WO2018158978A1 - 排泄検知システム及び排泄検知方法 - Google Patents

排泄検知システム及び排泄検知方法 Download PDF

Info

Publication number
WO2018158978A1
WO2018158978A1 PCT/JP2017/026862 JP2017026862W WO2018158978A1 WO 2018158978 A1 WO2018158978 A1 WO 2018158978A1 JP 2017026862 W JP2017026862 W JP 2017026862W WO 2018158978 A1 WO2018158978 A1 WO 2018158978A1
Authority
WO
WIPO (PCT)
Prior art keywords
excretion
feature
vector
unit
feature amount
Prior art date
Application number
PCT/JP2017/026862
Other languages
English (en)
French (fr)
Inventor
吉美 宇井
Original Assignee
株式会社aba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社aba filed Critical 株式会社aba
Priority to JP2019502439A priority Critical patent/JPWO2018158978A1/ja
Publication of WO2018158978A1 publication Critical patent/WO2018158978A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/44Devices worn by the patient for reception of urine, faeces, catamenial or other discharge; Portable urination aids; Colostomy devices

Definitions

  • the present invention relates to an excretion detection system for detecting excretion, and particularly to an excretion detection system and an excretion detection method for accurately detecting excretion by recognizing an excretion pattern for each individual.
  • a urinary incontinence detection system using a wetness sensor for example, a sensor is directly embedded in a diaper, and urine is detected based on a potential difference generated when the sensor directly touches urine.
  • a urinary incontinence detection system using a gas sensor urine is detected by detecting chemical substances such as urea and ammonia contained in urine.
  • Non-Patent Documents 1 to 4 show examples of a urinary incontinence detection system using a gas sensor.
  • An object of the present invention is to provide an excretion detection system and an excretion detection method capable of accurately detecting excretion by recognizing an excretion pattern for each individual in view of such problems and the like.
  • the excretion detection system of the present invention is an excretion detection system, wherein a gas sensor unit having a gas sensor for detecting gas generated from excrement, an input means for inputting a detection signal from the gas sensor unit, and the input means input from the input means
  • a differential waveform acquisition unit that acquires a differential waveform of a detection signal, and a predetermined number n (n is a natural number of 1 or more) of feature amounts are extracted based on the differential waveform acquired by the differential waveform acquisition unit, and an n-dimensional feature amount Feature quantity vector obtaining means for obtaining vectors, cluster number defining means for defining the number of clusters in the feature quantity space used for excretion detection as k (k is a natural number of 1 or more), and n obtained by the feature quantity vector obtaining means.
  • Feature quantity space creating means for creating a feature quantity space based on a dimension feature quantity vector and the cluster number k defined by the cluster number defining means;
  • Storage control means for storing the feature quantity space created by the feature quantity space creation means in the storage means, and when the storage control means stores the feature quantity space in the storage means and then the start of excretion detection processing is instructed
  • the differential waveform acquisition unit acquires a differential waveform of the detection signal input from the input unit, and then the feature vector acquisition unit acquires an n-dimensional feature based on the differential waveform acquired by the differential waveform acquisition unit.
  • Clustering means for acquiring a quantity vector, and then classifying the n-dimensional feature quantity vector acquired by the feature quantity vector acquisition means by collating with a feature quantity space stored in the storage means, and classification by the clustering means
  • An excretion determining means for determining the excretion status based on the information and an informing means for informing the excretion status determined by the excretion determining means.
  • the cluster number defining means defines the number k of feature space clusters used for excretion detection as 2 or 3 or 4, and the feature space creating means includes the feature quantity vector obtained by the feature quantity vector obtaining means and the feature quantity vector obtaining means.
  • the differential waveform acquisition unit acquires the differential waveform of the detection signal input from the input unit, and then the feature vector acquisition unit acquires the difference acquired by the differential waveform acquisition unit.
  • the excretion determination unit may perform excretion determination based on the classification by the clustering unit, and the notification unit may notify the excretion status determined by the excretion determination unit.
  • the feature vector acquisition unit is an area surrounded by “standard deviation”, “maximum value”, “minimum value”, “positive side waveform and reference line” of the differential waveform acquired by the differential waveform acquisition unit.
  • Five feature quantities “positive area value” and “negative area value that is a region surrounded by the negative waveform and the reference line” are extracted to obtain a five-dimensional feature quantity vector, and the feature quantity
  • the space creation means creates a feature quantity space based on the five-dimensional feature quantity vector acquired by the feature quantity vector acquisition means and the number of clusters defined by the cluster number definition means, and the storage control means
  • the feature space created by the quantity space creating means is stored in the storage means, and the clustering means stores the feature quantity space in the storage means after the storage control means is instructed to start excretion detection processing.
  • the differential waveform acquisition means is the input Acquiring the differential waveform of the detection signal input from the means, and then the feature vector acquisition means is the "standard deviation”, “maximum value”, “minimum value” of the differential waveform acquired by the differential waveform acquisition means, Five feature values are “a positive area value that is a region surrounded by a positive waveform and a reference line” and “a negative area value that is a region surrounded by a negative waveform and the reference line”.
  • the excretion determination means may perform excretion determination based on the classification by the clustering means, and the notification means may notify the excretion status determined by the excretion determination means.
  • the differential waveform acquisition hand Acquires a differential waveform of the detection signal input from the input unit, and then the feature vector acquisition unit acquires an n-dimensional feature vector based on the differential waveform acquired by the differential waveform acquisition unit, Next, the n-dimensional feature quantity vector obtained by the feature quantity vector obtaining means is collated with a feature quantity space stored in the storage means.
  • the feature quantity vector is “excreted”. Classify as “Yes” or “No excretion”, and if the number of clusters k is 3, classify the feature vector as “With defecation” or “With urination and without defecation” or “No excretion”, In the case where the number of clusters k is 4, the feature vector is expressed as “defecation” or “with urination and without defecation” or “with defecation and without defecation and without urination” or “without defecation, and Classified as "no stool and no urination”, the excretion determination means performs excretion determination based on the classification by the clustering means, and the notification means notifies the excretion status determined by the excretion determination means May be.
  • the notification means may be configured to notify only when the excretion determination means determines that there is excretion.
  • the excretion detection method of the present invention is an excretion detection method for detecting excretion, a feature amount space creating step for creating a feature amount space used for excretion detection, and the feature amount space created in the feature amount space creating step. And an excretion detection step for detecting excretion, wherein the feature space creation step is inputted with a step of inputting a detection signal from a gas sensor unit having a gas sensor for detecting gas generated from the excrement.
  • k is a natural number of 1 or more
  • the excretion detection step inputs a detection signal from the gas sensor unit when the start of the excretion detection process is instructed after the feature amount space is stored in the storage means. Then, a difference waveform of the input detection signal is acquired, a predetermined number n of feature amounts are extracted based on the acquired difference waveform, an n-dimensional feature amount vector is acquired, and the feature stored in the storage unit A clustering step for collating and classifying the n-dimensional feature vector in the quantity space, and an excretion judgment step for making a judgment based on the classification by the clustering step. And a notifying step for notifying the excretion status determined in the excretion determining step.
  • the feature vector acquisition step is an area surrounded by the “standard deviation”, “maximum value”, “minimum value”, “positive waveform and reference line” of the differential waveform acquired in the differential waveform acquisition step.
  • the feature amount space creating step creates a feature amount space based on the five-dimensional feature amount vector obtained by the feature amount vector obtaining step and the cluster number k defined in the cluster number defining step.
  • the clustering step of the excretion detection step stores the detection signal from the gas sensor unit when the start of the excretion detection process is instructed after the feature amount space is stored in the storage unit.
  • the differential waveform of the input detection signal is surrounded by “standard deviation”, “maximum value”, “minimum value”, “positive-side waveform and reference line” of the obtained differential waveform.
  • the notification step may be configured to notify the excretion status determined in the excretion determination step.
  • an excretion detection system and an excretion detection method capable of accurately detecting excretion by recognizing an individual excretion pattern using a gas sensor.
  • FIG. 1 is a block diagram showing the configuration of the excretion detection system S in the present embodiment.
  • the cared person is indicated by a broken line.
  • the excretion detection system S of the present embodiment sucks the air inside the gas suction sheet 100 from the gas suction sheet 100 laid on the futon or bed on which the cared person is placed and the tube leading to the inside of the gas suction sheet 100.
  • the gas sensor unit 200 includes a gas sensor that detects a smell generated from the excrement (feces, urine, sputum) of the care recipient who is sleeping on the gas suction sheet 100, and excreted based on the detection signal from the gas sensor unit 200. And an excretion detection device 300 that informs the caregiver of the situation.
  • a gas sensor that detects a smell generated from the excrement (feces, urine, sputum) of the care recipient who is sleeping on the gas suction sheet 100, and excreted based on the detection signal from the gas sensor unit 200.
  • an excretion detection device 300 that informs the caregiver of the situation.
  • the excretion detection system S includes a gas sensor unit 200 having a gas sensor that detects gas generated from excrement, and further includes an input unit 16 for inputting a detection signal from the gas sensor unit 200, and an input unit 16
  • a differential waveform acquisition unit that acquires a differential waveform of a detection signal input from, and a predetermined number n (n is a natural number of 1 or more) of feature quantities based on the differential waveform acquired by the differential waveform acquisition unit;
  • Feature quantity vector obtaining means for obtaining a feature quantity vector, cluster number defining means for defining the number of clusters in the feature quantity space used for excretion detection as k (k is a natural number of 1 or more), and feature quantity vector obtaining means.
  • Feature amount space creating means for creating a feature amount space based on the n-dimensional feature amount vector and the cluster number k defined by the cluster number defining means;
  • a storage control unit (control unit 11) that stores the feature amount space created by the space creation unit in the storage unit 12, and after the storage control unit stores the feature amount space in the storage unit 12, the start of the excretion detection process is instructed.
  • the differential waveform acquisition unit acquires the differential waveform of the detection signal input from the input unit 16, and then the feature vector acquisition unit acquires the n-dimensional feature vector based on the differential waveform acquired by the differential waveform acquisition unit.
  • the gas suction sheet 100 is configured, for example, in a form of cloth, and is placed at a position where at least the lower half of the cared person is placed on the bedding or bed such as the bed on which the cared person is placed.
  • the excretion detection device 300 includes a CPU 11 having a calculation function, a working RAM, a control unit 11 including a ROM for storing various data and programs, a storage unit 12 including a memory for storing a created feature amount space, a monitor, and the like.
  • An operation unit for example, an operation panel
  • receives an instruction from the display unit 13 having a display screen such as a caregiver who operates the excretion detection device 300, a person in charge of the system, and the like, and gives an instruction signal corresponding to the instruction to the control unit 11 (Including touch panel etc.) 14, Notification for notifying that there was excretion on the computer in the care management room, the tablet terminal carried by the caregiver, etc. via various networks (including LAN (Local Area Network))
  • the communication unit 15 as means, an amplification unit, an A / D conversion unit, and the like are provided, and the detection signal from the gas sensor unit 200 is sent to the excretion detection device 300.
  • An input unit 16 as an input interface for inputting are configured.
  • the control unit 11 cooperates with other members to input means, difference waveform acquisition means, feature quantity vector acquisition means, cluster number definition means, feature quantity space creation means, storage control means, clustering means, excretion determination of the present invention. It functions as a means and a notification means.
  • the control unit 11 determines whether the care receiver is in a bedded state, or is completely out of the bed or the like and is in a so-called floored state (departure floor determination). For example, a thin mat or the like provided with a pressure sensor in the bed is laid on a futon or the bed, and a pressure sensor detection signal is received from the input means 16 to determine the separation / departure floor. And the control part 11 employ
  • the detection signal from the gas sensor unit 200 is taken into the control unit 11 via the input means 16. At this time, a predetermined noise removal process is performed. Compared to the temperature sensor and the humidity sensor, the data waveform of the gas sensor due to excretion changes slowly. Therefore, it is preferable to remove the high frequency component as noise.
  • noise of sensor hardware is removed by a low-pass filter (not shown) provided in the gas sensor unit 200 in the gas sensor unit 200, and then a detection signal is sent to the input unit 16.
  • the control part 11 performs a low-pass filtering noise removal with respect to the detection signal input from the input means 16 by a moving average process.
  • a thinning process is performed to reduce the time series score (thinning moving average process).
  • one signal value (detection signal) is acquired once every 100 ms and about every 100 signals.
  • FIG. 2 is an example of a signal value (detection signal) after the thinning moving average process
  • FIG. 3 is a table for explaining the thinning moving average process.
  • FIG. 3 shows an example in which one signal value (sensor output signal value (V)) is obtained for every three signals for the sake of simplicity.
  • an analysis window for a fixed time is prepared from the signal values after the thinning moving average process (FIG.
  • FIG. 4 is a diagram showing an example of an output waveform of the detection signal after the thinning moving average process.
  • the control unit 11 functions as a differential waveform acquisition unit, and acquires a differential waveform by differential processing for the output waveform of the detection signal after the thinning moving average process.
  • FIG. 5 is a diagram illustrating an example of a differential waveform of the output waveform of FIG.
  • a feature amount space creating process is performed.
  • the control unit 11 functions as a feature amount vector acquisition unit, extracts an arbitrary number n of arbitrary feature amounts from the differential waveform of the detection signal after the thinning moving average process, and acquires the acquired n-dimensional feature amount vector.
  • N is a natural number.
  • FIG. 6 is an explanatory diagram of the feature amount.
  • the positive area of the differential waveform is the area value of the region surrounded by the positive differential waveform and the reference line
  • the negative area of the differential waveform is the area of the region surrounded by the negative differential waveform and the reference line Value.
  • a line having a difference value of zero is set as a reference line.
  • the control unit 11 performs clustering by the k-means method using the acquired arbitrary number n of feature quantities.
  • the k-means method is one of methods for classifying a plurality of data relating to a predetermined parameter into a desired number k of clusters (k is a natural number).
  • a clustering algorithm using the k-means method used in this embodiment will be described.
  • the meanings of the terms “parameter” and “technical term” are as follows.
  • n Number of feature values
  • Feature vector n-dimensional vector that summarizes feature quantities
  • Feature space n-dimensional space where feature vectors exist
  • m Total number of feature vectors obtained by measurement (in feature volume space) (There will be m vectors)
  • k Number of clusters to be obtained (can be set freely)
  • centroids p i are arranged at appropriate positions in the n-dimensional feature space. These centroid form clusters C i of the feature vector as the center (Step1).
  • the distance between the j-th feature vector x j existing in the feature space and k centroids is calculated. Assuming that the minimum centroid is p i *, the feature vector x j belongs to the cluster C i * (Step 2).
  • Step 2 is completed for all feature quantity vectors x
  • an average vector of all feature quantity vectors in each cluster is calculated.
  • the average vector is (Step 3).
  • l i is the number of vectors included in the cluster C i .
  • a five-dimensional feature quantity vector using five feature quantities (n 5) of “standard deviation”, “maximum value”, “minimum value”, “positive area”, and “negative area” of the difference waveform.
  • the arrangement of the three centers of gravity means that there are clusters of “with defecation”, “with urination and without defecation”, and “without excretion (no abnormality)”, “with defecation”, “ It enables detection with distinction between “with urination and without defecation” and “without excretion (no abnormality)”.
  • the detection signals acquired from the gas sensor unit 200 are clustered based on the three clusters in the feature amount space created based on the learning data.
  • k clusters based on n-dimensional feature amount vectors extracted from the differential waveform shape of the detection signal from the gas sensor unit 200 for several hours to several days are actually The result of collating k types of excretion status obtained by opening a diaper (for example, no excretion, defecation, urination, and defecation) is used as learning data, so that an n-dimensional feature vector corresponds to the excretion status.
  • a feature space that can be classified into k clusters is created.
  • the actual state of excretion is input as an actual value by the operation of the operation unit 14 by, for example, a caregiver or a system person in charge.
  • FIG. 9 is a diagram illustrating an example in which the differential waveform shape of the detection signal acquired from the gas sensor unit 200 is schematically represented on a feature amount space classified into three clusters.
  • “defecation determination” is a region where a differential waveform shape (large variation portion) with large variation is gathered, and a region where a differential waveform shape (small variation portion) with small variation is “ It has the characteristic that a region where differential waveform shapes without fluctuation (no abnormality) gather can be defined as “no urination determination”.
  • the actual feature amount space is created based on the five-dimensional feature amount vector of the difference waveform shape, but FIG.
  • the control unit 11 starts the excretion detection process when a caregiver or a system person in charge is instructed to start the excretion detection process by operating the operation unit 14.
  • the control unit 11 extracts an n-dimensional feature quantity vector from the differential waveform of the detection signal acquired from the gas sensor unit 200. Then, the n-dimensional feature quantity vectors extracted in the feature quantity space stored in the storage unit 12 are collated and classified into any of k clusters, and excretion is determined.
  • the control unit 11 functions as a notification unit and notifies the excretion status to a tablet terminal or the like carried by the caregiver through the communication unit 15. For example, it may be configured to notify that there is excretion only when it is determined that there is excretion.
  • FIG. 10 is a flowchart showing a feature space creation process by the control unit 11 of the excretion detection device 300.
  • the control unit 11 functions as an input unit of the present invention together with the input unit 16 and acquires (inputs) a gas sensor detection signal from the gas sensor unit 200 (Step 10).
  • the caretaker's takeoff floor is determined (Step 11). If the person is getting out of bed (Step 11: No), the process returns to Step 10. If the user is on the floor (Step 11: Yes), the process goes to Step S10. Thinning-out moving average processing is performed on the acquired detection signal (Step 12).
  • control unit 11 functions as a differential waveform acquisition unit, and acquires a differential waveform by differential processing for the output waveform of the detection signal after the thinning-out moving average process in step S12 (Step 13).
  • control part 11 functions as a feature-value vector acquisition means, extracts n feature-values from the difference waveform acquired by step S13, and acquires an n-dimensional feature-value vector (Step14).
  • control unit 11 functions as a cluster number definition unit and a feature amount space creation unit, defines the number of clusters as k, and creates an n-dimensional feature amount space (Step 15). It is determined whether or not the creation of the feature amount space has been completed (Step 16). If the creation of the feature amount space has not been completed, the process returns to Step 10, and Step 10 is continued until the detection signal is continuously acquired and the feature amount space is created. Steps 16 to 16 are repeated. For example, it may be considered that the creation of the feature amount space is completed when a predetermined time (for example, several hours to several days) has elapsed since the detection signal acquisition was started.
  • a predetermined time for example, several hours to several days
  • control part 11 functions as a memory
  • FIG. 11 is a flowchart showing excretion detection processing by the control unit 11 of the excretion detection device 300.
  • the control unit 11 receives a gas sensor detection signal from the gas sensor unit 200 (Step 20).
  • the caretaker's takeoff floor is determined (Step 21). If the user is getting out of bed (Step 21: No), the process returns to Step 20. If the user is on the floor (Step 21: Yes), the process is received at Step 20. The thinned moving average process is performed on the detected signal (Step 22).
  • control unit 11 obtains a differential waveform by differential processing for the output waveform of the detection signal after the thinning-out moving average processing (Step 23). And the control part 11 extracts n feature-values from the difference waveform acquired at Step23, and acquires an n-dimensional feature-value vector (Step24).
  • the control unit 11 functions as a clustering unit, and classifies the n-dimensional feature vector acquired in Step 24 by collating it with the feature vector stored in the storage unit 12 in Step 17 of the previous feature program space creation process. (Step 25). And the control part 11 functions as an excretion determination means and an alerting
  • an example in which notification is given only when there is excretion is shown. Specifically, when the determination result is “defecation” (Step 26: defecation), the defecation is notified to the tablet terminal or the like carried by the caregiver through the communication unit 15 (Step 27).
  • Step 26 urination
  • urination is notified to the tablet terminal or the like carried by the caregiver through the communication unit 15 (Step 28). If there is no excretion (Step 26: no excretion) or after notification of “defecation” and “urination”, the processing of Step 20 to Step 29 is repeated until the end of excretion detection is instructed (Step 29: Yes).
  • the excretion determination in step S26 a determination is made for the number k of clusters defined in the feature amount space.
  • the excretion status is accurately determined by clustering in which the number k of clusters is defined in advance using an arbitrary dimension feature amount space created using an arbitrary number of feature amounts acquired from the differential waveform of the gas sensor. Can do.
  • an original feature amount space is created for each care recipient, an individual excretion pattern can be reflected, and more accurate excretion detection can be performed.
  • excretion can be detected without being affected by variations in output signals due to individual differences in the gas sensors.
  • the scope of application of the present invention is not limited to the above embodiment.
  • the present invention is widely applied to an excretion detection system and an excretion detection method capable of accurately detecting excretion by recognizing an excretion pattern for each person in a non-contact manner with a target person (user) for detection. Can do.

Abstract

ガスセンサを用いて、個人ごとの排泄パターンを認識して排泄を正確に検知することができる排泄検知システム及び排泄検知方法を提供する。排泄物から発生するガスを検知するガスセンサを有するガスセンサユニット(200)と、ガスセンサユニット(200)からの検知信号を入力する手段と、入力された前記検知信号の差分波形を取得する差分波形取得手段と、取得した差分波形からn個の特徴量を抽出しn次元の特徴量ベクトルを取得する手段と、排泄検知に用いる特徴量空間のクラスタ数kを定義する手段と、取得したn次元の特徴量ベクトルと、定義されたクラスタ数kに基づいて特徴量空間を作成する。そして、排泄検知処理の開始が指示されると、特徴量空間に取得したn次元の特徴量ベクトルを照合して分類し、排泄判定を行う手段と、排泄を判定した場合に排泄を報知する手段と、を有する。

Description

排泄検知システム及び排泄検知方法
 本発明は、排泄を検知する排泄検知システムに関し、特に、個人ごとの排泄パターンを認識して正確に排泄検知を行う排泄検知システム及び排泄検知方法に関する。
 従来より、尿失禁検知の手法として、濡れセンサを用いた尿失禁検知システム、ガスセンサを用いた尿失禁検知システムがある。濡れセンサを用いた尿失禁検知システムは、例えばおむつに直接センサを埋め込み、センサが直接尿に触れることによって生じる電位差に基づいて尿を検知している。ガスセンサを用いた尿失禁検知システムの場合、尿に含まれる尿素、アンモニア等の化学物質を検知し、尿を検知している。ガスセンサを用いた尿失禁検知システムの例を非特許文献1乃至4に示す。
菊池正志、白鳥世明、"導電性高分子を用いたアンモニアガスセンサ"、電気情報通信学会、pp.55-99, 2001 加藤陽、向井利春、"人と接するロボットのための尿失禁検知ガスセンサ"、第六回システムインテグレ―テーション部門学術講演会(SI2005),pp.225-226, 2005 筒口善央、米澤保人、山田有河、"排便検知センサシステムの開発"、技術ふれあいミレニアム2000 発表会要旨集,2000年 野方誠、小川和宏、河野正洋、"高齢者見守りロボット用高性能センサの開発"、日本機械学会ロボティクス・メカトロニクス講演会’04 講演論文集、2004
 実際の介護現場においては、現状、決まった時間に被介護者のおむつ交換を行う定時交換、又は、おむつが汚れたら交換をおこなう随時交換を行っている。しかし、定時交換の場合には、時間が来ても被介護者がすぐに対応できないこともある。また、おむつ開けてみたが、汚れていないという空振りのケースも多い。随時交換は、被介護者本人の訴えに頼る場面も多く、被介護者が訴えることができなければ、介護者が気付くまでおむつ交換が行われないという危険性がある。
 そこで、被介護者ごとに排泄パターン表を作成し、被介護者ごとの排泄の周期パターンを把握しようとする取り組みもある。しかし、排泄パターン表を作成するためには、おむつ内を1時間に1回確認をし、排泄の有無を記録する作業を1~2週間続けなければならず、施設内入居者全員の排泄パターン表を作成するには多くの労力が必要となり、現実的でない。
 また、ガスセンサを用いた排泄検知判定もあるが、ガスセンサ個体差のばらつきが大きく、一定の閾値により排泄を判定できないという問題もある。
 本発明の目的は、このような問題等に鑑みて、個人ごとの排泄パターンを認識して排泄を正確に検知することができる排泄検知システム及び排泄検知方法を提供することにある。
 本発明の排泄検知システムは、排泄検知システムにおいて、排泄物から発生するガスを検知するガスセンサを有するガスセンサユニットと、ガスセンサユニットからの検知信号を入力する入力手段と、前記入力手段から入力された前記検知信号の差分波形を取得する差分波形取得手段と、前記差分波形取得手段が取得した差分波形に基づいて所定数n(nは1以上の自然数)の特徴量を抽出し、n次元の特徴量ベクトルを取得する特徴量ベクトル取得手段と、排泄検知に用いる特徴量空間のクラスタ数をk(kは1以上の自然数)と定義するクラスタ数定義手段と、前記特徴量ベクトル取得手段が取得したn次元の特徴量ベクトルと、前記クラスタ数定義手段が定義したクラスタ数kに基づいて特徴量空間を作成する特徴量空間作成手段と、前記特徴量空間作成手段が作成した特徴量空間を記憶手段に記憶する記憶制御手段と、前記記憶制御手段が前記特徴量空間を記憶手段に記憶した後、排泄検知処理の開始が指示されると、前記差分波形取得手段は前記入力手段から入力された前記検知信号の差分波形を取得し、次いで、前記特徴量ベクトル取得手段は前記差分波形取得手段が取得した差分波形に基づいてn次元の特徴量ベクトルを取得し、次いで、前記特徴量ベクトル取得手段が取得した前記n次元の特徴量ベクトルを前記記憶手段に記憶された特徴量空間に照合して分類するクラスタリング手段と、前記クラスタリング手段による分類に基づいて排泄状況の判定を行う排泄判定手段と、前記排泄判定手段が判定した排泄状況を報知する報知手段と、を有することを特徴とする。
 前記クラスタ数定義手段は、排泄検知に用いる特徴量空間のクラスタ数kを2又は3又は4と定義し、前記特徴量空間作成手段は、前記特徴量ベクトル取得手段が取得した前記特徴量ベクトルと、前記クラスタ数定義手段が定義したクラスタ数k(k=2又は3又は4)に基づいて特徴量空間を作成し、前記記憶制御手段は、前記特徴量空間作成手段によって作成されたクラスタ数k(k=2又は3又は4)の特徴量空間を記憶手段に記憶し、前記クラスタリング手段は、前記記憶制御手段が前記特徴量空間を記憶手段に記憶した後、排泄検知処理の開始が指示されると、前記差分波形取得手段は前記入力手段から入力された前記検知信号の差分波形を取得し、次いで、前記特徴量ベクトル取得手段は前記差分波形取得手段が取得した差分波形に基づいてn次元の特徴量ベクトルを取得し、次いで、前記特徴量ベクトル取得手段が取得した前記n次元の特徴量ベクトルを前記記憶手段に記憶された特徴量空間に照合して分類し、前記排泄判定手段は、前記クラスタリング手段による分類に基づいて排泄判定を行い、前記報知手段は、前記排泄判定手段が判定した排泄状況を報知するよう構成してもよい。
 前記特徴量ベクトル取得手段は、前記差分波形取得手段が取得した差分波形の「標準偏差」、「最大値」、「最小値」、「正側の波形と基準線とで囲まれた領域である正面積の値」、「負側の波形と前記基準線とで囲まれた領域である負面積の値」の5つの特徴量を抽出し、5次元の特徴量ベクトルを取得し、前記特徴量空間作成手段は、前記特徴量ベクトル取得手段が取得した5次元の特徴量ベクトルと、前記クラスタ数定義手段が定義したクラスタ数に基づいて特徴量空間を作成し、前記記憶制御手段は、前記特徴量空間作成手段が作成した特徴量空間を記憶手段に記憶し、前記クラスタリング手段は、前記記憶制御手段が前記特徴量空間を記憶手段に記憶した後、排泄検知処理の開始が指示されると、前記差分波形取得手段は前記入力手段から入力された前記検知信号の差分波形を取得し、次いで、前記特徴量ベクトル取得手段は前記差分波形取得手段が取得した差分波形の「標準偏差」、「最大値」、「最小値」、「正側の波形と基準線とで囲まれた領域である正面積の値」、「負側の波形と前記基準線とで囲まれた領域である負面積の値」の5つの特徴量を抽出して5次元の特徴量ベクトルを取得し、次いで、前記特徴量ベクトル取得手段が取得した前記5次元の特徴量ベクトルを前記記憶手段に記憶された特徴量空間に照合して分類し、前記排泄判定手段は、前記クラスタリング手段による分類に基づいて排泄判定を行い、前記報知手段は、前記排泄判定手段が判定した排泄状況を報知するよう構成してもよい。
 前記クラスタ数定義手段は、クラスタ数kを、「排泄あり」と「排泄なし」をそれぞれ意味する2(k=2)と定義するか、又は、前記クラスタ数定義手段は、クラスタ数kを、「排便あり」と、「排尿あり、かつ、排便なし」と、「排泄なし」と、をそれぞれ意味する3(k=3)と定義するか、又は、
 前記クラスタ数定義手段は、クラスタ数kを、「排便あり」と、「排尿あり、かつ、排便なし」と、「放屁あり、かつ、排便なし、かつ、排尿なし」と、「放屁なし、かつ、排便なし、かつ、排尿なし」と、をそれぞれ意味する4(k=4)と定義し、前記特徴量空間作成手段は、前記特徴量ベクトル取得手段が取得した前記特徴量ベクトルと、前記クラスタ数定義手段が定義したクラスタ数k(k=2又は3又は4)に基づいて特徴量空間を作成し、前記記憶制御手段は、前記特徴量空間作成手段によって作成されたクラスタ数k(k=2又は3又は4)の特徴量空間を記憶手段に記憶し、前記クラスタリング手段は、前記記憶制御手段が前記特徴量空間を記憶手段に記憶した後、排泄検知処理の開始が指示されると、前記差分波形取得手段は前記入力手段から入力された前記検知信号の差分波形を取得し、次いで、前記特徴量ベクトル取得手段は前記差分波形取得手段が取得した差分波形に基づいてn次元の特徴量ベクトルを取得し、次いで、前記特徴量ベクトル取得手段が取得した前記n次元の特徴量ベクトルを前記記憶手段に記憶された特徴量空間に照合し、前記クラスタ数kが2の場合には前記特徴量ベクトルを「排泄あり」又は「排泄なし」に分類し、前記クラスタ数kが3の場合には前記特徴量ベクトルを「排便あり」又は「排尿あり、かつ、排便なし」又は「排泄なし」に分類し、前記クラスタ数kが4の場合には前記特徴量ベクトルを「排便あり」又は「排尿あり、かつ、排便なし」又は「放屁あり、かつ、排便なし、かつ、排尿なし」又は「放屁なし、かつ、排便なし、かつ、排尿なし」に分類し、前記排泄判定手段は、前記クラスタリング手段による分類に基づいて排泄判定を行い、前記報知手段は、前記排泄判定手段が判定した排泄状況を報知するよう構成してもよい。
 前記報知手段は、前記排泄判定手段が排泄があったと判定した場合にのみ報知するよう構成してもよい。
 本発明の排泄検知方法は、排泄を検知する排泄検知方法において、排泄検知に用いる特徴量空間を作成する特徴量空間作成ステップと、前記特徴量空間作成ステップにて作成された前記特徴量空間を用いて、排泄検知を行う排泄検知ステップと、を有し、前記特徴量空間作成ステップは、排泄物から発生するガスを検知するガスセンサを有するガスセンサユニットからの検知信号を入力するステップと、入力された前記検知信号の差分波形を取得する差分波形取得ステップと、前記差分波形取得ステップにて取得された前記差分波形に基づいて所定数n(nは1以上の自然数)の特徴量を抽出し、n次元の特徴量ベクトルを取得する特徴量ベクトル取得ステップと、前記特徴量空間のクラスタ数をk(kは1以上の自然数)と定義するクラスタ数定義ステップと、前記特徴量ベクトル取得ステップにて取得されたn次元の特徴量ベクトルと、前記クラスタ数定義ステップにて定義されたクラスタ数kに基づいて特徴量空間を作成して記憶手段に記憶するステップと、を有し、前記排泄検知ステップは、前記特徴量空間が前記記憶手段に記憶された後に、排泄検知処理の開始が指示されると、前記ガスセンサユニットからの検知信号を入力し、入力された前記検知信号の差分波形を取得すし、取得された前記差分波形に基づいて所定数nの特徴量を抽出しn次元の特徴量ベクトルを取得し、前記記憶手段に記憶された特徴量空間に、前記n次元の特徴量ベクトルを照合して分類するクラスタリングステップと、前記クラスタリングステップによる分類に基づいて判定を行う排泄判定ステップと、前記排泄判定ステップにて判定した排泄状況を報知する報知ステップと、を有することを特徴とする。
 前記クラスタ数定義ステップは、排泄検知に用いる特徴量空間のクラスタ数kを2又は3又は4と定義し、前記特徴量空間作成ステップは、前記特徴量ベクトル取得ステップにて取得した前記特徴量ベクトルと、前記クラスタ数定義ステップが定義したクラスタ数k(k=2又は3又は4)に基づいて特徴量空間を作成して前記記憶手段に記憶するよう構成してもよい。
 前記特徴量ベクトル取得ステップは、前記差分波形取得ステップにて取得した差分波形の「標準偏差」、「最大値」、「最小値」、「正側の波形と基準線とで囲まれた領域である正面積の値」、「負側の波形と前記基準線とで囲まれた領域である負面積の値」の5つの特徴量を抽出して5次元の特徴量ベクトルを取得し(n=5)、前記特徴量空間作成ステップは、前記特徴量ベクトル取得ステップが取得した5次元の特徴量ベクトルと、前記クラスタ数定義ステップにて定義されたクラスタ数kに基づいて特徴量空間を作成して前記記憶手段に記憶し、前記排泄検知ステップの前記クラスタリングステップは、前記特徴量空間が前記記憶手段に記憶された後に、排泄検知処理の開始が指示されると、前記ガスセンサユニットからの検知信号を入力し、入力された前記検知信号の差分波形を取得し、取得された差分波形の「標準偏差」、「最大値」、「最小値」、「正側の波形と基準線とで囲まれた領域である正面積の値」、「負側の波形と前記基準線とで囲まれた領域である負面積の値」の5個(n=5)の特徴量を抽出して5次元の特徴量ベクトル(n=5)を取得し、前記記憶手段に記憶された特徴量空間に、前記5次元の特徴量ベクトルを照合して分類し、前記排泄判定ステップは、前記クラスタリングステップによる分類に基づいて排泄判定を行い、前記報知ステップは、前記排泄判定ステップにて判定した排泄状況を報知するよう構成してもよい。
 本発明によれば、ガスセンサを用いて、個人ごとの排泄パターンを認識して排泄を正確に検知することができる排泄検知システム及び排泄検知方法を提供できる。
本実施形態における排泄検知システムSの構成を示すブロック図である。 間引き移動平均処理後の信号値(検知信号)の一例である。 間引き移動平均処理を説明する表である。 間引き移動平均処理後の検知信号の出力波形の一例を示す図である。 図4の出力波形の差分波形の一例を示す図である。 特徴量の説明図である。 特徴量空間に12個(m=12)の5次元特徴量ベクトルが存在する様子をあらわす概念図である。 12個(m=12)の5次元特徴量ベクトル値の一例である。 検知信号の差分波形形状を3つのクラスタに分類した特徴量空間上に模式的に表した図である。 制御部11による特徴量空間作成処理を示すフローチャートである。 制御部11による排泄検知処理を示すフローチャートである。
 本実施形態では、本発明の排泄検知システムを、排泄検知の対象者(ユーザ)の一例である被介護者に適用した場合について説明する。
 図1は、本実施形態における排泄検知システムSの構成を示すブロック図である。図1において被介護者を破線にて示す。
 本実施形態の排泄検知システムSは、被介護者が載置される布団又はベッド上に敷かれるガス吸引シート100と、当該ガス吸引シート100内部に通じるチューブからガス吸引シート100内部の空気を吸引し、ガス吸引シート100に寝ている被介護者の排泄物(便、尿、屁)から発生するにおいを検知するガスセンサを備えたガスセンサユニット200と、ガスセンサユニット200からの検知信号に基づいて排泄状況を介護者に報知する排泄検知装置300と、を備える。
 より具体的には、排泄検知システムSは、排泄物から発生するガスを検知するガスセンサを有するガスセンサユニット200を備え、さらに、ガスセンサユニット200からの検知信号を入力する入力手段16と、入力手段16から入力された検知信号の差分波形を取得する差分波形取得手段と、差分波形取得手段が取得した差分波形に基づいて所定数n(nは1以上の自然数)の特徴量を抽出し、n次元の特徴量ベクトルを取得する特徴量ベクトル取得手段と、排泄検知に用いる特徴量空間のクラスタ数をk(kは1以上の自然数)と定義するクラスタ数定義手段と、特徴量ベクトル取得手段が取得したn次元の特徴量ベクトルと、クラスタ数定義手段が定義したクラスタ数kに基づいて特徴量空間を作成する特徴量空間作成手段と、特徴量空間作成手段が作成した特徴量空間を記憶手段12に記憶する記憶制御手段(制御部11)と、記憶制御手段が特徴量空間を記憶手段12に記憶した後、排泄検知処理の開始が指示されると、差分波形取得手段は入力手段16から入力された検知信号の差分波形を取得し、次いで、特徴量ベクトル取得手段は差分波形取得手段が取得した差分波形に基づいてn次元の特徴量ベクトルを取得し、次いで、特徴量ベクトル取得手段が取得したn次元の特徴量ベクトルを記憶手段12に記憶された特徴量空間に照合して分類するクラスタリング手段と、クラスタリング手段による分類に基づいて排泄状況の判定を行う排泄判定手段と、排泄判定手段が判定した排泄状況を報知する報知手段と、により構成される。
 ガス吸引シート100は、例えば、敷布状に構成され、被介護者が載置される布団又はベッド等の寝具上の少なくとも被介護者の下半身が載置される位置に敷かれる。
 排泄検知装置300は、演算機能を有するCPU、作業用RAM、各種データ及びプログラムを記憶するROM等から構成された制御部11、作成した特徴量空間を記憶するメモリ等を備える記憶手段12、モニタ等の表示画面を備える表示部13、排泄検知装置300を操作する介護者、システム担当者等の指示を受け付け当該指示に応じた指示信号を制御部11に対して与える操作部(例えば、操作パネル(タッチパネルを含む)等)14、各種ネットワーク(LAN(Local Area Network)を含む)を介して介護管理室のコンピュータ、介護士が携帯するタブレット端末等に排泄があったことを報知するための報知手段としての通信部15、増幅部及びA/D変換部等を備えガスセンサユニット200からの検知信号を排泄検知装置300内部に入力する入力インターフェースとしての入力手段16を備えて構成されている。各構成部材はバスを介して相互に接続されている。
 制御部11は、他の部材と協動して本発明の入力手段、差分波形取得手段、特徴量ベクトル取得手段、クラスタ数定義手段、特徴量空間作成手段、記憶制御手段、クラスタリング手段、排泄判定手段、報知手段として機能する。
 制御部11は、被介護者がベッドに寝ている着床状態か、ベッド等から完全に離床して所謂離床状態であるかを判別する(離着床判定)。例えば、ベッドに圧力センサを備えた薄型マットなどを布団やベッド上に敷き、圧力センサ検知信号を入力手段16から受信して離着床を判別する。そして、制御部11は、入力手段16から入力されるガスセンサユニット200からの検知信号のうち、被介護者が着床状態のときの検知信号のみを特徴量空間作成処理及び排泄検知処理に採用する。
 ガスセンサユニット200からの検知信号は、入力手段16を介して制御部11内部に取り込まれる。この際に、所定のノイズ除去処理を行なう。温度センサや湿度センサに比べて、排泄によるガスセンサのデータ波形は、変化の速度が遅い。したがって、高周波成分は、ノイズとみなし除去することが好ましい。本実施形態では、まず、ガスセンサユニット200内にて、ガスセンサユニット200内部に備えたローパスフィルタ(不図示)によりセンサハードのノイズ除去を行った後に、入力手段16へ検知信号を送る。そして、制御部11は、入力手段16から入力された検知信号に対し、移動平均処理によってローパスフィルタリングノイズ除去を行う。以上の処理により、比較的簡易に高周波成分を抑制することができる。
 さらに、本実施形態では、移動平均処理の後に間引き処理を行い、時系列点数を減少させる(間引き移動平均処理)。例えば、移動平均処理を行った後、100msごとに1回、信号数約100個毎に1個の信号値(検知信号)を取得する。これにより、排泄検知の処理速度を向上させることができる。図2は間引き移動平均処理後の信号値(検知信号)の一例であり、図3は、間引き移動平均処理を説明する表である。図3では、図示を簡略するため、信号数3個毎に1個の信号値(センサ出力信号値(V))を取得した場合の例を示す。実際には、間引き移動平均処理後の信号値(図2)のうち、一定時間分の解析窓が用意され、解析窓に収まる範囲内の検知信号について解析が行われる。 図4は、間引き移動平均処理後の検知信号の出力波形の一例を示す図である。次に制御部11は、差分波形取得手段として機能し、間引き移動平均処理後の検知信号の出力波形について差分処理により差分波形を取得する。図5は、図4の出力波形の差分波形の一例を示す図である。
 〈特徴量空間作成手順〉 排泄検知処理の前処理として、特徴量空間作成処理を行なう。 制御部11は、特徴量ベクトル取得手段として機能し、間引き移動平均処理後の検知信号の差分波形から、任意の特徴量を任意数nだけ抽出し、取得したn次元の特徴量ベクトルを取得する(nは自然数)。 本実施形態では、差分波形から抽出する任意の特徴量の一例として、差分波形の「標準偏差」、「最大値」、「最小値」、「正面積の値」、「負面積の値」の5つ(n=5)の特徴量を抽出し、5次元の特徴量ベクトルを取得する。図6は、特徴量の説明図である。差分波形の正面積とは、正側の差分波形と基準線とで囲まれる領域の面積値であり、差分波形の負面積とは、負側の差分波形と基準線とで囲まれる領域の面積値である。本実施形態では、差分値がゼロの線を基準線とする。
 次に、制御部11は、取得した任意数nの特徴量を用いて、k-means法によりクラスタリングを行う。k-means法は、所定のパラメータに関する複数のデータを、所望数k個(kは自然数)のクラスタに分類する手法の一つである。 本実施形態で用いるk-means法を用いたクラスタリングのアルゴリズムについて説明する。なお、パラメータ及びテクニカルタームの用語の意味は以下の通りである。
   n:特徴量の個数
   特徴量ベクトル: 特徴量をまとめたn次元のベクトル
   特徴空間: 特徴量ベクトルの存在するn次元空間
   m:測定して得られた特徴量ベクトルの全個数(特徴量空間にm個のベクトルが存在することになる)
   k:求めたいクラスタの個数(自由に設定可能)
 まず、n次元特徴量空間の適当な位置にk個の重心(セントロイドpi)を配置する.これらセントロイドを中心として特徴量ベクトルのクラスタCiを形成する(Step1)。
 次に、特徴空間上に存在するj番目の特徴量ベクトルxjとk個のセントロイドとの距離を計算する。最小となったセントロイドをpi*とすると、特徴量ベクトルxjはクラスタCi*に属することとする(Step2)。
Figure JPOXMLDOC01-appb-M000001
 そして、全特徴量ベクトルxについてStep2の処理が終了した後、各クラスタ内の全特徴量ベクトルの平均ベクトルを計算する。その平均ベクトルを、新たな
Figure JPOXMLDOC01-appb-M000002
とする(Step3)。
 
Figure JPOXMLDOC01-appb-M000003
 
ここで、liはクラスタCiに含まれるベクトルの数である。
 このStep2とStep3により、セントロイドやクラスタの割当てが変化しなくなったら、前処理を終了し(Step4)。変化するようであればStep2に戻り、Step2、Step3の処理を繰り返し行う。
 制御部11は、クラスタ数定義手段として機能し、n個の特徴量を用いて、n次元の特徴量ベクトルの存在するn次元空間に、任意数k個(kは自然数)の重心(セントロイドpi)を配置する。
 例えば、所望する排泄検知が、「排泄(排尿又は排便)あり」と「排泄なし(異常なし)」を区別して検知したい場合には、「排泄(排尿又は排便)あり」、「排泄なし(異常なし)」を意味する2個のクラスタ(k=2)の重心を配置する。
 所望する排泄検知が、「排便あり」、「排尿あり、かつ、排便なし」、「排泄なし(異常なし)」を区別して検知したい場合には、これら「排便あり」、「排尿あり、かつ、排便なし」、「排泄なし(異常なし)」を意味する3個のクラスタ(k=3)の重心を配置する。
 所望する排泄検知が、「排便あり」、「排尿あり、かつ、排便なし」、「放屁あり、かつ、排泄(排便及び排尿)なし」、「放屁なし、かつ、排便なし、かつ、排尿なし(異常なし)」を区別して検知したい場合には、これら「排便あり」、「排尿あり、かつ、排便なし」、「放屁あり、かつ、排泄(排便及び排尿)なし」、「放屁なし、かつ、排便なし、かつ、排尿なし(異常なし)」を意味する4個のクラスタ(k=4)の重心を配置する。
 例えば、差分波形の「標準偏差」、「最大値」、「最小値」、「正面積」、「負面積」の5個の特徴量(n=5)を用いて、5次元の特徴量ベクトルの存在する5次元空間に、3個(k=3)の重心(セントロイドpi)を配置させる。3個の重心を配置させたということは、つまり、それぞれ「排便あり」、「排尿あり、かつ、排便なし」、「排泄なし(異常なし)」のクラスタを意味し、「排便あり」、「排尿あり、かつ、排便なし」、「排泄なし(異常なし)」を区別した検知を可能にする。後の排泄検知処理において、ガスセンサユニット200から取得した検知信号が、学習データに基づいて作成した特徴量空間において3つのクラスタに基づいてクラスタリングされることとなる。
 図7は、特徴量空間に12個(m=12)の5次元特徴量ベクトルが存在する様子をあらわす概念図である。なお、本実施形態による特徴量空間は5次元空間であって、正確な図示は困難であるため、図7の概念図にて図示する。図8は、実際の12個(m=12)の5次元特徴量ベクトル値の一例である。12個(m=12)の5次元特徴量ベクトルが、A、B、Cの3種類(k=3)にクラスタリングされた例である。
 以上の特徴量空間作成処理により、例えば、数時間~数日間の間のガスセンサユニット200からの検知信号の差分波形形状から抽出したn次元の特徴量ベクトルに基づいたk個のクラスタと、実際におむつを開けて得たk種の排泄状況(例えば、排泄なし、排便、排尿、放屁等)と、を照合した結果を学習データとすることで、n次元の特徴量ベクトルを排泄状況に応じたk個のクラスタに分類可能な特徴量空間を作成する。実際の排泄状況は、例えば、介護者又はシステム担当者等が操作部14の操作により実績値として入力する。図9は、ガスセンサユニット200から取得した検知信号の差分波形形状を、3つのクラスタに分類した特徴量空間上に模式的に表した一例を示す図である。図9に示した特徴量空間の例は、変動が大きい差分波形形状(変動大部)が集合する領域を「排便判定」、変動が小さい差分波形形状(変動小部)が集合する領域を「排尿判定」、変動がない差分波形形状(異常なし)が集合する領域を「排泄無し判定」と定義できるという特質を有する。なお、実際の特徴量空間は差分波形形状の5次元の特徴量ベクトルに基づいて作成されるが、図9では特徴量を抽出した元となる差分波形形状にも特徴が見て取れるということを示すため、差分波形形状そのものを示した。
 以上の手法で、被介護者ごとに作成された特徴量空間を、制御部11が記憶制御手段として機能し、記憶手段12に記憶する。
 〈排泄検知手順〉 
 特徴量空間が作成された後、介護者又はシステム担当者等が操作部14の操作により排泄検知処理の開始が指示されることにより、制御部11は、排泄検知処理を開始する。
 制御部11は、ガスセンサユニット200から取得した検知信号の差分波形からn次元の特徴量ベクトルを抽出する。そして、記憶手段12に記憶された特徴量空間に抽出したn次元の特徴量ベクトルを照合してk個のクラスタのいずれかに分類し、排泄判定を行う。
 制御部11は報知手段として機能し通信部15を通じて、介護士が携帯するタブレット端末等に排泄状況を報知する。例えば、排泄があったと判定した場合にのみ、排泄があったことを報知するよう構成してもよい。
 〈排泄検知装置300の具体的処理動作例〉
 図10は、排泄検知装置300の制御部11による特徴量空間作成処理を示すフローチャートである。
 まず、制御部11は、入力手段16と共に本発明の入力手段として機能し、ガスセンサユニット200からガスセンサの検知信号を取得(入力)する(Step10)。次いで、被介護者の離着床を判定し(Step11)、離床中の場合には(Step11:No)、Step10の処理に戻り、着床中の場合(Step11:Yes)には、ステップS10で取得した検知信号に対して間引き移動平均処理を行う(Step12)。
 次に、制御部11は、差分波形取得手段として機能し、ステップS12の間引き移動平均処理後の検知信号の出力波形について差分処理により差分波形を取得する(Step13)。そして、制御部11は、特徴量ベクトル取得手段として機能し、ステップS13で取得した差分波形からn個の特徴量を抽出し、n次元の特徴量ベクトルを取得する(Step14)。
 次に、制御部11は、クラスタ数定義手段、特徴量空間作成手段として機能し、クラスタ数をkと定義し、n次元の特徴量空間を作成する(Step15)。特徴量空間の作成が完了したか否かを判定し(Step16)、特徴量空間の作成を完了していない場合にはStep10に戻り、検知信号を引き続き取得して特徴量空間を作成するまでStep10~Step16の処理を繰り返し行う。例えば、検知信号取得開始から所定時間(例えば、数時間~数日間)経過したときに、特徴量空間の作成を完了したと見なしてもよい。
 そして、制御部11は、記憶制御手段として機能し、作成した特徴量空間を記憶手段12に保存(記憶)して処理を終了する(Step17)。
 以上のように被介護者ごとに特徴量空間を作成する。
 次に、この特徴量空間を使用した排泄検知処理の手順を説明する。
 図11は、排泄検知装置300の制御部11による排泄検知処理を示すフローチャートである。
 制御部11は、ガスセンサユニット200からガスセンサの検知信号を受信する(Step20)。次いで、被介護者の離着床を判定し(Step21)、離床中の場合には(Step21:No)、Step20の処理に戻り、着床中の場合(Step21:Yes)には、Step20で受信した検知信号に対して間引き移動平均処理を行う(Step22)。
 次に、制御部11は、間引き移動平均処理後の検知信号の出力波形について差分処理により差分波形を取得する(Step23)。そして、制御部11は、Step23で取得した差分波形からn個の特徴量を抽出し、n次元の特徴量ベクトルを取得する(Step24)。
 そして、制御部11は、クラスタリング手段として機能し、Step24で取得したn次元の特徴量ベクトルを、先の特徴量空間作成処理のStep17にて記憶手段12に記憶した特徴量空間に照合して分類する(Step25)。そして、制御部11は排泄判定手段及び報知手段として機能し、排泄状況を判定し、判定した排泄状況を報知する。ここでは、排泄があった場合にのみ報知する例を示す。具体的には、判定結果が「排便」の場合には(Step26:排便)、通信部15を通じて、介護士が携帯するタブレット端末等に排便を報知する(Step27)。判定結果が「排尿」の場合には(Step26:排尿)、通信部15を通じて、介護士が携帯するタブレット端末等に排尿を報知する(Step28)。排泄無しの場合(Step26:排泄なし)、又は、「排便」「排尿」の報知後は、排泄検知の終了が指示される(Step29:Yes)まで、Step20~Step29の処理を繰り返し行う。ステップS26の排泄判定では、特徴量空間で定義されているクラスタ数k分の判定が行われる。例えば、「排便あり」、「排尿あり、かつ、排便なし」、「放屁あり、かつ、排泄(排便及び排尿)なし」、「放屁なし、かつ、排便なし、かつ、排尿なし(異常なし)」を区別した検知を所望し、クラスタ数k=4の特徴量空間を作成している場合には、ステップS26において、「排便あり」、「排尿あり、かつ、排便なし」、「放屁あり、かつ、排泄(排便及び排尿)なし」、「放屁なし、かつ、排便なし、かつ、排尿なし(異常なし)」の判定が行われることとなる。このうち、「排便あり」、「排尿あり、かつ、排便なし」を報知の対象とすることもできるし、「放屁あり、かつ、排泄(排便及び排尿)なし」を報知の対象とすることもできる。
 以上のように、ガスセンサの差分波形から取得した任意数の特徴量を用いて作成した任意次元の特徴量空間を用いて、予めクラスタ数kを定義したクラスタリングにより、排泄状況を正確に判定することができる。しかも、被介護者ごとにいわばオリジナルの特徴量空間を作成するため、個人の排泄パターンを反映させることができ、より正確な排泄検知を行うことができる。さらに、ガスセンサの個体差による出力信号のばらつきの影響を受けることなく排泄検知を行うことができる。
 特に、上述した実施形態のように、ガスセンサの差分波形から、差分波形の「標準偏差」、「最大値」、「最小値」、正側の波形と基準線とで囲まれた領域である「正面積の値」、負側の波形と基準線とで囲まれた領域である「負面積の値」の5つの特徴量を抽出し、5次元の特徴量ベクトルを使用すれば、比較的簡易に特徴量ベクトルを取得できる。
 本発明の適用範囲は上記実施形態に限定されることはない。本発明は、検知の対象者(ユーザ)に非接触で、かつ、個人ごとの排泄パターンを認識して排泄を正確に検知することができる排泄検知システム及び排泄検知方法に対し、広く適用することができる。
S 排泄検知システム
100 ガス吸引シート
200 ガスセンサユニット
300 排泄検知装置
  11 制御部(入力手段、差分波形取得手段、特徴量ベクトル取得手段、クラスタ数定義手段、特徴量空間作成手段、記憶制御手段、クラスタリング手段、排泄判定手段、報知手段)、
  12 記憶手段

 

Claims (8)

  1.  排泄を検知する排泄検知システムにおいて、
     排泄物から発生するガスを検知するガスセンサを有するガスセンサユニットと、
     ガスセンサユニットからの検知信号を入力する入力手段と、
     前記入力手段から入力された前記検知信号の差分波形を取得する差分波形取得手段と、
     前記差分波形取得手段が取得した差分波形に基づいて所定数n(nは1以上の自然数)の特徴量を抽出し、n次元の特徴量ベクトルを取得する特徴量ベクトル取得手段と、
     排泄検知に用いる特徴量空間のクラスタ数をk(kは1以上の自然数)と定義するクラスタ数定義手段と、
     前記特徴量ベクトル取得手段が取得したn次元の特徴量ベクトルと、前記クラスタ数定義手段が定義したクラスタ数kに基づいて特徴量空間を作成する特徴量空間作成手段と、
     前記特徴量空間作成手段が作成した特徴量空間を記憶手段に記憶する記憶制御手段と、
      前記記憶制御手段が前記特徴量空間を記憶手段に記憶した後、排泄検知処理の開始が指示されると、前記差分波形取得手段は前記入力手段から入力された前記検知信号の差分波形を取得し、次いで、前記特徴量ベクトル取得手段は前記差分波形取得手段が取得した差分波形に基づいてn次元の特徴量ベクトルを取得し、次いで、前記特徴量ベクトル取得手段が取得した前記n次元の特徴量ベクトルを前記記憶手段に記憶された特徴量空間に照合して分類するクラスタリング手段と、
     前記クラスタリング手段による分類に基づいて排泄状況の判定を行う排泄判定手段と、
     前記排泄判定手段が判定した排泄状況を報知する報知手段と、
     を有することを特徴とする排泄検知システム。
  2.  前記クラスタ数定義手段は、排泄検知に用いる特徴量空間のクラスタ数kを2又は3又は4と定義し、
     前記特徴量空間作成手段は、前記特徴量ベクトル取得手段が取得した前記特徴量ベクトルと、前記クラスタ数定義手段が定義したクラスタ数k(k=2又は3又は4)に基づいて特徴量空間を作成し、
     前記記憶制御手段は、前記特徴量空間作成手段によって作成されたクラスタ数k(k=2又は3又は4)の特徴量空間を記憶手段に記憶し、
     前記クラスタリング手段は、前記記憶制御手段が前記特徴量空間を記憶手段に記憶した後、排泄検知処理の開始が指示されると、前記差分波形取得手段は前記入力手段から入力された前記検知信号の差分波形を取得し、次いで、前記特徴量ベクトル取得手段は前記差分波形取得手段が取得した差分波形に基づいてn次元の特徴量ベクトルを取得し、次いで、前記特徴量ベクトル取得手段が取得した前記n次元の特徴量ベクトルを前記記憶手段に記憶された特徴量空間に照合して分類し、
     前記排泄判定手段は、前記クラスタリング手段による分類に基づいて排泄判定を行い、
     前記報知手段は、前記排泄判定手段が判定した排泄状況を報知することを特徴とする請求項1に記載の排泄検知システム。
  3.  前記特徴量ベクトル取得手段は、前記差分波形取得手段が取得した差分波形の「標準偏差」、「最大値」、「最小値」、「正側の波形と基準線とで囲まれた領域である正面積の値」、「負側の波形と前記基準線とで囲まれた領域である負面積の値」の5つの特徴量を抽出し、5次元の特徴量ベクトルを取得し、
     前記特徴量空間作成手段は、前記特徴量ベクトル取得手段が取得した5次元の特徴量ベクトルと、前記クラスタ数定義手段が定義したクラスタ数に基づいて特徴量空間を作成し、
     前記記憶制御手段は、前記特徴量空間作成手段が作成した特徴量空間を記憶手段に記憶し、
     前記クラスタリング手段は、前記記憶制御手段が前記特徴量空間を記憶手段に記憶した後、排泄検知処理の開始が指示されると、前記差分波形取得手段は前記入力手段から入力された前記検知信号の差分波形を取得し、次いで、前記特徴量ベクトル取得手段は前記差分波形取得手段が取得した差分波形の「標準偏差」、「最大値」、「最小値」、「正側の波形と基準線とで囲まれた領域である正面積の値」、「負側の波形と前記基準線とで囲まれた領域である負面積の値」の5つの特徴量を抽出して5次元の特徴量ベクトルを取得し、次いで、前記特徴量ベクトル取得手段が取得した前記5次元の特徴量ベクトルを前記記憶手段に記憶された特徴量空間に照合して分類し、
     前記排泄判定手段は、前記クラスタリング手段による分類に基づいて排泄判定を行い、
     前記報知手段は、前記排泄判定手段が判定した排泄状況を報知することを特徴とする請求項1又は2に記載の排泄検知システム。
  4.  前記クラスタ数定義手段は、クラスタ数kを、「排泄あり」と「排泄なし」をそれぞれ意味する2(k=2)と定義するか、又は、
     前記クラスタ数定義手段は、クラスタ数kを、「排便あり」と、「排尿あり、かつ、排便なし」と、「排泄なし」と、をそれぞれ意味する3(k=3)と定義するか、又は、
     前記クラスタ数定義手段は、クラスタ数kを、「排便あり」と、「排尿あり、かつ、排便なし」と、「放屁あり、かつ、排便なし、かつ、排尿なし」と、「放屁なし、かつ、排便なし、かつ、排尿なし」と、をそれぞれ意味する4(k=4)と定義し、
     前記特徴量空間作成手段は、前記特徴量ベクトル取得手段が取得した前記特徴量ベクトルと、前記クラスタ数定義手段が定義したクラスタ数k(k=2又は3又は4)に基づいて特徴量空間を作成し、
     前記記憶制御手段は、前記特徴量空間作成手段によって作成されたクラスタ数k(k=2又は3又は4)の特徴量空間を記憶手段に記憶し、
     前記クラスタリング手段は、前記記憶制御手段が前記特徴量空間を記憶手段に記憶した後、排泄検知処理の開始が指示されると、前記差分波形取得手段は前記入力手段から入力された前記検知信号の差分波形を取得し、次いで、前記特徴量ベクトル取得手段は前記差分波形取得手段が取得した差分波形に基づいてn次元の特徴量ベクトルを取得し、次いで、前記特徴量ベクトル取得手段が取得した前記n次元の特徴量ベクトルを前記記憶手段に記憶された特徴量空間に照合し、前記クラスタ数kが2の場合には前記特徴量ベクトルを「排泄あり」又は「排泄なし」に分類し、前記クラスタ数kが3の場合には前記特徴量ベクトルを「排便あり」又は「排尿あり、かつ、排便なし」又は「排泄なし」に分類し、前記クラスタ数kが4の場合には前記特徴量ベクトルを「排便あり」又は「排尿あり、かつ、排便なし」又は「放屁あり、かつ、排便なし、かつ、排尿なし」又は「放屁なし、かつ、排便なし、かつ、排尿なし」に分類し、
     前記排泄判定手段は、前記クラスタリング手段による分類に基づいて排泄判定を行い、
     前記報知手段は、前記排泄判定手段が判定した排泄状況を報知することを特徴とする請求項2又は3に記載の排泄検知システム。
  5.  前記報知手段は、前記排泄判定手段が排泄があったと判定した場合にのみ報知することを特徴とする請求項1乃至4のいずれか一項に記載の排泄検知システム。
  6. 排泄を検知する排泄検知方法において、
     排泄検知に用いる特徴量空間を作成する特徴量空間作成ステップと、前記特徴量空間作成ステップにて作成された前記特徴量空間を用いて、排泄検知を行う排泄検知ステップと、を有し、
     前記特徴量空間作成ステップは、
      排泄物から発生するガスを検知するガスセンサを有するガスセンサユニットからの検知信号を入力するステップと、
      入力された前記検知信号の差分波形を取得する差分波形取得ステップと、
      前記差分波形取得ステップにて取得された前記差分波形に基づいて所定数n(nは1以上の自然数)の特徴量を抽出し、n次元の特徴量ベクトルを取得する特徴量ベクトル取得ステップと、
      前記特徴量空間のクラスタ数をk(kは1以上の自然数)と定義するクラスタ数定義ステップと、
      前記特徴量ベクトル取得ステップにて取得されたn次元の特徴量ベクトルと、前記クラスタ数定義ステップにて定義されたクラスタ数kに基づいて特徴量空間を作成して記憶手段に記憶するステップと、を有し、
     前記排泄検知ステップは、
      前記特徴量空間が前記記憶手段に記憶された後に、排泄検知処理の開始が指示されると、前記ガスセンサユニットからの検知信号を入力し、入力された前記検知信号の差分波形を取得すし、取得された前記差分波形に基づいて所定数nの特徴量を抽出しn次元の特徴量ベクトルを取得し、前記記憶手段に記憶された特徴量空間に、前記n次元の特徴量ベクトルを照合して分類するクラスタリングステップと、
      前記クラスタリングステップによる分類に基づいて判定を行う排泄判定ステップと、
      前記排泄判定ステップにて判定した排泄状況を報知する報知ステップと、
     を有することを特徴とする排泄検知方法。
  7.  前記クラスタ数定義ステップは、排泄検知に用いる特徴量空間のクラスタ数kを2又は3又は4と定義し、
     前記特徴量空間作成ステップは、前記特徴量ベクトル取得ステップにて取得した前記特徴量ベクトルと、前記クラスタ数定義ステップが定義したクラスタ数k(k=2又は3又は4)に基づいて特徴量空間を作成して前記記憶手段に記憶することを特徴とする請求項6に記載の排泄検知方法。
  8.  前記特徴量ベクトル取得ステップは、前記差分波形取得ステップにて取得した差分波形の「標準偏差」、「最大値」、「最小値」、「正側の波形と基準線とで囲まれた領域である正面積の値」、「負側の波形と前記基準線とで囲まれた領域である負面積の値」の5つの特徴量を抽出して5次元の特徴量ベクトルを取得し(n=5)、
     前記特徴量空間作成ステップは、前記特徴量ベクトル取得ステップが取得した5次元の特徴量ベクトルと、前記クラスタ数定義ステップにて定義されたクラスタ数kに基づいて特徴量空間を作成して前記記憶手段に記憶し、
     前記排泄検知ステップの
      前記クラスタリングステップは、前記特徴量空間が前記記憶手段に記憶された後に、排泄検知処理の開始が指示されると、前記ガスセンサユニットからの検知信号を入力し、入力された前記検知信号の差分波形を取得し、取得された差分波形の「標準偏差」、「最大値」、「最小値」、「正側の波形と基準線とで囲まれた領域である正面積の値」、「負側の波形と前記基準線とで囲まれた領域である負面積の値」の5個(n=5)の特徴量を抽出して5次元の特徴量ベクトル(n=5)を取得し、前記記憶手段に記憶された特徴量空間に、前記5次元の特徴量ベクトルを照合して分類し、
      前記排泄判定ステップは、前記クラスタリングステップによる分類に基づいて排泄判定を行い、
      前記報知ステップは、前記排泄判定ステップにて判定した排泄状況を報知することを特徴とする請求項6又は7に記載の排泄検知方法。
PCT/JP2017/026862 2017-03-02 2017-07-25 排泄検知システム及び排泄検知方法 WO2018158978A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019502439A JPWO2018158978A1 (ja) 2017-03-02 2017-07-25 排泄検知システム及び排泄検知方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017039587A JP6184631B1 (ja) 2017-03-02 2017-03-02 排泄検知システム及び排泄検知方法
JP2017-039587 2017-03-02

Publications (1)

Publication Number Publication Date
WO2018158978A1 true WO2018158978A1 (ja) 2018-09-07

Family

ID=59678272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026862 WO2018158978A1 (ja) 2017-03-02 2017-07-25 排泄検知システム及び排泄検知方法

Country Status (2)

Country Link
JP (2) JP6184631B1 (ja)
WO (1) WO2018158978A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6941264B1 (ja) * 2020-10-08 2021-09-29 均 美藤 排泄通知システム
WO2023058152A1 (ja) 2021-10-06 2023-04-13 株式会社Fuji 排泄行動記録装置、排泄行動記録方法、および生活行動表示システム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021009127A (ja) * 2019-07-03 2021-01-28 株式会社aba 排泄検知装置及び排泄検知方法
JP7441580B1 (ja) 2022-10-05 2024-03-01 株式会社aba 排泄検知センサデバイス、排泄検知センサパッド及びシート部材
WO2024075702A1 (ja) * 2022-10-05 2024-04-11 株式会社aba 排泄検知センサデバイス、排泄検知センサパッド及びシート部材

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013078566A (ja) * 2011-09-19 2013-05-02 Yoshimi Ui 排泄検知システム
JP2014230679A (ja) * 2013-05-30 2014-12-11 富士通株式会社 検知方法,検知装置および検知プログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013078566A (ja) * 2011-09-19 2013-05-02 Yoshimi Ui 排泄検知システム
JP2014230679A (ja) * 2013-05-30 2014-12-11 富士通株式会社 検知方法,検知装置および検知プログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6941264B1 (ja) * 2020-10-08 2021-09-29 均 美藤 排泄通知システム
JP2022062650A (ja) * 2020-10-08 2022-04-20 均 美藤 排泄通知システム
WO2023058152A1 (ja) 2021-10-06 2023-04-13 株式会社Fuji 排泄行動記録装置、排泄行動記録方法、および生活行動表示システム

Also Published As

Publication number Publication date
JP6184631B1 (ja) 2017-08-23
JPWO2018158978A1 (ja) 2020-04-23
JP2018143362A (ja) 2018-09-20

Similar Documents

Publication Publication Date Title
WO2018158978A1 (ja) 排泄検知システム及び排泄検知方法
Daher et al. Elder tracking and fall detection system using smart tiles
US9646073B2 (en) Event detection algorithms
Vankipuram et al. Toward automated workflow analysis and visualization in clinical environments
US20130184538A1 (en) Method and device for swallowing impairment detection
US9665639B2 (en) Detecting fecal and urine events by reference to collections of data
CN104321015A (zh) 用于处理患者声音的方法与装置
CN112837799B (zh) 基于区块链的远程互联网大数据智慧医疗系统
JP6591232B2 (ja) 連想メモリによって分類されたフレームを使用して位置に対する計量値を取得すること
CN107767874B (zh) 一种婴儿啼哭声识别提示方法及系统
Di Perna et al. An automated and unobtrusive system for cough detection
CN107887032A (zh) 一种数据处理方法及装置
CN111081379A (zh) 一种疾病概率决策方法及其系统
CN116602663B (zh) 一种基于毫米波雷达的智能监测方法及系统
JP6933249B2 (ja) エリア別環境管理システム及び方法とプログラム
JP2019051129A (ja) 嚥下機能解析システム及びプログラム
CN112235740A (zh) 一种基于物联网的个体作息监测方法及系统
CN113671489B (zh) 状态提醒方法及装置、电子设备和计算机可读存储介质
Ganesan et al. Elderly people activity recognition in smart grid monitoring environment
Soman et al. A Novel Fall Detection System using Mediapipe
Wlodarczak et al. Reality mining in eHealth
Shimosaka et al. Detecting human activity profiles with Dirichlet enhanced inhomogeneous Poisson processes
JPWO2019179836A5 (ja)
Deepa et al. MULTIPLE ATTRIBUTE FEATURE EXTRACTION AND HIGH SUPPORT VECTOR CLASSIFIER FOR IDENTIFICATION OF CYTOMEGALOVIRUS IMAGES.
Koukouvinos et al. Classification methods and ROC analysis for outcome prediction of patients following injuries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898896

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502439

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17898896

Country of ref document: EP

Kind code of ref document: A1