WO2023162184A1 - 無線通信方法、分散アンテナシステム及び無線通信装置 - Google Patents

無線通信方法、分散アンテナシステム及び無線通信装置 Download PDF

Info

Publication number
WO2023162184A1
WO2023162184A1 PCT/JP2022/008081 JP2022008081W WO2023162184A1 WO 2023162184 A1 WO2023162184 A1 WO 2023162184A1 JP 2022008081 W JP2022008081 W JP 2022008081W WO 2023162184 A1 WO2023162184 A1 WO 2023162184A1
Authority
WO
WIPO (PCT)
Prior art keywords
antennas
candidate terminal
terminal station
station
weight matrix
Prior art date
Application number
PCT/JP2022/008081
Other languages
English (en)
French (fr)
Inventor
拓人 新井
大誠 内田
辰彦 岩國
秀樹 和井
直樹 北
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2024502412A priority Critical patent/JPWO2023162184A1/ja
Priority to PCT/JP2022/008081 priority patent/WO2023162184A1/ja
Publication of WO2023162184A1 publication Critical patent/WO2023162184A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting

Definitions

  • the present invention relates to a wireless communication method, a distributed antenna system, and a wireless communication device.
  • the high frequency band of the millimeter wave band is used.
  • Future communication systems such as 6G, which has evolved further from 5G, are expected to use a higher frequency band than 5G, which can secure a wider bandwidth, in order to achieve further speed and capacity.
  • High frequency bands are known to have large propagation loss and high straightness, and distributed antenna systems are being studied to improve connectivity in covering communication areas (for example, Non-Patent Document 1 and 2).
  • a distributed antenna system multiple distributed antennas are used to perform SU-MIMO (Single User Multiple-Input and Multiple-Output) and MU-MIMO (Multi-User MIMO) to improve frequency utilization efficiency. Communication capacity and throughput can be improved.
  • SU-MIMO Single User Multiple-Input and Multiple-Output
  • MU-MIMO Multi-User MIMO
  • Communication capacity and throughput can be improved.
  • CSI Channel State Information
  • UE User Multiple-Input and Multiple-Output
  • BS Base Station
  • Collecting CSI between all distributed antennas and each terminal station in order to suppress inter-stream interference by precoding and postcoding in a distributed antenna system requires bandwidth and processing between distributed antennas and base stations. This is undesirable in terms of load increase and communication efficiency. This is more pronounced as the number of distributed antennas increases. Furthermore, when the number of streams for simultaneous communication increases, the probability that the desired signal component is also suppressed by interference suppression control by precoding or postcoding increases, which may lead to a decrease in communication capacity.
  • the present invention provides a technique that can efficiently reduce interference that affects communication capacity while reducing the amount of spatial multiplexing control under conditions where spatial multiplexing transmission is performed in a distributed antenna system. It is an object.
  • One aspect of the present invention is a wireless communication method in a distributed antenna system comprising a base station and a plurality of antennas that communicate with one or more terminal stations by spatial multiplexing under the control of the base station, Channels obtained between a plurality of antennas of a candidate terminal station to perform communication by spatial multiplexing using two or more of the plurality of antennas and the two or more antennas used for the spatial multiplexing
  • a partial weight matrix is calculated for each of the candidate terminal stations based on the information, the transmission signal for each of the candidate terminal stations is multiplied by the calculated partial weight matrix for each of the candidate terminal stations, and a partial weight matrix for each of the candidate terminal stations is obtained.
  • One aspect of the present invention is a distributed antenna system comprising a base station and a plurality of antennas that communicate with one or more terminal stations by spatial multiplexing under the control of the base station, wherein the base station: obtained between a plurality of antennas of a candidate terminal station to perform communication by spatial multiplexing using two or more of the plurality of antennas and the two or more antennas used for the spatial multiplexing a precoding unit that calculates a partial weight matrix for each candidate terminal station based on channel information, and multiplies a transmission signal for each candidate terminal station by the calculated partial weight matrix for each candidate terminal station;
  • the plurality of antennas is a distributed antenna system that transmits a transmission signal for each candidate terminal station multiplied by the partial weight matrix for each candidate terminal station to each candidate terminal station.
  • One aspect of the present invention is a wireless communication device comprising a base station and a plurality of antennas that communicate with one or more terminal stations by spatial multiplexing under control of the base station, wherein the plurality of antennas based on channel information acquired between a plurality of antennas of a candidate terminal station to perform communication by spatial multiplexing using two or more of the antennas and the two or more antennas used for the spatial multiplexing a precoding unit that calculates a partial weight matrix for each candidate terminal station that performs communication by spatial multiplexing, and multiplies a transmission signal for each candidate terminal station by the calculated partial weight matrix for each candidate terminal station,
  • the plurality of antennas is a wireless communication device that transmits to each candidate terminal station a transmission signal for each candidate terminal station multiplied by a partial weight matrix for each candidate terminal station.
  • the present invention under conditions where spatial multiplexing transmission is performed in a distributed antenna system, it is possible to efficiently reduce interference that affects communication capacity while reducing the control amount of spatial multiplexing.
  • closed partial precoding is performed between antennas with large inter-stream interference (for example, streams to the same terminal station).
  • partial precoding closed between antennas with large inter-stream interference means performing precoding for each stream to the same terminal station with large inter-stream interference. That is, precoding is performed for each terminal station.
  • weights used for MIMO spatial separation processing can be calculated by closing the weights between streams in the same terminal station that are greatly affected by interference, thereby simplifying control and stabilizing communication capacity.
  • FIG. 1 is a diagram showing an example of a distributed antenna system 100 according to this embodiment.
  • a distributed antenna system 100 includes a base station 10 and multiple antennas 20 .
  • the base station 10 and the plurality of antennas 20 are connected by optical transmission lines. Communication between the base station 10 and the plurality of antennas 20 is performed by RoF (Radio over Fiber), for example.
  • the base station 10 and multiple antennas 20 are one aspect of a wireless communication device.
  • the multiple antennas 20 are installed on the ceiling within the building BL and communicate with multiple terminal stations 30-1 to 30-4 located within the building BL.
  • multiple antennas 20 are spaced apart from each other as shown in FIG. Note that the numbers of antennas 20 and terminal stations 30 are not limited to the numbers shown in FIG.
  • the base station 10 controls each distributed antenna 20 through centralized control. By controlling each antenna 20, the base station 10 realizes communication by SU-MIMO and MU-MIMO. Specifically, the base station 10 performs SU-MIMO by simultaneously transmitting multiple streams from multiple antennas 20 to a single terminal station 30, and simultaneously transmits multiple streams from multiple antennas 20 to multiple terminal stations 30. MU-MIMO is performed by transmitting to
  • the maximum number of streams that can be communicated simultaneously is determined by the maximum number of SU-MIMO layers and the maximum number of MU-MIMO layers.
  • the base station 10 may simultaneously use all the distributed antennas 20 for communication or may use only some of the antennas 20 .
  • the base station 10 allocates a plurality of antennas 20 for communication to each terminal station 30 .
  • the antennas 20 shown in group Gr1 are assigned as antennas to communicate with the terminal station 30-1, and the antennas 20 shown in group Gr2 are antennas to communicate with the terminal station 30-2.
  • the antennas 20 shown in group Gr3 are assigned as antennas to communicate with the terminal station 30-3, and the antennas 20 shown in group Gr4 are assigned as antennas to communicate with the terminal station 30-4.
  • An example is shown.
  • Each antenna 20 communicates with the terminal station 30.
  • Each antenna 20 includes, for example, a plurality of array elements arranged two-dimensionally.
  • the antenna 20 communicates with the terminal station 30, which is the object of communication, by performing beamforming with a plurality of array elements in order to secure gain in a high frequency band.
  • Each terminal station 30 is equipped with one or more antennas and communicates with each antenna 20 .
  • a terminal station 30 equipped with a plurality of antennas performs SU-MIMO communication with the antenna 20 .
  • the terminal station 30 may perform beamforming.
  • the partial precoding performed by the base station 10 will be described by taking communication (downlink) from the base station 10 to the terminal station 30 as an example.
  • N t be the total number of transmitting antennas for simultaneous transmission on the base station 10 side by SU-MIMO and MU-MIMO
  • N r be the total number of receiving antennas on the side of the terminal station 30 including a plurality of terminal stations 30, then the channel matrix is It can be expressed as in the following formula (1).
  • the weight matrix W and the signal vector s can be expressed as in Equation (2) below.
  • N UE represents the number of terminal stations 30 that simultaneously communicate with the base station 10 by MU-MIMO.
  • the precoding weight matrix W is a matrix in which N UE partial weight matrices are arranged diagonally.
  • This partial weight matrix is a weight matrix calculated for each terminal station 30 using a closed channel matrix between transmitting and receiving antennas assigned to the same terminal station 30 . Therefore, the partial weight matrix only considers interference between streams assigned to the same terminal station 30 and does not consider interference with streams assigned to other terminal stations 30 .
  • the partial weight matrix W n of the n-th terminal station 30 uses the channel matrix H n between the antenna 20 that performs stream transmission to the terminal station 30 and the antenna of the terminal station 30. is represented by, for example, the following equation (3).
  • Formula (3) is a precoding weight based on the ZF (Zero Forcing) norm.
  • Other weight generation criteria such as Maximum Ratio Combining Transmission (MRT), Minimum Mean Square Error (MMSE) criteria, etc. may be used to calculate the precoding weights, or codebook-based weight selection may be used. may be done.
  • MRT Maximum Ratio Combining Transmission
  • MMSE Minimum Mean Square Error
  • the partial weight matrix W n shown in Equation (3) does not consider interference with streams assigned to other terminal stations 30, so interference from streams for other terminal stations 30 occurs. Assuming that beamforming is performed using a plurality of elements to secure gain in a high frequency band, interference from streams directed to other terminal stations 30 can be expected to be relatively small due to beam directivity.
  • the partial weight matrix Wn is calculated for each terminal station 30, and the transmission signal is multiplied by the calculated partial weight matrix Wn , so that between antennas with large inter-stream interference, Do closed partial precoding.
  • FIG. 2 is a diagram showing a configuration example of the base station 10 in this embodiment. Note that FIG. 2 shows only the configuration related to the partial precoding process, which is a feature of the present invention.
  • the base station 10 includes a terminal station extraction unit 11 , an allocation unit 12 , a precoding unit 13 and a photoelectric conversion unit 14 .
  • the terminal station extraction unit 11 extracts terminal stations 30 (hereinafter referred to as "candidate terminal stations") that are candidates for spatial multiplexing by MU-MIMO.
  • the method of extracting candidate terminal stations includes a method of selecting candidate terminal stations based on indicators such as RI (Rank Indicator), a method of selecting candidate terminal stations based on PF (Proportional fair) criteria, and a method of selecting candidate terminal stations based on the received power Either a method of selecting candidate terminal stations based on the above, or a method of selecting terminal stations 30 such that interference between terminal stations 30 is reduced depending on the positional relationship or the like may be used.
  • a method of selecting candidate terminal stations based on received power includes a method of checking the received power of each terminal station 30 and selecting terminal stations 30 in descending order of received power, and selecting terminal stations 30 with similar received power. and the like.
  • the allocation unit 12 determines the allocation of the antenna 20 that communicates with the candidate terminal station and the number of SU-MIMO layers.
  • the allocation of antennas 20 and the number of SU-MIMO layers may be determined by round-robin allocation with respect to the capabilities of the base station 10, or may be determined based on indicators such as RI and received power.
  • the precoding unit 13 calculates a partial weight matrix Wn for each terminal station 30-n that performs SU-MIMO.
  • the precoding unit 13 multiplies the transmission signal to be transmitted to the terminal station 30-n by the calculated partial weight matrix Wn .
  • CSI obtained between the antenna of the candidate terminal station and the antenna 20 assigned to the candidate terminal station is used for the calculation of the partial weight matrix Wn in precoding section 13 . That is, the precoding unit 13 calculates a partial weight matrix Wn closed to each candidate terminal station.
  • the precoding unit 13 performs A partial weight matrix W1 is calculated based on the acquired CSI, and a partial weight matrix is calculated based on the CSI acquired between the antenna of the terminal station 30-2 and the antenna 20 assigned to the terminal station 30-2. Calculate W2 .
  • the photoelectric conversion unit 14 converts each transmission signal multiplied by the partial weight matrix Wn for each terminal station 30 by the precoding unit 13 into an optical signal and transmits the optical signal to the antenna 20 .
  • FIG. 3 is a flow chart showing the flow of processing performed by the base station 10 in this embodiment.
  • the terminal station extraction unit 11 extracts candidate terminal stations (step S101). In the following description, the number of candidate terminal stations extracted by the terminal station extracting section 11 is referred to as the number of spatially multiplexed terminal stations.
  • the allocation unit 12 determines the allocation of the antennas 20 and the number of SU-MIMO layers for each extracted candidate terminal station (step S102). Through this process, one or more antennas 20 are assigned to each candidate terminal station, and the number of streams between the assigned antenna 20 and the candidate terminal station is determined.
  • Allocation section 12 outputs to precoding section 13 identification information of antenna 20 allocated to each determined candidate terminal station and information on the number of SU-MIMO layers.
  • a candidate terminal station that performs SU-MIMO has two or more streams, and a candidate terminal station that does not perform SU-MIMO has one stream. Note that the process of step S102 may be performed together with the scheduling for extracting candidate terminal stations in step S101.
  • the precoding unit 13 assigns a number to each candidate terminal station. For example, the precoding unit 13 sequentially assigns a number starting from 1 as a candidate terminal station number to each candidate terminal station. The precoding unit 13 substitutes 1 for the candidate terminal station number n (step S103). The precoding unit 13 determines whether or not the number of streams of the n-th candidate terminal station is greater than 1 (step S104). If the number of streams is greater than 1, the terminal station 30 performs SU-MIMO.
  • the precoding unit 13 refers to information on the number of SU-MIMO layers corresponding to the first candidate terminal station among the information output from the allocation unit 12. , determines whether the number of streams of the first candidate terminal station is greater than one.
  • precoding unit 13 determines that the number of streams of the n-th candidate terminal station is greater than 1 (step S104-YES)
  • the antenna of the n-th candidate terminal station and the information output from the allocation unit 12 and the antenna 20 assigned to the n-th candidate terminal station.
  • precoding section 13 performs partial processing based on the CSI between the antenna of the first candidate terminal station and the antenna 20 allocated to the first candidate terminal station among the information output from allocation section 12. Calculate the weight matrix W1 .
  • the precoding unit 13 multiplies the transmission signal corresponding to the antenna 20 assigned to the nth candidate terminal station by the calculated partial weight matrix Wn (step S105). After that, the precoding unit 13 adds 1 to n (step S106).
  • the precoding unit 13 determines whether or not the value of n is greater than the number of spatial multiplexing terminal stations (step S107). If the precoding unit 13 determines that the value of n is equal to or less than the number of spatially multiplexed terminal stations (step S107-NO), it executes the process of step S104.
  • the precoding unit 13 determines that the value of n is greater than the number of spatially multiplexed terminal stations (step S107-YES)
  • the precoding unit 13 multiplies by the partial weight matrix W n for each candidate terminal station.
  • Each transmission signal is output to the photoelectric conversion unit 14 .
  • the photoelectric conversion unit 14 converts each transmission signal multiplied by the partial weight matrix Wn for each candidate terminal station output from the precoding unit 13 into an optical signal and transmits the optical signal to each antenna 20, thereby performing spatial multiplexing transmission.
  • Each antenna 20 converts an optical signal output from the base station 10 into an electrical signal, then converts it into a radio signal, and performs spatial multiplexing transmission to candidate terminal stations.
  • step S104 when the precoding unit 13 determines that the number of streams of the n-th candidate terminal station is 1 (step S104-NO), the precoding unit 13 performs the process of step S0106.
  • the communication capacity is greatly affected. Stable communication capacity can be achieved by efficiently reducing the interference that causes
  • a modification of the distributed antenna system 100 will be described.
  • Modification 1 In the above embodiment, the downlink configuration from the base station 10 to the terminal station 30 is shown, but the above processing in the distributed antenna system 100 can also be applied to the uplink from the terminal station 30 to the base station 10. be.
  • the distributed antenna system 100 performs SU-MIMO by simultaneously transmitting multiple streams from a single terminal station 30 to multiple antennas 20, and simultaneously transmits multiple streams from multiple terminal stations 30 to multiple antennas.
  • MU-MIMO may be performed by
  • the partial weight matrix Wn for the terminal station 30 is calculated based on the following equation (4).
  • Modification 2 In the above-described embodiment, the configuration in which the base station 10 and the plurality of antennas 20 are connected by optical transmission lines is shown. may be connected by a transmission line that conducts electricity. When configured in this manner, communication between the base station 10 and the plurality of antennas 20 is via electrical signals. Therefore, the base station 10 does not include the photoelectric conversion unit 14, and transmits each transmission signal multiplied by the partial weight matrix Wn for each terminal station 30 by the precoding unit 13 to the antenna 20 as an electric signal.
  • the antenna 20 is assigned to each extracted candidate terminal station.
  • antenna selection may be reversed. Normally, it is assumed that the candidate terminal station is already connected to one of the antennas 20 (sub-arrays). Therefore, first, the allocation unit 12 allocates the antenna 20 to each candidate terminal station, and then the terminal station extraction unit 11 extracts the candidate terminal station to which the antenna 20 has been allocated. For example, the allocation unit 12 may allocate the antennas 20 already connected to the candidate terminal stations as they are, or may change them. Allocation section 12 determines the number of SU-MIMO layers when allocating antennas 20 or after candidate terminal stations are extracted. Subsequent processing (for example, processing after step S103) is the same as in the embodiment described above.
  • the present invention can be applied to wireless communication systems using MIMO.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

基地局と、基地局の制御に応じて空間多重により1台以上の端末局と通信を行う複数のアンテナとを備える分散アンテナシステムにおける無線通信方法であって、複数のアンテナのうち2つ以上のアンテナを用いて空間多重による通信を行う対象となる候補端末局の複数のアンテナと、空間多重に用いる2つ以上のアンテナとの間で取得されたチャネル情報に基づいて部分ウェイト行列を、候補端末局毎に算出し、算出した候補端末局毎の部分ウェイト行列を、候補端末局毎の送信信号に乗算し、候補端末局毎の部分ウェイト行列が乗算された候補端末局毎の送信信号を各候補端末局に送信する、無線通信方法。

Description

無線通信方法、分散アンテナシステム及び無線通信装置
 本発明は、無線通信方法、分散アンテナシステム及び無線通信装置に関する。
 5G(Generation)等を利用する通信システムでは、ミリ波帯の高周波数帯が使用されている。5Gからさらに進化した6G等の将来の通信システムでは、更なる高速化及び大容量化を実現していくために、より広い帯域幅を確保可能な5Gよりも更に高い周波数帯の使用が想定されている。高周波数帯は伝搬損失が大きく、直進性の高い性質が知られており、通信エリアをカバーする上で接続性を向上させるために分散アンテナシステムが検討されている(例えば、非特許文献1及び2参照)。
 分散アンテナシステムでは、分散配置された複数のアンテナを用いてSU-MIMO(Single User Multiple-Input and Multiple-Output)やMU-MIMO(Multi-User MIMO)を行うことで周波数利用効率を向上させ、通信容量及びスループットの改善を図ることが可能である。MIMOによる通信を行う場合、ストリーム間干渉を低減するために分散アンテナと端末局(UE:Uesr Equipment)との間のチャネル情報(CSI:Channel State Information)を取得して基地局(BS:Base Station)側でダウンリンクではプリコーディングを行い、アップリンクではポストコーディングを行うことが一般的に想定される。
株式会社NTTドコモ, "ドコモ6Gホワイトペーパー3.0版", 2021年11月 内田,岩国,北,鬼沢,岸山,須山,永田,浅井,"6G時代に向けた高周波数帯分散アンテナシステムの検討について," 信学技報RCS2020-148, pp. 73-78, 2020年12月.
 分散アンテナシステムにおいてプリコーディングやポストコーディングによりストリーム間の干渉抑圧を行うために、全分散アンテナと各端末局との間のCSIを収集することは、分散アンテナと基地局との間の帯域、処理負荷の増大及び通信効率の観点で望ましくない。これは、分散アンテナ数が増加するほど顕著である。さらに、同時に通信を行うストリーム数が増えるとプリコーディングやポストコーディングによる干渉抑圧制御によって所望信号成分も抑圧される確率が高くなってしまい、通信容量の低下を引き起こしてしまう場合もある。
 上記事情に鑑み、本発明は、分散アンテナシステムにおいて空間多重伝送を行う状況下で、空間多重の制御量を低減しつつ、通信容量に影響を与える干渉を効率よく低減することができる技術の提供を目的としている。
 本発明の一態様は、基地局と、前記基地局の制御に応じて空間多重により1台以上の端末局と通信を行う複数のアンテナとを備える分散アンテナシステムにおける無線通信方法であって、前記複数のアンテナのうち2つ以上のアンテナを用いて空間多重による通信を行う対象となる候補端末局の複数のアンテナと、前記空間多重に用いる前記2つ以上のアンテナとの間で取得されたチャネル情報に基づいて部分ウェイト行列を、前記候補端末局毎に算出し、算出した前記候補端末局毎の部分ウェイト行列を、前記候補端末局毎の送信信号に乗算し、前記候補端末局毎の部分ウェイト行列が乗算された前記候補端末局毎の送信信号を各候補端末局に送信する、無線通信方法である。
 本発明の一態様は、基地局と、前記基地局の制御に応じて空間多重により1台以上の端末局と通信を行う複数のアンテナとを備える分散アンテナシステムであって、前記基地局は、前記複数のアンテナのうち2つ以上のアンテナを用いて空間多重による通信を行う対象となる候補端末局の複数のアンテナと、前記空間多重に用いる前記2つ以上のアンテナとの間で取得されたチャネル情報に基づいて部分ウェイト行列を、前記候補端末局毎に算出し、算出した前記候補端末局毎の部分ウェイト行列を、前記候補端末局毎の送信信号に乗算するプリコーディング部を備え、前記複数のアンテナは、前記候補端末局毎の部分ウェイト行列が乗算された前記候補端末局毎の送信信号を各候補端末局に送信する、分散アンテナシステムである。
 本発明の一態様は、基地局と、前記基地局の制御に応じて空間多重により1台以上の端末局と通信を行う複数のアンテナとを備える無線通信装置であって、前記複数のアンテナのうち2つ以上のアンテナを用いて空間多重による通信を行う対象となる候補端末局の複数のアンテナと、前記空間多重に用いる前記2つ以上のアンテナとの間で取得されたチャネル情報に基づいて部分ウェイト行列を、前記空間多重による通信を行う候補端末局毎に算出し、算出した前記候補端末局毎の部分ウェイト行列を、前記候補端末局毎の送信信号に乗算するプリコーディング部を備え、前記複数のアンテナは、前記候補端末局毎の部分ウェイト行列が乗算された前記候補端末局毎の送信信号を各候補端末局に送信する、無線通信装置である。
 本発明により、分散アンテナシステムにおいて空間多重伝送を行う状況下で、空間多重の制御量を低減しつつ、通信容量に影響を与える干渉を効率よく低減することが可能となる。
本実施形態における分散アンテナシステムの一例を示す図である。 本実施形態における基地局の構成例を示す図である。 本実施形態における基地局が行う処理の流れを示すフローチャートである。
 以下、本発明の一実施形態を、図面を参照しながら説明する。
(概要)
 本実施形態における分散アンテナシステム100では、ストリーム間干渉の大きいアンテナ間(例えば、同一の端末局へのストリーム等)に閉じた部分プリコーディングを行う。本実施形態において、ストリーム間干渉の大きいアンテナ間に閉じた部分プリコーディングとは、ストリーム間干渉が大きくなる同一の端末局へのストリーム毎にプリコーディングを行うことを意味する。すなわち、端末局毎にプリコーディングを行うことになる。
 高周波数帯の分散アンテナシステムにおいて、高い伝搬損失を補うために各分散アンテナからビームフォーミングを行うことを前提とし、異なる端末局間のストリーム間干渉は概ねビームフォーミングによって回避できる可能性が高いことに着目し、MIMOの空間分離処理に用いるウェイトを干渉影響の大きい同一端末局内のストリーム間に閉じてウェイトを算出することにより、制御の簡易化と通信容量の安定化を図ることができる。
 以下、上記の処理を実現するための具体的な構成について説明する。
 図1は、本実施形態における分散アンテナシステム100の一例を示す図である。分散アンテナシステム100は、基地局10と、複数のアンテナ20とを備える。基地局10と、複数のアンテナ20とは、光伝送路により接続される。基地局10と、複数のアンテナ20との間の通信は、例えばRoF(Radio over Fiber)により行われる。基地局10及び複数のアンテナ20は、無線通信装置の一態様である。
 図1に示す例では、複数のアンテナ20は、建物BL内の天井に設置され、建物BL内に位置する複数の端末局30-1~30-4との間で通信を行う。例えば、複数のアンテナ20は、図1に示すように互いに離間して配置される。なお、アンテナ20及び端末局30の数は図1に示す数に限定されない。
 基地局10は、集中制御により、分散配置された各アンテナ20の制御を行う。基地局10は、各アンテナ20を制御することにより、SU-MIMO及びMU-MIMOによる通信を実現する。具体的には、基地局10は、複数のアンテナ20から同時に複数ストリームを単一の端末局30に送信することでSU-MIMOを行い、複数のアンテナ20から同時に複数ストリームを複数の端末局30に送信することでMU-MIMOを行う。
 なお、同時に通信可能な最大ストリーム数は、最大SU-MIMO layer数及び最大MU-MIMO layer数によって決まっている。基地局10は、分散配置された全てのアンテナ20を同時に通信に用いても一部のアンテナ20のみを用いてもよい。
 基地局10は、端末局30毎に、通信を行う対象となる複数のアンテナ20を割り当てる。例えば、図1では、グループGr1で示すアンテナ20が端末局30-1と通信を行う対象となるアンテナとして割り当てられ、グループGr2で示すアンテナ20が端末局30-2と通信を行う対象となるアンテナとして割り当てられ、グループGr3で示すアンテナ20が端末局30-3と通信を行う対象となるアンテナとして割り当てられ、グループGr4で示すアンテナ20が端末局30-4と通信を行う対象となるアンテナとして割り当てられている例を示している。
 各アンテナ20は、端末局30との間で通信を行う。各アンテナ20は、例えば2次元配列された複数のアレー素子を備える。アンテナ20は、高周波数帯における利得確保のために複数のアレー素子によるビームフォーミングを行うことによって、通信対象となっている端末局30との間で通信を行う。
 各端末局30は、1以上のアンテナを備え、各アンテナ20との間で通信を行う。複数のアンテナを備える端末局30は、アンテナ20との間でSU-MIMOによる通信を行う。端末局30は、ビームフォーミングを行なってもよい。
 ここで、基地局10から端末局30への向かう通信(ダウンリンク)を例に、基地局10が行う部分プリコーディングについて説明する。SU-MIMO及びMU-MIMOにより基地局10側で同時に送信を行う総送信アンテナ数をN、複数の端末局30を含む端末局30側の総受信アンテナ数をNとすると、チャネル行列は下記の式(1)のように表すことができる。
Figure JPOXMLDOC01-appb-M000001
 基地局10からの送信信号ベクトルtは、プリコーディングのウェイト行列W及び信号ベクトルsを用いてt=Wsで表される。ここで、ウェイト行列W及び信号ベクトルsは下記の式(2)のように表すことができる。
Figure JPOXMLDOC01-appb-M000002
 式(2)において、NUEはMU-MIMOにより同時に基地局10と通信を行う端末局30の数を表す。上記に示す通り、プリコーディングのウェイト行列Wは、NUE個の部分ウェイト行列を対角に並べた行列となる。この部分ウェイト行列は、同一の端末局30に割り当てられた送受信アンテナ間に閉じたチャネル行列を用いて端末局30毎に算出されるウェイト行列である。したがって、部分ウェイト行列は、同一の端末局30に割り当てられたストリーム間の干渉のみを考慮し、他の端末局30に割り当てられたストリームとの干渉は考慮しないことを意味する。
 n(nは1以上の整数)番目の端末局30の部分ウェイト行列Wは、当該端末局30にストリーム伝送を行うアンテナ20と当該端末局30のアンテナとの間のチャネル行列Hを用いて例えば以下の式(3)のように表される。
Figure JPOXMLDOC01-appb-M000003
 式(3)はZF(Zero Forcing)規範に基づくプリコーディングウェイトである。プリコーディングウェイトの算出には、最大比合成送信(MRT)、最小二乗誤差(MMSE:Minimum Mean Square Error)規範等の他のウェイト生成規範が用いられてもよいし、コードブックベースのウェイト選択が行われてもよい。
 上述したように、式(3)に示す部分ウェイト行列Wは、他の端末局30に割り当てられたストリームとの干渉を考慮しないため、他の端末局30向けのストリームからの干渉が生じるが、高周波数帯における利得確保のために複数素子によるビームフォーミングを行うことを想定すると、ビーム指向性により他の端末局30向けのストリームからの干渉は相対的に小さくなることが期待できる。
 そこで、本実施形態における基地局10では、部分ウェイト行列Wを端末局30毎に算出して、算出した部分ウェイト行列Wを送信信号に乗算することによって、ストリーム間干渉の大きいアンテナ間に閉じた部分プリコーディングを行う。
 図2は、本実施形態における基地局10の構成例を示す図である。なお、図2では、本発明の特徴となる部分プリコーディングの処理に関する構成のみ示している。基地局10は、端末局抽出部11と、割当部12と、プリコーディング部13と、光電変換部14とを備える。
 端末局抽出部11は、MU-MIMOによって空間多重を行う候補となる端末局30(以下「候補端末局」という。)を抽出する。候補端末局を抽出する方法は、各種のスケジューリングによって、RI(Rank Indicator)等の指標に基づき候補端末局を選択する方法、PF(Proportional fair)規範に基づき候補端末局を選択する方法、受信電力に基づいて候補端末局を選択する方法、位置関係等によって端末局30間干渉が小さくなるような端末局30同士を選択する方法のいずれの方法であってもよい。受信電力に基づいて候補端末局を選択する方法としては、各端末局30の受信電力を確認し、受信電力の高い端末局30から順番に選択する方法、受信電力の近い端末局30同士を選択する方法等が挙げられる。
 割当部12は、端末局抽出部11によって抽出された候補端末局毎に、候補端末局と通信を行うアンテナ20の割り当てと、SU-MIMO layer数とを決定する。アンテナ20の割り当てとSU-MIMO layer数は、基地局10のCapabilityに対してラウンドロビンに割り当てて決定してもよいし、RIや受信電力等の指標に基づき決定してもよい。
 プリコーディング部13は、SU-MIMOを行う端末局30-n毎に、部分ウェイト行列Wを算出する。プリコーディング部13は、算出した部分ウェイト行列Wを、端末局30-nに送信する送信信号に乗算する。プリコーディング部13における部分ウェイト行列Wの算出には、候補端末局のアンテナと、候補端末局に割り当てられたアンテナ20との間で取得されたCSIが用いられる。すなわち、プリコーディング部13は、各候補端末局に閉じた部分ウェイト行列Wを算出する。例えば、候補端末局として、端末局30-1及び30-2がある場合、プリコーディング部13は、端末局30-1のアンテナと、端末局30-1に割り当てられたアンテナ20との間で取得されたCSIに基づいて部分ウェイト行列Wを算出し、端末局30-2のアンテナと、端末局30-2に割り当てられたアンテナ20との間で取得されたCSIに基づいて部分ウェイト行列Wを算出する。
 光電変換部14は、プリコーディング部13により端末局30毎の部分ウェイト行列Wが乗算された各送信信号を光信号に変換してアンテナ20に対して伝送する。
 図3は、本実施形態における基地局10が行う処理の流れを示すフローチャートである。
 端末局抽出部11は、候補端末局を抽出する(ステップS101)。以下の説明では、端末局抽出部11により抽出された候補端末局の数を空間多重端末局数という。割当部12は、抽出した候補端末局毎に、アンテナ20の割り当てと、SU-MIMO layer数とを決定する(ステップS102)。この処理により、候補端末局毎に、1以上のアンテナ20が割り当てられ、割り当てられたアンテナ20と候補端末局との間のストリーム数が決定される。割当部12は、決定した候補端末局毎の割り当てたアンテナ20の識別情報と、SU-MIMO layer数の情報とをプリコーディング部13に出力する。
 SU-MIMOを行う候補端末局はストリーム数が2以上となり、SU-MIMOを行わない候補端末局はストリーム数が1となる。なお、ステップS102の処理は、ステップS101の候補端末局抽出の際のスケジューリングと併せて実施されてもよい。
 プリコーディング部13は、各候補端末局に対して番号を割り振る。例えば、プリコーディング部13は、各候補端末局に対して候補端末局番号として1から順番に番号を割り振る。プリコーディング部13は、候補端末局番号nに1を代入する(ステップS103)。プリコーディング部13は、n番目の候補端末局のストリーム数が1より大きいか否かを判定する(ステップS104)。ストリーム数が1より大きいということは、SU-MIMOを行う端末局30である。
 処理開始時ではnが1であるため、例えば、プリコーディング部13は、割当部12から出力された情報のうち、1番目の候補端末局に対応するSU-MIMO layer数の情報を参照して、1番目の候補端末局のストリーム数が1より大きいか否かを判定する。
 プリコーディング部13は、n番目の候補端末局のストリーム数が1より大きいと判定した場合(ステップS104-YES)、n番目の候補端末局のアンテナと、割当部12から出力された情報のうち、n番目の候補端末局に割り当てられたアンテナ20との間のCSIに基づいて部分ウェイト行列Wを生成する。例えば、プリコーディング部13は、1番目の候補端末局のアンテナと、割当部12から出力された情報のうち、1番目の候補端末局に割り当てられたアンテナ20との間のCSIに基づいて部分ウェイト行列Wを算出する。
 プリコーディング部13は、算出した部分ウェイト行列Wを、n番目の候補端末局に割り当てられたアンテナ20に対応する送信信号へ乗算する(ステップS105)。その後、プリコーディング部13は、nに1を加算する(ステップS106)。
 プリコーディング部13は、nの値が空間多重端末局数より大きいか否かを判定する(ステップS107)。プリコーディング部13は、nの値が空間多重端末局数以下であると判定した場合(ステップS107-NO)、ステップS104の処理を実行する。
 一方、プリコーディング部13は、nの値が空間多重端末局数よりも大きいと判定した場合(ステップS107-YES)、プリコーディング部13は候補端末局毎の部分ウェイト行列Wが乗算された各送信信号を光電変換部14に出力する。光電変換部14は、プリコーディング部13から出力された候補端末局毎の部分ウェイト行列Wが乗算された各送信信号を光信号に変換して各アンテナ20に送信することで空間多重伝送を実施する(ステップS108)。各アンテナ20は、基地局10から出力された光信号を電気信号に変換後、無線信号に変換して候補端末局に対して空間多重伝送を行う。
 ステップS104の処理において、プリコーディング部13がn番目の候補端末局のストリーム数が1であると判定した場合(ステップS104-NO)、プリコーディング部13はステップS0106の処理を行う。
 以上のように構成された分散アンテナシステム100では、MIMOを行う際のCSI取得やウェイト生成、基地局10とアンテナ20との間の制御信号伝送等の制御量を抑えつつ、通信容量に大きく影響を及ぼす干渉を効率的に低減することで安定した通信容量を実現可能となる。
 分散アンテナシステム100の変形例について説明する。
(変形例1)
 上記の実施形態では、基地局10から端末局30へのダウンリンクにおける構成を示したが、分散アンテナシステム100における上記の処理は、端末局30から基地局10へのアップリンクにおいても適用可能である。例えば、分散アンテナシステム100は、単一の端末局30から複数のアンテナ20に同時に複数ストリームを送信することでSU-MIMOを行い、複数の端末局30から同時に複数ストリームを複数のアンテナに送信することでMU-MIMOを行ってもよい。
 この場合、基地局10においてアップリンクにおけるポストコーディング時の部分ウェイト行列Wを算出する場合には、端末局30の部分ウェイト行列Wは、以下の式(4)に基づいて算出される。
Figure JPOXMLDOC01-appb-M000004
(変形例2)
 上述した実施形態では、基地局10と、複数のアンテナ20との間が、光伝送路で接続される構成を示したが、基地局10と、複数のアンテナ20との間は、同軸ケーブル等のように電気を通す伝送路で接続されてもよい。このように構成される場合、基地局10と、複数のアンテナ20との間の通信は、電気信号を介して行われる。そのため、基地局10は、光電変換部14を備えず、プリコーディング部13により端末局30毎の部分ウェイト行列Wが乗算された各送信信号を電気信号のままアンテナ20に対して伝送する。
(変形例3)
 上述した実施形態では、スケジューリングによって候補端末局を抽出した後に、抽出した候補端末局毎にアンテナ20を割り当てる構成を示したが、端末局の選択(スケジューリング)とアンテナ20の割り当て(端末局の接続アンテナ選択)は順番が逆であってもよい。通常、候補端末局がいずれかのアンテナ20(サブアレー)と既に接続している場合も想定される。そこで、まず割当部12が、各候補端末局にアンテナ20の割り当てを行った後、端末局抽出部11がアンテナ20の割り当てが行われた候補端末局を抽出する。例えば、割当部12は、候補端末局と既に接続されているアンテナ20については、そのまま割り当ててもよいし、変更してもよい。割当部12は、アンテナ20の割り当て時、又は、候補端末局の抽出が行われた後に、SU-MIMO layer数を決定する。その後の処理(例えば、ステップS103以降の処理)は、上述した実施形態と同様である。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 本発明は、MIMOを用いた無線通信システムに適用できる。
10…基地局, 20…アンテナ, 30…端末局, 11…端末局抽出部, 12…割当部, 13…プリコーディング部, 14…光電変換部

Claims (4)

  1.  基地局と、前記基地局の制御に応じて空間多重により1台以上の端末局と通信を行う複数のアンテナとを備える分散アンテナシステムにおける無線通信方法であって、
     前記基地局は、前記複数のアンテナのうち2つ以上のアンテナを用いて空間多重による通信を行う対象となる候補端末局の複数のアンテナと、前記空間多重に用いる前記2つ以上のアンテナとの間で取得されたチャネル情報に基づいて部分ウェイト行列を、前記候補端末局毎に算出し、
     算出した前記候補端末局毎の部分ウェイト行列を、前記候補端末局毎の送信信号に乗算するプリコーディング部を備え、
     前記複数のアンテナは、前記候補端末局毎の部分ウェイト行列が乗算された前記候補端末局毎の送信信号を各候補端末局に送信する、
     無線通信方法。
  2.  前記基地局は、
     前記空間多重に用いるアンテナ数を前記候補端末局毎に決定し、
     前記候補端末局の複数のアンテナのうち決定した数のアンテナと、前記候補端末局に割り当てられた前記複数のアンテナのうち決定した数のアンテナとの間の前記チャネル情報に基づいて、前記部分ウェイト行列を前記候補端末局毎に生成する、
     請求項1に記載の無線通信方法。
  3.  基地局と、前記基地局の制御に応じて空間多重により1台以上の端末局と通信を行う複数のアンテナとを備える分散アンテナシステムであって、
     前記基地局は、前記複数のアンテナのうち2つ以上のアンテナを用いて空間多重による通信を行う対象となる候補端末局の複数のアンテナと、前記空間多重に用いる前記2つ以上のアンテナとの間で取得されたチャネル情報に基づいて部分ウェイト行列を、前記候補端末局毎に算出し、算出した前記候補端末局毎の部分ウェイト行列を、前記候補端末局毎の送信信号に乗算するプリコーディング部を備え、
     前記複数のアンテナは、
     前記候補端末局毎の部分ウェイト行列が乗算された前記候補端末局毎の送信信号を各候補端末局に送信する、
     分散アンテナシステム。
  4.  基地局と、前記基地局の制御に応じて空間多重により1台以上の端末局と通信を行う複数のアンテナとを備える無線通信装置であって、
     前記複数のアンテナのうち2つ以上のアンテナを用いて空間多重による通信を行う対象となる候補端末局の複数のアンテナと、前記空間多重に用いる前記2つ以上のアンテナとの間で取得されたチャネル情報に基づいて部分ウェイト行列を、前記空間多重による通信を行う候補端末局毎に算出し、算出した前記候補端末局毎の部分ウェイト行列を、前記候補端末局毎の送信信号に乗算するプリコーディング部を備え、
     前記複数のアンテナは、
     前記候補端末局毎の部分ウェイト行列が乗算された前記候補端末局毎の送信信号を各候補端末局に送信する、
     無線通信装置。
PCT/JP2022/008081 2022-02-25 2022-02-25 無線通信方法、分散アンテナシステム及び無線通信装置 WO2023162184A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2024502412A JPWO2023162184A1 (ja) 2022-02-25 2022-02-25
PCT/JP2022/008081 WO2023162184A1 (ja) 2022-02-25 2022-02-25 無線通信方法、分散アンテナシステム及び無線通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/008081 WO2023162184A1 (ja) 2022-02-25 2022-02-25 無線通信方法、分散アンテナシステム及び無線通信装置

Publications (1)

Publication Number Publication Date
WO2023162184A1 true WO2023162184A1 (ja) 2023-08-31

Family

ID=87765166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008081 WO2023162184A1 (ja) 2022-02-25 2022-02-25 無線通信方法、分散アンテナシステム及び無線通信装置

Country Status (2)

Country Link
JP (1) JPWO2023162184A1 (ja)
WO (1) WO2023162184A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240063850A1 (en) * 2021-01-07 2024-02-22 Nippon Telegraph And Telephone Corporation Distributed antenna system, wireless communication method, and centralized station

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010193189A (ja) * 2009-02-18 2010-09-02 Nippon Telegr & Teleph Corp <Ntt> 分散アンテナシステムおよび分散アンテナ制御方法
WO2015079726A1 (ja) * 2013-11-29 2015-06-04 日本電気株式会社 無線通信装置および無線通信方法
JP2017038197A (ja) * 2015-08-07 2017-02-16 日本電信電話株式会社 無線通信システム及び無線通信方法
WO2018159215A1 (ja) * 2017-03-02 2018-09-07 株式会社Nttドコモ 無線基地局および送信電力制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010193189A (ja) * 2009-02-18 2010-09-02 Nippon Telegr & Teleph Corp <Ntt> 分散アンテナシステムおよび分散アンテナ制御方法
WO2015079726A1 (ja) * 2013-11-29 2015-06-04 日本電気株式会社 無線通信装置および無線通信方法
JP2017038197A (ja) * 2015-08-07 2017-02-16 日本電信電話株式会社 無線通信システム及び無線通信方法
WO2018159215A1 (ja) * 2017-03-02 2018-09-07 株式会社Nttドコモ 無線基地局および送信電力制御方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KAZUKI MARUTA, ATSUSHI OTA, HIROSHI SHIRATO, SATOSHI KUROSAKI, TAKUTO ARAI, TATSUHIKO IWAKUNI, MASATAKA IIZUKA: "B-5-45 Study on multi-user parallel transmission using subarray time-domain beamforming in high frequency band Massive MIMO", PROCEEDINGS OF THE 2016 IEICE GENERAL CONFERENCE, COMMUNICATION 1; MARCH 15TH - 18TH, 2016, IEICE, JP, 1 September 2016 (2016-09-01) - 18 March 2016 (2016-03-18), JP, pages 438, XP009548324 *
NTT DOCOMO, INC., DOCOMO 6G WHITE PAPER 3.0 VERSION, November 2021 (2021-11-01)
SHIN KUBO, ZHAO, JEFFREY, IEKA SONG, DAISUKE TAKITA, YOSHIFUMI HOTTA: "B-6-44 Method for determining necessity of TSN standard in layer 2 network", PROCEEDINGS OF THE 2021 IEICE GENERAL CONFERENCE (COMMUNICATION 2); 2021.03.09-12, IEICE, JP, 23 February 2021 (2021-02-23) - 12 March 2021 (2021-03-12), JP, pages 44, XP009548328 *
UCHIDAIWAKUNIKITAONIZAWAKISHIYAMASUYAMANAGATAASAI: "Distributed Antenna Systems using High-Frequency-Band targeting 6G Wireless Networks", IEICE TECHNICAL REPORT RCS2020-148, December 2020 (2020-12-01), pages 73 - 78

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240063850A1 (en) * 2021-01-07 2024-02-22 Nippon Telegraph And Telephone Corporation Distributed antenna system, wireless communication method, and centralized station

Also Published As

Publication number Publication date
JPWO2023162184A1 (ja) 2023-08-31

Similar Documents

Publication Publication Date Title
US10594377B2 (en) Beamforming in a MU-MIMO wireless communication system
JP4776685B2 (ja) 無線通信システムおよび通信制御方法
EP3609087A1 (en) Wireless communication method and wireless communication apparatus
KR100626214B1 (ko) 다중 안테나 및 랜덤 다중 빔을 이용한 다중 사용자 무선송수신 방법 및 장치
US9325390B2 (en) Wireless communications system and precoding method
KR100950643B1 (ko) Mimo 통신 시스템과 그 시스템에서의 데이터 송수신방법 및 그 장치
JP5444374B2 (ja) 協調ビーム形成方法、協調ビーム形成装置、および協調ビーム形成基地局
KR100754660B1 (ko) 통신 시스템에서 적응 변조/부호 부 채널 할당 시스템 및 방법
US20080260051A1 (en) Method and apparatus for transmitting information simultaneously to multiple destinations over shared wireless resources
EP4030636A2 (en) Beamforming of beams
US20080102881A1 (en) Method and apparatus for adaptively allocating transmission power for beam-forming combined with OSTBCs in a distributed wireless communication system
US9125074B2 (en) Coordinated multi-point transmission and multi-user MIMO
KR20090100877A (ko) 다중 입출력 무선통신 시스템에서 상향링크 빔 성형 및 공간분할 다중 접속 장치 및 방법
KR101115785B1 (ko) 다중 안테나를 사용하는 무선 이중-홉 릴레이 통신 시스템에서 릴레이 간섭 제어와 자원 관리 기법 및 장치
KR101935782B1 (ko) 다중 셀룰러 네트워크에서 신호의 송수신 방법 및 장치
CN111615202B (zh) 基于noma与波束成型的超密集网络无线资源分配方法
JP2006254235A (ja) 無線送信装置及び無線受信装置
JP2012521135A (ja) Mimoネットワークにおいて通信するための方法
WO2023162184A1 (ja) 無線通信方法、分散アンテナシステム及び無線通信装置
CN1964217B (zh) 多载波mimo系统及其通信方法
CN109842435A (zh) 一种用于执行预编码的方法和装置
WO2023162177A1 (ja) 無線通信方法、分散アンテナシステム及び無線通信装置
CN110365384B (zh) 一种基于大规模mimo混合波束成形系统的用户调度方法
KR100905549B1 (ko) 다중 입력 다중 출력 무선 통신 시스템의 상향링크에서의송신 안테나 선택 방법 및 장치
Kudo et al. User selection method for block diagonalization in multiuser MIMO systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928710

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024502412

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022928710

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022928710

Country of ref document: EP

Effective date: 20240925