WO2018159215A1 - 無線基地局および送信電力制御方法 - Google Patents

無線基地局および送信電力制御方法 Download PDF

Info

Publication number
WO2018159215A1
WO2018159215A1 PCT/JP2018/003675 JP2018003675W WO2018159215A1 WO 2018159215 A1 WO2018159215 A1 WO 2018159215A1 JP 2018003675 W JP2018003675 W JP 2018003675W WO 2018159215 A1 WO2018159215 A1 WO 2018159215A1
Authority
WO
WIPO (PCT)
Prior art keywords
path loss
power control
transmission power
transmission
base station
Prior art date
Application number
PCT/JP2018/003675
Other languages
English (en)
French (fr)
Inventor
達樹 奥山
聡 須山
淳 増野
翔平 吉岡
奥村 幸彦
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US16/490,248 priority Critical patent/US11129111B2/en
Publication of WO2018159215A1 publication Critical patent/WO2018159215A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity

Definitions

  • the present invention relates to a radio base station and a transmission power control method.
  • LTE Long Term Evolution
  • Non-patent Document 1 a successor system of LTE is also being studied for the purpose of further widening the bandwidth and speeding up from LTE.
  • LTE successors include LTE-A (LTE-Advanced), FRA (Future Radio Access), 5G (5th generation mobile mobile communication system), 5G + (5G plus), New-RAT (Radio Access Technology), etc. There is what is called.
  • a large number of antenna elements for example, 100 elements or more are used in a high frequency band (for example, 4 GHz or more) in order to further increase the speed of signal transmission and reduce interference.
  • massive MIMO Multiple Input Multiple Output
  • a wireless communication system based on an ultra-high-density distributed antenna system including a transmission point including one or more antenna elements and a signal processing device has been studied (for example, Non-Patent Document 1).
  • an object of the present invention is to provide a technique for performing transmission power control at a transmission point to improve communication quality.
  • the radio base station of the present invention includes a plurality of transmission points having one or more antenna elements, and a signal processing device connected to the plurality of transmission points.
  • a power control weight for performing transmission power control of each of the antenna elements is calculated based on the path loss of each of the antenna elements estimated by the estimation unit estimating the path loss with the wireless terminal.
  • a calculating unit is provided.
  • transmission quality can be improved by performing transmission power control at a transmission point.
  • FIG. 3B is a second diagram illustrating an example of transmission power control of the ultra-high density distributed antenna system. It is a figure explaining a path loss. It is the figure which showed the block structural example of the signal processing apparatus. It is the figure which showed the block structural example of the j-th radio
  • next-generation wireless communication systems For example, by using a high frequency band of several GHz to several tens GHz, resources with a wide bandwidth can be secured. Further, for example, by performing wireless communication using 100 or more antenna elements, it is possible to perform advanced BF (beam forming), reduction of interference, or effective use of resources.
  • 5G wireless communication systems For example, by using a high frequency band of several GHz to several tens GHz, resources with a wide bandwidth can be secured. Further, for example, by performing wireless communication using 100 or more antenna elements, it is possible to perform advanced BF (beam forming), reduction of interference, or effective use of resources.
  • advanced BF beam forming
  • the radio base station of the ultra-high density distributed antenna system includes, for example, a plurality of transmission points having one or more antenna elements, and a signal processing apparatus connected to the plurality of transmission points.
  • the transmission point may be referred to as an overhanging station, and the signal processing apparatus may be referred to as BBU (BaseBand processing Unit).
  • BBU BaseBand processing Unit
  • FIG. 1 is a diagram illustrating a configuration example of a radio base station according to the first embodiment.
  • the radio base station has transmission points 1a to 1i and a signal processing device 2.
  • FIG. 1 also shows wireless terminals 3a and 3b in addition to the wireless base station.
  • the radio base station shown in FIG. 1 performs radio communication with the radio terminals 3a and 3b under the transmission points 1a to 1i (in the cell) using an ultra-high density distributed antenna system.
  • the transmission points 1a to 1i have one or more antenna elements. Each of the transmission points 1a to 1i is connected to the signal processing device 2. Each of the transmission points 1a to 1i forms a cell.
  • the signal processing device 2 performs signal processing of signals transmitted to the wireless terminals 3a and 3b.
  • the signal processed signal is output to the transmission points 1a to 1i and wirelessly transmitted to the wireless terminals 3a and 3b. Further, the signal processing device 2 receives the signals of the wireless terminals 3a and 3b received by the transmission points 1a to 1i from the transmission points 1a to 1i. The signal processing device 2 performs signal processing on signals received from the transmission points 1a to 1i.
  • FIG. 1 shows two wireless terminals 3a and 3b, the present invention is not limited to this.
  • one wireless terminal may exist under the transmission points 1a to 1i.
  • three or more wireless terminals may exist under the transmission points 1a to 1i.
  • FIG. 2 is a diagram for explaining an example of the path loss of the ultra-high density distributed antenna system. Hereinafter, a case where there are three transmission points will be described for the sake of simplicity.
  • FIG. 2 shows the transmission points 11 to 13 and the wireless terminals 14a and 14b.
  • the path loss between the transmission points 11 to 13 and the wireless terminals 14a and 14b differs depending on the positions of the wireless terminals 14a and 14b. For example, as the distance between the transmission points 11 to 13 and the wireless terminals 14a and 14b increases, the path loss between the transmission points 11 to 13 and the wireless terminals 14a and 14b increases.
  • FIG. 2 indicates the magnitude of the path loss between the wireless terminals 14a and 14b and the transmission points 11 to 13, depending on the thickness thereof.
  • FIG. 2 shows that the path loss is larger as the thickness of the double arrow is smaller.
  • the path loss between the transmission point 11 and the wireless terminal 14b is larger than the path loss between the transmission point 11 and the wireless terminal 14a.
  • the path loss between the transmission point 13 and the wireless terminal 14a is larger than the path loss between the transmission point 12 and the wireless terminal 14a.
  • the radio base station performs transmission power control for each antenna element at transmission points 11 to 13 (in FIG. 1, transmission points 1a to 1i) in the downlink, thereby improving communication quality.
  • a radio base station improves downlink communication quality by increasing transmission power at a transmission point with a large path loss.
  • the radio base station reduces the interference power by reducing the transmission power at a transmission point with a small path loss.
  • FIG. 3 is a first diagram illustrating an example of transmission power control of the ultra-high density distributed antenna system.
  • the same components as those in FIG. 3 are identical to FIG. 3, the same components as those in FIG. 3, the same components as those in FIG. 3, the same components as those in FIG.
  • the transmission power intensity P1 shown in FIG. 3 indicates the transmission power intensity of the transmission point 13 before transmission power control.
  • the transmission power intensity P2 illustrated in FIG. 3 indicates the transmission power intensity after transmission power control of the transmission point 13.
  • the radio base station increases the transmission power for the transmission point 13 having a large path loss with respect to the radio terminals 14a and 14b. For example, the radio base station increases the transmission power of the transmission point 13 from the transmission power intensity P1 to the transmission power intensity P2. By this processing, the radio base station can improve the communication quality with the radio terminals 14a and 14b.
  • FIG. 4 is a second diagram illustrating an example of transmission power control of the ultra-high density distributed antenna system.
  • the same components as those in FIG. 4 are identical to FIG. 4, the same components as those in FIG. 4, the same components as those in FIG. 4, the same components as those in FIG. 4, the same components as those in FIG. 4, the same components as those in FIG. 4, the same components as those in FIG. 4, the same components as those in FIG. 4, the same components as those in FIG.
  • the transmission power intensity P11a indicates the transmission power intensity after transmission power control of the transmission point 11.
  • the transmission power intensity P12a indicates the transmission power intensity before transmission power control at the transmission point 12.
  • the transmission power intensity P12b indicates the transmission power intensity after transmission power control of the transmission point 12.
  • the radio base station reduces the transmission power for the transmission points 11 and 12 having a small path loss with respect to the radio terminals 14a and 14b. For example, the radio base station decreases the transmission power of the transmission point 11 from the transmission power intensity P11a to the transmission power intensity P11b. Also, the radio base station decreases the transmission power at the transmission point 12 from the transmission power intensity P12a to the transmission power intensity P12b. By this processing, the radio base station can reduce the interference power at the transmission points 11 and 12, and can improve the communication quality with the radio terminals 14a and 14b.
  • FIG. 5 is a diagram for explaining path loss.
  • the same components as those in FIG. FIG. 5 shows the transmission point 11 and the wireless terminal 14a.
  • the reception signal “r” at the transmission point 11 when the wireless terminal 14a transmits the reference signal “s” is “z” for the noise signal and “H” for the propagation channel between the transmission point 11 and the wireless terminal 14a.
  • the path loss coefficient is represented by the following equation (1), where “ ⁇ ” is assumed.
  • the radio base station can estimate (measure) a path loss between the transmission point 11 and the radio terminal 14a from a reference signal (for example, a known signal with constant energy) transmitted from the radio terminal 14a.
  • a reference signal for example, a known signal with constant energy
  • the radio base station can estimate the path loss between the transmission point 11 and the radio terminal 14a from the received power of the reference signal received from the radio terminal 14a or the SNR (Signal-to-Noise Ratio).
  • the radio base station can estimate the downlink path loss from the reference signal transmitted from the radio terminal 14a.
  • FIG. 6 is a diagram illustrating a block configuration example of the signal processing device 2.
  • the signal processing device 2 includes a channel estimation unit 21, a path loss estimation unit 22, a transmission power control weight calculation unit 23, a BF weight generation unit 24, a precoding generation unit 25, and a precoding.
  • FIG. 6 also shows the antenna elements 29 included in the transmission points 1a to 1i.
  • the antenna element 29 of the antenna element group 29a illustrated in FIG. 6 corresponds to, for example, the antenna element included in the transmission point 1a.
  • the antenna element 29 of the antenna element group 29n corresponds to, for example, the antenna element included in the transmission point 1i.
  • the channel estimation unit 21 estimates (measures) a channel (channel matrix H) between the transmission points 1a to 1i and the wireless terminals 3a and 3b from the reference signal transmitted from the wireless terminals 3a and 3b. Note that the channel estimation unit 21 may estimate the channel between the transmission points 1a to 1i and the wireless terminals 3a and 3b using an arbitrary method.
  • the path loss estimation unit 22 estimates the path loss between the antenna elements 29 at the transmission points 1a to 1i and the wireless terminals 3a and 3b from the reference signals transmitted from the wireless terminals 3a and 3b. For example, the path loss estimation unit 22 estimates the path loss between the antenna elements 29 of the transmission points 1a to 1i and the wireless terminals 3a and 3b from the received power or SNR of the reference signal transmitted from the wireless terminals 3a and 3b. The path loss estimation between the antenna elements 29 of the transmission points 1a to 1i and the wireless terminals 3a and 3b will be described in detail below.
  • the transmission power control weight calculation unit 23 calculates a transmission power control weight (D) for performing transmission power control of the antenna elements 29 of the transmission points 1a to 1i based on the path loss estimated by the path loss estimation unit 22.
  • D transmission power control weight
  • the BF weight generation unit 24 generates an equivalent channel (equivalent channel matrix HD) including the transmission power control weight (D) calculated by the transmission power control weight calculation unit 23.
  • the BF weight generation unit 24 generates a BF weight (W T ) for forming a transmission beam, using the generated equivalent channel (HD). Note that the BF weight generation unit 24 may generate a BF weight using an arbitrary method.
  • the precoding generation unit 25 generates an equivalent channel (equivalent channel matrix HDW T ) including the BF weight (W T ) generated by the BF weight generation unit 24.
  • the precoding generation unit 25 uses the generated equivalent channel (HDW T ) to generate a precoding matrix (P) for precoding the M stream.
  • the precoding generation unit 25 may generate a precoding matrix using any method.
  • the M streams “# 1 to #M” are input to the precoding unit 26.
  • the precoding unit 26 multiplies the input M stream by the precoding matrix (P) generated by the precoding generation unit 25.
  • the precoding unit 26 outputs the data signal after the precoding matrix multiplication to the BF unit 27.
  • the BF unit 27 multiplies the data signal output from the precoding unit 26 by the BF weight (W T ) generated by the BF weight generation unit 24.
  • the BF unit 27 outputs the data signal after the BF weight multiplication to the transmission power control unit 28.
  • the transmission power control unit 28 multiplies the data signal output from the BF unit 27 by the transmission power control weight (D) calculated by the transmission power control weight calculation unit 23.
  • the transmission power control unit 28 outputs the data signal after the transmission power control weight multiplication to the antenna elements 29 of the transmission points 1a to 1i.
  • the transmission vector of the M stream is “s”.
  • the received signal vector “r” in all wireless terminals is expressed by the following equations (2) and (3).
  • the above equation (2) represents a received signal vector when the wireless terminal performs BF. Therefore, the BF weight “W R ” on the receiving side is included in Expression (2).
  • the precoding unit 26 and outputs a data signal of "L T number".
  • the BF section 27 outputs “N T ” data signals.
  • N T is the total number of antenna elements 29 that the transmission points 1a to 1i have.
  • the transmission power control unit 28 outputs “N T ” data signals.
  • Transmission point 1a ⁇ 1i is present "N TP individual”.
  • L R number the number of beams of the receiving-side, the total number of antenna elements of the wireless terminal as "the N R”.
  • the matrix size of the noise signal vector “z” in Expression (2) is “L R ⁇ 1”.
  • the matrix size of the transmission vector “s” of the M stream is “M ⁇ 1”.
  • the matrix size of the precoding matrix “P” is “L T ⁇ M”.
  • the matrix size of the BF weight “W T ” is “N T ⁇ L T ”.
  • the matrix size of the transmission power control weight “D” is “N T ⁇ N T ”.
  • the matrix size of the channel matrix “H” is “N R ⁇ N T ”.
  • the matrix size of the BF weight “W R ” is “L R ⁇ N R ”.
  • the matrix size of the received signal vector is “ LR ⁇ 1”.
  • the description of the component that encodes and modulates the stream is omitted. Further, in FIG. 6, description of components (for example, IFFT processing unit, CP adding unit) for generating an OFDM (OrthogonalgonFrequency Division Multiplexing) signal in the signal processing device 2 is omitted. Further, the signal waveform of the signal transmitted from the signal processing device 2 is not limited to a waveform based on OFDM modulation.
  • the BF unit 27 includes a phase shifter and an amplifier.
  • FIG. 7 is a diagram illustrating a block configuration example of the j-th wireless terminal (wireless terminal 3a).
  • the radio terminal 3a includes an antenna 31, a BF weight generation unit 32, a reception BF unit 33, an equivalent channel estimation unit 34, a post coding generation unit 35, a post coding unit 36, and data A signal estimation unit 37. Since the wireless terminal 3b has the same block configuration as the wireless terminal 3a, the description thereof is omitted.
  • the BF weight generation unit 32 generates a BF weight (W Rj ) for forming a reception beam. Note that the BF weight generation unit 32 may generate a BF weight using an arbitrary method.
  • the reception BF unit 33 multiplies the reception signal received by the antenna 31 by the BF weight (W Rj ) generated by the BF weight generation unit 32.
  • the reception BF unit 33 outputs the reception signal after the BF weight multiplication to the post coding unit 36.
  • the equivalent channel estimation unit 34 estimates a channel between the wireless terminal 3a and the transmission points 1a to 1i.
  • the equivalent channel estimation unit 34 may estimate the channel between the wireless terminal 3a and the transmission points 1a to 1i using an arbitrary method.
  • the post-coding generation unit 35 generates a post-coding matrix for post-coding the reception signal output from the reception BF unit 33 using the channel estimated by the equivalent channel estimation unit 34. Note that the post-coding generator 35 may generate a post-coding matrix using an arbitrary method.
  • the post-coding unit 36 multiplies the reception signal output from the reception BF unit 33 by the post-coding matrix generated by the post-coding generation unit 35, and outputs the reception signal after the post-coding matrix multiplication to the data signal estimation unit 37. To do.
  • the data signal estimation unit 37 estimates the data signal transmitted from the radio base station from the reception signal output from the post coding unit 36.
  • the wireless terminal 3a includes a reference signal transmission unit that transmits reference signals to the transmission points 1a to 1i.
  • the wireless terminal 3a has a component that removes the CP.
  • the reception BF unit 33 includes a phase shifter and an amplifier.
  • FIG. 8 is a diagram illustrating path loss estimation for a single user. Hereinafter, a case where there are three transmission points will be described for the sake of simplicity. In FIG. 8, transmission points 41 to 43 and a wireless terminal 44 are shown.
  • the wireless terminal 44 transmits a reference signal.
  • Each antenna element at the transmission points 41 to 43 receives a reference signal transmitted from the wireless terminal 44.
  • the path loss estimation unit 22 estimates the path loss between the antenna elements of the transmission points 41 to 43 and the wireless terminal 44 from the reference signals received by the antenna elements of the transmission points 41 to 43.
  • the path loss estimation unit 22 estimates the path loss between the wireless terminal 44 in each antenna element of the transmission point 41.
  • the path loss estimator 22 estimates a path loss between each antenna element at the transmission point 42 and the wireless terminal 44.
  • the path loss estimator 22 estimates a path loss between the transmission terminal 43 and the wireless terminal 44 at each antenna element.
  • PL11,..., PL1l illustrated in FIG. 8 indicate the path loss between the wireless terminal 44 in each antenna element (l) of the transmission point 41 estimated by the path loss estimation unit 22.
  • PL21,..., PL2m indicates the path loss between the antennas (m) at the transmission point 42 and the wireless terminal 44 estimated by the path loss estimation unit 22.
  • PL31,..., PL3n indicates the path loss between the wireless terminal 44 in each antenna element (n) at the transmission point 43 estimated by the path loss estimation unit 22.
  • FIG. 9 is a diagram for explaining the coefficient calculation of the transmission power control weight calculation unit 23.
  • the signal processing device 2 has a table for calculating (acquiring) the coefficient of the transmission power control weight from the path loss estimated by the path loss estimation unit 22.
  • the table has a path loss and a coefficient corresponding to the path loss, and the path loss and the coefficient have a relationship as shown in FIG. For example, the coefficient “d i ” (0 ⁇ d i ⁇ 1) increases as the path loss increases.
  • the transmission power control weight calculation unit 23 refers to the table based on the path loss estimated by the path loss estimation unit 22, and acquires the coefficient of the transmission power control weight.
  • the transmission power control weight calculation unit 23 acquires the coefficient “d PL1p ”.
  • the transmission power control weight calculation unit 23 refers to the table and acquires the coefficients in the antenna elements of the transmission points 41 to 43, the transmission power control weight (the transmission power control weight before normalization) is calculated from the acquired coefficients. Generate.
  • the transmission power control weight is expressed by the following equation (4).
  • Equation (4) represents the transmission power control weight when there are “ NT ” antenna elements at all transmission points.
  • the expression (4) is an “(l + n + m) ⁇ (l + n + m)” matrix.
  • the transmission power control weight calculation unit 23 normalizes the transmission power control weight shown in Expression (4). For example, the transmission power control weight calculation unit 23 performs the calculation shown in Expression (5), and calculates the coefficient “ ⁇ ” such that the sum of the diagonal components is equivalent to the dimension of the matrix.
  • Equation (5) is a complex conjugate transpose of a matrix.
  • the normalized transmission power control weight is obtained from the following equation (6).
  • the transmission power control weight (D) calculated by the transmission power control weight calculation unit 23 is output to the transmission power control unit 28.
  • FIG. 10 is a diagram for explaining path loss estimation in a multi-user. 10, the same components as those in FIG. 8 are denoted by the same reference numerals. In FIG. 10, there are three wireless terminals 44-46.
  • Each of the wireless terminals 44 to 46 transmits a reference signal (a reference signal orthogonal between the wireless terminals 44 to 46).
  • the antenna elements at the transmission points 41 to 43 receive reference signals transmitted from the wireless terminals 44 to 46, respectively.
  • the path loss estimation unit 22 estimates the path loss between each of the wireless terminals 44 to 46 in each antenna element of the transmission points 41 to 43 from the reference signal received by each of the antenna elements of the transmission points 41 to 43.
  • the transmission power control weight calculation unit 23 calculates the coefficient of the transmission power control weight from the path loss of each antenna element at the transmission points 41 to 43 estimated by the path loss estimation unit 22. At that time, the transmission power control weight calculation unit 23 adds the path loss of the wireless terminals 44 to 46 estimated by the path loss estimation unit 22 in each antenna element of the transmission points 41 to 43.
  • the path loss with the wireless terminal 44 at the antenna element x with the transmission point 41 is assumed to be PLx1.
  • the path loss with the wireless terminal 45 in the antenna element x with the transmission point 41 is assumed to be PLx2.
  • the path loss with the wireless terminal 46 at the antenna element x with the transmission point 41 is assumed to be PLx3.
  • the transmission power control weight calculation unit 23 adds the path loss “PLx1, PLx2, PLx3”.
  • the transmission power control weight calculation unit 23 uses the same method as that illustrated in FIG. Then, the coefficient of the transmission power control weight is calculated with reference to the table.
  • the transmission power control weight calculation unit 23 adds the path loss of the wireless terminals 44 to 46 in each antenna element, and calculates the coefficient of the transmission power control weight using the added path loss as the path loss of the antenna element.
  • the transmission power control weight calculation unit 23 refers to the table based on the added path loss, but is not limited thereto.
  • the transmission power control weight calculating unit 23 may add the path loss, average the result, and refer to the table with the averaged path loss. That is, the transmission power control weight calculation unit 23 calculates the average value of the path loss of the radio terminals 44 to 46 in each antenna element, and uses the calculated path loss of the average value as the path loss of the antenna element, and sets the coefficient of the transmission power control weight. It may be calculated.
  • FIG. 11 is a sequence diagram showing an operation example of the radio base station (signal processing device 2) and the radio terminals 3a and 3b.
  • the wireless terminals 3a and 3b in FIG. 1 transmit a reference signal to the signal processing device 2 (step S1).
  • the signal processing device 2 estimates the channel (H) based on the reference signal transmitted in step S1, and calculates a transmission power control weight (D) (step S2).
  • the signal processing device 2 and the wireless terminals 3a and 3b generate BF weights (W T , W R ) using an arbitrary BF algorithm (step S3).
  • the signal processing apparatus 2 estimates an equivalent channel (HDW T ) including the transmission power control weight (D) calculated in step S2 and the BF weight (W T ) calculated in step S3 (step S3). S4).
  • the signal processing device 2 and the wireless terminals 3a and 3b exchange information necessary for data transmission (step S5).
  • the signal processing device 2 transmits data to the wireless terminals 3a and 3b (step S6).
  • FIG. 12 is a flowchart showing an operation example of the signal processing device 2.
  • the signal processing device 2 receives a reference signal transmitted by the wireless terminals 3a and 3b (step S11).
  • the signal processing device 2 estimates the channel (H) between the antenna elements of the transmission points 1a to 1i and the wireless terminals 3a and 3b based on the reference signal received in step S11 (step S12). .
  • the signal processing device 2 estimates the path loss between the antenna elements of the transmission points 1a to 1i and the wireless terminals 3a and 3b based on the reference signal received in step S11 (step S13).
  • the signal processing device 2 calculates a transmission power control weight (D) from the path loss estimated in step S13 (step S14).
  • the signal processing device 2 calculates a BF weight (W T ) from the equivalent channel (HD) including the transmission power control weight (D) calculated in step S13 (step S15). Note that the signal processing apparatus 2 uses the BF weight as a unit matrix when BF is not performed.
  • the signal processing device 2 exchanges information necessary for data transmission with the wireless terminals 3a and 3b (step S16).
  • the signal processing device 2 transmits data to the wireless terminals 3a and 3b (step S17).
  • the radio base station includes the plurality of transmission points 1a to 1i having one or more antenna elements 29 and the signal processing device 2 connected to the plurality of transmission points 1a to 1i.
  • the path loss estimation unit 22 of the signal processing device 2 estimates the path loss between the radio terminals 3a and 3b in each of the antenna elements 29.
  • the transmission power control weight calculation unit 23 calculates a transmission power control weight for performing transmission power control of each antenna element 29 based on the estimated path loss of each antenna element 29.
  • the radio base station can perform transmission power control of the transmission points 1a to 1i to improve communication quality. Further, the radio base station can perform transmission power control of the transmission points 1a to 1i from simple information (path loss).
  • the transmission power control weight calculation unit 23 calculates the transmission power control weight such that the transmission power increases as the path loss estimated by the path loss estimation unit 22 increases.
  • the radio base station can improve the communication quality of the radio terminals 3a and 3b located far from the transmission points 1a to 1i. Further, since the radio base station reduces the transmission power when the radio terminals 3a and 3b are located near the transmission points 1a to 1i, the interference power can be suppressed.
  • the transmission power control weight calculator 23 calculates the coefficient of the transmission power control weight using a table, but the present invention is not limited to this.
  • the transmission power control weight calculation unit 23 may calculate the coefficient of the transmission power control weight from the equation indicating the relationship between the path loss and the coefficient illustrated in FIG.
  • the relationship between the path loss and the coefficient is not limited to the linear relationship as shown in FIG.
  • the relationship between the path loss and the coefficient may be represented by an n-dimensional function, a hyperbolic function, an inverse number, a step function, or the like.
  • the transmission power control weight calculating unit 23 may calculate the coefficient using the path loss as it is, or may calculate the coefficient by raising the path loss to a power.
  • the relationship between the path loss and the coefficient as shown in FIG. 9 may be changed for each of the wireless terminals 3a and 3b from the desired rate of the wireless terminals 3a and 3b or an assumed amount of interference.
  • the path loss estimation unit 22 estimates the path loss from the received power or SNR of the reference signal.
  • the path loss may be estimated using the channel estimated by the channel estimation unit 21.
  • the received signal of the reference signal is expressed by Expression (1). From equation (1), if channel “H” is known, the path loss coefficient ( ⁇ ) can be obtained.
  • the path loss estimation is not limited to the above method.
  • the wireless base station may transmit a reference signal to the wireless terminal, and the wireless terminal may estimate the path loss from the reference signal. Then, the wireless terminal may transmit the estimated path loss to the wireless base station.
  • the path loss estimation unit 22 may use the SNR of the reference signal as it is as a path loss. Further, the path loss estimation unit 22 may use the received power of the reference signal as it is as a path loss.
  • the relationship between the path loss and the coefficient is an increase function. That is, the signal processing apparatus according to the first embodiment controls the transmission power at the transmission point to increase as the path loss increases.
  • the signal processing apparatus performs control so that the transmission power at the transmission point becomes smaller as the path loss increases. That is, for example, the signal processing apparatus according to the second embodiment stops wireless communication with a wireless terminal located far from the transmission point and performs wireless communication with a wireless terminal located near the transmission point. To do. Below, a different part from 1st Embodiment is demonstrated.
  • FIG. 13 is a diagram for explaining the coefficient calculation of the transmission power control weight calculation unit 23 according to the second embodiment.
  • the signal processing device 2 has a table for calculating (acquiring) the coefficient of the transmission power control weight from the path loss estimated by the path loss estimation unit 22.
  • the table has a path loss and a coefficient corresponding to the path loss, and the path loss and the coefficient have a relationship as shown in FIG. For example, the coefficient decreases as the path loss increases.
  • the transmission power control weight calculation unit 23 refers to the table based on the path loss estimated by the path loss estimation unit 22, and acquires the coefficient (d) of the transmission power control weight (D). . Then, the transmission power control weight calculation unit 23 calculates the transmission power control weight (D) of the acquired coefficient.
  • the coefficient of the transmission power control weight has the relationship shown in FIG. 13 with respect to the path loss. Therefore, the transmission power of an antenna element with a large path loss is controlled to be small, and the transmission power of an antenna element with a small path loss is controlled to be large.
  • the radio base station stops communication with radio terminals located far from the transmission points 1a to 1i, for example.
  • the radio base station improves communication quality with radio terminals located near the transmission points 1a to 1i.
  • the transmission power control weight calculation unit 23 calculates the transmission power control weight so that the transmission power decreases as the path loss estimated by the path loss estimation unit 22 increases. By this processing, the radio base station can reduce interference power and improve communication quality.
  • the relationship between the path loss and the coefficient is not limited to the linear relationship as shown in FIG.
  • the relationship between the path loss and the coefficient may be represented by an n-dimensional function, a hyperbolic function, an inverse number, a step function, or the like.
  • the signal processing device 2 determines the BF wait (W) after the start of wireless communication with the wireless terminals 3a and 3b. After the BF weight (W) is determined, the signal processing device 2 performs wireless communication with the wireless terminals 3a and 3b using the same BF weight (W) up to a predetermined number of subframes (for example, K subframes). Do.
  • the equivalent channel (initial value) at this time is expressed by, for example, Expression (7).
  • the signal processing device 2 estimates a new channel without changing the BF weight (W).
  • the equivalent channel at this time is expressed by, for example, Expression (8).
  • the transmission power control weight calculation unit 23 of the signal processing device 2 receives the reference signals from the radio terminals 3a and 3b while reflecting the new channel, and calculates (updates) a new transmission power control weight.
  • the equivalent channel at this time is expressed by, for example, Expression (9).
  • FIG. 14 is a sequence diagram illustrating an operation example of the radio base station (signal processing device 2) and the radio terminals 3a and 3b according to the third embodiment.
  • the processing in steps S21 to S26 in FIG. 14 is the same as that in steps S1 to S6 in FIG. Hereinafter, it demonstrates from step S27.
  • the wireless terminals 3a and 3b transmit reference signals to the signal processing device 2 (step S27).
  • the channel estimation unit 21 estimates a new channel (H 1 ) while keeping the BF weight (W) as it is (step S28).
  • the transmission power control weight calculation unit 23 calculates the transmission power control weight (D 1 ) in the new channel (H 1 ) estimated in step S 28 (step S 29).
  • the calculation of the transmission power control weight (D 1 ) can use the first embodiment or the second embodiment.
  • the signal processing device 2 estimates an equivalent channel (H 1 D 1 W) including the transmission power control weight (D 1 ) calculated in step S29 (step S30).
  • the signal processing device 2 and the wireless terminals 3a and 3b exchange information necessary for data transmission (step 31).
  • the signal processing device 2 transmits data to the wireless terminals 3a and 3b (step S32).
  • the signal processing device 2 repeats the processes of steps S28 to S32 for every predetermined number of subframes. That is, the signal processing device 2 updates the channel (H) and the transmission power control weight (D) every predetermined number of subframes.
  • FIG. 15 is a flowchart showing an example of the operation of updating the transmission power control weight of the signal processing device 2.
  • the signal processing device 2 repeatedly executes the processing of the flowchart shown in FIG.
  • the signal processing device 2 determines whether or not a predetermined number of subframes have been transmitted to the wireless terminals 3a and 3b (step S41). When it is determined that the predetermined number of subframes are not transmitted (“No” in S41), the signal processing device 2 ends the process of the flowchart.
  • the signal processing device 2 receives reference signals from the wireless terminals 3a and 3b (step S42).
  • the signal processing device 2 updates the channel and transmission power control weight (step S43).
  • the signal processing device 2 exchanges information necessary for data transmission with the wireless terminals 3a and 3b, and transmits data to the wireless terminals 3a and 3b (step S44).
  • the transmission power control weight calculation unit 23 updates the transmission power control weight for each predetermined number of subframes. By this processing, the radio base station can appropriately improve the communication quality according to, for example, a change in environment.
  • each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
  • a wireless base station, a wireless terminal, etc. in an embodiment of the present invention may function as a computer that performs processing of the wireless communication method of the present invention.
  • FIG. 16 is a diagram illustrating an example of a hardware configuration of a radio base station and a radio terminal according to an embodiment of the present invention.
  • the wireless base station and the wireless terminal described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station and the radio terminal may be configured to include one or a plurality of the devices illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base station and the radio terminal is obtained by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs computation and performs communication based on the communication device 1004, or This is realized by controlling reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the weight generation unit 32, the reception BF unit 33, the equivalent channel estimation unit 34, the post coding generation unit 35, the post coding unit 36, the data signal estimation unit 37, and the like may be realized by the processor 1001.
  • the above table may be stored in the memory 1002.
  • the processor 1001 reads a program (program code), software module, or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program code
  • the program a program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the functional blocks constituting the radio base station and the radio terminal may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and other functional blocks are similarly realized. Also good.
  • the above-described various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium and includes at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to the embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as an optical disc such as a CD-ROM (Compact Disc ROM), a hard disc drive, a flexible disc, a magneto-optical disc (eg, a compact disc, a digital versatile disc, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including the memory 1002 and / or the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the wireless base station and the wireless terminal include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). And a part or all of each functional block may be realized by the hardware.
  • the processor 1001 may be implemented by at least one of these hardware.
  • information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block))), other signals, or a combination thereof.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • W-CDMA Wideband
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand)
  • Bluetooth Registered trademark
  • a system using another appropriate system and / or a next generation system extended based on the system may be applied.
  • the specific operation assumed to be performed by the base station (radio base station) in this specification may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may include base stations and / or other network nodes other than base stations (e.g., It is obvious that this can be performed by MME (Mobility Management Entity) or S-GW (Serving Gateway).
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • Information, signals, and the like can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
  • Input / output information and the like may be stored in a specific location (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
  • the determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true / false value (Boolean: true or false), or may be performed by comparing numerical values (for example, a predetermined value) Comparison with the value).
  • software, instructions, etc. may be transmitted / received via a transmission medium.
  • software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • DSL digital subscriber line
  • wireless technology such as infrared, wireless and microwave.
  • Information, signal Information, signals, etc. described herein may be represented using any of a variety of different technologies.
  • data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
  • the channel and / or symbol may be a signal.
  • the signal may be a message.
  • the component carrier (CC) may be called a carrier frequency, a cell, or the like.
  • radio resource may be indicated by an index.
  • a base station can accommodate one or more (eg, three) cells (also referred to as sectors). When the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, indoor small base station RRH: Remote Radio Head) can also provide communication services.
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage. Further, the terms “base station”, “eNB”, “cell”, and “sector” may be used interchangeably herein.
  • a base station may also be referred to in terms such as a fixed station, NodeB, eNodeB (eNB), access point, femtocell, small cell, and the like.
  • a user terminal is a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile by a person skilled in the art It may also be referred to as a terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, UE (User Equipment), or some other appropriate terminology.
  • determining may encompass a wide variety of actions. “Judgment” and “determination” are, for example, judgment, calculation, calculation, processing, derivation, investigating, looking up (eg, table , Searching in a database or another data structure), considering ascertaining as “determining”, “deciding”, and the like.
  • determination and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as “determined” or "determined”.
  • determination and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
  • connection means any direct or indirect connection or coupling between two or more elements and It can include the presence of one or more intermediate elements between two “connected” or “coupled” elements.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof.
  • the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples
  • electromagnetic energy such as electromagnetic energy having a wavelength in the region, microwave region, and light (both visible and invisible) region, it can be considered to be “connected” or “coupled” to each other.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot depending on an applied standard.
  • the correction RS may be referred to as TRS (Tracking ⁇ RS), PC-RS (Phase Compensation RS), PTRS (Phase Tracking RS), or Additional RS.
  • the demodulation RS and the correction RS may be called differently corresponding to each. Further, the demodulation RS and the correction RS may be defined by the same name (for example, the demodulation RS).
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • the radio frame may be composed of one or a plurality of frames in the time domain.
  • One or more frames in the time domain may be referred to as subframes, time units, etc.
  • a subframe may further be composed of one or more slots in the time domain.
  • the slot may be further configured with one or a plurality of symbols (OFDM (Orthogonal-Frequency-Division-Multiplexing) symbol, SC-FDMA (Single-Carrier-Frequency-Division-Multiple-Access) symbol, etc.) in the time domain.
  • OFDM Orthogonal-Frequency-Division-Multiplexing
  • SC-FDMA Single-Carrier-Frequency-Division-Multiple-Access
  • the radio frame, subframe, slot, and symbol all represent a time unit when transmitting a signal. Radio frames, subframes, slots, and symbols may be called differently corresponding to each.
  • the base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used in each mobile station) to each mobile station.
  • the minimum time unit of scheduling may be called TTI (Transmission Time Interval).
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot may be called a TTI
  • the resource unit is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • one or a plurality of symbols may be included, and one slot, one subframe, or a length of 1 TTI may be included.
  • One TTI and one subframe may each be composed of one or a plurality of resource units.
  • the resource unit may also be called a resource block (RB: Resource Block), a physical resource block (PRB: Physical RB), a PRB pair, an RB pair, a scheduling unit, a frequency unit, or a subband.
  • the resource unit may be composed of one or a plurality of REs.
  • 1 RE may be any resource (for example, the smallest resource unit) smaller than a resource unit serving as a resource allocation unit, and is not limited to the name RE.
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, the number of symbols and resource blocks included in the slots, and the subframes included in the resource block
  • the number of carriers can be variously changed.
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
  • One embodiment of the present invention is useful for a mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

1以上のアンテナ素子を有する複数の送信点と、複数の送信点と接続された信号処理装置とを有する無線基地局において、信号処理装置は、アンテナ素子のそれぞれにおいて、無線端末との間のパスロスを推定する推定部と、推定部によって推定されたアンテナ素子のそれぞれのパスロスに基づいて、アンテナ素子のそれぞれの送信電力制御を行うための電力制御ウェイトを算出する算出部と、を有する。

Description

無線基地局および送信電力制御方法
 本発明は、無線基地局および送信電力制御方法に関する。
 UMTS(Universal Mobile Telecommunication System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTEからの更なる広帯域化および高速化を目的として、LTEの後継システムも検討されている。LTEの後継システムには、例えば、LTE-A(LTE-Advanced)、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(5G plus)、New-RAT(Radio Access Technology)などと呼ばれるものがある。
 将来の無線通信システム(例えば、5G)では、信号伝送の更なる高速化及び干渉低減を図るために、高周波数帯(例えば、4GHz以上)において多数のアンテナ素子(例えば、100素子以上)を用いる大規模(Massive)MIMO(Multiple Input Multiple Output)を用いることが検討されている。また、1以上のアンテナ素子を備えた送信点(transmission point)と信号処理装置とを備えた超高密度分散アンテナシステムに基づく無線通信システムが検討されている(例えば、非特許文献1)。
T.Okuyama et.al.: "Antenna Deployment for 5G Ultra High-Density Distributed Antenna System at Low SHF Bands" Standards for Communications and Networking (CSCN), 2016, pp. 1-6, Nov. 2016, Berlin, Germany
 しかしながら現在、送信点の送信電力制御を行って、通信品質を向上することに関しては提案されていない。
 そこで本発明は、送信点の送信電力制御を行って、通信品質を向上する技術を提供することを目的とする。
 本発明の無線基地局は、1以上のアンテナ素子を有する複数の送信点と、前記複数の送信点と接続された信号処理装置とを有し、信号処理装置は、前記アンテナ素子のそれぞれにおいて、無線端末との間のパスロスを推定する推定部と、前記推定部によって推定された前記アンテナ素子のそれぞれのパスロスに基づいて、前記アンテナ素子のそれぞれの送信電力制御を行うための電力制御ウェイトを算出する算出部と、を有する。
 本発明によれば、送信点の送信電力制御を行って、通信品質を向上できる。
第1の実施の形態に係る無線基地局の構成例を示した図である。 超高密度分散アンテナシステムのパスロスの例を説明する図である。 超高密度分布アンテナシステムの送信電力制御例を説明する図のその1である。 超高密度分布アンテナシステムの送信電力制御例を説明する図のその2である。 パスロスを説明する図である。 信号処理装置のブロック構成例を示した図である。 第j無線端末のブロック構成例を示した図である。 シングルユーザにおけるパスロス推定を説明する図である。 送信電力制御ウェイト算出部の係数算出を説明する図である。 マルチユーザにおけるパスロス推定を説明する図である。 無線基地局および無線端末の動作例を示したシーケンス図である。 信号処理装置の動作例を示したフローチャートである。 第2の実施の形態に係る送信電力制御ウェイト算出部の係数算出を説明する図である。 第3の実施の形態に係る無線基地局および無線端末の動作例を示したシーケンス図である。 信号処理装置の送信電力制御ウェイトの更新動作例を示したフローチャートである。 本発明の一実施の形態に係る無線基地局および無線端末のハードウェア構成の一例を示す図である。
 以下、本発明の実施の形態を、図面を参照して説明する。
 爆発的に増加する無線通信トラフィックに対応するため、次世代(例えば5G)の無線通信システムでは、高周波数帯のスモールセルおよびMassive-MIMOが検討されている。例えば、数GHz~数十GHzの高周波数帯を利用することにより、広い帯域幅のリソース確保が可能となる。また、例えば、100素子以上のアンテナ素子を利用して無線通信を行うことにより、高度なBF(ビームフォーミング)、与干渉低減、またはリソースの有効利用が可能となる。
 次世代の無線通信システムでは、さらに超高密度分散アンテナシステムが検討されている。超高密度分散アンテナシステムの無線基地局は、例えば、1以上のアンテナ素子を有する複数の送信点と、複数の送信点と接続された信号処理装置とを有する。送信点は、張出局とも呼ばれることもあり、また、信号処理装置は、BBU(BaseBand processing Unit)と呼ばれることもある。
 [第1の実施の形態]
 図1は、第1の実施の形態に係る無線基地局の構成例を示した図である。図1に示すように、無線基地局は、送信点1a~1iと、信号処理装置2と、を有している。図1には、無線基地局の他に無線端末3a,3bも示してある。図1に示す無線基地局は、超高密度分散アンテナシステムを用いて、送信点1a~1iの配下(セル内)の無線端末3a,3bと無線通信を行う。
 送信点1a~1iは、1以上のアンテナ素子を有している。送信点1a~1iのぞれぞれは、信号処理装置2と接続されている。送信点1a~1iのそれぞれは、セルを形成している。
 信号処理装置2は、無線端末3a,3bに送信する信号の信号処理を行う。信号処理された信号は、送信点1a~1iに出力され、無線端末3a,3bに無線送信される。また、信号処理装置2は、送信点1a~1iが受信した無線端末3a,3bの信号を、送信点1a~1iから受信する。信号処理装置2は、送信点1a~1iから受信した信号の信号処理を行う。
 なお、図1では、2台の無線端末3a,3bを示しているが、これに限られない。例えば、送信点1a~1iの配下には、1台の無線端末が存在していてもよい。また、送信点1a~1iの配下には、3台以上の無線端末が存在していてもよい。
 図2は、超高密度分散アンテナシステムのパスロスの例を説明する図である。以下では、説明を簡単にするため送信点が3つの場合について説明する。図2には、送信点11~13と、無線端末14a,14bと、が示してある。
 超高密度分散アンテナシステムでは、例えば、無線端末14a,14bの位置等によって、送信点11~13と無線端末14a,14bとの間のパスロスが異なる。例えば、送信点11~13と無線端末14a,14bとの間の距離が遠いほど、送信点11~13と無線端末14a,14bとの間のパスロスは大きくなる。
 図2に示す両矢印は、その太さによって、無線端末14a,14bと送信点11~13との間のパスロスの大きさを示している。例えば、図2では、両矢印の太さが細いほど、パスロスが大きいことを示している。具体的には、送信点11と無線端末14bとの間のパスロスは、送信点11と無線端末14aとの間のパスロスより大きいことを示している。また、送信点13と無線端末14aとの間のパスロスは、送信点12と無線端末14aとの間のパスロスより大きいことを示している。
 このように、送信点11~13と無線端末14a,14bとの間のパスロスは、無線端末14a,14bの位置等によって異なる。そこで、無線基地局(信号処理装置2)は、下りリンクにおいて、送信点11~13(図1では、送信点1a~1i)のアンテナ素子ごとに送信電力制御を行い、通信品質を向上する。
 例えば、無線基地局は、パスロスが大きい送信点では、送信電力を増加させることによって、下りリンクの通信品質を向上させる。また、無線基地局は、パスロスが小さい送信点では、送信電力を低下させることによって、干渉電力を低減させる。
 図3は、超高密度分布アンテナシステムの送信電力制御例を説明する図のその1である。図3において、図2と同じものには同じ符号が付してある。
 図3に示す送信電力強度P1は、送信点13の送信電力制御前の送信電力強度を示している。図3に示す送信電力強度P2は、送信点13の送信電力制御後の送信電力強度を示している。
 無線基地局は、無線端末14a,14bに対するパスロスの大きい送信点13に対し、送信電力を増加させる。例えば、無線基地局は、送信点13の送信電力を、送信電力強度P1から、送信電力強度P2に増加させる。この処理により、無線基地局は、無線端末14a,14bとの通信品質を向上できる。
 図4は、超高密度分布アンテナシステムの送信電力制御例を説明する図のその2である。図4において、図2と同じものには同じ符号が付してある。
 図4に示す送信電力強度P11aは、送信点11の送信電力制御前の送信電力強度を示している。送信電力強度P11bは、送信点11の送信電力制御後の送信電力強度を示している。また、送信電力強度P12aは、送信点12の送信電力制御前の送信電力強度を示している。送信電力強度P12bは、送信点12の送信電力制御後の送信電力強度を示している。
 無線基地局は、無線端末14a,14bに対するパスロスの小さい送信点11,12に対し、送信電力を減少させる。例えば、無線基地局は、送信点11の送信電力を、送信電力強度P11aから、送信電力強度P11bに減少させる。また、無線基地局は、送信点12の送信電力を、送信電力強度P12aから、送信電力強度P12bに減少させる。この処理により、無線基地局は、送信点11,12の干渉電力を低減することができ、無線端末14a,14bとの通信品質を向上できる。
 図5は、パスロスを説明する図である。図5において、図2と同じものには同じ符号が付してある。図5には、送信点11と無線端末14aとが示してある。
 無線端末14aが参照信号「s」を送ったときの送信点11での受信信号「r」は、雑音信号を「z」、送信点11と無線端末14aとの間の伝搬チャネルを「H」、パスロス係数を「α」として、次の式(1)で示される。
Figure JPOXMLDOC01-appb-M000001
 伝搬チャネル「H」そのもののエネルギーは、送信点11と無線端末14aとの距離等によらず一定である。従って、送信点11の受信信号の大きさは、式(1)より、パスロスの大きさ(パスロス係数「α」)によって変動することが分かる。
 つまり、無線基地局は、無線端末14aから送信される参照信号(例えば、エネルギー一定の既知信号)から、送信点11と無線端末14aとの間のパスロスを推定(測定)できる。例えば、無線基地局は、無線端末14aから受信した参照信号の受信電力またはSNR(Signal-to-Noise Ratio)から、送信点11と無線端末14aとの間のパスロスを推定できる。
 なお、TDD(Time Division Duplex)伝送では、下りリンクと上りリンクとの間に相反性がある。従って、無線基地局は、無線端末14aから送信される参照信号から、下りリンクのパスロスを推定できる。
 図6は、信号処理装置2のブロック構成例を示した図である。図6に示すように、信号処理装置2は、チャネル推定部21と、パスロス推定部22と、送信電力制御ウェイト算出部23と、BFウェイト生成部24と、プリコーディング生成部25と、プリコーディング部26と、BF部27と、送信電力制御部28と、を有している。
 図6には、送信点1a~1iが有するアンテナ素子29も示してある。図6に示すアンテナ素子群29aのアンテナ素子29は、例えば、送信点1aが有するアンテナ素子に対応する。また、アンテナ素子群29nのアンテナ素子29は、例えば、送信点1iが有するアンテナ素子に対応する。
 チャネル推定部21は、無線端末3a,3bから送信された参照信号から、送信点1a~1iと無線端末3a,3bとの間のチャネル(チャネル行列H)を推定(測定)する。なお、チャネル推定部21は、任意の方法を用いて送信点1a~1iと無線端末3a,3bとの間のチャネルを推定してもよい。
 パスロス推定部22は、無線端末3a,3bから送信された参照信号から、送信点1a~1iのアンテナ素子29と無線端末3a,3bとの間のパスロスを推定する。例えば、パスロス推定部22は、無線端末3a,3bから送信された参照信号の受信電力またはSNRから、送信点1a~1iのアンテナ素子29と無線端末3a,3bとの間のパスロスを推定する。送信点1a~1iのアンテナ素子29と無線端末3a,3bとの間のパスロス推定については、以下で詳述する。
 送信電力制御ウェイト算出部23は、パスロス推定部22によって推定されたパスロスに基づいて、送信点1a~1iのアンテナ素子29の送信電力制御を行うための送信電力制御ウェイト(D)を算出する。送信電力制御ウェイトの算出については、以下で詳述する。
 BFウェイト生成部24は、送信電力制御ウェイト算出部23によって算出された送信電力制御ウェイト(D)を含む等価チャネル(等価チャネル行列HD)を生成する。BFウェイト生成部24は、生成した等価チャネル(HD)を用いて、送信ビームを形成するためのBFウェイト(W)を生成する。なお、BFウェイト生成部24は、任意の方法を用いてBFウェイトを生成してもよい。
 プリコーディング生成部25は、BFウェイト生成部24によって生成されたBFウェイト(W)を含む等価チャネル(等価チャネル行列HDW)を生成する。プリコーディング生成部25は、生成した等価チャネル(HDW)を用いて、Mストリームをプリコーディングするためのプリコーディング行列(P)を生成する。なお、プリコーディング生成部25は、任意の方法を用いてプリコーディング行列を生成してもよい。
 プリコーディング部26には、「#1~#M」のMストリームが入力される。プリコーディング部26は、入力されるMストリームに対して、プリコーディング生成部25が生成したプリコーディング行列(P)を乗算する。プリコーディング部26は、プリコーディング行列乗算後のデータ信号をBF部27に出力する。
 BF部27は、プリコーディング部26から出力されるデータ信号に対して、BFウェイト生成部24が生成したBFウェイト(W)を乗算する。BF部27は、BFウェイト乗算後のデータ信号を送信電力制御部28に出力する。
 送信電力制御部28は、BF部27から出力されるデータ信号に対して、送信電力制御ウェイト算出部23が算出した送信電力制御ウェイト(D)を乗算する。送信電力制御部28は、送信電力制御ウェイト乗算後のデータ信号を送信点1a~1iのアンテナ素子29に出力する。
 ここで、Mストリームの送信ベクトルを「s」とする。1以上のアンテナ素子を有する第j無線端末(j=1,…,N)のそれぞれの受信信号ベクトルを「r」とし、雑音信号ベクトルを「z」とする。このとき、全ての無線端末における受信信号ベクトル「r」は、次の式(2)および式(3)で示される。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 上記の式(2)は、無線端末がBFを行った場合の受信信号ベクトルを示している。そのため、式(2)には、受信側のBFウェイト「W」が含まれている。
 図6の例では、プリコーディング部26は、「L個」のデータ信号を出力している。BF部27は、「N個」のデータ信号を出力している。「N」は、送信点1a~1iが有しているアンテナ素子29の全素子数である。
 図6の信号処理装置2は、「L個」のビームを形成する。信号処理装置2がデータ信号をBFしない場合、BFウェイト(W)は、単位行列となり、「L=N」となる。
 また、図6の例では、送信電力制御部28は、「N個」のデータ信号を出力している。送信点1a~1iは、「NTP個」存在している。
 受信側のビーム数を「L個」、無線端末の全アンテナ素子数を「N個」とする。無線端末がBFしない場合、BFウェイト「W」は、単位行列となり、「L=N」となる。
 式(2)の雑音信号ベクトル「z」の行列サイズは、「L×1」となる。Mストリームの送信ベクトル「s」の行列サイズは、「M×1」となる。プリコーディング行列「P」の行列サイズは、「L×M」となる。BFウェイト「W」の行列サイズは、「N×L」となる。送信電力制御ウェイト「D」の行列サイズは、「N×N」となる。チャネル行列「H」の行列サイズは、「N×N」となる。BFウェイト「W」の行列サイズは、「L×N」となる。受信信号ベクトルの行列サイズは、「L×1」となる。
 なお、図6では、ストリームを符号化および変調する構成部の記載を省略している。また、図6では、信号処理装置2におけるOFDM(Orthogonal Frequency Division Multiplexing)信号を生成するための構成部(例えば、IFFT処理部、CP付加部)等の記載を省略している。また、信号処理装置2から送信される信号の信号波形は、OFDM変調に基づく波形に限定されるものではない。
 また、図6では、DACおよびアップコンバータ等の記載を省略している。また、アナログビームフォーミングの場合、BF部27には、位相器と増幅器とが含まれる。
 図7は、第j無線端末(無線端末3a)のブロック構成例を示した図である。図7に示すように、無線端末3aは、アンテナ31と、BFウェイト生成部32と、受信BF部33と、等価チャネル推定部34と、ポストコーディング生成部35と、ポストコーディング部36と、データ信号推定部37と、を有している。なお、無線端末3bは、無線端末3aと同様のブロック構成を有するため、その説明を省略する。
 BFウェイト生成部32は、受信ビームを形成するためのBFウェイト(WRj)を生成する。なお、BFウェイト生成部32は、任意の方法を用いてBFウェイトを生成してもよい。
 受信BF部33は、アンテナ31によって受信された受信信号に対し、BFウェイト生成部32が生成したBFウェイト(WRj)を乗算する。受信BF部33は、BFウェイト乗算後の受信信号をポストコーディング部36に出力する。
 等価チャネル推定部34は、無線端末3aと送信点1a~1iとの間のチャネルを推定する。等価チャネル推定部34は、任意の方法を用いて無線端末3aと送信点1a~1iとの間のチャネルを推定してもよい。
 ポストコーディング生成部35は、等価チャネル推定部34によって推定されたチャネルを用いて、受信BF部33から出力される受信信号に対し、ポストコーディングするためのポストコーディング行列を生成する。なお、ポストコーディング生成部35は、任意の方法を用いてポストコーディング行列を生成してもよい。
 ポストコーディング部36は、受信BF部33が出力する受信信号に対して、ポストコーディング生成部35が生成したポストコーディング行列を乗算し、ポストコーディング行列乗算後の受信信号をデータ信号推定部37に出力する。
 データ信号推定部37は、ポストコーディング部36から出力される受信信号から、無線基地局が送信したデータ信号を推定する。
 なお、図7では、図示を省略しているが、無線端末3aは、参照信号を送信点1a~1iに送信する参照信号送信部を有している。
 また、図7では、FFT等の記載を省略している。また、OFDM伝送の場合、無線端末3aは、CPを除去する構成部を有する。
 また、図7では、DACおよびアップコンバータ等の記載を省略している。また、アナログビームフォーミングの場合、受信BF部33には、位相器と増幅器とが含まれる。
 シングルユーザにおけるパスロスの推定および送信電力制御ウェイトの算出について説明する。
 図8は、シングルユーザにおけるパスロス推定を説明する図である。以下では、説明を簡単にするため送信点が3つの場合について説明する。図8には、送信点41~43と、無線端末44と、が示してある。
 無線端末44は、参照信号を送信する。送信点41~43の各アンテナ素子は、無線端末44から送信される参照信号を受信する。
 パスロス推定部22は、送信点41~43の各アンテナ素子が受信した参照信号から、送信点41~43の各アンテナ素子における、無線端末44との間のパスロスを推定する。
 例えば、パスロス推定部22は、送信点41の各アンテナ素子における無線端末44との間のパスロスを推定する。パスロス推定部22は、送信点42の各アンテナ素子における無線端末44との間のパスロスを推定する。パスロス推定部22は、送信点43の各アンテナ素子における無線端末44との間のパスロスを推定する。
 なお、図8に示す「PL11,…,PL1l」は、パスロス推定部22によって推定された、送信点41の各アンテナ素子(l個)における、無線端末44との間のパスロスを示している。「PL21,…,PL2m」は、パスロス推定部22によって推定された、送信点42の各アンテナ素子(m個)における、無線端末44との間のパスロスを示している。「PL31,…,PL3n」は、パスロス推定部22によって推定された、送信点43の各アンテナ素子(n個)における、無線端末44との間のパスロスを示している。
 図6の送信電力制御ウェイト算出部23は、パスロス推定部22によって推定された送信点41~43の各アンテナ素子のパスロスから、送信電力制御ウェイトの係数を算出する。
 図9は、送信電力制御ウェイト算出部23の係数算出を説明する図である。信号処理装置2は、パスロス推定部22が推定したパスロスから、送信電力制御ウェイトの係数を算出(取得)するためのテーブルを有している。テーブルは、パスロスと、パスロスに対応する係数とを有し、パスロスと係数は、図9に示すような関係を有している。例えば、係数「d」(0≦d≦1)は、パスロスが大きいほど、大きくなっている。
 送信電力制御ウェイト算出部23は、パスロス推定部22が推定したパスロスに基づいてテーブルを参照し、送信電力制御ウェイトの係数を取得する。
 例えば、パスロス推定部22が推定した送信点41のあるアンテナ素子のパスロスが「PL1p」であったとする。この場合、図9の例では、送信電力制御ウェイト算出部23は、係数「dPL1p」を取得する。
 送信電力制御ウェイト算出部23は、テーブルを参照して、送信点41~43の各アンテナ素子における係数を取得すると、取得した係数から、送信電力制御ウェイト(正規化前の送信電力制御ウェイト)を生成する。送信電力制御ウェイトは、次の式(4)で示される。
Figure JPOXMLDOC01-appb-M000004
 式(4)は、全送信点の全アンテナ素子が「N個」存在する場合の送信電力制御ウェイトを示している。なお、図8の例の場合、式(4)は、「(l+n+m)×(l+n+m)」行列となる。
 送信電力制御ウェイト算出部23は、式(4)に示す送信電力制御ウェイトを正規化する。例えば、送信電力制御ウェイト算出部23は、式(5)に示す演算を行い、その対角成分の和が行列の次元と等価となるような係数「β」を算出する。
Figure JPOXMLDOC01-appb-M000005
 なお、式(5)に示す「(*)」は、行列の複素共役転置である。
 係数「β」が求まると、次の式(6)から正規化された送信電力制御ウェイトが求まる。
Figure JPOXMLDOC01-appb-M000006
 送信電力制御ウェイト算出部23によって算出された送信電力制御ウェイト(D)は、送信電力制御部28に出力される。送信電力制御ウェイトの「βd」(u=1,…,N)は、第uアンテナ素子に対応するウェイトである。すなわち、第uアンテナ素子は、送信電力制御ウェイトの「βd」によって、送信電力が制御される。
 送信電力制御ウェイト(D)の係数は、パスロスに対し、図9に示した関係を有している。従って、パスロスの大きいアンテナ素子の送信電力は、大きくなるように制御され、パスロスの小さいアンテナ素子の送信電力は、小さくなるように制御される。この処理により、無線基地局は、無線端末との通信品質を向上できる。なお、「d=0」は、第uアンテナ素子を利用しないことになる。
 マルチユーザにおけるパスロスの推定および送信電力制御ウェイトの算出について説明する。
 図10は、マルチユーザにおけるパスロス推定を説明する図である。図10において、図8と同じものには同じ符号が付してある。図10では、3台の無線端末44~46が存在している。
 無線端末44~46のそれぞれは、参照信号(無線端末44~46間で直交した参照信号)を送信する。送信点41~43の各アンテナ素子は、無線端末44~46のそれぞれから送信される参照信号を受信する。
 パスロス推定部22は、送信点41~43の各アンテナ素子が受信した参照信号から、送信点41~43の各アンテナ素子における、無線端末44~46のそれぞれとの間のパスロスを推定する。
 送信電力制御ウェイト算出部23は、パスロス推定部22によって推定された送信点41~43の各アンテナ素子のパスロスから、送信電力制御ウェイトの係数を算出する。その際、送信電力制御ウェイト算出部23は、送信点41~43の各アンテナ素子において、パスロス推定部22によって推定された無線端末44~46のパスロスを加算する。
 例えば、送信点41のあるアンテナ素子xにおける無線端末44とのパスロスをPLx1とする。送信点41のあるアンテナ素子xにおける無線端末45とのパスロスをPLx2とする。送信点41のあるアンテナ素子xにおける無線端末46とのパスロスをPLx3とする。この場合、送信電力制御ウェイト算出部23は、パスロス「PLx1,PLx2,PLx3」を加算する。
 送信電力制御ウェイト算出部23は、送信点41~43の各アンテナ素子において、無線端末44~46のそれぞれのパスロスを加算すると、図9で説明した方法と同様の方法によって、加算したパスロスに基づいてテーブルを参照し、送信電力制御ウェイトの係数を算出する。
 すなわち、送信電力制御ウェイト算出部23は、各アンテナ素子において無線端末44~46のパスロスを合算し、合算したパスロスを、そのアンテナ素子のパスロスとして送信電力制御ウェイトの係数を算出する。
 なお、上記では、送信電力制御ウェイト算出部23は、加算したパスロスに基づいてテーブルを参照するとしたが、これに限られない。例えば、送信電力制御ウェイト算出部23は、パスロスを加算した後平均化し、平均化したパスロスでテーブルを参照してもよい。すなわち、送信電力制御ウェイト算出部23は、各アンテナ素子において無線端末44~46のパスロスの平均値を算出し、算出した平均値のパスロスを、そのアンテナ素子のパスロスとして送信電力制御ウェイトの係数を算出してもよい。
 図11は、無線基地局(信号処理装置2)および無線端末3a,3bの動作例を示したシーケンス図である。まず、図1の無線端末3a,3bは、信号処理装置2に参照信号を送信する(ステップS1)。
 次に、信号処理装置2は、ステップS1にて送信された参照信号に基づいてチャネル(H)を推定し、また送信電力制御ウェイト(D)を算出する(ステップS2)。
 次に、信号処理装置2および無線端末3a,3bは、任意のBFアルゴリズムにより、BFウェイト(W,W)を生成する(ステップS3)。
 次に、信号処理装置2は、ステップS2にて算出した送信電力制御ウェイト(D)と、ステップS3にて算出したBFウェイト(W)とを含む等価チャネル(HDW)を推定する(ステップS4)。
 次に、信号処理装置2および無線端末3a,3bは、データ伝送に必要な情報の交換を行う(ステップS5)。
 次に、信号処理装置2は、無線端末3a,3bに対し、データを伝送する(ステップS6)。
 図12は、信号処理装置2の動作例を示したフローチャートである。まず、信号処理装置2は、無線端末3a,3bが送信する参照信号を受信する(ステップS11)。
 次に、信号処理装置2は、ステップS11にて受信した参照信号に基づいて、送信点1a~1iのアンテナ素子と無線端末3a,3bとの間のチャネル(H)を推定する(ステップS12)。
 次に、信号処理装置2は、ステップS11にて受信した参照信号に基づいて、送信点1a~1iのアンテナ素子と無線端末3a,3bとの間のパスロスを推定する(ステップS13)。
 次に、信号処理装置2は、ステップS13にて推定したパスロスから、送信電力制御ウェイト(D)を算出する(ステップS14)。
 次に、信号処理装置2は、ステップS13にて算出した送信電力制御ウェイト(D)を含む等価チャネル(HD)から、BFウェイト(W)を算出する(ステップS15)。なお、信号処理装置2は、BFを行わない場合、BFウェイトを単位行列とする。
 次に、信号処理装置2は、データ伝送に必要な情報を無線端末3a,3bと交換する(ステップS16)。
 次に、信号処理装置2は、無線端末3a,3bにデータを伝送する(ステップS17)。
 以上説明したように、無線基地局は、1以上のアンテナ素子29を有する複数の送信点1a~1iと、複数の送信点1a~1iと接続された信号処理装置2とを有する。信号処理装置2のパスロス推定部22は、アンテナ素子29のそれぞれにおいて、無線端末3a,3bとの間のパスロスを推定する。送信電力制御ウェイト算出部23は、推定されたアンテナ素子29のそれぞれのパスロスに基づいて、アンテナ素子29のそれぞれの送信電力制御を行うための送信電力制御ウェイトを算出する。この構成により、無線基地局は、送信点1a~1iの送信電力制御を行って、通信品質を向上できる。また、無線基地局は、簡易な情報(パスロス)から、送信点1a~1iの送信電力制御を行うことができる。
 また、送信電力制御ウェイト算出部23は、パスロス推定部22によって推定されたパスロスが大きいほど、送信電力が大きくなるように送信電力制御ウェイトを算出する。この処理により、無線基地局は、送信点1a~1iから遠くに位置している無線端末3a,3bの通信品質を向上させることができる。また、無線基地局は、無線端末3a,3bが送信点1a~1iの近くに位置しているとき、送信電力を小さくするので、干渉電力を抑制できる。
 なお、図9では、送信電力制御ウェイト算出部23は、テーブルを用いて送信電力制御ウェイトの係数を算出するとしたがこれに限られない。例えば、送信電力制御ウェイト算出部23は、図9に示したパスロスと係数との関係を示す式から、送信電力制御ウェイトの係数を算出してもよい。
 また、パスロスと係数との関係は、図9に示したような線形関係に限られない。例えば、パスロスと係数との関係は、n次元関数、双曲線関数、逆数、またはステップ関数などで示されてもよい。
 また、送信電力制御ウェイト算出部23は、係数を算出する際、パスロスをそのまま用いて係数を算出してもよく、また、パスロスをべき乗して、係数を算出してもよい。
 また、図9に示したようなパスロスと係数との関係は、無線端末3a,3bの所望レートまたは想定される干渉量などから、無線端末3a,3bごとに変えてもよい。
 また、上記では、パスロス推定部22は、参照信号の受信電力またはSNRからパスロスを推定するとしたが、チャネル推定部21によって推定されたチャネルを用いて、パスロスを推定してもよい。例えば、参照信号の受信信号は、式(1)で示される。式(1)より、チャネル「H」が分かれば、パスロス係数(α)が求まる。
 また、パスロスの推定は、上記の方法に限られない。例えば、無線基地局が参照信号を無線端末に送信し、無線端末が参照信号からパスロスを推定してもよい。そして、無線端末は、推定したパスロスを無線基地局に送信してもよい。
 また、パスロス推定部22は、参照信号のSNRをそのままパスロスとして利用してもよい。また、パスロス推定部22は、参照信号の受信電力をそのままパスロスとして用いてもよい。
 [第2の実施の形態]
 第1の実施の形態では、パスロスと係数との関係は、増加関数の関係にあった。すなわち、第1の実施の形態の信号処理装置は、パスロスが大きいほど、送信点の送信電力を大きくなるように制御した。
 これに対し、第2の実施の形態では、パスロスと係数との関係が、減少関数の関係の場合について説明する。すなわち、第2の実施の形態の信号処理装置は、パスロスが大きいほど、送信点の送信電力を小さくなるように制御する。つまり、第2の実施の形態の信号処理装置は、例えば、送信点から遠くに位置している無線端末との無線通信を停止し、送信点の近くに位置している無線端末と無線通信を行うようにする。以下では、第1の実施の形態と異なる部分について説明する。
 図13は、第2の実施の形態に係る送信電力制御ウェイト算出部23の係数算出を説明する図である。信号処理装置2は、パスロス推定部22が推定したパスロスから、送信電力制御ウェイトの係数を算出(取得)するためのテーブルを有している。テーブルは、パスロスと、パスロスに対応する係数とを有し、パスロスと係数は、図13に示すような関係を有している。例えば、係数は、パスロスが大きいほど、小さくなっている。
 送信電力制御ウェイト算出部23は、第1の実施の形態と同様に、パスロス推定部22が推定したパスロスに基づいてテーブルを参照し、送信電力制御ウェイト(D)の係数(d)を取得する。そして、送信電力制御ウェイト算出部23は、取得した係数の送信電力制御ウェイト(D)を算出する。
 送信電力制御ウェイトの係数は、パスロスに対し、図13に示した関係を有している。従って、パスロスの大きいアンテナ素子の送信電力は、小さくなるように制御され、パスロスの小さいアンテナ素子の送信電力は、大きくなるように制御される。この処理により、無線基地局は、例えば、送信点1a~1iから遠くに位置する無線端末との通信を停止する。一方、無線基地局は、送信点1a~1iの近くに位置する無線端末との通信品質を向上させる。
 以上説明したように、送信電力制御ウェイト算出部23は、パスロス推定部22によって推定されたパスロスが大きいほど、送信電力が小さくなるように送信電力制御ウェイトを算出する。この処理により、無線基地局は、干渉電力を低減することができ、通信品質を向上できる。
 なお、パスロスと係数との関係は、図13に示したような線形関係に限られない。例えば、パスロスと係数との関係は、n次元関数、双曲線関数、逆数、またはステップ関数などで示されてもよい。
 [第3の実施の形態]
 第3の実施の形態では、送信電力制御ウェイトの更新について説明する。以下では、第1の実施の形態と異なる部分について説明する。
 信号処理装置2は、無線端末3a,3bとの無線通信開始後、BFウェイト(W)を決定する。信号処理装置2は、BFウェイト(W)決定後、所定数のサブフレーム(例えば、K個のサブフレーム)まで、同一のBFウェイト(W)を用いて、無線端末3a,3bと無線通信を行う。このときの等価チャネル(初期値)は、例えば、式(7)で示される。
Figure JPOXMLDOC01-appb-M000007
 信号処理装置2は、K個のサブフレームを受信すると、BFウェイト(W)はそのままで、新たなチャネルを推定する。このときの等価チャネルは、例えば、式(8)で示される。
Figure JPOXMLDOC01-appb-M000008
 信号処理装置2の送信電力制御ウェイト算出部23は、新たなチャネルを反映した状態で、無線端末3a,3bから参照信号を受信し、新たな送信電力制御ウェイトを算出(更新)する。このときの等価チャネルは、例えば、式(9)で示される。
Figure JPOXMLDOC01-appb-M000009
 図14は、第3の実施の形態に係る無線基地局(信号処理装置2)および無線端末3a,3bの動作例を示したシーケンス図である。図14のステップS21~S26の処理は、図11のステップS1~S6と同様であるので、その説明を省略する。以下、ステップS27から説明する。
 無線端末3a,3bは、信号処理装置2に参照信号を送信する(ステップS27)。
 次に、チャネル推定部21は、BFウェイト(W)はそのままの状態で、新たなチャネル(H)を推定する(ステップS28)。
 次に、送信電力制御ウェイト算出部23は、ステップS28にて推定された新たなチャネル(H)において、送信電力制御ウェイト(D)を算出する(ステップS29)。送信電力制御ウェイト(D)の算出は、第1の実施の形態または第2の実施の形態を用いることができる。
 次に、信号処理装置2は、ステップS29にて算出した送信電力制御ウェイト(D)を含む等価チャネル(HW)を推定する(ステップS30)。
 次に、信号処理装置2および無線端末3a,3bは、データ伝送に必要な情報の交換を行う(ステップ31)。
 次に、信号処理装置2は、無線端末3a,3bに対し、データを伝送する(ステップS32)。
 信号処理装置2は、所定数のサブフレームごとにステップS28~S32の処理を繰り返す。すなわち、信号処理装置2は、所定数のサブフレームごとに、チャネル(H)と送信電力制御ウェイト(D)とを更新する。
 図15は、信号処理装置2の送信電力制御ウェイトの更新動作例を示したフローチャートである。信号処理装置2は、図15に示すフローチャートの処理を繰り返し実行する。
 まず、信号処理装置2は、無線端末3a,3bに対し、所定数のサブフレームを送信したか否か判定する(ステップS41)。信号処理装置2は、所定数のサブフレームを送信してないと判定した場合(S41の「No」)、当該フローチャートの処理を終了する。
 一方、信号処理装置2は、所定数のサブフレームを送信したと判定した場合(S41の「Yes」)、無線端末3a,3bから参照信号を受信する(ステップS42)。
 次に、信号処理装置2は、チャネルおよび送信電力制御ウェイトを更新する(ステップS43)。
 次に、信号処理装置2は、無線端末3a,3bとデータ伝送に必要な情報の交換を行って、無線端末3a,3bにデータを伝送する(ステップS44)。
 以上説明したように、送信電力制御ウェイト算出部23は、所定数のサブフレームごとに送信電力制御ウェイトを更新する。この処理により、無線基地局は、例えば、環境の変化等に応じて、適切に通信品質を向上できる。
 以上、各実施の形態について説明した。なお、各実施の形態は組み合わせることができる。
 (ハードウェア構成)
 なお、上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
 例えば、本発明の一実施の形態における無線基地局、無線端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図16は、本発明の一実施の形態に係る無線基地局および無線端末のハードウェア構成の一例を示す図である。上述の無線基地局及び無線端末は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局及び無線端末のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサで実行されてもよいし、処理が同時に、逐次に、又はその他の手法で、一以上のプロセッサで実行されてもよい。なお、プロセッサ1001は、一以上のチップで実装されてもよい。
 無線基地局及び無線端末における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004に基づく通信、又は、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のチャネル推定部21、パスロス推定部22、送信電力制御ウェイト算出部23、BFウェイト生成部24、プリコーディング生成部25、プリコーディング部26、BF部27、送信電力制御部28、BFウェイト生成部32、受信BF部33、等価チャネル推定部34、ポストコーディング生成部35、ポストコーディング部36、データ信号推定部37などは、プロセッサ1001で実現されてもよい。また、上記のテーブルは、メモリ1002に記憶されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、無線基地局及び無線端末を構成する少なくとも一部の機能ブロックは、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、無線基地局及び無線端末は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
 (情報の通知、シグナリング)
 また、情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 (適応システム)
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 (処理手順等)
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 (基地局の操作)
 本明細書において基地局(無線基地局)によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局および/または基地局以外の他のネットワークノード(例えば、MME(Mobility Management Entity)またはS-GW(Serving Gateway)などが考えられるが、これらに限られない)によって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MMEおよびS-GW)であってもよい。
 (入出力の方向)
 情報及び信号等は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)に出力され得る。複数のネットワークノードを介して入出力されてもよい。
 (入出力された情報等の扱い)
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置に送信されてもよい。
 (判定方法)
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 (ソフトウェア)
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 (情報、信号)
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナル)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC)は、キャリア周波数、セルなどと呼ばれてもよい。
 (システム、ネットワーク)
 本明細書で使用する「システム」および「ネットワーク」という用語は、互換的に使用される。
 (パラメータ、チャネルの名称)
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的なものではない。さらに、これらのパラメータを使用する数式等は、本明細書で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素(例えば、TPCなど)は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。
 (基地局)
 基地局(無線基地局)は、1つまたは複数(例えば、3つ)の(セクタとも呼ばれる)セルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、および/または基地局サブシステムのカバレッジエリアの一部または全体を指す。さらに、「基地局」、「eNB」、「セル」、および「セクタ」という用語は、本明細書では互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 (端末)
 ユーザ端末は、当業者によって、移動局、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、UE(User Equipment)、またはいくつかの他の適切な用語で呼ばれる場合もある。
 (用語の意味、解釈)
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどの電磁エネルギーを使用することにより、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。また、補正用RSは、TRS(Tracking RS)、PC-RS(Phase Compensation RS)、PTRS(Phase Tracking RS)、Additional RSと呼ばれてもよい。また、復調用RS及び補正用RSは、それぞれに対応する別の呼び方であってもよい。また、復調用RS及び補正用RSは同じ名称(例えば復調RS)で規定されてもよい。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 上記の各装置の構成における「部」を、「手段」、「回路」、「デバイス」等に置き換えてもよい。
 「含む(including)」、「含んでいる(comprising)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
 無線フレームは時間領域において1つまたは複数のフレームで構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレーム、タイムユニット等と呼ばれてもよい。サブフレームは更に時間領域において1つまたは複数のスロットで構成されてもよい。スロットはさらに時間領域において1つまたは複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier-Frequency Division Multiple Access)シンボル等)で構成されてもよい。
 無線フレーム、サブフレーム、スロット、およびシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、およびシンボルは、それぞれに対応する別の呼び方であってもよい。
 例えば、LTEシステムでは、基地局が各移動局に無線リソース(各移動局において使用することが可能な周波数帯域幅、送信電力等)を割り当てるスケジューリングを行う。スケジューリングの最小時間単位をTTI(Transmission Time Interval)と呼んでもよい。
 例えば、1サブフレームをTTIと呼んでもよいし、複数の連続したサブフレームをTTIと呼んでもよいし、1スロットをTTIと呼んでもよい。
 リソースユニットは、時間領域および周波数領域のリソース割当単位であり、周波数領域では1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。また、リソースユニットの時間領域では、1つまたは複数個のシンボルを含んでもよく、1スロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つまたは複数のリソースユニットで構成されてもよい。また、リソースユニットは、リソースブロック(RB:Resource Block)、物理リソースブロック(PRB:Physical RB)、PRBペア、RBペア、スケジューリングユニット、周波数ユニット、サブバンドと呼ばれてもよい。また、リソースユニットは、1つ又は複数のREで構成されてもよい。例えば、1REは、リソース割当単位となるリソースユニットより小さい単位のリソース(例えば、最小のリソース単位)であればよく、REという呼称に限定されない。
 上述した無線フレームの構造は例示に過ぎず、無線フレームに含まれるサブフレームの数、サブフレームに含まれるスロットの数、スロットに含まれるシンボルおよびリソースブロックの数、および、リソースブロックに含まれるサブキャリアの数は様々に変更することができる。
 本開示の全体において、例えば、英語でのa, an, 及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。
 (態様のバリエーション等)
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本特許出願は2017年3月2日に出願した日本国特許出願第2017-039673号に基づきその優先権を主張するものであり、日本国特許出願第2017-039673号の全内容を本願に援用する。
 本発明の一態様は、移動通信システムに有用である。
 1a~1i 送信点
 2 信号処理装置
 21 チャネル推定部
 22 パスロス推定部
 23 送信電力制御ウェイト算出部
 24 BFウェイト生成部
 25 プリコーディング生成部
 26 プリコーディング部
 27 BF部
 28 送信電力制御部
 29 アンテナ素子

Claims (6)

  1.  1以上のアンテナ素子を有する複数の送信点と、前記複数の送信点と接続された信号処理装置とを有する無線基地局において、
     前記信号処理装置は、
     前記アンテナ素子のそれぞれにおいて、無線端末との間のパスロスを推定する推定部と、
     前記推定部によって推定された前記アンテナ素子のそれぞれのパスロスに基づいて、前記アンテナ素子のそれぞれの送信電力制御を行うための電力制御ウェイトを算出する算出部と、
     を有する無線基地局。
  2.  前記推定部は、前記無線端末が複数の場合、前記アンテナ素子のそれぞれと前記複数の無線端末のそれぞれとの間のパスロスを推定し、
     前記算出部は、前記アンテナ素子のそれぞれにおいて、前記複数の無線端末のそれぞれにおけるパスロスを加算し、加算したパスロスに基づいて電力制御ウェイトを算出する、
     請求項1に記載の無線基地局。
  3.  前記算出部は、前記推定部によって推定されたパスロスが大きいほど、送信電力が大きくなるように電力制御ウェイトを算出する、
     請求項1または2に記載の無線基地局。
  4.  前記算出部は、前記推定部によって推定されたパスロスが大きいほど、送信電力が小さくなるように電力制御ウェイトを算出する、
     請求項1または2に記載の無線基地局。
  5.  前記算出部は、前記所定数のサブフレームが送信されるごとに電力制御ウェイトを更新する、
     請求項1乃至4のいずれか一項に記載の無線基地局。
  6.  1以上のアンテナ素子を有する複数の送信点と、前記複数の送信点と接続された信号処理装置とを有する無線基地局の送信電力制御方法において、
     前記信号処理装置は、
     前記アンテナ素子のそれぞれにおいて、無線端末との間のパスロスを推定し、
     推定した前記アンテナ素子のそれぞれのパスロスに基づいて、前記アンテナ素子のそれぞれの送信電力制御を行うための電力制御ウェイトを算出する、
     送信電力制御方法。
PCT/JP2018/003675 2017-03-02 2018-02-02 無線基地局および送信電力制御方法 WO2018159215A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/490,248 US11129111B2 (en) 2017-03-02 2018-02-02 Wireless base station and transmission power control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-039673 2017-03-02
JP2017039673A JP6967358B2 (ja) 2017-03-02 2017-03-02 無線基地局および送信電力制御方法

Publications (1)

Publication Number Publication Date
WO2018159215A1 true WO2018159215A1 (ja) 2018-09-07

Family

ID=63370056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003675 WO2018159215A1 (ja) 2017-03-02 2018-02-02 無線基地局および送信電力制御方法

Country Status (3)

Country Link
US (1) US11129111B2 (ja)
JP (1) JP6967358B2 (ja)
WO (1) WO2018159215A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162184A1 (ja) * 2022-02-25 2023-08-31 日本電信電話株式会社 無線通信方法、分散アンテナシステム及び無線通信装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113993200B (zh) * 2021-12-27 2022-03-18 四川创智联恒科技有限公司 一种5gnr下行信道功率调整方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221701A (ja) * 2003-01-10 2004-08-05 Nec Corp コンテンツ配信システム、ネットワーク及びチャネル切替制御方法
JP2011082705A (ja) * 2009-10-05 2011-04-21 Ntt Docomo Inc 基地局装置、移動局装置及び送信電力制御方法
JP2011097225A (ja) * 2009-10-28 2011-05-12 Kyocera Corp 無線基地局および無線通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221701A (ja) * 2003-01-10 2004-08-05 Nec Corp コンテンツ配信システム、ネットワーク及びチャネル切替制御方法
JP2011082705A (ja) * 2009-10-05 2011-04-21 Ntt Docomo Inc 基地局装置、移動局装置及び送信電力制御方法
JP2011097225A (ja) * 2009-10-28 2011-05-12 Kyocera Corp 無線基地局および無線通信方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162184A1 (ja) * 2022-02-25 2023-08-31 日本電信電話株式会社 無線通信方法、分散アンテナシステム及び無線通信装置

Also Published As

Publication number Publication date
US20200015173A1 (en) 2020-01-09
US11129111B2 (en) 2021-09-21
JP2018148313A (ja) 2018-09-20
JP6967358B2 (ja) 2021-11-17

Similar Documents

Publication Publication Date Title
WO2018229958A1 (ja) ユーザ端末及び無線通信方法
JP2019012937A (ja) 信号処理装置、無線装置、フロントホールマルチプレクサ、ビーム制御方法、および信号合成方法
US10742279B2 (en) User terminal and wireless communication method
WO2018143275A1 (ja) ユーザ端末および無線通信方法
WO2018159215A1 (ja) 無線基地局および送信電力制御方法
WO2018128034A1 (ja) ユーザ装置、基地局及び復調用参照信号送信方法
US10848208B2 (en) Wireless base station and wireless communication method
US11387872B2 (en) Wireless base station and wireless communication method
CN109804686B (zh) 用户终端以及无线通信方法
WO2018159242A1 (ja) 無線端末、送信電力制御方法、および無線基地局
CN111903065B (zh) 基站以及发送方法
US10985810B2 (en) User terminal, wireless base station, and wireless communication method
WO2019163113A1 (ja) ユーザ端末及び無線通信方法
WO2019198239A1 (ja) ユーザ端末、及び、通信方法
WO2018128038A1 (ja) ユーザ装置及び基地局
JP7390283B2 (ja) 基地局及び基地局による送信方法
WO2019159341A1 (ja) 無線送信装置
WO2018207331A1 (ja) 基地局及びユーザ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761306

Country of ref document: EP

Kind code of ref document: A1