WO2018157571A1 - 一种基于电磁波的立体空间模型采集方法及装置 - Google Patents

一种基于电磁波的立体空间模型采集方法及装置 Download PDF

Info

Publication number
WO2018157571A1
WO2018157571A1 PCT/CN2017/099835 CN2017099835W WO2018157571A1 WO 2018157571 A1 WO2018157571 A1 WO 2018157571A1 CN 2017099835 W CN2017099835 W CN 2017099835W WO 2018157571 A1 WO2018157571 A1 WO 2018157571A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
model
space
dimensional space
topographic map
Prior art date
Application number
PCT/CN2017/099835
Other languages
English (en)
French (fr)
Inventor
沈少武
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP17898873.9A priority Critical patent/EP3591622A1/en
Publication of WO2018157571A1 publication Critical patent/WO2018157571A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/72Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/411Identification of targets based on measurements of radar reflectivity
    • G01S7/412Identification of targets based on measurements of radar reflectivity based on a comparison between measured values and known or stored values
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds

Definitions

  • the present disclosure relates to a technique for acquiring a stereoscopic space model, and more particularly to a method and apparatus for acquiring a stereoscopic space model based on electromagnetic waves.
  • the acquisition of the stereo space model is of great significance to the virtual reality (VR) technology.
  • VR virtual reality
  • the acquisition scheme of the three-dimensional space model is roughly as follows:
  • Acquisition scheme 1 The three-dimensional space model is spliced and constructed by the model library in the composition software. This approach is often out of the real scene.
  • Acquisition scheme 2 High-altitude shooting by satellite, each part of the image is collected and post-production splicing, and finally a three-dimensional space model is obtained.
  • Acquisition scheme 3 Through the foreground camera, 360-degree comprehensive shooting and acquisition in the indoor space, and then post-processing and production, and finally get a three-dimensional space model. This method can truly reflect the comprehensiveness of the space, but there will be obvious stitching marks, and the shooting task is huge, which cannot be made and used by the user.
  • an embodiment of the present disclosure provides a method and apparatus for collecting a stereoscopic space model based on electromagnetic waves.
  • the electromagnetic wave-based stereoscopic spatial model acquisition method includes: collecting electromagnetic wave model data of various substances in a space; establishing an electromagnetic wave model library according to the electromagnetic wave model data; and drawing a topographic map of the three-dimensional space; The result of the topographic map is to divide the three-dimensional space into different types of regional spaces, wherein different types of regional spaces adopt different acquisition modes; for each regional space of the three-dimensional space, at least one of the following electromagnetic parameters is collected: electromagnetic waves Reflection parameters, electromagnetic wave refraction parameters, electromagnetic wave penetration parameters; the collected electromagnetic parameters are compared with the electromagnetic wave model data in the electromagnetic wave model library, and a three-dimensional space model is established according to the comparison result.
  • the method further includes: splicing two or more stereo space models; and rendering the spliced three-dimensional space model to form a virtual reality VR scene.
  • the method when the electromagnetic wave model library is established, the method further includes: storing transmission model data of various substances, where the transmission model data includes at least one of the following: a reflection coefficient, a refractive index, and a penetration coefficient; Alternatively, collecting material model parameters, the material model parameters including at least one of: conductivity, dielectric constant, magnetic permeability, thickness; and calculating corresponding transmission model data according to the collected material model parameters and storing.
  • the topographic map of the three-dimensional space includes: setting a basic coordinate of the three-dimensional space; detecting, according to the basic coordinate, a movement trajectory of the user along a spatial horizontal plane, and splicing and drawing the movement trajectory to form a three-dimensional space a two-dimensional topographic map in between; detecting a movement trajectory of the user along the vertical direction of the space, determining a vertical space height difference; drawing a topographic map of the three-dimensional space on the basis of the two-dimensional topographic map, the topographic map of the three-dimensional space is A layered two-dimensional topographic map is formed.
  • the dividing the stereo space into different types of regional spaces according to the rendering result of the topographic map comprises: dividing the two-dimensional topographic maps of different layers into different ones according to the rendering result of the topographic map.
  • the collection node path planning for each collection node, setting the collection branch and collecting route.
  • the collected electromagnetic parameter is compared with the electromagnetic wave model data in the electromagnetic wave model library, and the three-dimensional space model is established according to the comparison result, including: the collected electromagnetic parameter and the electromagnetic wave model in the electromagnetic wave model library
  • the data is compared to obtain the material and size of the object corresponding to the electromagnetic parameter; according to the material and size of the object, a stereoscopic space model is established based on the topographic map of the three-dimensional space.
  • the collected electromagnetic wave reflection parameter characterizes the thickness of the object
  • the collected electromagnetic wave refraction parameter characterizes the thickness and material of the object
  • the collected electromagnetic wave penetration parameter characterizes the thickness and material of the object.
  • the method further includes: performing an acquisition mode selection on the current regional space according to the initial collection result.
  • the selecting the acquisition mode of the current regional space according to the initial collection result includes: determining a material of the object in the current regional space according to the initial collection result; and selecting at least the following acquisition mode according to the material One: electromagnetic wave reflection parameter acquisition mode, electromagnetic wave refraction parameter acquisition mode, electromagnetic wave penetration parameter acquisition mode.
  • the method further includes: performing multiple acquisitions for each acquisition mode, and calculating an average variance of the collected electromagnetic parameters; and using the average variance as a small acquisition mode as the final selected acquisition mode.
  • the electromagnetic wave-based three-dimensional space model collecting device comprises: an collecting unit for collecting electromagnetic wave model data of various substances in the space; and a first establishing unit, configured to establish an electromagnetic wave model according to the electromagnetic wave model data a drawing unit for drawing a topographic map of the three-dimensional space; a planning unit for dividing the three-dimensional space into different types of regional spaces according to the drawing result of the topographic map, wherein different types of regional spaces adopt different acquisitions
  • the acquiring unit is further configured to: collect, according to each regional space of the three-dimensional space, at least one of the following electromagnetic parameters: an electromagnetic wave reflection parameter, an electromagnetic wave refraction parameter, and an electromagnetic wave penetration parameter; and a second establishing unit, configured to The collected electromagnetic parameters are compared with the electromagnetic wave model data in the electromagnetic wave model library, and a three-dimensional space model is established according to the comparison result.
  • the device further includes: a processing unit, configured to splicing two or more stereo space models; and rendering the spliced three-dimensional space model to form a virtual reality (VR) scene.
  • a processing unit configured to splicing two or more stereo space models; and rendering the spliced three-dimensional space model to form a virtual reality (VR) scene.
  • VR virtual reality
  • the device further includes: a storage unit, configured to store transmission model data of various substances, where the transmission model data includes at least one of: a reflection coefficient, a refractive index, and a penetration coefficient;
  • the collecting unit is further configured to collect material model parameters, the material model parameters including at least one of the following: conductivity, dielectric constant, magnetic permeability, thickness;
  • the storage unit is further configured to: according to the collected material model Parameters, calculate the corresponding transfer model data and store it.
  • the drawing unit is exemplarily used for: setting basic coordinates of a stereo space; detecting, under the basic coordinates, a movement trajectory of a user along a spatial horizontal plane, and splicing and drawing the movement trajectory to form a three-dimensional space a two-dimensional topographic map; detecting a movement trajectory of the user along a vertical direction of the space, determining a vertical space height difference; drawing a topographic map of the three-dimensional space on the basis of the two-dimensional topographic map, the topographic map of the three-dimensional space being layered The two-dimensional topographic map is formed.
  • the planning unit is configured to: divide a two-dimensional topographic map of different layers into different collection nodes according to the rendering result of the topographic map; perform path planning on each collection node, and set collection Branch and collect routes.
  • the second establishing unit is used to compare the collected electromagnetic parameters with the electromagnetic wave model data in the electromagnetic wave model library to obtain the material and size of the object corresponding to the electromagnetic parameters;
  • a stereoscopic space model is established based on the topographic map of the three-dimensional space according to the material and size of the object.
  • the collected electromagnetic wave reflection parameter characterizes the thickness of the object
  • the collected electromagnetic wave refraction parameter characterizes the thickness and material of the object
  • the collected electromagnetic wave penetration parameter characterizes the thickness and material of the object.
  • the device further includes: a control unit, configured to perform an acquisition mode selection on the current regional space according to the initial collection result.
  • control unit is exemplarily used for: determining a material of an object in a current area space according to the initial collection result; and selecting at least one of the following acquisition modes according to the material: an electromagnetic wave reflection parameter collection mode , electromagnetic wave refraction parameter acquisition mode, electromagnetic wave penetration parameter acquisition mode.
  • the apparatus further includes: a control unit, configured to perform multiple acquisitions for each acquisition mode, and calculate an average variance of the collected electromagnetic parameters; and use the average variance as a final selection mode. Acquisition mode.
  • the technical solution of the embodiment of the present disclosure collects electromagnetic wave model data of various substances in the space; establishes an electromagnetic wave model library according to the electromagnetic wave model data; draws a topographic map of the three-dimensional space; and according to the drawing result of the topographic map, the three-dimensional space Divided into different types of regional spaces, wherein different types of regional spaces adopt different acquisition modes; for each regional space of the three-dimensional space, at least one of the following electromagnetic parameters is collected: electromagnetic wave reflection parameters, electromagnetic wave refractive parameters, electromagnetic wave wear The parameters are obtained; the collected electromagnetic parameters are compared with the electromagnetic wave model data in the electromagnetic wave model library, and a three-dimensional space model is established according to the comparison result.
  • the technical solution of the embodiments of the present disclosure provides an intelligent, convenient, and fast three-dimensional space model collecting device and method for a mobile terminal or a wearable device, through a user's own mobile terminal or a transmitting and receiving device for transmitting electromagnetic wave signals and a geomagnetic sensing device.
  • Based on the model values of electromagnetic wave reflection, refraction, and penetration extract the model parameters of architectural and decorative materials in daily life, collect 360-degree real-time scenes and spatial parameters of our life and establish VR models, plus post-production and construction.
  • a storage medium configured to store a program code for performing an electromagnetic wave-based stereoscopic spatial model acquisition method as described above.
  • FIG. 1 is a block diagram of an electromagnetic wave-based three-dimensional space model acquisition device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flow chart 1 of a method for collecting a three-dimensional space model based on electromagnetic waves according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flow chart 2 of a method for acquiring a stereoscopic space model based on electromagnetic waves according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a three-dimensional space model acquisition device based on electromagnetic waves according to an embodiment of the present disclosure.
  • each scene is generally constructed based on a virtual model.
  • a virtual model is built and rendered by a specific software, and the entire production process has a long time period, a large amount of tasks, and a high production cost.
  • the real-world model acquisition it is generally photographed and spliced by the panoramic camera. Since the cost of 3D imaging is also high, and there is a certain degree of distortion, the constructed virtual model is not completely consistent with the real-world model.
  • the floor plan tends to guide customers or users less intuitively.
  • the Global Positioning System (GPS) signal will become extremely weak. Less than the role of indoor navigation.
  • an embodiment of the present disclosure provides a method and apparatus for collecting a stereoscopic space model based on electromagnetic waves.
  • electromagnetic waves are exposed to different materials during transmission, such as free space, infrastructure materials (such as walls, glass, doors and windows, stone pillars, wood, reinforced concrete, compartments), etc., will produce different refraction or reflection signals; It is a compartment space, and it will generate different degrees of signal attenuation.
  • the radio wave transmitting circuits of different frequency bands and distances built in the terminal according to the characteristics of electromagnetic wave refraction, reflection and penetration in various directions tested, the signal transmission and attenuation models are adopted.
  • the comparison test together with the acquired geomagnetic orientation parameters of the building itself, can draw a three-dimensional space model of the user's current space in a short time.
  • the device may be disposed in a mobile terminal, such as a mobile phone. It can also be placed in a wearable device such as a helmet. As shown in FIG. 1 , the device includes: a model acquisition module 101, a path planning module 102, a mapping module 103, a wireless chip module 104, an electromagnetic wave reflection acquisition module 105, an electromagnetic wave refraction acquisition module 106, an electromagnetic wave penetration acquisition module 107, The acquisition control module 108, the stereo space model establishing module 109, and the post processing module 110.
  • connection relationship and function between the modules in the above device will be exemplified in the following with reference to FIG.
  • the model acquisition module 101 is connected to each electromagnetic wave collection module 105-107 through the acquisition control module 108, and is used for collecting electromagnetic wave unit model data of various building materials, spaces, living articles, and the establishment of a unit model library.
  • the model acquisition module 101 is also used for storing electromagnetic wave transmission model data of building materials, free space, and the like, and also for collecting and storing material model parameters in the field.
  • material model parameters such as common free-form space model, water body model, brick material model, concrete material model, jade material model, metal material model, solid wood material model, glass material model, door and window model, etc., if the conductivity of the material is known,
  • the electrical constant, magnetic permeability, thickness, etc. can also calculate the electromagnetic wave reflection coefficient, refractive index or penetration coefficient of a specific material.
  • the electromagnetic wave parameters collected by the model acquisition module are not only affected by the current electromagnetic wave frequency, the reflection of the atmosphere and the material itself, refraction and penetration, but also by the temperature, pressure, humidity and other factors at that time.
  • the velocity of the vacuum from the electromagnetic wave is C
  • the rate of electromagnetic wave propagation in the atmosphere is C/N, where N is the refractive index of the air.
  • the average air refractive index model is first used for calculation, and then the built-in sensor is built in the mobile phone. The current ambient temperature, air pressure, humidity and other values are measured, and the current real-time air refractive index is calculated, and then the specific propagation rate of the emitted electromagnetic wave in space is derived.
  • is the wavelength of the electromagnetic wave
  • f is the frequency of the electromagnetic wave
  • the wavelength of the electromagnetic wave is different, and is affected by the dielectric constant and the electrical conductivity.
  • the propagation speed of the electromagnetic wave may be (eu) ⁇ (-1/2), where e is a dielectric constant and u is a magnetic permeability. For different media, the e and u values are different.
  • the average electromagnetic wave propagation rate is calculated by the reflection, refraction or transmittance of different materials.
  • the mapping module 102 is connected to the road strength planning module 103 for defining the basic coordinates of the space, drawing the topographic map, recording and returning the current orientation and position, and identifying and splicing the feature markers.
  • the GPS module provided by the terminal
  • the positioning and setting of the central coordinate source point is realized.
  • the map drawing module records the current user's movement track in real time through the plane two-dimensional space.
  • the splicing of the moving path is drawn to form a two-dimensional topographic map in the final three-dimensional space.
  • the vertical space height difference is determined, and the distribution map of the three-dimensional space layer is realized.
  • the indoor spatial distance information is recorded back to the terminal in real time, and the original planar GPS map information is corrected and supplemented to form a three-dimensional map drawing for subsequent path planning and electromagnetic wave information collection.
  • the path planning module 103 is connected to the map drawing module 102, and is used for path planning of the omnidirectional scanning of the stereo space. According to the preliminary drawing result of the map, the stereo space is divided into blocks, and different types of space and materials are scanned by different scans. the way. Based on the overall map information of the original mapping module, the path planning module divides the same continuous surface into path planning, and divides different continuous surfaces into non-path collecting nodes. The device sets up the collecting branch and the walking route, and the user is in the path planning. The electromagnetic wave acquisition operation is completed one by one under the guidance of the module until the planning node completes the coverage.
  • the wireless chip module 104 is connected to each electromagnetic wave collecting module 105-107 for transmitting and receiving various electromagnetic wave signals, and at the same time, demodulating and analyzing the collected parameters, and real-time detecting and collecting the received wireless signal magnetic field.
  • the module consists of multiple wireless chips in the user terminal. It is mainly composed of 2.4G/5G WIFI chip, Bluetooth chip, RFID chip, FM and other wireless transceiver chips according to different working distance and performance. At the same time, 11AD 60G directional electromagnetic wave signal is added. In actual work, it may be one of the above, or a combination of two or more; when the model acquisition mode is turned on, the wireless chip module is turned on, and the non-signaling wireless transceiver work is performed through a preset command.
  • the frequency band, target power, and rate that can be sent and received can be adjusted and transmitted in real time according to the current scene requirements.
  • the wireless chip module continuously scans the surrounding scene, and the scanned electromagnetic wave signal is divided, filtered, amplified, demodulated, and converted into a digital signal that can be recognized by the baseband chip through the built-in receiving antenna and the RF receiving circuit.
  • the electromagnetic wave reflection collecting module 105 is connected to the acquisition control module 108 for collecting electromagnetic signals of different angles and azimuths to the reflection parameters of the three-dimensional space material.
  • the wireless chip module measures the distance and thickness of the model by transmitting and receiving the fixed frequency number. The thicker the wall of the building, the stronger the reflection of electromagnetic waves.
  • the current building material type can be determined by measuring the reflection coefficient of objects of different thicknesses.
  • the reflection coefficient is a negative value, and the phase of the reflected wave is opposite.
  • the greater the difference in dielectric constant between the two the stronger the reflected wave oscillation will be. If the reflected wave signal is regular and the signal is strong at a certain frequency, the amplitude is strong and the phase is opposite, and the thickness and distance of the building can be collected by electromagnetic wave reflection.
  • the electromagnetic wave refraction acquisition module 106 is connected to the acquisition control module 108 for collecting the refraction parameters of the electromagnetic waves of different angles and orientations onto the solid space material.
  • the electromagnetic wave refraction acquisition module 106 is connected to the acquisition control module 108 for collecting the refraction parameters of the electromagnetic waves of different angles and orientations onto the solid space material.
  • the current building type and the principle of electromagnetic wave incidence and refraction can be used to test the current building type and thickness. Since the refractive index of the electromagnetic wave of different objects is different, the current material property can be judged by measuring the refractive index value of the electromagnetic wave hitting the object.
  • the fixed-frequency rated power electromagnetic wave signal is transmitted to the obstacle at a certain angle through the wireless chip module, and the variable antenna direction terminal collector is placed on the other side of the obstacle, and the direction of the receiving antenna is adjusted at the receiving antenna end.
  • the maximum signal strength value is received as the final angle value, and the refractive index of the current obstacle is calculated by converting the incident angle and the refraction angle, thereby determining the material property of the current material.
  • the electromagnetic wave penetrates the acquisition module 107 and is connected to the acquisition control module 108 for electromagnetic wave penetration of different angles and azimuths through the collection of penetration parameters in the stereo space; the module is responsible for collecting the electromagnetic wave penetration loss when the material in the three-dimensional space is penetrated. And the collected result is sent to the comparison judgment module for data analysis.
  • the reflection or refraction waveform of electromagnetic waves on a building is disordered, the amplitude of the waveform is irregular, and the phase of reflection or refraction is also irregular, the penetration characteristics of electromagnetic waves can only be used to achieve the collection of building space materials and models.
  • radio wave transmitter in the terminal emits the penetration characteristics of different letters to the building. Through the comparison test of the signal attenuation model, different building material areas, thicknesses, shapes and the like can be obtained.
  • the electromagnetic wave signal transmission and reception acquisition of the plurality of wireless chips on the antenna, and the reference power of the terminal antenna and the power difference after the penetration can realize the differential penetration detection of the sensitive human body. For example, at a frequency of 2.4 GHz, the electromagnetic wave penetrates the solid wall is 4DB, and the penetrating wood is 9DB.
  • the attenuation value of the fixed material by the unit thickness collected in advance such as The attenuation value of the brick structure is 0.35dB/cm, and the attenuation value of the concrete structure is 0.6dB/cm. If the attenuation value of the electromagnetic system of a single layer or multiple layers is known, the electromagnetic wave penetration attenuation model parameters are compared with each layer. The thickness and approximate distance of the barrier structure can be calculated.
  • a direct sampling test method may be adopted to test the attenuation value per unit thickness of the structural material of the site, and store it in a customized parameter model. Then, the total system loss measured by the test is used to accurately measure the thickness of the building material.
  • the number of exemplary tests needs to be adjusted according to the fluctuation range of the test value. If the fluctuation range of multiple test values is relatively small, Then the number of tests is small. If the test range of the test value is relatively large, it indicates that the test environment is more complicated, and the larger number of acquisitions is adaptively selected.
  • the acquisition control module 108 is connected by other modules for road force planning, address drawing, and electromagnetic wave acquisition and transmission control. At the same time, the received rescue signal is triggered to respond.
  • the module selects the scan mode of the current space according to the initial scan condition, and selects electromagnetic wave reflection acquisition, electromagnetic wave refraction acquisition or electromagnetic wave penetration acquisition according to the current stereo space material.
  • the selection of the three acquisition modes mainly depends on the characteristics of the current solid space boundary material. For example, some materials are light in color, smooth in surface and flat in contact surface, and have strong material reflection ability, which is suitable for electromagnetic wave reflection collection. If some materials are darker in color and the contact surfaces are irregular, they are suitable for electromagnetic wave refraction collection. If you want to test the specific contour or thickness of the material, it is suitable for electromagnetic wave penetration acquisition.
  • test accuracy and consistency is selected as the final acquisition mode. If the consistency of the average of multiple tests is higher, the more concentrated the normal distribution, the less error of the current acquisition mode.
  • model acquisition module the characteristics of the unit model are also used to show which acquisition mode is suitable for that material.
  • the three-dimensional space model building module 109 is connected with the model acquisition module, and is used for comparative analysis of the collected system magnetic field parameters and the original single material model parameters, and forms an exemplary three-dimensional dimensional model position stereoscopic three-dimensional size parameter, and is established as a corresponding Three-dimensional space model.
  • the three-dimensional space model building module realizes the judgment and selection of the building material of the three-dimensional space model through the above-mentioned various electromagnetic wave collecting mechanisms of the building material, and then fills it into the original three-dimensional space frame, so that the current The three-dimensional space model becomes concrete and real.
  • the smooth transition of the boundary processing is realized by user selection or automatic filling.
  • the stereo space module building module can also perform physical image fitting on the scanned boundary area by the user taking a solid photograph of a certain area to correct the error collection model or the fuzzy collection area.
  • the post-processing module 110 is connected to the stereo space model building module 109 for correcting and processing the original original stereo space model.
  • the user can perform model stitching and rendering according to their own needs, adding specific props and decorations to form a real VR material 3D. Maps and venues.
  • the subsequent processing module can set the wind of the collected stereo space model. Grid, color, background, can also achieve continuous or non-continuous splicing of multiple stereo space models, and even add buildings in a specific model library to a collected stereo space, and scale and move specific model libraries , decoration, etc. After the above process is completed, the user can get a unique stereo space model for the creation and application of VR material.
  • FIG. 2 is a schematic flowchart 1 of a method for acquiring a stereoscopic space model based on electromagnetic waves according to an embodiment of the present disclosure.
  • the method for acquiring a stereoscopic space model based on electromagnetic waves includes:
  • Step 201 Acquire electromagnetic wave model data of various substances in the space; and establish an electromagnetic wave model library according to the electromagnetic wave model data.
  • the method when the electromagnetic wave model library is established, the method further includes: storing transmission model data of various substances, where the transmission model data includes at least one of the following: a reflection coefficient, a refractive index, and a penetration coefficient; Alternatively, collecting material model parameters, the material model parameters including at least one of: conductivity, dielectric constant, magnetic permeability, thickness; and calculating corresponding transmission model data according to the collected material model parameters and storing.
  • Step 202 Draw a topographic map of the three-dimensional space; according to the drawing result of the topographic map, the three-dimensional space is divided into different types of regional spaces, wherein different types of regional spaces adopt different collection modes.
  • the topographic map of the three-dimensional space includes: setting a basic coordinate of the three-dimensional space; detecting, according to the basic coordinate, a movement trajectory of the user along a spatial horizontal plane, and splicing and drawing the movement trajectory to form a three-dimensional space a two-dimensional topographic map; detecting a movement trajectory of the user along the vertical direction of the space, determining a vertical space height difference; drawing a topographic map of the three-dimensional space on the basis of the two-dimensional topographic map, the topographic map of the three-dimensional space A two-dimensional topographic map of the layer is formed.
  • the dividing the stereo space into different types of regional spaces according to the rendering result of the topographic map comprises: dividing the two-dimensional topographic maps of different layers into different ones according to the rendering result of the topographic map.
  • the collection node path planning for each collection node, setting the collection branch and collecting route.
  • Step 203 Collect at least one of the following electromagnetic parameters for each regional space of the three-dimensional space: electromagnetic wave reflection parameter, electromagnetic wave refraction parameter, and electromagnetic wave penetration parameter.
  • the collected electromagnetic wave reflection parameter characterizes the thickness of the object
  • the collected electromagnetic wave refraction parameter characterizes the thickness and material of the object
  • the collected electromagnetic wave penetration parameter characterizes the thickness and material of the object.
  • the method further includes: performing an acquisition mode selection on the current regional space according to the initial collection result.
  • the selecting the acquisition mode of the current regional space according to the initial collection result includes: determining a material of the object in the current regional space according to the initial collection result; and selecting at least the following acquisition mode according to the material One: electromagnetic wave reflection parameter acquisition mode, electromagnetic wave refraction parameter acquisition mode, electromagnetic wave penetration parameter acquisition mode.
  • the method further includes: performing multiple acquisitions for each acquisition mode, and calculating an average variance of the collected electromagnetic parameters; using the average variance as a small acquisition mode as the final selected acquisition mode
  • Step 204 Comparing the collected electromagnetic parameters with the electromagnetic wave model data in the electromagnetic wave model library, according to The comparison results establish a three-dimensional space model.
  • the collected electromagnetic parameter is compared with the electromagnetic wave model data in the electromagnetic wave model library, and the three-dimensional space model is established according to the comparison result, including: the collected electromagnetic parameter and the electromagnetic wave model in the electromagnetic wave model library
  • the data is compared to obtain the material and size of the object corresponding to the electromagnetic parameter; according to the material and size of the object, a stereoscopic space model is established based on the topographic map of the three-dimensional space.
  • the method further includes: splicing two or more stereo space models; and rendering the spliced three-dimensional space model to form a virtual reality VR scene.
  • Embodiments of the present disclosure provide an intelligent, convenient, and fast apparatus and method for collecting a stereoscopic space model of a mobile terminal or a wearable device, based on electromagnetic waves of a user's own mobile terminal or a transmitting and receiving device for transmitting electromagnetic wave signals and a geomagnetic sensing device.
  • Reflected, refracted, and transmitted model values extracting model parameters of architectural and decorative materials in daily life, omnidirectional 360-degree real-time acquisition of scenes and spatial parameters of our lives and establishment of VR models, plus post-production and construction to form a real VR Material 3D maps and venues.
  • the whole device is simple and practical, with novel ideas and high utilization value.
  • FIG. 3 is a schematic flowchart 2 of a method for acquiring a three-dimensional space model based on electromagnetic waves according to an embodiment of the present disclosure.
  • the method for collecting a three-dimensional space model based on electromagnetic waves includes:
  • Step 301 The model acquisition module collects electromagnetic wave model data of various building materials, spaces, and living items in the space, and builds a model library.
  • Step 302 The map drawing module performs the definition of the spatial basic coordinates, and the drawing of the topographic map, performs the recording and returning of the current orientation and position, and identifies and stitches the feature markers.
  • Step 303 The path planning module performs path planning for the omnidirectional scanning of the three-dimensional space, and performs block processing on the three-dimensional space according to the preliminary drawing result of the map, and different types of space and materials adopt different scanning modeling modes.
  • Step 304 The wireless chip module performs transmission and reception of various electromagnetic wave signals, collects demodulation analysis processing of parameters, and performs real-time detection and acquisition of the received wireless signal magnetic field.
  • Step 305 When the magnetic field scanning detection module is started, start to change the frequency and rotate the wireless mode, and perform electromagnetic wave detection scanning to the surrounding range by the principle of near and far.
  • Step 306 The electromagnetic wave reflection collecting module irradiates the reflection parameters of the electromagnetic waves of different angles and azimuths onto the solid space material.
  • Step 307 The electromagnetic wave refraction acquisition module collects the reflection parameters of the electromagnetic waves of different angles and azimuths onto the solid space material.
  • Step 308 The electromagnetic wave penetrates the collection module to collect the reflection parameters of the electromagnetic waves of different angles and azimuths onto the solid space material.
  • Step 309 The wireless chip module demodulates the collected signal, and after the signal processing, interprets the current signal strength, distance, and orientation.
  • Step 310 The stereoscopic space model establishing module collects the system magnetic field parameters and the original single material model parameters. A comparative analysis is performed to form a stereoscopic three-dimensional size parameter of a specific three-dimensional space model, and is established as a corresponding three-dimensional space model.
  • Step 311 The post-processing module corrects and processes the post-original stereo space model, and the user can perform model splicing and rendering according to his own needs, add specific props and decorations, and form a real VR material 3D map and venue.
  • the apparatus includes: an acquisition unit 401, configured to collect electromagnetic wave model data of various substances in a space; An establishing unit 402, configured to establish an electromagnetic wave model library according to the electromagnetic wave model data; a drawing unit 403, configured to draw a topographic map of the three-dimensional space; and a planning unit 404, configured to: according to the drawing result of the topographic map, the three-dimensional space Dividing into different types of area spaces, wherein different types of area spaces adopt different acquisition modes; the collecting unit 401 is further configured to collect at least one of the following electromagnetic parameters for each area space of the three-dimensional space: electromagnetic waves The reflection parameter, the electromagnetic wave refraction parameter, and the electromagnetic wave penetration parameter; the second establishing unit 405 is configured to compare the collected electromagnetic parameter with the electromagnetic wave model data in the electromagnetic wave model library, and establish a three-dimensional space model according to the comparison result.
  • the device further includes: a processing unit 406, configured to splicing two or more stereo space models; and rendering the spliced three-dimensional space model to form a virtual reality VR scene.
  • a processing unit 406 configured to splicing two or more stereo space models; and rendering the spliced three-dimensional space model to form a virtual reality VR scene.
  • the device further includes: a storage unit 407, configured to store transmission model data of various substances, where the transmission model data includes at least one of: a reflection coefficient, a refractive index, and a penetration coefficient;
  • the collecting unit 401 is further configured to collect a material model parameter, where the material model parameter includes at least one of the following: conductivity, dielectric constant, magnetic permeability, thickness;
  • the storage unit 407 is further configured to The material model parameters are collected, and the corresponding transmission model data is calculated and stored.
  • the drawing unit 403 is exemplarily used for: setting basic coordinates of a stereoscopic space; detecting, under the basic coordinates, a movement trajectory of a user along a spatial horizontal plane, and splicing and drawing the movement trajectory to form a three-dimensional space a two-dimensional topographic map; detecting a movement trajectory of the user along the vertical direction of the space, determining a vertical space height difference; drawing a topographic map of the three-dimensional space on the basis of the two-dimensional topographic map, the topographic map of the three-dimensional space A two-dimensional topographic map of the layer is formed.
  • the planning unit 404 is configured to: divide a two-dimensional topographic map of different layers into different collection nodes according to a rendering result of the topographic map; perform path planning on each collection node, and set Collect branches and collect routes.
  • the second establishing unit 405 is used to compare the collected electromagnetic parameters with the electromagnetic wave model data in the electromagnetic wave model library to obtain the material and size of the object corresponding to the electromagnetic parameters. According to the material and size of the object, a stereo space model is established based on the topographic map of the three-dimensional space.
  • the collected electromagnetic wave reflection parameter characterizes the thickness of the object
  • the collected electromagnetic wave refraction parameter characterizes the thickness and material of the object
  • the collected electromagnetic wave penetration parameter characterizes the thickness and material of the object.
  • the device further includes: a control unit 408, configured to: according to the initial collection result, the current The area space is selected for the acquisition mode.
  • control unit 408 is exemplarily used for: determining a material of an object in a current area space according to the initial collection result; and selecting at least one of the following acquisition modes according to the material: electromagnetic wave reflection parameter collection Mode, electromagnetic wave refraction parameter acquisition mode, electromagnetic wave penetration parameter acquisition mode.
  • the control unit 408 is configured to perform multiple acquisitions for each acquisition mode, and calculate an average variance of the collected electromagnetic parameters; and use the average variance as a small acquisition mode as the final selected acquisition mode.
  • embodiments of the present disclosure can be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware aspects. Moreover, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • the electromagnetic wave-based three-dimensional space model acquisition method and device provided by the embodiments of the present disclosure divides the three-dimensional space into different types of regional spaces, wherein different types of regional spaces adopt different acquisition modes; the collected electromagnetic parameters and electromagnetic waves
  • the electromagnetic wave model data in the model library is compared, and a three-dimensional space model can be established based on the comparison result.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Computer Graphics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Processing Or Creating Images (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本公开公开了一种基于电磁波的立体空间模型采集方法及装置,所述方法包括:采集空间内各种物质的电磁波模型数据;根据所述电磁波模型数据,建立电磁波模型库;绘制立体空间的地形图;根据所述地形图的绘制结果,将立体空间划分成不同类型的区域空间,其中,不同类型的区域空间采用不同的采集方式;针对所述立体空间的各个区域空间,采集如下电磁参数的至少之一:电磁波反射参数、电磁波折射参数、电磁波穿透参数;将采集到的电磁参数与电磁波模型库中的电磁波模型数据进行对比,根据对比结果建立立体空间模型。

Description

一种基于电磁波的立体空间模型采集方法及装置 技术领域
本公开涉及立体空间模型的采集技术,尤其涉及一种基于电磁波的立体空间模型采集方法及装置。
背景技术
立体空间模型的采集对于虚拟现实(VR,Virtual Reality)技术具有重要意义。目前,立体空间模型的采集方案大致如下:
采集方案一:立体空间模型通过构图软件内的模型库进行拼接和搭建。这种方式往往脱离于真实场景。
采集方案二:通过卫星进行高空拍摄,将每一部分图像采集后进行后期制作拼接,最终得到立体空间模型。这种方式虽然可以很好的体现建筑物之间或外部的轮廓,但对建筑物内的空间构造及材质无法真实的体现。
采集方案三:通过前景摄像头,在室内空间进行360度全面拍摄和采集,再做后期的处理和制作,最终得到立体空间模型。这种方式可以真实的反应空间内的全面,但是会有明显的拼接痕迹,且拍摄任务量巨大,无法为用户个人制作并使用。
发明内容
为解决上述技术问题,本公开实施例提供了一种基于电磁波的立体空间模型采集方法及装置。
本公开实施例提供的基于电磁波的立体空间模型采集方法,包括:采集空间内各种物质的电磁波模型数据;根据所述电磁波模型数据,建立电磁波模型库;绘制立体空间的地形图;根据所述地形图的绘制结果,将立体空间划分成不同类型的区域空间,其中,不同类型的区域空间采用不同的采集方式;针对所述立体空间的各个区域空间,采集如下电磁参数的至少之一:电磁波反射参数、电磁波折射参数、电磁波穿透参数;将采集到的电磁参数与电磁波模型库中的电磁波模型数据进行对比,根据对比结果建立立体空间模型。
本公开实施例中,所述方法还包括:对两个以上立体空间模型进行拼接;对拼接后的立体空间模型进行渲染,形成虚拟现实VR场景。
本公开实施例中,建立电磁波模型库时,所述方法还包括:对各种物质的传输模型数据进行储存,所述传输模型数据包括以下至少之一:反射系数、折射系数、穿透系数;或者,采集材料模型参数,所述材料模型参数包括以下至少之一:导电率、介电常数、磁导率、厚度;根据所述采集材料模型参数,计算相应的传输模型数据并存储。
本公开实施例中,所述绘制立体空间的地形图,包括:设定立体空间的基本坐标;在所述基本坐标下,检测用户沿空间水平面的移动轨迹,拼接绘制所述移动轨迹形成立体空 间内的二维地形图;检测用户沿空间竖直方向的移动轨迹,确定纵向空间高度差;在所述二维地形图的基础上绘制立体空间的地形图,所述立体空间的地形图由分层的二维地形图形成。
本公开实施例中,所述根据所述地形图的绘制结果,将立体空间划分成不同类型的区域空间,包括:根据所述地形图的绘制结果,将不同层的二维地形图划分成不同的采集节点;对各个采集节点进行路径规划,设置采集分支和采集路线。
本公开实施例中,所述将采集到的电磁参数与电磁波模型库中的电磁波模型数据进行对比,根据对比结果建立立体空间模型,包括:将采集到的电磁参数与电磁波模型库中的电磁波模型数据进行对比,得到与所述电磁参数相应的物体的材质和尺寸;依据所述物体的材质和尺寸,基于立体空间的地形图建立立体空间模型。
本公开实施例中,采集的电磁波反射参数表征物体的厚度;采集的电磁波折射参数表征物体的厚度和材质;采集的电磁波穿透参数表征物体的厚度和材质。
本公开实施例中,所述方法还包括:根据初次采集结果,对当前区域空间进行采集模式选择。
本公开实施例中,所述根据初次采集结果,对当前区域空间进行采集模式选择,包括:根据初次采集结果,确定当前区域空间中的物体的材质;根据所述材质,选择如下采集模式的至少之一:电磁波反射参数采集模式、电磁波折射参数采集模式、电磁波穿透参数采集模式。
本公开实施例中,所述方法还包括:针对每种采集模式进行多次采集,并计算采集到的电磁参数的平均方差;将平均方差做小的采集模式作为最终选择的采集模式。
本公开实施例提供的基于电磁波的立体空间模型采集装置,包括:采集单元,用于采集空间内各种物质的电磁波模型数据;第一建立单元,用于根据所述电磁波模型数据,建立电磁波模型库;绘制单元,用于绘制立体空间的地形图;规划单元,用于根据所述地形图的绘制结果,将立体空间划分成不同类型的区域空间,其中,不同类型的区域空间采用不同的采集方式;所述采集单元,还用于针对所述立体空间的各个区域空间,采集如下电磁参数的至少之一:电磁波反射参数、电磁波折射参数、电磁波穿透参数;第二建立单元,用于将采集到的电磁参数与电磁波模型库中的电磁波模型数据进行对比,根据对比结果建立立体空间模型。
本公开实施例中,所述装置还包括:处理单元,用于对两个以上立体空间模型进行拼接;对拼接后的立体空间模型进行渲染,形成虚拟现实(VR)场景。
本公开实施例中,所述装置还包括:存储单元,用于对各种物质的传输模型数据进行储存,所述传输模型数据包括以下至少之一:反射系数、折射系数、穿透系数;所述采集单元,还用于采集材料模型参数,所述材料模型参数包括以下至少之一:导电率、介电常数、磁导率、厚度;所述存储单元,还用于根据所述采集材料模型参数,计算相应的传输模型数据并存储。
本公开实施例中,所述绘制单元,示例性用于:设定立体空间的基本坐标;在所述基本坐标下,检测用户沿空间水平面的移动轨迹,拼接绘制所述移动轨迹形成立体空间内的二维地形图;检测用户沿空间竖直方向的移动轨迹,确定纵向空间高度差;在所述二维地形图的基础上绘制立体空间的地形图,所述立体空间的地形图由分层的二维地形图形成。
本公开实施例中,所述规划单元,示例性用于:根据所述地形图的绘制结果,将不同层的二维地形图划分成不同的采集节点;对各个采集节点进行路径规划,设置采集分支和采集路线。
本公开实施例中,所述第二建立单元,示例性用于:将采集到的电磁参数与电磁波模型库中的电磁波模型数据进行对比,得到与所述电磁参数相应的物体的材质和尺寸;依据所述物体的材质和尺寸,基于立体空间的地形图建立立体空间模型。
本公开实施例中,采集的电磁波反射参数表征物体的厚度;采集的电磁波折射参数表征物体的厚度和材质;采集的电磁波穿透参数表征物体的厚度和材质。
本公开实施例中,所述装置还包括:控制单元,用于根据初次采集结果,对当前区域空间进行采集模式选择。
本公开实施例中,所述控制单元,示例性用于:根据初次采集结果,确定当前区域空间中的物体的材质;根据所述材质,选择如下采集模式的至少之一:电磁波反射参数采集模式、电磁波折射参数采集模式、电磁波穿透参数采集模式。
本公开实施例中,所述装置还包括:控制单元,用于针对每种采集模式进行多次采集,并计算采集到的电磁参数的平均方差;将平均方差做小的采集模式作为最终选择的采集模式。
本公开实施例的技术方案,采集空间内各种物质的电磁波模型数据;根据所述电磁波模型数据,建立电磁波模型库;绘制立体空间的地形图;根据所述地形图的绘制结果,将立体空间划分成不同类型的区域空间,其中,不同类型的区域空间采用不同的采集方式;针对所述立体空间的各个区域空间,采集如下电磁参数的至少之一:电磁波反射参数、电磁波折射参数、电磁波穿透参数;将采集到的电磁参数与电磁波模型库中的电磁波模型数据进行对比,根据对比结果建立立体空间模型。本公开实施例的技术方案提供一种智能、便捷、快速的移动终端或穿戴设备的立体空间模型采集装置和方法,通过用户自身的移动终端或穿戴设备的电磁波信号的收发装置和地磁感应装置,基于电磁波反射,折射,穿透的模型值,提取日常生活中建筑及装饰材料模型参数,全向360度实时采集我们生活的场景和空间参数并建立VR模型,再加上后期渲染和构建,形成真实的VR素材3D地图和场地。
本公开实施例中,提供一种存储介质,设置为存储程序代码,所述程序代码用于执行如上文所述的基于电磁波的立体空间模型采集方法。
附图说明
附图以示例而非限制的方式大体示出了本文中所讨论的各个实施例。
图1为本公开实施例的基于电磁波的立体空间模型采集装置的架构图;
图2为本公开实施例的基于电磁波的立体空间模型采集方法的流程示意图一;
图3为本公开实施例的基于电磁波的立体空间模型采集方法的流程示意图二;
图4为本公开实施例的基于电磁波的立体空间模型采集装置的结构组成示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。
游戏场景或VR场景中,每个场景一般都是基于虚拟模型进行构造,示例性而言,通过特定软件搭建虚拟模型并渲染,整个制作过程时间周期长,任务量大,制作成本高。在实景模型采集中,一般通过全景摄像头拍摄并拼接,由于3D摄像的成本也很高,而且存在一定程度的失真,所以构建的虚拟模型与实景模型不完全一致。在购物广场或复杂的室内空间,平面图往往会不那么直观的导引顾客或用户行走,此时由于建筑物的遮挡,全球定位系统(GPS,Global Positioning System)信号会变得异常微弱,而起不到室内导航的作用。如果是多层建筑,处在同一个垂直平面的两个人在传统地图上显示的往往是同一个点,如果有立体空间模型,则会容易很多。可见,在VR场景中如果用户想真切的体验到对方的生活场景,或者在我们真实的生活空间中渲染相关的游戏环境,采集并制作立体空间的真实模型是亟需解决的技术问题。基于此,本公开实施例提供了一种基于电磁波的立体空间模型采集方法及装置。
由于电磁波在传输过程中会接触到不同的材质,如自由空间、基础建设材料(如墙壁、玻璃、门窗、石柱、木料、钢筋混泥土、隔层)等,会产生不同折射或反射信号;如果是隔层空间,还会产生不同程度的信号衰减,通过终端内置的不同频段和距离的无线电波发射电路,根据测试到的各个方向的电磁波折射、反射、穿透特点,通过信号传输及衰减模型的对比测试,再加上采集到的建筑物本身的地磁方位参数,即可在短时间内绘制出用户当前空间的立体空间模型。
图1为本公开实施例的基于电磁波的立体空间模型采集装置的架构图,所述装置可以设置在移动终端,如手机中。也可设置在穿戴设备,如头盔中。如图1所示,所述装置包括:模型采集模块101、路径规划模块102、地图绘制模块103、无线芯片模块104、电磁波反射采集模块105、电磁波折射采集模块106、电磁波穿透采集模块107、采集控制模块108、立体空间模型建立模块109、后期处理模块110。
下面将结合图1对上述装置中各个模块之间的连接关系和功能做示例性阐述。
模型采集模块101,通过采集控制模块108与各电磁波采集模块105-107相连,用于空间内各种建筑材料、空间、生活物品等电磁波单位模型数据的采集,以及单位模型库的建立。
模型采集模块101,还用于进行建筑材料、自由空间等电磁波传输模型数据的储存,也用于现场采集材料模型参数并存储。如常见的自由立体空间模型、水体模型、砖体材料模型、混泥土材料模型、玉石材料模型、金属材料模型、实木材料模型、玻璃材料模型、门窗模型等,如果已知材料的导电率、介电常数、磁导率、厚度等,还可以自行计算出特定材料的电磁波反射系数、折射系数或穿透系数。
模型采集模块采集的电磁波参数不仅受到当前电磁波频率,大气和材料本身的反射,折射和穿透等因素的影响,还受到当时温度,气压,湿度等因素的影响。如真空从电磁波传播速率为C,而大气中电磁波传播速率着为C/N,其中N为空气的折射率,在实际测试中,首先采用平均空气折射率模型进行计算,然后再通过手机内置传感器测量出当前的环境温度、气压、湿度等值,再计算出当前的实时空气折射率,进而推算出发射电磁波在空间中的具体传播速率。示例性地,λ是电磁波波长,f是电磁波的频率,则电磁波的传播速率v=λf。真空中电磁波的波速为C,它等于波长λ和频率f的乘积C=λf,而非真空中,电磁波的波长不一样,受到介电常数和电导率的影响。此外,电磁波的传播速度还可以为(eu)^(-1/2),式中e为介电常数,u为磁导率。对不同的媒质,e和u值不同。
对于立体空间的边界物,如不同涂料的墙壁、水泥混凝土材质、砖木、玻璃窗、金属材质、石材等,则通过不同材质的反射,折射或穿透率来计算当前电磁波平均传播速率。
地图绘制模块102,与路劲规划模块103相连,用于空间基本坐标的定义,地形图的绘制,当前方位和位置的记录及回传,特征标志物的识别和拼接。根据终端自带的GPS模块实现中心坐标源点的定位和设定,用户通过向空间垂直或水平某一方向行走,地图绘制模块会实时记录当前用户的的移动轨迹,通过平面二维空间内的移动路径的拼接绘制,形成最终的立体空间内的二维地形图。再通过竖直方向的移动扫描,确定纵向空间高度差,实现立体空间层的分布地图采集。再采集过程中,室内空间距离信息实时回传记录到终端上,和原平面GPS地图信息做修正和补充,形成立体层面地图绘制,以便于后续路径规划及电磁波信息采集。
路径规划模块103,与地图绘制模块102相连,用于立体空间全方位扫描的路径规划,根据地图的初步绘制结果,对立体空间进行分块处理,不同类型的空间和材质采用不同的扫描建模方式。路径规划模块在原有的地图绘制模块的总体地图信息的基础上,将同一连续面做路径规划,将不同的连续面分成不路径的采集节点,装置设立好采集分支和行走路线,用户在路径规划模块的指引下逐一完成电磁波采集操作,直到规划节点全部完成覆盖。
无线芯片模块104,与各电磁波采集模块105-107相连,用于各种电磁波信号的发射和接收,同时将采集到参数的解调分析处理,接收到的无线信号磁场的实时检测和采集。该模块由用户终端内的多个无线芯片组成,根据作用距离和性能的不同,主要由2.4G/5G WIFI芯片、蓝牙芯片、RFID芯片、FM等无线收发芯片组成,同时增加11AD 60G定向电磁波信号,在实际工作中,可以是上述之一,也可以两个或者多个的组合;当模型采集模式打开后,无线芯片模块被打开,通过预先设定好的指令进行非信令无线收发工作,其 收发的频段,目标功率,速率都可以根据当前场景需求进行实时的调整和发射。无线芯片模块对周边场景进行持续扫描,通过装置内置的接收天线及射频接收电路,将扫描到的电磁波信号进行分频,滤波,放大进而解调出来,转换为基带芯片可以识别的数字信号。
电磁波反射采集模块105,与采集控制模块108相连,用于不同角度和方位的电磁波照射到立体空间材质上的反射参数的采集。对于适用于电磁波反射采集的平面,无线芯片模块通过定频号的发射及接收来实现模型距离和厚度的测量。由于建筑物墙体越厚,对电磁波的反射就会越强。通过不同厚度物体反射系数的测量,即可判别当前的建筑材料类型。
从电磁波特性可知,当电磁波从介电常数较小的媒介如空气,入射到介电常数较大的建筑物时,反射系数为负值,反射波相位会相反。同时,当两者之间的介电常数差异越大,反射波震荡会越强。如果反射波信号规整且在某一个频点上信号很强,振幅强弱有规律,反射波相位相反,且即可通过电磁波反射方式采集该建筑物的厚度和距离。
电磁波折射采集模块106,与采集控制模块108相连,用于不同角度和方位的电磁波照射到立体空间材质上的折射参数的采集。电磁波在传输过程中,如果遇到障碍物,就会产生折射现象,对于界面连续建筑物,或者可以绕到建筑物背后去的场景,通过电磁波入射和折射的原理来测试当前建筑物的种类和厚度。由于不同物体的电磁波折射率不一样,通过测量电磁波打到物体上的折射率值,即可判断当前物质材料属性。示例性地,通过无线芯片模块发射定频额定功率电磁波信号以某一角度入射到障碍物,在障碍物的另一边放置可变天线方向终端采集器,通过调节接收天线的方向,在接收天线端接收到最大信号强度值作为最终的角度值,通过入射角和折射角的换算,计算出当前障碍物的折射率,进而判断出当前物质的材料属性。
电磁波穿透采集模块107,与采集控制模块108相连,用于不同角度和方位的电磁波穿透立体空间上穿透参数的采集;该模块负责穿透立体空间内材料时的电磁波穿透损耗的采集,并将采集到的结果发送给对比判断模块进行数据分析。
如果电磁波在某一建筑物上的反射或折射波形杂乱,波形振幅强弱无规律,反射或折射相位也没有规律,则只能采用电磁波的穿透特性来实现建筑物空间材料和模型的采集。
由于电磁波在传输过程中,穿透人体后会产生信号衰减,而穿透其他材质空气,水体或基础建设材料石材,砖墙,木材,钢材,混泥土等,也会产生不同的信号衰减,通过终端内的无线电波发射器发射不同信到建筑物的穿透特点,通过信号衰减模型的的对比测试,可以得出不同的建筑材质面积和厚度,形状等。
由于不同无线信号的频率的穿透损耗不一样,从5DB到30DB不等,频率越高,电磁波绕射能力越弱,直线测试能力越高,穿透损耗越高,通过救援用户终端或穿戴设备上的多组无线芯片的电磁波信号发射和接收采集,以及终端天线接收参考功率及穿透后的功率差值,可以实现敏感的人体物体的区分穿透探测。如在2.4GHZ频率下,电磁波穿透实体墙是4DB,穿透木材是9DB。同时,电磁波在传输过程中,其传播路径会经过自由空间及各种介质,其信号会在这些介质之间反射和折射,而各层介质由于自身介电常数,电 导率,入射角度的不同,其功率损耗和衰减因子是不一样的,建筑材料比较单一,或者建筑结构层堆叠图已知的情况下,通过预先采集的单位厚度的固定材料的衰减值,如砖体结构衰减值为0.35dB/cm,混泥土结构衰减值为0.6dB/cm,如果单层或多层简单结构的电磁波系统衰减值已知,通过对照各层的电磁波穿透衰减模型参数,即可计算出阻隔结构的厚度和大致距离。
在实际应用中,如果现场的结构材料较为复杂,和模型参数值不匹配,也可以采取直接取样的测试方法,测试现场结构材料的单位厚度的衰减值,将其存储在自定义的参数模型中,然后通过测试到的总的系统损耗,来准确被测试建筑材质的厚度值。
为了减少测试误差,电磁波发射和接收需要往返测试多次,即需要采集多次穿透损耗的均值,示例性测试次数需要根据测试值的波动范围来调整,如果多次测试值波动范围比较小,则测试次数较少即可。如果多次测试值波动范围比较大,说明测试环境比较复杂,则会自适应选择较大的采集次数。
采集控制模块108,用其他各模块相连,用于路劲规划,地址绘制,电磁波采集收发控制。同时对接收到的救援信号进触发回应。该模块会根据初次扫描情况对当前空间进行扫描模式选择,根据当前立体空间材质选择电磁波反射采集,电磁波折射采集或电磁波穿透采集等。
三种采集模式的选择,主要依赖于当前立体空间边界材质的特性,如有些材质颜色较浅,表面光滑和接触面平展,材料反射能力很强,就适应于电磁波反射采集方式。如果有些材质颜色较深,接触面不规则,则适用于电磁波折射采集方式。如果要测试材料的具体轮廓或厚度,则适用于电磁波穿透采集方式。
同时,在测试模式的选择下,还有不同采集方式采集精度的比较,选择测试精度和一致性较高的方式作为最终的采集方式。如果多次测试取平均值的一致性较高,正态分布越集中,则表明当前采集方式的误差最小。在模型采集模块中,也会根据单位模型的特性来显示出那种材质适合哪种采集模式。
立体空间模型建立模块109,与模型采集模块相连,用于采集到的系统磁场参数和原单一材质模型参数的做对比分析,形成示例性的立体空间模型位置立体三维尺寸参数,并建立为对应的立体空间模型。立体空间模型建立模块在平面地图绘制的基础上,通过建筑材质的上述多种电磁波采集机制,实现立体空间模型的建筑材质的判断和选择,再将其填充到原始立体空间框架中去,使得当前的立体空间模型变得具体和真实,同时,对于不同建筑材料的交叉处,通过用户选择或自动填充方式实现边界处理的平滑过渡。立体空间模块建立模块还可以通过用户对某一区域拍摄的实体照片,对扫描的边界区域进行实物图像拟合,以纠正错误采集模型或模糊采集区域。
后期处理模块110,与立体空间模型建立模块109相连,用于后期原始立体空间模型进行修正和处理,用户可以根据自身需求进行模型拼接和渲染,添加特定的道具和装饰,形成真实的VR素材3D地图和场地。后续处理模块可以设置采集到的立体空间模型的风 格,颜色,背景,还可以实现多个立体空间模型的连续或非连续拼接,甚至可以将特定模型库中的建筑添加到某一个采集到的立体空间中,并对特定模型库进行缩放,移动,装饰等。上述过程处理完成后,用户即可得到一个独特的立体空间模型,用于VR素材的创建和应用。
图2为本公开实施例的基于电磁波的立体空间模型采集方法的流程示意图一,如图2所示,所述基于电磁波的立体空间模型采集方法包括:
步骤201:采集空间内各种物质的电磁波模型数据;根据所述电磁波模型数据,建立电磁波模型库。
本公开实施例中,建立电磁波模型库时,所述方法还包括:对各种物质的传输模型数据进行储存,所述传输模型数据包括以下至少之一:反射系数、折射系数、穿透系数;或者,采集材料模型参数,所述材料模型参数包括以下至少之一:导电率、介电常数、磁导率、厚度;根据所述采集材料模型参数,计算相应的传输模型数据并存储。
步骤202:绘制立体空间的地形图;根据所述地形图的绘制结果,将立体空间划分成不同类型的区域空间,其中,不同类型的区域空间采用不同的采集方式。
本公开实施例中,所述绘制立体空间的地形图,包括:设定立体空间的基本坐标;在所述基本坐标下,检测用户沿空间水平面的移动轨迹,拼接绘制所述移动轨迹形成立体空间内的二维地形图;检测用户沿空间竖直方向的移动轨迹,确定纵向空间高度差;在所述二维地形图的基础上绘制立体空间的地形图,所述立体空间的地形图由分层的二维地形图形成。
本公开实施例中,所述根据所述地形图的绘制结果,将立体空间划分成不同类型的区域空间,包括:根据所述地形图的绘制结果,将不同层的二维地形图划分成不同的采集节点;对各个采集节点进行路径规划,设置采集分支和采集路线。
步骤203:针对所述立体空间的各个区域空间,采集如下电磁参数的至少之一:电磁波反射参数、电磁波折射参数、电磁波穿透参数。
本公开实施例中,采集的电磁波反射参数表征物体的厚度;采集的电磁波折射参数表征物体的厚度和材质;采集的电磁波穿透参数表征物体的厚度和材质。
本公开实施例中,所述方法还包括:根据初次采集结果,对当前区域空间进行采集模式选择。
本公开实施例中,所述根据初次采集结果,对当前区域空间进行采集模式选择,包括:根据初次采集结果,确定当前区域空间中的物体的材质;根据所述材质,选择如下采集模式的至少之一:电磁波反射参数采集模式、电磁波折射参数采集模式、电磁波穿透参数采集模式。
本公开实施例中,所述方法还包括:针对每种采集模式进行多次采集,并计算采集到的电磁参数的平均方差;将平均方差做小的采集模式作为最终选择的采集模式
步骤204:将采集到的电磁参数与电磁波模型库中的电磁波模型数据进行对比,根据 对比结果建立立体空间模型。
本公开实施例中,所述将采集到的电磁参数与电磁波模型库中的电磁波模型数据进行对比,根据对比结果建立立体空间模型,包括:将采集到的电磁参数与电磁波模型库中的电磁波模型数据进行对比,得到与所述电磁参数相应的物体的材质和尺寸;依据所述物体的材质和尺寸,基于立体空间的地形图建立立体空间模型。
本公开实施例中,所述方法还包括:对两个以上立体空间模型进行拼接;对拼接后的立体空间模型进行渲染,形成虚拟现实VR场景。
本领域技术人员应当理解,本实施例中的基于电磁波的立体空间模型采集方法可参照图1中的基于电磁波的立体空间模型采集装置的示例性细节进行理解。
本公开实施例提供一种智能、便捷、快速的移动终端或穿戴设备的立体空间模型的采集装置和方法,通过用户自身的移动终端或穿戴设备的电磁波信号的收发装置和地磁感应装置,基于电磁波反射,折射,传导的模型值,提取日常生活中建筑及装饰材料模型参数,全向360度实时采集我们生活的场景和空间参数并建立VR模型,再加上后期渲染和构建,形成真实的VR素材3D地图和场地。整个装置简单实用,创意新颖,可利用价值高。
图3为本公开实施例的基于电磁波的立体空间模型采集方法的流程示意图二,如图3所示,所述基于电磁波的立体空间模型采集方法包括:
步骤301:模型采集模块进行空间内各种建筑材料、空间、生活物品等电磁波模型数据的采集,并建立模型库。
步骤302:地图绘制模块进行空间基本坐标的定义,以及地形图的绘制,执行当前方位和位置的记录及回传,特征标志物的识别和拼接。
步骤303:路径规划模块进行立体空间全方位扫描的路径规划,根据地图的初步绘制结果,对立体空间进行分块处理,不同类型的空间和材质采用不同的扫描建模方式。
步骤304:无线芯片模块进行各种电磁波信号的发射和接收,采集到参数的解调分析处理,接收到的无线信号磁场的实时检测和采集。
步骤305:当磁场扫描检测模块启动时,开始改变频率和轮换无线模式,通过先近后远的原则向四周范围进行电磁波探测扫描。
步骤306:电磁波反射采集模块对不同角度和方位的电磁波照射到立体空间材质上的反射参数的采集。
步骤307:电磁波折射采集模块对不同角度和方位的电磁波照射到立体空间材质上的反射参数的采集。
步骤308:电磁波穿透采集模块对不同角度和方位的电磁波照射到立体空间材质上的反射参数的采集。
步骤309:无线芯片模块对采集到的信号进行解调,信号处理后,解读出当前的信号强度,距离,方位。
步骤310:立体空间模型建立模块对采集到的系统磁场参数和原单一材质模型参数的 做对比分析,形成具体的立体空间模型位置立体三维尺寸参数,并建立为对应的立体空间模型。
步骤311:后期处理模块对后期原始立体空间模型进行修正和处理,用户可以根据自身需求进行模型拼接和渲染,添加特定的道具和装饰,形成真实的VR素材3D地图和场地。
图4为本公开实施例的基于电磁波的立体空间模型采集装置的结构组成示意图,如图4所示,所述装置包括:采集单元401,用于采集空间内各种物质的电磁波模型数据;第一建立单元402,用于根据所述电磁波模型数据,建立电磁波模型库;绘制单元403,用于绘制立体空间的地形图;规划单元404,用于根据所述地形图的绘制结果,将立体空间划分成不同类型的区域空间,其中,不同类型的区域空间采用不同的采集方式;所述采集单元401,还用于针对所述立体空间的各个区域空间,采集如下电磁参数的至少之一:电磁波反射参数、电磁波折射参数、电磁波穿透参数;第二建立单元405,用于将采集到的电磁参数与电磁波模型库中的电磁波模型数据进行对比,根据对比结果建立立体空间模型。
本公开实施例中,所述装置还包括:处理单元406,用于对两个以上立体空间模型进行拼接;对拼接后的立体空间模型进行渲染,形成虚拟现实VR场景。
本公开实施例中,所述装置还包括:存储单元407,用于对各种物质的传输模型数据进行储存,所述传输模型数据包括以下至少之一:反射系数、折射系数、穿透系数;所述采集单元401,还用于采集材料模型参数,所述材料模型参数包括以下至少之一:导电率、介电常数、磁导率、厚度;所述存储单元407,还用于根据所述采集材料模型参数,计算相应的传输模型数据并存储。
本公开实施例中,所述绘制单元403,示例性用于:设定立体空间的基本坐标;在所述基本坐标下,检测用户沿空间水平面的移动轨迹,拼接绘制所述移动轨迹形成立体空间内的二维地形图;检测用户沿空间竖直方向的移动轨迹,确定纵向空间高度差;在所述二维地形图的基础上绘制立体空间的地形图,所述立体空间的地形图由分层的二维地形图形成。
本公开实施例中,所述规划单元404,示例性用于:根据所述地形图的绘制结果,将不同层的二维地形图划分成不同的采集节点;对各个采集节点进行路径规划,设置采集分支和采集路线。
本公开实施例中,所述第二建立单元405,示例性用于:将采集到的电磁参数与电磁波模型库中的电磁波模型数据进行对比,得到与所述电磁参数相应的物体的材质和尺寸;依据所述物体的材质和尺寸,基于立体空间的地形图建立立体空间模型。
本公开实施例中,采集的电磁波反射参数表征物体的厚度;采集的电磁波折射参数表征物体的厚度和材质;采集的电磁波穿透参数表征物体的厚度和材质。
本公开实施例中,所述装置还包括:控制单元408,用于根据初次采集结果,对当前 区域空间进行采集模式选择。
本公开实施例中,所述控制单元408,示例性用于:根据初次采集结果,确定当前区域空间中的物体的材质;根据所述材质,选择如下采集模式的至少之一:电磁波反射参数采集模式、电磁波折射参数采集模式、电磁波穿透参数采集模式。
控制单元408,用于针对每种采集模式进行多次采集,并计算采集到的电磁参数的平均方差;将平均方差做小的采集模式作为最终选择的采集模式。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本公开的较佳实施例而已,并非用于限定本公开的保护范围。
工业实用性
本公开实施例提供的基于电磁波的立体空间模型采集方法及装置,通过将立体空间划分成不同类型的区域空间,其中,不同类型的区域空间采用不同的采集方式;将采集到的电磁参数与电磁波模型库中的电磁波模型数据进行对比,能够根据对比结果建立立体空间模型。

Claims (15)

  1. 一种基于电磁波的立体空间模型采集方法,所述方法包括:
    采集空间内各种物质的电磁波模型数据;根据所述电磁波模型数据,建立电磁波模型库;
    绘制立体空间的地形图;根据所述地形图的绘制结果,将立体空间划分成不同类型的区域空间,其中,不同类型的区域空间采用不同的采集方式;
    针对所述立体空间的各个区域空间,采集如下电磁参数的至少之一:电磁波反射参数、电磁波折射参数、电磁波穿透参数;
    将采集到的电磁参数与电磁波模型库中的电磁波模型数据进行对比,根据对比结果建立立体空间模型。
  2. 根据权利要求1所述的基于电磁波的立体空间模型采集方法,其中,所述方法还包括:
    对两个以上立体空间模型进行拼接;
    对拼接后的立体空间模型进行渲染,形成虚拟现实VR场景。
  3. 根据权利要求1所述的基于电磁波的立体空间模型采集方法,其中,建立电磁波模型库时,所述方法还包括:
    对各种物质的传输模型数据进行储存,所述传输模型数据包括以下至少之一:反射系数、折射系数、穿透系数;或者,
    采集材料模型参数,所述材料模型参数包括以下至少之一:导电率、介电常数、磁导率、厚度;根据所述采集材料模型参数,计算相应的传输模型数据并存储。
  4. 根据权利要求1所述的基于电磁波的立体空间模型采集方法,其中,所述绘制立体空间的地形图,包括:
    设定立体空间的基本坐标;
    在所述基本坐标下,检测用户沿空间水平面的移动轨迹,拼接绘制所述移动轨迹形成立体空间内的二维地形图;
    检测用户沿空间竖直方向的移动轨迹,确定纵向空间高度差;在所述二维地形图的基础上绘制立体空间的地形图,所述立体空间的地形图由分层的二维地形图形成;
    其中,所述根据所述地形图的绘制结果,将立体空间划分成不同类型的区域空间,包括:
    根据所述地形图的绘制结果,将不同层的二维地形图划分成不同的采集节点;
    对各个采集节点进行路径规划,设置采集分支和采集路线。
  5. 根据权利要求1所述的基于电磁波的立体空间模型采集方法,其中,所述将采集到的电磁参数与电磁波模型库中的电磁波模型数据进行对比,根据对比结果建立立体空间模型,包括:
    将采集到的电磁参数与电磁波模型库中的电磁波模型数据进行对比,得到与所述电磁 参数相应的物体的材质和尺寸;
    依据所述物体的材质和尺寸,基于立体空间的地形图建立立体空间模型。
  6. 根据权利要求1所述的基于电磁波的立体空间模型采集方法,其中,采集的电磁波反射参数表征物体的厚度;采集的电磁波折射参数表征物体的厚度和材质;采集的电磁波穿透参数表征物体的厚度和材质;
    其中,还包括:针对每种采集模式进行多次采集,并计算采集到的电磁参数的平均方差;
    将平均方差做小的采集模式作为最终选择的采集模式。
  7. 根据权利要求6所述的基于电磁波的立体空间模型采集方法,其中,所述方法还包括:
    根据初次采集结果,对当前区域空间进行采集模式选择;
    其中,所述根据初次采集结果,对当前区域空间进行采集模式选择,包括:
    根据初次采集结果,确定当前区域空间中的物体的材质;
    根据所述材质,选择如下采集模式的至少之一:电磁波反射参数采集模式、电磁波折射参数采集模式、电磁波穿透参数采集模式。
  8. 一种基于电磁波的立体空间模型采集装置,所述装置包括:
    采集单元,用于采集空间内各种物质的电磁波模型数据;
    第一建立单元,用于根据所述电磁波模型数据,建立电磁波模型库;
    绘制单元,用于绘制立体空间的地形图;
    规划单元,用于根据所述地形图的绘制结果,将立体空间划分成不同类型的区域空间,其中,不同类型的区域空间采用不同的采集方式;
    所述采集单元,还用于针对所述立体空间的各个区域空间,采集如下电磁参数的至少之一:电磁波反射参数、电磁波折射参数、电磁波穿透参数;
    第二建立单元,用于将采集到的电磁参数与电磁波模型库中的电磁波模型数据进行对比,根据对比结果建立立体空间模型。
  9. 根据权利要求8所述的基于电磁波的立体空间模型采集装置,其中,所述装置还包括:
    处理单元,用于对两个以上立体空间模型进行拼接;对拼接后的立体空间模型进行渲染,形成虚拟现实VR场景。
  10. 根据权利要求8所述的基于电磁波的立体空间模型采集装置,其中,所述装置还包括:
    存储单元,用于对各种物质的传输模型数据进行储存,所述传输模型数据包括以下至少之一:反射系数、折射系数、穿透系数;
    所述采集单元,还用于采集材料模型参数,所述材料模型参数包括以下至少之一:导电率、介电常数、磁导率、厚度;
    所述存储单元,还用于根据所述采集材料模型参数,计算相应的传输模型数据并存储。
  11. 根据权利要求8所述的基于电磁波的立体空间模型采集装置,其中,所述绘制单元,设置为:设定立体空间的基本坐标;在所述基本坐标下,检测用户沿空间水平面的移动轨迹,拼接绘制所述移动轨迹形成立体空间内的二维地形图;检测用户沿空间竖直方向的移动轨迹,确定纵向空间高度差;在所述二维地形图的基础上绘制立体空间的地形图,所述立体空间的地形图由分层的二维地形图形成。
  12. 根据权利要求11所述的基于电磁波的立体空间模型采集装置,其中,所述规划单元,设置为:根据所述地形图的绘制结果,将不同层的二维地形图划分成不同的采集节点;对各个采集节点进行路径规划,设置采集分支和采集路线。
  13. 根据权利要求8所述的基于电磁波的立体空间模型采集装置,其中,所述第二建立单元,设置为:将采集到的电磁参数与电磁波模型库中的电磁波模型数据进行对比,得到与所述电磁参数相应的物体的材质和尺寸;依据所述物体的材质和尺寸,基于立体空间的地形图建立立体空间模型。
  14. 根据权利要求8所述的基于电磁波的立体空间模型采集装置,其中,采集的电磁波反射参数表征物体的厚度;采集的电磁波折射参数表征物体的厚度和材质;采集的电磁波穿透参数表征物体的厚度和材质;其中,所述装置还包括:
    控制单元,设置为根据初次采集结果,对当前区域空间进行采集模式选择;
    其中,所述控制单元,设置为:根据初次采集结果,确定当前区域空间中的物体的材质;根据所述材质,选择如下采集模式的至少之一:电磁波反射参数采集模式、电磁波折射参数采集模式、电磁波穿透参数采集模式;
    其中,所述装置还包括:
    控制单元,设置为针对每种采集模式进行多次采集,并计算采集到的电磁参数的平均方差;将平均方差做小的采集模式作为最终选择的采集模式。
  15. 一种存储介质,设置为存储程序代码,所述程序代码用于执行权利要求1至7中任一项所述的方法。
PCT/CN2017/099835 2017-02-28 2017-08-31 一种基于电磁波的立体空间模型采集方法及装置 WO2018157571A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17898873.9A EP3591622A1 (en) 2017-02-28 2017-08-31 Three-dimensional space mode collection method and apparatus based on electromagnetic waves

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710111948.8 2017-02-28
CN201710111948.8A CN108510593B (zh) 2017-02-28 2017-02-28 一种基于电磁波的立体空间模型采集方法及装置

Publications (1)

Publication Number Publication Date
WO2018157571A1 true WO2018157571A1 (zh) 2018-09-07

Family

ID=63369819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099835 WO2018157571A1 (zh) 2017-02-28 2017-08-31 一种基于电磁波的立体空间模型采集方法及装置

Country Status (3)

Country Link
EP (1) EP3591622A1 (zh)
CN (1) CN108510593B (zh)
WO (1) WO2018157571A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10708718B1 (en) 2019-02-28 2020-07-07 At&T Intellectual Property I, L.P. Space characterization using electromagnetic fields
CN113138660A (zh) * 2020-01-17 2021-07-20 北京小米移动软件有限公司 信息的获取方法、装置、移动终端及存储介质
CN113325341A (zh) * 2021-06-02 2021-08-31 中车青岛四方车辆研究所有限公司 一种三维可视化磁场测量方法及系统
CN113989442A (zh) * 2020-12-30 2022-01-28 万翼科技有限公司 建筑信息模型构建方法及相关装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109799492B (zh) * 2019-02-27 2020-12-15 珠海格力电器股份有限公司 一种调整微波雷达设备的输出功率的方法及装置
CN110635856B (zh) * 2019-09-29 2022-04-19 北京电子工程总体研究所 一种计算机模拟在林区地形中进行无线电波通信的方法
CN112948744A (zh) * 2019-11-26 2021-06-11 上海交通大学 Rfid非侵入式感知模型构建方法、装置、设备和介质
CN112102459B (zh) * 2020-09-11 2022-08-16 哈尔滨工业大学 面向虚拟电磁波传输的复杂大气环境分块量化表示方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103927008A (zh) * 2014-04-15 2014-07-16 北京智谷睿拓技术服务有限公司 建模方法和系统
US20150092178A1 (en) * 2013-04-05 2015-04-02 Lockheed Martin Corporation Underwater platform with lidar and related methods
CN104504748A (zh) * 2014-12-03 2015-04-08 中国科学院遥感与数字地球研究所 一种无人机倾斜摄影红外三维成像系统及建模方法
CN106054156A (zh) * 2016-06-22 2016-10-26 中国人民解放军第四军医大学 一种基于uwb mimo生物雷达的静止人体目标识别与定位方法
CN106295076A (zh) * 2016-08-30 2017-01-04 上海无线电设备研究所 基于射线追踪的地面环境双尺度散射计算方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081771A (ja) * 2004-09-17 2006-03-30 Canon Inc 電磁波を用いた生物体に関する情報の推定方法および装置
CN103279987B (zh) * 2013-06-18 2016-05-18 厦门理工学院 基于Kinect的物体快速三维建模方法
CN103426195B (zh) * 2013-09-09 2016-01-27 天津常青藤文化传播有限公司 生成裸眼观看三维虚拟动画场景的方法
CN106403955A (zh) * 2016-10-13 2017-02-15 北京国承万通信息科技有限公司 定位方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150092178A1 (en) * 2013-04-05 2015-04-02 Lockheed Martin Corporation Underwater platform with lidar and related methods
CN103927008A (zh) * 2014-04-15 2014-07-16 北京智谷睿拓技术服务有限公司 建模方法和系统
CN104504748A (zh) * 2014-12-03 2015-04-08 中国科学院遥感与数字地球研究所 一种无人机倾斜摄影红外三维成像系统及建模方法
CN106054156A (zh) * 2016-06-22 2016-10-26 中国人民解放军第四军医大学 一种基于uwb mimo生物雷达的静止人体目标识别与定位方法
CN106295076A (zh) * 2016-08-30 2017-01-04 上海无线电设备研究所 基于射线追踪的地面环境双尺度散射计算方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10708718B1 (en) 2019-02-28 2020-07-07 At&T Intellectual Property I, L.P. Space characterization using electromagnetic fields
US11070950B2 (en) 2019-02-28 2021-07-20 At&T Intellectual Property I, L.P. Space characterization using electromagnetic fields
CN113138660A (zh) * 2020-01-17 2021-07-20 北京小米移动软件有限公司 信息的获取方法、装置、移动终端及存储介质
CN113989442A (zh) * 2020-12-30 2022-01-28 万翼科技有限公司 建筑信息模型构建方法及相关装置
CN113989442B (zh) * 2020-12-30 2022-12-30 万翼科技有限公司 建筑信息模型构建方法及相关装置
CN113325341A (zh) * 2021-06-02 2021-08-31 中车青岛四方车辆研究所有限公司 一种三维可视化磁场测量方法及系统

Also Published As

Publication number Publication date
CN108510593B (zh) 2021-07-13
CN108510593A (zh) 2018-09-07
EP3591622A1 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
WO2018157571A1 (zh) 一种基于电磁波的立体空间模型采集方法及装置
Li et al. Top 10 technologies for indoor positioning on construction sites
US11373492B2 (en) Intelligent evacuation system and method used in subway station fire
CN107515384A (zh) 基于uwb与多传感器的室内机器人的定位与环境建模方法
KR101569183B1 (ko) 실내 위치 결정 시스템 및 실내 위치 결정 방법
Khoshelham et al. Indoor mapping eyewear: geometric evaluation of spatial mapping capability of HoloLens
CN107270889B (zh) 一种基于地磁图谱的室内定位方法及定位系统
CN106997721A (zh) 绘制2d地图的方法、装置及存储装置
CN103561462A (zh) 一种完全基于智能移动终端平台的室内定位系统和方法
US20150317070A1 (en) Mobile handheld instruments and methods
CN103068043A (zh) 一种基于wifi和加速度传感器的室内精确定位方法
JP2003523505A (ja) 体積の二次元または三次元地図作製用の距離測定装置
CN112053324A (zh) 一种基于深度学习的复杂物料体积测量方法
CN107798720A (zh) 一种地图绘制方法及其装置、移动终端
CN118250736B (zh) 一种基于ARCore的室内信号强度检测方法及设备
CN105592418A (zh) 一种AR眼镜通过WIFI和G-sensor的室内精确定位方法
CN112422653A (zh) 基于位置服务的场景信息推送方法、系统、存储介质及设备
Shu et al. 3D point cloud-based indoor mobile robot in 6-DoF pose localization using a Wi-Fi-aided localization system
CN109061560A (zh) 一种定位方法及装置
CN105208649A (zh) 一种无线传感器网络移动节点的三维定位方法
CN108738066A (zh) 一种获取ap间物理拓扑的方法、设备及无线网络
Martino et al. Digitization approaches for urban cultural heritage: last generation MMS within Venice outdoor scenarios
CN104619017A (zh) 基于地图辅助的室内定位系统WiFi接入点部署方案
TWI507707B (zh) 定位電磁信號源
CN109991969A (zh) 一种基于深度传感器的机器人自动返航的控制方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017898873

Country of ref document: EP

Effective date: 20190930