WO2018157763A1 - 铆接工具夹头及铆接工具 - Google Patents

铆接工具夹头及铆接工具 Download PDF

Info

Publication number
WO2018157763A1
WO2018157763A1 PCT/CN2018/077116 CN2018077116W WO2018157763A1 WO 2018157763 A1 WO2018157763 A1 WO 2018157763A1 CN 2018077116 W CN2018077116 W CN 2018077116W WO 2018157763 A1 WO2018157763 A1 WO 2018157763A1
Authority
WO
WIPO (PCT)
Prior art keywords
claw
riveting tool
pressure
safety valve
tool chuck
Prior art date
Application number
PCT/CN2018/077116
Other languages
English (en)
French (fr)
Inventor
刘锋力
邱福华
姚翔腾
杨凌云
郭勇
何大运
高军
任文红
Original Assignee
杭州联团科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州联团科技有限公司 filed Critical 杭州联团科技有限公司
Priority to EP18761195.9A priority Critical patent/EP3590625B1/en
Priority to US16/490,813 priority patent/US11052453B2/en
Publication of WO2018157763A1 publication Critical patent/WO2018157763A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/02Riveting procedures
    • B21J15/04Riveting hollow rivets mechanically
    • B21J15/043Riveting hollow rivets mechanically by pulling a mandrel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • B21J15/16Drives for riveting machines; Transmission means therefor
    • B21J15/26Drives for riveting machines; Transmission means therefor operated by rotary drive, e.g. by electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • B21J15/105Portable riveters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • B21J15/28Control devices specially adapted to riveting machines not restricted to one of the preceding subgroups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/38Accessories for use in connection with riveting, e.g. pliers for upsetting; Hand tools for riveting
    • B21J15/383Hand tools for riveting

Definitions

  • the invention belongs to the technical field of machinery and relates to a riveting device, in particular to a riveting tool chuck and a riveting tool.
  • Riveted fasteners are widely used in aerospace, military, automotive, marine, construction, installation, manufacturing and other industries with riveting and fastening requirements.
  • the civil use is also very extensive, so the relevant industries and domestic and foreign civilian markets are all kinds of
  • the annual demand for riveting tools is huge.
  • the main development direction of riveting tools and other products is cost-effective, precise, convenient, efficient, and labor-saving.
  • the overall pneumatic riveting tools have been developed and popularized.
  • Pneumatic riveting tools are mainly popularized and applied in the industrial market. Due to the limitation of compressed air source and high price, the market expansion of pneumatic riveting tools is limited.
  • the integral electric riveting tool Due to its portability and convenience of power source, the integral electric riveting tool has recently attracted wide market attention. However, there are not many products available in the domestic and foreign markets. Because the product has a high unit price, it is mainly for some industries. Level market. In recent years, the riveting tool has been adapted to the universal rotary tool chuck with power output. Since the rotary tool with power output is a universal tool, such as an electric drill, the riveting tool chuck is a riveting tool industry. A valuable, meaningful and market-oriented development direction has emerged as a new type of riveting tool product (refer to patent JP3993844 and patent US006018978).
  • One of the common mechanical features of a riveted tool chuck or riveting tool attachment driven by a manual, pneumatic, electric or drive tool is that the working load is passed through a core rod that passes through the front end of the riveting tool chuck or riveting tool attachment.
  • the force or torque conversion is transmitted to the riveted fastener to become an axial tensile force to the riveted fastener.
  • the axial tensile force exceeds the yield limit of the riveted fastener, the thin portion of the riveted fastener is axially compressed and deformed.
  • the core rod is pulled off to complete the core pulling action when the axial pulling force exceeds the tensile limit of the core material.
  • the core rod is fixed in the direction of the axial rivet load.
  • the rotary driving tool applies axial tension and displacement to the core rod by screwing. After the riveting work is completed, the external force is required to clamp the outer casing to prevent it from rotating with the driving tool, otherwise the function is invalid.
  • the forward spiral pair and the reverse spiral pair of the passive component are respectively located on both sides of the thread.
  • the transmission mechanism needs to perform the helical sub-conversion before the passive component can be driven by the active component. The movement took turns. Therefore, in general, when shifting between the forward gear and the reverse gear in the screw nut transmission mechanism, the helical sub-conversion is first performed.
  • the torque and displacement drive mechanism of the riveting tool chuck (refer to the patent JP3993844 and the patent US0060189787) is the thread drive structure.
  • the active mechanism of the screw drive mechanism in the patent JP3993844 is an axially fixed screw, and the active mechanism used in the patent US0060189787 is the shaft.
  • the riveting tool chuck (refer to the patent JP3993844 and the patent US0060189787) comprises a threaded transmission mechanism, and a complete working stroke during operation includes the retracting and riveting action and the operation of advancing the two movement directions of the rivet tail rod.
  • the rotation direction of the rotary driving tool is changed, the steering of the active component connected to the rotary driving tool will also be converted.
  • the spiral between the rivet screw pair and the exiting spiral pair on the driven component also needs to be performed first. Sub-conversion, then the reverse linear motion of the driven component under the action of the rotary drive tool. Since the load during the stroke of the rivet tail rod is small, no detailed analysis is performed, and the rivet stroke is mainly analyzed.
  • the claw body and the claw body top column are retracted into the extreme position of the inner tube inner cavity, the claw body is in a fully open state, the claw body sleeve is at the extreme end position, and the claw body core forms a ratio
  • the cylindrical space of the guide tip size is slightly larger to allow the rivet tail rod to exit or to insert a new rivet, which is the starting point of the rivet stroke at the end of the stroke of the rivet tail rod.
  • the pre-tensioning spring is compressed by a large amount
  • the pre-tensioning spring is compressed by a large amount, so that the front end surface of the claw body maintains axial pressure contact with the rear end surface of the guide nozzle, and the screw is completely withdrawn.
  • the nips of the internal threads of the transmission member are also in pressure contact with each other, and the front and rear pressures are in a static equilibrium state. After inserting the rivet, the screw starts to rotate under the driving tool, the screw enters the thread nip area, and the rivet stroke starts.
  • the screw pair is still the exiting spiral pair in the stroke of the rivet tail rod, so the chuck of the riveting tool is pulled.
  • the screw drive mechanism first performs the helical sub-conversion, and then the riveting load can be loaded for the riveting work.
  • the thread nip In the design of the threaded drive mechanism, the thread nip is considered. If the mechanism is involved in the reentry problem after exiting the thread nip, a preloading aid is usually required.
  • the pre-tightening problem of thread re-entry is a common problem in the screw nut transmission mechanism, and is also a necessary condition for the mechanism to continuously perform repeated work.
  • the patent JP3993844 handles the pre-tightening force of the front and rear strokes of the thread drive through a spring: the front section: the beginning and the end of the riveting stroke When the rod screw pair is released, the front end surface of the claw body is kept in pressure contact with the rear end surface of the guide nozzle, and the spring is compressed from the front end to form a preload force.
  • Rear section After the front end surface of the screw is in pressure contact with the cored spring stop piece until the end of the riveting stroke, the spring is compressed from the rear end to form a preload force.
  • the patent US0060189787 uses two springs to separately handle the pre-tightening force of the front and rear strokes of the threaded travel stroke at the front and rear working positions of the movable screw: the front section: the beginning of the riveting stroke to the exit tail screw At the time of the secondary release, the front end surface of the claw body is in pressure contact with the rear end surface of the guide nozzle, and the spring is compressed from the front end to form a preload force.
  • the rear section the front end of the screw is in pressure contact with the front end of the spring until the end of the riveting stroke, and the spring is compressed from the front end to form a preload.
  • Patent JP3993844 and patent US0060189787 use different auxiliary mechanisms to apply pre-tightening force to the front and rear strokes of the threaded drive, solving the problem of preloading force in the same thread drive.
  • the patent JP3993844 uses a spring less than the patent US0060189787, from the perspective of preload, the patent JP3993844 may be a modified design of the patent US0060189787, because the stroke of the patented JP3993844 is fixed and does not follow the pre-compression spring. The change in length may change and may be shorter than the stroke of the rear section of US0060189787.
  • middle stroke condition 1 In the middle section of the normal rivet stroke, there is no pre-tightening auxiliary mechanism in the thread drive mechanism of the above two patents.
  • the power tool overcomes the frictional force of the withdrawal screw pair to make the inner tube retreat relative to the drive shaft under the reaction force of the guide nozzle against the claw body until The surface of the claw core is in contact with the surface of the rivet tail rod, and the claw body bites the rivet tail rod.
  • the spring force generated by the spring has the compression force completely becomes the internal force of the inner tube of the moving part.
  • the front end of the claw body is in contact with the rear end of the guide nozzle but the axial interaction force is reduced to 0, it is an axial 0 pressure contact.
  • the external force of the inner tube of the moving part is released, and the spiral pair on the transmission mechanism is still the exiting spiral pair, and the active part needs to continue to rotate after a "empty return" stroke.
  • the other side that is transferred to the thread becomes a rivet screw pair, and the helical sub-conversion is passively converted under axial displacement constraints.
  • the "empty back" stroke size is determined by the axial clearance between the threads, but the wear of the threads during threading increases the axial clearance of the threads.
  • Middle stroke condition 2 During the use of the tool, the operation direction will be changed according to the actual work needs or abnormal conditions, then further investigate the reverse operation problem in the middle stroke of the thread drive, that is, the shift problem in the riveting work stroke .
  • the power tool shifting reverse operation in the conventional riveting tool chuck reference patent JP3993844 and patent US0060189787 means that the screw drive mechanism needs advanced spiral conversion and then steering.
  • the power tool rotates and drives the active part of the screw drive mechanism to rotate in the reverse direction, the axial pressure on the screw pair is the reaction force generated when the elastic rivet of the blind rivet is elastically deformed or plastically deformed, and the power tool reversely rotates to release the rivet and the guide tip at the contact surface.
  • the rotary power tool continues to reverse the rotation to release the rivet screw pair, and then the spiral return is completed after the "empty return" stroke, and after the spiral pair is formed,
  • the active component can then drive the driven component to reverse operation, so in this case the helical secondary conversion is also passively converted under axial displacement constraints. If the conversion has been completed in the spiral pair, it is necessary to change the steering of the power tool back to the original operation direction in any position of the middle stroke. From the previous analysis, it is necessary to perform the helical sub conversion first in this case, and also in Passively implementing the transformation under axial displacement constraints also has a "empty back" travel problem.
  • Middle stroke condition 3 If the work requires large-size rivets, the blind rivet tool needs to replace the guide nozzle.
  • the large-size rivet means that the diameter of the tail rod of the core is larger, so the core hole of the guide nozzle needs to be enlarged.
  • the tail of the guide tip needs to be appropriately lengthened so that the claw pieces are further retracted into the claw sleeve to form a larger space for loading the blind rivet having a larger diameter of the tail rod.
  • the conventional riveting tool chuck reference patent JP3993844 and the patent US0060189787 since the length of the guide tail is lengthened, the position of the helical sub-transform is correspondingly moved back to the rear of the guide tail by the length of the guide tail.
  • the axial length but also the passive conversion under axial displacement constraints, also has a "empty back" stroke problem.
  • the conventional riveting tool chuck refers to the thread transmission mechanism of JP3993844 and the patent US0060189787.
  • the mid-stroke between the front and rear sections of the stroke does not provide a pre-tensioning force by the auxiliary mechanism.
  • the middle stroke condition 1 of the rivet there is a "empty back" stroke due to the axial clearance between the threads from the position at which the sling is released from the position when the sling is released, and during the process of forming the rivet pair; There is no pre-tightening force in the middle section of the rivet screw pair.
  • the stroke condition of the middle section of the rivet is similar to that of the working condition 1, except that the position where the helical sub-conversion occurs varies with the specification of the guide. Due to the lack of the pre-tightening auxiliary mechanism in the middle stroke threading mechanism of the riveting work, the patent JP3993844 and the patent US0060189787 have the following problems: in the middle position of the middle of the normal riveting stroke, there is no pre-tightening auxiliary mechanism in the threading mechanism.
  • the spiral pair is passively converted under axial displacement constraints, and there is a "empty back" stroke during the helical sub-conversion process. If the power tool shifts to the steering motion during the riveting work stroke, there is also a "empty return" stroke when the threaded transmission mechanism is operated in the reverse direction during the stroke because there is no preloading assistance mechanism.
  • the threaded drive mechanism does not have an auxiliary mechanism that compensates for thread wear. The problems of “empty return” stroke and thread wear compensation can seriously affect the transmission efficiency, transmission accuracy and reliability of the screw drive mechanism, resulting in the effective pull of the tool from the power tool under the anti-rotation clamping condition of a certain external force.
  • the riveting force is not large enough, which is outstanding in the ability of stainless steel blind rivets or high-strength carbon steel blind rivets with high strength and rugged strength, which limits the scope of application of such products.
  • the patent of US 006018978, the riveting tool chuck has been in existence for nearly 20 years. The above problems have not been effectively solved.
  • the patent JP3993844 does not solve the above problems in essence, but these problems can seriously affect the value, function and scope of such products.
  • the object of the present invention is to provide a driving device with a power output that can be adapted to the above problems, and can provide a screw pair pre-tightening force and a riveting tool chuck without an empty return stroke.
  • Another object of the present invention is to provide a riveting tool which has a reasonable structural design and can provide a screw pair pre-tightening force without an empty return stroke.
  • a riveting tool chuck including a cylindrical handle, which is provided with a rotation in the cylindrical handle and axially and cyclically connected with the cylindrical handle. And a transmission member that is circumferentially positioned and axially movably connected to the tubular handle, wherein the rotating member and the transmission member are connected by a threaded structure, and a plurality of claws distributed in the circumferential direction are arranged at the front end of the transmission member and a limiting structure capable of preventing the claws from being detached, wherein the front end of the tubular handle is provided with a cylindrical guide which can make the front end of each claw body be at the rear end thereof, and the front end of the transmission member and the rear end of each claw body
  • the utility model is provided with a claw body top column which can push the transmission member to move forward axially when the rotating member is reversed, so that the claw bodies are radially separated under the cooperation of the cylindrical guide nozzle, and can drive the transmission member when
  • the rotating member is a screw
  • the transmission member is a cylinder
  • the front end of the screw and the rear end of the barrel can be connected by the thread structure
  • the safety valve mechanism The utility model comprises a valve core which is arranged in the cylinder body and can be blocked in the middle of the cylinder body and a spring which is arranged between the valve core and the top column of the claw body. The spring end acts on the top column of the claw body and the other end acts on the valve core.
  • a valve chamber is formed between the screw, the cylinder and the valve core to change the volume according to the axial relative position of the screw and the cylinder to change the internal pressure.
  • the rotating member has a screw hole
  • the transmission member has a threaded post
  • the screw hole and the threaded post can be screwed
  • the safety valve The mechanism comprises an axial through hole disposed on the transmission member and a valve core disposed in the axial through hole and capable of being blocked in the middle of the axial through hole, wherein the valve core and the claw body top column are provided with a spring.
  • One end of the spring acts on the top column of the claw body, and the other end acts on the valve core
  • the rotating member, the transmission member and the valve core are formed to change the volume according to the axial relative position of the rotating member and the transmission member. Thereby changing the valve cavity of its internal pressure.
  • the safety valve mechanism is a one-way safety valve mechanism, and when the pressure in the valve chamber is greater than the spring preload force, the valve core can be pushed open to achieve pressure relief.
  • the safety valve mechanism is a two-way safety valve mechanism, and a low-pressure overload protection safety valve capable of increasing the pressure in the valve cavity when the pressure in the valve chamber is less than a set value is provided on the safety valve mechanism. And when the pressure in the valve chamber is greater than the spring preload force, the valve core can be pushed open to achieve pressure relief.
  • the safety valve mechanism is a pressure adjustable safety valve mechanism or a fixed pressure safety valve mechanism, and when the safety valve mechanism is a fixed pressure safety valve mechanism, the transmission member and the tubular hand are A pre-tensioning spring is disposed between the two; the valve chamber is provided with a medium, and the medium is a gas or a fluid.
  • the rear end of the cylindrical handle is provided with an annular groove, and the annular groove is sleeved with an elastic ring, and the rear end surface of the cylindrical handle is provided with at least one avoidance. Observe the gap.
  • the cylindrical guide is disposed on the front outer sleeve, and the front outer sleeve is detachably fixed to the front end of the cylindrical handle, the front outer sleeve A locking ring that abuts against the front end surface of the tubular handle is detachably coupled.
  • the cylindrical guide is connected to the front outer sleeve by a detachable structure to enable the front outer sleeve to be connected to any one of cylindrical guides having different apertures.
  • the cylindrical guide nozzle includes a cylindrical rear portion disposed in the front outer sleeve and capable of engaging the front end of each claw body thereon and rotatably coupled to the front end of the front outer sleeve.
  • the cylindrical rear portion is detachably connected or integrated with the front outer sleeve
  • the turntable rotating shaft is eccentrically disposed with the cylindrical rear central axis
  • the turntable is provided with a plurality of different apertures Pulling the nail hole, the center of each nail hole is located on the same circumference and the central axis of each nail hole can respectively coincide with the central axis of the cylindrical rear portion when the turntable is rotated, and the turntable and the front outer sleeve are disposed between There is a positioning structure.
  • the front outer sleeve is provided with at least one opening; and the front outer sleeve is provided with a transparent protective cover capable of closing the opening.
  • the transparent protective cover is provided with at least one operation hole and the at least one operation hole can be opposed to the at least one opening when the transparent protective cover is rotated.
  • the limiting structure comprises a claw sleeve, the claw sleeve is fixed at a front end of the transmission member, and a central through hole is arranged on the claw sleeve, and each claw body is The inner wall of the central through hole is slidably engaged with the outer side surface of the claw through the inclined surface.
  • the front end of the claw body has a curved surface
  • the rear end of each claw body has a tapered surface
  • the curved surface on the front end of the claw top column can be matched with the rear end of each claw body.
  • the tapered surfaces are in contact with each other; the rear end of the cylindrical guide nozzle has a tapered surface, and the front end of each claw body has a tapered surface, and the tapered surface of the front end of each claw body can mutually interact with the curved surface at the rear end of the cylindrical guide nozzle contact.
  • the spacing between the front end of the valve body and the rear end of each claw body when the respective claw body is in the radially fully open state is smaller than the end of the riveted fastener remaining in the cylindrical handle. Rod length.
  • a riveting tool using the above-described riveting tool chuck comprising a driving device, the riveting tool chuck being connectable to a driving device, and a power output shaft of the driving device is connected to the rotating member, the driving device It is an electric drive or a manual drive.
  • the advantages of the riveting tool chuck and the riveting tool are:
  • the patent JP3993844 and the patent US0060189787 respectively use different spring systems to solve the pre-tightening problem of the screw drive exit and re-entry in the front and rear strokes of the riveting.
  • This patent is based on the spring preloading.
  • the interaction between the pressure of the safety valve mechanism and the spring preload force causes the thread structure to be preloaded in the whole process of the rivet stroke, effectively solving the middle section of the traditional design tool in the riveting work.
  • the spiral pair does not have the problem of providing an auxiliary mechanism for the preload.
  • the maximum allowable working pressure of the safety valve mechanism is determined by the pre-compression of the spring.
  • the structure can adjust the maximum threshold pressure in a fixed manner by adjusting the pre-compression of the spring.
  • the pretensioning spring connected to the top column of the claw body in this patent contains two safety protection functions: the maximum working pressure of the safety valve mechanism is defined and the rivet stroke is limited. The maximum preload of the mid-section spiral pair.
  • the pre-tightening force on the screw pair can automatically compensate the thread wear occurring during the riveting work.
  • the pre-tightening force on the screw pair can effectively reduce the impact of the strong change of the load on the transmission thread structure when the rivet fastener tail rod is pulled off.
  • the valve cavity medium can buffer various impact loads in the riveting stroke to a certain extent, which is beneficial to improve stability and reliability.
  • the maximum preload force in the screw pair can be accurately adjusted and controlled according to the actual working load. Therefore, it is more beneficial to improve the ability of the rivet tool holder to resist different impact loads, and also to improve the stability, reliability and life of the tool.
  • FIG. 1 is a schematic view showing the state of the state of the rivet fastener loading stage provided by the present invention.
  • FIG. 2 is a schematic view showing the structure of the riveted state provided by the present invention.
  • FIG. 3 is a schematic view showing the structure of a core pulling state provided by the present invention.
  • FIG. 4 is a schematic view showing the structure of the rivet fastener tail rod of the present invention.
  • Figure 5 is a diagram showing the spiral sub-conversion process of the present invention.
  • Fig. 6a is a comparative diagram of the analysis of the helical pre-tightening force and the helical sub-conversion position of the patent US0060189787 in the riveting stroke.
  • Fig. 6b is a comparison diagram of the analysis of the helical pre-tightening force and the helical sub-conversion position of the patent JP3993844 in the riveting stroke.
  • Fig. 6c is a comparative diagram of the analysis of the helical sub-pretension and the helical sub-conversion position in the riveting stroke of the present invention.
  • Figure 7 is a partial structural view of the present invention.
  • Figure 8 is a partial structural view of a two-way safety valve provided by the present invention.
  • Figure 9 is a partial schematic structural view of Embodiment 2 of the present invention.
  • the cylindrical handle 1 the annular groove 11, the elastic ring 12, the avoidance observation notch 13, the locking ring 14, the bearing 15, the C-type circlip 16, the E-type circlip 17, the anti-rotation limit pin 18, the rotating part 2.
  • Transmission member 3 strip chute 31, threaded structure 4, claw body 5, limiting structure 6, claw sleeve 61, central through hole 61a, cylindrical guide nozzle 7, claw top column 8, safety valve Mechanism 9, front outer sleeve 10, opening 101, transparent protective cover 102, operating hole 102a, spool 91, spring 92, valve chamber 93, axial through hole 94, overload protection safety valve 95, riveted fastener tail rod 100, the driving device 20, the blind rivet A.
  • the riveting tool chuck includes a cylindrical handle 1 in which a rotating member 2 and a cylindrical member 1 are axially positioned and circumferentially rotationally coupled to each other.
  • a cylindrical handle locating and axially movably connecting the transmission member 3, the rotating member 2 and the transmission member 3 can be connected by a threaded structure 4, and a plurality of circumferentially distributed portions are arranged at the front end of the transmission member 3.
  • a claw body 5 and a limiting structure 6 capable of preventing the respective claw bodies 5 from being detached
  • the front end of the cylindrical handle 1 is provided with a cylindrical guide nozzle 7 capable of bringing the front end of each claw body 5 to the rear end thereof, the transmission Between the front end of the piece 3 and the rear end of each claw body 5, a claw capable of pushing the transmission member 3 axially forward when the rotating member 2 is reversed to radially separate the respective claw bodies 5 under the cooperation of the cylindrical guide nozzle 7 is provided.
  • the top pillar 8 and the rotating member 2 can drive the transmission member 3 to move axially backwards when the rotating member 2 rotates forward, so that the claws 5 are radially gathered to drive the claws 5 after the folding to continue to move axially backward.
  • a safety valve mechanism 9 is provided between the claw top column 8 and the transmission member 3 to enable the screw structure 4 to have a screw pair pre-tightening force, and the safety valve mechanism 9 enables the rotation member 2 to be in the forward movement process of each claw body.
  • the helical sub-conversion of the threaded structure 4 is achieved before the axial reaction between the front end and the rear end of the cylindrical guide 7 is reduced to zero to avoid the free return stroke of the threaded structure 4.
  • FIG. 5 it is a schematic diagram of the spiral sub-conversion process of the present invention.
  • the left side is a schematic diagram when the first spiral pair is in contact
  • the middle is a schematic diagram during the spiral sub-conversion process
  • the right side is a schematic diagram when the second spiral pair is in contact.
  • At least one axially extending strip-shaped chute 31 is formed in the transmission member 3, and at least one radially extending anti-rotation limit pin 18 is fixed to the cylindrical handle 1.
  • the anti-rotation limit pin 18 is disposed in one-to-one correspondence with the strip chute 31 and the end of the anti-rotation limit pin 18 is located in the strip chute 31.
  • the end portion of the anti-rotation limit pin 18 has a circular arc shape
  • the groove bottom of the strip-shaped chute 31 has a circular arc shape
  • the end portion of the anti-rotation limit pin 18 is in sliding contact with the groove bottom of the strip-shaped chute 31.
  • the rotating member 2 is a screw
  • the transmitting member 3 is a cylindrical body
  • the front end of the screw and the rear end of the barrel can be connected by the thread structure 4
  • the safety valve mechanism 9 is disposed in the cylinder body and
  • the valve core 91 can be sealed in the middle of the cylinder and the spring 92 disposed between the valve core 91 and the claw top column 8.
  • the spring 92 has one end acting on the claw top column 8 and the other end acting on the valve core 91.
  • the screw chamber, the cylinder body and the valve body 91 form a valve chamber 93 which can change the volume with the axial position of the screw and the cylinder to change the internal pressure.
  • the safety valve mechanism 9 is a pressure adjustable safety valve mechanism or a fixed pressure safety valve mechanism, and a preload force is provided between the transmission member 3 and the tubular handle 1 when the safety valve mechanism 9 is a fixed pressure type safety valve mechanism.
  • a spring the valve chamber 93 is provided with a medium, the medium is a gas or a fluid, and if there is a loop system, it may be other types of medium.
  • an annular step is formed in the cylinder to serve as a valve seat for the spool 91.
  • the safety valve mechanism 9 is a one-way safety valve mechanism, and when the pressure in the valve chamber 93 is greater than the preload force of the spring 92, the valve core 91 can be pushed open to achieve pressure relief.
  • the safety valve mechanism 9 is a device for thresholding the working pressure of the medium in the valve chamber 93.
  • the medium pressure in the valve chamber 93 is mainly derived from the change of the medium temperature, the increase or decrease of the medium in the volume of the valve chamber 93, or the addition and subtraction of the medium in the volume of the valve chamber 93.
  • the quantitative medium in the closed valve chamber 93 performs work to change its volume/temperature.
  • the one-way spring pre-tightening safety valve mechanism 9 is a type of safety valve.
  • the one-way spring pre-tightening safety valve mechanism utilizes the force of the compression spring to balance the force exerted by the medium on the valve core 91.
  • the limit of the safety valve mechanism allows the pressure threshold to be determined by the preloading compression of the spring.
  • the valve core When the force of the medium in the valve cavity to the valve core is less than the force of the pre-pressure spring on the valve core, the valve core is in a closed state; when the force of the medium in the valve cavity against the valve core is greater than the effect of the pre-pressure spring on the valve core When the force is applied, the spring is compressed to cause the valve core to leave the valve seat, and the valve is automatically opened; when the force of the medium in the valve cavity against the valve core is less than the spring pre-tightening force, the pressure of the pre-pressure spring pushes the valve core back to the valve seat, the valve Automatically shut down.
  • the spring preloading safety valve mechanism can be divided into a low pressure protection safety valve or a high pressure protection safety valve. Since the force of the spring on the valve core is one-way, it can be collectively referred to.
  • a spring preload safety valve mechanism is a one-way safety valve. If the pre-tightening spring is buried outside the safety valve pressure valve chamber, the function of the safety valve mechanism is high-voltage overload protection; the pre-pressure spring is buried in the safety valve cavity, and the pressure overload protection refers to the low-voltage overload protection. .
  • the safety valve spool is connected to the pressure outlet retaining passage on the side of the preload.
  • the pre-tightening pressure type safety valve can be divided into a low-pressure protection safety valve and a high-pressure protection safety valve, but only functions as a one-way pressure overload protection.
  • the safety valve can be divided into a pressure-adjustable safety valve and a fixed-pressure safety valve according to whether the compression amount of the pre-tensioning spring is variable.
  • the preloaded pressure safety valve mechanism is light and compact, has high sensitivity, is unrestricted in installation position, and has low sensitivity to vibration, so it can be used on mobile devices in addition to fixing devices or pipes.
  • the one-way preloaded pressure relief valve is widely used as a safety device for overpressure (low pressure or high pressure) protection in various related industries.
  • the safety valve has both low pressure protection and high pressure protection, it is a two-way safety valve.
  • the working pressure of the medium in the valve chamber connected with the two-way safety valve will be limited to a certain pressure threshold range, and the working pressure of the medium is under pressure.
  • the spool When the valve value is within the threshold range, the spool will automatically open when the working pressure of the medium exceeds the high and low threshold values.
  • the working pressure of the medium returns to the high and low threshold of the safety valve, the spool will automatically return to the seat.
  • the safety valve mechanism 9 can also be a two-way safety valve mechanism. As shown in FIG. 8, the safety valve mechanism 9 can be configured to increase the pressure in the valve chamber 93 when the pressure in the valve chamber 93 is less than a set value. The low pressure overload protects the safety valve 95, and when the pressure in the valve chamber 93 is greater than the preload of the spring 92, the spool 91 can be pushed open to achieve pressure relief.
  • the limiting structure 6 includes a claw sleeve 61 fixed to the front end of the transmission member 3, and a central through hole 61a is disposed on the claw sleeve 61, and each of the claw bodies 5 is disposed at the center through In the hole 61a, the inner wall of the center through hole 61a and the outer side surface of the claw body 5 are slidably fitted by the inclined surface.
  • the front end of the claw top column 8 has a curved surface
  • the rear end of each claw body 5 has a tapered surface
  • the curved surface on the front end of the claw top column 8 can contact the tapered surface at the rear end of each claw body 5
  • the rear end of the cylindrical guide 7 has a tapered surface
  • the front end of each of the claws 5 has a tapered surface
  • the tapered surface of the front end of each of the claws 5 can contact the curved surface of the rear end of the cylindrical guide 7.
  • the rear end face of the tubular handle 1 is provided with at least one avoidance viewing notch 13.
  • the cylindrical guide nozzle 7 is disposed on the front outer sleeve 10, and the front outer sleeve 10 is detachably fixed to the front end of the cylindrical handle 1, and the front outer sleeve 10 is detachably coupled with the abutment
  • the locking ring 14 on the front end surface of the cylindrical handle 1 is provided.
  • the cylindrical guide 7 is coupled to the front outer sleeve 10 by a detachable structure to enable the front outer sleeve 10 to be coupled to any one of the cylindrical guides 7 having different apertures.
  • the working of the invention usually comprises several main actions of inserting riveted fasteners (lacing rivets), riveting, core pulling and discharging riveted fastener tail rods.
  • the mechanical process of the riveting process comprises two stages: firstly, the riveting needs to be overcome. The material yield limit of the front end thin wall of the firmware is deformed, and then the core rod of the riveted fastener is forcibly pulled off and pulled away from the riveted fastener tail rod 100 against the tensile limit of the core material.
  • the riveting fastener (blind rivet) has a long stroke of the riveting
  • the riveting force required for the work varies with the specification or material of the blind rivet, and the greater the strength of the material, the more the riveting force required for the blind rivet Large, the larger the size of the blind rivet of the same material, the greater the riveting force required, so the common light, medium and heavy riveting tool chucks are mainly classified according to the riveting ability of the tool.
  • the riveting tool chuck emphasizes ease of use, riveting consistency, riveting capability and riveting efficiency.
  • the problem of insufficient riveting force of the existing riveting tool chuck on the market under certain external force anti-rotation clamping conditions one of the solutions is from the existing structure, material, process, surface treatment, strength and machining precision of the product. Try to improve at equal angles, but the improvement space needs to be verified; the other direction is to introduce a new mechanism that can improve the transmission efficiency from the working principle of the mechanism, and solve the problem of “empty return” stroke and thread wear from the axial working load design and transmission. The impact of the problem on transmission efficiency, accuracy and reliability is not easy.
  • the primary basic condition of the safety valve mechanism structure is that there is a valve cavity that can withstand a certain pressure load.
  • the pressure threshold of the medium in the valve cavity is determined by the pre-tightening force of the pre-tensioning spring, and the medium is affected by the medium pressure source.
  • the pressure is transmitted to the pre-tightening spring in the chamber, and the safety valve is opened when the valve is overloaded, which plays the role of automatic protection of the threshold pressure.
  • the mechanism moves in a closed chamber, it will produce non-designed or uncontrollable changes in medium pressure and medium temperature. For safety reasons, it is usually changed to a pressure-containing outlet in the structural treatment.
  • the zero-pressure design of the structure can be seen in the design of the blind rivet tool chuck (refer to patent JP3993844 and patent US0060189787).
  • the safety valve mechanism has a controllable medium pressure in the valve chamber, high sensitivity, and is itself a safety component.
  • the problem of reentry in the screw drive has been solved, and the present invention focuses on solving the problem of "empty return" stroke when the helical pair is converted in the middle stroke of the riveting. And thread wear can not compensate for other issues, and put forward specific implementation plans.
  • the pressurizing and decompressing device is a screw connected to the rotary drive device having the power output and is engaged with the tubular body by a threaded structure.
  • the valve core can adopt a rigid or elastic sphere, a hemisphere or the like, or other cylinders and sleeves without a pressure outlet structure.
  • a flat plate or a sleeve or a cylinder having a different surface structure on the upper surface of the plate ensures that the external medium force or the medium pressure inside the valve chamber is greater than the pressure applied to the spool by the compression preload of the compression preload spring. Automatic opening and closing action can be.
  • the rivet stroke is divided into the front section, the middle section and the rear section, respectively, especially in the middle section of the rivet in different working conditions:
  • the front end surface of the claw body maintains axial pressure contact with the rear end surface of the cylindrical guide nozzle, and the screw completely withdraws from the nip area of the thread in the cylinder body, but also maintains pressure contact with each other in an equilibrium state.
  • the screw starts to rotate under the driving device, the screw enters the thread nip area, and the rivet stroke starts.
  • the screw pair is still the exiting spiral pair in the stroke of the rivet fastener tail rod 100, so the riveting tool holder is In the rivet stroke of the head, the thread structure is first converted by the screw pair, and then the rivet load can be loaded for the riveting work.
  • the screw rotation pressurizes the medium in the valve chamber to form a new internal force system.
  • the driving device needs to overcome the frictional force of the current withdrawal screw pair to make the cylinder body under the pre-tightening force between the cylindrical guide nozzle and the claw body top column relative to the screw.
  • the force of the medium in the valve cavity of the safety valve mechanism acts on the member of the safety valve mechanism as an internal force. Since the property of the internal force is a pair of forces of equal magnitude and opposite direction, the axial section of the screw is subjected to the medium in the valve cavity.
  • the pressure of the bottom of the cylinder is subjected to an equal and opposite pressure in the axial section. From the principle of balance of the external force, the axial pressure of the exiting screw pair decreases as the pressure of the medium in the valve cavity of the safety valve structure increases. When the friction force of the exiting screw pair is 0, the axial pressure of the exiting screw pair is also 0. When the screw continues to rotate, the air pressure in the valve cavity of the safety valve structure continues to increase, and the contact surface of the exiting spiral pair begins to disengage and is in the shaft.
  • the rivet screw pair is formed by the combined force of the external forces. At the end of the previous stroke, the front end face of the claw body is in pressure contact with the rear end face of the cylindrical guide nozzle, and the screw pair has been converted.
  • valve core Since the medium in the valve chamber has been pressurized, if the pressure in the valve chamber is greater than the pressure of the preload spring against the valve core, the valve core will leave the valve seat for automatic pressure relief, in which case the drive unit continues to rotate in the same direction. With the screw, the working pressure of the valve chamber will remain at the maximum threshold pressure.
  • Middle stroke condition 1 When the friction force of the exit spiral pair is 0, the screw continues to rotate, and the contact surface of the exit spiral pair begins to disengage. When the friction force of the exiting screw pair is 0, the axial pressure is 0, but the front end of the claw body still maintains pressure contact with the rear end of the cylindrical guide nozzle, and the continued rotation of the screw means that the air pressure in the valve cavity continues to increase, the spiral pair The helical sub-conversion is completed under the combined force of these two external forces. When the front end surface of the claw body and the rear end surface of the cylindrical guide nozzle are at a pressure drop of 0, the middle stroke starts, and the rivet screw pair is automatically formed and automatically pre-tensioned, so there is no "empty back" existing in the prior art thread structure.
  • the stroke problem, and the pre-tightening force can automatically compensate the thread wear, eliminating the inevitable thread wear during the thread drive process and the negative impact on the axial clearance of the thread. Since the medium in the valve chamber has been pressurized, if the pressure in the valve chamber is greater than the pressure of the preload spring against the spool, the spool will leave the valve seat for automatic pressure relief, in which case if the screw continues in this case Rotating in the same direction, the working pressure of the valve chamber will be maintained at the maximum threshold pressure.
  • Middle stroke condition 2 During the use of the tool, the operation direction will be changed according to the actual work needs or abnormal conditions, then further investigate the reverse operation problem in the middle stroke of the thread structure, that is, the shift in the riveting work stroke problem. At this time, the rotary drive shifts the reverse operation.
  • the conventional riveting tool chuck (refer to JP 3993844 and US Pat. No. 0060189787), it is meant that the threaded structure needs to be converted into a spiral pair before being turned.
  • the axial pressure on the screw pair is a reaction force generated when the elastic rivet of the blind rivet is elastically deformed or plastically deformed, and the valve The pressure of the compressed medium within the chamber.
  • the position where the axial pressure of the rivet screw pair becomes 0 is the point at which the pressure between the rear end surface of the cylindrical guide nozzle and the front end surface of the claw body and the pressure of the medium in the valve chamber are balanced with each other, that is, the starting point of the middle stroke. If any of the position driving devices in the middle stroke is switched back to the original direction of rotation, there is no need to involve the helical sub-conversion, and the thread structure can directly perform the steering movement with the driving device, and there is no "empty return" stroke at all.
  • valve core Since the medium in the valve chamber has been pressurized, if the pressure in the valve chamber is greater than the pressure of the preload spring against the valve core, the valve core will leave the valve seat for automatic pressure relief, in which case the drive unit continues to rotate in the same direction.
  • the working pressure of the valve chamber will be maintained at the maximum threshold pressure; if it is rotated in the opposite direction, the spool will return to the valve seat, the safety valve will be closed, and the pressure in the valve chamber will decrease as the driving device rotates.
  • the pre-tensioning spring is connected with the claw top column, the claw body top column is connected with the claw body, the claw body sleeve is externally connected with the cylinder body, the claw body, the claw body top column, the spring, the valve core from the front
  • the rear axial joints are connected to the inner cavity formed by the claw sleeve and the cylinder body, and the claw top column is movable when working.
  • the front end of the spring is connected with the top column of the claw body. If the diameter of the tail rod of the blind rivet is increased, the claw body and the claw top column need to be more inwardly retracted into the claw sleeve cavity, and the compression amount of the spring is increased and preloaded.
  • the core rivet tail rod is one of the key adjustment components of the pre-tightening pressure adjustable safety valve mechanism when the rivet chuck is working in the riveting work.
  • the larger the size of the blind rivet the larger the diameter of the blind rivet tail rod
  • the claw body is retracted into the claw sleeve to clamp the tail rod of the specification, and the amount of retraction of the tail rod is also increased.
  • the front part of the claw top column is connected with the tail end of the claw body, and then the claw top column is opposite.
  • the amount of retraction of the valve core is also increased, and the tail portion of the claw body is connected with the pretensioning spring, so the compression amount of the spring placed between the top column of the claw body and the valve core is also increased, and the rivet according to the blind rivet is realized.
  • Dimensions The mechanical quantitative adjustment of the maximum allowable air pressure threshold for the air in the valve chamber. The larger the size of the blind rivet of the same material, the greater the rivet load required. If the pressure of the medium in the valve cavity exceeds the maximum allowable threshold, then increasing the allowable air pressure threshold can increase the maximum preload of the rivet pair.
  • the threaded structure of the safety valve mechanism introduced into the rivet tool chuck increases the thread wear of the rotary drive device and the threaded structure of the rivet tool chuck to a certain extent, but these negative effects are controllable to some extent, Within acceptable limits.
  • the invention can effectively solve the problem by the design of the built-in adjustable safety valve mechanism.
  • the traditional thread structure there are problems to be solved in the middle of the rivet stroke, and the new features and functions of the rivet tool chuck are given.
  • bidirectional (positive pressure and negative pressure) threshold settings for the medium pressure in the valve chamber can be achieved.
  • a low pressure overload protection safety valve 95 is provided on the spool.
  • the working pressure of the medium in the valve chamber will be limited to the range of the positive pressure threshold and the negative pressure threshold; it can also be placed separately from other locations within the closed valve cavity or other components such as the side of the cylinder or the front end of the screw.
  • Low-pressure overload protection safety valve for this purpose; or directly replace the valve plug with any suitable type of two-way safety valve, and adapt the change of the two-way safety valve and the preload spring associated with this change to this change , the working pressure of the medium in the valve cavity can be limited to the positive pressure threshold and the negative pressure threshold setting range of the two-way safety valve, because the safety valve mechanism is in the valve chamber working pressure is within the threshold range It is closed, so such cases are also included in the scope of protection of the present invention.
  • the threshold range of the two-way safety valve may be unidirectionally adjustable or bidirectionally adjustable.
  • the distance between the front end of the valve body 91 and the rear end of each of the claw bodies 5 is smaller than the rivet fastener tail rod remaining in the cylindrical handle 1 100 length. That is, when the claw body is completely loosened, the blind rivet tail rod waste can only be moved to contact with the valve core at most, and the front end of the tail rod waste material is still in the claw clamping region, so that the cavity body is not discharged. The tail rod scrap can be loaded with new blind rivets for serious product failure problems.
  • the tail through hole of the claw body (refer to the patent JP3993844 shown in FIG. 2) can be turned into a blind hole or the diameter is smaller than the blind rivet.
  • the through hole of the smallest tail rod diameter causes the claw top column to become a component containing the tail rod stop function.
  • the present invention adopts a tubular handle with a one-piece structure, and reduces parts compared to the prior art (refer to JP 3993844 or patent US006018978).
  • the rear end of the tubular handle 1 is provided with an annular groove 11 , and the annular groove 11 is sleeved with an elastic ring 12 , and the elastic ring 12 functions as a stop anti-slip to improve the safety of the tool.
  • the locking ring increases the reliability of the fastening connection.
  • the prior art (refer to the patent JP3993844) has an opening on the front sleeve, which is convenient for observing the movement state and loss state of the component in the visible range inside the cavity, and the function of locking and loosening the front sleeve by inserting the crowbar into the opening. . Since the opening is not subjected to any blocking treatment, foreign matter easily passes through the opening into the inner cavity of the front sleeve and the tubular handle of the unitary structure.
  • the front outer sleeve 10 is provided with at least one opening 101; the front outer sleeve 10 is provided with a transparent protective cover 102 capable of closing the opening 101.
  • the transparent protective cover 102 is provided with at least one operation hole 102a and the at least one operation hole 102a can be opposed to the at least one opening 101 when the transparent protective cover 102 is rotated.
  • a transparent or transparent transparent protective cover 102 is added on the basis of the opening to retain the function of the observation hole, and at the same time, the knurling, the hexagonal platform or other structures that can be clamped are added to the front outer sleeve 10 to solve the problem.
  • the problem of slack between the sleeve 10 and the tubular handle of the one-piece structure, the opening of the tubular handle of the one-piece structure is increased to observe the steering of the screw and the connection state with the chuck of the driving device, and the screw can be passed through the screw Turn to determine the forward and backward directions of the claw.
  • the above mainly introduces the riveting tool chuck, and obviously uses the riveting tool of the above riveting tool chuck, including the driving device 20, the riveting tool chuck can be connected with the driving device 20, and the power output shaft of the driving device 20 is The rotating members 2 are connected, and the driving device 20 is an electric driving device or a manual driving device.
  • Fig. 6a, Fig. 6b and Fig. 6c are respectively comparative comparison diagrams of the helical sub-preload and the helical sub-conversion position in the riveting stroke of the present invention, the patent JP3993844 and the patent US0060189787.
  • the technical effect of the present invention which is different from the prior art can be more clearly found by comparing Fig. 6a, Fig. 6b and Fig. 6c.
  • the X axis represents the rivet stroke and the Y axis represents the preload force on the screw pair.
  • the distance between 206 and 207 is the threaded transmission back stroke, the empty return stroke is caused by the thread gap, and the thread wear increases the gap between the threads; the starting point 201 of the front stroke of the rivet and the end point 205 of the complete rivet stroke are in the spiral pair There is pre-tightening force on the front, and the pre-tightening force of the front section and the pre-tightening force of the rear section are opposite to each other, respectively solving the problem of re-entry of the front and rear threads; the starting point of the helical sub-conversion is also the starting point 202 of the middle stroke of the riveting, and the conversion is completed after the empty return stroke.
  • the distance between 306 and 307 is the threaded travel back stroke, the empty return stroke is caused by the thread gap, and the thread wear will increase the gap between the threads;
  • the starting point 301 of the front stroke of the rivet and the end point 305 of the complete rivet stroke are in the spiral pair
  • Pre-tightening force exists on the front side, and the pre-tightening force of the front section and the pre-tightening force of the rear section are opposite to each other, respectively solving the problem of re-entry of the front and rear threads;
  • the starting point of the helical sub-conversion is also the starting point 302 of the middle stroke of the riveting, and the conversion is completed after the empty return stroke.
  • the helical pre-tensioning force is 0 in the middle stroke of the entire riveting, so the helical sub-conversion is passively completed under the constraint of the screw transmission displacement; the core of the blind rivet is pulled off at the position 305
  • the drastic change in the riveting load causes a load shock to the spiral pair.
  • Figure 6c shows the analysis of the helical pre-tensioning force and the helical sub-conversion position in the riveting stroke of the present invention:
  • the safety valve mechanism begins to actively engage the threaded drive system at the beginning of the rivet stroke start position 401, and the screw pair conversion mode is automatically completed at the position 406 of the front and rear axial force balance, and the screw pair start conversion position 406 is located at the front of the rivet stroke.
  • the conversion has been completed before the starting point 402 of the middle stroke of the rivet, so there is no problem of empty return stroke; the starting point 401 of the rivet front stroke and the end point 405 of the complete rivet stroke have preloading force on the screw pair, the front section preloading force and the rear section preloading
  • the tightening force is opposite to the axial direction, respectively solving the problem of re-entry of the front and rear threads; the continuous pre-tightening force of the spiral pair during the entire riveting stroke can automatically compensate the thread wear and help to buffer the load impact during the riveting process;
  • the diameter of the rivet tail rod directly affects the amount of compression of the spring of the safety valve, which affects the maximum threshold pressure of the safety valve mechanism.
  • the maximum preload of the rivet is different on the screw pair.
  • the pre-tightening force existing on the spiral pair is larger, so the pre-tightening force on the screw pair has an adjustable characteristic; if the stroke is in the middle of the riveting At the start point 402 or the previous stroke, the safety valve mechanism pressure reaches the maximum threshold level, then the helical secondary preload force is the maximum axial force acting on the screw pair of the safety valve mechanism throughout the middle stroke.
  • the rotating member 2 has a screw hole
  • the transmission member 3 has a threaded post
  • the screw hole and the threaded post can be screwed
  • the safety valve mechanism 9 is provided on An axial through hole 94 in the transmission member 3 and a valve core 91 disposed in the axial through hole 94 and capable of blocking the middle portion of the axial through hole 94 are disposed between the valve body 91 and the claw top column 8.
  • the rotating member 2, the transmission member 3 and the valve core 91 are formed along with the rotating member 2
  • the valve chamber 93 is changed in volume relative to the axial position of the transmission member 3 to change the internal pressure thereof. That is, the alignment of the screw nut mechanism of the rotating member and the transmission member is realized.
  • the rest of the structure of this embodiment is similar to that of the embodiment 1.
  • the cylindrical guide nozzle 7 includes a cylindrical rear portion disposed in the front outer sleeve 10 and capable of supporting the front end of each claw body 5 thereon, and a turntable rotatably coupled to the front end of the front outer sleeve 10.
  • the cylindrical rear portion is detachably connected or integrally connected to the front outer sleeve 10.
  • the turntable rotating shaft is eccentrically disposed with the cylindrical rear central axis, and the turntable is provided with a plurality of pull pins having different apertures.
  • the holes, the centers of the respective pinholes are located on the same circumference, and the central axes of the respective pinholes can respectively coincide with the central axis of the cylindrical rear portion when the turntable is rotated, and the turntable and the front outer sleeve 10 are disposed between the holes.
  • Positioning structure. The rest of the structure of this embodiment is similar to that of the embodiment 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Insertion Pins And Rivets (AREA)
  • Safety Valves (AREA)
  • Portable Nailing Machines And Staplers (AREA)

Abstract

一种铆接工具夹头,其包括筒状手把(1),在筒状手把内穿设有与筒状手把轴向定位且周向转动连接的转动件(2)和与筒状手把周向定位且轴向活动连接的传动件(3),转动件与传动件之间能通过螺纹结构(4)相连,爪体顶柱(8)与传动件之间设有能使螺纹结构具有螺旋副预紧力的安全阀机构(9),安全阀机构能使转动件正转过程中在各爪体(5)前端与筒状导嘴(7)后端之间的轴向反作用力降为零之前实现螺纹结构的螺旋副转换从而避免螺纹结构的空回行程。以及一种采用铆接工具夹头的铆接工具。该铆接工具夹头结构设计合理,能适配于含动力输出的驱动装置,可提供螺旋副预紧力,无空回行程。

Description

铆接工具夹头及铆接工具 技术领域
本发明属于机械技术领域,涉及铆接装置,尤其是涉及一种铆接工具夹头及铆接工具。
背景技术
铆接紧固件被广泛应用于有铆接紧固需求的航空航天、军工、汽车、船舶、建筑、安装、生产制造等等行业,民用用途亦非常广泛,因此相关行业和国内外民用市场对各类铆接工具产品的年需求量巨大。铆接工具等产品的主要发展方向是性价比、精密、便利、高效、省力等。为改善手动型铆接工具费力、笨重、效率低等缺点,整体型气动铆接工具获得发展和普及。气动铆接工具主要是在工业市场得到普及与应用,由于压缩气源的限制以及价格高等原因限制了气动铆接工具产品的市场拓展。整体型电动铆接工具由于其便携性和电力来源的便捷性等原因,近来引起了广泛的市场关注,但国内外市场上可选的产品不多,因为产品复杂单价高,所以主要是针对一些工业级市场。近年,把铆接工具变成适配于通用的含动力输出的转动工具夹头,由于与其适配的含动力输出的转动工具是通用工具,比如电钻等,所以铆接工具夹头是铆接工具行业一个有价值、有意义、有市场潜力的发展方向,成为一类新的铆接工具产品(参考专利JP3993844和专利US006018978)形态出现在市场上。
手动、气动、电动或驱动工具带动的铆接工具夹头或铆接工具附件的其中一个共性力学特征是工作载荷是由一个穿过铆接工具夹头或铆接工具附件前端导嘴芯孔的芯杆,通过力或力矩的转换传导到铆接紧固件上变成对铆接紧固件的轴向拉力,这个轴向拉力超过铆接紧固件的屈服极限时,铆接紧固件薄壁部位轴向被压缩变形并与被铆接物体形成紧固的铆结,轴向拉铆载荷超过芯杆材料的抗拉极限时芯杆被拉断完成抽芯动作。工作时芯杆受到的轴向拉铆载荷方向固定,在传统的抽芯铆钉转动工具夹头上(参考专利JP3993844和专利US006018978),旋转驱动工具通过螺纹传动对芯杆施加轴向拉力和位移来完成铆接工作,工作时需外力夹持住外壳阻止其随驱动工具转动,否则功能失效。
在螺纹传动中,被动部件的前进螺旋副和后退螺旋副分别位于螺纹的两侧,主动部件传动方向发生转换时,传动机构需要先进行螺旋副转换,然后才能在主动部件的驱动下使被动部件的运动发生转向。所以,通俗地讲在螺杆螺母传动机构中前进档、后退档之间换档时,先要进行螺旋副转换。铆接工具夹头(参考专利JP3993844和专利US0060189787)的扭矩和位移传动机构使用的就是螺纹传动结构,专利JP3993844中螺纹传动机构的主动机构是轴向固定的螺杆,而专利US0060189787使用的主动机构是轴向固定的螺母,虽然两个专利的螺纹传动机构中主动部件和被动部件设置上不同,但工作原理一致。可以看出铆接工具夹头(参考专利JP3993844和专利US0060189787)包含的螺纹传动机构,工作时一个完整的工作行程包括后退拉铆动作和前进退出铆钉尾杆两个运动方向的操作。当旋转驱动工具的转动方向发生转换时,与旋转驱动工具相连接的主动部件的转向也将发生转换,同理,从动部件上的拉铆螺旋副和退出螺旋副之间也需要先进行螺旋副转换,然后才能在旋转驱动工具作用下使从动部件发生逆向直线运动。由于退出铆钉尾杆的行程中载荷很小,故不作详细分析,重点分析拉铆行程。
退出铆钉尾杆的操作结束时,爪体和爪体顶柱缩进内管内腔的极限位置,爪体处于完全打开状态,爪体套筒处于最前端的极限位置,爪体芯部形成一个比导嘴规格略大的圆柱形空间以容许铆钉尾杆退出或者插入新的铆钉,在退出铆钉尾杆行程结束点也即是拉铆行程的起始点。此时,在专利US0060189787上前预紧弹簧被压缩量变大,而在专利JP3993844上预紧弹簧被压缩量变大,所以爪体前端面与导嘴后端面保持轴向有压力接触,螺杆完全退出与传动件内螺纹的咬合区但相互之间也保持有压力接触,前后两个压力处于静止平衡状态。插入铆钉之后,螺杆在驱动工具带动下开始转动,螺杆进入螺纹咬合区,拉铆行程开始,此时螺旋副仍然是退出铆 钉尾杆行程中的退出螺旋副,所以在铆接工具的夹头的拉铆行程中螺纹传动机构先要进行螺旋副转换,然后才可以加载拉铆载荷进行拉铆工作。
在螺纹传动机构设计中,从螺纹咬合区进行考察,如果机构运动时涉及退出螺纹咬合区之后的重入问题,通常需要预紧力辅助机构。螺纹重入的预紧力问题是螺杆螺母传动机构普遍存在的问题,也是机构可以连续地进行重复工作的必要条件。具体从整个拉铆行程来考察传动螺旋副预紧力的存在情况可以发现,专利JP3993844通过一根弹簧处理了螺纹传动中前后两段行程的预紧力问题:前段:拉铆行程开始至退出尾杆螺旋副解除之时此时爪体前端面与导嘴后端面保持0压力接触,弹簧从前端被压缩形成预紧力。后段:螺杆前端面与带芯孔弹簧挡片形成有压力接触之后至拉铆行程结束,弹簧从后端被压缩形成预紧力。而专利US0060189787使用两根弹簧在可移动螺杆的前端和后端相应的工作位置分开处理了螺纹传动行程中前段和后两段行程的预紧力问题:前段:拉铆行程开始至退出尾杆螺旋副解除之时此时爪体前端面与导嘴后端面保持0压力接触,弹簧从前端被压缩形成预紧力。后段:螺杆前端台阶处与弹簧前端形成有压力接触之后至拉铆行程结束,弹簧从前端被压缩形成预紧力。
专利JP3993844和专利US0060189787使用不同的辅助机构对螺纹传动的前段、后段行程施加预紧力,解决了相同的螺纹传动中重入的预紧力问题。虽然专利JP3993844比专利US0060189787少用了一根弹簧,但从预紧力角度讲,专利JP3993844可能是专利US0060189787的一个改劣设计,因为专利JP3993844的拉铆后段行程是固定的,不随预压缩弹簧长度的改变而改变,可能比US0060189787的拉铆后段行程更短。
在不同工况下继续考察专利JP3993844和专利US0060189787的拉铆中段行程:中段行程工况1:在正常拉铆行程的中段,以上两个专利的螺纹传动机构中没有预紧力辅助机构。在拉铆行程前段,爪体芯部表面与铆钉尾杆接触之前,动力工具克服退出螺旋副的摩擦力使内管在导嘴对爪体的反作用力作用下做相对于驱动轴的后退运动直至爪体芯部表面与铆钉尾杆表面相接触,爪体咬紧铆钉尾杆,此时由于弹簧的预压缩量不再变化,弹簧既有压缩量产生的弹力完全变成运动部件内管的内力,当爪体前端与导嘴后端保持接触但轴向相互作用力降为0时,是个轴向0压力的接触。在拉铆行程中段的开始位置,由于运动部件内管的外力作用解除,此时传动机构上的螺旋副仍然是退出螺旋副,主动部件需要继续转动经过一个“空回”行程之后螺旋副位置才转移到螺纹的另外一侧变成拉铆螺旋副,螺旋副转换是在轴向位移约束条件下被动地实现转换。“空回”行程大小由螺纹间的轴向间隙决定,但螺纹传动时螺牙的磨损会加大螺纹轴向间隙。
中段行程工况2:在工具的使用过程中会根据实际工作需要或出现异常状况时转变操作方向,那么进一步考察螺纹传动中段行程中的逆向操作问题,也就是拉铆工作行程中的换档问题。此时动力工具换档逆向操作,在传统的铆接工具夹头参考专利JP3993844和专利US0060189787上意味着螺纹传动机构需要先进性螺旋副转换,再进行转向。动力工具转动驱动螺纹传动机构的主动部件逆向转动时,螺旋副上的轴向压力是抽芯铆钉的弹性变形或塑性变形时产生的反作用力,动力工具逆向转动松开铆钉与导嘴在接触面上的相互挤压,直至螺旋副上的轴向压力变为0时,旋转动力工具再继续逆向转动解除拉铆螺旋副,然后经过“空回”行程完成螺旋副转换,退出螺旋副形成之后,主动部件才可以再驱动从动部件实现逆向操作,所以在这种情况下螺旋副转换也是在轴向位移约束条件下被动地实现转换。如果在螺旋副已经完成转换,在中段行程的任何一个位置中需要把动力工具的转向换回到原来的操作方向,从前面分析可知,这种情况下也需要先进行螺旋副转换,而且也是在轴向位移约束条件下被动地实现转换,也有“空回”行程问题。
中段行程工况3:如果工作需要大规格铆钉时,抽芯铆钉工具需要更换导嘴,大规格铆钉意味着抽芯的尾杆直径更大,那么工具设计上导嘴的芯孔也需要变大,同时需要把导嘴尾部适当加长使各爪片更加内缩进爪片套筒形成更大的空间以便装入尾杆直径更大的抽芯铆钉。在传统的铆接工具夹头参考专利JP3993844和专利US0060189787上,由于导嘴尾部长度变长,与中段行程工况1相比螺旋副转换的位置相应地往后移动了与导嘴尾部长度增加量相等的轴向长度,但同样是在轴向位移约束条件下被动地实 现转换,也有“空回”行程问题。
综合以上分析,从工具的拉铆中段行程工况1、中段行程工况2以及中段行程工况3可以看出,传统的铆接工具夹头参考专利JP3993844和专利US0060189787上的螺纹传动机构在螺纹传动行程前段和后段之间的中段行程没有辅助机构提供预紧力。在拉铆中段行程工况1中,从退出尾杆螺旋副解除时的位置开始至形成拉铆螺旋副的过程中存在一个因螺纹间轴向间隙产生的“空回”行程;由于在拉铆中段行程中拉铆螺旋副中不存在预紧力,如果在拉铆中段行程工况2中旋转动力工具需要进行一次或多次来回换档操作,那么也存在“空回“行程问题。拉铆中段行程工况3情况与工况1类似,只是螺旋副转换发生的位置随导嘴规格的变更而改变。由于在拉铆工作的中段行程螺纹传动机构缺少预紧力辅助机构,所以专利JP3993844和专利US0060189787都存在以下问题:在正常拉铆行程的中段开始位置,螺纹传动机构中没有预紧力辅助机构,螺旋副是在轴向位移约束条件下被动地实现转换,在螺旋副转换过程中存在“空回”行程。在拉铆工作行程中如果动力工具换档转向运动,因为没有预紧力辅助机构,螺纹传动机构在行程中逆向操作时也存在“空回”行程。螺纹传动机构没有补偿螺纹磨损的辅助机构。“空回”行程问题和螺纹磨损补偿等问题可严重影响螺纹传动机构的传动效率、传动精度和可靠性,导致工具在一定外力的防转夹持条件下实际可从动力工具转换利用的有效拉铆力不够大,突出表现在拉铆强度高规格大的不锈钢抽芯铆钉或者高强度碳钢抽芯铆钉时能力不足,限制了此类产品的适用范围。铆接工具夹头专利US006018978诞生至今将近20年,以上问题一直没有得到有效解决,专利JP3993844也没有从本质上解决以上问题,但这些问题可严重影响此类产品的价值、功能和适用范围。
发明内容
本发明的目的是针对上述问题,提供一种结构设计合理,能适配于含动力输出的驱动装置,可提供螺旋副预紧力,无空回行程的铆接工具夹头。
本发明的另一目的是提供一种结构设计合理,可提供螺旋副预紧力,无空回行程的铆接工具。
为达到上述目的,本发明采用了下列技术方案:一种铆接工具夹头,包括筒状手把,在筒状手把内穿设有与筒状手把轴向定位且周向转动连接的转动件和与筒状手把周向定位且轴向活动连接的传动件,所述的转动件与传动件之间能通过螺纹结构相连,在传动件前端设有若干在圆周方向分布的爪体和能防止各爪体脱离的限位结构,所述的筒状手把前端设有能使各爪体前端顶于其后端的筒状导嘴,所述的传动件前端与各爪体后端之间设有当转动件反转时能推动传动件轴向向前移动从而使各爪体在筒状导嘴配合下径向分离的爪体顶柱,且当转动件正转时能带动传动件轴向向后移动从而使各爪体径向收拢继而带动收拢后的爪体继续轴向向后移动,其特征在于,所述的爪体顶柱与传动件之间设有能使所述螺纹结构具有螺旋副预紧力的安全阀机构,且安全阀机构能使转动件正转过程中在各爪体前端与筒状导嘴后端之间的轴向反作用力降为零之前实现所述螺纹结构的螺旋副转换从而避免所述螺纹结构的空回行程。
在上述的铆接工具夹头中,所述的转动件为螺杆,所述的传动件为筒体,所述的螺杆前端与筒体后端能通过所述螺纹结构相连;所述的安全阀机构包括设于筒体内且能封堵在筒体中部的阀芯和设置在阀芯与爪体顶柱之间的弹簧,所述的弹簧一端作用于爪体顶柱,另一端作用于阀芯上,所述的螺杆、筒体和阀芯之间形成能随着螺杆与筒体的轴向相对位置而改变容积从而改变其内部压力大小的阀腔。
作为另一种方案,在上述的铆接工具夹头中,所述的转动件具有螺孔,所述的传动件具有螺纹柱,所述的螺孔与螺纹柱能够螺纹连接;所述的安全阀机构包括设于传动件上的轴向通孔和设于轴向通孔内且能封堵在轴向通孔中部的阀芯,所述的阀芯与爪体顶柱之间设有弹簧,所述的弹簧一端作用于爪体顶柱,另一端作用于阀芯上,所述的转动件、传动件和阀芯之间形成能随着转动件与传动件的轴向相对位置而改变容积从而改变其内部压力大小的阀腔。
作为另一种方案,在上述的铆接工具夹头中,所述的安全阀机构为单 向安全阀机构,且当阀腔内压力大于弹簧预紧力时能推开阀芯从而实现泄压。
在上述的铆接工具夹头中,所述的安全阀机构为双向安全阀机构,在安全阀机构上设有当阀腔内压力小于设定值时能提升阀腔内压力的低压过载保护安全阀,且当阀腔内压力大于弹簧预紧力时能推开阀芯从而实现泄压。
在上述的铆接工具夹头中,所述的安全阀机构为压力可调式安全阀机构或固定压力式安全阀机构,且当安全阀机构为固定压力式安全阀机构时在传动件和筒状手把之间设置一预紧力弹簧;所述的阀腔内设有介质,所述的介质为气体或流体。
在上述的铆接工具夹头中,所述的筒状手把后端设有环形槽,所述的环形槽内套设有弹性圈,所述的筒状手把后端端面设有至少一个避让观察缺口。
在上述的铆接工具夹头中,所述的筒状导嘴设置在前外套筒上,所述的前外套筒可拆卸地固定在筒状手把前端,所述的前外套筒上可拆卸地连接有抵靠于筒状手把前端端面的锁紧环。
在上述的铆接工具夹头中,所述的筒状导嘴通过可拆卸结构与前外套筒相连从而使所述前外套筒能与具有不同孔径的筒状导嘴中的任意一个相连。
在上述的铆接工具夹头中,所述的筒状导嘴包括设于前外套筒内且能使各爪体前端顶于其上的筒状后部和转动连接于前外套筒前端的转盘,所述的筒状后部与前外套筒可拆卸连接或连为一体,所述的转盘旋转轴与筒状后部中轴线偏心设置,所述的转盘上设有若干具有不同孔径的拉钉孔,各拉钉孔的中心位于同一圆周上且当转盘转动后各拉钉孔的中轴线能分别与筒状后部的中轴线重合,所述的转盘与前外套筒之间设有定位结构。
在上述的铆接工具夹头中,所述的前外套筒上开有至少一个开口;所述的前外套筒上设有能够将开口封闭的透明防护套。
在上述的铆接工具夹头中,所述的透明防护套上设有至少一个操作孔且当透明防护套转动后能使至少一个操作孔与至少一个开口相对置。
在上述的铆接工具夹头中,所述的限位结构包括爪体套筒,所述的爪体套筒固定在传动件前端,在爪体套筒上设有中心通孔,各爪体均穿设于中心通孔中,且中心通孔内壁与爪体外侧面通过斜面滑动配合。
在上述的铆接工具夹头中,所述的爪体顶柱前端具有弧形面,各爪体后端具有锥形面,且爪体顶柱前端上的弧形面能与各爪体后端的锥形面相互接触;所述的筒状导嘴后端具有锥形面,各爪体前端具有锥形面,且各爪体前端的锥形面能与筒状导嘴后端的弧形面相互接触。
在上述的铆接工具夹头中,当各爪体处于径向完全打开状态时所述的阀芯前端到各爪体后端之间的间距小于留在筒状手把内的铆接紧固件尾杆长度。
一种采用上述的铆接工具夹头的铆接工具,包括驱动装置,所述的铆接工具夹头能与驱动装置相连,且驱动装置的动力输出轴与所述的转动件相连,所述的驱动装置为电动驱动装置或手动驱动装置。
与现有的技术相比,本铆接工具夹头及铆接工具的优点在于:
1、在拉铆行程中,专利JP3993844和专利US0060189787分别使用不同的弹簧系统解决了拉铆前段和后段行程中螺纹传动退出和重入的预紧力问题,本专利在弹簧预紧的基础上通过安全阀机构,利用安全阀机构的压力和弹簧预紧力等力的相互作用使螺纹结构在拉铆行程的全程受到预紧力作用,有效地解决了传统设计上工具在拉铆工作的中段行程中螺旋副没有提供预紧力的辅助机构的问题。
2、螺旋副是在轴向力作用下自动完成转换然后自动预紧,不存在专利JP 399 3844和专利US0060189787中存在的空回行程问题,可有效地消除螺纹轴向间隙对传动效率、精度和可靠性等方面的负面影响。
3、安全阀机构的最大允许工作压力由弹簧的预压缩量决定,结构上可以通过调节弹簧的预压缩量以固定的方式调整最大阀值压力。在专利JP3993844比专利US0060189787减少一个弹簧的基础上,本专利中与爪体顶柱相连接的预紧弹簧多包含了两个安全保护功能:限定安全阀机构的最大工作压力和限定在拉铆行程中段螺旋副的最大预紧力。
4、在拉铆行程中通过传动件对安全阀机构内介质进行加压来实现螺旋副的自动转换,比专利JP 3993844和专利US0060189787通过位移约束机械地进行螺旋副转换更加合理有效。
5、螺旋副上的预紧力可自动补偿拉铆工作中发生的螺纹磨损。
6、螺旋副上的预紧力可有效地减少铆接紧固件尾杆被拉断瞬间载荷强烈变化对传动螺纹结构的冲击。
7、阀腔介质可以在一定程度上缓冲拉铆行程中的各种冲击载荷,有利于提高稳定性和可靠性。
8、除了安全阀机构的积极作用,通过按抽芯铆钉规格有目的地调节螺旋副的最大预紧力,螺旋副中的最大预紧力变得可按实际工作负载精确地进行调节和控制,所以更加有利于提高铆钉工具夹头抵抗不同冲击载荷的能力,也有利于提高工具的稳定性、可靠性和寿命。
附图说明
图1是本发明提供的铆接紧固件装载阶段状态结构示意图。
图2是本发明提供的拉铆状态结构示意图。
图3是本发明提供的抽芯状态结构示意图。
图4是本发明提供的退出铆接紧固件尾杆状态结构示意图。
图5是本发明的螺旋副转换过程图。
图6a是专利US0060189787在拉铆行程中螺旋副预紧力和螺旋副转换位置分析对比图。
图6b是专利JP3993844在拉铆行程中螺旋副预紧力和螺旋副转换位置分析对比图。
图6c是本发明在拉铆行程中螺旋副预紧力和螺旋副转换位置分析对比图。
图7是本发明提供的部分结构示意图。
图8是本发明提供的双向安全阀部分结构示意图。
图9是本发明提供的实施例2的部分结构示意图。
其中,筒状手把1、环形槽11、弹性圈12、避让观察缺口13、锁紧环14、轴承15、C型卡簧16、E型卡簧17、防转限位销钉18、转动件2、传动件3、条形滑槽31、螺纹结构4、爪体5、限位结构6、爪体套筒61、中心通孔61a、筒状导嘴7、爪体顶柱8、安全阀机构9、前外套筒10、开口101、透明防护套102、操作孔102a、阀芯91、弹簧92、阀腔93、轴向通孔94、过载保护安全阀95、铆接紧固件尾杆100、驱动装置20、抽芯铆钉A。
具体实施方式
以下是发明的具体实施例并结合附图,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
实施例1:
如图1-4所示,本铆接工具夹头包括筒状手把1,在筒状手把1内穿设有与筒状手把1轴向定位且周向转动连接的转动件2和与筒状手把1周向定位且轴向活动连接的传动件3,所述的转动件2与传动件3之间能通过螺纹结构4相连,在传动件3前端设有若干在圆周方向分布的爪体5和能防止各爪体5脱离的限位结构6,所述的筒状手把1前端设有能使各爪体5前端顶于其后端的筒状导嘴7,所述的传动件3前端与各爪体5后端之间设有当转动件2反转时能推动传动件3轴向向前移动从而使各爪体5在筒状导嘴7配合下径向分离的爪体顶柱8,且当转动件2正转时能带动传动件3轴向向后移动从而使各爪体5径向收拢继而带动收拢后的爪体5继续轴向向后移动。爪体顶柱8与传动件3之间设有能使所述螺纹结构4具有螺旋副预紧力的安全阀机构9,且安全阀机构9能使转动件2正转过程中在各爪体5前端与筒状导嘴7后端之间的轴向反作用力降为零之前实现所述螺纹结构4的螺旋副转换从而避免所述螺纹结构4的空回行程。
如图5所示即为本发明螺旋副转换过程示意图,左边为第一螺旋副接触时的示意图,中间为螺旋副转换过程中的示意图,右边为第二螺旋副接触时的示意图。
具体而言,转动件2与筒状手把1之间设有轴承15,优选为平面推力 轴承,在轴承15的两侧分别设有C型卡簧16和E型卡簧17,以使轴承15轴向定位。在传动件3上开有至少一条轴向延伸的条形滑槽31,在筒状手把1固设有至少一个径向延伸的防转限位销钉18。防转限位销钉18与条形滑槽31一一对应设置且防转限位销钉18的端部位于条形滑槽31内。优选地,防转限位销钉18的端部呈圆弧形,条形滑槽31的槽底呈圆弧形,防转限位销钉18的端部与条形滑槽31的槽底滑动接触。
本实施例中,转动件2为螺杆,传动件3为筒体,所述的螺杆前端与筒体后端能通过所述螺纹结构4相连;所述的安全阀机构9包括设于筒体内且能封堵在筒体中部的阀芯91和设置在阀芯91与爪体顶柱8之间的弹簧92,所述的弹簧92一端作用于爪体顶柱8,另一端作用于阀芯91上,所述的螺杆、筒体和阀芯91之间形成能随着螺杆与筒体的轴向相对位置而改变容积从而改变其内部压力大小的阀腔93。安全阀机构9为压力可调式安全阀机构或固定压力式安全阀机构,且当安全阀机构9为固定压力式安全阀机构时在传动件3和筒状手把1之间设置一预紧力弹簧;所述的阀腔93内设有介质,所述的介质为气体或流体,如果有回路系统,也可以是其他类型介质。为使阀芯91能在筒体中部止挡,在筒体内形成环形台阶从而作为阀芯91对的阀座。本实施例中,安全阀机构9为单向安全阀机构,且当阀腔93内压力大于弹簧92预紧力时能推开阀芯91从而实现泄压。
安全阀机构9是对阀腔93内介质的工作压力进行阀值限定的装置,阀腔93内介质压力主要来源于介质温度变化、对阀腔93容积内介质进行增减或者加减压装置对密闭阀腔93内定量的介质进行做功使其体积/温度发生变化等。单向弹簧预紧式安全阀机构9是安全阀的一种。单向弹簧预紧式安全阀机构是利用压缩弹簧的力来平衡介质作用在阀芯91上的力,安全阀机构的极限允许压力阀值由弹簧的预紧压缩量决定。当阀腔内的介质对阀芯的作用力小于预压弹簧对阀芯的作用力时,阀芯处于关闭状态;当阀腔内介质对阀芯的作用力大于预压弹簧对阀芯的作用力时,弹簧受到压缩使阀芯离开阀座,阀门自动开启;当阀腔内介质对阀芯的作用力小于弹簧预紧力时,预压弹簧的压力又将阀芯推回阀座,阀门自动关闭。
根据预紧弹簧对阀芯的作用力方向不同,可将弹簧预压式安全阀机构分为低压保护安全阀或者高压保护安全阀,由于弹簧对阀芯的作用力是单向的,所以可统称此类弹簧预紧安全阀机构为单向安全阀。如果把预紧弹簧埋置于安全阀压力阀腔之外,安全阀机构的功能是高压过载保护;把预压弹簧埋置于安全阀阀腔之内,压力过载保护则指的是低压过载保护。通常,安全阀阀芯在受预紧力一侧与压力出口保持通路连接。根据预紧弹簧埋置位置不同预紧压力式安全阀可分为低压保护安全阀和高压保护安全阀,但只起到单向压力过载保护作用。根据预紧弹簧的压缩量是否可变可把安全阀分为压力可调式安全阀和固定压力式安全阀。预紧压力式安全阀机构轻便紧凑,灵敏度也比较高,安装位置不受限制,而且因为对振动的敏感性小,所以除了在固定装置或管道上使用,也可用于移动式的装置上。单向预紧压力式安全阀单独作为过压(低压或者高压)保护的一种安全装置在各个相关行业获得广泛使用。如果安全阀同时具备低压保护和高压保护功能,则是双向安全阀,此时与双向安全阀连接的阀腔内的介质的工作压力将被限定在一定的压力阀值范围,介质工作压力处于压力阀值范围内时阀芯关闭,介质工作压力超出高、低阀值范围时阀芯自动开启,介质工作压力回到安全阀高低阀值范围之内时阀芯自动回座。根据双向安全阀的结构设计,安装时通常有方向性或其他特定要求。
显然,本发明中,安全阀机构9还可以为双向安全阀机构,如图8所示,在安全阀机构9上设有当阀腔93内压力小于设定值时能提升阀腔93内压力的低压过载保护安全阀95,且当阀腔93内压力大于弹簧92预紧力时能推开阀芯91从而实现泄压。
限位结构6包括爪体套筒61,所述的爪体套筒61固定在传动件3前端,在爪体套筒61上设有中心通孔61a,各爪体5均穿设于中心通孔61a中,且中心通孔61a内壁与爪体5外侧面通过斜面滑动配合。爪体顶柱8前端具有弧形面,各爪体5后端具有锥形面,且爪体顶柱8前端上的弧形面能与各爪体5后端的锥形面相互接触;所述的筒状导嘴7后端具有锥形面,各爪体5前端具有锥形面,且各爪体5前端的锥形面能与筒状导嘴7后端的弧形面相互接触。
筒状手把1后端端面设有至少一个避让观察缺口13。筒状导嘴7设置在前外套筒10上,所述的前外套筒10可拆卸地固定在筒状手把1前端,所述的前外套筒10上可拆卸地连接有抵靠于筒状手把1前端端面的锁紧环14。筒状导嘴7通过可拆卸结构与前外套筒10相连从而使所述前外套筒10能与具有不同孔径的筒状导嘴7中的任意一个相连。
以下对本发明进行更详细的说明:
本发明工作时通常包含插入铆接紧固件(抽芯铆钉)、拉铆、抽芯和排出铆接紧固件尾杆等几个主要动作,拉铆力学过程包括两个阶段:先是需要克服铆接紧固件的前端薄壁筒的材料屈服极限使之变形,随后需要克服芯杆材料的抗拉极限强行拉断铆接紧固件的芯杆并抽离铆接紧固件尾杆100。由于铆接紧固件(抽芯铆钉)拉铆行程较长,工作时需要的拉铆力随着抽芯铆钉规格或材料的变化而变化,材料强度越大的抽芯铆钉需要的拉铆力越大,同种材料的抽芯铆钉尺寸规格越大则其需要的拉铆力也越大,所以常见的轻型、中型、重型铆接工具夹头主要是根据工具的拉铆能力进行分类。铆接工具夹头强调易用性、拉铆一致性、拉铆能力和拉铆工作效率等。
由背景技术分析可知,如果从轴向工作荷载设计和传动上解决拉铆中段行程的“空回”问题和螺纹磨损等问题,提升铆接工具夹头的拉铆能力,加上产品本身具有的优势,铆接工具夹头会成为一个符合需求、功能优势明显、更受市场欢迎的产品。
在一定外力防转夹持条件下市场上现有的铆接工具夹头拉铆力不足的问题,解决办法的其中一个方向是从产品现有的结构、材料、工艺、表面处理、强度、加工精度等角度进行尝试改善,但改善空间有待验证;另外一个方向是引入从机构工作原理上可提高传动效率的新机构,从轴向工作荷载设计和传动上解决“空回”行程问题和螺纹磨损等问题对传动效率、精度和可靠性上的影响,但殊为不易。安全阀机构结构上首要的基本条件是有一个可耐受一定压力载荷的阀腔,工作时阀腔内介质的压力阀值由预紧弹簧的预紧力决定,受介质压力源影响介质在筒仓内传导压力至预紧弹簧,过载时安全阀打开,起到阀值压力自动保护的作用。传统机械设计上,如果机构在密闭腔体内动作时会产生非设计功能的或非可控的介质压力变化和介质温度变化,为安全起见在结构处理上通常是把密闭腔体改成含压力出口结构的零压力设计,在抽芯铆钉工具夹头可见此类结构设计(参考专利JP3993844和专利US0060189787)。安全阀机构阀腔内介质压力可控,灵敏度比较高,而且其本身就是一个安全部件。根据铆接工具夹头的工作特点和结构特点,在专利JP3993844和专利US0060189787已经解决螺纹传动中重入问题的基础上,本发明重点解决拉铆中段行程中螺旋副转换时的“空回”行程问题和螺纹磨损不能补偿等问题,并分别提出具体实施方案。
本实施中螺杆、筒体和阀芯三者之间形成的阀腔。加压、减压装置为与有动力输出的旋转驱动装置相连接的螺杆并与筒体通过螺纹结构咬合连接。考虑成本、散热、刚度、阀门正确开启、回座及其性能要求,在本发明中阀芯可采用刚性或弹性球体、半球体或类似结构,或者其他无压力出口结构的柱体、套管、平板上表面有不同凹凸结构特征的平板或套管或柱体等结构,确保在外力作用下或者阀腔内部介质压力大于压缩预紧弹簧的压缩预紧力加载于阀芯上的压力时可进行自动启闭动作即可。
把拉铆行程分前段、中段和后段分别加以考察,特别是在不同工况下的拉铆中段行程:
①前段:退出铆接紧固件尾杆的操作结束时,爪体和爪体顶柱缩进极限位置,爪体处于完全打开状态,爪体套筒处于最前端的极限位置,各爪体芯部之间形成一个比筒状导嘴的拉钉孔规格略大的圆柱形空间以容许铆接紧固件尾杆100退出或者插入新的铆接紧固件,在退出铆接紧固件尾杆100行程结束点也即是拉铆行程的起始点。爪体前端面与筒状导嘴后端面保持轴向有压力接触,螺杆完全退出与筒体内螺纹的咬合区但相互之间也保持有压力接触处于平衡状态。插入铆钉之后,螺杆在驱动装置带动下开始转动,螺杆进入螺纹咬合区,拉铆行程开始,此时螺旋副仍然是退出铆接紧固件尾杆100行程中的退出螺旋副,所以在铆接工具夹头的拉铆行程中螺纹结构先要进行螺旋副转换,然后才可以加载拉铆载荷进行拉铆工作。由于螺杆前端在安全阀机构里的功能是对阀腔内的介质进行加压或减压, 螺杆转动对阀腔的介质进行加压形成一个新的内力系统。在各爪体内侧表面与铆钉芯杆接触之前,驱动装置需克服当前退出螺旋副的摩擦力使筒体在筒状导嘴与爪体顶柱之间的预紧力作用下做相对于螺杆的直线后退运动,安全阀机构的阀腔内介质的压力对安全阀机构的构件的作用力是内力,由于内力的属性是一对大小相等方向相反的力,螺杆轴向截面上受到阀腔内介质的压力,而筒体底部轴向截面上受到一个大小相等方向相反的压力,从外力的平衡原理可知,退出螺旋副的轴向压力随着安全阀结构阀腔内介质压力的增大而减少。当退出螺旋副的摩擦力为0时,退出螺旋副的轴向压力也为0,螺杆继续转动则安全阀结构的阀腔内的气压继续增加,退出螺旋副的接触面开始脱离接触并在轴向外力的合力作用下形成拉铆螺旋副。前段行程结束时爪体前端面与筒状导嘴后端面保持0压力接触,此时螺旋副已经完成转换。由于阀腔内的介质已经被加压,如果阀腔内的压力大于预紧弹簧对阀芯的压力,阀芯将会离开阀座进行自动卸压,在这个情况下如果驱动装置继续同方向转动螺杆,阀腔的工作压力将保持在最大阀值压力。
②中段行程工况1:当退出螺旋副的摩擦力为0时,螺杆继续转动,退出螺旋副的接触面开始脱离接触。退出螺旋副的摩擦力为0时,轴向压力为0时,但爪体前端仍然与筒状导嘴后端保持有压力接触,螺杆继续转动则意味着阀腔内的气压继续增加,螺旋副在这两个外力的合力作用下完成螺旋副转换。在爪体前端面与筒状导嘴后端面接触压力降为0时中段行程开始,拉铆螺旋副已经自动形成并自动预紧,所以不存在现有技术的螺纹结构中存在的“空回”行程问题,而且预紧力可自动补偿螺纹磨损,消除螺纹传动过程中不可避免的螺纹磨损对螺纹轴向间隙的负面影响。由于阀腔内的介质已经被加压,如果阀腔内的压力大于预紧弹簧对阀芯的压力,阀芯将会离开阀座进行自动卸压,在这个情况下在这个情况下如果螺杆继续同方向转动,阀腔的工作压力将保持在最大阀值压力。
③中段行程工况2:在工具的使用过程中会根据实际工作需要或出现异常状况时转变操作方向,那么进一步考察螺纹结构中段行程中的逆向操作问题,也就是拉铆工作行程中的换档问题。此时旋转驱动装置换档逆向操作,在传统的铆接工具夹头(参考专利JP3993844和专利US0060189787)上意味着螺纹结构需要先进行螺旋副转换,再进行转向。而在本发明中,由于阀腔存在被压缩介质,驱动装置换档驱动螺杆开始逆向转动时,螺旋副上的轴向压力是抽芯铆钉的弹性变形或塑性变形时产生的反作用力,以及阀腔内被压缩介质的压力。当驱动装置继续逆向转动松开铆钉与筒状导嘴在接触面上的相互挤压,螺旋副上的轴向压力来源则变成阀腔内的压缩介质,此时旋转驱动装置需克服螺旋副上的摩擦力继续逆向转动螺杆,但是拉铆螺旋副在轴向压力变为0之前并没有被解除。拉铆螺旋副轴向压力变为0的位置是筒状导嘴后端面与爪体前端面之间的压力与阀腔内介质的压力相互平衡点,也就是中段行程的起点。如果中段行程内的任何一个位置驱动装置再换回至原来的转动方向,则不需要涉及螺旋副转换,螺纹结构可直接随驱动装置进行转向运动,根本不存在“空回”行程。由于阀腔内的介质已经被加压,如果阀腔内的压力大于预紧弹簧对阀芯的压力,阀芯将会离开阀座进行自动卸压,在这个情况下如果驱动装置继续同方向转动,阀腔的工作压力将保持在最大阀值压力;如果反方向转动,阀芯将回到阀座,安全阀关闭,阀腔内压力随着驱动装置转动而减小。
④中段行程工况3:预紧弹簧与爪体顶柱连接,爪体顶柱与爪体连接,爪体套筒外部与筒体连接,爪体、爪体顶柱、弹簧、阀芯从前到后轴向相连接并含于爪体套筒与筒体形成的内腔,工作时爪体顶柱可动。弹簧前端与爪体顶柱连接,如果装入抽芯铆钉的尾杆直径变大,爪体和爪体顶柱需更加向内缩进爪体套筒腔体,弹簧的压缩量增加而预紧力变大,所以前后预紧力相同,也就是说阀腔内的最大允许气压阀值也会随着弹簧预紧压缩量变大而增大。工作时抽芯铆钉尾杆是抽芯铆钉夹头在拉铆工作时预紧压力可调式安全阀机构的关键调节部件之一,抽芯铆钉尺寸规格越大则抽芯铆钉尾杆的直径越大,工作时爪体缩进爪体套筒以夹持住该规格抽芯铆钉的尾杆的缩进量也变大,爪体顶柱前部与爪体尾部相连接,那么爪体顶柱相对于阀芯的缩进量也变大,爪体顶柱尾部与预紧弹簧相连接,所以置于爪体顶柱与阀芯之间的弹簧的压缩量也跟着变大,实现根据抽芯铆钉尺寸 规格机械定量式调节阀腔内空气最大允许气压阀值的目的。相同材料的抽芯铆钉尺寸规格越大需要的拉铆载荷也越大,如果阀腔内介质的压力超过最大允许阀值,那么增大允许气压阀值可以增大拉铆螺旋副的最大预紧力,在允许范围内预紧力越大越有利于减少高强度材料大规格铆钉的尾杆被很大的拉铆载荷拉断瞬间载荷剧烈变化对螺纹结构的冲击。由于阀腔内的介质已经被加压,如果阀腔内的压力大于预紧弹簧对阀芯的压力,阀芯将会离开阀座进行自动卸压,在这个情况下阀腔的工作压力将保持在最大阀值压力。
⑤后段:螺杆前端面与阀芯接触之后,驱动装置继续转动,螺杆前端将顶开阀芯使阀芯离开阀座,此时安全阀机构开始卸压,直至拉铆行程结束。此时螺杆前端面与阀芯保持有压力的点接触,所以没有重入问题。
在铆接工具夹头中引入安全阀机构的螺纹结构虽然在一定程度上增加了旋转驱动装置的工作负载和铆接工具夹头内螺纹结构的螺纹磨损,但这些负面影响在一定程度上可控,也在可接受范围之内。从拉铆行程的前段、中段和后段的比较,特别是对拉铆中段行程在不同工况下的工作过程的分析可知,本发明通过内置可调式安全阀机构的设计,不但有效地解决了传统螺纹结构中在拉铆行程中段存在的有待解决的问题,而且赋予铆接工具夹头新特点和新功能。
如果把本发明单向安全阀机构更改为双向安全阀机构,则可实现对阀腔内介质压力的双向(正压力和负压力)阀值设定。例如在阀芯上设置低压过载保护安全阀95。阀腔内介质的工作压力将被限定在正压力阀值和负压力阀值的设定范围之内;也可以从封闭阀腔范围内的其他位置或其他构件如筒体侧面或者螺杆前端单独放置低压过载保护安全阀来实现此目的;或者直接将阀芯替换成任何适用类型的双向安全阀,并将与此变化相关的双向安全阀和预压弹簧的连接方式做与此变化相适应的改变,则可将阀腔内介质的工作压力限定在双向安全阀的正压力阀值和负压力阀值设定范围之内,因为安全阀机构在阀腔工作压力处于阀值范围之内时阀芯是关闭的,所以此类情况同样包含本发明的保护范围之内。在此情况下,双向安全阀的阀值范围可能是单向可调或者双向可调。
本发明中,当各爪体5处于径向完全打开状态时所述的阀芯91前端到各爪体5后端之间的间距小于留在筒状手把1内的铆接紧固件尾杆100长度。即,当爪体完全松开时抽芯铆钉尾杆废料最多只可移动到与阀芯接触为止,此时尾杆废料的前端仍处于爪体夹持区域内,这样可避免腔体内存在未排出的尾杆废料却可装入新抽芯铆钉的严重的产品失效问题。为解决传统抽芯铆钉夹头的(参考专利JP3993844)以上排出尾杆失效问题,可把爪体顶柱(参考专利JP3993844图2所示)尾部通孔变成一个盲孔或者直径小于抽芯铆钉最小尾杆直径的通孔,使爪体顶柱变成含有尾杆止位功能的部件。
本发明采用一体式结构的筒状手把,相比于现有技术(参考专利JP3993844或专利US006018978)减少零部件。筒状手把1后端设有环形槽11,环形槽11内套设有弹性圈12,弹性圈12起到止位防滑作用,以提高工具使用的安全性。锁紧环提高紧固连接的可靠性。
现有技术(参考专利JP3993844)前套管上有开口,便于观察腔体内部可视范围内的部件运动状态和损耗状态,以及使用撬棍插入该开口进行锁紧和松开前套管等功能。由于该开口未作任何阻挡处理,异物容易通过该开口进入到前套管和一体式结构的筒状手把的内腔。考虑到铆接工作时的实际工况,如有异物比如砂土、金属屑、污脏物等通过开口进入到外壳内腔内壁或含于其中的其他所有零部件或运动部件之间的配合部位,异物可能严重影响工具的功能、性能、寿命甚至导致其他安全问题。如图7所示,本发明中,前外套筒10上开有至少一个开口101;前外套筒10上设有能够将开口101封闭的透明防护套102。透明防护套102上设有至少一个操作孔102a且当透明防护套102转动后能使至少一个操作孔102a与至少一个开口101相对置。在开口的基础上增加一个透明或者透明度良好的透明防护套102,保留观察孔功能,同时在前外套筒10适当位置增加滚花、六角平台或者其他可被夹持的结构等处理解决前外套筒10和一体式结构的筒状手把之间的松紧问题,在一体式结构的筒状手把增加开口以观察螺杆的转向及其与驱动装置夹头之间的连接状态,可以通过螺杆转向确定爪 体的前进和后退方向。
以上主要介绍了铆接工具夹头,显然采用上述铆接工具夹头的铆接工具,包括驱动装置20,所述的铆接工具夹头能与驱动装置20相连,且驱动装置20的动力输出轴与所述的转动件2相连,所述的驱动装置20为电动驱动装置或手动驱动装置。
图6a、图6b和图6c分别是本发明、专利JP3993844和专利US0060189787在拉铆行程中螺旋副预紧力和螺旋副转换位置分析对比图。通过对比图6a、图6b和图6c能够更加明显地发现本发明区别于现有技术的技术效果。图中,X轴代表拉铆行程,Y轴代表螺旋副上的预紧力。
图6a专利US0060189787在拉铆行程中螺旋副预紧力和螺旋副转换位置分析:
201-专利US0060189787拉铆前段行程起点;
202-专利US0060189787拉铆中段行程起点;
203-专利US0060189787抽芯铆钉芯杆被拉断位置;
204-专利US0060189787拉铆后段行程起点;
205-专利US0060189787完整拉铆行程结束点;
206-专利US0060189787螺旋副开始转换的位置;
207-专利US0060189787螺旋副转换完成的位置。
206和207之间的距离为螺纹传动空回行程,空回行程由螺纹间隙造成,而螺牙磨损会增大螺纹间间隙;拉铆前段行程起点201和完整拉铆行程结束点205在螺旋副上存在预紧力,前段预紧力和后段预紧力轴向相反,分别解决前后螺纹重入问题;螺旋副转换开始位置206也是拉铆中段行程起点202,需要经过空回行程才完成转换到螺旋副转换完成位置207;在拉铆中段行程,弹簧被压缩后螺旋副上才开始存在预紧力,所以螺旋副转换是在螺纹传动位移约束条件下被动完成;抽芯铆钉芯杆在位置205被拉断瞬间,拉铆载荷的剧烈变化对螺旋副会造成载荷冲击。
图6b专利JP3993844在拉铆行程中螺旋副预紧力和螺旋副转换位置分析:
301-专利JP3993844拉铆前段行程起点;
302-专利JP3993844拉铆中段行程起点;
303-专利JP3993844抽芯铆钉芯杆被拉断位置;
304-专利JP3993844拉铆后段行程起点;
305-专利JP3993844完整拉铆行程结束点;
306-专利JP3993844螺旋副开始转换的位置;
307-专利JP3993844螺旋副转换完成的位置。
306和307之间的距离为螺纹传动空回行程,空回行程由螺纹间隙造成,而螺牙磨损会增大螺纹间间隙;拉铆前段行程起点301和完整拉铆行程结束点305在螺旋副上存在预紧力,前段预紧力和后段预紧力轴向相反,分别解决前后螺纹重入问题;螺旋副转换开始位置306也是拉铆中段行程起点302,需要经过空回行程才完成转换到螺旋副转换完成位置307;在整个拉铆中段行程中螺旋副预紧力为0,所以螺旋副转换是在螺纹传动位移约束条件下被动完成;抽芯铆钉芯杆在位置305被拉断瞬间,拉铆载荷的剧烈变化对螺旋副会造成载荷冲击。
图6c本发明在拉铆行程中螺旋副预紧力和螺旋副转换位置分析:
401-本发明拉铆前段行程起点;
402-本发明拉铆中段行程起点;
403-本发明抽芯铆钉芯杆被拉断位置;
404-本发明拉铆后段行程起点;
405-本发明完整拉铆行程结束点;
406-本发明螺旋副开始转换的位置。
安全阀机构在拉铆前段行程开始位置401即开始积极介入螺纹传动系统,螺旋副转换方式是在前后轴向力平衡的位置406开始自动完成转换,螺旋副开始转换位置406位于拉铆行程前段,在拉铆中段行程起点402之前已经完成转换,所以无空回行程问题;拉铆前段行程起点401和完整拉铆行程结束点405在螺旋副上存在预紧力,前段预紧力和后段预紧力轴向相反,分别解决前后螺纹重入问题;在整个拉铆行程中螺旋副存在连续的预紧力,可自动补偿螺纹磨损,而且有助于缓冲拉铆过程中的载荷冲击; 在拉铆中段行程中,铆钉尾杆直径大小直接影响安全阀的弹簧的被压缩量,既而影响安全阀机构的最大阀值压力,铆钉规格不同螺旋副上的最大预紧力也不同,尾杆直径越大螺旋副上存在的预紧力越大,所以螺旋副上的预紧力具有可调性特征;如果在拉铆中段行程起始点402或者之前的行程中安全阀机构压力达到最大阀值水平,那么在整个中段行程螺旋副预紧力为安全阀机构作用在螺旋副上的最大轴向力。
实施例2:
如图9所示,本实施例中,转动件2具有螺孔,所述的传动件3具有螺纹柱,所述的螺孔与螺纹柱能够螺纹连接;所述的安全阀机构9包括设于传动件3上的轴向通孔94和设于轴向通孔94内且能封堵在轴向通孔94中部的阀芯91,所述的阀芯91与爪体顶柱8之间设有弹簧92,所述的弹簧92一端作用于爪体顶柱8,另一端作用于阀芯91上,所述的转动件2、传动件3和阀芯91之间形成能随着转动件2与传动件3的轴向相对位置而改变容积从而改变其内部压力大小的阀腔93。即实现了转动件和传动件的螺杆螺套机构的对调。本实施例的其余结构与实施例1类同。
实施例3:
本实施例中,筒状导嘴7包括设于前外套筒10内且能使各爪体5前端顶于其上的筒状后部和转动连接于前外套筒10前端的转盘,所述的筒状后部与前外套筒10可拆卸连接或连为一体,所述的转盘旋转轴与筒状后部中轴线偏心设置,所述的转盘上设有若干具有不同孔径的拉钉孔,各拉钉孔的中心位于同一圆周上且当转盘转动后各拉钉孔的中轴线能分别与筒状后部的中轴线重合,所述的转盘与前外套筒10之间设有定位结构。本实施例的其余结构与实施例1类同。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。
尽管本文较多地使用了筒状手把1、环形槽11、弹性圈12、避让观察缺口13、锁紧环14、轴承15、C型卡簧16、E型卡簧17、防转限位销钉18、转动件2、传动件3、条形滑槽31、螺纹结构4、爪体5、限位结构6、爪体套筒61、中心通孔61a、筒状导嘴7、爪体顶柱8、安全阀机构9、前外套筒10、开口101、透明防护套102、操作孔102a、阀芯91、弹簧92、阀腔93、轴向通孔94、过载保护安全阀95、铆接紧固件尾杆100、驱动装置20等术语,但并不排除使用其它术语的可能性。使用这些术语仅仅是为了更方便地描述和解释本发明的本质;把它们解释成任何一种附加的限制都是与本发明精神相违背的。

Claims (16)

  1. 一种铆接工具夹头,包括筒状手把(1),在筒状手把(1)内穿设有与筒状手把(1)轴向定位且周向转动连接的转动件(2)和与筒状手把(1)周向定位且轴向活动连接的传动件(3),所述的转动件(2)与传动件(3)之间能通过螺纹结构(4)相连,在传动件(3)前端设有若干在圆周方向分布的爪体(5)和能防止各爪体(5)脱离的限位结构(6),所述的筒状手把(1)前端设有能使各爪体(5)前端顶于其后端的筒状导嘴(7),所述的传动件(3)前端与各爪体(5)后端之间设有当转动件(2)反转时能推动传动件(3)轴向向前移动从而使各爪体(5)在筒状导嘴(7)配合下径向分离的爪体顶柱(8),且当转动件(2)正转时能带动传动件(3)轴向向后移动从而使各爪体(5)径向收拢继而带动收拢后的爪体(5)继续轴向向后移动,其特征在于,所述的爪体顶柱(8)与传动件(3)之间设有能使所述螺纹结构(4)具有螺旋副预紧力的安全阀机构(9),且安全阀机构(9)能使转动件(2)正转过程中在各爪体(5)前端与筒状导嘴(7)后端之间的轴向反作用力降为零之前实现所述螺纹结构(4)的螺旋副转换从而避免所述螺纹结构(4)的空回行程。
  2. 根据权利要求1所述的铆接工具夹头,其特征在于,所述的转动件(2)为螺杆,所述的传动件(3)为筒体,所述的螺杆前端与筒体后端能通过所述螺纹结构(4)相连;所述的安全阀机构(9)包括设于筒体内且能封堵在筒体中部的阀芯(91)和设置在阀芯(91)与爪体顶柱(8)之间的弹簧(92),所述的弹簧(92)一端作用于爪体顶柱(8),另一端作用于阀芯(91)上,所述的螺杆、筒体和阀芯(91)之间形成能随着螺杆与筒体的轴向相对位置而改变容积从而改变其内部压力大小的阀腔(93)。
  3. 根据权利要求1所述的铆接工具夹头,其特征在于,所述的转动件(2)具有螺孔,所述的传动件(3)具有螺纹柱,所述的螺孔与螺纹柱能够螺纹连接;所述的安全阀机构(9)包括设于传动件(3)上的轴向通孔(94)和设于轴向通孔(94)内且能封堵在轴向通孔(94)中部的阀芯(91),所述的阀芯(91)与爪体顶柱(8)之间设有弹簧(92),所述的弹簧(92)一端作用于爪体顶柱(8),另一端作用于阀芯(91)上,所述的转动件(2)、 传动件(3)和阀芯(91)之间形成能随着转动件(2)与传动件(3)的轴向相对位置而改变容积从而改变其内部压力大小的阀腔(93)。
  4. 根据权利要求2或3所述的铆接工具夹头,其特征在于,所述的安全阀机构(9)为单向安全阀机构,且当阀腔(93)内压力大于弹簧(92)预紧力时能推开阀芯(91)从而实现泄压。
  5. 根据权利要求2或3所述的铆接工具夹头,其特征在于,所述的安全阀机构(9)为双向安全阀机构,在安全阀机构(9)上设有当阀腔(93)内压力小于设定值时能提升阀腔(93)内压力的低压过载保护安全阀(95),且当阀腔(93)内压力大于弹簧(92)预紧力时能推开阀芯(91)从而实现泄压。
  6. 根据权利要求1或2或3所述的铆接工具夹头,其特征在于,所述的安全阀机构(9)为压力可调式安全阀机构或固定压力式安全阀机构,且当安全阀机构(9)为固定压力式安全阀机构时在传动件(3)和筒状手把(1)之间设置一预紧力弹簧;所述的阀腔(93)内设有介质,所述的介质为气体或流体。
  7. 根据权利要求1或2或3所述的铆接工具夹头,其特征在于,所述的筒状手把(1)后端设有环形槽(11),所述的环形槽(11)内套设有弹性圈(12),所述的筒状手把(1)后端端面设有至少一个避让观察缺口(13)。
  8. 根据权利要求1或2或3所述的铆接工具夹头,其特征在于,所述的筒状导嘴(7)设置在前外套筒(10)上,所述的前外套筒(10)可拆卸地固定在筒状手把(1)前端,所述的前外套筒(10)上可拆卸地连接有抵靠于筒状手把(1)前端端面的锁紧环(14)。
  9. 根据权利要求8所述的铆接工具夹头,其特征在于,所述的筒状导嘴(7)通过可拆卸结构与前外套筒(10)相连从而使所述前外套筒(10)能与具有不同孔径的筒状导嘴(7)中的任意一个相连。
  10. 根据权利要求8所述的铆接工具夹头,其特征在于,所述的筒状导嘴(7)包括设于前外套筒(10)内且能使各爪体(5)前端顶于其上的筒状后部和转动连接于前外套筒(10)前端的转盘,所述的筒状后部与前 外套筒(10)可拆卸连接或连为一体,所述的转盘旋转轴与筒状后部中轴线偏心设置,所述的转盘上设有若干具有不同孔径的拉钉孔,各拉钉孔的中心位于同一圆周上且当转盘转动后各拉钉孔的中轴线能分别与筒状后部的中轴线重合,所述的转盘与前外套筒(10)之间设有定位结构。
  11. 根据权利要求8所述的铆接工具夹头,其特征在于,所述的前外套筒(10)上开有至少一个开口(101);所述的前外套筒(10)上设有能够将开口(101)封闭的透明防护套(102)。
  12. 根据权利要求11所述的铆接工具夹头,其特征在于,所述的透明防护套(102)上设有至少一个操作孔(102a)且当透明防护套(102)转动后能使至少一个操作孔(102a)与至少一个开口(101)相对置。
  13. 根据权利要求1或2或3所述的铆接工具夹头,其特征在于,所述的限位结构(6)包括爪体套筒(61),所述的爪体套筒(61)固定在传动件(3)前端,在爪体套筒(61)上设有中心通孔(61a),各爪体(5)均穿设于中心通孔(61a)中,且中心通孔(61a)内壁与爪体(5)外侧面通过斜面滑动配合。
  14. 根据权利要求13所述的铆接工具夹头,其特征在于,所述的爪体顶柱(8)前端具有弧形面,各爪体(5)后端具有锥形面,且爪体顶柱(8)前端上的弧形面能与各爪体(5)后端的锥形面相互接触;所述的筒状导嘴(7)后端具有锥形面,各爪体(5)前端具有锥形面,且各爪体(5)前端的锥形面能与筒状导嘴(7)后端的弧形面相互接触。
  15. 根据权利要求1或2或3所述的铆接工具夹头,其特征在于,当各爪体(5)处于径向完全打开状态时所述的阀芯(91)前端到各爪体(5)后端之间的间距小于留在筒状手把(1)内的铆接紧固件尾杆(100)长度。
  16. 采用权利要求1-15中任意一项所述的铆接工具夹头的铆接工具,其特征在于,包括驱动装置(20),所述的铆接工具夹头能与驱动装置(20)相连,且驱动装置(20)的动力输出轴与所述的转动件(2)相连,所述的驱动装置(20)为电动驱动装置或手动驱动装置。
PCT/CN2018/077116 2017-03-02 2018-02-24 铆接工具夹头及铆接工具 WO2018157763A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18761195.9A EP3590625B1 (en) 2017-03-02 2018-02-24 Riveting tool chuck and riveting tool
US16/490,813 US11052453B2 (en) 2017-03-02 2018-02-24 Riveting tool chuck and riveting tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710120231.X 2017-03-02
CN201710120231.XA CN106734831B (zh) 2017-03-02 2017-03-02 铆接工具夹头及铆接工具

Publications (1)

Publication Number Publication Date
WO2018157763A1 true WO2018157763A1 (zh) 2018-09-07

Family

ID=58960838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077116 WO2018157763A1 (zh) 2017-03-02 2018-02-24 铆接工具夹头及铆接工具

Country Status (4)

Country Link
US (1) US11052453B2 (zh)
EP (1) EP3590625B1 (zh)
CN (1) CN106734831B (zh)
WO (1) WO2018157763A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11052453B2 (en) * 2017-03-02 2021-07-06 Hangzhou Lianwei Technology Co., Ltd. Riveting tool chuck and riveting tool
CN114518630A (zh) * 2020-11-19 2022-05-20 成都极米科技股份有限公司 空回消除方法、装置、电子设备及计算机可读存储介质
TWI838293B (zh) * 2023-06-30 2024-04-01 陳韋志 自攻拉鉚扣件安裝工具

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108746456B (zh) * 2018-08-29 2024-06-21 姚永法 一种快捷式拉铆枪
CN108994244B (zh) * 2018-08-30 2020-03-06 王恩能 一种便携式电动铆钉装配辅助机械
CN110216668B (zh) * 2019-02-21 2024-05-07 浙江新金宸机械有限公司 气动机械手式换热器铆隔板工装
TWI737166B (zh) * 2020-02-11 2021-08-21 寶資工業股份有限公司 可替換式多用途鉚接器
CN113245502A (zh) * 2020-02-11 2021-08-13 宝资工业股份有限公司 可替换式多用途铆接器
CN112267927B (zh) * 2020-09-12 2022-04-12 江苏里斯特通用机械制造有限公司 一种小型汽油机试车机油自动喷入系统及其工作方法
CN113085207B (zh) * 2021-03-31 2022-05-17 湖北三江航天万峰科技发展有限公司 一种用于拉铆枪的枪头及使用方法
CN114193399B (zh) * 2021-12-14 2024-07-12 苏州长风航空电子有限公司 同轴防转回转体结构组件装配工具及装配方法
CN116060570A (zh) * 2023-03-07 2023-05-05 峰范新能源汽车技术(太仓)有限公司 一种多功能零配件铆接装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2115847U (zh) * 1991-07-11 1992-09-16 沈阳市和平区兴辽新技术应用研究所 液压环槽冷铆枪
US6018978A (en) 1996-09-03 2000-02-01 Aniento; Andres Perez Universal simplified riveter
JP2005059076A (ja) * 2003-08-18 2005-03-10 Lobtex Co Ltd リベッター
CN201287182Y (zh) * 2008-09-22 2009-08-12 山东同力达智能机械有限公司 紧凑型拉铆枪
US20110048099A1 (en) * 2009-08-28 2011-03-03 Sps Technologies, Llc Hand-tool system for installing blind fasteners
CN203804132U (zh) * 2014-05-19 2014-09-03 高良 电动拉铆枪枪头
CN106734831A (zh) * 2017-03-02 2017-05-31 杭州联团科技有限公司 铆接工具夹头及铆接工具
CN206588289U (zh) * 2017-03-02 2017-10-27 杭州联团科技有限公司 铆接工具夹头及铆接工具

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL42637A0 (en) * 1973-07-01 1973-10-25 Benimatzky E Device for riveting blind rivets
JPH06102240B2 (ja) * 1990-05-10 1994-12-14 日本理器株式会社 リベッター
CZ277924B6 (en) * 1990-06-15 1993-06-16 Segnor Spol S R O Device for riveting one-sided rivets with a mandrel
IL112214A (en) * 1995-01-02 1997-06-10 Avraham Danino Riveting device
US8449234B2 (en) * 2007-01-16 2013-05-28 Harry E. Taylor Blind rivet
CN101579717B (zh) * 2009-06-24 2011-05-18 文星毅 便携式智能直流电动拉铆枪
CN202804062U (zh) * 2012-08-07 2013-03-20 株洲华盛实业有限公司 拉断型液压拉铆枪
CN103706837B (zh) * 2013-12-17 2016-03-09 杭州联团科技有限公司 微型精密电动工具
CN203887143U (zh) * 2014-05-17 2014-10-22 高良 电动拉铆枪
CN105268900B (zh) * 2015-10-28 2017-04-19 顺德职业技术学院 用于工业机器人铆接加工的伺服压制装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2115847U (zh) * 1991-07-11 1992-09-16 沈阳市和平区兴辽新技术应用研究所 液压环槽冷铆枪
US6018978A (en) 1996-09-03 2000-02-01 Aniento; Andres Perez Universal simplified riveter
JP2005059076A (ja) * 2003-08-18 2005-03-10 Lobtex Co Ltd リベッター
JP3993844B2 (ja) 2003-08-18 2007-10-17 株式会社ロブテックス リベッター
CN201287182Y (zh) * 2008-09-22 2009-08-12 山东同力达智能机械有限公司 紧凑型拉铆枪
US20110048099A1 (en) * 2009-08-28 2011-03-03 Sps Technologies, Llc Hand-tool system for installing blind fasteners
CN203804132U (zh) * 2014-05-19 2014-09-03 高良 电动拉铆枪枪头
CN106734831A (zh) * 2017-03-02 2017-05-31 杭州联团科技有限公司 铆接工具夹头及铆接工具
CN206588289U (zh) * 2017-03-02 2017-10-27 杭州联团科技有限公司 铆接工具夹头及铆接工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3590625A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11052453B2 (en) * 2017-03-02 2021-07-06 Hangzhou Lianwei Technology Co., Ltd. Riveting tool chuck and riveting tool
CN114518630A (zh) * 2020-11-19 2022-05-20 成都极米科技股份有限公司 空回消除方法、装置、电子设备及计算机可读存储介质
CN114518630B (zh) * 2020-11-19 2023-09-01 成都极米科技股份有限公司 空回消除方法、装置、电子设备及计算机可读存储介质
TWI838293B (zh) * 2023-06-30 2024-04-01 陳韋志 自攻拉鉚扣件安裝工具

Also Published As

Publication number Publication date
US20190388958A1 (en) 2019-12-26
EP3590625A4 (en) 2020-12-30
CN106734831A (zh) 2017-05-31
US11052453B2 (en) 2021-07-06
CN106734831B (zh) 2018-06-19
EP3590625B1 (en) 2022-05-18
EP3590625A1 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
WO2018157763A1 (zh) 铆接工具夹头及铆接工具
US11413680B2 (en) Riveting tool accessory and riveting tool
US5425164A (en) Hand-tool system for installing blind fasteners
KR101595867B1 (ko) 안전 장치를 가진 패스너 조임 장치
US7032281B1 (en) Rivet-stroke adjusting device for a rivet-nut gun
US8307690B2 (en) Hand-tool system for installing blind fasteners
US7698794B2 (en) Load control mechanism for pull type tools
US4263801A (en) Hydraulic riveter
US7159290B1 (en) Manual hydraulic riveter
JP6599724B2 (ja) 動力工具用の保持および解放機構
CN110695922A (zh) 一种精密零件上的空心定位销拆卸用作业工装
CN206588289U (zh) 铆接工具夹头及铆接工具
US6029332A (en) Rivet setting tool
CN203390502U (zh) 分体式液压销轴拉马
US12017332B2 (en) Bolt tensioning tool
US20170204914A1 (en) Handwheel clutch for use in machinery
CN206588906U (zh) 铆接工具附件及铆接工具
CN110695294A (zh) 带安全侧把的动力铆接工具附件及动力铆接工具
CN211304645U (zh) 一种电动拉铆枪
CN103072109A (zh) 防过载力矩扳手
CN203695849U (zh) 一种单手操作二级传动拉铆枪
US7216520B1 (en) Cross-threading prevention apparatus for installing nut inserts
CN211708024U (zh) 带安全侧把的动力铆接工具附件及动力铆接工具
CN211218525U (zh) 固定侧把动力铆接工具附件
CN210586967U (zh) 一种液压铆接工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018761195

Country of ref document: EP

Effective date: 20191002