WO2018157663A1 - 一种冷霾除尘除雾装置 - Google Patents

一种冷霾除尘除雾装置 Download PDF

Info

Publication number
WO2018157663A1
WO2018157663A1 PCT/CN2018/000052 CN2018000052W WO2018157663A1 WO 2018157663 A1 WO2018157663 A1 WO 2018157663A1 CN 2018000052 W CN2018000052 W CN 2018000052W WO 2018157663 A1 WO2018157663 A1 WO 2018157663A1
Authority
WO
WIPO (PCT)
Prior art keywords
defogging
flue gas
defogger
demisting
cold heading
Prior art date
Application number
PCT/CN2018/000052
Other languages
English (en)
French (fr)
Inventor
孙厚杰
Original Assignee
孙厚杰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710337778.5A external-priority patent/CN106975312A/zh
Application filed by 孙厚杰 filed Critical 孙厚杰
Priority to US16/485,801 priority Critical patent/US20210023488A1/en
Publication of WO2018157663A1 publication Critical patent/WO2018157663A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/04Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
    • B01D45/08Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by impingement against baffle separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C1/00Direct-contact trickle coolers, e.g. cooling towers
    • F28C1/16Arrangements for preventing condensation, precipitation or mist formation, outside the cooler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/30Accessories for evaporators ; Constructional details thereof
    • B01D1/305Demister (vapour-liquid separation)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D50/00Combinations of methods or devices for separating particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D51/00Auxiliary pretreatment of gases or vapours to be cleaned
    • B01D51/02Amassing the particles, e.g. by flocculation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/06Arrangements of devices for treating smoke or fumes of coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B7/00Combinations of two or more condensers, e.g. provision of reserve condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/06Tubular elements of cross-section which is non-circular crimped or corrugated in cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/08Tubular elements crimped or corrugated in longitudinal section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • F28F1/36Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to a flue gas dust removing and demisting device, in particular to a cold heading (condensing) dust removing and demisting device, which is mainly applied to various flue gas dust removing and defogging environmental protection fields, in particular, wet flue gas and saturated wet flue gas dust removing.
  • Defogging field such as desulfurization, denitration spray absorption tower, bubble column, various washing towers, etc.; can also be applied to dust removal and defogging of various gases in other industries, including various steam and droplet removal, and Separation of gases from various liquid or solid particulate matter (aerosols), vapors of various liquids or solids.
  • the invention is precisely for solving this urgent need! ,.
  • the object of the present invention is to provide a flue gas defogging and dust removing device, which achieves ultra-clean emission standards and provides powerful technical support for environmental protection undertakings.
  • the present invention provides a cold heading dust removing and mist removing apparatus, comprising:
  • the condenser for cooling the saturated wet flue gas, especially the unsaturated wet flue gas is a heat-permeable shell-type circulating refrigerant medium, which is condensed into mist and enthalpy by the evaporation of water vapor in the wet flue gas by evaporation and work.
  • the shell channel may be a multilayer shell channel.
  • the refrigerant medium may circulate within a shell path of the shell channel; or the refrigerant medium circulates within an inner tube passage of the shell channel; or for a multilayer shell channel, the shell side may be simultaneously Circulation in the channel and tube path.
  • the refrigerant medium can be any practical refrigerant, including prior art refrigerants, as well as compressed gas that can be used as a refrigerant for the expansion work, usually compressed air.
  • the demisting module is provided with at least one connection of the single shell channels in the middle section and coupling the single shell channels one by one, and is covered by the connection of at least one of the single-tube linear demisting modules.
  • the entire flue gas flow passage region; or the defogging module is provided with at least one transition gas collection header in the middle portion for coupling the single shell passages on both sides, through at least one of the transitional gas collection type demisting modules
  • the connection covers the entire smoke flow passage region; or the demisting module is provided with at least one intermediate gas header in the middle portion, and the smoke flow passage region is penetrated through the connection of at least one intermediate gas header.
  • a demisting module may be constructed by any combination of at least one of the intermediate section joining methods including a method of passing through the flue gas flow passage region, at least one of the demisting modules covering the entire flue gas flow passage region.
  • the demisting module comprises the number of the shell channels in the range of 1-100, generally set to 10-30; the number of the above various joints depends on the diameter of the absorption tower, the installation conditions, the strength of the structural member, etc. However, in general, you can set 0-30.
  • the above demisting module can function to equalize the temperature of the flue gas, the flow field or increase the effective defogging area.
  • the flow area or flow cross section as referred to in the present application refers to the cross section or quasi cross section of the flue gas or fluid flow passage.
  • the surface of the basic cooling function of the condenser that cools the wet flue gas is designed with heat sinks or structures such as fins, threaded fins, and various types of fins, plates, tubes, and the like.
  • the basic cooling function component refers to the smallest structural member and device of the defogger which functions as a cooling function, such as the shell channel, the cavity channel in the present invention, and various forms of plates and tubes which can conduct heat and serve cooling. Film and so on.
  • the condenser for cooling the wet flue gas is designed to be installed in the first stage; at the same time, the condenser or the condensation may be continuously designed or not installed at the possible sub-positions of the second and second stages.
  • the device is mixed with other types and functions of the defogger.
  • the so-called level is the arrangement order of the positions where a defogger is installed in the whole device, such as the second stage and the third pole, and the arrangement order is the first stage, the second stage, and the like in the flow direction of the flue gas.
  • the first stage cold heading (condenser) when the required cooling capacity is small, or the second level and third stage installed except the first stage cold heading device The refrigeration system may be replaced by a cooling system, and the refrigerant medium is replaced by one or more of a liquid and a gas such as a cooling medium water, oil, etc., especially the air around the flue gas purification device, and the boiler is sent.
  • the wind, the discharged low-temperature flue gas, etc., the shell channel or part of the shell channel of the circulating medium can be replaced by a cavity channel, and the two can be replaced at the same time; in other cases, if the emission requirement can be met, it can be replaced.
  • the heater can use the heat conductive shell passage, and the heating medium can circulate in the shell passage of the shell passage; or The heating medium circulates within the inner tube passage of the shell passage; or for the multilayer shell channel, it can circulate simultaneously within the shell path and the tube path.
  • the heating pipe is designed to install heat sinks or structures, such as fins, threaded pieces, etc.
  • the defogging unit of the returning plate defogger for dehumidifying the wet flue gas has at least one reflow having at least one cross section thereof capable of recirculating the flue gas.
  • a curved defogging blade is constructed, and the defogging blade cross-sectional waveform can be replaced by an approximate polygonal line, which is arranged in an arbitrary direction.
  • the reflow bending refers to a minimum angle corresponding to the flue gas passage formed by any tangential line of the two side walls of the cross-sectional bending curve of the defogging blade is less than or equal to 90°, and the so-called reflow is the change of the flue gas flow direction by 90° or more.
  • the reflow plate defogger is formed by a combination of demisting units to form a unit layer of the demisting module, one defogging module is composed of at least one unit layer, and one layer of the demisters occupying the cross section of the flue gas flow is defogged by at least one piece.
  • Module composition; the mutual combination of the defogging units refers to various types including, but not limited to, the demisting unit mentioned in the present application and which can be reasonably introduced, as shown in FIG. 4, FIG. 7, FIG. 9 (surface structure) Fig. 11 and Fig. 12 (the mixed flow defogging unit including the reflow and defogging vanes), and the type change, as shown in Fig.
  • the demisting unit comprises a number of demisting blades for different gases and their kinematic viscosity, purity, flow rate, etc., may be 1-30 pieces, generally set to 3-5 pieces.
  • the basic demisting functional element is a demister for the blade, which is provided with a liquid receiving wall and a drainage ditch, and the defogger capable of arranging the liquid receiving wall (plate) and the drainage channel comprises at least the following demister: reflow in the application of the present invention Plate defogger, large curved plate defogger, mixed flow plate defogger, super bright plate defogger, also includes prior art corrugated plate defogger, baffle defogger, hollow corrugated plate defogger .
  • the basic defogging function component refers to the smallest structural member and device of the defogger that functions as a defogging function.
  • the so-called liquid-receiving wall refers to a defogging blade or a partial defogging blade or a dedicated (independent) blade that intercepts and collects the water mist carried by the flue gas, and can be replaced by any possible shape, including an approximate fold line;
  • a ditch that has the function of converging and concentrating the mist carried by the flue gas collected by the liquid collection wall, and consists of a defogging blade or a partial defogging blade or a dedicated (independent) blade, which may be any possible shape, including approximation Replacement of the polyline.
  • FIG. 4 FIG. 5, FIG. 6, FIG. 11 and FIG.
  • the liquid returning wall of the return plate defogger, the large curved plate defogger and the mixed flow defogger is corresponding to the outlet 112 of the flue gas passage 43.
  • a portion 411 of a demister blade of the preceding demisting unit (the large curved defogger is 124), the drain is disposed at the lower portion, and is formed by adjacent vanes of the defogging unit of the demister adjacent to each other.
  • the bottom seal, or the drainage groove is formed by bending the blade on one side of the defogging unit, or the drainage groove is separately (independently); the drainage hole is opened at a position corresponding to the drainage groove of the partition plate and the end plate of the fixed defogging blade (Baffles and/or end plates are not required, other means of attachment may be used, intended to clear any obstacles that impede the drainage of the drain) to ensure that the collected droplets in the drain are removed from both sides, or in the drain Drainage holes and slits are provided at the same place, and the two types of drainage holes and slits can be arranged in any combination or not, and are not drained at the edge of the gutter or the edge of the gutter. As shown in FIG.
  • the super-cooling plate defogger, and the usual corrugated board defogger, baffle defogger, hollow corrugated board defogger liquid collecting wall and drainage ditch are arranged above the demisting blade,
  • the liquid return wall and the drainage ditch of the return plate defogger, the large curved plate defogger and the mixed flow plate defogger can also be disposed above the defogging blade, as shown in FIG. 6 and FIG. 12 .
  • various forms of liquid receiving walls can be mixed or used at the same time.
  • Various forms of drainage channels can be mixed or used at the same time, and various forms of liquid receiving walls can be combined with various forms of drainage grooves.
  • the basic demisting functional element is a mutually adjacent demisting vane of the vane demister capable of forming a venturi or an approximate venturi flue gas passage, or constituting a parallel flue gas passage, the two flue gas passages being capable of being mixed to form a mixture
  • the flue gas passage; the cross-sectional shape of the defogging vane having the flue gas passage can be replaced by an approximate broken line. As shown in FIG.
  • the venturi or near venturi flue gas passage refers to a flue gas passage having an acceleration function to the flue gas, and a flue gas passage similar to the venturi cross section defined by the shape of the adjacent vane section curve; the parallel flue gas
  • the cross-sectional curve of the flue gas passage formed by the passage means that the defogging vane can be obtained or approximated by a parallel movement of a section curve of one of the vanes in a certain direction while maintaining the shape and orientation.
  • the return bend of the return plate defogger can be designed to be bent to form a defogger; the demister blade having the return bend can be mixed with the defoliation blade having the large bend to form a mist eliminator
  • the section curve of the defogging blade of the mist eliminator can be replaced by an approximate broken line.
  • the mist eliminator refers to a demisting device capable of covering a smoke flow passage region.
  • the so-called big bend refers to the minimum angle of the flue gas passage formed by any tangential line of the two side walls of the defogging blade cross-section curve of the defogger is greater than or equal to 90°, as shown in 121 and 122 in Fig. 12, the flue gas The direction of flow here changes by less than or equal to 90°.
  • the defogging blade section of the super-snow defogger for dehumidification of wet flue gas is an approximate sinusoidal waveform with amplitude greater than 1; or an approximate sinusoidal absolute value waveform; or an approximate sinusoidal waveform and approximate sine of the same amplitude
  • a combination of absolute value waveforms or any combination of approximately sinusoidal waveforms of different magnitudes and/or approximate sinusoidal absolute values of different magnitudes.
  • a defogging module of the super-sliding plate defogger is composed of at least one single layer, and the single layer is composed of any combination of at least one of the various ultra-thin defogger demisting blades, at least one
  • the fog module covers the entire smoke flow area.
  • the layers are in the same or opposite direction to the peaks or troughs of the adjacent vanes.
  • the defogging function of the mist eliminator may be provided with a vertical water collecting drain, a randomly distributed random direction or an ordered distribution of ordered directions or any other distribution of protrusions and pits. a structure of any combination of at least one of a hole, a hook, a groove, a groove or a slit, wherein the groove or groove is capable of penetrating the continuous surface on which it is located or within the edge of the surface; the continuous surface Refers to the surface that can be obtained by continuously expanding the surface unit of the same nature, such as the surface of a single tube that contacts the flue gas of the tubular mist eliminator, the two sides of the flue gas of the single vane of the vane type demister, etc.;
  • the purpose of the distribution method is to disturb the airflow, and the selective distribution scheme can be designed as needed, including but not limited to the above distribution scheme.
  • the defogging blade of the demister of the blade is a bulge blade having a convex protrusion on the side of the flue gas side and the exit side or one side thereof, if the side is an enlarged protrusion, or a part of the edge is an enlarged convex Starting or distributing a knob-like projection to produce a venturi acceleration effect; the cross-section or profile curve of the enlarged protrusion can be replaced by an approximate polygonal line, and the so-called edge refers to a certain distance within the edge of the defogging blade Inside the blade.
  • the basic demisting functional element is a defogging vane of the vane demister.
  • the invention has the following social benefits: the cold heading dust removing and demisting device provided by the invention can realize ultra-clean emission effectively and economically, and can make the dust content of the flue gas outlet reach 5mg/Nm3 (weighing method) or less, and the fog
  • the droplet content is below 10mg/Nm3 (Mg2+ tracer method), and is suitable for flue gas with inlet dust exceeding 30mg/Nm3, by configuring multi-stage cold heading (condenser), deep condensation, and multi-stage reflux mist eliminator.
  • the large curved plate defogger, the mixed-flow plate defogger and the super-cooling plate defogger can make the flue gas of the inlet dust 60mg/Nm3 reach the ultra-clean emission.
  • Figure 1 is a schematic view showing an example of a radial section of a shell passage
  • Figure 2 is a top view of the cold heading (condensing) device defogging module
  • Figure 3 is a partial cross-sectional view of a heat sink of a cold heading device or heater, a heat dissipating fin in the structure, or a heat dissipating screw;
  • Figure 4 is a schematic diagram showing the waveform of the cross-section of the demister of the recirculating plate
  • Figure 5 is a schematic diagram of the combination of the demister demisting unit of the reflux plate
  • Fig. 6 is a schematic diagram showing the waveform pattern of the cross-section of the demisting unit of the demister of the reflow plate
  • Figure 7 is a schematic diagram of a venturi effect demisting blade
  • Fig. 8 is a schematic diagram showing the cross-section waveform and interlayer structure of the defogging blade of the super-follower demister;
  • Figure 9 is a schematic view of the surface of the basic defogging function element, centrifugal strength, turbulence intensity structure (oblique view);
  • Figure 10 is a schematic view of the liquid collecting wall and the drainage ditch of the super-cooling plate defogger and the ordinary corrugated board defogger;
  • Figure 11 is a defogging blade constituting a venturi flue gas passage and a parallel flue gas passage and a mixed flue gas passage;
  • Fig. 12 is a schematic view showing the waveform of the cross section of the large curved plate defogger and the mixed flow plate defogger.
  • the main problem of ultra-clean emission is the removal of fine dust.
  • the dust with a particle size of 0-15 ⁇ m can be 100% carried by the flue gas
  • PM2.5 is in the column
  • the particle size is 15- 250 ⁇ m of dust can be carried by 50% of the flue gas
  • dust with a particle size of more than 500 ⁇ m is hardly carried by the flue gas.
  • the main reason is the surface tension phenomenon of droplets (water droplets). The surface tension of liquids is different, and some are very large.
  • the surface tension of mercury is relatively large, such as capillary effect
  • the steel needle can float in On the water surface, some aquatic insects do not live underwater but on the water, walking like flying, such as leeches, some land small insects such as spiders can be flat on the water surface, so the quality is very small, the inertia is very small, the specific surface area
  • Large dust particles if not already in the slurry, are difficult to dissolve in the slurry.
  • the fine dust will elastically collide with the slurry droplets and water droplets, even if the smoke flows from the slurry.
  • the aerosol such as SO3 in the evaporation section cannot be formed into a crucible, and can be cooled and grown in a saturated section to form a crucible, which is indispensable by turbulent flow, centrifugal concentration and defogging.
  • a cooling device is provided to cool the saturated flue gas, and the vapor molecules will combine with the dust and the fine dust due to the action of the polar molecules, but once grown up to have the liquid surface and the surface tension will no longer absorb.
  • the dust collides and elastically collides. The probability of recombining the dust before the liquid surface is almost zero. Therefore, the haze particles can only have one core. Therefore, the ultra-clean emission is only in the cold, and the depth must be near zero. cool down.
  • the smog is small in volume, small in inertia, and has large specific surface area and large internal friction force, the general centrifugal force has no effect on it, and the dusty smoke wave flows away and goes with the wind, such as defogging the ordinary corrugated plate defogger.
  • the effect is not ideal, it can only reach 75mg/Nm3, so the effect of removing dust, gypsum, etc. that melts into the droplets is not ideal, and it is difficult to achieve ultra-clean emission effect.
  • the dust is even longer than the back, and the ultra-clean defogger It is also limited in ability.
  • the dust has the wind property, and the static pressure generated by the centrifugal movement of large particles and large droplets, most of the small droplets and haze are confined to the center of the cyclone with the airflow. It is difficult to polymerize in the uniform flow field nearby, and the long barrel wall is also a kind of pressure drop damage. Like the principle of a cyclone dust collector, the effect of removing smog and tiny droplets is theoretically limited.
  • some end-stage wet desulfurization and dust removal devices do not have ultra-clean emission conditions, and the inlet dust concentration cannot be controlled below 20mg/Nm3 or even 30mg/Nm3.
  • Some industries are limited to the inlet of the wet process desulfurization and dust removal device in the front-end process device. 60mg/Nm3, or even higher.
  • the performance and indicators of the ultra-clean dust removal and defogging device are intact, it is difficult to play a role, and severe blockage often occurs, and the ultra-clean effect cannot be achieved.
  • the flue gas which is easy to crystallize in the slurry, it is a killer for the current ultra-clean dust removal and demisting device.
  • the flue gas can be deeply cooled.
  • the current advances in industrial technology the need for energy conservation and environmental protection have made the exhaust gas temperature of industrial boilers and industrial plants deteriorating, and the development of environmental protection technology has led to the development of sprays to the poles, either liquid.
  • the gas ratio is very large for ultra-clean emissions, such as limestone wet method, or the liquid gas is relatively small to save energy, such as double alkali method and lime wet method, which will cause wet smoke to carry excessive or unsaturated water, and the depth Refrigeration technology is tailored to the need to save energy and want to be ultra-clean.
  • the flue gas heat transfer of the deep refrigeration dust removal and decanting technology can be easily recycled, and the recovered heat can be used to heat the deep cooled flue gas.
  • Energy-saving and environmentally-friendly technologies must be the technology we need, and we do not advocate the idea of obtaining super-cleanness through doing nothing.
  • the invention develops a cold heading dust removing and demisting device based on the foregoing principles and problems, wherein the cold heading (condensing) device is composed of a heat conductive shell channel, and the refrigerant medium circulating therein passes the evaporation and work to make the saturated wet smoke The gas is condensed into mist by the smoke as the core. Because the refrigerant medium is not easy to consume too much, the shell channel is used, including the shell-side channel and the tube-pass channel, and the various tubes such as the round tube, the square tube and the corrugated sheet are put together.
  • FIG. 1 is a schematic diagram of the radial section of the shell channel, in which the inner and outer layers of the various types of tube passages are sleeved in some form, forming the outer circle or the inner circumference of the outer tube, etc.
  • each type of inner tube can be replaced by a solid material of various types
  • the shell-side passage is a passage formed by a closed section (cavity) 11 formed between the two shells
  • the tube-path passage is an inner casing.
  • the passage formed by the closed section section 12 (cavity), the filler in the shell path and the tube path is the spoiler and/or the support member 13, and may also be used without other support means, such as end support.
  • the refrigerant medium flows in the shell of the shell-side passage, and the inner passage or the inner layer of the solid material composed of the inner layer pipe does not flow through the refrigerant medium, and the cooling capacity of the refrigerant medium is fully utilized, and the stability of the structure is maintained.
  • the temperature is low due to evaporation of the refrigerant, and for easy control, the refrigerant (medium) can circulate in the tube passage of the shell passage, and the shell passage is filled with a conductive or non-circulating heat-conductive buffer medium.
  • air such as air, water, oil and other liquids, as well as rubber, plastic, rock wool and other solids, colloids or their variants, and even vacuum.
  • the shell channel may be a multilayer shell channel of more than 2 layers, such as a tubular or sleeved support 14 with a support structure, or a multilayer structure for thermal conductivity, or designed for special purposes.
  • Multi-layer shell channel which is a kind of shell channel, such as using a small tube path 15 around the tube path or the shell path to obtain a larger heat transfer area, and at the same time, it acts as a spoiler, thereby obtaining more Good cooling effect; or arrange threaded pipe or bellows 16 in the shell path or tube path to increase the spoiler characteristics.
  • the so-called multilayer shell channel that is, a multilayer shell structure of two or more layers and/or a parallel combination of tube layers and/or shell channels or a plurality of tube and/or shell channels in one or more layers or centers
  • the shell-side channel at this time refers to a possible minimum closed flow cross section composed of two or more independent closed continuous curves enclosing a separate closed section that cannot be separated, which can be named as shell path 1, shell side.
  • the tube path at this time refers to the independent closed section of the possible minimum closed flow section composed of one independent closed continuous curve, which can be named as the tube channel 1 and the tube channel.
  • the definitions of the above-mentioned shell path and tube path are applicable to the definition of all the shell side channels and the tube path in the present application, and the definition of the cavity channel (equivalent to the tube path) to be described later.
  • the cooling medium can be selected to circulate in one or more of the shell path(s) or in any combination of the shell side channel and the tube path, depending on the actual and design requirements.
  • a demisting module 27 includes at least one of the shell passages extending transversely through the flue gas passage region and is provided with gas headers 21 and 22 at both ends thereof (the circulation region described in the application of the present application) Or the flow cross section refers to the cross section or quasi-cross section of the flue gas or fluid flow channel.), a defogging module can be provided with 1-100 shell channels, generally set to 10-30; can be set in the middle section a support passage 23 penetrating through the shell passage to strengthen the structure of the defogging module, wherein at least one demister module is coupled to each other to form a defogger; or at least one place may be arranged in the middle of the defogging module
  • the root-shell passage joints and all the single passages are connected one by one by the connecting member 24; or the single-shell passages on both sides are connected by at least one transitional gas collecting header 25; or the gas collecting header at both ends of the defogging module 27 It is provided as an intermediate
  • a demisting module may be constructed by any combination of at least one of the above-described intermediate stages of joining methods including a method of passing through the flue gas flow passage region, and any combination of at least one of the various types of demisting modules described above may constitute a layer of mist eliminator.
  • the transitional gas-type demisting module can balance the smoke temperature, and the through-type and single-tube direct-coupled demisting modules can increase the effective defogging area.
  • the number of the above various joints depends on the diameter of the absorption tower, the installation conditions, the strength of the structural member, etc., and generally can be set at 0-30.
  • the refrigeration medium of the cold heading (condenser) of the apparatus may be any practical refrigerant, including prior art refrigerants, and also includes a compressible gas capable of acting as a refrigerant which is expandable.
  • the compressed gas may be air, hydrogen, nitrogen, helium, oxygen, carbon dioxide, methane, ethane, butane, diethyl ether, methanol, ethanol, liquefied gas, petroleum gas, gas, natural gas, etc., or a boiler or the like. Air or flue gas, or a mixture of any two or more of them, usually supplied by compressed air or boiler. For expensive refrigerants or explosive refrigerants, they should be closed for recycling.
  • the compressed gas before entering the cold heading should have cooling facilities, including
  • the heat energy inside the compressor is applied to the heat exchange and heat exchange of the flue gas after defogging and dust removal.
  • the compressor refrigeration capacity can be calculated and configured according to the amount of smog required to condense, large droplets and smoke temperature drop. If the refrigerant is in a closed cycle, the heat of the cooling flue gas will be completely recovered.
  • the heat recovered by this part includes the latent heat of evaporation of the droplets and The power consumption of the refrigerant heats the ultra-clean emission of flue gas, which will raise the temperature of the flue gas to above 80°, which is calculated according to the current wet desulfurization emission of 50°.
  • the heater for heating the flue gas before being discharged into the atmosphere may use the heat conductive shell passage, the heating medium can circulate in the shell passage of the shell passage, the tube passage does not circulate the heating medium; or the heating medium is
  • the shell channel is circulated in the tube path, and the shell channel is filled with a non-circulating heat-conductive buffer medium; or for the multi-layer shell channel, it can be circulated in the shell channel and the tube channel at the same time, It is used in the same way as the condenser.
  • Other common heat sinks such as cavity type, fin type, screw type, and economizer type can also be used depending on the heat transfer condition.
  • the outer surface is designed with a heat sink or structure, such as fins, threaded sheets, and various types of fins, plates, tubes, and the like.
  • the basic cooling function refers to the smallest structural member and device of the defogger that functions as a cooling function, such as the shell channel, the cavity channel, and various forms of plates, tubes, sheets, etc. that can dissipate heat and serve cooling. . Real-time tracking, instant control, energy saving and environmental protection based on the concentration of smoke and dust emitted from the export.
  • the device designs the cold heading (condensing) device so that the first stage dust removing and mist removing device first contacts the wet flue gas, and arranges other functions of the mist eliminator along the first stage of the flue gas flow direction, and the cold heading device will serve as a tube type.
  • the role of the mist eliminator a large number of droplets will collide with the shell and converge into large droplets, liquid film, and the cooled droplets, liquid film and smog due to supersaturated smoke and water mist Dust and fine dust collide with each other to make the liquid film of the liquid droplets continue to increase, and further drip and remove.
  • the second step is the first stage, the second stage, etc.
  • the cold heading (condensation) will continue to remove residual dust, droplets and smog, and continue to increase the amount of smog, first stage
  • the subsequent cold heading device can be arranged with other types and functions of the mist eliminator, but the required cooling capacity of the second stage, the third stage and the like is drastically reduced.
  • the first stage is divided on a set of brackets and separated from each other by a certain spatial distance, and the general separation distance is about 2 meters.
  • the first-stage cold header when the required cooling capacity is small, or the second-stage, third-stage cold etc. installed in addition to the first-stage cold header The refrigeration system can be changed to a cooling system, and the refrigerant medium is replaced by one or more kinds of liquid or gas such as cooling medium water or oil, especially the flue gas purification device such as air around the desulfurization absorption tower, boiler air supply, and discharge.
  • the low-temperature flue gas, etc., the medium-flow shell channel or part of the shell channel can be replaced by a cavity channel, that is, the area (cavity) enclosed by the closed outer casing of the radial section is all flowing through the flow medium (refer to FIG. 1). ), the two can be replaced at different times. This can also be replaced in other cases where the emission requirements can be met.
  • the ultra-cleaning defogger in the cold heading dust removing and demisting device of the invention invents the return plate defogger, the large curved plate defogger, the mixed flow plate defogger and the super slab The fogger and several methods of turbulence.
  • the returning plate demister, the defogging unit 48 is defogged by at least one barbed recurve having at least one cross section which allows the flue gas to flow back into the original flow direction before entering the demister.
  • the blade 41 is constituted, and the cross section refers to a cross section of the radial direction of the defogging blade, that is, a width direction (a cross section of the defogging blade section or the cross section in the width direction is not particularly described in the present patent application). Due to the principle of defogging centrifugation, the relative direction of the reflow does not have to be the flow direction before entering the demister, so the reflow bend can be arranged in any direction.
  • the so-called reflow is the direction in which the flow of the flue gas occurs, and the change is greater than or equal to 90°.
  • the reflow bend 410 is the minimum angle corresponding to the flue gas passage formed by any tangent of the two side walls of the cross-sectional bending curve of the defogging blade 41. Less than or equal to 90°, the curvature of the reflow bend should be large enough to achieve the desired separation.
  • the flue gas undergoes a very large centrifugal action to remove most of the small droplets and smog, the large droplets of the liquid channel concentrated on the flue gas passage and the return bend, and the mist, haze and droplets carried by the flue gas are
  • the flue gas is blown to the corresponding position of the defogging blade of the previous demisting unit to be effectively intercepted, and the corresponding position is a liquid receiving wall or a liquid collecting plate 411, and the liquid receiving wall refers to intercepting and collecting the water mist carried by the flue gas.
  • the intercepted mist droplets are then collected and dripped to a lower sealed drain 42 formed by adjacent vanes of mutually adjacent defogging units, and the groove and the vanes constituting the groove can be regarded as one vane in a defogging unit. It may also be formed by the lower side of the blade on the side of the defogging unit, or separately (independently), as shown in FIG.
  • the drainage ditch refers to a ditch having a function of collecting and concentrating the mist carried by the flue gas collected by the liquid receiving wall, and is composed of a defogging blade or a partial demisting blade or a dedicated (independent) blade.
  • the drainage ditch may not be provided, and the collected droplets may drip directly, but the defogging effect is poor.
  • the separated water containing dust, gypsum, soluble soluble salt and the like accumulated in the drainage ditch 42 is discharged to the drainage hole or slit provided in the drainage ditch or the partition plate which is fixed to the defogging blade and
  • the drain holes 44 corresponding to the drains on the end plates 45 on both sides or directly flow to both sides of the drains are removed in time to ensure that the collected droplets are removed from both sides of the drain and the secondary carry droplets are minimized.
  • the above two types of drain holes (or slits) may be provided with one, or both, or none.
  • the collected droplets flow out from the gap at the edge or edge of the drain.
  • the baffle and the end plate are not required, and one of them may be used, or both may be used or not, or combined with other components, or other fixing means such as a card strip, a strip, etc. may be used.
  • the purpose of the opening in the plate or end plate is to clear any obstacles that impede the drainage of the drain.
  • the flue gas directly hits the blade of the previous demisting unit after being sprayed out of the flue gas flow path 43 of the returning plate, thereby generating maximum centrifugal action, and the fine mist is almost completely intercepted, concentrated, and removed by its weak inertial advantage, and each flow channel is impacted.
  • the flue gas is violently disturbed in the turbulent zone 46, the residual fine droplets and smog are basically concentrated and become large droplets, and the demister of the upper layer or the lower stage of the defogging module (the flow direction of the flue gas) The latter or later level continues to be completely eradicated.
  • the impact disturbance of the flue gas in the spoiler zone 47 at the bottom of the gutter will also increase the chance of confluence of fine haze.
  • the return plate defogger Due to the timely power removal of the separated water, the centrifugal bends with very large flue gas and the direct impact on the blades, the return plate defogger has a self-cleaning function and does not easily block.
  • the flue gas passage formed by the defogging vanes of the returning plates adjacent to each other is a venturi or a venturi flue gas passage 111.
  • the so-called venturi or the venturi flue gas passage has an accelerating function on the flue gas.
  • the shape of the cross-section curve of the adjacent blades defines a flue gas passage similar to the cross section of the venturi, and its shape can be replaced by an approximate broken line.
  • the flue gas passages formed by the adjacent demisting vanes into parallel flue gas passages 113, wherein the parallel flue gas passages refer to the cross-sectional curves of the flue gas passages formed by the defogging vanes through which a section curve of one of the vanes is Parallel movement in a certain direction while maintaining the shape and orientation is obtained or approximated, corresponding to copying and arranging in a certain direction in the drawing, and the shape can be replaced by an approximate polygonal line.
  • Both of the channels cancel the spoiler zone 47 and become the inlets 114 and 115, or may be omitted or arranged to be parallel to the bottom of the flue gas channel drain 117.
  • the drain is a returning plate defogger defogging unit. Part of the outermost demisting blade on the side.
  • the above two channels can also be arranged in a mixed manner, as shown at 116, to form various types of mixed flue gas passages, belonging to some types of defogging units.
  • the flue gas passage outlet 112 can be designed to accelerate or decelerate the flow path of the flue gas.
  • venturi or similar venturi flue gas passage may also be separately combined with the super slat defogger blades, the large curved defogger blades, the mixed flow defogger blades and other forms of demisting blades described later in the present invention.
  • Corrugated board defogging blades (with or without hooks).
  • the demisting unit includes, but is not limited to, various types of variations mentioned in the present application or which can be reasonably introduced within the technical performance allowable range, as shown in FIG. 6 : the flue gas passage may have multiple return bends and smoke air passages.
  • the corresponding demisting may be combined with the waveform of the flue gas stream before the inlet of the flue gas duct relative to the mist eliminator may have an inclination angle of less than
  • the blade can be changed to a fold line similar to the original curve.
  • the defogging unit layer of the defogging module is formed by the mutual combination of the defogging units of the returning plate defogger, and the mutual combination of the defogging units includes, but is not limited to, the demisting mentioned in the present application or which can be reasonably introduced.
  • Various types of units as shown in Fig. 4, Fig. 7, Fig. 9 (surface structure), Fig. 11, Fig.
  • defogging units as shown in Figure 5: front, rear, left and right directions, orientation, combination, defogging unit layers, defogging modules, layers
  • the direction of the opening between the mist eliminators and the air flow passages 43 can be arbitrarily combined, and the drainage ditch and the liquid receiving wall can be separately provided and each unit is not limited to one or the other, and the defogging units between the defogging unit layers can be staggered.
  • Alignment, vertical alignment, defogging unit type, combination The method of connection is not limited to the various possibilities described in this specification. Different types and combinations have different functions and functions.
  • the 65 type in Figure 6 is suitable for particularly low flue gas flow rates or loads or particularly low speeds in uneven flow fields, while the 66 type is suitable for relatively high gas velocities. Or relatively high speed in a load or uneven flow field.
  • a demisting module is composed of at least one unit layer, the layers are connected or not connected, and a layer of the demisters occupying the cross section of the flue gas flow is composed of at least one defogging module.
  • the blade of the defogging module is fixed by the end plate having the drainage hole 44 and the partition 45, or one of them is fixed, or fixed by the fixing strip of the blade edge, and the card can be fixed, but the fixing must be ensured in any case. Ditch (if already set) is unblocked.
  • the return plate defogger is suitable for the low gas velocity absorption tower and the uneven flow field of the flue gas and the low load operation state due to the unique acceleration passage and the extreme speed reflow.
  • the unique liquid collection wall interception and collection function and the drainage channel convergence can effectively solve the phenomenon of carrying water mist at high gas velocity, suitable for high gas velocity absorption tower, uneven flow field of smoke flow and overload operation state, greatly improving defogging efficiency and applicable range. .
  • the defogger Due to some working conditions, the defogger has to operate in an environment with high smoke flow rate, such as a horizontal flue defogger. At this time, it does not require a large curvature to achieve the desired haze separation effect, too much curvature. On the contrary, it will increase the pressure loss, splashing, and even damage the defogger. Usually, the corrugated plate defogger can not operate at such a high gas velocity, which will bring serious water mist phenomenon, so that the defogging efficiency will drop linearly. There is no way to expand the demister area.
  • the reflow bend of the reflow plate defogger of the present invention can be designed to be a large bend greater than 90°, as shown by 121 in FIG. 12, and the large bend 121 is the two side walls of the demister blade cross-section curve.
  • the minimum angle 122 corresponding to the flue gas passage formed by any tangent line is greater than or equal to 90°, and the direction in which the flue gas flows is changed by less than or equal to 90°, and the curvature of the demister is adjusted to achieve the best expected defogger effect.
  • 123 is the drainage ditch
  • 124 is the liquid receiving wall
  • the remaining drainage ditch is the remaining drainage ditch
  • drainage hole is the defogging unit type and combination
  • various types of deformation liquid collection wall, channel type, blade type, partition, end plate.
  • the arrangement of the fog module and the fixing method are the same as those of the return plate defogger.
  • the large curved plate defogger blades and the return plate defogger blades can be mixed to form a mixed flow plate defogger to achieve the best expected effect, as shown in Fig. 12, 125 and 126.
  • the cross-sectional curves of the demisting blades of the various mist eliminators can be replaced with approximate broken lines.
  • the ultra-cooling plate defogger is intended to increase the centrifugal force and turbulence intensity of the flue gas in the flow path of the demister blade, thereby increasing the probability of the fine smog hitting the blade and colliding with each other and merging into large droplets, which are then
  • the final elimination of phagocytosis is suitable for the low gas velocity absorption tower and the uneven flow field of the flue gas and the low load operation state, wherein, as shown in Fig.
  • the defogging blade section is an approximate sinusoidal waveform 81 having an amplitude greater than one; Or the defogging blade section is an approximate sinusoidal absolute value waveform 82; or a combination of an approximately sinusoidal waveform of the same magnitude and an approximate sinusoidal absolute value waveform; or an approximate sinusoidal waveform of different magnitudes and an approximate sinusoidal absolute value of a different magnitude
  • Any combination of any of the different waveforms in the waveform there are at least three cases of this combination: a combination of approximately sinusoidal waveforms of different magnitudes 86, a combination of approximately sinusoidal absolute values of different magnitudes 87, approximate sinusoidal waveforms of different magnitudes and A combination 88 of approximate sinusoidal absolute values, all possible combinations of the combinations of waveforms are not listed, and the waveforms (including one waveform) can be continuously discontinuous.
  • a sleek defogging module is composed of at least one single layer, and the single layer is formed by combining the cross-sectional waveforms with one of the various waveforms described above, or any combination of the above various waveforms, and the layers and layers are adjacent to the peak of the blade.
  • the layers may or may not be connected, and at least one demisting module covers the entire smoke flow passage region.
  • the demister module with discontinuous or non-connected inter-layer waveforms is beneficial to the generation of flue gas turbulence. There is no dead angle that is difficult to clean in the middle, so it is not easy to block.
  • the intermediate turbulence is beneficial to self-cleaning dirt and the removal of droplets. Reduce the chance of carrying water droplets twice.
  • the above super-blade defogger blades can be variously deformed within the technical performance allowable range, such as replacing the sinusoidal waveform line or the sinusoidal absolute value waveform line with a fold line close to the various waveforms, see FIG.
  • the smoke will occur in the high gas velocity and thus reduce the defogging efficiency, such as the horizontal flue defogger, so as shown in Figure 10, with an approximate sinusoidal or sinusoidal waveform approximating the fold line, or approximation
  • the sinusoidal absolute value waveform or the sinusoidal absolute value waveform is approximately the fold line of the defogging blade section.
  • Each of the blades is provided with a drainage ditch 101 and a liquid collection wall 102 to collect droplets carried by the flue gas, and a plurality of defogging blades may also be used as a group.
  • the drainage ditch 103 and the liquid receiving wall 104 shared by the defogging unit are configured, and the liquid receiving wall has the function of intercepting and collecting the water mist carried by the flue gas flowing out in the flue gas flow path, and the drainage ditch has the flue gas collected by the liquid collecting wall.
  • the function of collecting and concentrating the mist droplets is composed of defogging blades or partial defogging blades or special (independent) blades, which can be placed on both sides or holes (or slits) on the drainage ditch or from the edges or edges.
  • the gap overflows to discharge the collected droplets.
  • the drainage ditch and the liquid collection wall may be connected with the demisting blade or may not be connected, and the drainage ditch simultaneously acts as a spoiler and acceleration, so that the mist and the flue gas are more easily separated.
  • the above scheme for providing a liquid receiving wall and a drainage ditch above the defogging blade can be applied to the basic demisting function component in addition to the super-smoke defogger, the ordinary corrugated plate defogger and the baffle defogger.
  • Other demister blades of the sheet structure as shown in Fig. 6, return plate defogger blades 61, 62, 63, 64, mixed-flow defogger blades 126, large curved defogger blades shown in Fig. 127, as well as ordinary corrugated plate type or baffle type (with or without hooks, with or without holes), hollow corrugated plate type defogger.
  • the basic defogging function component refers to the smallest structural member and device that the defogger functions as a defogging function, such as the defogging blade of the return plate defogger, and the shell channel of the cold boring device.
  • the various types of liquid-receiving walls mentioned in the specification, but not limited to, may be mixed or used at the same time, various forms of drainage channels may be mixed or used simultaneously, and various forms of liquid collection
  • the wall and various forms of drainage channels can be arbitrarily combined to achieve a certain performance or purpose.
  • the various solutions of the liquid collection wall and the drainage channel described above, that is, the cross-sectional curves of the defogging blades and/or structures of the relevant defogger can be used. Approximate polyline instead.
  • the tube surface of the tubular demister or the basic functional component of the demister is the blade defogger of the blade.
  • the surface that is in contact with the flue gas may be designed with at least one of randomly distributed random or orderedly distributed ordered directions or any other distribution of protrusions, dimples, hooks, grooves, grooves or cracks. Any combination of the types, wherein the grooves or grooves are capable of penetrating the continuous surface on which they are located or within the edge of the surface.
  • the demister surface may be designed with a vertical water collecting drain.
  • the continuous surface refers to a surface which can be obtained by continuous expansion of a surface unit having the same properties, for example, a single tube surface of a tubular mist eliminator contacting flue gas, and a single blade vane of a vane type mist eliminator Side, etc.; the purpose of the so-called distribution method is to disturb the airflow, and the distribution scheme can be designed and selected according to needs, including but not limited to the above distribution scheme.
  • the return plate defogger, the large curved plate defogger, the mixed flow plate defogger and the super-smoke defogger are used to increase the centrifugal force and the spoiler strength, and the basic demisting function component is the defogger of the blade.
  • the blade has enlarged protrusions on the sides of the flue gas on the side and the exit side or on one side thereof, such as the side is an enlarged protrusion, or a part of the side is an enlarged protrusion, or a tumor-like protrusion is distributed, thereby generating a venturi
  • the tube acceleration effect increases the impact velocity of the flue gas on the curve and the blade to enhance the separation effect and eliminate the fine haze.
  • the so-called edge refers to a blade within a certain distance within the edge of the defogging blade.
  • Another feature of the return plate defogger, the large curved plate defogger, the mixed flow plate defogger and the super-cooling plate defogger is that the side of the flue gas side and the exit side or one side thereof has no intentional flow guiding structure. Or a flow guiding member, the function can be applied to a defogging blade of a defogger whose basic defogging function element is a blade.
  • the so-called diversion is to guide the flue gas from the original flow to the other flow direction, so that the flue gas flow field is maximally close to uniform and the smoke pressure loss is minimal; the so-called intentional design is designed for or mainly for diversion.
  • the structure or component; the so-called edge refers to the blade within a certain distance within the edge of the defogging blade, and the blade can function as a flow guiding.
  • the structures of the several spoiler methods and the cross-section or profile curves of the blades may be replaced by approximate fold lines.
  • the blade of the liquid receiving wall or a side thereof may need to have an upward angle to form a gutter.
  • the various demisting modules of the device of the invention arrange the direction of the defogging module according to the flow direction of the flue gas and the defogging efficiency, and are generally arranged in a flat or ridge type, and the installation manner is generally horizontal installation and vertical installation.
  • the present invention has the following social benefits: the present invention provides a cold heading dust removing and demisting device capable of achieving ultra-clean emission effectively and economically, with a smoke pressure loss of less than 200 Pa and a dust discharge of 5 mg/Nm 3 (weighing method).
  • the water mist content is 10 mg/Nm3 (Mg2+ tracer method) or less.
  • the inlet dust can be discharged at 20mg/Nm3, 30 Super clean emissions at ⁇ 60mg/Nm3.
  • the device can effectively remove heavy metals such as SO3 aerosol and Hg0 particles, and the social benefits are very obvious. After passing through the mist removing device, the mist can be discharged.
  • the cold heading dust removal and demisting device has the functions of removing SO3 aerosol and Hg0 particles:
  • the conversion rate of SO3 in combustion and SCR is about 1%, and it is formed by aerosol (SO3 aerosol, that is, sulfuric acid aerosol is rapidly absorbing white sulfuric acid fumes, 0.004-1.2 ⁇ m), which is the main reason for the formation of blue smoke and yellow smoke.
  • SO3 aerosol that is, sulfuric acid aerosol is rapidly absorbing white sulfuric acid fumes, 0.004-1.2 ⁇ m
  • the prior art desulfurization tower has only 20% removal rate, mainly in the saturated turbulent flow field.
  • the turbulent turbulence causes the smog to grow up, which can effectively remove mercury particles (Hg0 is easily adsorbed) and other heavy metal particles. Water can be extended on the surface of mercury. Condensation can degenerate free mercury and grow up in the condenser. , capture, and then effectively remove.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separating Particles In Gases By Inertia (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

一种冷霾除尘除雾装置,至少包括烟气冷凝器、回流板除雾器、大弯板除雾器、混流板除雾器和超炫板除雾器中的一种组合,烟气冷凝器使用壳式/腔式通道的制冷系统使粉尘冷凝成雾、霾,或使用水、空气和锅炉送风等的冷却系统。

Description

一种冷霾除尘除雾装置 技术领域
本发明涉及一种烟气除尘除雾装置,尤其涉及一种冷霾(凝)除尘除雾装置,主要应用于各种烟气除尘、除雾环保领域,尤其湿烟气和饱和湿烟气除尘除雾领域,如脱硫、脱硝喷淋吸收塔、鼓泡塔、各种洗涤塔等;也可应用于其他行业的各种气体的除尘除雾,包括各种蒸汽、液滴的祛除,以及各种气体与各种液体或固体颗粒物(气溶胶)、各种液体或固体的蒸汽的分离。
背景技术
鉴于国家经济发展、人类文明进步的需要,环保科技必须先行,没有环保就没有发展,住建部的准建政策已经执行的显而易见。鉴于目前人民的积极性、国家环保政策的需要,超净排放已经成为各企业必须思考的难题。
目前流行的超净技术造价都比较高,有些也不尽令人满意,令企业望雾霾而兴叹,举步行而又止,进退维谷啊。
本发明正是为解决此燃眉之急应运而生!,。
发明内容
本发明的目的是提供一种烟气除雾除尘装置,达到超净排放标准,为环保事业提供有力科技支撑。
为实现上述目的,本发明提供一种冷霾除尘除雾装置,包括:
其中对饱和湿烟气尤其未饱和湿烟气起冷却作用的冷凝器为可导热的壳式通道内流通制冷介质通过蒸发、做功使湿烟气中水蒸汽以烟尘为核心冷凝成雾、霾。根据实际需要,所述壳式通道可以是多层壳式通道。
所述制冷介质可在所述壳式通道的壳程通道内流通;或制冷介质在所述壳式通道的内部管程通道内流通;或对于多层壳式通道,可同时在所述壳程通道和管程通道内流通。
制冷介质可为任何实用的制冷剂,包括现有技术的制冷剂,也包括能够做制冷剂的可膨胀做功的压缩气体,常用压缩空气。
在横向贯穿烟气流通区域的包括至少1根所述壳式通道的两端设置集气联箱从而形成除雾模块,通过至少一块所述贯通式除雾模块的联接覆盖整个烟气流通区域;或所述除雾模块在中间段设置至少1处单根所述壳式通道的连接处并逐个联接所述单根壳式通道,通过至少一块所述单管直链式除雾模块的联接覆盖整个烟气流通区域;或所述除雾模块在中间段设置至少1处过渡集气联箱用以联接两侧的所述单根壳式通道,通过至少一块所述过渡集气式除雾模块的联接覆盖整个烟气流通区域;或所述除雾模块在中间段设置至少1处中间集气联箱,通过至少一块中间集气联箱的联接贯穿烟气流通区域。一个除雾模块可由至少一种所述中间段的连接方法包括贯通烟气流通区域的方法的任意组合而构成,至少一个所述除雾模块覆盖整个烟气流通区域。所述除雾模块包含所述壳式通道的数量可在1-100根范围,一般设定为10-30根;上述各种连接处的数量依据吸收塔的直径、安装条件、 结构件强度等而定,一般情况可以设置0-30处。上述除雾模块可以起到均衡烟气温度、流场或增加有效除雾面积的作用。本发明申请中所述流通区域或流通截面指烟气或流体流通通道的横截面或者准横截面。
对湿烟气起冷却作用的冷凝器的基本冷却功能元件的表面设计有散热装置或结构,如翅片、螺纹片以及各型散热片、板、管等。基本冷却功能元件指除雾器的起到冷却功能的最小结构件、装置,如本发明中的壳式通道、腔式通道,以及可导热并起到冷却作用的各种形式的板、管、片等。
对湿烟气起冷却作用的冷凝器设计安装为第一级;同时可以在第二级及第二级以后可能有的级次位置上连续设计安装或不安装所述冷凝器、或所述冷凝器与其他型式、功能的除雾器混合布置。所谓级次就是整套装置中某除雾器安装的位置的排列顺序,如第二级、第三极等,排列级次为顺着烟气的流向依次为第一级、第二级等。
当除尘装置入口烟尘含量较小时如小于20mg/Nm3时即所需制冷量较小时的第一级冷霾(凝)器,或除第一级冷霾器以外安装的第二级、第三级等冷霾器,所述制冷系统可改为冷却系统,所述制冷介质则用冷却介质水、油等液体和气体中的一种或几种代替,尤其烟气净化装置周围的空气、锅炉送风、排放的低温烟气等,其流通介质的所述壳式通道或部分壳式通道则可用腔式通道代替,二者可不同时替代;在其他情况如可以满足排放要求时也可如此替代。
当排放进入大气的烟气需要加热时,如经过深度冷却的湿烟气,加热器能够使用所述可导热的壳式通道,加热介质能够在所述壳式通道的壳程通道内流通;或加热介质在所述壳式通道的内部管程通道内流通;或对于多层壳式通道,可同时在所述壳程通道和管程通道内流通。视换热需要决定加热管道是否设计安装散热装置或结构,如翅片、螺纹片等。
如图4、图5、图6和图11等所示,对湿烟气起除雾作用的回流板除雾器的除雾单元由至少一个其截面至少有一个能使烟气发生回流的回流弯的除雾叶片构成,所述除雾叶片截面波形能够用其近似折线代替,所述回流弯朝向可任意方向布置。所述回流弯指除雾叶片横截面弯曲曲线两侧壁任意切线构成的与烟气通道对应的最小角度小于等于90°,所谓回流就是烟气流动方向在此发生了大于等于90°的改变。
所述回流板除雾器由除雾单元的相互组合形成除雾模块的单元层,一个除雾模块由至少一层单元层构成,一层占据烟气流通截面的除雾器由至少一块除雾模块构成;所述除雾单元的相互组合指包括但不限于本发明申请中提及的和可合理推出的除雾单元的各种型式,如图4、、图7、图9(表面构造物)、图11、图12(有回流弯除雾叶片构成的混流除雾单元)所示,和型变,如图6所示,以及除雾单元的前后、左右、上下层之间等的各种可能的组合,如图5所示;所述除雾单元包含的除雾叶片数量针对不同的气体及其运动粘度、纯度、流速等有所不同,可为1-30片,一般设定为3-5片。
基本除雾功能元件为叶片的除雾器设计有收液墙和排水沟,能够设置所述收液墙(板)和排水沟的除雾器至少包括下列除雾器:本发明申请中的回流板除雾器、大弯板除雾器、混流板除雾器、超炫板除雾器,也包括现有技术的波纹板除雾器、折流板除雾器、中空波纹板除雾器。基本除雾功能元件指除雾器的起到除雾功能的最小结构件、装置。所谓收液墙指具有拦截、收集烟气携带的水雾的功能的除雾叶片或部分除雾叶片或专设(独立)叶片, 可为任何可能的形状,包括近似折线的代替;所谓排水沟指具有将收液墙收集的烟气携带的雾滴汇聚并集中排放的功能的沟,由除雾叶片或部分除雾叶片或专设(独立)叶片构成,可为任何可能的形状,包括近似折线的代替。如图4、图5、图6、图11和图12等所示,回流板除雾器、大弯板除雾器和混流板除雾器的收液墙为烟气通道43出口112所对应的前一除雾单元的一片除雾叶片的一部分411(大弯板除雾器为124),其排水沟设置在下部,由相互邻近的所述除雾器的除雾单元的临近叶片构成,底部密封,或由除雾单元一侧的叶片通过弯曲形成所述排水沟,或单独(独立)设置排水沟;在固定除雾叶片的隔板和端板与排水沟对应的位置开有排水孔(隔板和/或端板不是必须件,可以采取其他固定方式,意在将任何阻碍排水沟疏水的障碍疏通)以保证能将排水沟内汇集的液滴从两侧排除,或者在排水沟处设置排水孔、缝隙,所述两种排水孔及缝隙能够任意组合取舍、或都不设置而在排水沟边缘或边缘的豁口排水。如图10所示,超炫板除雾器,以及通常的波纹板除雾器、折流板除雾器、中空波纹板除雾器的收液墙和排水沟在其除雾叶片上方设置,回流板除雾器、大弯板除雾器和混流板除雾器的收液墙和排水沟也可设置在除雾叶片的上方,如图6、图12等所示。在同一除雾器中,各种形式的收液墙可以混用或同时用,各种形式的排水沟可以混用或同时用,各种形式的收液墙与各种形式排水沟可以任意组合。
基本除雾功能元件为叶片的除雾器的相互临近的除雾叶片能够构成文丘里或近似文丘里烟气通道、或构成平行烟气通道,所述两种烟气通道能够混合设置而构成混合烟气通道;具有所述烟气通道的除雾叶片的截面形状可用近似折线代替。如图11所示,所述文丘里或近似文丘里烟气通道指对烟气有加速功能,由相邻叶片截面曲线形状限定的与文丘里管剖面类似的烟气通道;所述平行烟气通道指除雾叶片构成的烟气通道的截面曲线可通过其中某一叶片的截面曲线在保持形状和朝向情况下沿某一方向平行移动得到或近似得到。
所述回流板除雾器的回流弯能够设计成大弯而形成一种除雾器;具有所述回流弯的除雾叶片与具有所述大弯的除雾叶片能够混用而组成一种除雾器;所述除雾器的除雾叶片的截面曲线能够用近似折线代替。所述除雾器指能够覆盖烟气流通区域的除雾装置。所谓大弯指的是除雾器的除雾叶片横截面曲线弯的两侧壁任意切线构成的与烟气通道对应的最小角度大于等于90°,如图12中121、122所示,烟气流动的方向在此发生小于等于90°的改变。
对湿烟气起除雾作用的超炫板除雾器的除雾叶片截面为幅值大于1的近似正弦波形;或为近似正弦绝对值波形;或为相同幅值的近似正弦波形与近似正弦绝对值波形的组合;或为不同幅值的近似正弦波形和/或不同幅值的近似正弦绝对值波形的任意组合,这种组合最少有3种情况:不同幅值的近似正弦波形的相互组合、不同幅值的近似正弦绝对值波形的相互组合、不同幅值的近似正弦波形与近似正弦绝对值波形的组合;所述各种波形能够用波形近似折线代替。
所述超炫板除雾器的一个除雾模块由至少1层单层组成,单层由所述各种超炫板除雾器除雾叶片的至少一种的任意相互组合构成,至少一个除雾模块覆盖整个烟气流通区域。层与层临近叶片的波峰或波谷方向相同或相反。
除雾器接触烟气的具有除雾功能的表面可以设置有竖直方向的集水排水沟、随机分布的随机方向或有序分布的有序方向的或其他任何分布方式的凸起、凹坑、孔洞、钩、凸 槽、凹槽或裂隙中的至少一种的任意组合的结构物,其中凸槽或凹槽能够贯通其所在的连续表面或在所述表面边缘范围内;所述连续表面指具有同样性质的表面单元通过连续拓展可以得到的表面,如管式除雾器接触烟气的单根管表面、叶片式除雾器的单片叶片通流烟气的两侧面等;所谓的分布的方式的目的在于扰乱气流,可根据需要设计选择分布方案,包括但不限于上述分布方案。
基本除雾功能元件为叶片的除雾器的除雾叶片在烟气进侧和出侧或其中一侧的边有膨大凸起,如所述边为膨大凸起、或部分边段为膨大凸起、或分布着瘤状凸起,从而产生文丘里管加速效应;所述膨大凸起的横截面或剖面曲线能够用近似折线代替,所谓的边指所述除雾叶片的边缘以内一定距离范围内的叶片。
基本除雾功能元件为叶片的除雾器的除雾叶片在烟气进侧和出侧或其中一侧的边没有有意的导流结构和/或导流部件,有意指的是专为或主要为导流而设计的结构或部件;所谓的边指所述除雾叶片的边缘以内一定距离范围内的叶片,该部分叶片可以起到导流的作用。
本发明具有如下社会效益:本发明提供的一种冷霾除尘除雾装置,能够有效、经济地实现超净排放,能够使烟气出口含尘量达到5mg/Nm3(称重法)以下,雾滴含量达到10mg/Nm3(Mg2+示踪法)以下,并适应于入口粉尘超过30mg/Nm3以上的烟气,通过配置多级冷霾(凝)器、深度冷凝,以及多级回流除雾器、大弯板除雾器、混流板除雾器、超炫板除雾器,可使入口粉尘60mg/Nm3的烟气达到超净排放。同时具有脱除SO3气溶胶、Hg0颗粒物等重金属的作用;通过深度冷却、多级除霾以及排放烟气加热措施可以达到粉尘0排放,水雾含量近0排放,社会效益十分明显。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其他效益显而易见。
附图中:
图1为壳式通道径向截面举例示意图;
图2冷霾(凝)器除雾模块俯视图;
图3冷霾(凝)器或加热器的散热装置、结构中的散热翅片或散热螺纹片局部剖视图;
图4回流板除雾器除雾叶片截面波形示意图;
图5回流板除雾器除雾单元组合示意图;
图6回流板除雾器除雾单元截面波形型变图谱示意图;
图7文丘里管效应除雾叶片示意图;
图8超炫板除雾器除雾叶片截面波形、层间结构示意图;
图9基本除雾功能元件表面增强离心力度、湍流强度结构物轴测图(斜视图);
图10超炫板除雾器、普通波纹板除雾器的收液墙和排水沟示意图;
图11构成文丘里烟气通道和平行烟气通道及混合烟气通道的除雾叶片;
图12大弯板除雾器、混流板除雾器截面波形示意图。
具体实施方式
以下结合附图对本发明进行详细描述。
微尘脱俗原理
目前超净排放的主要难题是细微粉尘的祛除,经过湿法喷淋后的烟尘,粒径0-15μm的微尘可100%被烟气携带,PM2.5即在其列,粒径15-250μm的粉尘可50%被烟气携带,而粒径超过500μm的粉尘几乎不被烟气携带。主要原因是液滴(水滴)的表面张力现象所致,液体的表面张力不同,有的十分大,如水银的表面张力,水的表面张力相对也非常大,如毛细效应,钢针可以漂浮在水面上,有些水生昆虫并不生活在水下而是水上,行走如飞,如水黾等,有些陆地小昆虫如蜘蛛可在水面上如履平地,所以对于质量非常小、惯性非常小、比表面积很大的微尘,如不是已经在浆液中就很难溶于浆液中,虽然经过大量的喷淋、猛烈的撞击,微尘仍将与浆液液滴、水滴发生弹性碰撞,即使烟气从浆液中冒出,微尘也会在烟气气泡中与气泡壁发生弹性碰撞,就像微尘与无数的钢球相撞,而无法被“钢球”淹没,这就是细微粉尘为什么难以超净排放的原因。也因此,或许任何机械式除尘技术只能望微尘而莫及,如波纹板高效除雾器、旋流板除雾器,脱硫plus、托盘、文丘里管、烟气淹没式脱硫除尘装置等等虽然有“湿膜、器壁的碰撞聚合”,但都是弹性碰撞。
对于湿式电除尘则一致认为能耗大、体积大、有腐蚀性、维护量大,究其原因也是因为微尘的弹性碰撞原理,体积小不易被电子捕捉,本来湿润的粉尘及液滴极其容易荷电,用不了多大电压电流既能根除,但现实与理论总有差距,导致事与愿违,虽然我们在一步步地缩小逼近,即使喷淋增湿,微尘也是不理不睬,所以湿电不得不用比干电电压电流还大的能耗以达祛除代价昂贵的一点点微尘之目的,或许是史上性价比最高的设备,其实这点功夫通过增大干电的电压电流也能达到,微尘毕竟是脱俗的。
而对于微尘与蒸汽分子则不存在表面张力现象,他们有机会耦合,进而长大凝结成水滴,在烟气进入喷淋区后至末级喷淋层之前浆液一直处于被加热、蒸发的蒸发段,由于分子热运动蒸汽分子间及与微尘之间无法聚合,只有水及颗粒物、可溶盐从浆液中蒸发出来,此段颗粒物不吸水,与亲水与否无关,微尘、极小粒径的纤尘及SO3等气溶胶利用湍流气场的规避性形成纤尘走廊扶风而去。
末级喷淋层后为饱和段,微尘、气溶胶等可冷凝成霾,与亲水与否无关,即使不过饱和,亲水性纤尘也有一定捕获率,粒径越大越易捕获,微米级可完全捕获,但除雾效果不佳走廊依然绵延。憎水性纤尘、微尘无捕获率。
蒸发段SO3等气溶胶无法成霾,可在饱和段冷却长大成霾,经湍流、离心汇聚除雾根除,二者缺一不可。
所以,在喷淋区之后设置冷却装置使饱和烟气降温,由于极性分子作用蒸汽分子将与纤尘、微尘结合并长大,但一旦长大到具有了液体表面及表面张力将不再吸纳微尘而发生弹性碰撞,在具有液体表面前再次结合微尘的几率几乎为0,因此雾霾颗粒只能有一个核心,所以,超净排放毕其功只在冷霾一役,欲近0排放必须深度冷却。
冷凝后尘已成霾,但体积还非常小仍然在0-15μm范围,依然超凡脱俗、扑朔迷离,以至于这捕风捉影的艺术还是个“世界难题”,甚至走入误区,以致代价高昂收效或许甚微。
不破不立原理
由于雾霾体积微小、惯性小、比表面积大内摩擦力相对大,一般的离心作用力对之没有效应,微尘烟波逐流、随风而去,如普通波纹板除雾器对其除雾效果不理想,只能达到75mg/Nm3,因此对融汇于液滴的粉尘、石膏等祛除效果也不理想,难以达到超净排放效果,微尘更是鞭长莫及,不见项背,超净除雾器也是能力有限。对于旋流、离心分离技术,由于弹性微尘、纤尘具有风的属性,以及大颗粒、大液滴的离心运动产生的静压将使大部分小液滴、雾霾随气流被局限在旋风中心附近均匀流场中而难以聚合,过长的桶壁也是徒降压损,如同旋风除尘器的道理一样,对雾霾、微小液滴的祛除作用理论上收效有限。
因此,要想祛除小液滴、石膏蒸汽,尤其由冷凝生成的细小雾霾,达到超净排放效果,必须增加细小雾霾的碰撞几率,搅乱气流,不乱无治、不破无立,任何整流的设计思想都是错误的。
另外,目前有些末级湿法脱硫除尘装置不具备超净排放条件,其入口粉尘浓度不能控制在20mg/Nm3以下,甚至30mg/Nm3,有些行业限于前段工艺装置其湿法脱硫除尘装置入口甚至达到60mg/Nm3,甚至更高,这种情况下即使超净除尘除雾装置性能、指标完好,也难以发挥作用,经常发生严重的堵塞,无法达到超净效果。尤其对于浆液中有易结晶的可(易)溶性盐的烟气,对目前的超净除尘除雾装置就是一种杀手。
冷霾(凝)器
通过使用制冷剂,使烟气得以深度冷却,目前工业技术的进步,节能环保的需要,使工业锅炉和工业装置的排烟温度每况愈下,而环保技术的发展使得喷淋量向两极发展,要么液气比很大以求超净排放,如石灰石湿法,要么液气比较小以求节能,如双碱法和石灰湿法,会造成湿烟气携带水雾过多或不饱和状态,而深度制冷技术正是为此即想节能又想超净的装置量体裁衣。深度制冷除尘除霾技术的烟气换热量可很容易回收利用,回收热量可用于加热深度冷却的烟气。既节能又环保的技术一定是我们需要的技术,不倡导通过做无用功获取超净的思想。
本发明基于前述原理及问题,开发了一种冷霾除尘除雾装置,其中的冷霾(凝)器由可导热的壳式通道构成,其内流通的制冷介质通过蒸发、做功使饱和湿烟气以烟尘为核心冷凝成雾霾,因制冷介质不易耗量过大,因此采用壳式通道,包括壳程通道和管程通道,圆管、方管、波纹板材等各型管材穿套在一起作为冷却饱和烟气的最小祛除单元,图1为壳式通道径向截面示意图,其中内外两层各型管材通道穿套在一些,形成内圆外方或外圆内方等各型管材,当作为壳程通道使用时内层各型管材可由各型实心材料代替,壳程通道为两壳体之间构成的封闭截面区间(空腔)11所形成的通道,管程通道为内部壳体构成的封闭截面区间12(空腔)所形成的通道,壳程通道和管程通道内的充填物为扰流件和/或支撑件13,也可不用而用其他支撑方式,如端部支撑。壳程通道的壳层内流通制冷介质,内层管道构成的内部通道或内层各型实心材料不流通制冷介质,充分利用制冷介质的制冷量,并保持结构的稳定性。因制冷剂蒸发导致温度较低,为易于控制,制冷剂(介质)可在所述壳式通道的管程通道内流通,而所述壳层通道内充入流通或不流通的可导热缓冲介质,如空气等气体,水、油等液体,以及橡胶、塑料、岩棉等固体、胶体或其变体,乃至真空。所述壳式通道可以是2层以上的多层壳式通道,如使用带有支撑结构的管式或套管式支撑14,或为了导热 性能而使用多层结构、或为特殊目的而设计的多层壳式通道,属于壳式通道的一种,如用在管程通道或壳程通道周围排列细小管程通道15而获得更大的传热面积、同时起到扰流作用,从而获得更佳的冷却效果;或为增加扰流特性而在壳程通道或管程通道内布列螺纹管或波纹管16等。所谓多层壳式通道即2层以上的多层壳式结构和/或其中某(些)层或中心有管程和/或壳层通道或多根管程和/或壳层通道的并联组合等情况,此时的壳程通道指两条及两条以上独立的封闭连续曲线构成的可能的最小封闭流通截面包裹着无法分割出去的独立封闭截面,可依次命名为壳程通道1、壳程通道2等等;此时的管程通道指由1条独立的封闭连续曲线构成的可能的最小封闭流通截面内没有无法分割出去的独立封闭截面,可依次命名为管程通道1、管程通道2等等,上述壳程通道和管程通道的定义适用于本发明申请中的所有壳程通道和管程通道的定义、以及后述的腔式通道(等同于管程通道)的定义,此时制冷介质可根据实际和设计需要选择在某一(些)壳程通道中或某一(些)管程通道中或壳程通道与管程通道的任何组合中流通。
如图2所示,一个除雾模块27包含至少1根横向贯穿烟气流通区域的所述壳式通道并在其两端设有集气联箱21和22(本发明申请中所述流通区域或流通截面指烟气或流体流通通道的横截面或者准横截面。),一个除雾模块可设置有1-100根壳式通道,一般设定为10-30根;可在中间段设置被壳式通道贯穿的支撑隔板23以加强除雾模块结构,由至少一块此除雾器模块的相互联接可构成一层除雾器;也可以在所述除雾模块中间段设置至少一处单根壳式通道连接处并以连接件24逐个联接所有单根通道;或以至少一处过渡集气联箱25联接两侧的单根壳式通道;或除雾模块27两端的集气联箱设置为中间集气联箱26,通过中间集气联箱的联接形成除雾器。一个除雾模块可由至少一种上述中间段的连接方法包括贯通烟气流通区域的方法的任意组合而构成,至少一个上述各种型式的除雾模块的任意组合取舍可构成一层除雾器。对于烟气不均匀流场,过渡集气式除雾模块可以起到均衡烟温的作用,而贯通式和单管直联式除雾模块可以增加有效除雾面积。上述各种连接处的数量依据吸收塔的直径、安装条件、结构件强度等而定,一般情况可以设置0-30处。
本装置的冷霾(凝)器的制冷介质可为任何实用的制冷剂,包括现有技术的制冷剂,也包括可膨胀做功的能够做制冷剂的压缩气体。所述压缩气体可以是空气、氢气、氮气、氦气、氧气、二氧化碳、甲烷、乙烷、丁烷、乙醚、甲醇、乙醇、液化气、石油气、煤气、天然气等气体,也可是锅炉等的送风或烟气,或其中任意两种及两种以上可以混合的混合气体,常用压缩空气或锅炉等送风。对于昂贵的制冷剂或有爆炸危险的制冷剂,应密闭循环使用,对于廉价易得且安全的气体如空气应开放式应用;进入冷霾(凝)器前的压缩气体应有降温设施,包括压缩机在内的热能应用于除雾除尘后烟气的升温换热。压缩机制冷量可根据需要冷凝的雾霾量、大液滴及烟气温降计算得到并配置相应的压缩机。制冷剂如是闭式循环,冷却烟气的热量将全部回收,由于排放烟气中热容较大的水分、粉尘、饱和蒸汽几乎祛除殆尽,所以,用这部分回收热包括液滴蒸发潜热以及制冷剂的功耗热量加热超净排放烟气将使烟气温度抬升至80°以上,按目前湿法脱硫排放烟气50°左右计。加热排入大气前的烟气的加热器可以使用所述可导热的壳式通道,加热介质能够在所述壳式通道的壳程通道内流通,管程通道不流通加热介质;或加热介质在所述壳式通道的管程通道内流通,而壳程通道内充入不流通的可导热缓冲介质;或对于多层壳式通道,可同时在所述壳程通道和管程通 道内流通,其使用方法与冷凝器相同。也可以视加热量换热条件使用腔式、翅片式、螺纹片式、省煤器式等其他常用散热装置。
为使冷却除尘效果更加明显及时,容易及时控制,以防粉尘突然增加或降低时控制排放以及节能运行,对湿烟气起冷却作用进而将生成的雾霾祛除的冷凝器的基本冷却功能元件的外表面设计有散热装置或结构,如翅片、螺纹片以及各型散热片、板、管等。如图3所示。基本冷却功能元件指除雾器的起到冷却功能的最小结构件、装置,如所述壳式通道、腔式通道,以及可散热并起到冷却作用的各种形式的板、管、片等。根据出口排放烟尘浓度实现即时跟踪、即时控制,节能环保。
针对吸收塔入口含尘量较大的烟气,如大于30mg/Nm3,如果大部分靠后续精细除雾器祛除将无法达到超净排放标准且会发生堵塞,。
本装置将冷霾(凝)器设计成第一级除尘除雾器首先接触湿烟气,顺着烟气流通方向第一级以后布置其他功能的除雾器,冷霾器将起到管式除雾器的作用,大量的液滴将与管壳相撞并汇聚成大液滴、液膜,而被冷却的液滴、液膜以及因过饱和烟气、水雾而凝结成雾霾的粉尘及微尘相互撞击汇合使液滴液膜继续增加,并进一步滴落祛除,由于这种方式同时形成、祛除的液滴液膜量非常大,一般在10000-40000mg/Nm3左右,所以大大增加了捕获新形成的雾霾的几率,大量的粉尘、微尘将在此祛除,减轻了后续除雾器的压力、堵塞的可能性,尤其对于喷淋量少,烟气携带雾滴少的吸收塔,烟气甚至无法饱和,这是一种极大的优势。但由于大量液滴也将在此降温,并且如果深度除尘的需要烟气温度需要进一步降温以使更多的蒸汽和微尘凝结成雾霾,所以消耗的制冷量较大。由于热传递、雾霾形成的几率效应和延时性等,所以最好能连续布置两级及两级以上的冷霾(凝)器,第二级、第三级、第四级(排列级次为顺着烟气的流向依次为第一级、第二级等)冷霾(凝)器将继续祛除残余的粉尘、液滴及雾霾,并继续增加雾霾的生成量,第一级以后的冷霾器可以与其他型式、功能的除雾器相间布置,但第二级、第三级等需要的制冷量急剧减少。所述第几级以安装在一套支架上并相互相距一定空间距离为划分依据,一般间隔距离为2米左右。
当除尘装置入口烟尘含量较小时如小于20mg/Nm3时即所需制冷量较小时的第一级冷霾器,或除第一级冷霾器以外安装的第二级、第三级等冷霾器,制冷系统可改为冷却系统,制冷介质则用冷却介质水、油等液体或气体中的一种或几种代替,尤其烟气净化装置如脱硫吸收塔周围的空气、锅炉送风、排放的低温烟气等,其介质流通壳式通道或部分壳式通道可用腔式通道代替,腔式通道即其径向截面的封闭外壳包裹的面积(空腔)全部通流流动介质(参照图1),二者可不同时替代。在其他情况如可以满足排放要求时也可如此替代。
回流板除雾器
本发明一种冷霾除尘除雾装置中的超净除雾器,基于前述祛除雾霾原理,发明了回流板除雾器、大弯板除雾器、混流板除雾器和超炫板除雾器以及几种扰流方法。
如图4所示,回流板除雾器,除雾单元48由至少一个其截面至少有一个能使烟气相对其进入除雾器前的原流动方向发生回流的倒钩形回流弯的除雾叶片41构成,所述截面指所述除雾叶片径向截面即宽度方向的横截面(没有特别说明本专利申请所述除雾叶片截面或横截面均为宽度方向的横截面)。由于除雾离心的原理,回流相对的原方向不必一定是进入除雾器前的流动方向,因此回流弯朝向可任意方向布置。所谓回流就是烟气流动的方向 在此发生大于等于90°的改变,所述回流弯410为所述除雾叶片41横截面弯曲曲线两侧壁任意切线构成的与烟气通道对应的最小角度49小于等于90°,回流弯的曲率应足够大以达到预期分离效果。烟气在此发生非常大的离心作用从而祛除大部分小液滴和雾霾,烟气通道及回流弯上液膜汇聚的较大液滴以及烟气携带的水雾、雾霾、液滴被烟气吹送到前一除雾单元的除雾叶片对应位置上从而被有效拦截,所述对应位置为收液墙或收液板411,收液墙指具有拦截、收集烟气携带的水雾的功能的除雾叶片或部分除雾叶片或专设(独立)叶片。被拦截的雾滴进而汇聚、滴流到由相互邻近的除雾单元的临近叶片构成的下部密封的排水沟42,该沟及构成该沟的叶片可视为一个除雾单元中的一个叶片,也可由除雾单元一侧的叶片通过下部弯曲形成,或单独(独立)设置,如图5所示。排水沟指具有将收液墙收集的烟气携带的雾滴汇聚、集中排放的功能的沟,由除雾叶片或部分除雾叶片或专设(独立)叶片构成。也可不设置所述排水沟,汇聚的液滴直接滴落,只是除雾效果差。在烟气动压排挤下排水沟42中汇聚的含有粉尘、石膏、可溶易溶性盐等颗粒物的分离水流向设置在排水沟上的排水孔或缝隙、或流向固定除雾叶片的隔板和两侧端板45上与排水沟对应的排水孔44、或直接流向排水沟两侧进而被及时排除,从而保证汇集的液滴从排水沟两侧排除、最大限度地降低了二次携带液滴的可能;上述两种排水孔(或缝隙)可设置其中一种、或同时设置、或都不设置,当都不设置时,汇集的液滴由排水沟边缘或边缘的豁口流出。隔板和端板不是必须件,可以采取其中的一种,也可以两种都用或都不用,或与其他部件组合,也可以采取其他固定方式,如卡条、穿条等等,在隔板或端板上开孔的目的在于将任何阻碍排水沟疏水的障碍疏通。
烟气在回流板烟气流道43喷出后直接撞击前一除雾单元叶片从而产生最大的离心作用,细小雾霾以其微弱的惯性优势几乎全部被拦截、汇聚、祛除,各流道撞击后的烟气在湍流区46相互激烈扰动,使残余细小液滴、雾霾基本汇聚殆尽成大液滴,在除雾模块的上一层或下一级除雾器(烟气流动方向的后一层或后一级)继续被彻底根除。烟气在排水沟底部扰流区47的撞击扰动也将增加细小雾霾的汇合几率。
由于分离水的及时动力排除、烟气非常大的离心弯道和对叶片的直接冲击,回流板除雾器具有自清洗功能,不会轻易堵塞。
相互临近的回流板除雾叶片构成的烟气通道为文丘里或近似文丘里烟气通道111,如图11所示,所谓文丘里或近似文丘里烟气通道指对烟气有加速功能,由相互临近的叶片截面曲线形状限定的与文丘里管剖面类似的烟气通道,其形状可用近似折线代替。也可以将相互临近的除雾叶片构成的烟气通道设置成平行烟气通道113,所述平行烟气通道指除雾叶片构成的烟气通道的截面曲线可通过其中某一叶片的截面曲线在保持形状和朝向情况下沿某一方向平行移动得到或近似得到,相当于制图中沿某一方向的复制粘贴或排列,其形状可用近似折线代替。这两种通道都取消扰流区47而成为汇流口114和115,也可不取消或设置成平行烟气通道排水沟底部117,实际上此时的排水沟为回流板除雾器除雾单元一侧最外边的除雾叶片的一部分。上述两种通道也可混合布置,如116所示,从而构成各种型式的混合烟气通道,属于除雾单元的一些型式。烟气通道出口112可设计成加速或减速烟气的流道。
所述文丘里或类似文丘里烟气通道也可以单独与本发明后述的超炫板除雾器叶片、大弯板除雾器叶片、混流板除雾器叶片以及其他形式的除雾叶片如波纹板除雾叶片(带 钩或不带钩)组合。
除雾单元在技术性能允许范围内包括但不限于本申请中提及的或可合理推出的各种型变,如图6所示:烟气流道可以有多个回流弯、烟气流道可以开口向上、烟气流道入口相对进入除雾器前的烟气流向可以有小于|90|°的倾角、与本发明中其他波形除雾叶片及普通波纹板波形组合,上述相应的除雾叶片可改为与原曲线近似的折线等。
由回流板除雾器的除雾单元的相互组合形成除雾模块的除雾单元层,所述除雾单元的相互组合指包括但不限于本发明申请中提及的或可合理推出的除雾单元的各种型式,如图4、、图7、图9(表面构造物)、图11、图12(有回流弯除雾叶片构成的混流除雾单元)所示,包括叶片数量,除雾叶片数量针对不同的气体及其运动粘度、纯度、流速等有所不同,可为1-30片,一般设定为3-5片;所谓相互组合还包括除雾单元的型变,如图6所示,以及除雾单元的各种可能的组合,如图5所示:除雾单元之间前后左右的方向、朝向、组合方式,除雾单元层之间、除雾模块之间、各层除雾器之间以及烟气流道43的开口方向可任意组合,排水沟、收液墙可单独设置且每单元不限一个、也可不设置,除雾单元层之间的除雾单元可交错排列、也可竖向对齐排列,除雾单元型式、组合联接方式方法不限于本说明书所说明的各种可能。不同的型式与组合方式有不同的功能与作用,如图6中的65型式适用于特别低的烟气流速或负荷或不均匀流场中的特别低速,而66型式则适合相对高的气速或负荷或不均匀流场中的相对高速。
一个除雾模块由至少一层单元层构成,层间相接或不相接,一层占据烟气流通截面的除雾器由至少一块除雾模块构成。除雾模块的叶片由具有排水孔44的端部板和隔板45固定,或其中一个固定,或由叶片边缘的固定条、卡固定,也可有其他固定方式,但无论如何固定必须保证排水沟(如果已经设置)的畅通。
回流板除雾器由于特有的加速通道及极速回流弯,所以适合于低气速吸收塔和烟气不均匀流场以及低负荷运行状态,而特有的收液墙拦截、收集功能,排水沟汇聚、集中排放功能,使高气速状态下的携带水雾现象得到有效解决,适合于高气速吸收塔、烟气流场不均匀状态以及超负荷运行状态,大大提高了除雾效率和适用范围。
大弯板板/大浪板除雾器&混流板除雾器
因某些工况除雾器不得不在烟气流速很高的环境运行,如水平烟道除雾器,此时并不需要很大的曲率就可以达到预期的雾霾分离效果,太大的曲率反而会增大压损、发生喷溅、甚至损坏除雾器,而通常波纹板除雾器不能在如此高气速下运行,会带来严重携带水雾现象,使除雾效率直线下降,不得不采取各种方法扩大除雾器面积。
针对上述窘境,本发明所述回流板除雾器的回流弯可以设计成大于90°的大弯,如图12中121所示,大弯121为除雾器叶片横截面曲线弯的两侧壁任意切线构成的与烟气通道对应的最小角度122大于等于90°,烟气流动的方向在此发生小于等于90°的改变,调整除雾器曲率以达到最佳预期除雾器效果。图中123为排水沟,124为收液墙,其余排水沟、排水孔、除雾单元型式及其组合、各种型变、收液墙、通道型式、叶片型式、隔板、端板、除雾模块组成及固定方式等设置方案与回流板除雾器相同。
根据项目工况,大弯板除雾器叶片与回流板除雾器叶片可以混用组成混流板除雾 器,以达最佳预期效果,如图12中125、126所示。
所述各种除雾器的除雾叶片的截面曲线能够用近似折线代替。
超炫板除雾器
超炫板除雾器,意在增加烟气在除雾器叶片流道内的离心力度、湍流强度,从而增加细小雾霾撞击叶片及相互撞击的几率而汇聚成大液滴,进而被叶片液膜吞噬汇聚最后祛除,适合于低气速吸收塔和烟气不均匀流场以及低负荷运行状态,其特征在于,如图8所示,除雾叶片截面为幅值大于1的近似正弦波形81;或除雾叶片截面为近似正弦绝对值波形82;或为相同幅值的近似正弦波形与近似正弦绝对值波形的组合85;或为不同幅值的近似正弦波形和不同幅值的近似正弦绝对值波形中任何不同波形的任意组合,这种组合最少有3种情况:不同幅值的近似正弦波形的组合86、不同幅值的近似正弦绝对值波形的组合87、不同幅值的近似正弦波形与近似正弦绝对值波形的组合88,图中并未列出所述波形组合的所有可能的组合,波形间(包括一种波形间)可连续可断续。不同的组合具有不同的功能:对于含尘量非常小的除雾和/或除雾要求高的需要可用多波段波形和/或高幅值或绝对值波形除雾器,对于较低气速的除雾可用高幅值或上高下低幅值除雾器,对于较高气速的除雾可用低幅值除雾器或下高上低幅值除雾器。
一个超炫除雾模块由至少1层单层组成,单层由截面波形为上述各种波形之一相互组合而成、或上述各种波形的任意组合而成,层与层临近叶片波峰的方向相同84或相反83,层间可相接或不相接,至少一个除雾模块覆盖整个烟气流通区域。层间波形不连续或不相接的除雾器模块,有利于烟气湍流的产生,不存在中间不易清理的死角,因而不易堵塞,中间紊流有利于自清理污垢,以及液滴的排除,减少二次携带水雾液滴的几率。
以上超炫板除雾器叶片在技术性能允许范围内可做各种变形,如以接近所述各种波形的折线代替正弦波形线或正弦绝对值波形线,参见图6。
因各种原因的高气速下烟气会发生携带现象从而降低除雾效率,如水平烟道除雾器,所以,如图10所示,在具有近似正弦波形或正弦波形近似折线、或近似正弦绝对值波形或正弦绝对值波形近似折线的除雾叶片截面的每片叶片上方设置排水沟101和收液墙102以收集疏导烟气携带的液滴,也可数个除雾叶片作为一组组成除雾单元公用的排水沟103和收液墙104,收液墙具有拦截、收集烟气流道内流出的烟气携带的水雾的功能,排水沟具有将收液墙收集的烟气携带的雾滴汇聚、集中排放的功能,由除雾叶片或部分除雾叶片或专设(独立)叶片构成,可在两侧或设置在排水沟上的孔洞(或缝隙)或从边沿或边沿上的豁口溢流排出收集的雾滴。排水沟和收液墙可与除雾叶片连接为一体、也可不连接,排水沟同时起到扰流、加速作用,使雾滴与烟气更加易于分离。
上述在除雾叶片上方设置收液墙和排水沟的方案除应用于超炫板除雾器、普通波纹板除雾器和折流板除雾器外,还可应用于基本除雾功能元件具有片式结构的其他除雾器叶片,如图6中所示回流板除雾器叶片61、62、63、64,图12中所示混流板除雾器叶片126、大弯板除雾器叶片127,以及普通波纹板型或折流板型(带钩或不带钩,带孔或不带孔)、中空波纹板型除雾器等。基本除雾功能元件指除雾器起到除雾功能的最小结构件、装置,如回流板除雾器的除雾叶片,冷霾器的壳式通道等。
在同一除雾器中,本说明书中提及但不限于所提及的各种形式的收液墙可以混用 或同时用,各种形式的排水沟可以混用或同时用,各种形式的收液墙与各种形式排水沟可以任意组合,从而达到某种性能或目的,以上所述收液墙和排水沟的各种方案即相关除雾器的除雾叶片和/或结构的截面曲线能够用近似折线代替。
扰流方法
为增加湍流强度,提高细小雾霾的相互撞击几率,如图9所示,管式除雾器的管表面或除雾基本功能元件为叶片的片式除雾器的叶片通流烟气的两侧面接触烟气的表面,可以设计有随机分布的随机方向的或有序分布的有序方向的或其他任何分布方式的凸起、凹坑、钩、凸槽、凹槽或裂隙中的至少一种的任意组合,其中凸槽或凹槽能够贯通其所在的连续表面或在所述表面边缘范围内。为减少烟气二次携带液滴的几率,所述除雾器表面可以设计有竖直方向的集水排水沟。所述连续表面指具有同样性质的表面单元通过连续拓展可以得到的表面,举例如管式除雾器接触烟气的单根管表面、叶片式除雾器的单片叶片通流烟气的两侧面等;所谓的分布的方式的目的在于扰乱气流,可根据需要设计、选择分布方案,包括但不限于上述分布方案。
回流板除雾器、大弯板除雾器、混流板除雾器及超炫板除雾器等为增加离心力度、扰流强度,包括基本除雾功能元件为叶片的除雾器的除雾叶片在烟气进侧和出侧或其中一侧的边有膨大凸起,如所述边为膨大凸起、或部分边段为膨大凸起、或分布着瘤状凸起,从而产生文丘里管加速效应,提高烟气对弯道和叶片的冲击速度,以增强分离效果,祛除细小雾霾。所谓的边指所述除雾叶片的边缘以内一定距离范围内的叶片。
回流板除雾器、大弯板除雾器、混流板除雾器及超炫板除雾器的另一个特征是烟气进侧和出侧或其中的一侧的边没有有意的导流结构或导流部件,该功能可应用于基本除雾功能元件为叶片的除雾器的除雾叶片。所谓导流就是将烟气由原流向导引至另一个流向,从而使烟气流场最大限度地趋近均匀、烟气压损最小;所谓有意指的是专为或主要为导流而设计的结构或部件;所谓的边指所述除雾叶片的边缘以内一定距离范围内的叶片,该部分叶片可以起到导流的作用。
所述几种扰流方法的结构物及其叶片的截面或剖面曲线可用近似折线代替。
本发明申请所述排水沟当立式安装且除雾叶片水平方向时,收液墙或其某侧的叶片可能需要具有向上的角度以形成排水沟。
本发明装置各种除雾模块根据烟气流动方向及除雾效率的需要布置除雾模块的方向,一般布置成平板式或屋脊式,安装方式一般为水平安装和立式安装。
社会效益
综上所述,本发明具有如下社会效益:本发明提供的一种冷霾除尘除雾装置,能够有效经济地实现超净排放,烟气压损小于200Pa,粉尘排放5mg/Nm3(称重法)以下,水雾含量10mg/Nm3(Mg2+示踪法)以下。通过配置多级冷霾(凝)器,以及回流板除雾器、大弯板除雾器、混流板除雾器或超炫板除雾器,可使入口粉尘20mg/Nm3时0排放、30~60mg/Nm3时超净排放。本装置同时可高效祛除SO3气溶胶、Hg0颗粒物等重金属,社会效益十分明显,通过除雾器后烟气加热设施,可使雾滴0排放。
冷霾除尘除雾装置同时具有祛除SO3气溶胶、Hg0颗粒物的功能:
SO3在燃烧和SCR中转化率各约1%,以气溶胶(SO3气溶胶即硫酸气溶胶是迅速吸水的白色硫酸烟雾,0.004-1.2μm)形成存在,是形成蓝烟、黄烟的主要原因之一,不易被喷淋、离心力祛除,极易随风而去,易溶于水但现有技术脱硫塔只有20%的去除率,主要在饱和段湍流流场中祛除。经本发明装置冷凝成霾、长大,尤其多级冷凝、湍流流场汇聚成滴可基本根除。
水蒸气的凝结有两种状态,在400%的过饱和度(相对湿度500%)下纯水分子凝结,不稳定;以异类离子、分子(0.0005-0.1μm)(些许的电荷不对称性总能使原子分子间找到结合点)至微米(0.1-10μm)级颗粒物为凝结核形成稳定发散网状雾霾颗粒、云雨,在凝结核充足下,30%的饱和度即可形成雾霾。水蒸气凝结是以极性分子的相互连接而凝结,与颗粒物亲水憎水无关,在冷凝(霾)器深度冷凝(霾)后通过回流板除雾器、超炫板除雾器对烟气的扰流湍流使雾霾长大汇聚,可以高效去除汞颗粒物(Hg0极易吸附)、其他重金属颗粒物,水可以在汞表面延展,冷凝可以使自由汞等霾化,在冷凝器长大、汇聚、捕获,进而有效祛除。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (19)

  1. 一种冷霾除尘除雾装置,其特征在于,本发明装置至少包括烟气冷凝器、回流板除雾器、大弯板除雾器、混流板除雾器和超炫板除雾器中的一种组合,其中所述烟气冷凝器为可导热的壳式通道内流通制冷介质使湿烟气中粉尘冷凝成雾、霾。
  2. 根据权1所述的一种冷霾除尘除雾装置,其特征在于,所述制冷介质在所述壳式通道的壳程通道内流通;或所述制冷介质在所述壳式通道的管程通道内流通;或所述制冷介质同时在所述壳程通道和管程通道内流通。
  3. 根据权1所述的一种冷霾除尘除雾装置,其特征在于,所述制冷介质为能够实用的制冷剂,包括能够做制冷剂的压缩气体。
  4. 根据权1所述的一种冷霾除尘除雾装置,其特征在于,包含至少1根所述壳式通道贯穿烟气流通区域并在两端设有集气联箱从而形成除雾模块,至少一个除雾模块覆盖整个烟气流通区域;或所述除雾模块在中间段设置至少1处单根所述壳式通道的连接处并联接所述单根壳式通道;或所述除雾模块在中间段设置至少1处过渡集气联箱以联接两侧的所述单根壳式通道;或所述除雾模块在中间段设置至少1处中间集气联箱,通过中间集气联箱的联接贯穿烟气流通区域;一个除雾模块能够由至少一种所述中间段的连接方法包括贯通烟气流通区域的方法的任意组合而构成,至少一个所述除雾模块覆盖整个烟气流通区域。
  5. 根据权1所述的一种冷霾除尘除雾装置,其特征在于,所述冷凝器的基本冷却功能元件的表面能够设计有散热装置或结构。
  6. 一种冷霾除尘除雾装置,其特征在于,第一级为权1所述冷凝器;而第二级及第二级以后可能的各级除雾器中至少0个级次位置上能够同时为所述冷凝器。
  7. 根据权利要求1所述的一种冷霾除尘除雾装置,其特征在于,所述制冷介质能够用冷却介质液体水、油和气体中的一种或几种代替;其流通介质的所述壳式通道或部分壳式通道能够用腔式通道代替,所述两种替代方式能够不同时替代。
  8. 根据权1所述的一种冷霾除尘除雾装置,其特征在于,烟气加热器能够使用所述可导热的壳式通道。
  9. 根据权8所述的一种冷霾除尘除雾装置,其特征在于,所述烟气加热器的基本加热功能元件的表面能够设计有散热装置或结构。
  10. 一种冷霾除尘除雾装置,其特征在于,具有除雾功能的回流板除雾器的除雾单元由至少一个其截面至少有一个能使烟气发生回流的回流弯的除雾叶片构成;所述除雾叶片截面波形能够用其近似折线代替。
  11. 根据权10所述的一种冷霾除尘除雾装置,其特征在于,所述回流板除雾器由除雾单元的相互组合形成除雾模块的单元层,一个除雾模块由至少一层单元层构成,一层占据烟气流通截面的除雾器由至少一块除雾模块构成。12.根据权1所述的一种冷霾除尘除雾装置,其特征在于,基本除雾功能元件为叶片的除雾器设计有排水沟。
  12. 根据权1所述的一种冷霾除尘除雾装置,其特征在于,基本除雾功能元件为叶片的除雾器设置有收液墙。
  13. 根据权1所述的一种冷霾除尘除雾装置,其特征在于,基本除雾功能元件为叶片的除雾器的相互临近的除雾叶片能够构成文丘里或近似文丘里烟气通道、或构成平行烟气通道,所述两种烟气通道能够混合设置而构成混合烟气通道;所述除雾叶片的截面曲线能够用近似折线代替。
  14. 根据权10所述的一种冷霾除尘除雾装置,其特征在于,所述回流板除雾器的回流弯能够设计成大弯而形成一种除雾器;具有所述回流弯的除雾叶片与具有所述大弯的除雾叶片能够混用而组成一种除雾器;所述除雾器的除雾叶片的截面曲线能够用近似折线代替。
  15. 根据权1所述的一种冷霾除尘除雾装置,其特征在于,具有除雾功能的超炫板除雾器的除雾叶片截面为幅值大于1的近似正弦波形;或为近似正弦绝对值波形;或为相同幅值的近似正弦波形与近似正弦绝对值波形的组合;或为不同幅值的近似正弦波形和不同幅值的近似正弦绝对值波形中的任何不同波形的相互组合;所述各种波形能够用波形近似折线代替。
  16. 根据权16所述的一种冷霾除尘除雾装置,其特征在于,所述超炫板除雾器的一个除雾模块由至少1层单层组成,单层由至少一种所述超炫板除雾器的除雾叶片的相互组合构成,至少一个除雾模块覆盖整个烟气流通区域。
  17. 根据权1所述的一种冷霾除尘除雾装置,其特征在于,接触烟气的具有除雾功能的表面能够设置竖直方向的集水排水沟、凸起、凹坑、孔洞、钩、凸槽、凹槽或裂隙中的至少一种的任意组合的结构物。
  18. 根据权1所述的一种冷霾除尘除雾装置,其特征在于,基本除雾功能元件为叶片的除雾器的除雾叶片在烟气进侧和出侧或其中一侧有膨大凸起;所述结构、型式的截面曲线能够用近似折线代替。
  19. 根据权1所述的一种冷霾除尘除雾装置,其特征在于,基本除雾功能元件为叶片的除雾器的除雾叶片在烟气进侧和出侧或其中一侧的边没有有意的导流结构或导流部件。
PCT/CN2018/000052 2017-03-02 2018-01-26 一种冷霾除尘除雾装置 WO2018157663A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/485,801 US20210023488A1 (en) 2017-03-02 2018-01-26 A condensation dedust-demister set

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710119152.7 2017-03-02
CN201710119152 2017-03-02
CN201710337778.5A CN106975312A (zh) 2017-03-02 2017-05-15 一种冷霾除尘除雾装置
CN201710337778.5 2017-05-15

Publications (1)

Publication Number Publication Date
WO2018157663A1 true WO2018157663A1 (zh) 2018-09-07

Family

ID=63369810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/000052 WO2018157663A1 (zh) 2017-03-02 2018-01-26 一种冷霾除尘除雾装置

Country Status (2)

Country Link
US (1) US20210023488A1 (zh)
WO (1) WO2018157663A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110354586A (zh) * 2019-08-21 2019-10-22 华北电力大学 一种氟塑料流线型除雾器及除雾工艺
CN110975544A (zh) * 2019-12-17 2020-04-10 江阴市尚时环境工程有限公司 低能耗高效率燃煤电厂锅炉烟气脱硫脱硝系统
CN111841323A (zh) * 2020-08-20 2020-10-30 艾克赛尔能源科技江苏有限公司 一种新型脱硝scr反应器
CN112090220A (zh) * 2020-10-15 2020-12-18 中冶焦耐(大连)工程技术有限公司 一种湿熄焦烟气除尘脱白多重净化处理装置及方法
CN112973368A (zh) * 2021-03-03 2021-06-18 武汉利康能源有限公司 含尘气流整流与稳流装置
CN114849395A (zh) * 2022-05-24 2022-08-05 上海应用技术大学 一种超声除雾器
CN114887425A (zh) * 2022-06-02 2022-08-12 淮阴工学院 一种化灰尾气的抗堵塞洗涤塔

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113069837B (zh) * 2021-04-20 2021-09-24 赵禹 柔性带式除雾装置
CN113477009A (zh) * 2021-07-20 2021-10-08 江苏华星电力环保设备有限公司 一种湿式除尘除雾一体化装置
CN113908630A (zh) * 2021-09-27 2022-01-11 铁岭龙鑫钛业新材料有限公司 一种粉尘布袋除尘风冷装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103894031A (zh) * 2014-04-14 2014-07-02 北京布鲁斯盖环保科技发展有限公司 文丘里式除雾器
CN204073660U (zh) * 2014-09-25 2015-01-07 德梅斯特(上海)环保科技有限公司 一种除雾装置
CN204485576U (zh) * 2015-02-17 2015-07-22 德梅斯特(上海)环保科技有限公司 一种旋流板式除尘除雾装置
CN204522519U (zh) * 2015-03-17 2015-08-05 德梅斯特(上海)环保科技有限公司 一种水平气流超精细除雾装置
CN105983287A (zh) * 2015-01-27 2016-10-05 德梅斯特(上海)环保科技有限公司 一种高效除尘除雾一体化系统
CN205965281U (zh) * 2016-05-30 2017-02-22 华北电力大学 一种除雾器叶片及除雾器
CN106975312A (zh) * 2017-03-02 2017-07-25 孙厚杰 一种冷霾除尘除雾装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005003415A1 (de) * 2005-01-25 2006-08-10 Rentschler Reven-Lüftungssysteme GmbH Profilschiene für ein Abscheideelement zur Entfernung von Teilchen oder Flüssigkeiten aus einem Gasstrom und Abscheideelement umfassend derartige Profilschienen
RU2527772C1 (ru) * 2013-07-18 2014-09-10 Игорь Анатольевич Мнушкин Теплообменный аппарат
CN103968405B (zh) * 2014-04-22 2016-02-24 西安交通大学 一种具有除雾功能的烟气加热器
CN106422617A (zh) * 2016-08-24 2017-02-22 天海能源科技有限公司 一种高效脱硫除尘一体化吸收塔及脱硫除尘方法
CN106362538A (zh) * 2016-10-08 2017-02-01 上海发电设备成套设计研究院 一种湿烟气除湿减排装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103894031A (zh) * 2014-04-14 2014-07-02 北京布鲁斯盖环保科技发展有限公司 文丘里式除雾器
CN204073660U (zh) * 2014-09-25 2015-01-07 德梅斯特(上海)环保科技有限公司 一种除雾装置
CN105983287A (zh) * 2015-01-27 2016-10-05 德梅斯特(上海)环保科技有限公司 一种高效除尘除雾一体化系统
CN204485576U (zh) * 2015-02-17 2015-07-22 德梅斯特(上海)环保科技有限公司 一种旋流板式除尘除雾装置
CN204522519U (zh) * 2015-03-17 2015-08-05 德梅斯特(上海)环保科技有限公司 一种水平气流超精细除雾装置
CN205965281U (zh) * 2016-05-30 2017-02-22 华北电力大学 一种除雾器叶片及除雾器
CN106975312A (zh) * 2017-03-02 2017-07-25 孙厚杰 一种冷霾除尘除雾装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110354586A (zh) * 2019-08-21 2019-10-22 华北电力大学 一种氟塑料流线型除雾器及除雾工艺
CN110975544A (zh) * 2019-12-17 2020-04-10 江阴市尚时环境工程有限公司 低能耗高效率燃煤电厂锅炉烟气脱硫脱硝系统
CN111841323A (zh) * 2020-08-20 2020-10-30 艾克赛尔能源科技江苏有限公司 一种新型脱硝scr反应器
CN112090220A (zh) * 2020-10-15 2020-12-18 中冶焦耐(大连)工程技术有限公司 一种湿熄焦烟气除尘脱白多重净化处理装置及方法
CN112090220B (zh) * 2020-10-15 2024-01-19 中冶焦耐(大连)工程技术有限公司 一种湿熄焦烟气除尘脱白多重净化处理装置及方法
CN112973368A (zh) * 2021-03-03 2021-06-18 武汉利康能源有限公司 含尘气流整流与稳流装置
CN112973368B (zh) * 2021-03-03 2024-05-24 武汉利康能源有限公司 含尘气流整流与稳流装置
CN114849395A (zh) * 2022-05-24 2022-08-05 上海应用技术大学 一种超声除雾器
CN114849395B (zh) * 2022-05-24 2024-01-30 上海应用技术大学 一种超声除雾器
CN114887425A (zh) * 2022-06-02 2022-08-12 淮阴工学院 一种化灰尾气的抗堵塞洗涤塔

Also Published As

Publication number Publication date
US20210023488A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
WO2018157663A1 (zh) 一种冷霾除尘除雾装置
CN207532990U (zh) 一种冷霾除尘除雾装置
US10322356B2 (en) Restoring cooling tower outlet fog into water cycle type II
CN102650503B (zh) 蒸发式冷凝及冷却装置
US10436482B2 (en) All-weather solar water source heat pump air conditioning system
CN105920960B (zh) 去除气溶胶中细颗粒物的方法和系统
CN107042048A (zh) 一种重力热管式除雾方法及除雾装置
CN107952292B (zh) 一种通量可调式文丘里-旋流耦合型高效除雾凝并器
CN110553518A (zh) 一种用于冷却塔的仿生凝水装置
US10809006B1 (en) Condenser
CN108144383A (zh) 烟气污染物处理系统及处理方法、烟囱
CN203100472U (zh) 一种融霜闭式集热与冷却两用塔
CN110186307A (zh) 一种除雾、冷却一体化换热管及其装置和应用
CN206152545U (zh) 去除气溶胶中细颗粒物的系统
CN210159324U (zh) 降温除湿组合式烟气脱白装置
CN211953332U (zh) 一种节能节水的高效率蒸发式冷凝器
CN104874252B (zh) 多级多气旋除雾除尘装置
WO2020161611A1 (en) Water droplets collection device from airflow using electrostatic separators
CN216062585U (zh) 逆流式湿式除尘塔
CN108036346B (zh) 适于锅炉的烟汽节能微排方法及装置
CN111256159B (zh) 用于燃气锅炉烟气余热深度回收的换热器、换热系统及方法
CN206688443U (zh) 一种重力热管式除雾装置
CN105289182B (zh) 一种低阻风冷椭圆管式除雾器及其除雾方法
CN207936779U (zh) 一种防垢防腐的干湿式冷凝器
CN210036362U (zh) 换热结构及带有该换热结构的换热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761840

Country of ref document: EP

Kind code of ref document: A1