WO2018143275A1 - ユーザ端末および無線通信方法 - Google Patents

ユーザ端末および無線通信方法 Download PDF

Info

Publication number
WO2018143275A1
WO2018143275A1 PCT/JP2018/003222 JP2018003222W WO2018143275A1 WO 2018143275 A1 WO2018143275 A1 WO 2018143275A1 JP 2018003222 W JP2018003222 W JP 2018003222W WO 2018143275 A1 WO2018143275 A1 WO 2018143275A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
signal waveform
unit
tti
symbol
Prior art date
Application number
PCT/JP2018/003222
Other languages
English (en)
French (fr)
Inventor
英之 諸我
和晃 武田
一樹 武田
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2018565607A priority Critical patent/JP7117248B2/ja
Priority to US16/483,199 priority patent/US11012280B2/en
Publication of WO2018143275A1 publication Critical patent/WO2018143275A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/26524Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation
    • H04L27/26526Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation with inverse FFT [IFFT] or inverse DFT [IDFT] demodulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] receiver or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking

Definitions

  • the present invention relates to a user terminal and a wireless communication method in a next generation mobile communication system.
  • LTE Long Term Evolution
  • Non-patent Document 1 a successor system of LTE is also being studied for the purpose of further widening the bandwidth and speeding up from LTE.
  • LTE successors include LTE-A (LTE-Advanced), FRA (Future Radio Access), 5G (5th generation mobile mobile communication system), 5G + (5G plus), New-RAT (Radio Access Technology), etc. There is what is called.
  • DFT-s-OFDM which realizes signal waveform generation by spreading based on OFDM (Orthogonal Frequency Division Multiplexing) and DFT (Discrete Fourier Transform) as a transmission waveform in the downlink of a high frequency band (DFT spread OFDM) and UW-DFT-s-OFDM (Unique Word DFT spread OFDM) in which UW (Unique Worde) is inserted before and after the data are also considered.
  • DFT spread OFDM Orthogonal Frequency Division Multiplexing
  • UW-DFT-s-OFDM Unique Word DFT spread OFDM
  • the symbol length differs between OFDM or DFT-s-OFDM and UW-DFT-s-OFDM.
  • the subcarrier interval is 15 kHz and the CP (Cyclic Prefix) length in OFDM or DFT-s-OFDM is about the same as LTE
  • one symbol length of OFDM or DFT-s-OFDM is 71.4 ⁇ s (data Length: 66.7 ⁇ s + CP length: 4.7 ⁇ s)
  • one symbol length of UW-DFT-s-OFDM is 66.7 ⁇ s.
  • a plurality of CP lengths in OFDM and DFT-s-OFDM may be defined, and a plurality of signal waveforms having different symbol lengths may be defined.
  • 5G does not disclose a technique related to a downlink transmission method in which a plurality of signal waveforms having different symbol lengths are used together.
  • TTI Transmission Time Interval
  • One aspect of the present invention provides a new configuration in which a plurality of signal waveforms having different symbol lengths can be used together in a downlink transmission of a future wireless communication system without one symbol straddling two TTIs. provide.
  • the user terminal includes a control unit that determines a signal waveform of each symbol of a downlink signal, a reception unit that receives the downlink signal, and the reception based on the determined signal waveform
  • a preprocessing unit that performs preprocessing on the downlink signal, an FFT unit that performs FFT processing on the preprocessed signal, and the FFT processing based on the determined signal waveform.
  • a signal detection unit that performs equalization processing on the received signal, and the signal waveform is selected from a plurality of signal waveform candidates having different symbol lengths, and one symbol spans two TTIs. There is no TTI.
  • the wireless communication method determines a signal waveform of each symbol of a downlink signal, receives the downlink signal, and receives the downlink signal based on the determined signal waveform Pre-processing is performed, FFT processing is performed on the pre-processed signal, and the FFT-processed signal is equalized based on the determined signal waveform,
  • the signal waveform is selected from a plurality of signal waveform candidates having different symbol lengths, and one symbol is arranged in the TTI without straddling two TTIs.
  • a new symbol in downlink transmission of a future wireless communication system, a new symbol that can be used in combination with a plurality of signal waveforms having different symbol lengths without one symbol straddling two TTIs. Provide configuration.
  • FIG. 3 is a block diagram illustrating a configuration example of a radio base station according to Embodiment 1.
  • FIG. 3 is a block diagram illustrating a configuration example of a user terminal according to Embodiment 1.
  • FIG. 6 is a diagram showing an example of a signal waveform switching pattern stored in a radio base station according to Embodiment 1.
  • FIG. 6 is a diagram illustrating an example of symbols arranged in TTI in the radio base station according to Embodiment 1.
  • FIG. 6 is a block diagram illustrating a configuration example of a radio base station according to Embodiment 2.
  • FIG. 6 is a diagram illustrating an example of symbols arranged in a TTI in a radio base station according to Embodiment 2.
  • FIG. 10 is a diagram illustrating another example of symbols arranged in TTI in the radio base station according to Embodiment 2.
  • FIG. 11 is a diagram illustrating an example of a combination pattern of a subcarrier interval and the number of symbols of each signal waveform stored in a radio base station according to Embodiment 3.
  • FIG. 10 is a block diagram illustrating a configuration example of a radio base station according to a fourth embodiment.
  • FIG. 10 is a diagram illustrating an example of a combination pattern of a subcarrier interval and the number of symbols of each signal waveform stored in a radio base station according to Embodiment 4.
  • FIG. 10 is a block diagram illustrating a configuration example of a radio base station according to Embodiment 5.
  • FIG. 10 is a diagram illustrating another example of symbols arranged in TTI in the radio base station according to Embodiment 2.
  • FIG. 11 is a diagram illustrating an example of a combination pattern of a subcarrier interval and the number of symbols of each signal waveform stored
  • FIG. 10 is a diagram illustrating an example of a combination pattern of a subcarrier interval and the number of symbols of each signal waveform stored in a radio base station according to Embodiment 5. It is a figure which shows an example of the hardware constitutions of the radio base station and user terminal which concern on one embodiment of this invention.
  • the radio communication system includes at least radio base station (hereinafter referred to as “base station”) 10 shown in FIG. 1 and user terminal (hereinafter referred to as “terminal”) 20 shown in FIG.
  • the terminal 20 is connected to the base station 10.
  • the base station 10 transmits a DL (Down Link) signal to the terminal 20.
  • the DL signal includes, for example, a DL data signal (eg, PDSCH (Physical Downlink Shared Channel)) and a DL control signal (eg, PDCCH (Physical Downlink Control Channel)) for demodulating and decoding the DL data signal. It is.
  • FIG. 1 is a block diagram illustrating a configuration example of a base station 10 according to the first embodiment. 1 includes a storage unit 101, a control unit 102, a preprocessing unit 103, a mapping unit 104, an IFFT unit 105, a post-processing unit 106, a transmission unit 107, an antenna 108, have.
  • the storage unit 101 stores a signal waveform switching pattern indicating a signal waveform transmitted in each TTI.
  • the control unit 102 determines a signal waveform for each TTI according to the signal waveform switching pattern stored in the storage unit 101, and instructs the preprocessing unit 103, the mapping unit 104, and the postprocessing unit 106 about the signal waveform. Details of the operation of the control unit 102 will be described later together with an example of a signal waveform switching pattern.
  • control unit 102 notifies the terminal 20 (control unit 202) of information indicating the selected signal waveform switching pattern.
  • a specific example of the notification method will be described later.
  • the pre-processing unit 103 performs pre-processing on the input data (modulation symbol sequence) according to the signal waveform instructed by the control unit 102, and outputs the pre-processed signal to the mapping unit 104. For example, when DFT-s-OFDM is instructed, the preprocessing unit 103 generates a time domain signal by performing serial-parallel conversion on the data, further performs a discrete Fourier transform, and maps the obtained frequency domain signal to the mapping unit 104. Output to.
  • the preprocessing unit 103 When UW-DFT-s-OFDM is instructed, the preprocessing unit 103 performs serial-parallel conversion on data, inserts UWs at both ends to generate a time domain signal, and further performs discrete Fourier transform to obtain The obtained frequency domain signal is output to the mapping unit 104.
  • the insertion position of the UW may be other than both ends, for example, only the beginning or the end. Further, the UW may be inserted into a plurality of locations including the middle.
  • the mapping unit 104 maps the frequency domain signal output from the preprocessing unit 103 to the resource (subcarrier, symbol) corresponding to the signal waveform instructed from the control unit 102. Further, mapping section 104 maps 0 to subcarriers other than the subcarrier to which the frequency domain signal is mapped. Mapping section 104 then outputs the mapped frequency domain signal to IFFT section 105.
  • the IFFT unit 105 performs inverse fast Fourier transform on the frequency domain signal output from the mapping unit 104, and outputs the obtained time domain signal to the post-processing unit 106.
  • the post-processing unit 106 performs post-processing on the time domain signal output from the IFFT unit 105 according to the signal waveform instructed from the control unit 102, and outputs the post-processed signal to the transmission unit 107. For example, when DFT-s-OFDM is instructed, post-processing section 106 inserts a CP into the time domain signal output from IFFT section 105, performs parallel-serial conversion, and outputs the result to transmitting section 107. When UW-DFT-s-OFDM is instructed, post-processing section 106 performs parallel-serial conversion on the time domain signal output from IFFT section 105 and outputs the result to transmitting section 107.
  • the transmission unit 107 performs RF (Radio-Frequency) processing such as D / A (Digital-to-Analog) conversion, up-conversion, and amplification on the time domain signal (DL signal) output from the post-processing unit 106. Then, a radio signal is transmitted to the terminal 20 via the antenna 108.
  • RF Radio-Frequency
  • FIG. 2 is a block diagram illustrating a configuration example of the terminal 20 according to the first embodiment. 2 includes a storage unit 201, a control unit 202, an antenna 203, a reception unit 204, a preprocessing unit 205, an FFT unit 206, a signal detection unit 207, a post processing unit 208, Have
  • the storage unit 201 stores the same signal waveform switching pattern as the storage unit 101.
  • the control unit 202 determines the signal waveform of each symbol according to the signal waveform switching pattern notified from the base station 10 (control unit 102), and sends it to the preprocessing unit 205, the signal detection unit 207, and the postprocessing unit 208 for each TTI. Indicates the signal waveform.
  • the receiving unit 204 performs RF processing such as amplification, down-conversion, A / D (Analog-to-Digital) conversion, and the like on the radio signal received by the antenna 203, and a baseband time domain signal (DL signal). Is output to the preprocessing unit 205.
  • RF processing such as amplification, down-conversion, A / D (Analog-to-Digital) conversion, and the like on the radio signal received by the antenna 203, and a baseband time domain signal (DL signal).
  • the preprocessing unit 205 performs preprocessing on the time domain signal output from the reception unit 204 according to the signal waveform instructed from the control unit 202, and outputs the preprocessed signal to the FFT unit 206. For example, when DFT-s-OFDM is instructed, the preprocessing unit 205 performs serial-to-parallel conversion on the time domain signal output from the reception unit 204, removes the added CP, and outputs it to the FFT unit 206. When UW-DFT-s-OFDM is instructed, the preprocessing unit 205 performs serial-parallel conversion on the time domain signal output from the reception unit 204 and outputs it to the FFT unit 206.
  • the FFT unit 206 performs fast Fourier transform on the time domain signal output from the preprocessing unit 205, and outputs the obtained frequency domain signal to the signal detection unit 207.
  • the signal detection unit 207 performs equalization processing corresponding to the signal waveform instructed by the control unit 202 on the signal output from the FFT unit 206, and outputs the equalized signal to the post-processing unit 208. .
  • the post-processing unit 208 performs post-processing on the frequency domain signal output from the signal detection unit 207 in accordance with the signal waveform instructed from the control unit 202, and obtains output data (modulation symbol sequence). For example, when DFT-s-OFDM is instructed, the post-processing unit 208 performs inverse discrete Fourier transform on the frequency domain signal output from the signal detection unit 207, and performs parallel processing on the obtained time domain signal. Perform serial conversion to obtain output data. Further, when UW-DFT-s-OFDM is instructed, the post-processing unit 208 performs inverse discrete Fourier transform on the frequency domain signal output from the signal detection unit 207, and calculates the UW from the obtained time domain signal. Is removed and parallel-serial conversion is performed to obtain output data.
  • control unit 102 ⁇ Operation of Control Unit 102> Next, the operation of the control unit 102 according to the present embodiment will be described in detail together with an example of a signal waveform switching pattern stored in the storage unit 101.
  • FIG. 3 is a diagram illustrating an example of a signal waveform switching pattern stored in the storage unit 101.
  • Configuration ID is assigned to each signal waveform switching pattern, and a signal waveform to be transmitted at each TTI defined by TTI index is set for each Configuration ID.
  • a signal waveform (“O / D” in FIG. 3) based on DFT-S-OFDM (or OFDM) is set for a TTI whose Configuration ID is “# 1” and TTI index is “0”.
  • the control unit 102 determines the signal waveform of each TTI based on the selected Configuration ID, and instructs the pre-processing unit 103, the mapping unit 104, and the post-processing unit 106 of the signal waveform.
  • FIG. 3 shows an example in which DFT-S-OFDM and UW-DFT-S-OFDM are switched for each TTI.
  • the present embodiment is not limited to this, and the symbol length A pattern and the symbol length B pattern are changed. You may switch for every TTI.
  • the C pattern of exception symbol length ⁇ number of symbols may be defined, or the D pattern may be defined such that the symbol length is changed for each symbol and the total becomes 1 TTI.
  • the control unit 102 may select based on RSRP (Reference Signal Received Power), RSRQ (Reference Signal. Received Quality), and CQI (Channel Quality Indicator) reported from the terminal 20.
  • Configuration ID number of symbols per unit time
  • the base station 10 may notify the terminal 20 of the information indicating the signal waveform switching pattern explicitly or implicitly.
  • the base station 10 transmits the signal waveform switching pattern to the terminal 20 by RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, PHY (physical layer) signaling, or the like. You may be notified.
  • the base station 10 may use MIB (Master Information Block), SIB (System Information Block), RACH message 2 (also called Random Access Response: RAR), Paging information, RRC connection information, or S1 connection setting. Etc., the terminal 20 may be notified of the signal waveform switching pattern.
  • the base station 10 may notify the terminal 20 of the signal waveform switching pattern using PDCCH DCI (Downlink Control Information).
  • PDCCH DCI Downlink Control Information
  • the base station 10 and the terminal 20 for example, the configuration of the synchronization signal (Synchronization Signal: SS), PBCH, SIB, or RACH, and the signal waveform switching pattern (for example, Configuration ID) may be associated one-on-one.
  • the plurality of patterns may be grouped so as to be associated with different Configuration IDs.
  • a signal waveform switching pattern suitable for a communication environment in which the pattern is used may be associated with each pattern (for example, patterns having different SS subcarrier intervals).
  • the base station 10 transmits to the terminal 20 a group signal associated with the signal waveform switching pattern set in the terminal 20. Then, the terminal 20 specifies the signal waveform switching pattern (Configuration ID) associated with the group to which the signal transmitted from the base station 10 belongs as the signal waveform switching pattern set in the own device. With these processes, since the signal waveform switching pattern is implicitly notified by the existing signal, new signaling for notifying the signal waveform switching pattern becomes unnecessary.
  • the notification of the signal waveform switching pattern from the base station 10 to the terminal 20 may be performed periodically or dynamically.
  • control can be performed so that the signal waveform is not switched within each TTI, so that a single symbol does not straddle two TTIs, and a plurality of signal waveforms having different symbol lengths. Can be used together.
  • FIG. 5 is a block diagram illustrating a configuration example of the base station 30 according to the second embodiment.
  • the same components as those of the base station 10 shown in FIG. 5 are identical to those of the base station 10 shown in FIG.
  • the non-transmission time calculation unit 301 calculates the total non-transmission time using the following equation (1) and controls information indicating the calculated non-transmission total time Tn. Output to the unit 102.
  • Tn T TTI ⁇ (T D ⁇ N D + T U ⁇ N U ) (1)
  • T TTI is 1 TTI (eg, 1 ms)
  • T D is one symbol time of DFT-S-OFDM (eg, 71.4 ⁇ s)
  • N D is the number of DFT-S-OFDM symbols
  • T U is UW -1 symbol time of DFT-S-OFDM (eg 66.7 ⁇ s)
  • N U is the number of UW-DFT-S-OFDM symbols.
  • T D may be replaced by T U symbol length A pattern symbol length B pattern.
  • the symbol length A pattern can be considered as 71.4 ⁇ s
  • the symbol length B pattern can be considered as 66.7 ⁇ s.
  • the above expression (1) may be extended to three or more kinds of symbol lengths as in the symbol length C pattern.
  • the control unit 102 determines the number of symbols of each signal waveform for each TTI, and instructs the pre-processing unit 103, the mapping unit 104, and the post-processing unit 106 of the signal waveform. Further, the control unit 102 sets a non-transmission interval in each TTI so that the total non-transmission time calculated by the non-transmission time calculation unit 301 is set, and sets the non-transmission interval set for the post-processing unit 106. Instructs not to send anything.
  • the post-processing unit 106 outputs nothing to the transmission unit 107 in the non-transmission section instructed by the control unit 102.
  • the base station 10 (control unit 102) notifies the terminal 20 (control unit 202) of information indicating the number of symbols of each signal waveform within 1 TTI.
  • the notification method will be described later.
  • the control unit 202 determines a signal waveform according to the number of symbols of each signal waveform in 1 TTI notified from the base station 10 (control unit 102), and sends a signal to the preprocessing unit 205, the signal detection unit 207, and the postprocessing unit 208. Instruct the waveform.
  • the base station 30 may notify the terminal 20 of information indicating the number of symbols of each signal waveform within 1 TTI, either explicitly or implicitly.
  • the base station 30 may notify the terminal 20 of the number of symbols of each signal waveform by RRC signaling, MAC signaling, PHY signaling, or the like.
  • the base station 30 may notify the terminal 20 of the number of symbols of each signal waveform using MIB, SIB, RACH message 2, Paging information, RRC connection information, or S1 connection setting.
  • the base station 30 may notify the terminal 20 of the number of symbols of each signal waveform using PDCCH DCI.
  • the DCI has three or more N, M, L, such as the CP length of the first N symbols is M and the CP length of other symbols is L. Variables may be notified.
  • DCI may notify only N variables such that the CP length of the first N symbols is A pattern and the CP length of other symbols is B pattern.
  • the CP length of the A pattern and the CP length of the B pattern are determined in advance according to the specification, or are notified by a method such as MIB, SIB, message 2, Paging information, RRC connection setting, S1 connection setting.
  • the CP length of the first N symbols may be A pattern
  • the CP length of the next M symbols may be B pattern
  • the CP length of other symbols may be C patterns, so that there may be three or more CP length patterns.
  • DCI notifies N and M of two variables.
  • the base station 30 and the terminal 20 have, for example, a one-to-one correspondence between the configuration of the synchronization signal, PBCH, SIB, or RACH and the number of symbols of each signal waveform. You may associate. With these methods, the number of symbols of each signal waveform is implicitly notified by an existing signal, so that new signaling for notifying the number of symbols of each signal waveform is not necessary.
  • the notification of the number of symbols of each signal waveform from the base station 30 to the terminal 20 may be performed periodically or dynamically.
  • ⁇ Effects of the present embodiment> when the signal waveform is switched within one TTI, a time when a symbol is not arranged in each TTI (a time less than one symbol) can be set as no transmission, and thus one symbol includes two TTIs. A plurality of signal waveforms having different symbol lengths can be used together.
  • FIG. 6 shows the case where the non-transmission interval is set at the end of the TTI
  • the position of the non-transmission interval is not particularly limited in the present embodiment.
  • the non-transmission section may be set at the head of the TTI, or may be set at a position where the signal waveform is switched (between the fourth and fifth symbols in the example of FIG. 6).
  • filtering may be performed before and after the non-transmission period so that symbol discontinuity does not occur. In this case, it is not complete no transmission.
  • the mapping unit 104 may change the subcarrier interval for each signal waveform. With respect to the signal waveform in which the subcarrier interval is widened, one symbol time can be shortened according to the spread, so that the base station 30 increases the number of symbols arranged in 1 TTI accordingly. As a result, the possibility that the total time Tn of non-transmission within 1 TTI can be shortened increases.
  • the total non-transmission time within 1 TTI can be shortened, and the overhead can be reduced.
  • Embodiment 3 In the third embodiment, a case will be described in which signal waveforms are switched within 1 TTI and a combination of signal waveforms is selected such that the non-transmission interval is zero.
  • the configuration of the terminal according to Embodiment 3 is the same as that of terminal 20 shown in FIG. Further, the configuration of the base station according to Embodiment 3 is the same as that of base station 10 shown in FIG. However, in the third embodiment, the storage contents of the storage units 101 and 201 and the operations of the control units 102 and 202 are different from those in the first embodiment.
  • FIG. 8 is a diagram illustrating an example of a combination pattern (hereinafter simply referred to as “combination pattern”) of the subcarrier interval and the number of symbols of each signal waveform transmitted in 1 TTI, which is stored in the storage unit 101.
  • a combination pattern only a pattern having no transmission time of 0, that is, a pattern waveform having a total transmission time of exactly 1 TTI is allowed.
  • the control unit 102 determines the subcarrier interval and the number of symbols of each signal waveform arranged in 1 TTI based on the selected Configuration ID, and sends the subcarriers of each signal waveform to the preprocessing unit 103, the mapping unit 104, and the postprocessing unit 106. Specify the interval and number of symbols.
  • the base station 10 (control unit 102) notifies the terminal 20 (control unit 202) of information indicating the selected combination pattern.
  • the combination pattern notification method is the same as the signal waveform switching pattern notification method described in the first embodiment.
  • the control unit 202 determines the signal waveform of each symbol according to the combination pattern notified from the base station 10 (control unit 102), and instructs the pre-processing unit 205, the signal detection unit 207, and the post-processing unit 208 about the signal waveform.
  • FIG. 9 is a block diagram illustrating a configuration example of the base station 40 according to the fourth embodiment.
  • the same components as those of the base station 10 shown in FIG. 10 the same components as those of the base station 10 shown in FIG.
  • the subcarrier interval calculation unit 401 uses the following equation (2) to calculate the subcarrier interval of a predetermined signal waveform (UW-DFT-S-OFDM in this example). It computes, and outputs the calculated information indicating the subcarrier spacing F U to the control unit 102.
  • F U F Uf ⁇ T U / T D (2)
  • Equation (2) F Uf is the initial value of the subcarrier spacing of UW-DFT-S-OFDM (eg, 15 kHz), T U is one symbol time of UW-DFT-S-OFDM (eg, 66.7 ⁇ s), T D is one symbol time (for example, 71.4 ⁇ s) of DFT-S-OFDM.
  • the control unit 102 determines the number of symbols of each signal waveform for each TTI, and instructs the pre-processing unit 103, the mapping unit 104, and the post-processing unit 106 of the signal waveform. Further, the control unit 102 instructs the mapping unit 104 about the UW-DFT-S-OFDM subcarrier interval calculated by the subcarrier interval calculation unit 401.
  • mapping unit 104 performs an operation of adjusting the UW-DFT-S-OFDM subcarrier interval based on an instruction from the control unit 102.
  • the base station 40 (control unit 102) notifies the terminal 20 (control unit 202) of information indicating the adjusted subcarrier interval.
  • the adjusted subcarrier interval notification method is the same as the signal waveform switching pattern notification method described in the first embodiment.
  • the control unit 202 determines the signal waveform of each symbol according to the number of symbols of each signal waveform in 1 TTI notified from the base station 40 (control unit 102), and performs a preprocessing unit 205, a signal detection unit 207, and a postprocessing unit. A signal waveform is instructed to 208. Further, the control unit 202 instructs the signal detection unit 207 about the UW-DFT-S-OFDM subcarrier interval notified from the base station 40 (control unit 102).
  • the signal detection unit 207 performs equalization processing on UW-DFT-S-OFDM in which the subcarrier interval is adjusted based on an instruction from the control unit 202.
  • FIG. 11 is a block diagram showing a configuration example of the base station 50 according to the fifth embodiment.
  • the same components as those of the base station 10 shown in FIG. 11 are identical components as those of the base station 10 shown in FIG.
  • the CP length calculation unit 501 calculates the CP length of a predetermined signal waveform (in this example, DFT-S-OFDM) using the following equation (3) when switching the signal waveform within 1 TTI. and outputs information indicating the the CP length C D to the control unit 102.
  • C D C Df + Tn / N D ⁇ (3)
  • C Df is the initial value of the CP length of DFT-S-OFDM (eg, 4.7 ⁇ s)
  • Tn is the total time of no transmission
  • N D is the number of symbols of DFT-S-OFDM.
  • the initial value of one symbol time of DFT-S-OFDM is 71.4 ⁇ s
  • the one symbol time of UW-DFT-S-OFDM is 66.7 ⁇ s
  • four symbols of DFT-S-OFDM are arranged.
  • the total non-transmission time is 47.6 ⁇ s (see Embodiment 2)
  • the control unit 102 determines the number of symbols of each signal waveform for each TTI, and instructs the pre-processing unit 103, the mapping unit 104, and the post-processing unit 106 of the signal waveform. Further, the control unit 102 instructs the post-processing unit 106 about the CP length of the DFT-S-OFDM calculated by the CP length calculation unit 501.
  • the post-processing unit 106 performs an operation of adjusting the CP length of DFT-S-OFDM based on an instruction from the control unit 102 in addition to the operation described in the second embodiment.
  • the base station 50 (control unit 102) notifies the terminal 20 (control unit 202) of information indicating the adjusted CP length.
  • the adjusted CP length notification method is the same as the signal waveform switching pattern notification method described in the first embodiment.
  • the control unit 202 determines the signal waveform of each symbol according to the number of symbols of each signal waveform in 1 TTI notified from the base station 50 (control unit 102), and performs a preprocessing unit 205, a signal detection unit 207, and a postprocessing unit. A signal waveform is instructed to 208. Further, the control unit 202 instructs the preprocessing unit 205 about the CP length of DFT-S-OFDM notified from the base station 50 (control unit 102).
  • the preprocessing unit 205 performs preprocessing on the DFT-S-OFDM in which the CP length is adjusted based on an instruction from the control unit 202 in addition to the operation described in the second embodiment.
  • Zadoff-chu sequence may be used or 0 padding may be used.
  • each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wirelessly) and may be realized by these plural devices.
  • a wireless base station, a user terminal, etc. in an embodiment of the present invention may function as a computer that performs processing of the wireless communication method of the present invention.
  • FIG. 13 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the wireless base stations 10, 30, 40, 50 and the user terminal 20 described above physically include a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. It may be configured as a device.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base stations 10, 30, 40, 50 and the user terminal 20 may be configured to include one or a plurality of the devices illustrated in the figure, or may be configured not to include some devices. May be.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base stations 10, 30, 40, 50 and the user terminal 20 is performed by causing the processor 1001 to perform computation by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002. This is realized by controlling communication by the device 1004 or reading and / or writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the above-described control units 102 and 202, pre-processing units 103 and 205, mapping unit 104, IFFT unit 105, post-processing units 106 and 208, FFT unit 206, signal detection unit 207, and the like may be realized by the processor 1001. Good.
  • the processor 1001 reads a program (program code), software module, or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 102 of the radio base station 10 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks.
  • the above-described various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium and includes at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to the embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as an optical disc such as a CD-ROM (Compact Disc ROM), a hard disc drive, a flexible disc, a magneto-optical disc (eg, a compact disc, a digital versatile disc, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the storage units 101 and 201 described above may be realized by the storage 1003.
  • the above-described storage medium may be, for example, a database including the memory 1002 and / or the storage 1003, a server, or other suitable medium.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • a network device for example, the transmission unit 107, the antennas 108 and 203, the reception unit 204, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the radio base stations 10, 30, 40, and 50 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and an FPGA (Field It may be configured to include hardware such as Programmable (Gate Array), and some or all of the functional blocks may be realized by the hardware.
  • the processor 1001 may be implemented by at least one of these hardware.
  • information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block))), other signals, or a combination thereof.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • W-CDMA Wideband
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand)
  • Bluetooth Registered trademark
  • a system using another appropriate system and / or a next generation system extended based on the system may be applied.
  • the specific operation assumed to be performed by the base station (radio base station) in this specification may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station and / or other network nodes other than the base station (e.g., It is obvious that this can be performed by MME (Mobility Management Entity) or S-GW (Serving Gateway).
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • Information, signals, and the like can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
  • Input / output information and the like may be stored in a specific location (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
  • the determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true / false value (Boolean: true or false), or may be performed by comparing numerical values (for example, a predetermined value) Comparison with the value).
  • software, instructions, etc. may be transmitted / received via a transmission medium.
  • software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • DSL digital subscriber line
  • wireless technology such as infrared, wireless and microwave.
  • Information, signal Information, signals, etc. described herein may be represented using any of a variety of different technologies.
  • data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
  • the channel and / or symbol may be a signal.
  • the signal may be a message.
  • the component carrier (CC) may be called a carrier frequency, a cell, or the like.
  • radio resource may be indicated by an index.
  • a base station can accommodate one or more (eg, three) cells (also referred to as sectors). When the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, indoor small base station RRH: Remote Radio Head) can also provide communication services.
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage. Further, the terms “base station”, “eNB”, “cell”, and “sector” may be used interchangeably herein.
  • a base station may also be referred to in terms such as a fixed station, NodeB, eNodeB (eNB), access point, femtocell, small cell, and the like.
  • a user terminal is a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile by a person skilled in the art It may also be referred to as a terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, UE (User Equipment), or some other appropriate terminology.
  • determining may encompass a wide variety of actions. “Judgment” and “determination” are, for example, judgment, calculation, calculation, processing, derivation, investigating, looking up (eg, table , Searching in a database or another data structure), considering ascertaining as “determining”, “deciding”, and the like.
  • determination and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as “determined” or "determined”.
  • determination and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
  • connection means any direct or indirect connection or coupling between two or more elements and It can include the presence of one or more intermediate elements between two “connected” or “coupled” elements.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof.
  • the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples
  • electromagnetic energy such as electromagnetic energy having a wavelength in the region, microwave region, and light (both visible and invisible) region, it can be considered to be “connected” or “coupled” to each other.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot depending on an applied standard.
  • the correction RS may be referred to as TRS (Tracking ⁇ RS), PC-RS (Phase Compensation RS), PTRS (Phase Tracking RS), or Additional RS.
  • the demodulation RS and the correction RS may be called differently corresponding to each. Further, the demodulation RS and the correction RS may be defined by the same name (for example, the demodulation RS).
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • the radio frame may be composed of one or a plurality of frames in the time domain.
  • One or more frames in the time domain may be referred to as subframes, time units, etc.
  • a subframe may further be composed of one or more slots in the time domain.
  • the slot may be further configured with one or a plurality of symbols (OFDM (Orthogonal-Frequency-Division-Multiplexing) symbol, SC-FDMA (Single-Carrier-Frequency-Division-Multiple-Access) symbol, etc.) in the time domain.
  • OFDM Orthogonal-Frequency-Division-Multiplexing
  • SC-FDMA Single-Carrier-Frequency-Division-Multiple-Access
  • the radio frame, subframe, slot, and symbol all represent a time unit when transmitting a signal. Radio frames, subframes, slots, and symbols may be called differently corresponding to each.
  • the base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used in each mobile station) to each mobile station.
  • the minimum time unit of scheduling may be called TTI (Transmission Time Interval).
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot may be called a TTI
  • the resource unit is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • one or a plurality of symbols may be included, and one slot, one subframe, or a length of 1 TTI may be included.
  • One TTI and one subframe may each be composed of one or a plurality of resource units.
  • the resource unit may also be called a resource block (RB: Resource Block), a physical resource block (PRB: Physical RB), a PRB pair, an RB pair, a scheduling unit, a frequency unit, or a subband.
  • the resource unit may be composed of one or a plurality of REs.
  • 1 RE may be any resource (for example, the smallest resource unit) smaller than a resource unit serving as a resource allocation unit, and is not limited to the name RE.
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, the number of symbols and resource blocks included in the slots, and the subframes included in the resource block
  • the number of carriers can be variously changed.
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
  • One embodiment of the present invention is useful for a mobile communication system.
  • Radio base station 101 Storage unit 102
  • Control unit 103 Pre-processing unit 104 Mapping unit 105 IFFT unit 106
  • Transmission unit 108 Antenna 20
  • Storage unit 202 Control unit 203
  • Antenna 204
  • Reception unit 205
  • Pre-processing unit 206
  • FFT unit 207
  • Signal detection unit 208
  • Post-processing unit 301
  • Non-transmission time calculation unit 401
  • Subcarrier interval calculation unit 501 CP length calculation unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

ユーザ端末(20)において、制御部(202)は、基地局(10)の制御部(102)から通知された信号波形切り替えパターンに従って信号波形を決定し、TTI毎に、前処理部(205)、信号検出部(207)および後処理部(208)に信号波形を指示する。各信号波形切り替えパターンにはConfiguration IDが割り当てられ、Configuration ID毎に、TTI indexによって規定される各TTIで送信する信号波形が設定されている。この構成により、1つのシンボルが2つのTTIに跨がってしまうことなく、シンボル長が互いに異なる複数の信号波形を併用する。

Description

ユーザ端末および無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末および無線通信方法に関する。
 UMTS(Universal Mobile Telecommunication System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTEからの更なる広帯域化および高速化を目的として、LTEの後継システムも検討されている。LTEの後継システムには、例えば、LTE-A(LTE-Advanced)、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(5G plus)、New-RAT(Radio Access Technology)などと呼ばれるものがある。
 将来の無線通信システムでは、無線周波数として40GHz以上の高周波数帯を利用することが検討されている。また、将来の無線通信システムでは、高周波数帯の下りリンクにおいて、送信波形として、OFDM(Orthogonal Frequency Division Multiplexing)、DFT(Discrete Fourier Transform)に基づく拡散によって信号波形生成を実現するDFT-s-OFDM(DFT spread OFDM)、さらにデータの前後にUW(Unique Worde)を挿入するUW-DFT-s-OFDM(Unique Word DFT spread OFDM)等を利用することも検討されている。この場合、シングルキャリアまたはDFT-s-OFDM、UW-DFT-s-OFDMを利用することにより、低PAPRが可能である。
 OFDMあるいはDFT-s-OFDMとUW-DFT-s-OFDMとではシンボル長が互いに異なる。例えば、サブキャリア間隔を15kHzとし、OFDMあるいはDFT-s-OFDMにおけるCP(Cyclic Prefix)長をLTEと同程度と仮定したとき、OFDMあるいはDFT-s-OFDMの1シンボル長は71.4μs(データ長:66.7μs+CP長:4.7μs)となり、UW-DFT-s-OFDMの1シンボル長は66.7μsとなる。
 また、要求条件が互いに異なるユーザを効率よくサポートするためにOFDM、DFT-s-OFDMにおけるCP長が複数規定され、シンボル長が互いに異なる複数の信号波形が規定されることも考えられる。
 現在、5Gでは、シンボル長が互いに異なる複数の信号波形を併用する下りリンクの送信方法に関する技術は開示されていない。
 スケジューリングの最小時間単位であるTTI(Transmission Time Interval)内に、シンボル長が互いに異なる複数の信号波形を配置すると、1つのシンボルが2つのTTIに跨がってしまうおそれがある。
 本発明の一態様は、将来の無線通信システムの下りリンク送信において、1つのシンボルが2つのTTIに跨がってしまうことなく、シンボル長が互いに異なる複数の信号波形を併用できる新たな構成を提供する。
 本発明の一態様に係るユーザ端末は、下りリンク信号の各シンボルの信号波形を判定する制御部と、前記下りリンク信号を受信する受信部と、前記判定された信号波形に基づいて、前記受信された下りリンク信号に対して前処理を行う前処理部と、前記前処理が行われた信号に対してFFT処理を行うFFT部と、前記判定された信号波形に基づいて、前記FFT処理された信号に対して等化処理を行う信号検出部と、を具備し、前記信号波形は、シンボル長が互いに異なる複数の信号波形候補から選択され、1つのシンボルが2つのTTIに跨がることなくTTIに配置されている。
 本発明の一態様に係る無線通信方法は、下りリンク信号の各シンボルの信号波形を判定し、前記下りリンク信号を受信し、前記判定された信号波形に基づいて、前記受信された下りリンク信号に対して前処理を行い、前記前処理が行われた信号に対してFFT処理を行い、前記判定された信号波形に基づいて、前記FFT処理された信号に対して等化処理を行い、前記信号波形は、シンボル長が互いに異なる複数の信号波形候補から選択され、1つのシンボルが2つのTTIに跨がることなくTTIに配置されている。
 本発明の一態様によれば、将来の無線通信システムの下りリンク送信において、1つのシンボルが2つのTTIに跨がってしまうことなく、シンボル長が互いに異なる複数の信号波形を併用できる新たな構成を提供する。
実施の形態1に係る無線基地局の構成例を示すブロック図である。 実施の形態1に係るユーザ端末の構成例を示すブロック図である。 実施の形態1に係る無線基地局に記憶される信号波形切り替えパターンの一例を示す図である。 実施の形態1に係る無線基地局にてTTIに配置されるシンボルの一例を示す図である。 実施の形態2に係る無線基地局の構成例を示すブロック図である。 実施の形態2に係る無線基地局にてTTIに配置されるシンボルの一例を示す図である。 実施の形態2に係る無線基地局にてTTIに配置されるシンボルの他の例を示す図である。 実施の形態3に係る無線基地局に記憶される各信号波形のサブキャリア間隔とシンボル数の組み合わせパターンの一例を示す図である。 実施の形態4に係る無線基地局の構成例を示すブロック図である。 実施の形態4に係る無線基地局に記憶される各信号波形のサブキャリア間隔とシンボル数の組み合わせパターンの一例を示す図である。 実施の形態5に係る無線基地局の構成例を示すブロック図である。 実施の形態5に係る無線基地局に記憶される各信号波形のサブキャリア間隔とシンボル数の組み合わせパターンの一例を示す図である。 本発明の一実施の形態に係る無線基地局およびユーザ端末のハードウェア構成の一例を示す図である。
 以下、本発明の実施の形態を、図面を参照して説明する。なお、以下の各実施の形態では、DFT-s-OFDMとUW-DFT-s-OFDMとを併用する場合について説明する。
 [実施の形態1]
 実施の形態1に係る無線通信システムは、少なくとも、図1に示す無線基地局(以下「基地局」という)10および図2に示すユーザ端末(以下「端末」という)20を備える。端末20は、基地局10に接続している。基地局10は、端末20に対して、DL(Down Link)信号を送信する。DL信号には、例えば、DLデータ信号(例えば、PDSCH(Physical Downlink Shared Channel))と、DLデータ信号を復調および復号するためのDL制御信号(例えば、PDCCH(Physical Downlink Control Channel))とが含まれている。
 <無線基地局>
 図1は、実施の形態1に係る基地局10の構成例を示すブロック図である。図1に示す基地局10は、記憶部101と、制御部102と、前処理部103と、マッピング部104と、IFFT部105と、後処理部106と、送信部107と、アンテナ108と、を有している。
 記憶部101は、各TTIで送信する信号波形を示す信号波形切り替えパターンを記憶する。
 制御部102は、記憶部101に記憶された信号波形切り替えパターンに従って、TTI毎に信号波形を決定し、前処理部103、マッピング部104および後処理部106に信号波形を指示する。なお、制御部102の動作の詳細については、信号波形切り替えパターンの例示と供に後述する。
 また、基地局10(制御部102)は、選択した信号波形切り替えパターンを示す情報を端末20(制御部202)に通知する。通知方法の具体例については後述する。
 前処理部103は、制御部102から指示された信号波形に応じて、入力データ(変調シンボル列)に対して前処理を行い、マッピング部104に前処理後の信号を出力する。例えば、DFT-s-OFDMを指示された場合、前処理部103は、データを直並列変換して時間領域信号を生成し、さらに離散フーリエ変換を行い、得られた周波数領域信号をマッピング部104に出力する。また、UW-DFT-s-OFDMを指示された場合、前処理部103は、データを直並列変換し、両端にUWを挿入して時間領域信号を生成し、さらに離散フーリエ変換を行い、得られた周波数領域信号をマッピング部104に出力する。なお、UWの挿入位置は、両端以外でも良く、例えば先頭または末尾のみでも良い。また、UWは、中間を含む複数の箇所に挿入してもよい。
 マッピング部104は、制御部102から指示された信号波形に対応するリソース(サブキャリア、シンボル)に、前処理部103から出力された周波数領域信号をマッピングする。また、マッピング部104は、周波数領域信号がマッピングされたサブキャリア以外のサブキャリアには0をマッピングする。そして、マッピング部104は、マッピング後の周波数領域信号をIFFT部105に出力する。
 IFFT部105は、マッピング部104から出力された周波数領域信号に対し、逆高速フーリエ変換を行い、得られた時間領域信号を後処理部106に出力する。
 後処理部106は、制御部102から指示された信号波形に応じて、IFFT部105から出力された時間領域信号に対して後処理を行い、送信部107に後処理後の信号を出力する。例えば、DFT-s-OFDMを指示された場合、後処理部106は、IFFT部105から出力された時間領域信号にCPを挿入し、並直列変換し、送信部107に出力する。また、UW-DFT-s-OFDMを指示された場合、後処理部106は、IFFT部105から出力された時間領域信号を並直列変換し、送信部107に出力する。
 送信部107は、後処理部106から出力される時間領域信号(DL信号)に対して、D/A(Digital-to-Analog)変換、アップコンバート、増幅等のRF(Radio Frequency)処理を行い、アンテナ108を介して端末20に無線信号を送信する。
 <ユーザ端末>
 図2は、実施の形態1に係る端末20の構成例を示すブロック図である。図2に示す端末20は、記憶部201と、制御部202と、アンテナ203と、受信部204と、前処理部205と、FFT部206と、信号検出部207と、後処理部208と、を有する。
 記憶部201は、記憶部101と同一の信号波形切り替えパターンを記憶する。
 制御部202は、基地局10(制御部102)から通知された信号波形切り替えパターンに従って各シンボルの信号波形を判定し、TTI毎に、前処理部205、信号検出部207および後処理部208に信号波形を指示する。
 受信部204は、アンテナ203において受信された無線信号に対して、増幅、ダウンコンバート、A/D(Analog-to-Digital)変換等のRF処理を行い、ベースバンドの時間領域信号(DL信号)を前処理部205に出力する。
 前処理部205は、制御部202から指示された信号波形に応じて、受信部204から出力された時間領域信号に対して前処理を行い、FFT部206に前処理後の信号を出力する。例えば、DFT-s-OFDMを指示された場合、前処理部205は、受信部204から出力された時間領域信号を直並列変換し、付加されたCPを除去し、FFT部206に出力する。また、UW-DFT-s-OFDMを指示された場合、前処理部205は、受信部204から出力された時間領域信号を直並列変換し、FFT部206に出力する。
 FFT部206は、前処理部205から出力された時間領域信号に対し、高速フーリエ変換を行い、得られた周波数領域信号を信号検出部207に出力する。
 信号検出部207は、FFT部206から出力された信号に対して、制御部202から指示された信号波形に対応した等化処理を行い、等化処理後の信号を後処理部208に出力する。
 後処理部208は、制御部202から指示された信号波形に応じて、信号検出部207から出力された周波数領域信号に対して後処理を行い、出力データ(変調シンボル列)を得る。例えば、DFT-s-OFDMを指示された場合、後処理部208は、信号検出部207から出力された周波数領域信号に対して逆離散フーリエ変換を行い、得られた時間領域信号に対して並直列変換を行い、出力データを得る。また、UW-DFT-s-OFDMを指示された場合、後処理部208は、信号検出部207から出力された周波数領域信号に対して逆離散フーリエ変換を行い、得られた時間領域信号からUWを除去して並直列変換を行い、出力データを得る。
 <制御部102の動作>
 次に、本実施の形態の制御部102の動作について、記憶部101に記憶される信号波形切り替えパターンの例示と供に詳細に説明する。
 図3は、記憶部101に記憶される信号波形切り替えパターンの一例を示す図である。本例では、信号波形切り替えパターン毎にConfiguration IDが割り当てられ、Configuration ID毎に、TTI indexによって規定される各TTIにて送信する信号波形が設定されている。例えば、Configuration IDが「#1」で、TTI indexが「0」のTTIでは、DFT-S-OFDM(あるいはOFDM)に基づく信号波形(図3の「O/D」)が設定されている。
 制御部102は、選択したConfiguration IDに基づいて各TTIの信号波形を決定し、前処理部103、マッピング部104および後処理部106に信号波形を指示する。
 例えば、制御部102は、Configuration ID「#1」を選択した場合、TTI indexが「0」のTTIでは、DFT-S-OFDM(あるいはOFDM)に基づく信号波形(図3の「O/D」)を14シンボル連続で生成することを指示する。この結果、図4(A)に示すように、1TTI(=1ms)において、14シンボル(=71.4μs×14=1ms)を送信でき、また、14シンボル目の終端が丁度TTIの終端となる。またDFT-S-OFDMのシンボル長とOFDMのシンボル長は同じであるため、両者は1シンボル内において混在してもよい。
 また、制御部102は、Configuration ID「#1」を選択した場合、TTI indexが「1」のTTIでは、UW-DFT-S-OFDMに基づく信号波形(図3の「U」)を15シンボル連続で生成することを指示する。この結果、図4(B)に示すように、1TTI(=1ms)において、15シンボル(=66.7μs×15=1ms)を送信でき、また、15シンボル目の終端が丁度TTIの終端となる。
 なお、図3ではDFT-S-OFDMとUW-DFT-S-OFDMをTTI毎に切り替える例を示しているが、本実施の形態はこれに限られず、シンボル長Aパターンとシンボル長BパターンをTTIごとに切り替えてもよい。その場合、例えばシンボル長Aパターンは71.4μs×14シンボル=1ms、シンボル長Bパターンは66.7μs×15=1msと考えることができる。また、例外のシンボル長×シンボル数のCパターン目を規定してもよいし、シンボルごとにシンボル長を変えて合計1TTIとなるようなDパターン目を規定してもよい。
 なお、本実施の形態において、Configuration IDの選択方法について特に限定はない。例えば、制御部102は、端末20から報告されるRSRP(Reference Signal Received Power)、RSRQ(Reference Signal. Received Quality)、CQI(Channel Quality Indicator )に基づいて選択しても良く、基地局10側にて推定したチャネル推定値等に応じてConfiguration ID(単位時間当たりのシンボル数)を選択しても良い。
 <信号波形切り替えパターンの通知例>
 次に、基地局10(制御部102)から端末20(制御部202)への信号波形切り替えパターンの通知方法について説明する。
 基地局10は、端末20に対して信号波形切り替えパターンを示す情報を、明示的(explicit)に通知してもよく、暗黙的(implicit)に通知してもよい。
 例えば、信号波形切り替えパターンをexplicitに通知する場合、基地局10は、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、PHY(物理レイヤ)シグナリング等によって信号波形切り替えパターンを端末20へ通知してもよい。一例として、基地局10は、MIB(Master Information Block)、SIB(System Information Block)、RACHメッセージ2(Random Access Response:RARと呼ばれることもある)、Paging情報、RRC接続情報、又は、S1接続設定等を用いて信号波形切り替えパターンを端末20へ通知してもよい。
 また、基地局10は、端末20に対して、PDCCHのDCI(Downlink Control Information)を用いて、信号波形切り替えパターンを通知しても良い。
 また、信号波形切り替えパターンをimplicitに通知する場合、基地局10及び端末20は、例えば、同期信号(Synchronization Signal:SS)、PBCH、SIB又はRACHの構成等と、信号波形切り替えパターン(例えば、Configuration ID)とを1対1で関連付けてもよい。例えば、SS、PBCH、SIB、RACHの各々の構成として複数のパターンがそれぞれ規定されている場合に、複数のパターンが、互いに異なるConfiguration IDに関連付けられるようにグループ分けされてもよい。グループ分けの際、各パターン(例えば、SSのサブキャリア間隔が互いに異なる各パターン)に対して、当該パターンが使用される通信環境に適した信号波形切り替えパターンが関連付けられてもよい。
 基地局10は、端末20に設定した信号波形切り替えパターンに関連付けられたグループの信号を端末20へ送信する。そして、端末20は、基地局10から送信された信号が属するグループに関連付けられた信号波形切り替えパターン(Configuration ID)を、自機に設定された信号波形切り替えパターンとして特定する。これらの処理により、信号波形切り替えパターンが既存の信号によってimplicitに通知されるので、信号波形切り替えパターンを通知するための新たなシグナリングが不要となる。
 なお、基地局10から端末20への信号波形切り替えパターンの通知は、周期的に行われてもよく、動的に行われてもよい。
 <本実施の形態の効果>
 このように、本実施の形態では、各TTI内では信号波形を切り替えないように制御できるので、1つのシンボルが2つのTTIに跨がってしまうことなく、シンボル長が互いに異なる複数の信号波形を併用できる。
 [実施の形態2]
 実施の形態2では、1TTI内において信号波形を切り替える場合について説明する。なお、実施の形態2の端末の構成は、記憶部201が削除される以外は、図2に示した端末20と同一であるので説明を省略する。
 <無線基地局>
 図5は、実施の形態2に係る基地局30の構成例を示すブロック図である。なお、図5に示す基地局30において、図1に示した基地局10と同一構成部分には同一符号を付して説明を省略する。
 図5の基地局30は、図1の基地局10に対して、記憶部101を削除し、無送信時間計算部301を追加した構成を採る。
 無送信時間計算部301は、1TTI内において、信号波形を切り替える際に、下記の式(1)を用いて無送信の合計時間を計算し、計算した無送信の合計時間Tnを示す情報を制御部102に出力する。
 Tn=TTTI-(T×N+T×N)・・・(1)
 式(1)において、TTTIは1TTI(例えば1ms)、TはDFT-S-OFDMの1シンボル時間(例えば71.4μs)、NはDFT-S-OFDMのシンボル数、TはUW-DFT-S-OFDMの1シンボル時間(例えば66.7μs)、NはUW-DFT-S-OFDMのシンボル数である。
 例えば、図6に示すように、1TTIにおいて、DFT-S-OFDMのシンボルを4シンボル配置し、UW-DFT-S-OFDMのシンボルを10シンボル配置する場合、無送信の合計時間Tnは47.4μs(=1000-(71.4×4+66.7×10))となる。
 なお、上記式(1)において、TD、をシンボル長Aパターンとシンボル長Bパターンに置き換えてもよい。その場合、例えばシンボル長Aパターンは71.4μs、シンボル長Bパターンは66.7μsのように考えることができる。また、上記式(1)は、シンボル長Cパターンのように3種類以上のシンボル長に拡張してもよい。
 制御部102は、TTI毎に各信号波形のシンボル数を決定し、前処理部103、マッピング部104および後処理部106に信号波形を指示する。さらに、制御部102は、無送信時間計算部301において計算された無送信の合計時間となるように、各TTIにおいて無送信区間を設定し、後処理部106に対して、設定した無送信区間において何も送信しないように指示する。
 後処理部106は、制御部102から指示された無送信区間において、送信部107に対して何も出力しない。
 また、基地局10(制御部102)は、1TTI内における各信号波形のシンボル数を示す情報を端末20(制御部202)に通知する。通知方法の具体例については後述する。
 制御部202は、基地局10(制御部102)から通知された、1TTI内における各信号波形のシンボル数に従って信号波形を決定し、前処理部205、信号検出部207および後処理部208に信号波形を指示する。
 <各信号波形のシンボル数の通知例>
 次に、基地局30(制御部102)から端末20(制御部202)への各信号波形のシンボル数の通知方法について説明する。
 基地局30は、端末20に対して1TTI内における各信号波形のシンボル数を示す情報を、明示的(explicit)に通知してもよく、暗黙的(implicit)に通知してもよい。
 例えば、各信号波形のシンボル数をexplicitに通知する場合、基地局30は、RRCシグナリング、MACシグナリング、PHYシグナリング等によって各信号波形のシンボル数を端末20へ通知してもよい。一例として、基地局30は、MIB、SIB、RACHメッセージ2、Paging情報、RRC接続情報、又は、S1接続設定等を用いて各信号波形のシンボル数を端末20へ通知してもよい。
 また、基地局30は、端末20に対して、PDCCHのDCIを用いて、各信号波形のシンボル数を通知しても良い。
 例えば、複数のCP長が規定されている場合、DCIは、先頭NシンボルのCP長がM、それ以外のシンボルのCP長がLというように、N、M、Lのように3つ以上の変数を通知してもよい。
 また、DCIは、先頭NシンボルのCP長がAパターン、それ以外のシンボルのCP長がBパターンというように、Nのみの変数を通知してもよい。この場合、AパタンーンのCP長、BパターンのCP長は予め仕様で決められるか、MIB、SIB、メッセージ2、Paging情報、RRC接続設定、S1接続設定等の方法により通知される。
 また、先頭NシンボルのCP長がAパターン、その次のMシンボルのCP長がBパターン、それ以外のシンボルのCP長がCパターンというように、CP長のパターンを3つ以上にしてもよく、この場合、DCIは、N、Mの2つの変数を通知する。
 また、各信号波形のシンボル数をimplicitに通知する場合、基地局30及び端末20は、例えば、同期信号、PBCH、SIB又はRACHの構成等と、各信号波形のシンボル数とを1対1で関連付けてもよい。これらの方法により、各信号波形のシンボル数が既存の信号によってimplicitに通知されるので、各信号波形のシンボル数を通知するための新たなシグナリングが不要となる。
 なお、基地局30から端末20への各信号波形のシンボル数の通知は、周期的に行われてもよく、動的に行われてもよい。
 <本実施の形態の効果>
 このように、本実施の形態では、1TTI内において信号波形を切り替える場合に、各TTIにおいてシンボルが配置されない時間(1シンボルに満たない時間)を無送信とできるので、1つのシンボルが2つのTTIに跨がってしまうことなく、シンボル長が互いに異なる複数の信号波形を併用できる。
 なお、図6では、無送信区間をTTIの最後に設定する場合を示したが、本実施の形態では、無送信区間の位置について特に限定は無い。例えば、無送信区間を、TTIの先頭に設定してもよく、信号波形が切り替わる位置(図6の例では、4シンボル目と5シンボル目の間)に設定してもよい。また、本実施の形態では、1TTIにおける無送信区間を複数に分けても良い。
 また、本実施の形態では、シンボルの不連続性が起きないように、無送信区間の前後でフィルタリングしても良い。なお、この場合、完全な無送信ではなくなる。
 [実施の形態2の変形例1]
 実施の形態2では、マッピング部104によって、信号波形毎に、サブキャリア間隔を変更しても良い。サブキャリア間隔が拡がった信号波形については、その拡がりに応じて1シンボル時間を短くできるので、基地局30は、その分、1TTI内に配置するシンボル数を増やす。この結果、1TTI内の無送信の合計時間Tnを短くできる可能性が増える。
 例えば、UW-DFT-S-OFDMのサブキャリア間隔を30kHとすれば、UW-DFT-S-OFDMのシンボル時間は33.3μsとなるので、図7に示すように、1TTIにおいて、DFT-S-OFDMのシンボルを4シンボル配置した後、UW-DFT-S-OFDMのシンボルを21シンボル配置できる。この結果、無送信の合計時間Tnは15.1μs(=1000-71.4×4+33.3×21)となる。
 このように、信号波形のサブキャリア間隔を広げることにより、1TTI内の無送信の合計時間を短くでき、オーバーヘッドを小さくできる。
 [実施の形態3]
 実施の形態3では、1TTI内において信号波形を切り替え、かつ、無送信区間が0になるような信号波形の組み合わせを選択する場合について説明する。なお、実施の形態3の端末の構成は、図2に示した端末20と同一であるので説明を省略する。また、実施の形態3の基地局の構成は、図1に示した基地局10と同一である。ただし、実施の形態3では、記憶部101、201の記憶内容と、制御部102、202の動作が実施の形態1と異なる。
 <制御部102の動作>
 次に、本実施の形態の制御部102の動作について、記憶部101に記憶される組み合わせパターンの例示と供に詳細に説明する。
 図8は、記憶部101に記憶される、1TTIにおいて送信する各信号波形のサブキャリア間隔とシンボル数の組み合わせパターン(以下、単に「組み合わせパターン」という)の一例を示す図である。組み合わせパターンとして、無送信時間が0となるもの、すなわち、信号波形の送信時間の合計が丁度1TTIとなるもののみが許容されている。
 本例では、組み合わせパターン毎にConfiguration IDが割り当てられ、Configuration ID毎に、1TTIにおいて送信する各信号波形のサブキャリア間隔、シンボル長、シンボル数が設定されている。例えば、Configuration IDが「#1」では、1TTIに、DFT-S-OFDMに基づく信号波形が、サブキャリア間隔が15kHzで、7シンボル配置され、UW-DFT-S-OFDMに基づく信号波形が、サブキャリア間隔が60kHzで、30シンボル配置される。この結果、無送信の合計時間Tnは0μs(=1000-(71.4×7+16.7×30))となる。
 制御部102は、選択したConfiguration IDに基づいて1TTIに配置する各信号波形のサブキャリア間隔、シンボル数を決定し、前処理部103、マッピング部104および後処理部106に各信号波形のサブキャリア間隔、シンボル数を指示する。
 また、基地局10(制御部102)は、選択した組み合わせパターンを示す情報を端末20(制御部202)に通知する。なお、組み合わせパターンの通知方法は、実施の形態1において説明した信号波形切り替えパターンの通知方法と同様である。
 制御部202は、基地局10(制御部102)から通知された組み合わせパターンに従って各シンボルの信号波形を判定し、前処理部205、信号検出部207および後処理部208に信号波形を指示する。
 なお、本実施の形態においても、実施の形態1と同じく、Configuration IDの選択方法について特に限定はない。
 <本実施の形態の効果>
 このように、本実施の形態では、1TTI内において信号波形を切り替える場合に、無送信区間が0になるような信号波形の組み合わせを選択するので、1つのシンボルが2つのTTIに跨がってしまうことなく、かつ、信号波形を連続配置して、シンボル長が互いに異なる複数の信号波形を併用できる。
 [実施の形態4]
 実施の形態4では、1TTI内において信号波形を切り替え、かつ、無送信区間が0になるように所定の信号波形のサブキャリア間隔を狭くなる方向に調整する場合について説明する。なお、実施の形態4の端末の構成は、記憶部201が削除される以外は、図2に示した端末20と同一であるので説明を省略する。
 <無線基地局>
 図9は、実施の形態4に係る基地局40の構成例を示すブロック図である。なお、図9に示す基地局40において、図1に示した基地局10と同一構成部分には同一符号を付して説明を省略する。
 図9の基地局40は、図1の基地局10に対して、記憶部101を削除し、サブキャリア間隔計算部401を追加した構成を採る。
 サブキャリア間隔計算部401は、1TTI内において信号波形を切り替える際に、下記の式(2)を用いて、所定の信号波形(本例では、UW-DFT-S-OFDM)のサブキャリア間隔を計算し、計算したサブキャリア間隔Fを示す情報を制御部102に出力する。
 F=FUf×T/T・・・(2)
 式(2)において、FUfはUW-DFT-S-OFDMのサブキャリア間隔の初期値(例えば15kHz)、TはUW-DFT-S-OFDMの1シンボル時間(例えば66.7μs)、TはDFT-S-OFDMの1シンボル時間(例えば71.4μs)である。
 例えば、DFT-S-OFDMおよびUW-DFT-S-OFDMのサブキャリア間隔の初期値がいずれも15kHzで、DFT-S-OFDMの1シンボル時間が71.4μsで、UW-DFT-S-OFDMの1シンボル時間が66.7μsである場合、UW-DFT-S-OFDMのサブキャリア間隔Fは14kHz(=15×66.7/71.4)となる。
 この結果、UW-DFT-S-OFDMの1シンボル時間が71.4μsとなり、図10に示すように、無送信の合計時間Tnが0となる。
 制御部102は、TTI毎に各信号波形のシンボル数を決定し、前処理部103、マッピング部104および後処理部106に信号波形を指示する。さらに、制御部102は、マッピング部104に対して、サブキャリア間隔計算部401において計算されたUW-DFT-S-OFDMのサブキャリア間隔を指示する。
 マッピング部104は、上記実施の形態2において説明した動作に加え、制御部102の指示に基づいてUW-DFT-S-OFDMのサブキャリア間隔を調整する動作を行う。
 また、基地局40(制御部102)は、調整されたサブキャリア間隔を示す情報を端末20(制御部202)に通知する。なお、調整されたサブキャリア間隔の通知方法は、実施の形態1において説明した信号波形切り替えパターンの通知方法と同様である。
 制御部202は、基地局40(制御部102)から通知された、1TTI内における各信号波形のシンボル数に従って各シンボルの信号波形を判定し、前処理部205、信号検出部207および後処理部208に信号波形を指示する。さらに、制御部202は、信号検出部207に対して、基地局40(制御部102)から通知されたUW-DFT-S-OFDMのサブキャリア間隔を指示する。
 信号検出部207は、上記実施の形態2において説明した動作に加え、制御部202の指示に基づいて、サブキャリア間隔が調整されたUW-DFT-S-OFDMに対して等化処理を行う。
 <本実施の形態の効果>
 このように、本実施の形態では、1TTI内において信号波形を切り替える場合に、信号波形のサブキャリア間隔を調整するので、1つのシンボルが2つのTTIに跨がってしまうことなく、かつ、信号波形を連続配置して、シンボル長が互いに異なる複数の信号波形を併用できる。
 [実施の形態5]
 実施の形態5では、1TTI内において信号波形を切り替え、かつ、無送信区間が0になるようにCP長を長くする方向に調整する場合について説明する。なお、実施の形態5の端末の構成は、記憶部201が削除される以外は、図2に示した端末20と同一であるので説明を省略する。
 <無線基地局>
 図11は、実施の形態5に係る基地局50の構成例を示すブロック図である。なお、図11に示す基地局50において、図1に示した基地局10と同一構成部分には同一符号を付して説明を省略する。
 図11の基地局50は、図1の基地局10に対して、記憶部101を削除し、CP長計算部501を追加した構成を採る。
 CP長計算部501は、1TTI内において信号波形を切り替える際に、下記の式(3)を用いて、所定の信号波形(本例では、DFT-S-OFDM)のCP長を計算し、計算したCP長Cを示す情報を制御部102に出力する。
 C=CDf+Tn/N・・・(3)
 式(3)において、CDfはDFT-S-OFDMのCP長の初期値(例えば4.7μs)、Tnは無送信の合計時間、NはDFT-S-OFDMのシンボル数である。
 例えば、DFT-S-OFDMの1シンボル時間の初期値が71.4μs、UW-DFT-S-OFDMの1シンボル時間が66.7μsであって、DFT-S-OFDMを4シンボル配置し、UW-DFT-S-OFDMを10シンボル配置する場合、無送信の合計時間は47.6μsとなり(実施の形態2参照)、DFT-S-OFDMのCP長は16.6μs(=4.7+47.4/4)となる。
 この結果、DFT-S-OFDMの1シンボル時間は83.3μs(=71.4+16.6-4.7)となり、図12に示すように、無送信の合計時間Tnが0(=1000-(83.3×4+66.7×10)となる。
 制御部102は、TTI毎に各信号波形のシンボル数を決定し、前処理部103、マッピング部104および後処理部106に信号波形を指示する。さらに、制御部102は、後処理部106に対して、CP長計算部501において計算されたDFT-S-OFDMのCP長を指示する。
 後処理部106は、上記実施の形態2において説明した動作に加え、制御部102から指示さに基づいてDFT-S-OFDMのCP長を調整する動作を行う。
 また、基地局50(制御部102)は、調整されたCP長を示す情報を端末20(制御部202)に通知する。なお、調整されたCP長の通知方法は、実施の形態1において説明した信号波形切り替えパターンの通知方法と同様である。
 制御部202は、基地局50(制御部102)から通知された、1TTI内における各信号波形のシンボル数に従って各シンボルの信号波形を判定し、前処理部205、信号検出部207および後処理部208に信号波形を指示する。さらに、制御部202は、前処理部205に対して、基地局50(制御部102)から通知されたDFT-S-OFDMのCP長を指示する。
 前処理部205は、上記実施の形態2において説明した動作に加え、制御部202の指示に基づいて、CP長が調整されたDFT-S-OFDMに対して前処理を行う。
 <本実施の形態の効果>
 このように、本実施の形態では、1TTI内において信号波形を切り替える場合に、信号波形のCP長を調整するので、1つのシンボルが2つのTTIに跨がってしまうことなく、かつ、信号波形を連続配置して、シンボル長が互いに異なる複数の信号波形を併用できる。
 なお、UW(Unique Word)は、Zadoff-chu系列を使用しても良いし、0パディングを使用しても良い。
 なお、上記の各実施の形態は、他の実施の形態と組み合わせてもよい。
 以上、実施の形態について説明した。
 (ハードウェア構成)
 なお、上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線で)接続し、これら複数の装置により実現されてもよい。
 例えば、本発明の一実施の形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図13は、本発明の一実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10、30、40、50及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10、30、40、50及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサで実行されてもよいし、処理が同時に、逐次に、又はその他の手法で、一以上のプロセッサで実行されてもよい。なお、プロセッサ1001は、一以上のチップで実装されてもよい。
 無線基地局10、30、40、50及びユーザ端末20における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、又は、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部102、202、前処理部103、205、マッピング部104、IFFT部105、後処理部106、208、FFT部206、信号検出部207などは、プロセッサ1001で実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、無線基地局10の制御部102は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。例えば、上述の記憶部101、201などは、ストレージ1003で実現されてもよい。また、上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、上述の送信部107、アンテナ108,203、受信部204などは、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、無線基地局10、30、40、50及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
 (情報の通知、シグナリング)
 また、情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 (適応システム)
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 (処理手順等)
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 (基地局の操作)
 本明細書において基地局(無線基地局)によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局および/または基地局以外の他のネットワークノード(例えば、MME(Mobility Management Entity)またはS-GW(Serving Gateway)などが考えられるが、これらに限られない)によって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MMEおよびS-GW)であってもよい。
 (入出力の方向)
 情報及び信号等は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)に出力され得る。複数のネットワークノードを介して入出力されてもよい。
 (入出力された情報等の扱い)
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置に送信されてもよい。
 (判定方法)
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 (ソフトウェア)
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 (情報、信号)
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナル)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC)は、キャリア周波数、セルなどと呼ばれてもよい。
 (「システム」、「ネットワーク」)
 本明細書で使用する「システム」および「ネットワーク」という用語は、互換的に使用される。
 (パラメータ、チャネルの名称)
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的なものではない。さらに、これらのパラメータを使用する数式等は、本明細書で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素(例えば、TPCなど)は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。
 (基地局)
 基地局(無線基地局)は、1つまたは複数(例えば、3つ)の(セクタとも呼ばれる)セルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、および/または基地局サブシステムのカバレッジエリアの一部または全体を指す。さらに、「基地局」、「eNB」、「セル」、および「セクタ」という用語は、本明細書では互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 (端末)
 ユーザ端末は、当業者によって、移動局、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、UE(User Equipment)、またはいくつかの他の適切な用語で呼ばれる場合もある。
 (用語の意味、解釈)
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどの電磁エネルギーを使用することにより、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。また、補正用RSは、TRS(Tracking RS)、PC-RS(Phase Compensation RS)、PTRS(Phase Tracking RS)、Additional RSと呼ばれてもよい。また、復調用RS及び補正用RSは、それぞれに対応する別の呼び方であってもよい。また、復調用RS及び補正用RSは同じ名称(例えば復調RS)で規定されてもよい。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 上記の各装置の構成における「部」を、「手段」、「回路」、「デバイス」等に置き換えてもよい。
 「含む(including)」、「含んでいる(comprising)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
 無線フレームは時間領域において1つまたは複数のフレームで構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレーム、タイムユニット等と呼ばれてもよい。サブフレームは更に時間領域において1つまたは複数のスロットで構成されてもよい。スロットはさらに時間領域において1つまたは複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier-Frequency Division Multiple Access)シンボル等)で構成されてもよい。
 無線フレーム、サブフレーム、スロット、およびシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、およびシンボルは、それぞれに対応する別の呼び方であってもよい。
 例えば、LTEシステムでは、基地局が各移動局に無線リソース(各移動局において使用することが可能な周波数帯域幅、送信電力等)を割り当てるスケジューリングを行う。スケジューリングの最小時間単位をTTI(Transmission Time Interval)と呼んでもよい。
 例えば、1サブフレームをTTIと呼んでもよいし、複数の連続したサブフレームをTTIと呼んでもよいし、1スロットをTTIと呼んでもよい。
 リソースユニットは、時間領域および周波数領域のリソース割当単位であり、周波数領域では1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。また、リソースユニットの時間領域では、1つまたは複数個のシンボルを含んでもよく、1スロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つまたは複数のリソースユニットで構成されてもよい。また、リソースユニットは、リソースブロック(RB:Resource Block)、物理リソースブロック(PRB:Physical RB)、PRBペア、RBペア、スケジューリングユニット、周波数ユニット、サブバンドと呼ばれてもよい。また、リソースユニットは、1つ又は複数のREで構成されてもよい。例えば、1REは、リソース割当単位となるリソースユニットより小さい単位のリソース(例えば、最小のリソース単位)であればよく、REという呼称に限定されない。
 上述した無線フレームの構造は例示に過ぎず、無線フレームに含まれるサブフレームの数、サブフレームに含まれるスロットの数、スロットに含まれるシンボルおよびリソースブロックの数、および、リソースブロックに含まれるサブキャリアの数は様々に変更することができる。
 本開示の全体において、例えば、英語でのa, an, 及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。
 (態様のバリエーション等)
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本特許出願は、2017年2月3日に出願した日本国特許出願第2017-019121号に基づきその優先権を主張するものであり、日本国特許出願第2017-019121号の全内容を本願に援用する。
 本発明の一態様は、移動通信システムに有用である。
 10、30、40、50 無線基地局
 101 記憶部
 102 制御部
 103 前処理部
 104 マッピング部
 105 IFFT部
 106 後処理部
 107 送信部
 108 アンテナ
 20 ユーザ端末
 201 記憶部
 202 制御部
 203 アンテナ
 204 受信部
 205 前処理部
 206 FFT部
 207 信号検出部
 208 後処理部
 301 無送信時間計算部
 401 サブキャリア間隔計算部
 501 CP長計算部
 

Claims (7)

  1.  下りリンク信号の各シンボルの信号波形を判定する制御部と、
     前記下りリンク信号を受信する受信部と、
     前記判定された信号波形に基づいて、前記受信された下りリンク信号に対して前処理を行う前処理部と、
     前記前処理が行われた信号に対してFFT処理を行うFFT部と、
     前記判定された信号波形に基づいて、前記FFT処理された信号に対して等化処理を行う信号検出部と、
     を具備し、
     前記信号波形は、シンボル長が互いに異なる複数の信号波形候補から選択され、1つのシンボルが2つのTTIに跨がることなくTTIに配置されている、
     ユーザ端末。
  2.  前記制御部は、前記各TTI内では信号波形が切り替わらない信号波形切り替えパターンに従って前記各シンボルの信号波形を判定し、前記判定した信号波形に基づいて処理を行うように前記前処理部および前記信号検出部に指示する、
     請求項1に記載のユーザ端末。
  3.  前記制御部は、前記各TTIに配置されている各信号波形のシンボル数に従って前記各シンボルの信号波形を判定し、前記判定した信号波形に基づいて処理を行うように前記前処理部および前記信号検出部に指示する、
     請求項1に記載のユーザ端末。
  4.  前記制御部は、前記各TTIにおいて前記シンボルが配置されない時間が0になるような信号波形の組み合わせパターンに従って前記各シンボルの信号波形を判定し、前記判定した信号波形に基づいて処理を行うように前記前処理部および前記信号検出部に指示する、
     請求項1に記載のユーザ端末。
  5.  前記制御部は、前記各TTIにおいて前記シンボルが配置されない時間が0になるようにサブキャリア間隔が調整された所定の信号波形の信号に対して等化処理を行うように前記信号検出部に指示する、
     請求項3に記載のユーザ端末。
  6.  前記制御部は、前記各TTIにおいて前記シンボルが配置されない時間が0になるようにCP長が調整された所定の信号波形に対して前処理を行うように前記前処理部に指示する、
     請求項3または5に記載のユーザ端末。
  7.  下りリンク信号の各シンボルの信号波形を判定し、
     前記下りリンク信号を受信し、
     前記判定された信号波形に基づいて、前記受信された下りリンク信号に対して前処理を行い、
     前記前処理が行われた信号に対してFFT処理を行い、
     前記判定された信号波形に基づいて、前記FFT処理された信号に対して等化処理を行い、
     前記信号波形は、シンボル長が互いに異なる複数の信号波形候補から選択され、1つのシンボルが2つのTTIに跨がることなくTTIに配置されている、
     無線通信方法。
PCT/JP2018/003222 2017-02-03 2018-01-31 ユーザ端末および無線通信方法 WO2018143275A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018565607A JP7117248B2 (ja) 2017-02-03 2018-01-31 ユーザ端末および無線通信方法
US16/483,199 US11012280B2 (en) 2017-02-03 2018-01-31 User terminal and radio communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017019121 2017-02-03
JP2017-019121 2017-02-03

Publications (1)

Publication Number Publication Date
WO2018143275A1 true WO2018143275A1 (ja) 2018-08-09

Family

ID=63039740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003222 WO2018143275A1 (ja) 2017-02-03 2018-01-31 ユーザ端末および無線通信方法

Country Status (3)

Country Link
US (1) US11012280B2 (ja)
JP (1) JP7117248B2 (ja)
WO (1) WO2018143275A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4068885A4 (en) * 2019-11-29 2022-12-21 Sony Group Corporation TERMINAL DEVICE, BASE STATION DEVICE AND COMMUNICATION METHOD

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3664348A4 (en) * 2018-02-14 2021-03-31 LG Electronics Inc. METHOD AND DEVICE FOR TRANSMITTING OR RECEIVING A SIGNAL IN A WIRELESS COMMUNICATION SYSTEM
US11758566B2 (en) * 2021-04-09 2023-09-12 Qualcomm Incorporated Waveform-specific transmission parts
US11616594B2 (en) * 2021-05-04 2023-03-28 Qualcomm Incorporated Utilizing padding duration at start of a half subframe

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9807719B2 (en) * 2013-03-14 2017-10-31 Lg Electronics Inc. Method for receiving signal by using device-to-device communication in wireless communication system
US10862634B2 (en) * 2014-03-07 2020-12-08 Huawei Technologies Co., Ltd. Systems and methods for OFDM with flexible sub-carrier spacing and symbol duration
CN106302300B (zh) * 2015-06-24 2020-07-31 北京三星通信技术研究有限公司 一种基于滤波器组多载波系统的信号发送和接收的方法及装置
WO2017172937A1 (en) * 2016-03-30 2017-10-05 Idac Holdings, Inc. Handling user plane in wireless systems
WO2017173567A1 (en) * 2016-04-05 2017-10-12 Intel IP Corporation Multiple beam multiple-input-multiple-output system
US10382115B2 (en) * 2016-06-30 2019-08-13 Futurewei Technologies, Inc. System and method for hybrid beamforming diversity
JP2019149592A (ja) * 2016-07-15 2019-09-05 シャープ株式会社 送信装置、受信装置、通信方法、および、集積回路
EP3520261A1 (en) * 2016-09-28 2019-08-07 IDAC Holdings, Inc. Indication of selected waveform using reference signals
US10756940B2 (en) * 2016-09-29 2020-08-25 Lg Electronics Inc. Method and device for transceiving wireless signal in wireless communication system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL COMMUNICATIONS: "Design considerations on waveform in UL for New Radio systems", 3GPP TSG-RAN WG1#84BIS RL-162925, 15 April 2016 (2016-04-15), XP051079860 *
MITSUBISHI ELECTRIC: "Considerations on numerology for support of flexible guard lengths", 3GPP TSG-RAN WG1#86 RL-166225, 26 August 2016 (2016-08-26), XP051140128 *
NOKIA ET AL.: "OFDM based Waveform for 5G new radio interface", 3GPP TSG-RAN WG1#84BIS RL-162889, 15 April 2016 (2016-04-15), XP051079730 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4068885A4 (en) * 2019-11-29 2022-12-21 Sony Group Corporation TERMINAL DEVICE, BASE STATION DEVICE AND COMMUNICATION METHOD

Also Published As

Publication number Publication date
US11012280B2 (en) 2021-05-18
JP7117248B2 (ja) 2022-08-12
US20190372813A1 (en) 2019-12-05
JPWO2018143275A1 (ja) 2019-12-26

Similar Documents

Publication Publication Date Title
CN110999236B (zh) 终端以及终端的通信方法
EP3644641B1 (en) User equipment and wireless communication method
WO2018229958A1 (ja) ユーザ端末及び無線通信方法
WO2018083868A1 (ja) ユーザ装置及び上り信号送信方法
WO2018143399A1 (ja) ユーザ端末及び無線通信方法
WO2018143275A1 (ja) ユーザ端末および無線通信方法
WO2018084209A1 (ja) ユーザ端末及び無線通信方法
CN109845319B (zh) 用户装置
EP3537800B1 (en) User device, base station and reference signal transmission method
US20200351135A1 (en) Radio transmission apparatus and radio reception apparatus
WO2018143325A1 (ja) ユーザ端末及び無線通信方法
US20190335537A1 (en) Base station and user equipment
WO2018229956A1 (ja) ユーザ端末及び無線通信方法
JP2021048639A (ja) 端末、基地局、通信方法及びシステム
CN111903065B (zh) 基站以及发送方法
JP2020047961A (ja) ユーザ装置及び基地局
US11076410B2 (en) User terminal and radio communication method
CN111213423B (zh) 用户终端以及无线通信方法
CN111052693B (zh) 用户终端以及无线通信方法
WO2019163113A1 (ja) ユーザ端末及び無線通信方法
CN110870269B (zh) 用户终端以及无线通信方法
WO2019244305A1 (ja) ユーザ端末
WO2019244308A1 (ja) ユーザ端末
WO2019012596A1 (ja) ユーザ端末及び無線通信方法
CN110870268A (zh) 用户终端以及无线通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748338

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565607

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18748338

Country of ref document: EP

Kind code of ref document: A1