区間は、負荷電流の極性が変化する瞬間を含む1ビットの時間区間であってもよく、その前後のビットを含む所定ビット数の時間区間であってもよい。符号復調器4Bの制御回路30Bは、コントローラ10Bの制御下で、負荷電流の極性が変化する瞬間を含む時間区間にわたって、変調電流の符号復調を停止する。
 図27は、図24の電力伝送システムによって実行される符号変調及び符号復調の第1の実施例を示すタイミングチャートである。変調符号の周波数が発電電流の周波数の倍数(例えば4倍)に対して不一致しているとき、発電電流の極性が変化する瞬間を含む時間区間(例えば1ビットの時間区間)にわたって、発電電流の符号変調を停止する。このとき、変調電流はゼロになり、復調電流もゼロになる。
 図28は、図24の電力伝送システムによって実行される符号変調及び符号復調の第2の実施例を示すタイミングチャートである。復調符号の周波数が負荷電流の周波数の倍数(例えば4倍)に対して不一致しているとき、負荷電流の極性が変化する瞬間を含む時間区間(例えば1ビットの時間区間)にわたって、変調電流の符号復調を停止する。このとき、復調電流はゼロになる。
 実施形態5に係る電力伝送システムによれば、発電電流、変調符号、復調符号、及び負荷電流の同期の喪失などによる電力伝送の効率の低下を生じにくくすることができる。
 コントローラ10Bは、発電機1から直接に発電電流の電流値を取得し、負荷5から直接に負荷電流の電流値を取得してもよい。
他の実施形態.
 実施形態3~5において、複数の符号変調器が同じ符号系列を用いてもよく、複数の符号復調器が同じ符号系列を用いてもよい。これにより、1つの符号変調器から複数の符号復調器へ電力を伝送してもよく、複数の符号変調器から1つの符号復調器へ電力を伝送してもよく、複数の符号変調器から複数の符号復調器へ電力を伝送してもよい。
 実施形態1~5において、一例として電流を符号変調及び符号復調して電力を伝送する例を示したが、これに限られるものではない。直流又は交流の電圧を符号変調及び符号復調して電力を伝送することも可能であり、同様の効果が得られる。
 本開示の態様に係る電力送信装置、電力受信装置、及び電力伝送システムは以下の構成を備える。
 第1の態様に係る電力送信装置は、
 伝送路を介して少なくとも1つの電力受信装置に電力を送信する電力送信装置であって、前記電力送信装置は、
 電源の出力電力が供給される符号変調回路であって、所定の符号系列に基づく変調符号を用いて前記電源の出力電力を符号変調して符号変調波を生成し、前記伝送路を介して前記符号変調波を前記電力受信装置に送信する符号変調回路と、
 前記符号変調回路を制御する制御回路とを備え、
 前記制御回路は、前記変調符号の周波数を前記電源の出力電力の周波数の倍数に設定する。
 第2の態様に係る電力受信装置は、
 所定の符号系列に基づく変調符号を用いて符号変調された電力を含む符号変調波を少なくとも1つの電力送信装置から伝送路を介して受信する電力受信装置であって、前記電力受信装置は、
 負荷に接続される符号復調回路であって、受信した前記符号変調波を符号変調したときに用いた変調符号の符号系列と同じ符号系列に基づく復調符号を用いて前記符号変調波を符号復調して復調電力を生成し、前記復調電力を前記負荷に供給する符号復調回路と、
 前記符号復調回路を制御する制御回路とを備え、
 前記制御回路は、前記復調符号の周波数を、前記負荷が動作可能な前記負荷の入力電力の周波数の倍数に設定する。
 第3の態様に係る電力伝送システムは、
 第1の態様に係る1つ又は複数の電力送信装置と、
 第2の態様に係る1つ又は複数の電力受信装置と、
 コントローラとを含む電力伝送システムであって、
 前記1つ又は複数の電力送信装置は1つ又は複数の電源に接続され、前記1つ又は複数の電力受信装置は1つ又は複数の負荷に接続され、
 前記コントローラは、
 前記各電源の出力電力の周波数及び前記各負荷の入力電力の周波数とを受信する通信回路と、
 前記通信回路を介して前記各電力送信装置及び前記各電力受信装置を制御する制御回路とを備え、
 前記コントローラの制御回路は、前記各電力送信装置の前記変調符号の周波数及び前記各電力受信装置の前記復調符号の周波数を、前記各電源の出力電力の周波数及び前記各負荷の入力電力の周波数の公倍数に設定する。
 第4の態様に係る電力送信装置は、第3の態様に係る電力伝送システムにおいて、
 前記コントローラの制御回路は、前記各電力送信装置の前記変調符号の周波数及び前記各電力受信装置の前記復調符号の周波数を、前記各電源の出力電力の周波数及び前記各負荷の入力電力の周波数の最小公倍数に設定する。
 第5の態様に係る電力送信装置は、
 伝送路を介して少なくとも1つの電力受信装置に電力を送信する電力送信装置であって、前記電力送信装置は、
 電源の出力電力が供給される符号変調回路であって、所定の符号系列に基づく変調符号を用いて前記電源の出力電力を符号変調して符号変調波を生成し、前記伝送路を介して前記符号変調波を前記電力受信装置に送信する符号変調回路と、
 前記符号変調回路を制御する制御回路とを備え、
 前記制御回路は、前記変調符号が前記電源の出力電力に対して同期していないとき、前記変調符号の1周期のうちの予め決められたビット数の時間区間であって、前記電源の出力電力の極性が変化する瞬間を含む時間区間にわたって、前記電源の出力電力の符号変調を停止する。
 第6の態様に係る電力受信装置は、
 所定の符号系列に基づく変調符号を用いて符号変調された電力を含む符号変調波を少なくとも1つの電力送信装置から伝送路を介して受信する電力受信装置であって、前記電力受信装置は、
 負荷に接続される符号復調回路であって、受信した前記符号変調波を符号変調したときに用いた変調符号の符号系列と同じ符号系列に基づく復調符号を用いて前記符号変調波を符号復調して復調電力を生成し、前記復調電力を前記負荷に供給する符号復調回路と、
 前記符号復調回路を制御する制御回路とを備え、
 前記制御回路は、前記復調符号が前記負荷の入力電力に対して同期していないとき、前記復調符号の1周期のうちの予め決められたビット数の時間区間であって、前記負荷の入力電力の極性が変化する瞬間を含む時間区間にわたって、前記符号変調波の符号復調を停止する。
 第7の態様に係る電力伝送システムは、
 第5の態様に係る電力送信装置と、
 第6の態様に係る電力受信装置とを含む。
 本開示に係る電力伝送システムは、太陽光発電、風力発電、水力発電等の発電機から、鉄道、EV車両等の負荷へ電力を伝送することに有用である。
1,1-1~1-2…発電機、
1m,1m-1,1m-2…電力測定器、
2,2A,2A-1~2A-2…符号変調器、
2m…電流測定器、
3…伝送路、
4,4A,4A-1~4A-2…符号復調器、
4m…電流測定器、
5,5-1~5-2…負荷、
5m,5m-1~5m-2…電力測定器、
10,10A~10B…コントローラ、
11,11B…制御回路、
12,12A,12B…通信回路、
20,20B…制御回路、
21…通信回路、
22,22A…符号生成回路、
23,23A…符号変調回路、
30,30B…制御回路、
31…通信回路、
32,32A…符号生成回路、
33,33A…符号復調回路、
D1~D34…ダイオード、
S1~S74…スイッチ素子、
SS1~SS34,SS21A~SS34A…スイッチ回路、
T1~T14…端子。

Claims (7)

  1.  伝送路を介して少なくとも1つの電力受信装置に電力を送信する電力送信装置であって、前記電力送信装置は、
     電源の出力電力が供給される符号変調回路であって、所定の符号系列に基づく変調符号を用いて前記電源の出力電力を符号変調して符号変調波を生成し、前記伝送路を介して前記符号変調波を前記電力受信装置に送信する符号変調回路と、
     前記符号変調回路を制御する制御回路とを備え、
     前記制御回路は、前記変調符号の周波数を前記電源の出力電力の周波数の倍数に設定する、
    電力送信装置。
  2.  所定の符号系列に基づく変調符号を用いて符号変調された電力を含む符号変調波を少なくとも1つの電力送信装置から伝送路を介して受信する電力受信装置であって、前記電力受信装置は、
     負荷に接続される符号復調回路であって、受信した前記符号変調波を符号変調したときに用いた変調符号の符号系列と同じ符号系列に基づく復調符号を用いて前記符号変調波を符号復調して復調電力を生成し、前記復調電力を前記負荷に供給する符号復調回路と、
     前記符号復調回路を制御する制御回路とを備え、
     前記制御回路は、前記復調符号の周波数を、前記負荷が動作可能な前記負荷の入力電力の周波数の倍数に設定する、
    電力受信装置。
  3.  請求項1記載の1つ又は複数の電力送信装置と、
     請求項2記載の1つ又は複数の電力受信装置と、
     コントローラとを含む電力伝送システムであって、
     前記1つ又は複数の電力送信装置は1つ又は複数の電源に接続され、前記1つ又は複数の電力受信装置は1つ又は複数の負荷に接続され、
     前記コントローラは、
     前記各電源の出力電力の周波数及び前記各負荷の入力電力の周波数とを受信する通信回路と、
     前記通信回路を介して前記各電力送信装置及び前記各電力受信装置を制御する制御回路とを備え、
     前記コントローラの制御回路は、前記各電力送信装置の前記変調符号の周波数及び前記各電力受信装置の前記復調符号の周波数を、前記各電源の出力電力の周波数及び前記各負荷の入力電力の周波数の公倍数に設定する、
    電力伝送システム。
  4.  前記コントローラの制御回路は、前記各電力送信装置の前記変調符号の周波数及び前記各電力受信装置の前記復調符号の周波数を、前記各電源の出力電力の周波数及び前記各負荷の入力電力の周波数の最小公倍数に設定する、
    請求項3記載の電力伝送システム。
  5.  伝送路を介して少なくとも1つの電力受信装置に電力を送信する電力送信装置であって、前記電力送信装置は、
     電源の出力電力が供給される符号変調回路であって、所定の符号系列に基づく変調符号を用いて前記電源の出力電力を符号変調して符号変調波を生成し、前記伝送路を介して前記符号変調波を前記電力受信装置に送信する符号変調回路と、
     前記符号変調回路を制御する制御回路とを備え、
     前記制御回路は、前記変調符号が前記電源の出力電力に対して同期していないとき、前記変調符号の1周期のうちの予め決められたビット数の時間区間であって、前記電源の出力電力の極性が変化する瞬間を含む時間区間にわたって、前記電源の出力電力の符号変調を停止する、
    電力送信装置。
  6.  所定の符号系列に基づく変調符号を用いて符号変調された電力を含む符号変調波を少なくとも1つの電力送信装置から伝送路を介して受信する電力受信装置であって、前記電力受信装置は、
     負荷に接続される符号復調回路であって、受信した前記符号変調波を符号変調したときに用いた変調符号の符号系列と同じ符号系列に基づく復調符号を用いて前記符号変調波を符号復調して復調電力を生成し、前記復調電力を前記負荷に供給する符号復調回路と、
     前記符号復調回路を制御する制御回路とを備え、
     前記制御回路は、前記復調符号が前記負荷の入力電力に対して同期していないとき、前記復調符号の1周期のうちの予め決められたビット数の時間区間であって、前記負荷の入力電力の極性が変化する瞬間を含む時間区間にわたって、前記符号変調波の符号復調を停止する、
    電力受信装置。
  7.  請求項5記載の電力送信装置と、
     請求項6記載の電力受信装置とを含む、
    電力伝送システム。
PCT/JP2018/007018 2017-03-03 2018-02-26 電力伝送システム WO2018159551A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880015359.2A CN110383626A (zh) 2017-03-03 2018-02-26 电力传输系统
US16/490,422 US11201472B2 (en) 2017-03-03 2018-02-26 Power transmission system capable of preventing power transmission efficiency from degrading due to frequency mismatch and loss of synchronization
JP2019502987A JP7065371B2 (ja) 2017-03-03 2018-02-26 電力伝送システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017040610 2017-03-03
JP2017-040610 2017-03-03

Publications (1)

Publication Number Publication Date
WO2018159551A1 true WO2018159551A1 (ja) 2018-09-07

Family

ID=63370741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007018 WO2018159551A1 (ja) 2017-03-03 2018-02-26 電力伝送システム

Country Status (4)

Country Link
US (1) US11201472B2 (ja)
JP (1) JP7065371B2 (ja)
CN (1) CN110383626A (ja)
WO (1) WO2018159551A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110247683A (zh) * 2019-06-29 2019-09-17 深圳高力特通用电气有限公司 一种基于电力直流电的信息调制方法
CN110337165A (zh) * 2019-06-29 2019-10-15 深圳高力特通用电气有限公司 一种基于电力直流电的照明控制方法
EP4246756A1 (en) * 2022-03-14 2023-09-20 Siemens Gamesa Renewable Energy A/S Smart power grid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08307318A (ja) * 1995-04-27 1996-11-22 Sumitomo Electric Ind Ltd スペクトラム拡散通信装置
US20130226484A1 (en) * 2012-02-27 2013-08-29 Nokia Corporation Method and apparatus for generating power flow signatures

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804938A (en) * 1986-10-24 1989-02-14 Sangamo Weston, Inc. Distribution energy management system
GB8821130D0 (en) * 1988-09-09 1988-10-12 Ml Aviation Co Ltd Inductive coupler
US6762723B2 (en) * 2002-11-08 2004-07-13 Motorola, Inc. Wireless communication device having multiband antenna
CN100581150C (zh) * 2006-06-23 2010-01-13 华南理工大学 正弦波频率组合编码的调制解调方法及其装置
US9112379B2 (en) * 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8316091B2 (en) * 2008-12-01 2012-11-20 At&T Mobility Ii Llc Content management for wireless digital media frames
JP5612920B2 (ja) 2010-06-27 2014-10-22 国立大学法人 東京大学 多端子型電力変換装置と電力システムならびにその制御プログラム
JP4783453B2 (ja) 2009-09-10 2011-09-28 力也 阿部 多端子型非同期連系装置、電力機器制御端末装置と電力ネットワークシステムおよびその制御方法
US8437468B2 (en) * 2009-10-09 2013-05-07 At&T Intellectual Property I, L. P. Methods, systems and products for providing modem functions
JP2011091954A (ja) 2009-10-23 2011-05-06 Sony Corp 電力供給装置、電力受電装置、電力供給システム及び電力供給方法
JP5612718B2 (ja) 2011-05-18 2014-10-22 国立大学法人 東京大学 多端子型非同期連系装置、電力機器制御端末装置と電力ネットワークシステムおよびその制御方法
GB2511864A (en) * 2013-03-15 2014-09-17 Reactive Technologies Ltd Method, apparatus and computer program for transmitting and/orreceiving signals
GB2515358B (en) * 2013-11-06 2017-01-18 Reactive Tech Ltd Grid Frequency Response
KR102438626B1 (ko) * 2014-07-07 2022-08-31 엘지전자 주식회사 무선 전력 전송방법, 장치 및 시스템
CN104281183B (zh) * 2014-08-25 2016-04-27 南京航空航天大学 一种基于模糊反馈的非接触电能传输稳压系统
DE102016100534A1 (de) * 2015-01-16 2016-07-21 Vlad BLUVSHTEIN Datenübertragung in einem transkutanen Energieübertragungssystem
US9484844B1 (en) * 2015-04-16 2016-11-01 Glen Floreancig Circuit and method for reducing inrush current of phase converter motor
WO2016177399A1 (en) * 2015-05-05 2016-11-10 Abb Technology Ltd Converter arrangement
US20170078117A1 (en) * 2015-09-11 2017-03-16 Enphase Energy, Inc. Method and apparatus for channel estimation for three-phase plc systems
CN205304399U (zh) * 2015-11-27 2016-06-08 广东电网有限责任公司汕头供电局 基于电力载波通信的电力电子有载调压变压器的测控系统
US10401402B2 (en) * 2016-07-26 2019-09-03 Aclara Technologies Llc Synchronized phasor measurement in power distribution networks

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08307318A (ja) * 1995-04-27 1996-11-22 Sumitomo Electric Ind Ltd スペクトラム拡散通信装置
US20130226484A1 (en) * 2012-02-27 2013-08-29 Nokia Corporation Method and apparatus for generating power flow signatures

Also Published As

Publication number Publication date
US11201472B2 (en) 2021-12-14
JPWO2018159551A1 (ja) 2019-12-26
CN110383626A (zh) 2019-10-25
JP7065371B2 (ja) 2022-05-12
US20200014211A1 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
WO2018159551A1 (ja) 電力伝送システム
JP6990886B2 (ja) 電力伝送システム
JP7122652B2 (ja) 電力伝送システム
JP6788868B2 (ja) 変換器、電力伝送システム、及び、コントローラ
JP6788869B2 (ja) 変換器、電力伝送システム、及び、コントローラ
JP6390877B2 (ja) 符号変調器、符号復調器、及び、コントローラ
JP6865373B2 (ja) 変換器、及び、コントローラ
JP6715464B2 (ja) 電力送信装置及び電力受信装置
US10418823B2 (en) Power transmission system including power transmitter and power receiver
JP6967747B2 (ja) 電力伝送システム
WO2018159553A1 (ja) 電力伝送システム
JP6986715B2 (ja) 電力伝送システム
JP7033714B2 (ja) 電力伝送システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760787

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502987

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18760787

Country of ref document: EP

Kind code of ref document: A1