WO2018158659A1 - 有機化合物、発光素子、発光装置、電子機器、および照明装置 - Google Patents

有機化合物、発光素子、発光装置、電子機器、および照明装置 Download PDF

Info

Publication number
WO2018158659A1
WO2018158659A1 PCT/IB2018/051082 IB2018051082W WO2018158659A1 WO 2018158659 A1 WO2018158659 A1 WO 2018158659A1 IB 2018051082 W IB2018051082 W IB 2018051082W WO 2018158659 A1 WO2018158659 A1 WO 2018158659A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
substituted
carbon atoms
abbreviation
formula
Prior art date
Application number
PCT/IB2018/051082
Other languages
English (en)
French (fr)
Inventor
鈴木宏記
瀬尾哲史
鈴木恒徳
門間裕史
橋本直明
滝田悠介
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2019502294A priority Critical patent/JP7175259B2/ja
Publication of WO2018158659A1 publication Critical patent/WO2018158659A1/ja
Priority to JP2022178826A priority patent/JP2023025011A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/94[b, c]- or [b, d]-condensed containing carbocyclic rings other than six-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • One embodiment of the present invention relates to an organic compound, a light-emitting element, a light-emitting device, an electronic device, and a lighting device.
  • one embodiment of the present invention is not limited to the above technical field. That is, one embodiment of the present invention relates to an object, a method, a manufacturing method, or a driving method. Alternatively, one embodiment of the present invention relates to a process, a machine, a manufacture, or a composition (composition of matter).
  • a semiconductor device, a display device, a liquid crystal display device, and the like can be given as examples.
  • a light-emitting element (also referred to as an organic EL element) in which an EL layer is sandwiched between a pair of electrodes has characteristics such as thin and light weight, high-speed response to input signals, and low power consumption. It is attracting attention as a next-generation flat panel display.
  • the light-emitting element by applying a voltage between a pair of electrodes, electrons and holes injected from each electrode are recombined in the EL layer, and a light-emitting substance (organic compound) contained in the EL layer is in an excited state. Light is emitted when the excited state returns to the ground state.
  • the types of excited states include a singlet excited state (S * ) and a triplet excited state (T * ). Light emitted from the singlet excited state is fluorescent, and light emitted from the triplet excited state is phosphorescent. being called.
  • An emission spectrum obtained from the light-emitting substance is peculiar to the light-emitting substance, and light-emitting elements having various emission colors can be obtained by using different kinds of organic compounds as the light-emitting substance.
  • a novel organic compound used for the light emitting element is very important for enhancing its characteristics.
  • a novel organic compound is provided. That is, a novel organic compound that is effective in improving device characteristics and reliability is provided.
  • a novel organic compound that can be used for a light-emitting element is provided.
  • a novel organic compound that can be used for an EL layer of a light-emitting element is provided.
  • a novel light-emitting element with high efficiency and high reliability using the novel organic compound which is one embodiment of the present invention is provided.
  • One embodiment of the present invention is an organic compound having a condensed ring structure in a carbazole skeleton and represented by the following general formula (G1).
  • ring A1 and ring A2 are represented by the above formula (1a), condensed with an adjacent ring at an arbitrary position, ring B is represented by the above formula (1b), and a Or it fuses with the adjacent ring at the position shown by b.
  • X in the above formula (1b) represents oxygen, sulfur, substituted or unsubstituted carbon.
  • Ar 1 represents a substituted or unsubstituted aryl group having 6 to 14 carbon atoms. When the aryl group has a substituent, the substituents may be bonded to each other to form a ring.
  • R 1 to R 4 and R 10 to R 13 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms, substituted Alternatively, it represents either an unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms or a substituted or unsubstituted aryl group having 6 to 13 carbon atoms.
  • Another embodiment of the present invention is an organic compound represented by General Formula (G2) below.
  • ring A1 is represented by the above formula (1a) and condensed with an adjacent ring at an arbitrary position
  • ring B is represented by the above formula (1b)
  • X in the above formula (1b) represents oxygen, sulfur, substituted or unsubstituted carbon.
  • Ar 1 represents a substituted or unsubstituted aryl group having 6 to 14 carbon atoms. When the aryl group has a substituent, the substituents may be bonded to each other to form a ring.
  • R 1 to R 6 and R 10 to R 13 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms, substituted Alternatively, it represents either an unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms or a substituted or unsubstituted aryl group having 6 to 13 carbon atoms.
  • Another embodiment of the present invention is an organic compound represented by General Formula (G3) below.
  • Ring B is represented by Formula (1b) above and is condensed with an adjacent ring at the position indicated by a or b.
  • X in the above formula (1b) represents oxygen, sulfur, substituted or unsubstituted carbon.
  • Ar 1 represents a substituted or unsubstituted aryl group having 6 to 14 carbon atoms. When the aryl group has a substituent, the substituents may be bonded to each other to form a ring.
  • R 1 to R 8 and R 10 to R 13 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms, substituted Alternatively, it represents either an unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms or a substituted or unsubstituted aryl group having 6 to 13 carbon atoms.
  • Ar 1 may be a group containing an anthracene skeleton carbon atoms in total 14-60.
  • Another embodiment of the present invention is an organic compound represented by General Formula (G4) below.
  • ring B is represented by the above formula (1b) and is condensed with an adjacent ring at the position indicated by a or b.
  • X in the above formula (1b) represents oxygen, sulfur, substituted or unsubstituted carbon.
  • Ar 2 represents a group containing an anthracene skeleton having a total carbon number of 14 to 60.
  • R 1 to R 8 and R 10 to R 13 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms, substituted Alternatively, it represents either an unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms or a substituted or unsubstituted aryl group having 6 to 13 carbon atoms.
  • Another embodiment of the present invention is an organic compound represented by General Formula (G5) below.
  • Ring B is represented by Formula (1b) above and is condensed with an adjacent ring at the position indicated by a or b.
  • X in the above formula (1b) represents oxygen, sulfur, substituted or unsubstituted carbon.
  • Ar 3 represents a substituted or unsubstituted arylene group having 6 to 13 carbon atoms.
  • N represents 0-2.
  • R 1 to R 8 , R 10 to R 13 , and R 15 to R 23 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted monocyclic group having 5 to 7 carbon atoms. It represents either a saturated hydrocarbon, a substituted or unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 13 carbon atoms.
  • Ar 3 in the general formula (G5) is a substituted or unsubstituted phenylene group, naphthalene group, or biphenyldiyl group.
  • the organic compound which is one embodiment of the present invention described above has a condensed ring structure in the carbazole skeleton. Specifically, it is characterized in that two benzene rings forming a carbazole skeleton have a condensed structure, and at least one has a ring structure other than the benzene ring.
  • a guest material dopant
  • it when it uses in combination with a guest material (dopant), it has the characteristic that the energy transfer to a dopant can be performed efficiently by having such a structure.
  • it since it has an effect which prevents aggregation of a guest material, when it uses for a light emitting element, desired chromaticity can be obtained and luminous efficiency can be improved.
  • Another embodiment of the present invention is an organic compound represented by any one of Structural Formula (100), Structural Formula (101), Structural Formula (146), Structural Formula (164), and Structural Formula (191). is there.
  • Another embodiment of the present invention is a light-emitting element using an organic compound having a condensed ring structure in a carbazole skeleton. Note that a light-emitting element including a guest material in addition to the above organic compound is also included in the present invention.
  • Another embodiment of the present invention is a light-emitting element using the organic compound which is one embodiment of the present invention.
  • a light-emitting element formed using the organic compound which is one embodiment of the present invention for an EL layer between a pair of electrodes or a light-emitting layer included in the EL layer is also included in the present invention.
  • a light-emitting device including a transistor, a substrate, and the like is also included in the scope of the invention.
  • an electronic device or lighting device including a microphone, a camera, an operation button, an external connection portion, a housing, a cover, a support base, a speaker, or the like is also included in the scope of the invention.
  • One embodiment of the present invention includes a light-emitting device including a light-emitting element, and further includes a lighting device including the light-emitting device. Therefore, the light-emitting device in this specification refers to an image display device or a light source (including a lighting device).
  • a connector having a light emitting device such as an FPC (Flexible Printed Circuit) or TCP (Tape Carrier Package), a module having a printed wiring board provided on the end of TCP, or a COG (Chip On Glass) on the light emitting element
  • the light emitting device also includes all modules on which IC (integrated circuit) is directly mounted by the method.
  • One embodiment of the present invention can provide a novel organic compound. That is, it is possible to provide a novel organic compound effective for enhancing device characteristics.
  • a novel organic compound that can be used for a light-emitting element can be provided.
  • a novel organic compound that can be used for an EL layer of a light-emitting element can be provided.
  • a novel light-emitting element with high efficiency and high reliability using the novel organic compound which is one embodiment of the present invention can be provided.
  • a novel light-emitting device, a novel electronic device, or a novel lighting device can be provided. Note that the description of these effects does not disturb the existence of other effects.
  • FIG. 6 illustrates a light-emitting device.
  • FIG. 6 illustrates a light-emitting device.
  • 6A and 6B illustrate electronic devices.
  • 6A and 6B illustrate electronic devices.
  • 3A and 3B illustrate a light-emitting element.
  • 3A and 3B illustrate a light-emitting element.
  • FIG. 6 shows current density-luminance characteristics of the light-emitting element 1, the comparative light-emitting element 2, and the comparative light-emitting element 3.
  • FIG. 6 shows voltage-luminance characteristics of the light-emitting element 1, the comparative light-emitting element 2, and the comparative light-emitting element 3.
  • FIG. 11 shows luminance-current efficiency characteristics of the light-emitting element 1, the comparative light-emitting element 2, and the comparative light-emitting element 3.
  • FIG. 6 shows voltage-current characteristics of the light-emitting element 1, the comparative light-emitting element 2, and the comparative light-emitting element 3.
  • FIG. 6 shows emission spectra of the light-emitting element 1, the comparative light-emitting element 2, and the comparative light-emitting element 3.
  • FIG. 6 shows reliability of the light-emitting element 1.
  • FIG. 6 shows emission spectra of the light-emitting element 4, the light-emitting element 5, the light-emitting element 6, and the light-emitting element 7.
  • FIG. 6 shows reliability of the light-emitting element 4.
  • FIG. 6 shows reliability of the light-emitting element 7.
  • the organic compound described in this embodiment has a structure represented by the following general formula (G1), which has a condensed ring structure in a carbazole skeleton.
  • ring A1 and ring A2 are represented by the above formula (1a), condensed with an adjacent ring at an arbitrary position, ring B is represented by the above formula (1b), and a Or it fuses with the adjacent ring at the position shown by b.
  • X in the above formula (1b) represents oxygen, sulfur, substituted or unsubstituted carbon.
  • Ar 1 represents a substituted or unsubstituted aryl group having 6 to 14 carbon atoms. When the aryl group has a substituent, the substituents may be bonded to each other to form a ring.
  • R 1 to R 4 and R 10 to R 13 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms, substituted Alternatively, it represents either an unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms or a substituted or unsubstituted aryl group having 6 to 13 carbon atoms.
  • the organic compound shown in this embodiment is represented by the following general formula (G2).
  • ring A1 is represented by the above formula (1a) and condensed with an adjacent ring at an arbitrary position
  • ring B is represented by the above formula (1b)
  • X in the above formula (1b) represents oxygen, sulfur, substituted or unsubstituted carbon.
  • Ar 1 represents a substituted or unsubstituted aryl group having 6 to 14 carbon atoms. When the aryl group has a substituent, the substituents may be bonded to each other to form a ring.
  • R 1 to R 6 and R 10 to R 13 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms, substituted Alternatively, it represents either an unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms or a substituted or unsubstituted aryl group having 6 to 13 carbon atoms.
  • the organic compound shown in this embodiment is represented by the following general formula (G3).
  • Ring B is represented by Formula (1b) above and is condensed with an adjacent ring at the position indicated by a or b.
  • X in the above formula (1b) represents oxygen, sulfur, substituted or unsubstituted carbon.
  • Ar 1 represents a substituted or unsubstituted aryl group having 6 to 14 carbon atoms. When the aryl group has a substituent, the substituents may be bonded to each other to form a ring.
  • R 1 to R 8 and R 10 to R 13 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms, substituted Alternatively, it represents either an unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms or a substituted or unsubstituted aryl group having 6 to 13 carbon atoms.
  • Ar 1 may be a group including an anthracene skeleton having a total carbon number of 14 to 60.
  • the organic compound shown in this embodiment is represented by the following general formula (G4).
  • ring B is represented by the above formula (1b) and is condensed with an adjacent ring at the position indicated by a or b.
  • X in the above formula (1b) represents oxygen, sulfur, substituted or unsubstituted carbon.
  • Ar 2 represents a group containing an anthracene skeleton having a total carbon number of 14 to 60.
  • R 1 to R 8 and R 10 to R 13 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms, substituted Alternatively, it represents either an unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms or a substituted or unsubstituted aryl group having 6 to 13 carbon atoms.
  • the organic compound shown in this embodiment is represented by the following general formula (G5).
  • Ring B is represented by Formula (1b) above and is condensed with an adjacent ring at the position indicated by a or b.
  • X in the above formula (1b) represents oxygen, sulfur, substituted or unsubstituted carbon.
  • Ar 3 represents a substituted or unsubstituted arylene group having 6 to 13 carbon atoms.
  • N represents 0-2.
  • R 1 to R 8 , R 10 to R 13 , and R 15 to R 23 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted monocyclic group having 5 to 7 carbon atoms. It represents either a saturated hydrocarbon, a substituted or unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 13 carbon atoms.
  • a substituted or unsubstituted aryl group having 6 to 14 carbon atoms a substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms, substituted or unsubstituted
  • the substituent may be a methyl group, ethyl Group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, alkyl group having 1 to 6 carbon atoms, cyclopentyl group, cyclohexyl group, cycloheptyl group
  • a cycloalkyl group having 5 to 7 carbon atoms such as
  • aryl group having 6 to 14 carbon atoms in the general formulas (G1) to (G5) include phenyl group, naphthyl group (1-naphthyl group, 2-naphthyl group), tolyl group (o -Tolyl group, m-tolyl group, p-tolyl group), biphenyl group (biphenyl-2-yl group, biphenyl-3-yl group, biphenyl-4-yl group) and the like.
  • alkyl group having 1 to 6 carbon atoms in the general formulas (G1) to (G5) include methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, isobutyl group, tert-butyl group, pentyl group, isopentyl group, sec-pentyl group, tert-pentyl group, neopentyl group, hexyl group, isohexyl group, sec-hexyl group, tert-hexyl group, neohexyl group, 3-methylpentyl group, 2 -Methylpentyl group, 2-ethylbutyl group, 1,2-dimethylbutyl group, 2,3-dimethylbutyl group and the like can be mentioned.
  • Specific examples of the monocyclic saturated hydrocarbon having 5 to 7 carbon atoms in the general formulas (G1) to (G5) include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a 2-methylcyclohexyl group, 2,6 -A dimethylcyclohexyl group etc. are mentioned.
  • polycyclic saturated hydrocarbon having 7 to 10 carbon atoms in the general formulas (G1) to (G5) include a decahydronaphthyl group and an adamantyl group.
  • aryl group having 6 to 13 carbon atoms in the general formulas (G1) to (G5) include phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, mesityl group, o- Biphenyl group, m-biphenyl group, p-biphenyl group, 1-naphthyl group, 2-naphthyl group, fluorenyl group, 9,9-dimethylfluorenyl group and the like can be mentioned.
  • Specific examples of the group containing an anthracene skeleton having a total carbon number of 14 to 60 in the general formula (G4) include 10-phenyl-9-anthryl, 9,10-diphenyl-2-anthryl, 4- (9- Anthryl) phenyl, 4- (10-phenyl-9-anthryl) phenyl, 4- [10- (1-naphthyl) -9-anthryl] phenyl, 4- ⁇ 10- [4- (1-naphthyl) phenyl]- 9-anthryl ⁇ phenyl, 4- (2,10-diphenyl-9-anthryl) phenyl, 3- (10-phenyl-9-anthryl) phenyl, 4- [10- (biphenyl-4-yl) -9-anthryl ] Phenyl, 4- [10- (biphenyl-3-yl) -9-anthryl] phenyl, 4- (10-phenyl-9-anthryl) -1-
  • arylene group having 6 to 13 carbon atoms in the general formula (G5) include a phenylene group, a naphthalenediyl group, a biphenyldiyl group, and a fluorenediyl group.
  • the organic compound which is one embodiment of the present invention represented by the above general formulas (G1) to (G5) has a condensed ring structure in the carbazole skeleton. Specifically, it is characterized in that two benzene rings forming a carbazole skeleton have a condensed structure, and at least one has a ring structure other than the benzene ring.
  • a guest material dopant
  • it when it uses in combination with a guest material (dopant), it has the characteristic that the energy transfer to a dopant can be performed efficiently by having such a structure.
  • it since it has an effect which prevents aggregation of a guest material, when it uses for a light emitting element, desired chromaticity can be obtained and luminous efficiency can be improved.
  • organic compounds represented by the structural formulas (100) to (191) are examples included in the organic compound represented by the general formula (G1), and the organic compound that is one embodiment of the present invention It is not limited to this.
  • ring A1 and ring A2 are represented by the above formula (1a) and condensed with an adjacent ring at an arbitrary position
  • ring B is represented by the above formula (1b)
  • a or b Fused with the adjacent ring at the position indicated by X in the above formula (1b) represents oxygen, sulfur, substituted or unsubstituted carbon
  • Ar 1 represents a substituted or unsubstituted aryl group having 6 to 14 carbon atoms. When the aryl group has a substituent, the substituents may be bonded to each other to form a ring.
  • R 1 to R 4 and R 10 to R 13 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms, substituted Alternatively, it represents either an unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms or a substituted or unsubstituted aryl group having 6 to 13 carbon atoms.
  • the organic compound represented by the general formula (G1) can be synthesized by a synthesis scheme (A-1) shown below. That is, the heterocyclic compound derivative (a1) and the halide (a2) of the aryl derivative are coupled with a metal catalyst, a metal, or a metal compound in the presence of a base, thereby being represented by the general formula (G1). An organic compound can be obtained.
  • the ring A1 and the ring A2 are represented by the above formula (1a), condensed with an adjacent ring at an arbitrary position, and the ring B is represented by the above formula (1b). And fused with the adjacent ring at the position indicated by a or b.
  • X in the above formula (1b) represents oxygen, sulfur, substituted or unsubstituted carbon.
  • Ar 1 represents a substituted or unsubstituted aryl group having 6 to 14 carbon atoms
  • R 1 to R 4 and R 10 to R 13 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms
  • a substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms, a substituted or unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 13 carbon atoms Represents one of the following.
  • Y represents a halogen or a triflate group.
  • halogen iodine, bromine or chlorine is preferable.
  • palladium complexes or compounds such as bis (dibenzylideneacetone) palladium (0) and palladium (II) acetate, and tri (tert-butyl) phosphine coordinated thereto, tri (n-hexyl) phosphine,
  • a palladium catalyst using a ligand such as tricyclohexylphosphine is used.
  • the base include organic bases such as sodium tert-butoxide, inorganic bases such as potassium carbonate, and the like.
  • toluene, xylene, benzene, tetrahydrofuran, etc. can be used.
  • Y represents a halogen.
  • halogen iodine, bromine or chlorine is preferable.
  • the catalyst copper or a copper compound is used.
  • R 24 and R 25 in the formula (A-1) each represent a halogen, an acetyl group, or the like, and examples of the halogen include chlorine, bromine, and iodine.
  • Examples of the base to be used include inorganic bases such as potassium carbonate.
  • the solvent 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) pyrimidinone (DMPU), toluene, xylene, benzene, or the like is used.
  • DMPU 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) pyrimidinone
  • the target product can be obtained in a shorter time and with a higher yield when the reaction temperature is 100 ° C. or higher, it is preferable to use DMPU or xylene having a high boiling point.
  • DMPU is used more preferably.
  • the above-described organic compound which is one embodiment of the present invention has an electron transporting property and a hole transporting property, and thus can be used as a host material for the light-emitting layer, or for an electron transporting layer and a hole transporting layer. Further, it is preferably used as a host material in combination with a substance that emits fluorescence (fluorescent material). In addition, since it exhibits fluorescence, it can itself be used as a light-emitting substance of a light-emitting element; therefore, a light-emitting element including any of these organic compounds is also included in one embodiment of the present invention.
  • a light-emitting element, a light-emitting device, an electronic device, or a lighting device with high emission efficiency can be realized.
  • a light-emitting element, a light-emitting device, an electronic device, or a lighting device with low power consumption can be realized.
  • Embodiment 2 In this embodiment, a light-emitting element using the organic compound described in Embodiment 1 will be described with reference to FIGS.
  • FIG. 1A illustrates a light-emitting element having an EL layer including a light-emitting layer between a pair of electrodes. Specifically, the EL layer 103 is sandwiched between the first electrode 101 and the second electrode 102.
  • FIG. 1B a plurality of (two layers in FIG. 1B) EL layers (103a and 103b) are provided between a pair of electrodes, and the charge generation layer 104 is provided between the EL layers.
  • 1 illustrates a light-emitting element having a stacked structure (tandem structure).
  • a light-emitting element having a tandem structure can realize a light-emitting device that can be driven at a low voltage and has low power consumption.
  • the charge generation layer 104 injects electrons into one EL layer (103a or 103b) and the other EL layer (103b or 103a). It has a function of injecting holes. Therefore, in FIG. 1B, when a voltage is applied to the first electrode 101 so that the potential is higher than that of the second electrode 102, electrons are injected from the charge generation layer 104 into the EL layer 103a, and the EL layer 103b. Holes are injected into this.
  • the charge generation layer 104 has a property of transmitting visible light in terms of light extraction efficiency (specifically, the visible light transmittance of the charge generation layer 104 is 40% or more). preferable. In addition, the charge generation layer 104 functions even when it has lower conductivity than the first electrode 101 or the second electrode 102.
  • FIG. 1C illustrates a stacked structure of the EL layer 103 of the light-emitting element which is one embodiment of the present invention.
  • the first electrode 101 functions as an anode.
  • the EL layer 103 has a structure in which a hole injection layer 111, a hole transport layer 112, a light-emitting layer 113, an electron transport layer 114, and an electron injection layer 115 are sequentially stacked over the first electrode 101.
  • a hole injection layer 111, a hole transport layer 112, a light-emitting layer 113, an electron transport layer 114, and an electron injection layer 115 are sequentially stacked over the first electrode 101.
  • each EL layer is sequentially stacked from the anode side as described above.
  • the stacking order is reversed.
  • Each of the light-emitting layers 113 included in the EL layers (103, 103a, and 103b) includes a light-emitting substance and a plurality of substances as appropriate in combination, so that fluorescent light emission or phosphorescence light emission having a desired light emission color can be obtained. be able to.
  • the light-emitting layer 113 may have a stacked structure with different emission colors. Note that in this case, different materials may be used for the light-emitting substance and other substances used for the stacked light-emitting layers. Alternatively, different light emission colors may be obtained from the plurality of EL layers (103a and 103b) illustrated in FIG. In this case as well, the light-emitting substance and other substances used for each light-emitting layer may be different materials.
  • the first electrode 101 illustrated in FIG. 1C is used as a reflective electrode
  • the second electrode 102 is used as a semi-transmissive / semi-reflective electrode
  • a micro optical resonator is used.
  • the (microcavity) structure light emission obtained from the light-emitting layer 113 included in the EL layer 103 can resonate between both electrodes, and light emission obtained from the second electrode 102 can be strengthened.
  • the first electrode 101 of the light-emitting element is a reflective electrode having a stacked structure of a reflective conductive material and a light-transmitting conductive material (transparent conductive film)
  • a film of the transparent conductive film Optical adjustment can be performed by controlling the thickness.
  • the distance between the first electrode 101 and the second electrode 102 is near m ⁇ / 2 (where m is a natural number) with respect to the wavelength ⁇ of light obtained from the light-emitting layer 113. It is preferable to adjust as follows.
  • an optical distance from the first electrode 101 to a region (light emitting region) where the desired light of the light emitting layer 113 can be obtained an optical distance from the first electrode 101 to a region (light emitting region) where the desired light of the light emitting layer 113 can be obtained.
  • the optical distance from the second electrode 102 to the region (light emitting region) where desired light can be obtained from the light emitting layer 113 is adjusted to be close to (2m ′ + 1) ⁇ / 4 (where m ′ is a natural number). It is preferable to do this.
  • the light emitting region herein refers to a recombination region between holes and electrons in the light emitting layer 113.
  • the spectrum of specific monochromatic light obtained from the light emitting layer 113 can be narrowed, and light emission with good color purity can be obtained.
  • the optical distance between the first electrode 101 and the second electrode 102 is strictly the total thickness from the reflective region of the first electrode 101 to the reflective region of the second electrode 102. it can. However, since it is difficult to precisely determine the reflection region in the first electrode 101 or the second electrode 102, it is assumed that any position of the first electrode 101 and the second electrode 102 is the reflection region. The above-mentioned effect can be sufficiently obtained. Strictly speaking, the optical distance between the first electrode 101 and the light-emitting layer 113 from which desired light can be obtained is such that the reflection region in the first electrode 101 and the light-emitting region in the light-emitting layer 113 from which desired light can be obtained. It can be said that this is the optical distance.
  • any position of the first electrode 101 can be set as the reflection region, the desired region. It is assumed that the above-described effect can be sufficiently obtained by assuming that an arbitrary position of the light-emitting layer 113 from which the above light is obtained is a light-emitting region.
  • the light-emitting element illustrated in FIG. 1C has a microcavity structure, light having different wavelengths (monochromatic light) can be extracted even when the light-emitting element has the same EL layer. Accordingly, there is no need for separate coloring (for example, RGB) for obtaining different emission colors. Therefore, it is easy to realize high definition. A combination with a colored layer (color filter) is also possible. Furthermore, since it is possible to increase the emission intensity of the specific wavelength in the front direction, it is possible to reduce power consumption.
  • the light-emitting element illustrated in FIG. 1E is an example of the light-emitting element having the tandem structure illustrated in FIG. 1B.
  • three EL layers (103a, 103b, and 103c) are charge generation layers. (104a, 104b). Note that the three EL layers (103a, 103b, and 103c) each have a light emitting layer (113a, 113b, and 113c), and the light emission colors of the light emitting layers can be freely combined.
  • the light-emitting layer 113a can be blue, the light-emitting layer 113b can be red, green, or yellow, and the light-emitting layer 113c can be blue, but the light-emitting layer 113a can be red and the light-emitting layer 113b can be blue, green, or yellow. In any case, the light emitting layer 113c may be red.
  • At least one of the first electrode 101 and the second electrode 102 includes a light-transmitting electrode (a transparent electrode, a semi-transmissive / semi-reflective electrode, or the like).
  • a light-transmitting electrode a transparent electrode
  • the transparent electrode has a visible light transmittance of 40% or more.
  • the visible light reflectance of the semi-transmissive / semi-reflective electrode is 20% to 80%, preferably 40% to 70%.
  • These electrodes preferably have a resistivity of 1 ⁇ 10 ⁇ 2 ⁇ cm or less.
  • the reflective electrode when one of the first electrode 101 and the second electrode 102 is a reflective electrode (reflective electrode), the reflective electrode is visible.
  • the light reflectance is 40% to 100%, preferably 70% to 100%.
  • the electrode preferably has a resistivity of 1 ⁇ 10 ⁇ 2 ⁇ cm or less.
  • the first electrode 101 is formed as a reflective electrode
  • the second electrode 102 is formed as a semi-transmissive / semi-reflective electrode. Therefore, a desired electrode material can be formed by using a single layer or a plurality of layers and forming a single layer or a stack. Note that the second electrode 102 is formed by selecting a material in the same manner as described above after the EL layer 103b is formed. In addition, a sputtering method or a vacuum evaporation method can be used for manufacturing these electrodes.
  • First electrode and second electrode> As materials for forming the first electrode 101 and the second electrode 102, the following materials can be used in appropriate combination as long as the functions of both electrodes described above can be satisfied.
  • a metal, an alloy, an electrically conductive compound, a mixture thereof, and the like can be used as appropriate.
  • an In—Sn oxide also referred to as ITO
  • an In—Si—Sn oxide also referred to as ITSO
  • an In—Zn oxide an In—W—Zn oxide
  • elements belonging to Group 1 or Group 2 of the periodic table of elements not exemplified above for example, lithium (Li), cesium (Cs), calcium (Ca), strontium (Sr)), europium (Eu), ytterbium Rare earth metals such as (Yb), alloys containing these in appropriate combinations, other graphene, and the like can be used.
  • the hole injection layer 111a and the hole transport layer 112a of the EL layer 103a are sequentially formed over the first electrode 101 by a vacuum evaporation method. Stacked. After the EL layer 103a and the charge generation layer 104 are formed, the hole injection layer 111b and the hole transport layer 112b of the EL layer 103b are sequentially stacked on the charge generation layer 104 in the same manner.
  • the hole injection layers are layers that inject holes from the first electrode 101, which is an anode, or the charge generation layer 104 into the EL layers (103, 103a, 103b).
  • This layer includes a material having a high hole injecting property.
  • Examples of the material having a high hole injection property include transition metal oxides such as molybdenum oxide, vanadium oxide, ruthenium oxide, tungsten oxide, and manganese oxide.
  • phthalocyanine compounds such as phthalocyanine (abbreviation: H 2 Pc) and copper phthalocyanine (abbreviation: CuPc), 4,4′-bis [N- (4-diphenylaminophenyl) -N-phenylamino] biphenyl ( Abbreviation: DPAB), N, N′-bis ⁇ 4- [bis (3-methylphenyl) amino] phenyl ⁇ -N, N′-diphenyl- (1,1′-biphenyl) -4,4′-diamine ( An aromatic amine compound such as abbreviation (DNTPD) or a polymer such as poly (3,4-ethylenedioxythiophene) / poly (styrenesulfonic acid) (abbreviation: PEDOT /
  • a composite material including a hole-transporting material and an acceptor material can also be used.
  • electrons are extracted from the hole transporting material by the acceptor material, and holes are generated in the hole injection layer (111, 111a, 111b), via the hole transporting layer (112, 112a, 112b). Holes are injected into the light emitting layer (113, 113a, 113b).
  • the hole injection layer (111, 111a, 111b) may be formed as a single layer made of a composite material including a hole transporting material and an acceptor material (electron accepting material).
  • the material and the acceptor material (electron-accepting material) may be stacked in separate layers.
  • the hole transport layer (112, 112a, 112b) is configured to transfer holes injected from the first electrode 101 or the charge generation layer 104 by the hole injection layer (111, 111a, 111b) into the light emitting layer (113, 113a, 113b).
  • the hole transport layers (112, 112a, 112b) are layers containing a hole transport material.
  • a material having a HOMO level that is the same as or close to the HOMO level of the hole injection layer (111, 111a, 111b) should be used. Is preferred.
  • an oxide of a metal belonging to Groups 4 to 8 in the periodic table can be used.
  • Specific examples include molybdenum oxide, vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, tungsten oxide, manganese oxide, and rhenium oxide.
  • molybdenum oxide is especially preferable because it is stable in the air, has a low hygroscopic property, and is easy to handle.
  • organic acceptors such as quinodimethane derivatives, chloranil derivatives, and hexaazatriphenylene derivatives can be used.
  • HAT-CN 7,7,8,8-tetracyano-2,3,5,6-tetrafluoroquinodimethane
  • chloranil 2,3,6,7,10,11 -Hexacyano-1,4,5,8,9,12-hexaazatriphenylene
  • HAT-CN 2,3,6,7,10,11 -Hexacyano-1,4,5,8,9,12-hexaazatriphenylene
  • a compound in which an electron withdrawing group is bonded to a condensed aromatic ring having a plurality of heteroatoms such as HAT-CN is preferable because it is thermally stable.
  • Radialene derivatives having an electron-withdrawing group are preferable because of their very high electron-accepting properties.
  • ⁇ , ⁇ ′, ⁇ ′′ ⁇ 1,2,3-cyclopropanetriylidenetris [4-cyano-2,3,5,6-tetrafluorobenzeneacetonitrile], ⁇ , ⁇ ′, ⁇ ′′ -1,2,3-cyclopropanetriylidenetris [2,6-dichloro-3,5-difluoro-4- (trifluoromethyl) benzeneacetonitrile], ⁇ , ⁇ ′, ⁇ ′′ -1,2,3-cyclopropanetriylidentris [2,3,4 , 5,6-pentafluorobenzeneacetonitrile] and the like.
  • a hole transporting material used for the hole injection layer (111, 111a, 111b) and the hole transport layer (112, 112a, 112b) a substance having a hole mobility of 10 ⁇ 6 cm 2 / Vs or more is used. preferable. Note that other than these substances, any substance that has a property of transporting more holes than electrons can be used.
  • a ⁇ -electron rich heteroaromatic compound for example, a carbazole derivative or an indole derivative
  • an aromatic amine compound is preferable.
  • 4,4′-bis [N- (1-naphthyl) is preferable.
  • NPB or ⁇ -NPD N, N′-bis (3-methylphenyl) -N, N′-diphenyl- [1,1′-biphenyl] -4,4 '-Diamine (abbreviation: TPD), 4,4'-bis [N- (spiro-9,9'-bifluoren-2-yl) -N-phenylamino] biphenyl (abbreviation: BSPB), 4-phenyl-4 '-(9-phenylfluoren-9-yl) triphenylamine (abbreviation: BPAFLP), 4-phenyl-3'-(9-phenylfluoren-9-yl) triphenylamine (abbreviation: m BPAFLP), 4-phenyl-4 ′-(9-phenyl-9H-carbazol-3-yl) triphenylamine (abbreviation: PCBA1BP), 3-
  • poly (N-vinylcarbazole) (abbreviation: PVK), poly (4-vinyltriphenylamine) (abbreviation: PVTPA), poly [N- (4- ⁇ N ′-[4- (4-diphenylamino)] Phenyl] phenyl-N′-phenylamino ⁇ phenyl) methacrylamide] (abbreviation: PTPDMA), poly [N, N′-bis (4-butylphenyl) -N, N′-bis (phenyl) benzidine] (abbreviation: Polymer compounds such as Poly-TPD can also be used.
  • the hole transporting material is not limited to the above, and a hole injection layer (111, 111a, 111b) and a hole transporting layer may be used as a hole transporting material by combining one or more known various materials. (112, 112a, 112b). Note that each of the hole transport layers (112, 112a, 112b) may be formed of a plurality of layers. That is, for example, a first hole transport layer and a second hole transport layer may be laminated.
  • the light-emitting layer 113a is formed over the hole-transport layer 112a of the EL layer 103a by a vacuum evaporation method.
  • the light emitting layer 113b is formed on the hole transport layer 112b of the EL layer 103b by a vacuum evaporation method.
  • the light emitting layers (113, 113a, 113b, 113c) are layers containing a light emitting substance.
  • a substance exhibiting a luminescent color such as blue, purple, blue-violet, green, yellow-green, yellow, orange, or red is appropriately used.
  • a structure exhibiting different light emission colors for example, white light emission obtained by combining light emission colors having complementary colors
  • a stacked structure in which one light emitting layer includes different light emitting substances may be used.
  • the light emitting layer may include one or more organic compounds (host material, assist material) in addition to the light emitting substance (guest material).
  • organic compounds host material, assist material
  • guest material the one or more kinds of organic compounds, one or both of a hole transporting material and an electron transporting material described in this embodiment can be used.
  • a light-emitting substance that can be used for the light-emitting layers (113, 113a, 113b, and 113c) a light-emitting substance that changes singlet excitation energy into light emission in the visible light region, or light emission that changes triplet excitation energy into light emission in the visible light region. Substances can be used.
  • Examples of other luminescent substances include the following.
  • Examples of the light-emitting substance that converts singlet excitation energy into light emission include substances that emit fluorescence (fluorescent materials).
  • fluorescent materials include fluorescence (fluorescent materials).
  • Examples include quinoxaline derivatives, quinoxaline derivatives, pyridine derivatives, pyrimidine derivatives, phenanthrene derivatives, and naphthalene derivatives.
  • a pyrene derivative is preferable because of its high emission quantum yield.
  • pyrene derivative examples include N, N′-bis (3-methylphenyl) -N, N′-bis [3- (9-phenyl-9H-fluoren-9-yl) phenyl] pyrene-1,6. -Diamine (abbreviation: 1,6 mM emFLPAPrn), N, N'-diphenyl-N, N'-bis [4- (9-phenyl-9H-fluoren-9-yl) phenyl] pyrene-1,6-diamine (abbreviation) : 1,6FLPAPrn), N, N′-bis (dibenzofuran-2-yl) -N, N′-diphenylpyrene-1,6-diamine (abbreviation: 1,6FrAPrn), N, N′-bis (dibenzothiophene) -2-yl) -N, N′-diphenylpyrene-1,6-diamine (abbreviation: 1,
  • Examples of the light-emitting substance that changes triplet excitation energy into light emission include phosphorescent substances (phosphorescent materials) and thermally activated delayed fluorescence (TADF) materials that exhibit thermally activated delayed fluorescence. .
  • phosphorescent substances phosphorescent materials
  • TADF thermally activated delayed fluorescence
  • phosphorescent materials include organometallic complexes, metal complexes (platinum complexes), and rare earth metal complexes. Since these exhibit different emission colors (emission peaks) for each substance, they are appropriately selected and used as necessary.
  • Examples of phosphorescent materials that exhibit blue or green color and whose emission spectrum peak wavelength is 450 nm or more and 570 nm or less include the following substances.
  • Examples of the phosphorescent material which exhibits green or yellow and has an emission spectrum peak wavelength of 495 nm or more and 590 nm or less include the following substances.
  • tris (4-methyl-6-phenylpyrimidinato) iridium (III) (abbreviation: [Ir (mppm) 3 ]
  • tris (4-t-butyl-6-phenylpyrimidinato) iridium (III) (Abbreviation: [Ir (tBupppm) 3 ])
  • (acetylacetonato) bis (6-methyl-4-phenylpyrimidinato) iridium (III) abbreviation: [Ir (mppm) 2 (acac)]
  • Acetylacetonato bis (6-tert-butyl-4-phenylpyrimidinato) iridium (III) (abbreviation: [Ir (tBupppm) 2 (acac)]
  • Acetylacetonato) bis [6- (2- Norbornyl) -4-phenylpyrimidinato] iridium (III) (abbreviation: [Ir (nbpppm
  • Examples of the phosphorescent material which exhibits yellow or red and has an emission spectrum peak wavelength of 570 nm or more and 750 nm or less include the following substances.
  • the organic compound (host material, assist material) used for the light emitting layer (113, 113a, 113b, 113c) one or more kinds of substances having an energy gap larger than that of the light emitting substance (guest material) are selected. Use it.
  • the light-emitting substance is a fluorescent material
  • an anthracene derivative or a tetracene derivative it is preferable to use an anthracene derivative or a tetracene derivative.
  • an organic compound having a triplet excitation energy larger than the triplet excitation energy (energy difference between the ground state and the triplet excited state) of the light-emitting substance may be selected as the host material.
  • oxadiazole derivatives triazole derivatives, benzimidazole derivatives, quinoxaline derivatives, dibenzoquinoxaline derivatives, dibenzothiophene derivatives, dibenzofuran derivatives, pyrimidine derivatives, triazine derivatives, pyridine derivatives
  • aromatic amines and carbazole derivatives can be used.
  • the following hole transporting materials and electron transporting materials can be used as the host material.
  • Examples of these host materials having a high hole transporting property include N, N′-di (p-tolyl) -N, N′-diphenyl-p-phenylenediamine (abbreviation: DTDPPA), 4,4′-bis [ N- (4-diphenylaminophenyl) -N-phenylamino] biphenyl (abbreviation: DPAB), N, N′-bis ⁇ 4- [bis (3-methylphenyl) amino] phenyl ⁇ -N, N′-diphenyl -(1,1′-biphenyl) -4,4′-diamine (abbreviation: DNTPD), 1,3,5-tris [N- (4-diphenylaminophenyl) -N-phenylamino] benzene (abbreviation: DPA3B)
  • An aromatic amine compound such as
  • PCzDPA1 3- [N- (4-diphenylaminophenyl) -N-phenylamino] -9-phenylcarbazole
  • PCzDPA2 3,6-bis [N- (4-diphenylaminophenyl) -N-phenyl Amino] -9-phenylcarbazole
  • PCzTPN2 3,6-bis [N- (4-diphenylaminophenyl) -N- (1-naphthyl) amino] -9-phenylcarbazole
  • PCzTPN2 3 -[N- (9-phenylcarbazol-3-yl) -N-phenylamino] -9-phenylcarbazole
  • PCzPCA1 3,6-bis [N- (9-phenylcarbazol-3-yl)- N-phenylamino] -9-phenylcarbazole
  • CBP 4,4′-di (N-carbazolyl) biphenyl
  • TCPB 1,3,5-tris [4- (N-carbazolyl) phenyl] benzene
  • NPB or ⁇ -NPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • NPB or ⁇ -NPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • NPB or ⁇ -NPD N, N ′ -Bis (3-methylphenyl) -N, N'-diphenyl- [1,1'-biphenyl] -4,4'-diamine
  • TPD 4,4 ', 4 "-tris (carbazole- 9-yl) triphenylamine
  • TCTA 4,4 ′, 4 ′′ -tris [N- (1-naphthyl) -N-phenylamino] triphenylamine
  • 1′-TNATA 4 , 4 ′, 4 ′′ -tris (N, N-diphenylamino) triphenylamine
  • PCPN 3- [4- (1-naphthyl) -phenyl] -9-phenyl-9H-carbazole
  • PCPPn 3- [4- (9-phenanthryl) -phenyl] -9-phenyl-9H-carbazole
  • PCCP 3,3′-bis (9-phenyl-9H-carbazole)
  • mCP 1,3-bis (N-carbazolyl) benzene
  • CzTP 3,6-bis ( 3,5-diphenylphenyl) -9-phenylcarbazole
  • CzTP 3,6-bis ( 3,5-diphenylphenyl) -9-phenylcarbazole
  • Examples of the host material having a high electron transporting property include tris (8-quinolinolato) aluminum (III) (abbreviation: Alq), tris (4-methyl-8-quinolinolato) aluminum (III) (abbreviation: Almq 3 ), and bis. (10-hydroxybenzo [h] quinolinato) beryllium (II) (abbreviation: BeBq 2 ), bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum (III) (abbreviation: BAlq), bis ( Metal complexes having a quinoline skeleton or a benzoquinoline skeleton, such as 8-quinolinolato) zinc (II) (abbreviation: Znq).
  • bis [2- (2-benzoxazolyl) phenolato] zinc (II) (abbreviation: ZnPBO), bis [2- (2-benzothiazolyl) phenolato] zinc (II) (abbreviation: ZnBTZ), etc.
  • ZnPBO bis [2- (2-benzoxazolyl) phenolato] zinc
  • ZnBTZ bis [2- (2-benzothiazolyl) phenolato] zinc
  • a metal complex having an oxazole-based or thiazole-based ligand can also be used.
  • poly (2,5-pyridinediyl) (abbreviation: PPy)
  • poly [(9,9-dihexylfluorene-2,7-diyl) -co- (pyridine-3,5-diyl)] (abbreviation: PF -Py)
  • poly [(9,9-dioctylfluorene-2,7-diyl) -co- (2,2′-bipyridine-6,6′-diyl)] (abbreviation: PF-BPy)
  • PPy poly [(9,9-dioctylfluorene-2,7-diyl) -co- (2,2′-bipyridine-6,6′-diyl)]
  • PF-BPy Molecular compounds
  • Examples of the host material include condensed polycyclic aromatic compounds such as anthracene derivatives, phenanthrene derivatives, pyrene derivatives, chrysene derivatives, and dibenzo [g, p] chrysene derivatives.
  • first compound and second compound are mixed with an organometallic complex. May be used.
  • various organic compounds can be used in appropriate combination.
  • a compound that easily receives holes (hole transporting material) and a compound that easily receives electrons (electrons) A combination with a transportable material) is particularly preferred.
  • the materials described in this embodiment can be used. With this configuration, high efficiency, low voltage, and long life can be realized simultaneously.
  • TADF material is a material that can up-convert triplet excited state to singlet excited state with a little thermal energy (interverse crossing) and efficiently emits light (fluorescence) from singlet excited state. is there.
  • the energy difference between the triplet excited level and the singlet excited level is 0 eV or more and 0.2 eV or less, preferably 0 eV or more and 0.1 eV or less.
  • delayed fluorescence in the TADF material refers to light emission having a remarkably long lifetime while having a spectrum similar to that of normal fluorescence. The lifetime is 10 ⁇ 6 seconds or longer, preferably 10 ⁇ 3 seconds or longer.
  • TADF material examples include fullerene and derivatives thereof, acridine derivatives such as proflavine, and eosin.
  • metal-containing porphyrins including magnesium (Mg), zinc (Zn), cadmium (Cd), tin (Sn), platinum (Pt), indium (In), palladium (Pd), and the like can be given.
  • metal-containing porphyrin examples include a protoporphyrin-tin fluoride complex (abbreviation: SnF 2 (Proto IX)), a mesoporphyrin-tin fluoride complex (abbreviation: SnF 2 (Meso IX)), and hematoporphyrin-tin fluoride.
  • SnF 2 Proto IX
  • SnF 2 mesoporphyrin-tin fluoride complex
  • hematoporphyrin-tin fluoride examples include hematoporphyrin-tin fluoride.
  • SnF 2 Hemato IX
  • SnF 2 coproporphyrin tetramethyl ester-tin fluoride complex
  • SnF 2 Copro III-4Me
  • SnF 2 octaethylporphyrin-tin fluoride complex
  • SnF 2 (OEP) Etioporphyrin-tin fluoride complex
  • PtCl 2 OEP octaethylporphyrin-platinum chloride complex
  • a substance in which a ⁇ -electron rich heteroaromatic ring and a ⁇ -electron deficient heteroaromatic ring are directly bonded increases both the donor property of the ⁇ -electron rich heteroaromatic ring and the acceptor property of the ⁇ -electron deficient heteroaromatic ring. This is particularly preferable because the energy difference between the singlet excited state and the triplet excited state becomes small.
  • TADF material when using TADF material, it can also be used in combination with another organic compound.
  • the electron-transport layer 114a is formed over the light-emitting layer 113a of the EL layer 103a by a vacuum evaporation method.
  • the electron transport layer 114b is formed on the light emitting layer 113b of the EL layer 103b by a vacuum evaporation method.
  • the electron transport layers (114, 114a, 114b) are formed by allowing the electrons injected from the second electrode 102 and the charge generation layer 104 to the light emitting layers (113, 113a, 113b) by the electron injection layers (115, 115a, 115b).
  • the layer to transport is layers containing an electron transport material.
  • the electron transporting material used for the electron transporting layer (114, 114a, 114b) is preferably a substance having an electron mobility of 1 ⁇ 10 ⁇ 6 cm 2 / Vs or higher. Note that other than these substances, any substance that has a property of transporting more electrons than holes can be used.
  • electron transporting materials include metal complexes having quinoline ligand, benzoquinoline ligand, oxazole ligand, or thiazole ligand, oxadiazole derivatives, triazole derivatives, phenanthroline derivatives, pyridine derivatives, bipyridine derivatives, etc. Is mentioned.
  • a ⁇ -electron deficient heteroaromatic compound such as a nitrogen-containing heteroaromatic compound can also be used.
  • Alq 3 tris (4-methyl-8-quinolinolato) aluminum (abbreviation: Almq 3 ), bis (10-hydroxybenzo [h] quinolinato) beryllium (abbreviation: BeBq 2 ), BAlq, bis [2 -(2-hydroxyphenyl) benzoxazolate] zinc (II) (abbreviation: Zn (BOX) 2 ), bis [2- (2-hydroxyphenyl) benzothiazolate] zinc (II) (abbreviation: Zn (BTZ) 2 ) )
  • poly (2,5-pyridinediyl) (abbreviation: PPy)
  • poly [(9,9-dihexylfluorene-2,7-diyl) -co- (pyridine-3,5-diyl)] (abbreviation: PF -Py)
  • poly [(9,9-dioctylfluorene-2,7-diyl) -co- (2,2′-bipyridine-6,6′-diyl)] (abbreviation: PF-BPy)
  • PPy poly [(9,9-dioctylfluorene-2,7-diyl) -co- (2,2′-bipyridine-6,6′-diyl)]
  • PF-BPy Molecular compounds
  • the electron-transport layer (114, 114a, 114b) is not limited to a single layer, and may have a structure in which two or more layers made of the above substances are stacked.
  • an electron injection layer 115a is formed over the electron transport layer 114a of the EL layer 103a by a vacuum evaporation method. After that, the charge generation layer 104 is formed on the EL layer 103a and the electron transport layer 114b of the EL layer 103b is formed, and then the electron injection layer 115b is formed thereon by a vacuum deposition method.
  • the electron injection layers (115, 115a, 115b) are layers containing a substance having a high electron injection property.
  • the electron injection layer (115, 115a, 115b) includes an alkali metal such as lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF 2 ), lithium oxide (LiO x ), or the like. Earth metals or their compounds can be used. Alternatively, a rare earth metal compound such as erbium fluoride (ErF 3 ) can be used.
  • electride may be used for the electron injection layer (115, 115a, 115b). Examples of the electride include a substance obtained by adding a high concentration of electrons to a mixed oxide of calcium and aluminum. In addition, the substance which comprises the electron carrying layer (114, 114a, 114b) mentioned above can also be used.
  • a composite material obtained by mixing an organic compound and an electron donor (donor) may be used for the electron injection layer (115, 115a, 115b).
  • a composite material is excellent in electron injecting property and electron transporting property because electrons are generated in the organic compound by the electron donor.
  • the organic compound is preferably a material excellent in transporting the generated electrons.
  • an electron transport material metal complex used for the electron transport layer (114, 114a, 114b) described above, for example.
  • a heteroaromatic compound may be any substance that exhibits an electron donating property to the organic compound.
  • alkali metals, alkaline earth metals, and rare earth metals are preferable, and lithium, cesium, magnesium, calcium, erbium, ytterbium, and the like can be given.
  • Alkali metal oxides and alkaline earth metal oxides are preferable, and lithium oxide, calcium oxide, barium oxide, and the like can be given.
  • a Lewis base such as magnesium oxide can also be used.
  • an organic compound such as tetrathiafulvalene (abbreviation: TTF) can be used.
  • the optical distance between the second electrode 102 and the light-emitting layer 113b is less than ⁇ / 4 with respect to the wavelength of light exhibited by the light-emitting layer 113b. It is preferable to form such that In this case, adjustment can be performed by changing the film thickness of the electron transport layer 114b or the electron injection layer 115b.
  • the charge generation layer 104 injects electrons into the EL layer 103a and applies holes into the EL layer 103b when a voltage is applied between the first electrode (anode) 101 and the second electrode (cathode) 102. Has the function of injecting.
  • the charge generation layer 104 may have a structure in which an electron acceptor is added to a hole transporting material or a structure in which an electron donor (donor) is added to an electron transporting material. Good. Moreover, both these structures may be laminated
  • the materials described in this embodiment can be used as the hole-transporting material.
  • the electron acceptor include 7,7,8,8-tetracyano-2,3,5,6-tetrafluoroquinodimethane (abbreviation: F 4 -TCNQ), chloranil, and the like.
  • oxides of metals belonging to Groups 4 to 8 in the periodic table can be given. Specific examples include vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, molybdenum oxide, tungsten oxide, manganese oxide, and rhenium oxide.
  • the materials described in this embodiment can be used as the electron transporting material.
  • the electron donor an alkali metal, an alkaline earth metal, a rare earth metal, a metal belonging to Groups 2 and 13 of the periodic table, or an oxide or carbonate thereof can be used.
  • lithium (Li), cesium (Cs), magnesium (Mg), calcium (Ca), ytterbium (Yb), indium (In), lithium oxide, cesium carbonate, or the like is preferably used.
  • An organic compound such as tetrathianaphthacene may be used as an electron donor.
  • the EL layer 103c in FIG. 1E may have a structure similar to that of the above-described EL layers (103, 103a, and 103b).
  • the charge generation layers 104a and 104b may have the same structure as the charge generation layer 104 described above.
  • the light-emitting element described in this embodiment can be formed over various substrates.
  • substrate is not limited to a specific thing.
  • a semiconductor substrate for example, a single crystal substrate or a silicon substrate
  • an SOI substrate for example, a glass substrate, a quartz substrate, a plastic substrate, a metal substrate, a stainless steel substrate, a substrate having stainless steel foil, a tungsten substrate
  • Examples include a substrate having a tungsten foil, a flexible substrate, a laminated film, a paper containing a fibrous material, or a base film.
  • examples of the glass substrate include barium borosilicate glass, aluminoborosilicate glass, and soda lime glass.
  • Examples of flexible substrates, bonded films, base films, etc. are synthetic materials such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyether sulfone (PES), acrylic, etc. Examples thereof include resin, polypropylene, polyester, polyvinyl fluoride, polyvinyl chloride, polyamide, polyimide, aramid, epoxy, inorganic vapor deposition film, and papers.
  • a vacuum process such as an evaporation method or a solution process such as a spin coating method or an inkjet method can be used.
  • vapor deposition physical vapor deposition (PVD) such as sputtering, ion plating, ion beam vapor deposition, molecular beam vapor deposition, or vacuum vapor deposition, or chemical vapor deposition (CVD) is used. be able to.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • functional layers a hole injection layer (111, 111a, 111b), a hole transport layer (112, 112a, 112b), a light emitting layer (113, 113a,) included in the EL layer (103, 103a, 103b) of the light emitting element.
  • vapor deposition method vacuum vapor deposition method, etc.
  • Coating method dip coating method, die coating method, bar coating method, spin coating method, spray coating method, etc.
  • printing method ink jet method, screen (stencil printing) method, offset (lithographic printing) method, flexographic printing (letter printing) Or the like, a gravure method, a microcontact method, or the like.
  • each functional layer (a hole injection layer (111, 111a, 111b), a hole transport layer (112, 112a, 112b) included in the EL layer (103, 103a, 103b) of the light-emitting element described in this embodiment mode.
  • the light emitting layer (113, 113a, 113b, 113c), the electron transport layer (114, 114a, 114b), the electron injection layer (115, 115a, 115b)) and the charge generation layer (104, 104a, 104b) are described above.
  • the material is not limited, and other materials can be used in combination as long as they can satisfy the function of each layer.
  • high molecular compounds oligomers, dendrimers, polymers, etc.
  • medium molecular compounds compounds in the middle region between low molecules and polymers: molecular weight 400 to 4000
  • inorganic compounds quantum dot materials, etc.
  • quantum dot material a colloidal quantum dot material, an alloy type quantum dot material, a core / shell type quantum dot material, a core type quantum dot material, or the like can be used.
  • 2A is an active matrix light-emitting device in which a transistor (FET) 202 over a first substrate 201 and light-emitting elements (203R, 203G, 203B, and 203W) are electrically connected to each other.
  • the plurality of light emitting elements (203R, 203G, 203B, 203W) have a common EL layer 204, and the optical distance between the electrodes of each light emitting element depends on the emission color of each light emitting element. It has a tuned microcavity structure.
  • the light-emitting device is a top-emission light-emitting device in which light emission obtained from the EL layer 204 is emitted through color filters (206R, 206G, and 206B) formed over the second substrate 205.
  • the first electrode 207 is formed so as to function as a reflective electrode.
  • the second electrode 208 is formed so as to function as a semi-transmissive / semi-reflective electrode. Note that an electrode material for forming the first electrode 207 and the second electrode 208 may be used as appropriate with reference to the description of the other embodiments.
  • the light emitting element 203R is a red light emitting element
  • the light emitting element 203G is a green light emitting element
  • the light emitting element 203B is a blue light emitting element
  • the light emitting element 203W is a white light emitting element, FIG.
  • the light emitting element 203R is adjusted so that the optical distance 200R is between the first electrode 207 and the second electrode 208
  • the light emitting element 203G includes the first electrode 207 and the second electrode.
  • the light emitting element 203B is adjusted so that the optical distance 200B is between the first electrode 207 and the second electrode 208.
  • optical adjustment can be performed by stacking the conductive layer 207R over the first electrode 207 in the light-emitting element 203R and stacking the conductive layer 207G in the light-emitting element 203G.
  • color filters (206R, 206G, 206B) are formed on the second substrate 205.
  • the color filter is a filter that passes a specific wavelength range of visible light and blocks the specific wavelength range. Therefore, as shown in FIG. 2A, red light emission can be obtained from the light emitting element 203R by providing the color filter 206R that allows only the red wavelength region to pass through the position overlapping the light emitting element 203R.
  • green light emission can be obtained from the light emitting element 203G.
  • the color filter 206B that allows only the blue wavelength region to pass at a position overlapping the light emitting element 203B, blue light emission can be obtained from the light emitting element 203B.
  • the light emitting element 203W can obtain white light emission without providing a color filter.
  • a black layer (black matrix) 209 may be provided at an end of one type of color filter.
  • the color filters (206R, 206G, 206B) and the black layer 209 may be covered with an overcoat layer using a transparent material.
  • FIG. 2A a light emitting device having a structure for extracting light emission to the second substrate 205 side (top emission type) is shown, but the first substrate on which the FET 202 is formed as shown in FIG.
  • a light emitting device having a structure for extracting light to the 201 side (bottom emission type) may be used.
  • the first electrode 207 is formed to function as a semi-transmissive / semi-reflective electrode
  • the second electrode 208 is formed to function as a reflective electrode.
  • the first substrate 201 is at least a light-transmitting substrate.
  • the color filters (206R ′, 206G ′, and 206B ′) may be provided on the first substrate 201 side with respect to the light emitting elements (203R, 203G, and 203B) as shown in FIG.
  • the light-emitting element is a red light-emitting element, a green light-emitting element, a blue light-emitting element, or a white light-emitting element
  • the light-emitting element which is one embodiment of the present invention is limited to the structure.
  • a structure having a yellow light emitting element or an orange light emitting element may be used.
  • materials used for the EL layer (light emitting layer, hole injection layer, hole transport layer, electron transport layer, electron injection layer), charge generation layer, and the like in order to manufacture these light emitting elements are other embodiments. May be used as appropriate with reference to the description. In this case, it is necessary to select a color filter as appropriate in accordance with the emission color of the light emitting element.
  • a light-emitting device including a light-emitting element that exhibits a plurality of emission colors can be obtained.
  • an active matrix light-emitting device or a passive matrix light-emitting device can be manufactured.
  • an active matrix light-emitting device has a structure in which a light-emitting element and a transistor (FET) are combined. Therefore, both a passive matrix light-emitting device and an active matrix light-emitting device are included in one embodiment of the present invention.
  • FET transistor
  • the light-emitting element described in any of the other embodiments can be applied to the light-emitting device described in this embodiment.
  • an active matrix light-emitting device is described with reference to FIGS.
  • FIG. 3A is a top view illustrating the light-emitting device
  • FIG. 3B is a cross-sectional view taken along the chain line A-A ′ in FIG. 3A.
  • An active matrix light-emitting device includes a pixel portion 302, a driver circuit portion (source line driver circuit) 303, and driver circuit portions (gate line driver circuits) 304a and 304b provided over a first substrate 301.
  • the pixel portion 302 and the driver circuit portions (303, 304a, and 304b) are sealed between the first substrate 301 and the second substrate 306 by a sealant 305.
  • a lead wiring 307 is provided over the first substrate 301.
  • the lead wiring 307 is connected to the FPC 308 which is an external input terminal.
  • the FPC 308 transmits signals (eg, a video signal, a clock signal, a start signal, a reset signal, and the like) and a potential from the outside to the driving circuit units (303, 304a, and 304b).
  • a printed wiring board (PWB) may be attached to the FPC 308. Note that the state in which the FPC and the PWB are attached is included in the light emitting device.
  • the pixel portion 302 is formed by a plurality of pixels including a FET (switching FET) 311, a FET (current control FET) 312, and a first electrode 313 electrically connected to the FET 312.
  • a FET switching FET
  • FET current control FET
  • first electrode 313 electrically connected to the FET 312. Note that the number of FETs included in each pixel is not particularly limited, and can be appropriately provided as necessary.
  • the FETs 309, 310, 311, and 312 are not particularly limited, and for example, a staggered type transistor or an inverted staggered type transistor can be applied. Further, a transistor structure such as a top gate type or a bottom gate type may be used.
  • crystallinity of the semiconductor there is no particular limitation on the crystallinity of the semiconductor that can be used for these FETs 309, 310, 311, and 312; an amorphous semiconductor, a semiconductor having crystallinity (a microcrystalline semiconductor, a polycrystalline semiconductor, a single crystal semiconductor, Alternatively, a semiconductor having a crystal region in part) may be used. Note that it is preferable to use a crystalline semiconductor because deterioration of transistor characteristics can be suppressed.
  • Group 14 elements for example, Group 14 elements, compound semiconductors, oxide semiconductors, organic semiconductors, and the like can be used.
  • a semiconductor containing silicon, a semiconductor containing gallium arsenide, an oxide semiconductor containing indium, or the like can be used.
  • the drive circuit unit 303 includes an FET 309 and an FET 310.
  • the FET 309 and the FET 310 may be formed of a circuit including a unipolar transistor (N-type or P-type only) or a CMOS circuit including an N-type transistor and a P-type transistor. May be.
  • a configuration in which a drive circuit is provided outside may be employed.
  • an end portion of the first electrode 313 is covered with an insulator 314.
  • the insulator 314 can be formed using an organic compound such as a negative photosensitive resin or a positive photosensitive resin (acrylic resin), or an inorganic compound such as silicon oxide, silicon oxynitride, or silicon nitride. . It is preferable that an upper end portion or a lower end portion of the insulator 314 have a curved surface having a curvature. Thereby, the coverage of the film formed on the upper layer of the insulator 314 can be improved.
  • the EL layer 315 and a second electrode 316 are stacked over the first electrode 313.
  • the EL layer 315 includes a light-emitting layer, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, and the like.
  • the structures and materials described in the other embodiments can be applied to the structure of the light-emitting element 317 described in this embodiment.
  • the second electrode 316 is electrically connected to the FPC 308 which is an external input terminal.
  • 3B illustrates only one light-emitting element 317, it is assumed that a plurality of light-emitting elements are arranged in a matrix in the pixel portion 302.
  • light emitting elements that can emit light of three types R, GB
  • R, G, B three types of light emission
  • light emission that can emit light such as white (W), yellow (Y), magenta (M), and cyan (C).
  • An element may be formed.
  • a light emitting device capable of full color display may be obtained by combining with a color filter.
  • types of color filters red (R), green (G), blue (B), cyan (C), magenta (M), yellow (Y), and the like can be used.
  • the FETs (309, 310, 311 and 312) and the light emitting element 317 over the first substrate 301 are bonded to each other by attaching the second substrate 306 and the first substrate 301 with the sealant 305. 301, the second substrate 306, and a structure provided in a space 318 surrounded by the sealant 305.
  • the space 318 may be filled with an inert gas (such as nitrogen or argon) or an organic substance (including the sealant 305).
  • an epoxy resin or glass frit can be used as the sealant 305. Note that it is preferable to use a material that does not transmit moisture and oxygen as much as possible for the sealant 305.
  • a substrate that can be used for the first substrate 301 can be used as well. Therefore, various substrates described in other embodiments can be used as appropriate.
  • a plastic substrate made of FRP (Fiber-Reinforced Plastics), PVF (polyvinyl fluoride), polyester, acrylic, or the like can be used as the substrate.
  • the first substrate 301 and the second substrate 306 are preferably glass substrates from the viewpoint of adhesiveness.
  • an active matrix light-emitting device can be obtained.
  • the FET and the light-emitting element may be directly formed over the flexible substrate, but the FET and the light-emitting element are formed over another substrate having a release layer.
  • the FET and the light-emitting element may be peeled off by a peeling layer by applying heat, force, laser irradiation, and transferred to a flexible substrate.
  • the peeling layer for example, a laminated inorganic film of a tungsten film and a silicon oxide film, an organic resin film such as polyimide, or the like can be used.
  • flexible substrates include paper substrates, cellophane substrates, aramid film substrates, polyimide film substrates, fabric substrates (natural fibers (silk, cotton, hemp), synthetic fibers ( Nylon, polyurethane, polyester) or recycled fibers (including acetate, cupra, rayon, recycled polyester), leather substrates, rubber substrates, and the like.
  • 4A to 4E includes a housing 7000, a display portion 7001, a speaker 7003, an LED lamp 7004, operation keys 7005 (including a power switch or an operation switch), a connection terminal 7006, Sensor 7007 (force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity , Including a function of measuring inclination, vibration, odor, or infrared light), microphones 7008, 7019, and the like.
  • Sensor 7007 force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity , Including a function of measuring inclination, vibration, odor, or infrared light
  • microphones 7008, 7019 and the like.
  • FIG. 4A illustrates a mobile computer, which can include a switch 7009, an infrared port 7010, and the like in addition to the above objects.
  • FIG. 4B illustrates a portable image reproducing device (eg, a DVD reproducing device) provided with a recording medium, which includes a second display portion 7002, a recording medium reading portion 7011, and the like in addition to those described above. it can.
  • a portable image reproducing device eg, a DVD reproducing device
  • a recording medium which includes a second display portion 7002, a recording medium reading portion 7011, and the like in addition to those described above. it can.
  • FIG. 4C illustrates a goggle type display which can include a second display portion 7002, a support portion 7012, an earphone 7013, and the like in addition to the above components.
  • FIG. 4D illustrates a digital camera with a television receiving function, which can include an antenna 7014, a shutter button 7015, an image receiving portion 7016, and the like in addition to the above objects.
  • FIG. 4E illustrates a mobile phone (including a smartphone), which can include a display portion 7001, a microphone 7019, a speaker 7003, a camera 7020, an external connection portion 7021, an operation button 7022, and the like in a housing 7000. .
  • FIG. 4F illustrates a large television device (also referred to as a television or a television receiver) which can include a housing 7000, a display portion 7001, speakers 7003, and the like.
  • a configuration in which the casing 7000 is supported by a stand 7018 is shown.
  • the electronic devices illustrated in FIGS. 4A to 4F can have a variety of functions. For example, a function for displaying various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function for displaying a calendar, date or time, etc., a function for controlling processing by various software (programs) , Wireless communication function, function to connect to various computer networks using wireless communication function, function to transmit or receive various data using wireless communication function, read program or data recorded in recording medium
  • a function of displaying on the display portion can be provided. Further, in an electronic device having a plurality of display units, one display unit mainly displays image information and another one display unit mainly displays character information, or the plurality of display units consider parallax.
  • a function of displaying a three-dimensional image, etc. by displaying the obtained image. Furthermore, in an electronic device having an image receiving unit, a function for capturing a still image, a function for capturing a moving image, a function for correcting a captured image automatically or manually, and a captured image on a recording medium (externally or incorporated in a camera) A function of saving, a function of displaying a photographed image on a display portion, and the like can be provided. Note that the functions of the electronic devices illustrated in FIGS. 4A to 4F are not limited to these, and the electronic devices can have various functions.
  • FIG. 4G illustrates a smart watch, which includes a housing 7000, a display portion 7001, operation buttons 7022 and 7023, a connection terminal 7024, a band 7025, a clasp 7026, and the like.
  • a display portion 7001 mounted on a housing 7000 that also serves as a bezel portion has a non-rectangular display region.
  • the display portion 7001 can display an icon 7027 representing time, other icons 7028, and the like.
  • the display unit 7001 may be a touch panel (input / output device) equipped with a touch sensor (input device).
  • the smart watch illustrated in FIG. 4G can have a variety of functions. For example, a function for displaying various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function for displaying a calendar, date or time, etc., a function for controlling processing by various software (programs) , Wireless communication function, function to connect to various computer networks using wireless communication function, function to transmit or receive various data using wireless communication function, read program or data recorded in recording medium A function of displaying on the display portion can be provided.
  • a speaker In addition, a speaker, a sensor (force, displacement, position, velocity, acceleration, angular velocity, number of rotations, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current are included in the housing 7000. , Voltage, power, radiation, flow rate, humidity, gradient, vibration, odor or infrared measurement function), microphone, and the like.
  • the light-emitting device which is one embodiment of the present invention and the display device including the light-emitting element which is one embodiment of the present invention can be used for each display portion of the electronic device described in this embodiment and display with high color purity. Is possible.
  • FIGS. 5A to 5C a foldable portable information terminal as illustrated in FIGS. 5A to 5C can be given.
  • FIG. 5A illustrates the portable information terminal 9310 in a developed state.
  • FIG. 5B illustrates the portable information terminal 9310 in a state of changing from one of the expanded state and the folded state to the other.
  • FIG. 5C illustrates the portable information terminal 9310 in a folded state.
  • the portable information terminal 9310 is excellent in portability in the folded state and excellent in display listability due to a seamless wide display area in the expanded state.
  • the display portion 9311 is supported by three housings 9315 connected by a hinge 9313.
  • the display unit 9311 may be a touch panel (input / output device) equipped with a touch sensor (input device).
  • the display portion 9311 can be reversibly deformed from the expanded state to the folded state by bending the two housings 9315 via the hinge 9313.
  • the light-emitting device of one embodiment of the present invention can be used for the display portion 9311.
  • display with good color purity is possible.
  • a display region 9312 in the display portion 9311 is a display region located on a side surface of the portable information terminal 9310 in a folded state. In the display area 9312, information icons, frequently used applications, program shortcuts, and the like can be displayed, so that information can be confirmed and applications can be activated smoothly.
  • FIGS. 6A and 6B illustrate an automobile to which the light-emitting device is applied. That is, the light emitting device can be provided integrally with the automobile.
  • the present invention can be applied to a light 5101 (including a rear part of a vehicle body), a wheel 5102 of a tire, a part of or the whole of a door 5103 shown in FIG.
  • the present invention can be applied to a display portion 5104, a handle 5105, a shift lever 5106, a seat seat 5107, an inner rear view mirror 5108, and the like inside the automobile shown in FIG.
  • an electronic device or a vehicle using the light-emitting device or the display device which is one embodiment of the present invention can be obtained.
  • display with good color purity is possible.
  • applicable electronic devices and automobiles are not limited to those described in this embodiment, and can be applied in any field.
  • FIGS. 7A, 7B, 7C, and 7D each show an example of a cross-sectional view of a lighting device.
  • 7A and 7B are bottom emission type lighting devices that extract light to the substrate side
  • FIGS. 7C and 7D are top emission type lighting devices that extract light to the sealing substrate side. It is a lighting device.
  • a lighting device 4000 illustrated in FIG. 7A includes a light-emitting element 4002 over a substrate 4001.
  • a substrate 4003 having unevenness is provided outside the substrate 4001.
  • the light-emitting element 4002 includes a first electrode 4004, an EL layer 4005, and a second electrode 4006.
  • the first electrode 4004 is electrically connected to the electrode 4007, and the second electrode 4006 is electrically connected to the electrode 4008. Further, an auxiliary wiring 4009 that is electrically connected to the first electrode 4004 may be provided. Note that an insulating layer 4010 is formed over the auxiliary wiring 4009.
  • the substrate 4001 and the sealing substrate 4011 are bonded with a sealant 4012.
  • a desiccant 4013 is preferably provided between the sealing substrate 4011 and the light-emitting element 4002. Note that since the substrate 4003 has unevenness as illustrated in FIG. 7A, the light extraction efficiency of the light-emitting element 4002 can be improved.
  • a diffusion plate 4015 may be provided outside the substrate 4001 as in the lighting device 4100 in FIG.
  • a lighting device 4200 in FIG. 7C includes a light-emitting element 4202 over a substrate 4201.
  • the light-emitting element 4202 includes a first electrode 4204, an EL layer 4205, and a second electrode 4206.
  • the first electrode 4204 is electrically connected to the electrode 4207, and the second electrode 4206 is electrically connected to the electrode 4208. Further, an auxiliary wiring 4209 that is electrically connected to the second electrode 4206 may be provided. Further, an insulating layer 4210 may be provided below the auxiliary wiring 4209.
  • the substrate 4201 and the uneven sealing substrate 4211 are bonded with a sealant 4212. Further, a barrier film 4213 and a planarization film 4214 may be provided between the sealing substrate 4211 and the light-emitting element 4202. Note that the sealing substrate 4211 has unevenness as illustrated in FIG. 7C, so that extraction efficiency of light generated in the light-emitting element 4202 can be improved.
  • a diffusion plate 4215 may be provided over the light-emitting element 4202 as in the lighting device 4300 in FIG.
  • a lighting device having desired chromaticity can be provided by using a light-emitting device which is one embodiment of the present invention or a light-emitting element which is a part thereof.
  • the ceiling light 8001 includes a direct ceiling type and a ceiling embedded type. Note that such an illumination device is configured by combining a light emitting device with a housing or a cover. In addition, it can be applied to a cord pendant type (a cord hanging type from the ceiling).
  • the foot lamp 8002 can illuminate the floor surface and enhance the safety of the foot. For example, it is effective to use it for a bedroom, a staircase or a passage. In that case, the size and shape can be appropriately changed according to the size and structure of the room.
  • a stationary illumination device configured by combining a light emitting device and a support base can be provided.
  • the sheet-like illumination 8003 is a thin sheet-like illumination device. Since it is attached to the wall surface, it can be used for a wide range of purposes without taking up space. It is easy to increase the area. In addition, it can also be used for the wall surface and housing
  • an illumination device 8004 in which light from a light source is controlled only in a desired direction can be used.
  • a lighting device having a function as furniture can be obtained by applying the light-emitting device which is one embodiment of the present invention to a part of the furniture provided in the room or the light-emitting element which is a part of the light-emitting device. can do.
  • various lighting devices to which the light-emitting device is applied can be obtained. Note that these lighting devices are included in one embodiment of the present invention.
  • Sublimation purification of 0.83 g of the obtained pale yellow solid was performed by a train sublimation method. Sublimation purification was performed by heating a light yellow solid at 300 ° C. under conditions of a pressure of 3.6 Pa and an argon flow rate of 5.0 mL / min. After sublimation purification, 0.74 g of a pale yellow solid was obtained with a recovery rate of 89%.
  • FIG. 9B is a chart in which the range of 7.0 ppm to 8.5 ppm in FIG. 9A is enlarged. From this result, it was found that in this example, an organic compound, BINCzPA, which is one embodiment of the present invention represented by the above structural formula (100), was obtained.
  • an ultraviolet-visible absorption spectrum (hereinafter, simply referred to as “absorption spectrum”) and an emission spectrum of a toluene solution of BINCzPA and a solid thin film were measured.
  • the solid thin film was produced on a quartz substrate by a vacuum deposition method.
  • an ultraviolet-visible spectrophotometer (solution: manufactured by JASCO Corporation, V-550, thin film: manufactured by Hitachi High-Technologies Corporation, U-4100) was used.
  • the absorption spectrum of the solution was calculated by subtracting the absorption spectrum measured only by putting toluene in a quartz cell, and the absorption spectrum of the thin film was the absorbance ( ⁇ log 10 [%] obtained from the transmittance and reflectance including the substrate. T / (100-% R)] where% T represents transmittance, and% R represents reflectance, and the fluorescence spectrum was measured using a fluorometer (FS920, manufactured by Hamamatsu Photonics). Was used.
  • FIG. 10A shows the measurement results of the absorption spectrum and emission spectrum of the obtained toluene solution.
  • the horizontal axis represents wavelength, and the vertical axis represents absorption intensity and emission intensity.
  • FIG. 10B shows the measurement results of the absorption spectrum and emission spectrum of the solid thin film.
  • the horizontal axis represents wavelength, and the vertical axis represents absorption intensity and emission intensity.
  • BINCzPA emitted blue light.
  • the organic compound, BINCzPA which is one embodiment of the present invention can also be used as a host material for a light-emitting substance or a fluorescent light-emitting substance in the visible range.
  • the thin film of BINCzPA is a good film quality that hardly aggregates in the air and has little change in form.
  • the HOMO level and LUMO level of BINCzPA were calculated based on cyclic voltammetry (CV) measurement. The calculation method is shown below.
  • an electrochemical analyzer manufactured by BAS Co., Ltd., model number: ALS model 600A or 600C
  • DMF dehydrated dimethylformamide
  • tetra-n-butylammonium perchlorate as a supporting electrolyte ( n-Bu 4 NClO 4 ) (manufactured by Tokyo Chemical Industry Co., Ltd., catalog number: T0836) is dissolved to a concentration of 100 mmol / L, and the measurement target is further dissolved to a concentration of 2 mmol / L. did.
  • a platinum electrode manufactured by BAS Co., Ltd., PTE platinum electrode
  • a platinum electrode manufactured by BAS Inc., Pt counter electrode for VC-3 ( 5 cm)
  • Ag / Ag + electrode manufactured by BAS Co., Ltd., RE7 non-aqueous solvent system reference electrode
  • the scanning speed during CV measurement was unified to 0.1 V / sec, and the oxidation potential Ea [V] and the reduction potential Ec [V] with respect to the reference electrode were measured.
  • Ea was an intermediate potential of the oxidation-reduction wave
  • Ec was an intermediate potential of the reduction-oxidation wave.
  • the HOMO level [eV] ⁇ 4.94 ⁇ Ea
  • CV measurement was repeated 100 times, and the electrical stability of the compound was examined by comparing the oxidation-reduction wave in the measurement at the 100th cycle with the oxidation-reduction wave at the first cycle.
  • the light-emitting element described in this example includes a hole injection layer 911, a hole transport layer 912, a light-emitting layer 913, an electron transport layer 914, and a first electrode 901 formed over a substrate 900 as illustrated in FIG.
  • the electron injection layer 915 is sequentially stacked, and the second electrode 903 is stacked on the electron injection layer 915.
  • the first electrode 901 was formed over the substrate 900.
  • the electrode area was 4 mm 2 (2 mm ⁇ 2 mm).
  • a glass substrate was used as the substrate 900.
  • the first electrode 901 includes Indium tin oxide (ITO) containing silicon oxide was formed to a thickness of 70 nm by a sputtering method.
  • ITO Indium tin oxide
  • the surface of the substrate was washed with water and baked at 200 ° C. for 1 hour, followed by UV ozone treatment for 370 seconds. Thereafter, the substrate is introduced into a vacuum vapor deposition apparatus whose internal pressure is reduced to about 10 ⁇ 4 Pa, vacuum baking is performed at 170 ° C. for 60 minutes in a heating chamber in the vacuum vapor deposition apparatus, and then the substrate is released for about 30 minutes. Chilled.
  • a hole injection layer 911 was formed over the first electrode 901.
  • a hole transport layer 912 was formed over the hole injection layer 911.
  • the hole transport layer 912 was formed by vapor deposition using PCzPA so as to have a film thickness of 30 nm.
  • a light-emitting layer 913 was formed over the hole transport layer 912.
  • the light-emitting layer 913 uses BINCzPA as a host material and N, N′-bis (3-methylphenyl) -N, N′-bis [3- (9-phenyl-9H) as a guest material.
  • the film thickness was 25 nm.
  • the film thickness was 25 nm.
  • the film thickness was 25 nm.
  • an electron transport layer 914 was formed over the light emitting layer 913.
  • the electron-transport layer 914 was formed by sequentially vapor-depositing so that the film thickness of BINCzPA was 15 nm and the film thickness of bathophenanthroline (abbreviation: Bphen) was 10 nm.
  • the CzPA film was formed by vapor deposition so that the film thickness was 15 nm and the Bphen film thickness was 10 nm.
  • the cgDBCzPA was formed by sequentially vapor-depositing so that the film thickness of cgDBCzPA was 15 nm and the film thickness of Bphen was 10 nm.
  • the electron injection layer 915 was formed over the electron transport layer 914.
  • the electron injection layer 915 was formed by vapor deposition using lithium fluoride (LiF) so as to have a film thickness of 1 nm.
  • a second electrode 903 was formed over the electron injection layer 915.
  • the second electrode 903 was formed by vapor deposition of aluminum so that the film thickness becomes 200 nm. Note that in this embodiment, the second electrode 903 functions as a cathode.
  • a light-emitting element in which an EL layer was sandwiched between a pair of electrodes was formed over the substrate 900.
  • the hole-injection layer 911, the hole-transport layer 912, the light-emitting layer 913, the electron-transport layer 914, and the electron-injection layer 915 described in the above steps are functional layers that constitute the EL layer in one embodiment of the present invention.
  • a vapor deposition method using a resistance heating method was used.
  • the light-emitting element manufactured as described above is sealed by another substrate (not shown).
  • another substrate (not shown) is fixed on the substrate 900 using a sealing material in a glove box in a nitrogen atmosphere and sealed. The material was applied to the periphery of the light emitting element formed on the substrate 900, and irradiated with 6 J / cm 2 of 365 nm ultraviolet light at the time of sealing, and heat-treated at 80 ° C. for 1 hour.
  • Table 2 shows main initial characteristic values of the light emitting elements in the vicinity of 1000 cd / m 2 .
  • the light-emitting element 1 manufactured in this example shows good current efficiency and high external quantum efficiency. From this result, as in BINCzPA which is one embodiment of the present invention used for the light-emitting element 1, two benzene rings forming the carbazole skeleton have a condensed structure, and at least one of the benzene rings is other than the benzene ring. It was shown that a highly efficient light-emitting element can be obtained by using an organic compound having a ring structure. Note that this is attributed to the fact that energy transfer to the guest material (dopant) is efficiently performed when the organic compound which is one embodiment of the present invention is used as the host material of the light-emitting element. .
  • FIG. 16 shows emission spectra obtained when a current was passed through the light-emitting element 1, the comparative light-emitting element 2, and the comparative light-emitting element 3 at a current density of 12.5 mA / cm 2 .
  • the emission spectra of the light-emitting element 1, the comparative light-emitting element 2, and the comparative light-emitting element 3 all have a peak near 468 nm, and are derived from the light emission of 1,6 mMemFLPAPrn contained in the light-emitting layer 913. It is suggested that
  • the reliability test was a constant current drive test at 50 mA.
  • the light-emitting element 1 which is one embodiment of the present invention exhibits better characteristics than the comparative light-emitting element 2 and the comparative light-emitting element 3 as comparative elements in terms of external quantum efficiency, and also in terms of reliability. , It was found to show excellent properties.
  • Sublimation purification of 0.96 g of the obtained pale yellow solid was performed by a train sublimation method.
  • the sublimation purification was performed by heating a pale yellow solid at 320 ° C. under conditions of a pressure of 3.5 Pa and an argon flow rate of 5.0 mL / min. After sublimation purification, 0.88 g of a pale yellow solid was obtained with a recovery rate of 92%.
  • FIG. 18B is a chart in which the range of 6.5 ppm to 9.0 ppm in FIG. From this result, it was found that in this example, an organic compound, BINCzPA-02, which is one embodiment of the present invention represented by the above structural formula (101) was obtained.
  • FIG. 19B shows the measurement results of the absorption spectrum and emission spectrum of the solid thin film.
  • the horizontal axis represents wavelength
  • the vertical axis represents absorption intensity and emission intensity.
  • BINCzPA-02 emitted blue light.
  • the organic compound, BINCzPA-02 which is one embodiment of the present invention can also be used as a host material for a light-emitting substance or a fluorescent light-emitting substance in the visible range. It was also found that the thin film of BINCzPA-02 has a good film quality that hardly aggregates even in the atmosphere.
  • the HOMO level and LUMO level of BINCzPA-02 were calculated based on cyclic voltammetry (CV) measurement.
  • Sublimation purification of 1.3 g of the obtained pale yellow solid was performed by a train sublimation method. Sublimation purification was performed by heating a pale yellow solid at 290 ° C. under conditions of a pressure of 3.5 Pa and an argon flow rate of 5.0 mL / min. After purification by sublimation, 1.1 g of a pale yellow solid was obtained with a recovery rate of 89%.
  • FIG. 20B is a chart in which the range of 7.0 ppm to 9.0 ppm in FIG. From this result, it was found that in this example, an organic compound, BBFcz (II) PA, which is one embodiment of the present invention represented by the above structural formula (146), was obtained.
  • FIG. 21A shows the measurement results of the absorption spectrum and emission spectrum of the obtained toluene solution.
  • the horizontal axis represents wavelength, and the vertical axis represents absorption intensity and emission intensity.
  • FIG. 21B shows the measurement results of the absorption spectrum and emission spectrum of the solid thin film.
  • the horizontal axis represents wavelength, and the vertical axis represents absorption intensity and emission intensity.
  • BBFcz (II) PA emits blue light.
  • the organic compound, BBFcz (II) PA which is one embodiment of the present invention, can also be used as a host material for a light-emitting substance or a visible-light fluorescent substance.
  • the thin film of BBFcz (II) PA has a good film quality that hardly aggregates in the air.
  • the HOMO level and LUMO level of BBFcz (II) PA were calculated based on cyclic voltammetry (CV) measurement.
  • Sublimation purification of 0.76 g of the obtained pale yellow solid was performed by a train sublimation method. Sublimation purification was performed by heating a light yellow solid at 300 ° C. under conditions of a pressure of 3.8 Pa and an argon flow rate of 5.0 mL / min. After sublimation purification, 0.72 g of a pale yellow solid was obtained with a recovery rate of 94%.
  • FIG. 22B is a chart in which the range of 7.0 ppm to 10.5 ppm in FIG. From this result, it was found that in this example, an organic compound BBFczPA that was an embodiment of the present invention represented by the above structural formula (164) was obtained.
  • FIG. 23B shows the measurement results of the absorption spectrum and emission spectrum of the solid thin film.
  • the horizontal axis represents wavelength
  • the vertical axis represents absorption intensity and emission intensity.
  • BBFczPA emitted blue light.
  • the organic compound, BBFczPA, which is one embodiment of the present invention can also be used as a host material for a light-emitting substance or a visible-light fluorescent substance.
  • the thin film of BBFczPA has a good film quality that hardly aggregates even in the atmosphere.
  • the HOMO level and LUMO level of BBFczPA were calculated based on cyclic voltammetry (CV) measurement.
  • the HOMO level was ⁇ 5.79 eV in the measurement of the oxidation potential Ea [V] of BBFczPA.
  • Ec [V] the reduction potential
  • the LUMO level was -2.73 eV.
  • the peak intensity was maintained at 81% in the Ea measurement and 78% in the Ec measurement. And resistance to reduction was confirmed to be good.
  • Sublimation purification of 2.0 g of the obtained pale yellow solid was performed by a train sublimation method. Sublimation purification was performed by heating a pale yellow solid at 310 ° C. under conditions of a pressure of 3.8 Pa and an argon flow rate of 5.0 mL / min. After sublimation purification, 1.8 g of a pale yellow solid was obtained with a recovery rate of 93%.
  • FIG. 24B is a chart in which the range of 7.0 ppm to 10.5 ppm in FIG. From this result, it was found that in this example, an organic compound, ⁇ N-BBFczPAnth, which is one embodiment of the present invention represented by the above structural formula (191), was obtained.
  • FIG. 25B shows the measurement results of the absorption spectrum and emission spectrum of the solid thin film.
  • the horizontal axis represents wavelength
  • the vertical axis represents absorption intensity and emission intensity.
  • ⁇ N-BBFczPAnth emits blue light.
  • the organic compound, ⁇ N-BBFczPAnth which is one embodiment of the present invention, can also be used as a host material for a light-emitting substance or a visible-light fluorescent substance. Further, it was found that the thin film of ⁇ N-BBFczPAnth has a good film quality that hardly aggregates in the air.
  • the HOMO level and LUMO level of ⁇ N-BBFczPAnth were calculated based on cyclic voltammetry (CV) measurement.
  • the light-emitting element 4 using BINCzPA-02 (structural formula (101)) described in Example 3 as a light-emitting layer was described in Example 4, Light-Emitting Element 5 Using BBFcz (II) PA (Structural Formula (146)) for the Light-Emitting Layer, Light-Emitting Element 6 Using BBFczPA (Structural Formula (164)) for the Light-Emitting Layer Explained in Example 4, Example 5
  • the light-emitting elements 7 each using ⁇ N-BBFcZPANth structural formula (191) described in 1 above for the light-emitting layer were manufactured and the characteristics thereof were measured.
  • the element structure of the light-emitting element used in this example is the same as that of FIG. 11 shown in Example 2, but the specific structure of each layer constituting the element structure is as shown in Table 3. .
  • chemical formulas of materials used in this example are shown below.
  • ⁇ Operating characteristics of light emitting element ⁇ The operating characteristics of the manufactured light-emitting element 4, light-emitting element 5, light-emitting element 6, and light-emitting element 7 were measured. The measurement was performed at room temperature.
  • Table 4 shows main initial characteristic values of the light-emitting elements near 1000 cd / m 2 .
  • the light-emitting element 4, the light-emitting element 5, the light-emitting element 6, and the light-emitting element 7 manufactured in this example are a host material that exhibits good efficiency in a blue fluorescent element regardless of the type of dopant or electron transport layer. It turns out that it is.
  • FIG. 26 shows emission spectra obtained when a current was passed through the light-emitting element 4, the light-emitting element 5, the light-emitting element 6, and the light-emitting element 7 at a current density of 12.5 mA / cm 2 .
  • the emission spectrum of the light-emitting element is derived from light emission of the light-emitting substance included in the light-emitting layer 913.
  • the reliability test was a constant current driving test in which a constant current was passed at a current density of 50 mA / cm 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Indole Compounds (AREA)

Abstract

要約書 新規な有機化合物を提供する。 すなわち、 素子特性や信頼性を高める上で有効な新規の有機化合物を 提供する。 カルバゾール骨格に縮環構造を有し、下記一般式(G1)で表される有機化合物である。 (式中、環A1および環A2は、上記式(1a)で表され、隣接する環と任意の位置で縮合し、環B は、上記式(1b)で表され、aまたはbで示される位置で隣接する環と縮合する5員環を表す。ま た、上記式(1b)中のXは、酸素、硫黄、置換もしくは無置換の炭素のいずれかを表す。また、A r1は、 置換もしくは無置換の炭素数6~14のアリール基を表し、 前記アリール基が置換基を有す る場合、前記置換基は互いに結合して環を形成していてもよい。)

Description

有機化合物、発光素子、発光装置、電子機器、および照明装置
本発明の一態様は、有機化合物、発光素子、発光装置、電子機器、および照明装置に関する。但し、本発明の一態様は、上記の技術分野に限定されない。すなわち、本発明の一態様は、物、方法、製造方法、または駆動方法に関する。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関する。また、具体的には、半導体装置、表示装置、液晶表示装置などを一例として挙げることができる。
一対の電極間にEL層を挟んでなる発光素子(有機EL素子ともいう)は、薄型軽量、入力信号に対する高速な応答性、低消費電力などの特性を有することから、これらを適用したディスプレイは、次世代のフラットパネルディスプレイとして注目されている。
発光素子は、一対の電極間に電圧を印加することにより、各電極から注入された電子およびホールがEL層において再結合し、EL層に含まれる発光物質(有機化合物)が励起状態となり、その励起状態が基底状態に戻る際に発光する。なお、励起状態の種類としては、一重項励起状態(S)と三重項励起状態(T)とがあり、一重項励起状態からの発光が蛍光、三重項励起状態からの発光が燐光と呼ばれている。また、発光素子におけるそれらの統計的な生成比率は、S:T=1:3であると考えられている。発光物質から得られる発光スペクトルはその発光物質特有のものであり、異なる種類の有機化合物を発光物質として用いることによって、様々な発光色の発光素子を得ることができる。
この様な発光素子に関しては、その素子特性を向上させる為に、素子構造の改良や材料開発等が盛んに行われている(例えば、特許文献1参照)。
特開2010−182699号公報
発光素子の開発において、発光素子に用いる有機化合物は、その特性を高める上で非常に重要である。そこで、本発明の一態様では、新規な有機化合物を提供する。すなわち、素子特性や信頼性を高める上で有効な新規の有機化合物を提供する。また、本発明の一態様では、発光素子に用いることができる新規な有機化合物を提供する。また、本発明の一態様では、発光素子のEL層に用いることができる、新規な有機化合物を提供する。また、本発明の一態様である新規な有機化合物を用いた高効率で信頼性の高い新規な発光素子を提供する。また、新規な発光装置、新規な電子機器、または新規な照明装置を提供する。なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はない。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、カルバゾール骨格に縮環構造を有し、下記一般式(G1)で表される有機化合物である。
Figure JPOXMLDOC01-appb-C000007
なお、一般式(G1)において、環A1および環A2は、上記式(1a)で表され、隣接する環と任意の位置で縮合し、環Bは、上記式(1b)で表され、aまたはbで示される位置で隣接する環と縮合する。また、上記式(1b)中のXは、酸素、硫黄、置換もしくは無置換の炭素のいずれかを表す。また、Arは、置換もしくは無置換の炭素数6~14のアリール基を表し、前記アリール基が置換基を有する場合、前記置換基は互いに結合して環を形成していてもよい。また、R~R、及びR10~R13は、それぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、又は置換もしくは無置換の炭素数6~13のアリール基のいずれかを表す。
また、本発明の別の一態様は、下記一般式(G2)で表される有機化合物である。
Figure JPOXMLDOC01-appb-C000008
なお、一般式(G2)において、環A1は、上記式(1a)で表され、隣接する環と任意の位置で縮合し、環Bは、上記式(1b)で表され、aまたはbで示される位置で隣接する環と縮合する。また、上記式(1b)中のXは、酸素、硫黄、置換もしくは無置換の炭素のいずれかを表す。また、Arは、置換もしくは無置換の炭素数6~14のアリール基を表し、前記アリール基が置換基を有する場合、前記置換基は互いに結合して環を形成していてもよい。また、R~R、及びR10~R13は、それぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、又は置換もしくは無置換の炭素数6~13のアリール基のいずれかを表す。
また、本発明の別の一態様は、下記一般式(G3)で表される有機化合物である。
Figure JPOXMLDOC01-appb-C000009
なお、一般式(G3)において、環Bは、上記式(1b)で表され、aまたはbで示される位置で隣接する環と縮合する。また、上記式(1b)中のXは、酸素、硫黄、置換もしくは無置換の炭素のいずれかを表す。また、Arは、置換もしくは無置換の炭素数6~14のアリール基を表し、前記アリール基が置換基を有する場合、前記置換基は互いに結合して環を形成していてもよい。また、R~R、及びR10~R13は、それぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、又は置換もしくは無置換の炭素数6~13のアリール基のいずれかを表す。
なお、上記一般式(G1)~(G3)において、Arは、総炭素数14~60のアントラセン骨格を含む基であっても良い。
また、本発明の別の一態様は、下記一般式(G4)で表される有機化合物である。
Figure JPOXMLDOC01-appb-C000010
なお、一般式(G4)において、環Bは、上記式(1b)で表され、aまたはbで示される位置で隣接する環と縮合する。また、上記式(1b)中のXは、酸素、硫黄、置換もしくは無置換の炭素のいずれかを表す。また、Arは、総炭素数14~60のアントラセン骨格を含む基を表す。また、R~R、及びR10~R13は、それぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、又は置換もしくは無置換の炭素数6~13のアリール基のいずれかを表す。
また、本発明の別の一態様は、下記一般式(G5)で表される有機化合物である。
Figure JPOXMLDOC01-appb-C000011
なお、一般式(G5)において、環Bは、上記式(1b)で表され、aまたはbで示される位置で隣接する環と縮合する。また、上記式(1b)中のXは、酸素、硫黄、置換もしくは無置換の炭素のいずれかを表す。また、Arは置換もしくは無置換の炭素数6~13のアリーレン基を表す。またnは0~2を表す。また、R~R、R10~R13、R15~R23は、それぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、又は置換もしくは無置換の炭素数6~13のアリール基のいずれかを表す。
また、本発明の別の一態様は、上記一般式(G5)中のArが、置換もしくは無置換のフェニレン基、ナフタレン基、またはビフェニルジイル基である有機化合物である。
上述した本発明の一態様である有機化合物は、カルバゾール骨格に縮環構造を有する。具体的には、カルバゾール骨格を形成する二つのベンゼン環がそれぞれ縮環された構造を有し、かつ少なくとも一方はベンゼン環以外の環構造を有することを特徴とする。なお、このような構造を有することで、ゲスト材料(ドーパント)と組み合わせて用いる場合には、ドーパントへのエネルギー移動を効率よく行えるという特徴を有する。また、ゲスト材料の凝集を防ぐ効果を有することから、発光素子に用いた場合には、所望の色度が得られ、発光効率の向上を図ることができる。
本発明の別の一態様は、構造式(100)、構造式(101)、構造式(146)、構造式(164)、または構造式(191)のいずれか一で表される有機化合物である。
Figure JPOXMLDOC01-appb-C000012
本発明の別の一態様は、カルバゾール骨格に縮環構造を有する有機化合物を用いた発光素子である。なお、上記有機化合物に加えてゲスト材料を有する発光素子も本発明に含める。
本発明の別の一態様は、上述した本発明の一態様である有機化合物を用いた発光素子である。なお、一対の電極間に有するEL層や、EL層に含まれる発光層に本発明の一態様である有機化合物を用いて形成された発光素子も本発明に含まれることとする。また、発光素子に加えて、トランジスタ、基板などを有する発光装置も発明の範疇に含める。さらに、これらの発光装置に加えて、マイク、カメラ、操作用ボタン、外部接続部、筐体、カバー、支持台または、スピーカ等を有する電子機器や照明装置も発明の範疇に含める。
また、本発明の一態様は、発光素子を有する発光装置を含み、さらに発光装置を有する照明装置も範疇に含めるものである。従って、本明細書中における発光装置とは、画像表示デバイス、または光源(照明装置含む)を指す。また、発光装置にコネクター、例えばFPC(Flexible Printed Circuit)もしくはTCP(Tape Carrier Package)が取り付けられたモジュール、TCPの先にプリント配線板が設けられたモジュール、または発光素子にCOG(Chip On Glass)方式によりIC(集積回路)が直接実装されたモジュールも全て発光装置に含むものとする。
本発明の一態様は、新規な有機化合物を提供することができる。すなわち、素子特性を高める上で有効な新規の有機化合物を提供することができる。また、本発明の一態様では、発光素子に用いることができる新規な有機化合物を提供することができる。また、本発明の一態様では、発光素子のEL層に用いることができる、新規な有機化合物を提供することができる。また、本発明の一態様である新規な有機化合物を用いた高効率で信頼性の高い新規な発光素子を提供することができる。また、新規な発光装置、新規な電子機器、または新規な照明装置を提供することができる。なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
発光素子の構造について説明する図。 発光装置について説明する図。 発光装置について説明する図。 電子機器について説明する図。 電子機器について説明する図。 自動車について説明する図。 照明装置について説明する図。 照明装置について説明する図。 構造式(100)に示す有機化合物のH−NMRチャート。 構造式(100)に示す有機化合物の紫外・可視吸収スペクトル及び発光スペクトル。 発光素子について説明する図。 発光素子1、比較発光素子2および比較発光素子3の電流密度−輝度特性を示す図。 発光素子1、比較発光素子2および比較発光素子3の電圧−輝度特性を示す図。 発光素子1、比較発光素子2および比較発光素子3の輝度−電流効率特性を示す図。 発光素子1、比較発光素子2および比較発光素子3の電圧−電流特性を示す図。 発光素子1、比較発光素子2および比較発光素子3の発光スペクトルを示す図。 発光素子1の信頼性を示す図。 構造式(101)に示す有機化合物のH−NMRチャート。 構造式(101)に示す有機化合物の紫外・可視吸収スペクトル及び発光スペクトル。 構造式(146)に示す有機化合物のH−NMRチャート。 構造式(146)に示す有機化合物の紫外・可視吸収スペクトル及び発光スペクトル。 構造式(164)に示す有機化合物のH−NMRチャート。 構造式(164)に示す有機化合物の紫外・可視吸収スペクトル及び発光スペクトル。 構造式(191)に示す有機化合物のH−NMRチャート。 構造式(191)に示す有機化合物の紫外・可視吸収スペクトル及び発光スペクトル。 発光素子4、発光素子5、発光素子6および発光素子7の発光スペクトルを示す図。 発光素子4の信頼性を示す図。 発光素子7の信頼性を示す図。
以下、本発明の実施の形態について図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることが可能である。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
 なお、図面等において示す各構成の、位置、大きさ、範囲などは、理解の簡単のため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面等に開示された位置、大きさ、範囲などに限定されない。
 また、本明細書等において、図面を用いて発明の構成を説明するにあたり、同じものを指す符号は異なる図面間でも共通して用いる。
(実施の形態1)
本実施の形態では、本発明の一態様である有機化合物について説明する。
なお、本実施の形態で示す有機化合物は、カルバゾール骨格に縮環構造を有する、下記一般式(G1)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000013
なお、一般式(G1)において、環A1および環A2は、上記式(1a)で表され、隣接する環と任意の位置で縮合し、環Bは、上記式(1b)で表され、aまたはbで示される位置で隣接する環と縮合する。また、上記式(1b)中のXは、酸素、硫黄、置換もしくは無置換の炭素のいずれかを表す。また、Arは、置換もしくは無置換の炭素数6~14のアリール基を表し、前記アリール基が置換基を有する場合、前記置換基は互いに結合して環を形成していてもよい。また、R~R、及びR10~R13は、それぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、又は置換もしくは無置換の炭素数6~13のアリール基のいずれかを表す。
また、本実施の形態で示す有機化合物は、下記一般式(G2)で表される。
Figure JPOXMLDOC01-appb-C000014
なお、一般式(G2)において、環A1は、上記式(1a)で表され、隣接する環と任意の位置で縮合し、環Bは、上記式(1b)で表され、aまたはbで示される位置で隣接する環と縮合する。また、上記式(1b)中のXは、酸素、硫黄、置換もしくは無置換の炭素のいずれかを表す。また、Arは、置換もしくは無置換の炭素数6~14のアリール基を表し、前記アリール基が置換基を有する場合、前記置換基は互いに結合して環を形成していてもよい。また、R~R、及びR10~R13は、それぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、又は置換もしくは無置換の炭素数6~13のアリール基のいずれかを表す。
また、本実施の形態で示す有機化合物は、下記一般式(G3)で表される。
Figure JPOXMLDOC01-appb-C000015
なお、一般式(G3)において、環Bは、上記式(1b)で表され、aまたはbで示される位置で隣接する環と縮合する。また、上記式(1b)中のXは、酸素、硫黄、置換もしくは無置換の炭素のいずれかを表す。また、Arは、置換もしくは無置換の炭素数6~14のアリール基を表し、前記アリール基が置換基を有する場合、前記置換基は互いに結合して環を形成していてもよい。また、R~R、及びR10~R13は、それぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、又は置換もしくは無置換の炭素数6~13のアリール基のいずれかを表す。
なお、上記一般式(G1)~(G3)において、Arは、総炭素数14~60のアントラセン骨格を含む基であっても良い。
また、本実施の形態で示す有機化合物は、下記一般式(G4)で表される。
Figure JPOXMLDOC01-appb-C000016
なお、一般式(G4)において、環Bは、上記式(1b)で表され、aまたはbで示される位置で隣接する環と縮合する。また、上記式(1b)中のXは、酸素、硫黄、置換もしくは無置換の炭素のいずれかを表す。また、Arは、総炭素数14~60のアントラセン骨格を含む基を表す。また、R~R、及びR10~R13は、それぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、又は置換もしくは無置換の炭素数6~13のアリール基のいずれかを表す。
また、本実施の形態で示す有機化合物は、下記一般式(G5)で表される。
Figure JPOXMLDOC01-appb-C000017
なお、一般式(G5)において、環Bは、上記式(1b)で表され、aまたはbで示される位置で隣接する環と縮合する。また、上記式(1b)中のXは、酸素、硫黄、置換もしくは無置換の炭素のいずれかを表す。また、Arは置換もしくは無置換の炭素数6~13のアリーレン基を表す。またnは0~2を表す。また、R~R、R10~R13、R15~R23は、それぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、又は置換もしくは無置換の炭素数6~13のアリール基のいずれかを表す。
なお、上記一般式(G1)~一般式(G5)において、置換もしくは無置換の炭素数6~14のアリール基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、又は置換もしくは無置換の炭素数6~13のアリール基のいずれか、が置換基を有する場合、該置換基としてはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基のような炭素数1~6のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、1−ノルボルニル基、2−ノルボルニル基のような炭素数5~7のシクロアルキル基、またはフェニル基、ナフチル基、ビフェニル基、アントリル基、フェナントリル基等のような炭素数6~14のアリール基、さらにこれらのアリール基を含む総炭素数6~60の基(例えば、10−フェニル−9−アントリル基)等が挙げられる。
また、上記一般式(G1)~一般式(G5)における炭素数6~14のアリール基の具体例としては、フェニル基、ナフチル基(1−ナフチル基、2−ナフチル基)、トリル基(o−トリル基、m−トリル基、p−トリル基)、ビフェニル基(ビフェニル−2−イル基、ビフェニル−3−イル基、ビフェニル−4−イル基)等が挙げられる。
また、上記一般式(G1)~(G5)における炭素数1~6のアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、sec−ペンチル基、tert−ペンチル基、ネオペンチル基、ヘキシル基、イソヘキシル基、sec−ヘキシル基、tert−ヘキシル基、ネオヘキシル基、3−メチルペンチル基、2−メチルペンチル基、2−エチルブチル基、1,2−ジメチルブチル基、2,3−ジメチルブチル基等が挙げられる。
また、上記一般式(G1)~(G5)における炭素数5~7の単環式飽和炭化水素の具体例としては、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、2−メチルシクロヘキシル基、2,6−ジメチルシクロヘキシル基等が挙げられる。
また、上記一般式(G1)~(G5)における炭素数7~10の多環式飽和炭化水素の具体例としては、デカヒドロナフチル基、アダマンチル基等が挙げられる。
また、上記一般式(G1)~(G5)における炭素数6~13のアリール基の具体例としては、フェニル基、o−トリル基、m−トリル基、p−トリル基、メシチル基、o−ビフェニル基、m−ビフェニル基、p−ビフェニル基、1−ナフチル基、2−ナフチル基、フルオレニル基、9,9−ジメチルフルオレニル基等が挙げられる。
また、上記一般式(G4)における総炭素数14~60のアントラセン骨格を含む基の具体例としては、10−フェニル−9−アントリル、9、10−ジフェニル−2−アントリル、4−(9−アントリル)フェニル、4−(10−フェニル−9−アントリル)フェニル、4−[10−(1−ナフチル)−9−アントリル]フェニル、4−{10−[4−(1−ナフチル)フェニル]−9−アントリル}フェニル、4−(2、10−ジフェニル−9−アントリル)フェニル、3−(10−フェニル−9−アントリル)フェニル、4−[10−(ビフェニル−4−イル)−9−アントリル]フェニル、4−[10−(ビフェニル−3−イル)−9−アントリル]フェニル、4−(10−フェニル−9−アントリル)−1−ナフチル、6−(10−フェニル−9−アントリル)−2−ナフチル、4’−(10−フェニル−9−アントリル)ビフェニル−4−イル、3’−(10−フェニル−9−アントリル)ビフェニル−3−イル、9,10−ビス(9,9−ジメチルフルオレン−2−イル)−2−アントリル等の基が挙げられる。
また、上記一般式(G5)における炭素数6~13のアリーレン基の具体例としては、フェニレン基、ナフタレンジイル基、ビフェニルジイル基、フルオレンジイル基等が挙げられる。
上述した一般式(G1)~(G5)で示される本発明の一態様である有機化合物は、カルバゾール骨格に縮環構造を有する。具体的には、カルバゾール骨格を形成する二つのベンゼン環がそれぞれ縮環された構造を有し、かつ少なくとも一方はベンゼン環以外の環構造を有することを特徴とする。なお、このような構造を有することで、ゲスト材料(ドーパント)と組み合わせて用いる場合には、ドーパントへのエネルギー移動を効率よく行えるという特徴を有する。また、ゲスト材料の凝集を防ぐ効果を有することから、発光素子に用いた場合には、所望の色度が得られ、発光効率の向上を図ることができる。
次に、上述した本発明の一態様である有機化合物の具体的な構造式を下記に示す。ただし、本発明はこれらに限定されることはない。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
なお、上記構造式(100)~(191)で表される有機化合物は、上記一般式(G1)で表される有機化合物に含まれる一例であり、本発明の一態様である有機化合物は、これに限られない。
次に、本発明の一態様であり、一般式(G1)で表される有機化合物の合成方法の一例について説明する。
≪一般式(G1)で表される有機化合物の合成方法≫
まず、下記一般式(G1)で表される有機化合物の合成方法の一例について説明する。
Figure JPOXMLDOC01-appb-C000028
一般式(G1)において、環A1および環A2は、上記式(1a)で表され、隣接する環と任意の位置で縮合し、環Bは、上記式(1b)で表され、aまたはbで示される位置で隣接する環と縮合する。また、上記式(1b)中のXは、酸素、硫黄、置換もしくは無置換の炭素のいずれかを表す。また、Arは、置換もしくは無置換の炭素数6~14のアリール基を表し、前記アリール基が置換基を有する場合、前記置換基は互いに結合して環を形成していてもよい。また、R~R、及びR10~R13は、それぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、又は置換もしくは無置換の炭素数6~13のアリール基のいずれかを表す。
上記一般式(G1)で表される有機化合物は、下記に示す合成スキーム(A−1)により合成することができる。すなわち、複素環化合物誘導体(a1)とアリール誘導体のハロゲン化物(a2)と、を、塩基存在下で金属触媒、金属、または金属化合物によりカップリングさせることにより、上記一般式(G1)で表される有機化合物を得ることができる。
Figure JPOXMLDOC01-appb-C000029
なお、上記合成スキーム(A−1)において、環A1および環A2は、上記式(1a)で表され、隣接する環と任意の位置で縮合し、環Bは、上記式(1b)で表され、aまたはbで示される位置で隣接する環と縮合する。また、上記式(1b)中のXは、酸素、硫黄、置換もしくは無置換の炭素のいずれかを表す。また、Arは置換または無置換の炭素数6~14のアリール基を表し、R~R、及びR10~R13は、それぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、又は置換もしくは無置換の炭素数6~13のアリール基のいずれかを表す。
上記合成スキーム(A−1)において、ハートウィック・ブッフバルト反応を行う場合、Yはハロゲン又はトリフラート基を表す。ハロゲンとしては、ヨウ素、臭素又は塩素が好ましい。当該反応では、ビス(ジベンジリデンアセトン)パラジウム(0)、酢酸パラジウム(II)等のパラジウム錯体又は化合物と、それに配位するトリ(tert−ブチル)ホスフィンや、トリ(n−ヘキシル)ホスフィンや、トリシクロヘキシルホスフィン等の配位子を用いるパラジウム触媒を利用する。塩基としては、ナトリウム tert−ブトキシド等の有機塩基や、炭酸カリウム等の無機塩基等が挙げられる。また、溶媒を使用する場合、トルエン、キシレン、ベンゼン、テトラヒドロフラン等を用いることができる。
また、合成スキーム(A−1)において、ウルマン反応を行う場合、Yはハロゲンを表す。ハロゲンとしては、ヨウ素、臭素又は塩素が好ましい。触媒としては、銅もしくは銅化合物を用いる。銅化合物を触媒として用いる場合、式(A−1)中における、R24、R25は、それぞれ、ハロゲンやアセチル基等を表し、ハロゲンとしては塩素、臭素、ヨウ素が挙げられる。なお、R24がヨウ素であるヨウ化銅(I)、又はR25がアセチル基である酢酸銅(II)を用いることが好ましい。用いる塩基としては、炭酸カリウム等の無機塩基が挙げられる。また、溶媒は、1,3−ジメチル−3,4,5,6−テトラヒドロ−2(1H)ピリミジノン(DMPU)、トルエン、キシレン、ベンゼン等を用いる。但し、上記溶媒はこれらに限られるものでは無い。ウルマン反応では、反応温度が100℃以上の方がより短時間かつ高収率で目的物が得られるため、沸点の高いDMPU、キシレンを用いることが好ましい。また、反応温度は150℃以上のより高い温度が更に好ましいため、より好ましくはDMPUを用いることとする。
以上、本発明の一態様であり、一般式(G1)で表される有機化合物の合成方法について説明したが、本発明はこれに限定されることはなく、他の合成方法によって合成してもよい。
なお、上述した本発明の一態様である有機化合物は、電子輸送性及び正孔輸送性を有するため、発光層のホスト材料として、あるいは電子輸送層、正孔輸送層にも用いることができる。また、蛍光を発光する物質(蛍光材料)と組み合わせて、ホスト材料として用いることが好ましい。また、蛍光発光を示すため、それ自体、発光素子の発光物質として使うことも可能である、従って、これらの有機化合物を含む発光素子も本発明の一態様に含まれる。
また、本発明の一態様である有機化合物を用いることで、発光効率の高い発光素子、発光装置、電子機器、または照明装置を実現することができる。また、消費電力が低い発光素子、発光装置、電子機器、または照明装置を実現することができる。
なお、本実施の形態において、本発明の一態様について述べた。また、他の実施の形態において、本発明の一態様について述べる。ただし、本発明の一態様は、これらに限定されない。つまり、本実施の形態および他の実施の形態では、様々な発明の態様が記載されているため、本発明の一態様は、特定の態様に限定されない。
本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いることができる。
(実施の形態2)
本実施の形態では、実施の形態1で示した有機化合物を用いた発光素子について図1を用いて説明する。
≪発光素子の基本的な構造≫
まず、発光素子の基本的な構造について説明する。図1(A)には、一対の電極間に発光層を含むEL層を有する発光素子を示す。具体的には、第1の電極101を第2の電極102との間にEL層103が挟まれた構造を有する。
また、図1(B)には、一対の電極間に複数(図1(B)では、2層)のEL層(103a、103b)を有し、EL層の間に電荷発生層104を有する積層構造(タンデム構造)の発光素子を示す。タンデム構造の発光素子は、低電圧駆動が可能で消費電力が低い発光装置を実現することができる。
電荷発生層104は、第1の電極101と第2の電極102に電圧を印加したときに、一方のEL層(103aまたは103b)に電子を注入し、他方のEL層(103bまたは103a)に正孔を注入する機能を有する。従って、図1(B)において、第1の電極101に第2の電極102よりも電位が高くなるように電圧を印加すると、電荷発生層104からEL層103aに電子が注入され、EL層103bに正孔が注入されることとなる。
なお、電荷発生層104は、光の取り出し効率の点から、可視光に対して透光性を有する(具体的には、電荷発生層104に対する可視光の透過率が、40%以上)ことが好ましい。また、電荷発生層104は、第1の電極101や第2の電極102よりも低い導電率であっても機能する。
また、図1(C)には、本発明の一態様である発光素子のEL層103の積層構造を示す。但し、この場合、第1の電極101は陽極として機能するものとする。EL層103は、第1の電極101上に、正孔(ホール)注入層111、正孔(ホール)輸送層112、発光層113、電子輸送層114、電子注入層115が順次積層された構造を有する。なお、図1(B)に示すタンデム構造のように複数のEL層を有する場合であっても、各EL層が、陽極側から上記のように順次積層される構造とする。また、第1の電極101が陰極で、第2の電極102が陽極の場合は、積層順は逆になる。
EL層(103、103a、103b)に含まれる発光層113は、それぞれ発光物質や複数の物質を適宜組み合わせて有しており、所望の発光色を呈する蛍光発光や燐光発光が得られる構成とすることができる。また、発光層113を発光色の異なる積層構造としてもよい。なお、この場合、積層された各発光層に用いる発光物質やその他の物質は、それぞれ異なる材料を用いればよい。また、図1(B)に示す複数のEL層(103a、103b)から、それぞれ異なる発光色が得られる構成としても良い。この場合も各発光層に用いる発光物質やその他の物質を異なる材料とすればよい。
また、本発明の一態様である発光素子において、例えば、図1(C)に示す第1の電極101を反射電極とし、第2の電極102を半透過・半反射電極とし、微小光共振器(マイクロキャビティ)構造とすることにより、EL層103に含まれる発光層113から得られる発光を両電極間で共振させ、第2の電極102から得られる発光を強めることができる。
なお、発光素子の第1の電極101が、反射性を有する導電性材料と透光性を有する導電性材料(透明導電膜)との積層構造からなる反射電極である場合、透明導電膜の膜厚を制御することにより光学調整を行うことができる。具体的には、発光層113から得られる光の波長λに対して、第1の電極101と、第2の電極102との電極間距離がmλ/2(ただし、mは自然数)近傍となるように調整するのが好ましい。
また、発光層113から得られる所望の光(波長:λ)を増幅させるために、第1の電極101から発光層113の所望の光が得られる領域(発光領域)までの光学距離と、第2の電極102から発光層113の所望の光が得られる領域(発光領域)までの光学距離と、をそれぞれ(2m’+1)λ/4(ただし、m’は自然数)近傍となるように調節するのが好ましい。なお、ここでいう発光領域とは、発光層113における正孔(ホール)と電子との再結合領域を示す。
このような光学調整を行うことにより、発光層113から得られる特定の単色光のスペクトルを狭線化させ、色純度の良い発光を得ることができる。
但し、上記の場合、第1の電極101と第2の電極102との光学距離は、厳密には第1の電極101における反射領域から第2の電極102における反射領域までの総厚ということができる。しかし、第1の電極101や第2の電極102における反射領域を厳密に決定することは困難であるため、第1の電極101と第2の電極102の任意の位置を反射領域と仮定することで充分に上述の効果を得ることができるものとする。また、第1の電極101と、所望の光が得られる発光層113との光学距離は、厳密には第1の電極101における反射領域と、所望の光が得られる発光層113における発光領域との光学距離であるということができる。しかし、第1の電極101における反射領域や、所望の光が得られる発光層113における発光領域を厳密に決定することは困難であるため、第1の電極101の任意の位置を反射領域、所望の光が得られる発光層113の任意の位置を発光領域と仮定することで充分に上述の効果を得ることができるものとする。
図1(C)に示す発光素子は、マイクロキャビティ構造を有するため、同じEL層を有していても異なる波長の光(単色光)を取り出すことができる。従って、異なる発光色を得るための塗り分け(例えば、RGB)が不要となる。従って、高精細化を実現することが容易である。また、着色層(カラーフィルタ)との組み合わせも可能である。さらに、特定波長の正面方向の発光強度を強めることが可能となるため、低消費電力化を図ることができる。
図1(E)に示す発光素子は、図1(B)に示したタンデム構造の発光素子の一例であり、図に示すように、3つのEL層(103a、103b、103c)が電荷発生層(104a、104b)を挟んで積層される構造を有する。なお、3つのEL層(103a、103b、103c)は、それぞれに発光層(113a、113b、113c)を有しており、各発光層の発光色は、自由に組み合わせることができる。例えば、発光層113aを青色、発光層113bを赤色、緑色、または黄色のいずれか、発光層113cを青色とすることができるが、発光層113aを赤色、発光層113bを青色、緑色、または黄色のいずれか、発光層113cを赤色とすることもできる。
なお、上述した本発明の一態様である発光素子において、第1の電極101と第2の電極102の少なくとも一方は、透光性を有する電極(透明電極、半透過・半反射電極など)とする。透光性を有する電極が透明電極の場合、透明電極の可視光の透過率は、40%以上とする。また、半透過・半反射電極の場合、半透過・半反射電極の可視光の反射率は、20%以上80%以下、好ましくは40%以上70%以下とする。また、これらの電極は、抵抗率が1×10−2Ωcm以下とするのが好ましい。
また、上述した本発明の一態様である発光素子において、第1の電極101と第2の電極102の一方が、反射性を有する電極(反射電極)である場合、反射性を有する電極の可視光の反射率は、40%以上100%以下、好ましくは70%以上100%以下とする。また、この電極は、抵抗率が1×10−2Ωcm以下とするのが好ましい。
≪発光素子の具体的な構造および作製方法≫
次に、本発明の一態様である発光素子の具体的な構造および作製方法について、図1を用いて説明する。また、ここでは、図1(B)に示すタンデム構造を有し、マイクロキャビティ構造を備えた発光素子についても図1(D)を用いて説明する。図1(D)に示す発光素子がマイクロキャビティ構造を有する場合は、第1の電極101を反射電極として形成し、第2の電極102を半透過・半反射電極として形成する。従って、所望の電極材料を単数または複数用い、単層または積層して形成することができる。なお、第2の電極102は、EL層103bを形成した後、上記と同様に材料を選択して形成する。また、これらの電極の作製には、スパッタ法や真空蒸着法を用いることができる。
<第1の電極および第2の電極>
第1の電極101および第2の電極102を形成する材料としては、上述した両電極の機能が満たせるのであれば、以下に示す材料を適宜組み合わせて用いることができる。例えば、金属、合金、電気伝導性化合物、およびこれらの混合物などを適宜用いることができる。具体的には、In−Sn酸化物(ITOともいう)、In−Si−Sn酸化物(ITSOともいう)、In−Zn酸化物、In−W−Zn酸化物が挙げられる。その他、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、ガリウム(Ga)、亜鉛(Zn)、インジウム(In)、スズ(Sn)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)、パラジウム(Pd)、金(Au)、白金(Pt)、銀(Ag)、イットリウム(Y)、ネオジム(Nd)などの金属、およびこれらを適宜組み合わせて含む合金を用いることもできる。その他、上記例示のない元素周期表の第1族または第2族に属する元素(例えば、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、ストロンチウム(Sr))、ユウロピウム(Eu)、イッテルビウム(Yb)などの希土類金属およびこれらを適宜組み合わせて含む合金、その他グラフェン等を用いることができる。
図1(D)に示す発光素子において、第1の電極101が陽極である場合、第1の電極101上にEL層103aの正孔注入層111aおよび正孔輸送層112aが真空蒸着法により順次積層形成される。EL層103aおよび電荷発生層104が形成された後、電荷発生層104上にEL層103bの正孔注入層111bおよび正孔輸送層112bが同様に順次積層形成される。
<正孔注入層および正孔輸送層>
正孔注入層(111、111a、111b)は、陽極である第1の電極101や電荷発生層104からEL層(103、103a、103b)に正孔(ホール)を注入する層であり、正孔注入性の高い材料を含む層である。
正孔注入性の高い材料としては、モリブデン酸化物やバナジウム酸化物、ルテニウム酸化物、タングステン酸化物、マンガン酸化物等の遷移金属酸化物が挙げられる。この他、フタロシアニン(略称:HPc)や銅フタロシアニン(略称:CuPc)等のフタロシアニン系の化合物、4,4’−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ビフェニル(略称:DPAB)、N,N’−ビス{4−[ビス(3−メチルフェニル)アミノ]フェニル}−N,N’−ジフェニル−(1,1’−ビフェニル)−4,4’−ジアミン(略称:DNTPD)等の芳香族アミン化合物、またはポリ(3,4−エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(略称:PEDOT/PSS)等の高分子等を用いることができる。
また、正孔注入性の高い材料としては、正孔輸送性材料とアクセプター性材料(電子受容性材料)を含む複合材料を用いることもできる。この場合、アクセプター性材料により正孔輸送性材料から電子が引き抜かれて正孔注入層(111、111a、111b)で正孔が発生し、正孔輸送層(112、112a、112b)を介して発光層(113、113a、113b)に正孔が注入される。なお、正孔注入層(111、111a、111b)は、正孔輸送性材料とアクセプター性材料(電子受容性材料)を含む複合材料からなる単層で形成しても良いが、正孔輸送性材料とアクセプター性材料(電子受容性材料)とをそれぞれ別の層で積層して形成しても良い。
正孔輸送層(112、112a、112b)は、正孔注入層(111、111a、111b)によって第1の電極101や電荷発生層104から注入された正孔を、発光層(113、113a、113b)に輸送する層である。なお、正孔輸送層(112、112a、112b)は、正孔輸送性材料を含む層である。正孔輸送層(112、112a、112b)に用いる正孔輸送性材料は、特に正孔注入層(111、111a、111b)のHOMO準位と同じ、あるいは近いHOMO準位を有するものを用いることが好ましい。
正孔注入層(111、111a、111b)に用いるアクセプター性材料としては、元素周期表における第4族乃至第8族に属する金属の酸化物を用いることができる。具体的には、酸化モリブデン、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化タングステン、酸化マンガン、酸化レニウムが挙げられる。中でも特に、酸化モリブデンは大気中でも安定であり、吸湿性が低く、扱いやすいため好ましい。その他、キノジメタン誘導体やクロラニル誘導体、ヘキサアザトリフェニレン誘導体などの有機アクセプターを用いることができる。具体的には、7,7,8,8−テトラシアノ−2,3,5,6−テトラフルオロキノジメタン(略称:F−TCNQ)、クロラニル、2,3,6,7,10,11−ヘキサシアノ−1,4,5,8,9,12−ヘキサアザトリフェニレン(略称:HAT−CN)等を用いることができる。特に、HAT−CNのように複素原子を複数有する縮合芳香環に電子吸引基が結合している化合物が、熱的に安定であり好ましい。また、電子吸引基(特にフルオロ基のようなハロゲン基やシアノ基)を有する[3]ラジアレン誘導体は、電子受容性が非常に高いため好ましく、具体的にはα,α’,α’’−1,2,3−シクロプロパントリイリデントリス[4−シアノ−2,3,5,6−テトラフルオロベンゼンアセトニトリル]、α,α’,α’’−1,2,3−シクロプロパントリイリデントリス[2,6−ジクロロ−3,5−ジフルオロ−4−(トリフルオロメチル)ベンゼンアセトニトリル]、α,α’,α’’−1,2,3−シクロプロパントリイリデントリス[2,3,4,5,6−ペンタフルオロベンゼンアセトニトリル]などが挙げられる。
正孔注入層(111、111a、111b)および正孔輸送層(112、112a、112b)に用いる正孔輸送性材料としては、10−6cm/Vs以上の正孔移動度を有する物質が好ましい。なお、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いることができる。
正孔輸送性材料としては、π電子過剰型複素芳香族化合物(例えばカルバゾール誘導体やインドール誘導体)や芳香族アミン化合物が好ましく、具体例としては、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPBまたはα−NPD)、N,N’−ビス(3−メチルフェニル)−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(略称:TPD)、4,4’−ビス[N−(スピロ−9,9’−ビフルオレン−2−イル)−N−フェニルアミノ]ビフェニル(略称:BSPB)、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BPAFLP)、4−フェニル−3’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:mBPAFLP)、4−フェニル−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBA1BP)、3−[4−(9−フェナントリル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPPn)、N−(4−ビフェニル)−N−(9,9−ジメチル−9H−フルオレン−2−イル)−9−フェニル−9H−カルバゾール−3−アミン(略称:PCBiF)、N−(1,1’−ビフェニル−4−イル)−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]−9,9−ジメチル−9H−フルオレン−2−アミン(略称:PCBBiF)、4,4’−ジフェニル−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBBi1BP)、4−(1−ナフチル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBANB)、4,4’−ジ(1−ナフチル)−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBNBB)、9,9−ジメチル−N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]フルオレン−2−アミン(略称:PCBAF)、N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]スピロ−9,9’−ビフルオレン−2−アミン(略称:PCBASF)、4,4’,4’’−トリス(カルバゾール−9−イル)トリフェニルアミン(略称:TCTA)、4,4’,4’’−トリス(N,N−ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(略称:MTDATA)などの芳香族アミン骨格を有する化合物、1,3−ビス(N−カルバゾリル)ベンゼン(略称:mCP)、4,4’−ジ(N−カルバゾリル)ビフェニル(略称:CBP)、3,6−ビス(3,5−ジフェニルフェニル)−9−フェニルカルバゾール(略称:CzTP)、3,3’−ビス(9−フェニル−9H−カルバゾール)(略称:PCCP)、3−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA1)、3,6−ビス[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA2)、3−[N−(1−ナフチル)−N−(9−フェニルカルバゾール−3−イル)アミノ]−9−フェニルカルバゾール(略称:PCzPCN1)、1,3,5−トリス[4−(N−カルバゾリル)フェニル]ベンゼン(略称:TCPB)、9−[4−(10−フェニル−9−アントラセニル)フェニル]−9H−カルバゾール(略称:CzPA)などのカルバゾール骨格を有する化合物、1,3,5−トリ(ジベンゾチオフェン−4−イル)ベンゼン(略称:DBT3P−II)、2,8−ジフェニル−4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ジベンゾチオフェン(略称:DBTFLP−III)、4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]−6−フェニルジベンゾチオフェン(略称:DBTFLP−IV)などのチオフェン骨格を有する化合物、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾフラン)(略称:DBF3P−II)、4−{3−[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi−II)などのフラン骨格を有する化合物が挙げられる。
さらに、ポリ(N−ビニルカルバゾール)(略称:PVK)、ポリ(4−ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N−(4−{N’−[4−(4−ジフェニルアミノ)フェニル]フェニル−N’−フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N’−ビス(4−ブチルフェニル)−N,N’−ビス(フェニル)ベンジジン](略称:Poly−TPD)などの高分子化合物を用いることもできる。
但し、正孔輸送性材料は、上記に限られることなく公知の様々な材料を1種または複数種組み合わせて正孔輸送性材料として正孔注入層(111、111a、111b)および正孔輸送層(112、112a、112b)に用いることができる。なお、正孔輸送層(112、112a、112b)は、各々複数の層から形成されていても良い。すなわち、例えば第1の正孔輸送層と第2の正孔輸送層とが積層されていても良い。
図1(D)に示す発光素子においては、EL層103aの正孔輸送層112a上に発光層113aが真空蒸着法により形成される。また、EL層103aおよび電荷発生層104が形成された後、EL層103bの正孔輸送層112b上に発光層113bが真空蒸着法により形成される。
<発光層>
発光層(113、113a、113b、113c)は、発光物質を含む層である。なお、発光物質としては、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、赤色などの発光色を呈する物質を適宜用いる。また、複数の発光層(113a、113b、113c)に異なる発光物質を用いることにより異なる発光色を呈する構成(例えば、補色の関係にある発光色を組み合わせて得られる白色発光)とすることができる。さらに、一つの発光層が異なる発光物質を有する積層構造であっても良い。
また、発光層(113、113a、113b、113c)は、発光物質(ゲスト材料)に加えて、1種または複数種の有機化合物(ホスト材料、アシスト材料)を有していても良い。また、1種または複数種の有機化合物としては、本実施の形態で説明する正孔輸送性材料や電子輸送性材料の一方または両方を用いることができる。
発光層(113、113a、113b、113c)に用いることができる発光物質としては、一重項励起エネルギーを可視光領域の発光に変える発光物質、または三重項励起エネルギーを可視光領域の発光に変える発光物質を用いることができる。
なお、他の発光物質としては、例えば、以下のようなものが挙げられる。
一重項励起エネルギーを発光に変える発光物質としては、蛍光を発する物質(蛍光材料)が挙げられ、例えば、ピレン誘導体、アントラセン誘導体、トリフェニレン誘導体、フルオレン誘導体、カルバゾール誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、ジベンゾキノキサリン誘導体、キノキサリン誘導体、ピリジン誘導体、ピリミジン誘導体、フェナントレン誘導体、ナフタレン誘導体などが挙げられる。特にピレン誘導体は発光量子収率が高いので好ましい。ピレン誘導体の具体例としては、N,N’−ビス(3−メチルフェニル)−N,N’−ビス[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]ピレン−1,6−ジアミン(略称:1,6mMemFLPAPrn)、N,N’−ジフェニル−N,N’−ビス[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ピレン−1,6−ジアミン(略称:1,6FLPAPrn)、N,N’−ビス(ジベンゾフラン−2−イル)−N,N’−ジフェニルピレン−1,6−ジアミン(略称:1,6FrAPrn)、N,N’−ビス(ジベンゾチオフェン−2−イル)−N,N’−ジフェニルピレン−1,6−ジアミン(略称:1,6ThAPrn)、N,N’−(ピレン−1,6−ジイル)ビス[(N−フェニルベンゾ[b]ナフト[1,2−d]フラン)−6−アミン](略称:1,6BnfAPrn)、N,N’−(ピレン−1,6−ジイル)ビス[(N−フェニルベンゾ[b]ナフト[1,2−d]フラン)−8−アミン](略称:1,6BnfAPrn−02)、N,N’−(ピレン−1,6−ジイル)ビス[(6,N−ジフェニルベンゾ[b]ナフト[1,2−d]フラン)−8−アミン](略称:1,6BnfAPrn−03)などが挙げられる。
その他にも、5,6−ビス[4−(10−フェニル−9−アントリル)フェニル]−2,2’−ビピリジン(略称:PAP2BPy)、5,6−ビス[4’−(10−フェニル−9−アントリル)ビフェニル−4−イル]−2,2’−ビピリジン(略称:PAPP2BPy)、N,N’−ビス[4−(9H−カルバゾール−9−イル)フェニル]−N,N’−ジフェニルスチルベン−4,4’−ジアミン(略称:YGA2S)、4−(9H−カルバゾール−9−イル)−4’−(10−フェニル−9−アントリル)トリフェニルアミン(略称:YGAPA)、4−(9H−カルバゾール−9−イル)−4’−(9,10−ジフェニル−2−アントリル)トリフェニルアミン(略称:2YGAPPA)、N,9−ジフェニル−N−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:PCAPA)、4−(10−フェニル−9−アントリル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBAPA)、4−[4−(10−フェニル−9−アントリル)フェニル]−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBAPBA)、ペリレン、2,5,8,11−テトラ(tert−ブチル)ペリレン(略称:TBP)、N,N’’−(2−tert−ブチルアントラセン−9,10−ジイルジ−4,1−フェニレン)ビス[N,N’,N’−トリフェニル−1,4−フェニレンジアミン](略称:DPABPA)、N,9−ジフェニル−N−[4−(9,10−ジフェニル−2−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:2PCAPPA)、N−[4−(9,10−ジフェニル−2−アントリル)フェニル]−N,N’,N’−トリフェニル−1,4−フェニレンジアミン(略称:2DPAPPA)等を用いることができる。
また、三重項励起エネルギーを発光に変える発光物質としては、例えば、燐光を発する物質(燐光材料)や熱活性化遅延蛍光を示す熱活性化遅延蛍光(Thermally activated delayed fluorescence:TADF)材料が挙げられる。
燐光材料としては、有機金属錯体、金属錯体(白金錯体)、希土類金属錯体等が挙げられる。これらは、物質ごとに異なる発光色(発光ピーク)を示すため、必要に応じて適宜選択して用いる。
青色または緑色を呈し、発光スペクトルのピーク波長が450nm以上570nm以下である燐光材料としては、以下のような物質が挙げられる。
例えば、トリス{2−[5−(2−メチルフェニル)−4−(2,6−ジメチルフェニル)−4H−1,2,4−トリアゾール−3−イル−κN2]フェニル−κC}イリジウム(III)(略称:[Ir(mpptz−dmp)])、トリス(5−メチル−3,4−ジフェニル−4H−1,2,4−トリアゾラト)イリジウム(III)(略称:[Ir(Mptz)])、トリス[4−(3−ビフェニル)−5−イソプロピル−3−フェニル−4H−1,2,4−トリアゾラト]イリジウム(III)(略称:[Ir(iPrptz−3b)])、トリス[3−(5−ビフェニル)−5−イソプロピル−4−フェニル−4H−1,2,4−トリアゾラト]イリジウム(III)(略称:[Ir(iPr5btz)])、のような4H−トリアゾール骨格を有する有機金属錯体、トリス[3−メチル−1−(2−メチルフェニル)−5−フェニル−1H−1,2,4−トリアゾラト]イリジウム(III)(略称:[Ir(Mptz1−mp)])、トリス(1−メチル−5−フェニル−3−プロピル−1H−1,2,4−トリアゾラト)イリジウム(III)(略称:[Ir(Prptz1−Me)])のような1H−トリアゾール骨格を有する有機金属錯体、fac−トリス[1−(2,6−ジイソプロピルフェニル)−2−フェニル−1H−イミダゾール]イリジウム(III)(略称:[Ir(iPrpmi)])、トリス[3−(2,6−ジメチルフェニル)−7−メチルイミダゾ[1,2−f]フェナントリジナト]イリジウム(III)(略称:[Ir(dmpimpt−Me)])のようなイミダゾール骨格を有する有機金属錯体、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)テトラキス(1−ピラゾリル)ボラート(略称:FIr6)、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)ピコリナート(略称:FIrpic)、ビス{2−[3’,5’−ビス(トリフルオロメチル)フェニル]ピリジナト−N,C2’}イリジウム(III)ピコリナート(略称:[Ir(CFppy)(pic)])、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)アセチルアセトナート(略称:FIr(acac))のように電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属錯体等が挙げられる。
緑色または黄色を呈し、発光スペクトルのピーク波長が495nm以上590nm以下である燐光材料としては、以下のような物質が挙げられる。
例えば、トリス(4−メチル−6−フェニルピリミジナト)イリジウム(III)(略称:[Ir(mppm)])、トリス(4−t−ブチル−6−フェニルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)])、(アセチルアセトナト)ビス(6−メチル−4−フェニルピリミジナト)イリジウム(III)(略称:[Ir(mppm)(acac)])、(アセチルアセトナト)ビス(6−tert−ブチル−4−フェニルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)(acac)])、(アセチルアセトナト)ビス[6−(2−ノルボルニル)−4−フェニルピリミジナト]イリジウム(III)(略称:[Ir(nbppm)(acac)])、(アセチルアセトナト)ビス[5−メチル−6−(2−メチルフェニル)−4−フェニルピリミジナト]イリジウム(III)(略称:[Ir(mpmppm)(acac)])、(アセチルアセトナト)ビス{4,6−ジメチル−2−[6−(2,6−ジメチルフェニル)−4−ピリミジニル−κN]フェニル−κC}イリジウム(III)(略称:[Ir(dmppm−dmp)(acac)])、(アセチルアセトナト)ビス(4,6−ジフェニルピリミジナト)イリジウム(III)(略称:[Ir(dppm)(acac)])のようなピリミジン骨格を有する有機金属イリジウム錯体、(アセチルアセトナト)ビス(3,5−ジメチル−2−フェニルピラジナト)イリジウム(III)(略称:[Ir(mppr−Me)(acac)])、(アセチルアセトナト)ビス(5−イソプロピル−3−メチル−2−フェニルピラジナト)イリジウム(III)(略称:[Ir(mppr−iPr)(acac)])のようなピラジン骨格を有する有機金属イリジウム錯体、トリス(2−フェニルピリジナト−N,C2’)イリジウム(III)(略称:[Ir(ppy)])、ビス(2−フェニルピリジナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(ppy)(acac)])、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:[Ir(bzq)(acac)])、トリス(ベンゾ[h]キノリナト)イリジウム(III)(略称:[Ir(bzq)])、トリス(2−フェニルキノリナト−N,C2’)イリジウム(III)(略称:[Ir(pq)])、ビス(2−フェニルキノリナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(pq)(acac)])のようなピリジン骨格を有する有機金属イリジウム錯体、ビス(2,4−ジフェニル−1,3−オキサゾラト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(dpo)(acac)])、ビス{2−[4’−(パーフルオロフェニル)フェニル]ピリジナト−N,C2’}イリジウム(III)アセチルアセトナート(略称:[Ir(p−PF−ph)(acac)])、ビス(2−フェニルベンゾチアゾラト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(bt)(acac)])などの有機金属錯体の他、トリス(アセチルアセトナト)(モノフェナントロリン)テルビウム(III)(略称:[Tb(acac)(Phen)])のような希土類金属錯体が挙げられる。
黄色または赤色を呈し、発光スペクトルのピーク波長が570nm以上750nm以下である燐光材料としては、以下のような物質が挙げられる。
例えば、(ジイソブチリルメタナト)ビス[4,6−ビス(3−メチルフェニル)ピリミジナト]イリジウム(III)(略称:[Ir(5mdppm)(dibm)])、ビス[4,6−ビス(3−メチルフェニル)ピリミジナト](ジピバロイルメタナト)イリジウム(III)(略称:[Ir(5mdppm)(dpm)])、(ジピバロイルメタナト)ビス[4,6−ジ(ナフタレン−1−イル)ピリミジナト]イリジウム(III)(略称:[Ir(d1npm)(dpm)])のようなピリミジン骨格を有する有機金属錯体、(アセチルアセトナト)ビス(2,3,5−トリフェニルピラジナト)イリジウム(III)(略称:[Ir(tppr)(acac)])、ビス(2,3,5−トリフェニルピラジナト)(ジピバロイルメタナト)イリジウム(III)(略称:[Ir(tppr)(dpm)])、ビス{4,6−ジメチル−2−[3−(3,5−ジメチルフェニル)−5−フェニル−2−ピラジニル−κN]フェニル−κC}(2,6−ジメチル−3,5−ヘプタンジオナト−κO,O’)イリジウム(III)(略称:[Ir(dmdppr−P)(dibm)])、ビス{4,6−ジメチル−2−[5−(4−シアノ−2,6−ジメチルフェニル)−3−(3,5−ジメチルフェニル)−2−ピラジニル−κN]フェニル−κC}(2,2,6,6−テトラメチル−3,5−ヘプタンジオナト−κO,O’)イリジウム(III)(略称:[Ir(dmdppr−dmCP)(dpm)])、(アセチルアセトナト)ビス[2−メチル−3−フェニルキノキサリナト−N,C2’]イリジウム(III)(略称:[Ir(mpq)(acac)])、(アセチルアセトナト)ビス(2,3−ジフェニルキノキサリナト−N,C2’)イリジウム(III)(略称:[Ir(dpq)(acac)])、(アセチルアセトナト)ビス[2,3−ビス(4−フルオロフェニル)キノキサリナト]イリジウム(III)(略称:[Ir(Fdpq)(acac)])のようなピラジン骨格を有する有機金属錯体や、トリス(1−フェニルイソキノリナト−N,C2’)イリジウム(III)(略称:[Ir(piq)])、ビス(1−フェニルイソキノリナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(piq)(acac)])のようなピリジン骨格を有する有機金属錯体、2,3,7,8,12,13,17,18−オクタエチル−21H,23H−ポルフィリン白金(II)(略称:[PtOEP])のような白金錯体、トリス(1,3−ジフェニル−1,3−プロパンジオナト)(モノフェナントロリン)ユーロピウム(III)(略称:[Eu(DBM)(Phen)])、トリス[1−(2−テノイル)−3,3,3−トリフルオロアセトナト](モノフェナントロリン)ユーロピウム(III)(略称:[Eu(TTA)(Phen)])のような希土類金属錯体が挙げられる。
発光層(113、113a、113b、113c)に用いる有機化合物(ホスト材料、アシスト材料)としては、発光物質(ゲスト材料)のエネルギーギャップより大きなエネルギーギャップを有する物質を、一種もしくは複数種選択して用いればよい。
発光物質が蛍光材料である場合、ホスト材料としては一重項励起状態のエネルギー準位が大きく、三重項励起状態のエネルギー準位が小さい有機化合物を用いるのが好ましい。例えば、アントラセン誘導体やテトラセン誘導体を用いるのが好ましい。具体的には、9−フェニル−3−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:PCzPA)、3−[4−(1−ナフチル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPN)、9−[4−(10−フェニル−9−アントラセニル)フェニル]−9H−カルバゾール(略称:CzPA)、7−[4−(10−フェニル−9−アントリル)フェニル]−7H−ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)、6−[3−(9,10−ジフェニル−2−アントリル)フェニル]−ベンゾ[b]ナフト[1,2−d]フラン(略称:2mBnfPPA)、9−フェニル−10−{4−(9−フェニル−9H−フルオレン−9−イル)ビフェニル−4’−イル}アントラセン(略称:FLPPA)、5,12−ジフェニルテトラセン、5,12−ビス(ビフェニル−2−イル)テトラセンなどが挙げられる。
発光物質が燐光材料である場合、ホスト材料としては、発光物質の三重項励起エネルギー(基底状態と三重項励起状態とのエネルギー差)よりも三重項励起エネルギーの大きい有機化合物を選択すれば良い。なお、この場合には、亜鉛やアルミニウム系金属錯体の他、オキサジアゾール誘導体、トリアゾール誘導体、ベンゾイミダゾール誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、ピリミジン誘導体、トリアジン誘導体、ピリジン誘導体、ビピリジン誘導体、フェナントロリン誘導体等の他、芳香族アミンやカルバゾール誘導体等を用いることができる。
ホスト材料として、より具体的には、例えば以下の正孔輸送性材料および電子輸送性材料を用いることができる。
これら正孔輸送性の高いホスト材料としては、例えば、N,N’−ジ(p−トリル)−N,N’−ジフェニル−p−フェニレンジアミン(略称:DTDPPA)、4,4’−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ビフェニル(略称:DPAB)、N,N’−ビス{4−[ビス(3−メチルフェニル)アミノ]フェニル}−N,N’−ジフェニル−(1,1’−ビフェニル)−4,4’−ジアミン(略称:DNTPD)、1,3,5−トリス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ベンゼン(略称:DPA3B)等の芳香族アミン化合物を挙げることができる。
また、3−[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzDPA1)、3,6−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzDPA2)、3,6−ビス[N−(4−ジフェニルアミノフェニル)−N−(1−ナフチル)アミノ]−9−フェニルカルバゾール(略称:PCzTPN2)、3−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA1)、3,6−ビス[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA2)、3−[N−(1−ナフチル)−N−(9−フェニルカルバゾール−3−イル)アミノ]−9−フェニルカルバゾール(略称:PCzPCN1)等のカルバゾール誘導体を挙げることができる。また、カルバゾール誘導体としては、他に、4,4’−ジ(N−カルバゾリル)ビフェニル(略称:CBP)、1,3,5−トリス[4−(N−カルバゾリル)フェニル]ベンゼン(略称:TCPB)、1,4−ビス[4−(N−カルバゾリル)フェニル]−2,3,5,6−テトラフェニルベンゼン等を用いることもできる。
また、正孔輸送性の高いホスト材料としては、例えば、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPBまたはα−NPD)やN,N’−ビス(3−メチルフェニル)−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(略称:TPD)、4,4’,4’’−トリス(カルバゾール−9−イル)トリフェニルアミン(略称:TCTA)、4,4’,4’’−トリス[N−(1−ナフチル)−N−フェニルアミノ]トリフェニルアミン(略称:1’−TNATA)、4,4’,4’’−トリス(N,N−ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(略称:m−MTDATA)、4,4’−ビス[N−(スピロ−9,9’−ビフルオレン−2−イル)−N−フェニルアミノ]ビフェニル(略称:BSPB)、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BPAFLP)、4−フェニル−3’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:mBPAFLP)、N−(9,9−ジメチル−9H−フルオレン−2−イル)−N−{9,9−ジメチル−2−[N’−フェニル−N’−(9,9−ジメチル−9H−フルオレン−2−イル)アミノ]−9H−フルオレン−7−イル}フェニルアミン(略称:DFLADFL)、N−(9,9−ジメチル−2−ジフェニルアミノ−9H−フルオレン−7−イル)ジフェニルアミン(略称:DPNF)、2−[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]スピロ−9,9’−ビフルオレン(略称:DPASF)、4−フェニル−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBA1BP)、4,4’−ジフェニル−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBBi1BP)、4−(1−ナフチル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBANB)、4,4’−ジ(1−ナフチル)−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBNBB)、4−フェニルジフェニル−(9−フェニル−9H−カルバソール−3−イル)アミン(略称:PCA1BP)、N,N’−ビス(9−フェニルカルバゾール−3−イル)−N,N’−ジフェニルベンゼン−1,3−ジアミン(略称:PCA2B)、N,N’,N’’−トリフェニル−N,N’,N’’−トリス(9−フェニルカルバゾール−3−イル)ベンゼン−1,3,5−トリアミン(略称:PCA3B)、N−(4−ビフェニル)−N−(9,9−ジメチル−9H−フルオレン−2−イル)−9−フェニル−9H−カルバゾール−3−アミン(略称:PCBiF)、N−(1,1’−ビフェニル−4−イル)−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]−9,9−ジメチル−9H−フルオレン−2−アミン(略称:PCBBiF)、9,9−ジメチル−N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]フルオレン−2−アミン(略称:PCBAF)、N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]スピロ−9,9’−ビフルオレン−2−アミン(略称:PCBASF)、2−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]スピロ−9,9’−ビフルオレン(略称:PCASF)、2,7−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]スピロ−9,9’−ビフルオレン(略称:DPA2SF)、N−[4−(9H−カルバゾール−9−イル)フェニル]−N−(4−フェニル)フェニルアニリン(略称:YGA1BP)、N,N’−ビス[4−(カルバゾール−9−イル)フェニル]−N,N’−ジフェニル−9,9−ジメチルフルオレン−2,7−ジアミン(略称:YGA2F)などの芳香族アミン化合物等を用いることができる。また、3−[4−(1−ナフチル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPN)、3−[4−(9−フェナントリル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPPn)、3,3’−ビス(9−フェニル−9H−カルバゾール)(略称:PCCP)、1,3−ビス(N−カルバゾリル)ベンゼン(略称:mCP)、3,6−ビス(3,5−ジフェニルフェニル)−9−フェニルカルバゾール(略称:CzTP)、4−{3−[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi−II)、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾフラン)(略称:DBF3P−II)、1,3,5−トリ(ジベンゾチオフェン−4−イル)ベンゼン(略称:DBT3P−II)、2,8−ジフェニル−4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ジベンゾチオフェン(略称:DBTFLP−III)、4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]−6−フェニルジベンゾチオフェン(略称:DBTFLP−IV)、4−[3−(トリフェニレン−2−イル)フェニル]ジベンゾチオフェン(略称:mDBTPTp−II)等のカルバゾール化合物、チオフェン化合物、フラン化合物、フルオレン化合物、トリフェニレン化合物、フェナントレン化合物等を用いることができる。
電子輸送性の高いホスト材料としては、例えば、トリス(8−キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4−メチル−8−キノリノラト)アルミニウム(III)(略称:Almq)、ビス(10−ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq)、ビス(2−メチル−8−キノリノラト)(4−フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8−キノリノラト)亜鉛(II)(略称:Znq)など、キノリン骨格またはベンゾキノリン骨格を有する金属錯体等である。また、この他ビス[2−(2−ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2−(2−ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)などのオキサゾール系、チアゾール系配位子を有する金属錯体なども用いることができる。さらに、金属錯体以外にも、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD)や、1,3−ビス[5−(p−tert−ブチルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−7)、9−[4−(5−フェニル−1,3,4−オキサジアゾール−2−イル)フェニル]−9H−カルバゾール(略称:CO11)のようなオキサジアゾール誘導体や、3−(4−ビフェニリル)−4−フェニル−5−(4−tert−ブチルフェニル)−1,2,4−トリアゾール(略称:TAZ)のようなトリアゾール誘導体や、2,2’,2’’−(1,3,5−ベンゼントリイル)トリス(1−フェニル−1H−ベンゾイミダソール)(略称:TPBI)、2−[3−(ジベンゾチオフェン−4−イル)フェニル]−1−フェニル−1H−ベンゾイミダゾール(略称:mDBTBIm−II)のようなイミダゾール骨格を有する化合物(特にベンゾイミダゾール誘導体)や、4,4’−ビス(5−メチルベンゾオキサゾール−2−イル)スチルベン(略称:BzOS)などのオキサゾール骨格を有する化合物(特にベンゾオキサゾール誘導体)や、バソフェナントロリン(略称:Bphen)、バソキュプロイン(略称:BCP)、2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBphen)などのフェナントロリン誘導体や、2−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2mDBTPDBq−II)、2−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq−II)、2−[3’−(9H−カルバゾール−9−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mCzBPDBq)、2−[4−(3,6−ジフェニル−9H−カルバゾール−9−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2CzPDBq−III)、7−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:7mDBTPDBq−II)、及び6−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:6mDBTPDBq−II)、4,6−ビス[3−(フェナントレン−9−イル)フェニル]ピリミジン(略称:4,6mPnP2Pm)、4,6−ビス[3−(4−ジベンゾチエニル)フェニル]ピリミジン(略称:4,6mDBTP2Pm−II)、4,6−ビス[3−(9H−カルバゾール−9−イル)フェニル]ピリミジン(略称:4,6mCzP2Pm)などのジアジン骨格を有する複素環化合物や、2−{4−[3−(N−フェニル−9H−カルバゾール−3−イル)−9H−カルバゾール−9−イル]フェニル}−4,6−ジフェニル−1,3,5−トリアジン(略称:PCCzPTzn)などのトリアジン骨格を有する複素環化合物や、3,5−ビス[3−(9H−カルバゾール−9−イル)フェニル]ピリジン(略称:35DCzPPy)、1,3,5−トリ[3−(3−ピリジル)フェニル]ベンゼン(略称:TmPyPB)などのピリジン骨格を有する複素環化合物も用いることができる。また、ポリ(2,5−ピリジンジイル)(略称:PPy)、ポリ[(9,9−ジヘキシルフルオレン−2,7−ジイル)−co−(ピリジン−3,5−ジイル)](略称:PF−Py)、ポリ[(9,9−ジオクチルフルオレン−2,7−ジイル)−co−(2,2’−ビピリジン−6,6’−ジイル)](略称:PF−BPy)のような高分子化合物を用いることもできる。
また、ホスト材料として、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、クリセン誘導体、ジベンゾ[g,p]クリセン誘導体等の縮合多環芳香族化合物が挙げられ、具体的には、9,10−ジフェニルアントラセン(略称:DPAnth)、N,N−ジフェニル−9−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:CzA1PA)、4−(10−フェニル−9−アントリル)トリフェニルアミン(略称:DPhPA)、YGAPA、PCAPA、N,9−ジフェニル−N−{4−[4−(10−フェニル−9−アントリル)フェニル]フェニル}−9H−カルバゾール−3−アミン(略称:PCAPBA)、2PCAPA、6,12−ジメトキシ−5,11−ジフェニルクリセン、DBC1、9−[4−(10−フェニル−9−アントラセニル)フェニル]−9H−カルバゾール(略称:CzPA)、3,6−ジフェニル−9−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:DPCzPA)、9,10−ビス(3,5−ジフェニルフェニル)アントラセン(略称:DPPA)、9,10−ジ(2−ナフチル)アントラセン(略称:DNA)、2−tert−ブチル−9,10−ジ(2−ナフチル)アントラセン(略称:t−BuDNA)、9,9’−ビアントリル(略称:BANT)、9,9’−(スチルベン−3,3’−ジイル)ジフェナントレン(略称:DPNS)、9,9’−(スチルベン−4,4’−ジイル)ジフェナントレン(略称:DPNS2)、1,3,5−トリ(1−ピレニル)ベンゼン(略称:TPB3)などを用いることができる。
また、発光層(113、113a、113b、113c)に有機化合物を複数用いる場合、励起錯体を形成する2種類の化合物(第1の化合物および第2の化合物)と、有機金属錯体とを混合して用いてもよい。この場合、様々な有機化合物を適宜組み合わせて用いることができるが、効率よく励起錯体を形成するためには、正孔を受け取りやすい化合物(正孔輸送性材料)と、電子を受け取りやすい化合物(電子輸送性材料)とを組み合わせることが特に好ましい。なお、正孔輸送性材料および電子輸送性材料の具体例については、本実施の形態で示す材料を用いることができる。この構成により、高効率、低電圧、長寿命を同時に実現できる。
TADF材料とは、三重項励起状態をわずかな熱エネルギーによって一重項励起状態にアップコンバート(逆項間交差)が可能で、一重項励起状態からの発光(蛍光)を効率よく呈する材料のことである。また、熱活性化遅延蛍光が効率良く得られる条件としては、三重項励起準位と一重項励起準位のエネルギー差が0eV以上0.2eV以下、好ましくは0eV以上0.1eV以下であることが挙げられる。また、TADF材料における遅延蛍光とは、通常の蛍光と同様のスペクトルを持ちながら、寿命が著しく長い発光をいう。その寿命は、10−6秒以上、好ましくは10−3秒以上である。
TADF材料としては、例えば、フラーレンやその誘導体、プロフラビン等のアクリジン誘導体、エオシン等が挙げられる。また、マグネシウム(Mg)、亜鉛(Zn)、カドミウム(Cd)、スズ(Sn)、白金(Pt)、インジウム(In)、もしくはパラジウム(Pd)等を含む金属含有ポルフィリンが挙げられる。金属含有ポルフィリンとしては、例えば、プロトポルフィリン−フッ化スズ錯体(略称:SnF(Proto IX))、メソポルフィリン−フッ化スズ錯体(略称:SnF(Meso IX))、ヘマトポルフィリン−フッ化スズ錯体(略称:SnF(Hemato IX))、コプロポルフィリンテトラメチルエステル−フッ化スズ錯体(略称:SnF(Copro III−4Me))、オクタエチルポルフィリン−フッ化スズ錯体(略称:SnF(OEP))、エチオポルフィリン−フッ化スズ錯体(略称:SnF(Etio I))、オクタエチルポルフィリン−塩化白金錯体(略称:PtClOEP)等が挙げられる。
その他にも、2−(ビフェニル−4−イル)−4,6−ビス(12−フェニルインドロ[2,3−a]カルバゾール−11−イル)−1,3,5−トリアジン(略称:PIC−TRZ)、2−{4−[3−(N−フェニル−9H−カルバゾール−3−イル)−9H−カルバゾール−9−イル]フェニル}−4,6−ジフェニル−1,3,5−トリアジン(略称:PCCzPTzn)、2−[4−(10H−フェノキサジン−10−イル)フェニル]−4,6−ジフェニル−1,3,5−トリアジン(略称:PXZ−TRZ)、3−[4−(5−フェニル−5,10−ジヒドロフェナジン−10−イル)フェニル]−4,5−ジフェニル−1,2,4−トリアゾール(略称:PPZ−3TPT)、3−(9,9−ジメチル−9H−アクリジン−10−イル)−9H−キサンテン−9−オン(略称:ACRXTN)、ビス[4−(9,9−ジメチル−9,10−ジヒドロアクリジン)フェニル]スルホン(略称:DMAC−DPS)、10−フェニル−10H,10’H−スピロ[アクリジン−9,9’−アントラセン]−10’−オン(略称:ACRSA)、等のπ電子過剰型複素芳香環及びπ電子不足型複素芳香環を有する複素環化合物を用いることができる。なお、π電子過剰型複素芳香環とπ電子不足型複素芳香環とが直接結合した物質は、π電子過剰型複素芳香環のドナー性とπ電子不足型複素芳香環のアクセプター性が共に強くなり、一重項励起状態と三重項励起状態のエネルギー差が小さくなるため、特に好ましい。
なお、TADF材料を用いる場合、他の有機化合物と組み合わせて用いることもできる。
図1(D)に示す発光素子においては、EL層103aの発光層113a上に電子輸送層114aが真空蒸着法により形成される。また、EL層103aおよび電荷発生層104が形成された後、EL層103bの発光層113b上に電子輸送層114bが真空蒸着法により形成される。
<電子輸送層>
電子輸送層(114、114a、114b)は、電子注入層(115、115a、115b)によって、第2の電極102や電荷発生層104から注入された電子を発光層(113、113a、113b)に輸送する層である。なお、電子輸送層(114、114a、114b)は、電子輸送性材料を含む層である。電子輸送層(114、114a、114b)に用いる電子輸送性材料は、1×10−6cm/Vs以上の電子移動度を有する物質が好ましい。なお、正孔よりも電子の輸送性の高い物質であれば、これら以外のものを用いることができる。
電子輸送性材料としては、キノリン配位子、ベンゾキノリン配位子、オキサゾール配位子、あるいはチアゾール配位子を有する金属錯体、オキサジアゾール誘導体、トリアゾール誘導体、フェナントロリン誘導体、ピリジン誘導体、ビピリジン誘導体などが挙げられる。その他、含窒素複素芳香族化合物のようなπ電子不足型複素芳香族化合物を用いることもできる。
具体的には、Alq、トリス(4−メチル−8−キノリノラト)アルミニウム(略称:Almq)、ビス(10−ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq)、BAlq、ビス[2−(2−ヒドロキシフェニル)ベンゾオキサゾラト]亜鉛(II)(略称:Zn(BOX))、ビス[2−(2−ヒドロキシフェニル)ベンゾチアゾラト]亜鉛(II)(略称:Zn(BTZ))などの金属錯体、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD)、OXD−7、3−(4’−tert−ブチルフェニル)−4−フェニル−5−(4’’−ビフェニル)−1,2,4−トリアゾール(略称:TAZ)、3−(4−tert−ブチルフェニル)−4−(4−エチルフェニル)−5−(4−ビフェニリル)−1,2,4−トリアゾール(略称:p−EtTAZ)、バソフェナントロリン(略称:Bphen)、バソキュプロイン(略称:BCP)、4,4’−ビス(5−メチルベンゾオキサゾール−2−イル)スチルベン(略称:BzOS)などの複素芳香族化合物、2−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2mDBTPDBq−II)、2−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq−II)、2−[4−(3,6−ジフェニル−9H−カルバゾール−9−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2CzPDBq−III)、7−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:7mDBTPDBq−II)、6−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:6mDBTPDBq−II)等のキノキサリン誘導体ないしはジベンゾキノキサリン誘導体を用いることができる。
また、ポリ(2,5−ピリジンジイル)(略称:PPy)、ポリ[(9,9−ジヘキシルフルオレン−2,7−ジイル)−co−(ピリジン−3,5−ジイル)](略称:PF−Py)、ポリ[(9,9−ジオクチルフルオレン−2,7−ジイル)−co−(2,2’−ビピリジン−6,6’−ジイル)](略称:PF−BPy)のような高分子化合物を用いることもできる。
また、電子輸送層(114、114a、114b)は、単層のものだけでなく、上記物質からなる層が2層以上積層した構造であってもよい。
図1(D)に示す発光素子においては、EL層103aの電子輸送層114a上に電子注入層115aが真空蒸着法により形成される。その後、EL層103a上に電荷発生層104が形成され、EL層103bの電子輸送層114bまで形成された後、上に電子注入層115bが真空蒸着法により形成される。
<電子注入層>
電子注入層(115、115a、115b)は、電子注入性の高い物質を含む層である。電子注入層(115、115a、115b)には、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、リチウム酸化物(LiO)等のようなアルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。また、フッ化エルビウム(ErF)のような希土類金属化合物を用いることができる。また、電子注入層(115、115a、115b)にエレクトライドを用いてもよい。エレクトライドとしては、例えば、カルシウムとアルミニウムの混合酸化物に電子を高濃度添加した物質等が挙げられる。なお、上述した電子輸送層(114、114a、114b)を構成する物質を用いることもできる。
また、電子注入層(115、115a、115b)に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生するため、電子注入性および電子輸送性に優れている。この場合、有機化合物としては、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層(114、114a、114b)に用いる電子輸送性材料(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的には、アルカリ金属やアルカリ土類金属や希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
なお、例えば、発光層113bから得られる光を増幅させる場合には、第2の電極102と、発光層113bとの光学距離が、発光層113bが呈する光の波長に対してλ/4未満となるように形成するのが好ましい。この場合、電子輸送層114bまたは電子注入層115bの膜厚を変えることにより、調整することができる。
<電荷発生層>
電荷発生層104は、第1の電極(陽極)101と第2の電極(陰極)102との間に電圧を印加したときに、EL層103aに電子を注入し、EL層103bに正孔を注入する機能を有する。なお、電荷発生層104は、正孔輸送性材料に電子受容体(アクセプター)が添加された構成であっても、電子輸送性材料に電子供与体(ドナー)が添加された構成であってもよい。また、これらの両方の構成が積層されていても良い。なお、上述した材料を用いて電荷発生層104を形成することにより、EL層が積層された場合における駆動電圧の上昇を抑制することができる。
電荷発生層104において、正孔輸送性材料に電子受容体が添加された構成とする場合、正孔輸送性材料としては、本実施の形態で示した材料を用いることができる。また、電子受容体としては、7,7,8,8−テトラシアノ−2,3,5,6−テトラフルオロキノジメタン(略称:F−TCNQ)、クロラニル等を挙げることができる。また元素周期表における第4族乃至第8族に属する金属の酸化物を挙げることができる。具体的には、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブデン、酸化タングステン、酸化マンガン、酸化レニウムなどが挙げられる。
電荷発生層104において、電子輸送性材料に電子供与体が添加された構成とする場合、電子輸送性材料としては、本実施の形態で示した材料を用いることができる。また、電子供与体としては、アルカリ金属またはアルカリ土類金属または希土類金属または元素周期表における第2、第13族に属する金属およびその酸化物、炭酸塩を用いることができる。具体的には、リチウム(Li)、セシウム(Cs)、マグネシウム(Mg)、カルシウム(Ca)、イッテルビウム(Yb)、インジウム(In)、酸化リチウム、炭酸セシウムなどを用いることが好ましい。また、テトラチアナフタセンのような有機化合物を電子供与体として用いてもよい。
なお、図1(E)のEL層103cは、上述したEL層(103、103a、103b)と同様の構成とすればよい。また、電荷発生層104a、104bについても、上述した電荷発生層104と同様の構成とすればよい。
<基板>
本実施の形態で示した発光素子は、様々な基板上に形成することができる。なお、基板の種類は、特定のものに限定されることはない。基板の一例としては、半導体基板(例えば単結晶基板又はシリコン基板)、SOI基板、ガラス基板、石英基板、プラスチック基板、金属基板、ステンレス・スチル基板、ステンレス・スチル・ホイルを有する基板、タングステン基板、タングステン・ホイルを有する基板、可撓性基板、貼り合わせフィルム、繊維状の材料を含む紙、又は基材フィルムなどが挙げられる。
なお、ガラス基板の一例としては、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス、又はソーダライムガラスなどが挙げられる。また、可撓性基板、貼り合わせフィルム、基材フィルムなどの一例としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)に代表されるプラスチック、アクリル等の合成樹脂、ポリプロピレン、ポリエステル、ポリフッ化ビニル、ポリ塩化ビニル、ポリアミド、ポリイミド、アラミド、エポキシ、無機蒸着フィルム、又は紙類などが挙げられる。
なお、本実施の形態で示す発光素子の作製には、蒸着法などの真空プロセスや、スピンコート法やインクジェット法などの溶液プロセスを用いることができる。蒸着法を用いる場合には、スパッタ法、イオンプレーティング法、イオンビーム蒸着法、分子線蒸着法、真空蒸着法などの物理蒸着法(PVD法)や、化学蒸着法(CVD法)等を用いることができる。特に発光素子のEL層(103、103a、103b)に含まれる機能層(正孔注入層(111、111a、111b)、正孔輸送層(112、112a、112b)、発光層(113、113a、113b、113c)、電子輸送層(114、114a、114b)、電子注入層(115、115a、115b))、および電荷発生層(104、104a、104b)については、蒸着法(真空蒸着法等)、塗布法(ディップコート法、ダイコート法、バーコート法、スピンコート法、スプレーコート法等)、印刷法(インクジェット法、スクリーン(孔版印刷)法、オフセット(平版印刷)法、フレキソ(凸版印刷)法、グラビア法、マイクロコンタクト法等)などの方法により形成することができる。
なお、本実施の形態で示す発光素子のEL層(103、103a、103b)を構成する各機能層(正孔注入層(111、111a、111b)、正孔輸送層(112、112a、112b)、発光層(113、113a、113b、113c)、電子輸送層(114、114a、114b)、電子注入層(115、115a、115b))や電荷発生層(104、104a、104b)は、上述した材料に限られることはなく、それ以外の材料であっても各層の機能を満たせるものであれば組み合わせて用いることができる。一例としては、高分子化合物(オリゴマー、デンドリマー、ポリマー等)、中分子化合物(低分子と高分子の中間領域の化合物:分子量400~4000)、無機化合物(量子ドット材料等)等を用いることができる。なお、量子ドット材料としては、コロイド状量子ドット材料、合金型量子ドット材料、コア・シェル型量子ドット材料、コア型量子ドット材料などを用いることができる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができるものとする。
(実施の形態3)
本実施の形態では、本発明の一態様である発光装置について説明する。なお、図2(A)に示す発光装置は、第1の基板201上のトランジスタ(FET)202と発光素子(203R、203G、203B、203W)が電気的に接続されてなるアクティブマトリクス型の発光装置であり、複数の発光素子(203R、203G、203B、203W)は、共通のEL層204を有し、また、各発光素子の発光色に応じて、各発光素子の電極間の光学距離が調整されたマイクロキャビティ構造を有する。また、EL層204から得られた発光が第2の基板205に形成されたカラーフィルタ(206R、206G、206B)を介して射出されるトップエミッション型の発光装置である。
図2(A)に示す発光装置は、第1の電極207を反射電極として機能するように形成する。また、第2の電極208を半透過・半反射電極として機能するように形成する。なお、第1の電極207および第2の電極208を形成する電極材料としては、他の実施形態の記載を参照し、適宜用いればよい。
また、図2(A)において、例えば、発光素子203Rを赤色発光素子、発光素子203Gを緑色発光素子、発光素子203Bを青色発光素子、発光素子203Wを白色発光素子とする場合、図2(B)に示すように発光素子203Rは、第1の電極207と第2の電極208との間が光学距離200Rとなるように調整し、発光素子203Gは、第1の電極207と第2の電極208との間が光学距離200Gとなるように調整し、発光素子203Bは、第1の電極207と第2の電極208との間が光学距離200Bとなるように調整する。なお、図2(B)に示すように、発光素子203Rにおいて導電層207Rを第1の電極207に積層し、発光素子203Gにおいて導電層207Gを積層することにより、光学調整を行うことができる。
第2の基板205には、カラーフィルタ(206R、206G、206B)が形成されている。なお、カラーフィルタは、可視光のうち特定の波長域を通過させ、特定の波長域を阻止するフィルタである。従って、図2(A)に示すように、発光素子203Rと重なる位置に赤の波長域のみを通過させるカラーフィルタ206Rを設けることにより、発光素子203Rから赤色発光を得ることができる。また、発光素子203Gと重なる位置に緑の波長域のみを通過させるカラーフィルタ206Gを設けることにより、発光素子203Gから緑色発光を得ることができる。また、発光素子203Bと重なる位置に青の波長域のみを通過させるカラーフィルタ206Bを設けることにより、発光素子203Bから青色発光を得ることができる。但し、発光素子203Wは、カラーフィルタを設けることなく白色発光を得ることができる。なお、1種のカラーフィルタの端部には、黒色層(ブラックマトリクス)209が設けられていてもよい。さらに、カラーフィルタ(206R、206G、206B)や黒色層209は、透明な材料を用いたオーバーコート層で覆われていても良い。
図2(A)では、第2の基板205側に発光を取り出す構造(トップエミッション型)の発光装置を示したが、図2(C)に示すようにFET202が形成されている第1の基板201側に光を取り出す構造(ボトムエミッション型)の発光装置としても良い。なお、ボトムエミッション型の発光装置の場合には、第1の電極207を半透過・半反射電極として機能するように形成し、第2の電極208を反射電極として機能するように形成する。また、第1の基板201は、少なくとも透光性の基板を用いる。また、カラーフィルタ(206R’、206G’、206B’)は、図2(C)に示すように発光素子(203R、203G、203B)よりも第1の基板201側に設ければよい。
また、図2(A)において、発光素子が、赤色発光素子、緑色発光素子、青色発光素子、白色発光素子の場合について示したが、本発明の一態様である発光素子はその構成に限られることはなく、黄色の発光素子や橙色の発光素子を有する構成であっても良い。なお、これらの発光素子を作製するためにEL層(発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層)や電荷発生層などに用いる材料としては、他の実施形態の記載を参照し、適宜用いればよい。なお、その場合には、また、発光素子の発光色に応じてカラーフィルタを適宜選択する必要がある。
以上のような構成とすることにより、複数の発光色を呈する発光素子を備えた発光装置を得ることができる。
なお、本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができるものとする。
(実施の形態4)
本実施の形態では、本発明の一態様である発光装置について説明する。
本発明の一態様である発光素子の素子構成を適用することで、アクティブマトリクス型の発光装置やパッシブマトリクス型の発光装置を作製することができる。なお、アクティブマトリクス型の発光装置は、発光素子とトランジスタ(FET)とを組み合わせた構成を有する。従って、パッシブマトリクス型の発光装置、アクティブマトリクス型の発光装置は、いずれも本発明の一態様に含まれる。なお、本実施の形態に示す発光装置には、他の実施形態で説明した発光素子を適用することが可能である。
本実施の形態では、アクティブマトリクス型の発光装置について図3を用いて説明する。
なお、図3(A)は発光装置を示す上面図であり、図3(B)は図3(A)を鎖線A−A’で切断した断面図である。アクティブマトリクス型の発光装置は、第1の基板301上に設けられた画素部302、駆動回路部(ソース線駆動回路)303と、駆動回路部(ゲート線駆動回路)304a、304bを有する。画素部302および駆動回路部(303、304a、304b)は、シール材305によって、第1の基板301と第2の基板306との間に封止される。
また、第1の基板301上には、引き回し配線307が設けられる。引き回し配線307は、外部入力端子であるFPC308と接続される。なお、FPC308は、駆動回路部(303、304a、304b)に外部からの信号(例えば、ビデオ信号、クロック信号、スタート信号、リセット信号等)や電位を伝達する。また、FPC308にはプリント配線基板(PWB)が取り付けられていても良い。なお、これらFPCやPWBが取り付けられた状態は、発光装置に含まれる。
次に、図3(B)に断面構造を示す。
画素部302は、FET(スイッチング用FET)311、FET(電流制御用FET)312、およびFET312と電気的に接続された第1の電極313を有する複数の画素により形成される。なお、各画素が有するFETの数は、特に限定されることはなく、必要に応じて適宜設けることができる。
FET309、310、311、312は、特に限定されることはなく、例えば、スタガ型や逆スタガ型などのトランジスタを適用することができる。また、トップゲート型やボトムゲート型などのトランジスタ構造であってもよい。
なお、これらのFET309、310、311、312に用いることのできる半導体の結晶性については特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、又は一部に結晶領域を有する半導体)のいずれを用いてもよい。なお、結晶性を有する半導体を用いることで、トランジスタ特性の劣化を抑制できるため好ましい。
また、これらの半導体としては、例えば、第14族の元素、化合物半導体、酸化物半導体、有機半導体などを用いることができる。代表的には、シリコンを含む半導体、ガリウムヒ素を含む半導体、インジウムを含む酸化物半導体などを適用することができる。
駆動回路部303は、FET309とFET310とを有する。なお、FET309とFET310は、単極性(N型またはP型のいずれか一方のみ)のトランジスタを含む回路で形成されても良いし、N型のトランジスタとP型のトランジスタを含むCMOS回路で形成されても良い。また、外部に駆動回路を有する構成としても良い。
第1の電極313の端部は、絶縁物314により覆われている。なお、絶縁物314には、ネガ型の感光性樹脂や、ポジ型の感光性樹脂(アクリル樹脂)などの有機化合物や、酸化シリコン、酸化窒化シリコン、窒化シリコン等の無機化合物を用いることができる。絶縁物314の上端部または下端部には、曲率を有する曲面を有するのが好ましい。これにより、絶縁物314の上層に形成される膜の被覆性を良好なものとすることができる。
第1の電極313上には、EL層315及び第2の電極316が積層形成される。EL層315は、発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層等を有する。
なお、本実施の形態で示す発光素子317の構成は、他の実施の形態で説明した構成や材料を適用することができる。なお、ここでは図示しないが、第2の電極316は外部入力端子であるFPC308に電気的に接続されている。
また、図3(B)に示す断面図では発光素子317を1つのみ図示しているが、画素部302において、複数の発光素子がマトリクス状に配置されているものとする。画素部302には、3種類(R、G.B)の発光が得られる発光素子をそれぞれ選択的に形成し、フルカラー表示可能な発光装置を形成することができる。また、3種類(R、G、B)の発光が得られる発光素子の他に、例えば、ホワイト(W)、イエロー(Y)、マゼンタ(M)、シアン(C)等の発光が得られる発光素子を形成してもよい。例えば、3種類(R、G、B)の発光が得られる発光素子に上述の数種類の発光が得られる発光素子を追加することにより、色純度の向上、消費電力の低減等の効果が得ることができる。また、カラーフィルタと組み合わせることによってフルカラー表示可能な発光装置としてもよい。なお、カラーフィルタの種類としては、赤(R)、緑(G)、青(B)、シアン(C)、マゼンタ(M)、イエロー(Y)等を用いることができる。
第1の基板301上のFET(309、310、311、312)や、発光素子317は、第2の基板306と第1の基板301とをシール材305により貼り合わせることにより、第1の基板301、第2の基板306、およびシール材305で囲まれた空間318に備えられた構造を有する。なお、空間318には、不活性気体(窒素やアルゴン等)や有機物(シール材305を含む)で充填されていてもよい。
シール材305には、エポキシ系樹脂やガラスフリットを用いることができる。なお、シール材305には、できるだけ水分や酸素を透過しない材料を用いることが好ましい。また、第2の基板306は、第1の基板301に用いることができるものを同様に用いることができる。従って、他の実施形態で説明した様々な基板を適宜用いることができるものとする。基板としてガラス基板や石英基板の他、FRP(Fiber−Reinforced Plastics)、PVF(ポリビニルフロライド)、ポリエステルまたはアクリル等からなるプラスチック基板を用いることができる。シール材としてガラスフリットを用いる場合には、接着性の観点から第1の基板301及び第2の基板306はガラス基板であることが好ましい。
以上のようにして、アクティブマトリクス型の発光装置を得ることができる。
また、アクティブマトリクス型の発光装置を可撓性基板に形成する場合、可撓性基板上にFETと発光素子とを直接形成しても良いが、剥離層を有する別の基板にFETと発光素子を形成した後、熱、力、レーザ照射などを与えることによりFETと発光素子を剥離層で剥離し、さらに可撓性基板に転載して作製しても良い。なお、剥離層としては、例えば、タングステン膜と酸化シリコン膜との無機膜の積層や、ポリイミド等の有機樹脂膜等を用いることができる。また可撓性基板としては、トランジスタを形成することが可能な基板に加え、紙基板、セロファン基板、アラミドフィルム基板、ポリイミドフィルム基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリエステル)若しくは再生繊維(アセテート、キュプラ、レーヨン、再生ポリエステル)などを含む)、皮革基板、又はゴム基板などが挙げられる。これらの基板を用いることにより、耐久性や耐熱性に優れ、軽量化および薄型化を可能にしたアクティブマトリクス型の発光装置を得ることができる。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用いることができる。
(実施の形態5)
本実施の形態では、本発明の一態様である発光装置、本発明の一態様である発光素子を有する表示装置を適用して完成させた様々な電子機器や自動車の一例について、説明する。
図4(A)~図4(E)に示す電子機器は、筐体7000、表示部7001、スピーカ7003、LEDランプ7004、操作キー7005(電源スイッチ、又は操作スイッチを含む)、接続端子7006、センサ7007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい、又は赤外線を測定する機能を含むもの)、マイクロフォン7008、7019等を有することができる。
図4(A)はモバイルコンピュータであり、上述したものの他に、スイッチ7009、赤外線ポート7010、等を有することができる。
図4(B)は記録媒体を備えた携帯型の画像再生装置(たとえば、DVD再生装置)であり、上述したものの他に、第2表示部7002、記録媒体読込部7011、等を有することができる。
図4(C)はゴーグル型ディスプレイであり、上述したものの他に、第2表示部7002、支持部7012、イヤホン7013、等を有することができる。
図4(D)はテレビ受像機能付きデジタルカメラであり、上述したものの他に、アンテナ7014、シャッターボタン7015、受像部7016、等を有することができる。
図4(E)は携帯電話機(スマートフォンを含む)であり、筐体7000に、表示部7001、マイクロフォン7019、スピーカ7003、カメラ7020、外部接続部7021、操作用ボタン7022、等を有することができる。
図4(F)は、大型のテレビジョン装置(テレビ、又はテレビジョン受信機ともいう)であり、筐体7000、表示部7001、スピーカ7003、等を有することができる。また、ここでは、スタンド7018により筐体7000を支持した構成を示している。
図4(A)~図4(F)に示す電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付又は時刻などを表示する機能、様々なソフトウエア(プログラム)によって処理を制御する機能、無線通信機能、無線通信機能を用いて様々なコンピュータネットワークに接続する機能、無線通信機能を用いて様々なデータの送信又は受信を行う機能、記録媒体に記録されているプログラム又はデータを読み出して表示部に表示する機能、等を有することができる。さらに、複数の表示部を有する電子機器においては、一つの表示部を主として画像情報を表示し、別の一つの表示部を主として文字情報を表示する機能、または、複数の表示部に視差を考慮した画像を表示することで立体的な画像を表示する機能、等を有することができる。さらに、受像部を有する電子機器においては、静止画を撮影する機能、動画を撮影する機能、撮影した画像を自動または手動で補正する機能、撮影した画像を記録媒体(外部又はカメラに内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有することができる。なお、図4(A)乃至図4(F)に示す電子機器が有することのできる機能はこれらに限定されず、様々な機能を有することができる。
図4(G)は、スマートウオッチであり、筐体7000、表示部7001、操作用ボタン7022、7023、接続端子7024、バンド7025、留め金7026、等を有する。
ベゼル部分を兼ねる筐体7000に搭載された表示部7001は、非矩形状の表示領域を有している。表示部7001は、時刻を表すアイコン7027、その他のアイコン7028等を表示することができる。また、表示部7001は、タッチセンサ(入力装置)を搭載したタッチパネル(入出力装置)であってもよい。
なお、図4(G)に示すスマートウオッチは、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付又は時刻などを表示する機能、様々なソフトウエア(プログラム)によって処理を制御する機能、無線通信機能、無線通信機能を用いて様々なコンピュータネットワークに接続する機能、無線通信機能を用いて様々なデータの送信又は受信を行う機能、記録媒体に記録されているプログラム又はデータを読み出して表示部に表示する機能、等を有することができる。
また、筐体7000の内部に、スピーカ、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい又は赤外線を測定する機能を含むもの)、マイクロフォン等を有することができる。
なお、本発明の一態様である発光装置および本発明の一態様である発光素子を有する表示装置は、本実施の形態に示す電子機器の各表示部に用いることができ、色純度の良い表示が可能となる。
また、発光装置を適用した電子機器として、図5(A)~(C)に示すような折りたたみ可能な携帯情報端末が挙げられる。図5(A)には、展開した状態の携帯情報端末9310を示す。また、図5(B)には、展開した状態又は折りたたんだ状態の一方から他方に変化する途中の状態の携帯情報端末9310を示す。さらに、図5(C)には、折りたたんだ状態の携帯情報端末9310を示す。携帯情報端末9310は、折りたたんだ状態では可搬性に優れ、展開した状態では、継ぎ目のない広い表示領域により表示の一覧性に優れる。
表示部9311はヒンジ9313によって連結された3つの筐体9315に支持されている。なお、表示部9311は、タッチセンサ(入力装置)を搭載したタッチパネル(入出力装置)であってもよい。また、表示部9311は、ヒンジ9313を介して2つの筐体9315間を屈曲させることにより、携帯情報端末9310を展開した状態から折りたたんだ状態に可逆的に変形させることができる。本発明の一態様の発光装置を表示部9311に用いることができる。また、色純度の良い表示が可能となる。表示部9311における表示領域9312は折りたたんだ状態の携帯情報端末9310の側面に位置する表示領域である。表示領域9312には、情報アイコンや使用頻度の高いアプリやプログラムのショートカットなどを表示させることができ、情報の確認やアプリなどの起動をスムーズに行うことができる。
また、発光装置を適用した自動車について、図6(A)(B)に示す。すなわち、発光装置を、自動車と一体にして設けることができる。具体的には、図6(A)に示す自動車の外側のライト5101(車体後部も含む)、タイヤのホイール5102、ドア5103の一部または全体などに適用することができる。また、図6(B)に示す自動車の内側の表示部5104、ハンドル5105、シフトレバー5106、座席シート5107、インナーリアビューミラー5108等に適用することができる。その他、ガラス窓の一部に適用してもよい。
以上のようにして、本発明の一態様である発光装置や表示装置を適用した電子機器や自動車を得ることができる。なお、その場合には、色純度の良い表示が可能となる。なお、適用できる電子機器や自動車は、本実施の形態に示したものに限らず、あらゆる分野において適用することが可能である。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いることができる。
(実施の形態6)
本実施の形態では、本発明の一態様である発光装置、またはその一部である発光素子を適用して作製される照明装置の構成について図7を用いて説明する。
図7(A)、(B)、(C)、(D)には、照明装置の断面図の一例を示す。なお、図7(A)、(B)は基板側に光を取り出すボトムエミッション型の照明装置であり、図7(C)、(D)は、封止基板側に光を取り出すトップエミッション型の照明装置である。
図7(A)に示す照明装置4000は、基板4001上に発光素子4002を有する。また、基板4001の外側に凹凸を有する基板4003を有する。発光素子4002は、第1の電極4004と、EL層4005と、第2の電極4006を有する。
第1の電極4004は、電極4007と電気的に接続され、第2の電極4006は電極4008と電気的に接続される。また、第1の電極4004と電気的に接続される補助配線4009を設けてもよい。なお、補助配線4009上には、絶縁層4010が形成されている。
また、基板4001と封止基板4011は、シール材4012で接着されている。また、封止基板4011と発光素子4002の間には、乾燥剤4013が設けられていることが好ましい。なお、基板4003は、図7(A)のような凹凸を有するため、発光素子4002で生じた光の取り出し効率を向上させることができる。
また、基板4003に代えて、図7(B)の照明装置4100のように、基板4001の外側に拡散板4015を設けてもよい。
図7(C)の照明装置4200は、基板4201上に発光素子4202を有する。発光素子4202は第1の電極4204と、EL層4205と、第2の電極4206とを有する。
第1の電極4204は、電極4207と電気的に接続され、第2の電極4206は電極4208と電気的に接続される。また第2の電極4206と電気的に接続される補助配線4209を設けてもよい。また、補助配線4209の下部に、絶縁層4210を設けてもよい。
基板4201と凹凸のある封止基板4211は、シール材4212で接着されている。また、封止基板4211と発光素子4202の間にバリア膜4213および平坦化膜4214を設けてもよい。なお、封止基板4211は、図7(C)のような凹凸を有するため、発光素子4202で生じた光の取り出し効率を向上させることができる。
また、封止基板4211に代えて、図7(D)の照明装置4300のように、発光素子4202の上に拡散板4215を設けてもよい。
なお、本実施の形態で示すように、本発明の一態様である発光装置、またはその一部である発光素子を適用することで、所望の色度を有する照明装置を提供することができる。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いることができる。
(実施の形態7)
本実施の形態では、本発明の一態様である発光装置、またはその一部である発光素子を適用して作製される照明装置の応用例について、図8を用いて説明する。
室内の照明装置としては、シーリングライト8001として応用できる。シーリングライト8001には、天井直付型や天井埋め込み型がある。なお、このような照明装置は、発光装置を筐体やカバーと組み合わせることにより構成される。その他にもコードペンダント型(天井からのコード吊り下げ式)への応用も可能である。
また、足元灯8002は、床面に灯りを照射し、足元の安全性を高めることができる。例えば、寝室や階段や通路などに使用するのが有効である。その場合、部屋の広さや構造に応じて適宜サイズや形状を変えることができる。また、発光装置と支持台とを組み合わせて構成される据え置き型の照明装置とすることも可能である。
また、シート状照明8003は、薄型のシート状の照明装置である。壁面に張り付けて使用するため、場所を取らず幅広い用途に用いることができる。なお、大面積化も容易である。なお、曲面を有する壁面や筐体に用いることもできる。
また、光源からの光が所望の方向のみに制御された照明装置8004を用いることもできる。
なお、上記以外にも室内に備えられた家具の一部に本発明の一態様である発光装置、またはその一部である発光素子を適用することにより、家具としての機能を備えた照明装置とすることができる。
以上のように、発光装置を適用した様々な照明装置が得られる。なお、これらの照明装置は本発明の一態様に含まれるものとする。
また、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いることができる。
≪合成例1≫
本実施例では、実施の形態1の構造式(100)で表される本発明の一態様である有機化合物、7,10−ジヒドロ−10,10−ジメチル−7−[4−(10−フェニル−9−アントリル)フェニル]ベンゾ[c]インデノ[2,1−g]カルバゾール(略称:BINCzPA)の合成方法について説明する。なお、BINCzPAの構造を以下に示す。
Figure JPOXMLDOC01-appb-C000030
50mL3口フラスコに9−(4−ブロモフェニル)−10−フェニルアントラセン0.61g(1.5mmol)、7,10−ジヒドロ−10,10−ジメチルベンゾ[c]インデノ[2,1−g]カルバゾール0.49g(1.5mmol)、ナトリウム tert−ブトキシド0.29g(3.0mmol)を加え、フラスコ内を窒素置換した。この混合物にキシレン8.0mLを加え、減圧下で攪拌し、脱気した。この混合物に、トリ(tert−ブチル)ホスフィン0.3mL、ビス(ジベンジリデンアセトン)パラジウム(0)43mg(75μmol)を加え、窒素気流下、160℃で5時間還流した。
この混合物に10mLの水を加えて攪拌した後、この混合物中の水層をトルエンで抽出した抽出溶液と、混合物中の有機層とを合わせて飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥した。さらにこれを自然ろ過し、ろ液を濃縮した。得られた固体をシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=1:5)で精製し、更にトルエン/ヘキサンで再結晶したところ、目的物の淡黄色固体を収量0.83g、収率86%で得た。上記合成方法の合成スキームを下記式(a)に示す。
Figure JPOXMLDOC01-appb-C000031
得られた淡黄色固体0.83gをトレインサブリメーション法により昇華精製した。昇華精製は、圧力3.6Pa、アルゴン流量5.0mL/minの条件で、淡黄色固体を300℃で加熱して行った。昇華精製後、淡黄色固体を0.74g、回収率89%で得た。
得られた黄色固体の核磁気共鳴分光法(H−NMR)による分析結果を下記に示す。また、H−NMRチャートを図9(A)(B)に示す。なお、図9(B)は、図9(A)における7.0ppm~8.5ppmの範囲を拡大して表したチャートである。この結果から、本実施例において、上述の構造式(100)で表される本発明の一態様である有機化合物、BINCzPAが得られたことがわかった。
H NMR(CDCl,300MHz):δ=1.71(s、6H)、7.35−7.89(m、26H)、8.02(d、J=8.7Hz、1H)、8.11(d、J=7.8Hz、1H)、8.39(d、J=7.8Hz、1H)。
次に、BINCzPAのトルエン溶液および固体薄膜の紫外可視吸収スペクトル(以下、単に「吸収スペクトル」という)及び発光スペクトルを測定した。固体薄膜は石英基板上に真空蒸着法にて作製した。吸収スペクトルの測定には、紫外可視分光光度計(溶液:日本分光株式会社製、V−550、薄膜:(株)日立ハイテクノロジーズ製、U−4100)を用いた。なお溶液の吸収スペクトルは、石英セルにトルエンのみを入れて測定した吸収スペクトルを差し引いて算出し、薄膜の吸収スペクトルは、基板を含めた透過率と反射率から求めた吸光度(−log10 [%T/(100−%R)]より算出した。なお%Tは透過率、%Rは反射率を表す。また、発光スペクトルの測定には、蛍光光度計((株)浜松ホトニクス製、FS920)を用いた。
得られたトルエン溶液の吸収スペクトルおよび発光スペクトルの測定結果を図10(A)に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。また、固体薄膜の吸収スペクトルおよび発光スペクトルの測定結果を図10(B)に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。
図10(A)の結果より、BINCzPAのトルエン溶液では、395nm、376nm、350nm、317nm付近に吸収ピークが見られ、421nm(励起波長376nm)に発光波長のピークが見られた。また、図10(B)の結果より、BINCzPAの固体薄膜では、397nm、378nm、353nm、341nm、316nm、267nm付近に吸収ピークが見られ、440nm付近(励起波長380nm)に発光波長のピークが見られた。
なお、BINCzPAは青色に発光することを確認した。本発明の一態様である有機化合物、BINCzPAは、発光物質や可視域の蛍光発光物質のホスト材料としても利用可能である。また、BINCzPAの薄膜は、大気下においても凝集しにくく、形態の変化が小さい良好な膜質であることがわかった。
BINCzPAのHOMO準位およびLUMO準位をサイクリックボルタンメトリ(CV)測定を元に算出した。算出方法を以下に示す。
測定装置としては電気化学アナライザー(ビー・エー・エス(株)製、型番:ALSモデル600Aまたは600C)を用いた。CV測定における溶液は、溶媒として脱水ジメチルホルムアミド(DMF)((株)アルドリッチ製、99.8%、カタログ番号:22705−6)を用い、支持電解質である過塩素酸テトラ−n−ブチルアンモニウム(n−BuNClO)((株)東京化成製、カタログ番号:T0836)を100mmol/Lの濃度となるように溶解させ、さらに測定対象を2mmol/Lの濃度となるように溶解させて調製した。
また、作用電極としては白金電極(ビー・エー・エス(株)製、PTE白金電極)を、補助電極としては白金電極(ビー・エー・エス(株)製、VC−3用Ptカウンター電極(5cm))を、参照電極としてはAg/Ag電極(ビー・エー・エス(株)製、RE7非水溶媒系参照電極)をそれぞれ用いた。なお、測定は室温(20℃以上25℃以下)で行った。
また、CV測定時のスキャン速度は、0.1V/secに統一し、参照電極に対する酸化電位Ea[V]および還元電位Ec[V]を測定した。Eaは酸化−還元波の中間電位とし、Ecは還元−酸化波の中間電位とした。ここで、本実施例で用いる参照電極の真空準位に対するポテンシャルエネルギーは、−4.94[eV]であることが分かっているため、HOMO準位[eV]=−4.94−Ea、LUMO準位[ev]=−4.94−Ecという式から、HOMO準位およびLUMO準位をそれぞれ求めることができる。
また、CV測定を100回繰り返し行い、100サイクル目の測定での酸化−還元波と、1サイクル目の酸化−還元波を比較して、化合物の電気的安定性を調べた。
この結果、BINCzPAの酸化電位Ea[V]の測定において、HOMO準位は−5.72eVであることがわかった。一方、還元電位Ec[V]の測定において、LUMO準位は−2.74eVであることがわかった。また、酸化−還元波の繰り返し測定において1サイクル目と100サイクル後の波形と比較したところ、Ea測定においては81%のピーク強度を保っていたことから、BINCzPAは酸化に対する耐性が非常に良好であることが確認された。
本実施例では、本発明の一態様である発光素子として、実施例1で説明した、BINCzPA(構造式(100))を発光層に用いた発光素子1、比較する有機化合物、9−[4−(10−フェニル−9−アントラセニル)フェニル]−9H−カルバゾール(略称:CzPA)(構造式(200))を発光層に用いた比較発光素子2、比較する有機化合物、7−[4−(10−フェニル−9−アントリル)フェニル]−7H−ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)(構造式(201))を発光層に用いた比較発光素子3、についてこれらの素子構造、作製方法およびその特性について説明する。なお、本実施例で用いる発光素子の素子構造を図11に示し、具体的な構成について表1に示す。また、本実施例で用いる材料の化学式を以下に示す。
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-C000033
≪発光素子の作製≫
本実施例で示す発光素子は、図11に示すように基板900上に形成された第1の電極901上に正孔注入層911、正孔輸送層912、発光層913、電子輸送層914、電子注入層915が順次積層され、電子注入層915上に第2の電極903が積層された構造を有する。
まず、基板900上に第1の電極901を形成した。電極面積は、4mm(2mm×2mm)とした。また、基板900には、ガラス基板を用いた。また、第1の電極901は、
酸化珪素を含むインジウム錫酸化物(ITO)をスパッタリング法により、70nmの膜厚で成膜して形成した。
ここで、前処理として、基板の表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。その後、10−4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で60分間の真空焼成を行った後、基板を30分程度放冷した。
次に、第1の電極901上に正孔注入層911を形成した。正孔注入層911は、真空蒸着装置内を10−4Paに減圧した後、9−フェニル−3−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:PCzPA)と酸化モリブデンとを、PCzPA:酸化モリブデン=4:2(質量比)とし、膜厚が10nmとなるようにそれぞれ共蒸着して形成した。
次に、正孔注入層911上に正孔輸送層912を形成した。正孔輸送層912は、PCzPAを用い、膜厚が30nmになるように蒸着して形成した。
次に、正孔輸送層912上に発光層913を形成した。
発光層913は、発光素子1の場合は、ホスト材料としてBINCzPAを用い、ゲスト材料としてN,N’−ビス(3−メチルフェニル)−N,N’−ビス[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]−ピレン−1,6−ジアミン(略称:1,6mMemFLPAPrn)を用い、重量比がBINCzPA:1,6mMemFLPAPrn=1:0.03となるように共蒸着した。なお、膜厚は、25nmとした。
発光層913は、比較発光素子2の場合は、ホスト材料としてCzPAを用い、ゲスト材料として1,6mMemFLPAPrnを用い、重量比がCzPA:1,6mMemFLPAPrn=1:0.03となるように共蒸着した。なお、膜厚は、25nmとした。
発光層913は、比較発光素子3の場合は、ホスト材料としてcgDBCzPAを用い、ゲスト材料として1,6mMemFLPAPrnを用い、重量比がcgDBCzPA:1,6mMemFLPAPrn=1:0.03となるように共蒸着した。なお、膜厚は、25nmとした。
次に、発光層913上に電子輸送層914を形成した。電子輸送層914は、発光素子1の場合は、BINCzPAの膜厚が15nm、バソフェナントロリン(略称:Bphen)の膜厚が10nmとなるように順次蒸着して形成した。また、比較発光素子2の場合は、CzPAの膜厚が15nm、Bphenの膜厚が10nmとなるように順次蒸着して形成した。また、比較発光素子3の場合は、cgDBCzPAの膜厚が15nm、Bphenの膜厚が10nmとなるように順次蒸着して形成した。
次に、電子輸送層914上に電子注入層915を形成した。電子注入層915は、フッ化リチウム(LiF)を用い、膜厚が1nmになるように蒸着して形成した。
次に、電子注入層915上に第2の電極903を形成した。第2の電極903は、アルミニウムを蒸着法により、膜厚が200nmとなるように形成した。なお、本実施例において、第2の電極903は、陰極として機能する。
以上の工程により、基板900上に一対の電極間にEL層を挟んでなる発光素子を形成した。なお、上記工程で説明した正孔注入層911、正孔輸送層912、発光層913、電子輸送層914、電子注入層915は、本発明の一態様におけるEL層を構成する機能層である。また、上述した作製方法における蒸着工程では、全て抵抗加熱法による蒸着法を用いた。
また、上記に示すように作製した発光素子は、別の基板(図示せず)により封止される。なお、別の基板(図示せず)を用いた封止の際は、窒素雰囲気のグローブボックス内において、封止材を用いて別の基板(図示せず)を基板900上に固定し、シール材を基板900上に形成された発光素子の周囲に塗布し、封止時に365nmの紫外光を6J/cm照射し、80℃にて1時間熱処理することにより行った。
≪発光素子の動作特性≫
作製した各発光素子の動作特性について測定した。なお、測定は室温(25℃に保たれた雰囲気)で行った。また、結果を図12~図15に示す。
また、1000cd/m付近における各発光素子の主な初期特性値を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000034
上記結果から、本実施例で作製した発光素子1は、良好な電流効率と高い外部量子効率を示していることが分かる。この結果から、発光素子1に用いた本発明の一態様であるBINCzPAのように、カルバゾール骨格を形成する二つのベンゼン環がそれぞれ縮環された構造を有し、かつ少なくとも一方はベンゼン環以外の環構造を有する有機化合物を用いることにより、高効率な発光素子が得られることが示された。なお、このことは、本発明の一態様である有機化合物を発光素子のホスト材料として用いた場合に、ゲスト材料(ドーパント)へのエネルギー移動が効率よく行われていることに起因すると解される。
また、発光素子1、比較発光素子2および比較発光素子3に12.5mA/cmの電流密度で電流を流した際の発光スペクトルを、図16に示す。図16に示す通り、発光素子1、比較発光素子2および比較発光素子3の発光スペクトルは、いずれも468nm付近にピークを有しており、発光層913に含まれる、1,6mMemFLPAPrnの発光に由来していることが示唆される。
次に、発光素子1に対する信頼性試験を行った。信頼性試験の結果を図17に示す。図17において、縦軸は初期輝度を100%とした時の規格化輝度(%)を示し、横軸は素子の駆動時間(h)を示す。なお、信頼性試験は、50mAにおける定電流駆動試験を行った。
これらの結果より、本発明の一態様である発光素子1は、外部量子効率において、比較素子である比較発光素子2及び比較発光素子3よりも良好な特性を示しており、さらに信頼性においても、優れた特性を示すことがわかった。
≪合成例2≫
本実施例では、実施の形態1の構造式(101)で表される本発明の一態様である有機化合物、7−[4−(10−フェニル−9−アントリル)フェニル]−7H−スピロ[10H−ベンゾ[c]インデノ[1,2−g]カルバゾール−10,9’−[9H]フルオレン](略称:BINCzPA−02)の合成方法について説明する。なお、BINCzPA−02の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000035
50mL3口フラスコに9−(4−ブロモフェニル)−10−フェニルアントラセン0.78g(1.9mmol)、7H−スピロ[10H−ベンゾ[c]インデノ[1,2−g]カルバゾール−10,9’−[9H]フルオレン]0.90g(2.0mmol)、ナトリウム tert−ブトキシド0.38g(4.0mmol)を加え、フラスコ内を窒素置換した。この混合物にキシレン10mLを加え、減圧下で攪拌する事で脱気した。この混合物に、トリ(tert−ブチル)ホスフィン0.4mL、ビス(ジベンジリデンアセトン)パラジウム(0)58mg(0.10mmol)を加え、窒素気流下、130℃で7時間還流した。
この混合物を濾過し、固体を水で洗浄した。洗浄後、得られた固体を加熱したトルエンに溶解し、この溶液をセライト・アルミナ・フロリジールを通して濾過した。得られた濾液を濃縮して得た固体をトルエン/ヘキサンで再結晶したところ、目的物の淡黄色固体を収量0.96g、収率64%で得た。上記合成方法の合成スキームを下記式(b)に示す。
Figure JPOXMLDOC01-appb-C000036
得られた淡黄色固体0.96gをトレインサブリメーション法により昇華精製した。昇華精製は、圧力3.5Pa、アルゴン流量5.0mL/minの条件で、淡黄色固体を320℃で加熱して行った。昇華精製後、淡黄色固体を0.88g、回収率92%で得た。
得られた淡黄色固体の核磁気共鳴分光法(H−NMR)による分析結果を下記に示す。また、H−NMRチャートを図18(A)(B)に示す。なお、図18(B)は、図18(A)における6.5ppm~9.0ppmの範囲を拡大して表したチャートである。この結果から、本実施例において、上述の構造式(101)で表される本発明の一態様である有機化合物、BINCzPA−02が得られたことがわかった。
H NMR(DMSO−d6,300MHz):δ=6.74(d、J=7.8Hz、1H)、6.79−6.82(m、3H)、7.15−7.20(m、3H)、7.39−7.50(m、10H)、7.60−7.94(m、15H)、8.03(d、J=7.8Hz、2H)、8.16−8.23(m、2H)、8.45(d、J=7.8Hz、1H)。
次に、BINCzPA−02のトルエン溶液および固体薄膜の吸収スペクトル及び発光スペクトルを測定した。
得られたトルエン溶液の吸収スペクトルおよび発光スペクトルの測定結果を図19(A)に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。また、固体薄膜の吸収スペクトルおよび発光スペクトルの測定結果を図19(B)に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。
図19(A)の結果より、BINCzPA−02のトルエン溶液では、396nm、376nm、353nm、317nm付近に吸収ピークが見られ、421nm(励起波長376nm)に発光波長のピークが見られた。また、図19(B)の結果より、BINCzPA−02の固体薄膜では、398nm、378nm、356nm、318nm、265nm付近に吸収ピークが見られ、457nm付近(励起波長380nm)に発光波長のピークが見られた。
なお、BINCzPA−02は青色に発光することを確認した。本発明の一態様である有機化合物、BINCzPA−02は、発光物質や可視域の蛍光発光物質のホスト材料としても利用可能である。また、BINCzPA−02の薄膜は、大気下においても凝集しにくい良好な膜質であることがわかった。
BINCzPA−02のHOMO準位およびLUMO準位をサイクリックボルタンメトリ(CV)測定を元に算出した。
この結果、BINCzPA−02の酸化電位Ea[V]の測定において、HOMO準位は−5.77eVであることがわかった。一方、還元電位Ec[V]の測定において、LUMO準位は−2.74eVであることがわかった。
≪合成例3≫
本実施例では、実施の形態1の構造式(146)で表される本発明の一態様である有機化合物、7−[4−(10−フェニル−9−アントリル)フェニル]−7H−ベンゾ[c]ベンゾフロ[3,2−g]カルバゾール(略称:BBFcz(II)PA)の合成方法について説明する。なお、BBFcz(II)PAの構造を以下に示す。
Figure JPOXMLDOC01-appb-C000037
50mL3口フラスコに9−(4−ブロモフェニル)−10−フェニルアントラセン1.4g(3.6mmol)、7H−ベンゾ[c]ベンゾフロ[3,2−g]カルバゾール1.1g(3.6mmol)、ナトリウム tert−ブトキシド0.69g(7.2mmol)を加え、フラスコ内を窒素置換した。この混合物にキシレン18mLを加え、減圧下で攪拌する事で脱気した。この混合物に、トリ(tert−ブチル)ホスフィン0.73mL、ビス(ジベンジリデンアセトン)パラジウム(0)0.10g(0.18mmol)を加え、窒素気流下、130℃で5時間還流した。
この混合物を濾過し、固体を水で洗浄した。洗浄後、得られた固体を加熱したトルエンに溶解し、この溶液をセライト・アルミナ・フロリジールを通して濾過した。得られた濾液を濃縮して得た固体をトルエンで再結晶したところ、目的物の淡黄色固体を収量1.3g、収率55%で得た。上記合成方法の合成スキームを下記式(c)に示す。
Figure JPOXMLDOC01-appb-C000038
得られた淡黄色固体1.3gをトレインサブリメーション法により昇華精製した。昇華精製は、圧力3.5Pa、アルゴン流量5.0mL/minの条件で、淡黄色固体を290℃で加熱して行った。昇華精製後、淡黄色固体を1.1g、回収率89%で得た。
得られた淡黄色固体の核磁気共鳴分光法(H−NMR)による分析結果を下記に示す。また、H−NMRチャートを図20(A)(B)に示す。なお、図20(B)は、図20(A)における7.0ppm~9.0ppmの範囲を拡大して表したチャートである。この結果から、本実施例において、上述の構造式(146)で表される本発明の一態様である有機化合物、BBFcz(II)PAが得られたことがわかった。
H NMR(CDCl,300MHz):δ=7.38−7.67(m、12H)、7.75−7.90(m、13H)、8.03(d、J=8.7Hz、1H)、8.13(d、J=7.8Hz、1H)、8.36(dd、J=7.8Hz、J=1.5Hz、1H)、8.78(d、J=8.4Hz、1H)。
次に、BBFcz(II)PAのトルエン溶液および固体薄膜の吸収スペクトル及び発光スペクトルを測定した。
得られたトルエン溶液の吸収スペクトルおよび発光スペクトルの測定結果を図21(A)に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。また、固体薄膜の吸収スペクトルおよび発光スペクトルの測定結果を図21(B)に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。
図21(A)の結果より、BBFcz(II)PAのトルエン溶液では、389nm、373nm、355nm、311nm付近に吸収ピークが見られ、421nm(励起波長374nm)に発光波長のピークが見られた。また、図21(B)の結果より、BBFcz(II)PAの固体薄膜では、393nm、376nm、360nm、342nm、312nm、287nm付近に吸収ピークが見られ、441nm付近(励起波長375nm)に発光波長のピークが見られた。
なお、BBFcz(II)PAは青色に発光することを確認した。本発明の一態様である有機化合物、BBFcz(II)PAは、発光物質や可視域の蛍光発光物質のホスト材料としても利用可能である。また、BBFcz(II)PAの薄膜は、大気下においても凝集しにくい良好な膜質であることがわかった。
BBFcz(II)PAのHOMO準位およびLUMO準位をサイクリックボルタンメトリ(CV)測定を元に算出した。
この結果、BBFcz(II)PAの酸化電位Ea[V]の測定において、HOMO準位は−5.79eVであることがわかった。一方、還元電位Ec[V]の測定において、LUMO準位は−2.74eVであることがわかった。
≪合成例4≫
本実施例では、実施の形態1の構造式(164)で表される本発明の一態様である有機化合物、7−[4−(10−フェニル−9−アントリル)フェニル]−7H−ベンゾ[c]ベンゾフロ[2,3−g]カルバゾール(略称:BBFczPA)の合成方法について説明する。なお、BBFczPAの構造を以下に示す。
Figure JPOXMLDOC01-appb-C000039
50mL3口フラスコに9−(4−ブロモフェニル)−10−フェニルアントラセン0.90g(2.2mmol)、7H−ベンゾ[c]ベンゾフロ[2,3−g]カルバゾール0.68g(2.2mmol)、ナトリウム tert−ブトキシド0.42g(4.4mmol)を加え、フラスコ内を窒素置換した。この混合物にキシレン11mLを加え、減圧下で攪拌する事で脱気した。この混合物に、トリ(tert−ブチル)ホスフィン0.45mL、ビス(ジベンジリデンアセトン)パラジウム(0)63mg(0.11mmol)を加え、窒素気流下、160℃で9時間還流した。
この混合物を濾過し、固体を水で洗浄した。洗浄後、得られた固体を加熱したトルエン100mLに溶解し、この溶液をセライト・アルミナ・フロリジールを通して濾過した。得られたろ液を濃縮して得た固体をトルエンで再結晶したところ、目的物の淡黄色固体を収量0.76g、収率54%で得た。上記合成方法の合成スキームを下記式(d)に示す。
Figure JPOXMLDOC01-appb-C000040
得られた淡黄色固体0.76gをトレインサブリメーション法により昇華精製した。昇華精製は、圧力3.8Pa、アルゴン流量5.0mL/minの条件で、淡黄色固体を300℃で加熱して行った。昇華精製後、淡黄色固体を0.72g、回収率94%で得た。
得られた黄色固体の核磁気共鳴分光法(H−NMR)による分析結果を下記に示す。また、H−NMRチャートを図22(A)(B)に示す。なお、図22(B)は、図22(A)における7.0ppm~10.5ppmの範囲を拡大して表したチャートである。この結果から、本実施例において、上述の構造式(164)で表される本発明の一態様である有機化合物、BBFczPAが得られたことがわかった。
H NMR(CDCl,300MHz):δ=7.38−7.96(m、24H)、8.01(d、J=9.0Hz、1H)、8.07−8.10(m、3H)、10.13(d、J=7.5Hz、1H)。
次に、BBFczPAのトルエン溶液および固体薄膜の吸収スペクトル及び発光スペクトルを測定した。
得られたトルエン溶液の吸収スペクトルおよび発光スペクトルの測定結果を図23(A)に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。また、固体薄膜の吸収スペクトルおよび発光スペクトルの測定結果を図23(B)に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。
図23(A)の結果より、BBFczPAのトルエン溶液では、396nm、373nm、355nm、332nm付近に吸収ピークが見られ、421nm及び431nm(励起波長373nm)に発光波長のピークが見られた。また、図23(B)の結果より、BBFczPAの固体薄膜では、400nm、376nm、360nm、337nm、298nm、263nm付近に吸収ピークが見られ、444nm付近(励起波長377nm)に発光波長のピークが見られた。
なお、BBFczPAは青色に発光することを確認した。本発明の一態様である有機化合物、BBFczPAは、発光物質や可視域の蛍光発光物質のホスト材料としても利用可能である。また、BBFczPAの薄膜は、大気下においても凝集しにくい良好な膜質であることがわかった。
BBFczPAのHOMO準位およびLUMO準位をサイクリックボルタンメトリ(CV)測定を元に算出した。
この結果、BBFczPAの酸化電位Ea[V]の測定において、HOMO準位は−5.79eVであることがわかった。一方、還元電位Ec[V]の測定において、LUMO準位は−2.73eVであることがわかった。また、酸化−還元波の繰り返し測定において1サイクル目と100サイクル後の波形と比較したところ、Ea測定においては81%、Ec測定においては78%のピーク強度を保っていたことから、BBFczPAは酸化、及び還元に対する耐性が良好であることが確認された。
≪合成例5≫
本実施例では、実施の形態1の構造式(191)で表される本発明の一態様である有機化合物、7−{4−[10−(1−ナフチル)−9−アントリル]フェニル}−7H−ベンゾ[c]ベンゾフロ[2,3−g]カルバゾール(略称:αN−BBFczPAnth)の合成方法について説明する。なお、αN−BBFczPAnthの構造を以下に示す。
Figure JPOXMLDOC01-appb-C000041
200mL3口フラスコに9−(4−ブロモフェニル)−10−(1−ナフチル)アントラセン2.3g(5.0mmol)、7H−ベンゾ[c]ベンゾフロ[2,3−g]カルバゾール1.6g(5.0mmol)、ナトリウム tert−ブトキシド0.96g(10mmol)を加え、フラスコ内を窒素置換した。この混合物にメシチレン25mLを加え、減圧下で攪拌する事で脱気した。この混合物に、トリ(tert−ブチル)ホスフィン2.0mL、ビス(ジベンジリデンアセトン)パラジウム(0)0.28g(0.50mmol)を加え、窒素気流下、120℃で16時間撹拌した。
この混合物を濾過し、固体を水で洗浄した。洗浄後、得られた固体を加熱したトルエンに溶解し、この溶液をセライト・アルミナ・フロリジールを通して濾過した。得られた濾液を濃縮して得た固体をトルエンで再結晶したところ、目的物の淡黄色固体を収量2.0g、収率56%で得た。上記合成方法の合成スキームを下記式(e)に示す。
Figure JPOXMLDOC01-appb-C000042
得られた淡黄色固体2.0gをトレインサブリメーション法により昇華精製した。昇華精製は、圧力3.8Pa、アルゴン流量5.0mL/minの条件で、淡黄色固体を310℃で加熱して行った。昇華精製後、淡黄色固体を1.8g、回収率93%で得た。
得られた黄色固体の核磁気共鳴分光法(H−NMR)による分析結果を下記に示す。また、H−NMRチャートを図24(A)(B)に示す。なお、図24(B)は、図24(A)における7.0ppm~10.5ppmの範囲を拡大して表したチャートである。この結果から、本実施例において、上述の構造式(191)で表される本発明の一態様である有機化合物、αN−BBFczPAnthが得られたことがわかった。
H NMR(CCl,300MHz):δ=7.23−7.36(m、4H)、7.49−7.68(m、9H)、7.76−7.81(m、2H)、7.88−8.16(m、15H)、10.13(d、J=8.7Hz、1H)。
次に、αN−BBFczPAnthのトルエン溶液および固体薄膜の吸収スペクトル及び発光スペクトルを測定した。
得られたトルエン溶液の吸収スペクトルおよび発光スペクトルの測定結果を図25(A)に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。また、固体薄膜の吸収スペクトルおよび発光スペクトルの測定結果を図25(B)に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。
図25(A)の結果より、αN−BBFczPAnthのトルエン溶液では、397nm、374nm、356nm、332nm付近に吸収ピークが見られ、418nm及び432nm(励起波長375nm)に発光波長のピークが見られた。また、図25(B)の結果より、αN−BBFczPAnthの固体薄膜では、402nm、378nm、358nm、337nm、297nm、266nm付近に吸収ピークが見られ、447nm付近(励起波長380nm)に発光波長のピークが見られた。
なお、αN−BBFczPAnthは青色に発光することを確認した。本発明の一態様である有機化合物、αN−BBFczPAnthは、発光物質や可視域の蛍光発光物質のホスト材料としても利用可能である。また、αN−BBFczPAnthの薄膜は、大気下においても凝集しにくい良好な膜質であることがわかった。
αN−BBFczPAnthのHOMO準位およびLUMO準位をサイクリックボルタンメトリ(CV)測定を元に算出した。
この結果、αN−BBFczPAnthの酸化電位Ea[V]の測定において、HOMO準位は−5.83eVであることがわかった。一方、還元電位Ec[V]の測定において、LUMO準位は−2.76eVであることがわかった。
本実施例では、本発明の一態様である発光素子として、実施例3で説明した、BINCzPA−02(構造式(101))を発光層に用いた発光素子4、実施例4で説明した、BBFcz(II)PA(構造式(146))を発光層に用いた発光素子5、実施例4で説明した、BBFczPA(構造式(164))を発光層に用いた発光素子6、実施例5で説明した、αN−BBFczPAnth(構造式(191))を発光層に用いた発光素子7をそれぞれ作製し、その特性について測定した結果を示す。
なお、本実施例で用いる発光素子の素子構造は、実施例2で示した図11と同様の構造であるが、素子構造を構成する各層の具体的な構成については表3に示す通りである。また、本実施例で用いる材料の化学式を以下に示す。
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-C000044
≪発光素子の動作特性≫
作製した発光素子4、発光素子5、発光素子6および発光素子7の動作特性について、それぞれ測定した。なお、測定は室温で行った。
また、1000cd/m付近における各発光素子の主な初期特性値を以下の表4に示す。
Figure JPOXMLDOC01-appb-T000045
上記結果から、本実施例で作製した発光素子4、発光素子5、発光素子6および発光素子7は、ドーパントや電子輸送層の種類によらず、青の蛍光素子において良好な効率を示すホスト材料であることが分かる。
また、発光素子4、発光素子5、発光素子6および発光素子7に12.5mA/cmの電流密度で電流を流した際の発光スペクトルを図26に示す。図26に示す通り、発光素子の発光スペクトルは、発光層913に含まれる発光物質の発光に由来していることが示唆される。
次に、発光素子4および発光素子7に対する信頼性試験を行った。発光素子4の信頼性試験の結果を図27、発光素子7の信頼性試験の結果を図28にそれぞれ示す。図27および図28において、縦軸は初期輝度を100%とした時の規格化輝度(%)を示し、横軸は素子の駆動時間(h)を示す。なお、信頼性試験は、50mA/cmの電流密度で一定の電流を流した定電流駆動試験を行った。
信頼性試験の結果より、発光素子4および発光素子7はいずれも高い信頼性を示すことが分かった。このことから、本発明の一態様である有機化合物を用いることは発光素子の素子特性を向上させる上で有用であると言える。
101  第1の電極
102  第2の電極
103  EL層
103a、103b  EL層
104  電荷発生層
111、111a、111b  正孔注入層
112、112a、112b  正孔輸送層
113、113a、113b  発光層
114、114a、114b  電子輸送層
115、115a、115b  電子注入層
201  第1の基板
202  トランジスタ(FET)
203R、203G、203B、203W  発光素子
204  EL層
205  第2の基板
206R、206G、206B  カラーフィルタ
206R’、206G’、206B’  カラーフィルタ
207  第1の電極
208  第2の電極
209  黒色層(ブラックマトリクス)
210R、210G  導電層
301  第1の基板
302  画素部
303  駆動回路部(ソース線駆動回路)
304a、304b  駆動回路部(ゲート線駆動回路)
305  シール材
306  第2の基板
307  引き回し配線
308  FPC
309  FET
310  FET
311  FET
312  FET
313  第1の電極
314  絶縁物
315  EL層
316  第2の電極
317  発光素子
318  空間
900  基板
901  第1の電極
902  EL層
903  第2の電極
911  正孔注入層
912  正孔輸送層
913  発光層
914  電子輸送層
915  電子注入層
4000  照明装置
4001  基板
4002  発光素子
4003  基板
4004  第1の電極
4005  EL層
4006  第2の電極
4007  電極
4008  電極
4009  補助配線
4010  絶縁層
4011  封止基板
4012  シール材
4013  乾燥剤
4015  拡散板
4100  照明装置
4200  照明装置
4201  基板
4202  発光素子
4204  第1の電極
4205  EL層
4206  第2の電極
4207  電極
4208  電極
4209  補助配線
4210  絶縁層
4211  封止基板
4212  シール材
4213  バリア膜
4214  平坦化膜
4215  拡散板
4300  照明装置
5101  ライト
5102  ホイール
5103  ドア
5104  表示部
5105  ハンドル
5106  シフトレバー
5107  座席シート
5108  インナーリアビューミラー
7000  筐体
7001  表示部
7002  第2表示部
7003  スピーカ
7004  LEDランプ
7005  操作キー
7006  接続端子
7007  センサ
7008  マイクロフォン
7009  スイッチ
7010  赤外線ポート
7011  記録媒体読込部
7012  支持部
7013  イヤホン
7014  アンテナ
7015  シャッターボタン
7016  受像部
7018  スタンド
7019  マイクロフォン
7020  カメラ
7021  外部接続部
7022、7023  操作用ボタン
7024  接続端子
7025  バンド
7026  留め金
7027  時刻を表すアイコン
7028  その他のアイコン
8001  照明装置
8002  照明装置
8003  照明装置
8004  照明装置
9310  携帯情報端末
9311  表示部
9312  表示領域
9313  ヒンジ
9315  筐体

Claims (12)

  1.  一般式(G1)で表される有機化合物。
    Figure JPOXMLDOC01-appb-I000001
    (式中、環A1および環A2は、式(1a)で表され、隣接する環と任意の位置で縮合し、環Bは、式(1b)で表され、aまたはbで示される位置で隣接する環と縮合する。また、前記式(1b)中のXは、酸素、硫黄、置換もしくは無置換の炭素のいずれかを表す。また、Arは、置換もしくは無置換の炭素数6~14のアリール基を表し、前記アリール基が置換基を有する場合、前記置換基は互いに結合して環を形成していてもよい。また、R~R、及びR10~R13は、それぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、又は置換もしくは無置換の炭素数6~13のアリール基のいずれかを表す。)
  2.  一般式(G2)で表される有機化合物。
    Figure JPOXMLDOC01-appb-I000002
    (式中、環A1は、式(1a)で表され、隣接する環と任意の位置で縮合し、環Bは、式(1b)で表され、aまたはbで示される位置で隣接する環と縮合する5員環を表す。また、前記式(1b)中のXは、酸素、硫黄、置換もしくは無置換の炭素のいずれかを表す。また、Arは、置換もしくは無置換の炭素数6~14のアリール基を表し、前記アリール基が置換基を有する場合、前記置換基は互いに結合して環を形成していてもよい。また、R~R、及びR10~R13は、それぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、又は置換もしくは無置換の炭素数6~13のアリール基のいずれかを表す。)
  3.  一般式(G3)で表される有機化合物。
    Figure JPOXMLDOC01-appb-I000003
    (式中、環Bは、式(1b)で表され、aまたはbで示される位置で隣接する環と縮合する5員環を表す。また、前記式(1b)中のXは、酸素、硫黄、置換もしくは無置換の炭素のいずれかを表す。また、Arは、置換もしくは無置換の炭素数6~14のアリール基を表し、前記アリール基が置換基を有する場合、前記置換基は互いに結合して環を形成していてもよい。また、R~R、及びR10~R13は、それぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、又は置換もしくは無置換の炭素数6~13のアリール基のいずれかを表す。)
  4.  一般式(G4)で表される有機化合物。
    Figure JPOXMLDOC01-appb-I000004
    (式中、環Bは、式(1b)で表され、aまたはbで示される位置で隣接する環と縮合する5員環を表す。また、前記式(1b)中のXは、酸素、硫黄、置換もしくは無置換の炭素のいずれかを表す。また、Arは、置換もしくは無置換の炭素数14~60のアントラセン骨格を含むアリール基を表し、前記アリール基が置換基を有する場合、前記置換基は互いに結合して環を形成していてもよい。また、R~R、及びR10~R13は、それぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、又は置換もしくは無置換の炭素数6~13のアリール基のいずれかを表す。)
  5.  一般式(G5)で表される有機化合物。
    Figure JPOXMLDOC01-appb-I000005
    (式中、環Bは、式(1b)で表され、aまたはbで示される位置で隣接する環と縮合する5員環を表す。また、前記式(1b)中のXは、酸素、硫黄、置換もしくは無置換の炭素のいずれかを表す。また、Arは置換もしくは無置換の炭素数6~13のアリーレン基を表す。またnは0~2を表す。また、R~R、R10~R13、R15~R23は、それぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、又は置換もしくは無置換の炭素数6~13のアリール基のいずれかを表す。)
  6.  構造式(100)、構造式(101)、構造式(146)、構造式(164)、または構造式(191)のいずれか一で表される有機化合物。
    Figure JPOXMLDOC01-appb-I000006
  7.  請求項1乃至請求項6のいずれか一に記載の有機化合物を用いた発光素子。
  8.  一対の電極間にEL層を有し、
     前記EL層は、請求項1乃至請求項6のいずれか一に記載の有機化合物を有する発光素子。
  9.  一対の電極間にEL層を有し、
     前記EL層は、発光層を有し、
     前記発光層は、請求項1乃至請求項6のいずれか一に記載の有機化合物を有する発光素子。
  10.  請求項7に記載の発光素子と、
     トランジスタ、または基板の少なくとも一と、
    を有する発光装置。
  11.  請求項10に記載の発光装置と、
     マイク、カメラ、操作用ボタン、外部接続部、または、スピーカの少なくとも一と、
    を有する電子機器。
  12.  請求項7に記載の発光素子と、
     筐体、カバー、または、支持台の少なくとも一と、
    を有する照明装置。
PCT/IB2018/051082 2017-03-03 2018-02-22 有機化合物、発光素子、発光装置、電子機器、および照明装置 WO2018158659A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019502294A JP7175259B2 (ja) 2017-03-03 2018-02-22 有機化合物、発光素子、発光装置、電子機器、および照明装置
JP2022178826A JP2023025011A (ja) 2017-03-03 2022-11-08 発光素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017040203 2017-03-03
JP2017-040203 2017-03-03

Publications (1)

Publication Number Publication Date
WO2018158659A1 true WO2018158659A1 (ja) 2018-09-07

Family

ID=63369852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/051082 WO2018158659A1 (ja) 2017-03-03 2018-02-22 有機化合物、発光素子、発光装置、電子機器、および照明装置

Country Status (2)

Country Link
JP (2) JP7175259B2 (ja)
WO (1) WO2018158659A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021103799A (ja) * 2018-09-26 2021-07-15 株式会社半導体エネルギー研究所 発光デバイス、発光装置、電子機器および照明装置
CN113725380A (zh) * 2021-04-14 2021-11-30 荣耀终端有限公司 显示面板及其制备方法、显示装置

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009542735A (ja) * 2006-07-11 2009-12-03 メルク パテント ゲーエムベーハー 有機エレクトロルミネセンス素子のための新規な材料
US20100099890A1 (en) * 2008-10-17 2010-04-22 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative and light-emitting devices, electronic devices, and lighting device using the anthracene derivative
KR20110132721A (ko) * 2010-06-03 2011-12-09 다우어드밴스드디스플레이머티리얼 유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
JP2013047283A (ja) * 2011-07-22 2013-03-07 Semiconductor Energy Lab Co Ltd 化合物
WO2013069939A1 (ko) * 2011-11-07 2013-05-16 덕산하이메탈(주) 유기전기소자용 화합물, 이를 포함하는 유기전기소자 및 그 전자 장치
WO2014061961A1 (en) * 2012-10-16 2014-04-24 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescence compounds and organic electroluminescence device comprising the same
JP2014524907A (ja) * 2011-06-27 2014-09-25 エルジー・ケム・リミテッド 新しい化合物およびそれを用いた有機発光素子
US20160005979A1 (en) * 2014-07-02 2016-01-07 Samsung Display Co., Ltd. Organic light-emitting device
WO2016021989A1 (en) * 2014-08-08 2016-02-11 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compounds and organic electroluminescent devices comprising the same
WO2016195458A2 (ko) * 2015-06-05 2016-12-08 주식회사 엘지화학 이중 스피로형 유기 화합물 및 이를 포함하는 유기 전자 소자
CN106467526A (zh) * 2016-08-26 2017-03-01 江苏三月光电科技有限公司 一种含有氧杂蒽的有机化合物及其应用
WO2017034303A1 (ko) * 2015-08-27 2017-03-02 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR20170063394A (ko) * 2015-11-30 2017-06-08 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2017200320A1 (ko) * 2016-05-19 2017-11-23 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2017204556A1 (ko) * 2016-05-26 2017-11-30 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2018034517A1 (ko) * 2016-08-18 2018-02-22 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2018038544A1 (ko) * 2016-08-24 2018-03-01 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009542735A (ja) * 2006-07-11 2009-12-03 メルク パテント ゲーエムベーハー 有機エレクトロルミネセンス素子のための新規な材料
US20100099890A1 (en) * 2008-10-17 2010-04-22 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative and light-emitting devices, electronic devices, and lighting device using the anthracene derivative
KR20110132721A (ko) * 2010-06-03 2011-12-09 다우어드밴스드디스플레이머티리얼 유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
JP2014524907A (ja) * 2011-06-27 2014-09-25 エルジー・ケム・リミテッド 新しい化合物およびそれを用いた有機発光素子
JP2013047283A (ja) * 2011-07-22 2013-03-07 Semiconductor Energy Lab Co Ltd 化合物
WO2013069939A1 (ko) * 2011-11-07 2013-05-16 덕산하이메탈(주) 유기전기소자용 화합물, 이를 포함하는 유기전기소자 및 그 전자 장치
WO2014061961A1 (en) * 2012-10-16 2014-04-24 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescence compounds and organic electroluminescence device comprising the same
US20160005979A1 (en) * 2014-07-02 2016-01-07 Samsung Display Co., Ltd. Organic light-emitting device
WO2016021989A1 (en) * 2014-08-08 2016-02-11 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compounds and organic electroluminescent devices comprising the same
WO2016195458A2 (ko) * 2015-06-05 2016-12-08 주식회사 엘지화학 이중 스피로형 유기 화합물 및 이를 포함하는 유기 전자 소자
WO2017034303A1 (ko) * 2015-08-27 2017-03-02 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR20170063394A (ko) * 2015-11-30 2017-06-08 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2017200320A1 (ko) * 2016-05-19 2017-11-23 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2017204556A1 (ko) * 2016-05-26 2017-11-30 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2018034517A1 (ko) * 2016-08-18 2018-02-22 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2018038544A1 (ko) * 2016-08-24 2018-03-01 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN106467526A (zh) * 2016-08-26 2017-03-01 江苏三月光电科技有限公司 一种含有氧杂蒽的有机化合物及其应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021103799A (ja) * 2018-09-26 2021-07-15 株式会社半導体エネルギー研究所 発光デバイス、発光装置、電子機器および照明装置
CN113299841A (zh) * 2018-09-26 2021-08-24 株式会社半导体能源研究所 发光器件、发光装置、电子设备及照明装置
JP7035249B2 (ja) 2018-09-26 2022-03-14 株式会社半導体エネルギー研究所 発光デバイス、発光装置、電子機器および照明装置
CN113299841B (zh) * 2018-09-26 2022-08-30 株式会社半导体能源研究所 发光器件、发光装置、电子设备及照明装置
CN113725380A (zh) * 2021-04-14 2021-11-30 荣耀终端有限公司 显示面板及其制备方法、显示装置

Also Published As

Publication number Publication date
JP2023025011A (ja) 2023-02-21
JP7175259B2 (ja) 2022-11-18
JPWO2018158659A1 (ja) 2020-02-06

Similar Documents

Publication Publication Date Title
JP6487103B1 (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
JP7458452B2 (ja) 発光素子
JP2018188418A (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
JP7143310B2 (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
JP7354100B2 (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
WO2019229583A1 (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
JP2019006763A (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
JP2018052929A (ja) 有機金属錯体、発光素子、発光装置、電子機器、および照明装置
US20230263055A1 (en) Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
JP2023025011A (ja) 発光素子
JP2019189540A (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
JP7297758B2 (ja) 発光素子、発光装置、電子機器、および照明装置
JP2018065798A (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
JP7066499B2 (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
WO2018178818A1 (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
JP2021024863A (ja) 有機化合物、発光デバイス、発光装置、電子機器、および照明装置
JP2019127483A (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
JP7225097B2 (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
JP7287953B2 (ja) 有機金属錯体、発光デバイス、発光装置、電子機器、および照明装置
WO2018189623A1 (ja) 有機金属錯体、発光素子、発光装置、電子機器、および照明装置
WO2020058811A1 (ja) 有機化合物、発光デバイス、発光装置、電子機器、および照明装置
JP2019142821A (ja) 縮合カルバゾール骨格を有する有機化合物の合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760494

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502294

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18760494

Country of ref document: EP

Kind code of ref document: A1