WO2018155772A1 - 초음파 프로브 - Google Patents

초음파 프로브 Download PDF

Info

Publication number
WO2018155772A1
WO2018155772A1 PCT/KR2017/007782 KR2017007782W WO2018155772A1 WO 2018155772 A1 WO2018155772 A1 WO 2018155772A1 KR 2017007782 W KR2017007782 W KR 2017007782W WO 2018155772 A1 WO2018155772 A1 WO 2018155772A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
ultrasonic probe
connection
connecting portion
piezoelectric layer
Prior art date
Application number
PCT/KR2017/007782
Other languages
English (en)
French (fr)
Inventor
송인성
고종선
김용재
이원희
정진우
최지락
경윤성
김승현
김지수
박중현
박진환
이경민
Original Assignee
삼성메디슨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성메디슨 주식회사 filed Critical 삼성메디슨 주식회사
Priority to US16/488,365 priority Critical patent/US11555906B2/en
Priority to EP17898243.5A priority patent/EP3581110B1/en
Publication of WO2018155772A1 publication Critical patent/WO2018155772A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52046Techniques for image enhancement involving transmitter or receiver
    • G01S7/52047Techniques for image enhancement involving transmitter or receiver for elimination of side lobes or of grating lobes; for increasing resolving power
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4477Constructional features of the ultrasonic, sonic or infrasonic diagnostic device using several separate ultrasound transducers or probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe

Definitions

  • the present invention relates to an ultrasonic probe, and more particularly, to a technology in which the size of acoustic energy emitted from an ultrasonic probe is differently radiated according to a position by modifying a connection form of the ultrasonic probe.
  • the ultrasound diagnosis apparatus irradiates an ultrasound signal toward a specific part of the object, receives an ultrasound signal (ultrasound echo signal) reflected from the object, and uses the information on the tomogram to infiltrate an image of soft tissue tomography or blood flow.
  • Ultrasonic diagnostic devices have the advantages of being relatively compact and inexpensive compared to other imaging devices such as X-ray diagnostics, X-ray CT scanners, magnetic resonance images (MRIs), and nuclear medical diagnostics.
  • the ultrasound diagnosis apparatus may obtain an image of the inside of the object in real time, and there is no exposure generated by radiation, and thus, the ultrasound diagnosis apparatus may have high safety. Therefore, in general, ultrasound diagnostic apparatus is widely used in the diagnosis of heart, abdomen, urinary gynecology and human obstetrics.
  • the ultrasound diagnostic apparatus includes an ultrasound probe for transmitting an ultrasound signal to the object to obtain an ultrasound image inside the object and receiving a response signal reflected from the object.
  • the ultrasonic probe may effectively transmit ultrasonic waves generated in the piezoelectric layer by reducing the difference in acoustic impedance between the piezoelectric layer and the object while the piezoelectric material inside the ultrasonic probe vibrates and converts electrical signals and acoustic signals.
  • the acoustic device of a general ultrasonic probe has a rectangular structure in which various materials are stacked.
  • a single shape has a problem in that the manufacturing method is easy, but the characteristics of the ultrasonic probe are consistent. That is, since the magnitude of the acoustic energy radiated from the center of the ultrasonic probe is the same as the magnitude of the acoustic energy radiated from the side, the directivity of the ultrasonic signal is inferior, and there is a problem of increasing the lobe of the side.
  • the present invention has been made to solve the above-described problems, and to provide an ultrasonic probe with improved directivity of an ultrasonic signal by increasing the amount of acoustic energy radiated from the ultrasonic probe at the center and decreasing it at the side.
  • the ultrasonic probe according to an embodiment of the present invention includes a piezoelectric layer and a sound absorbing layer disposed below the piezoelectric layer and absorbing an acoustic signal, and a connecting portion disposed between the piezoelectric layer and the sound absorbing layer, wherein the connecting portion is connected to the connecting portion. Due to this, at least a part of the connection part may be modified to have different magnitudes of the plurality of acoustic signals emitted from the piezoelectric layer.
  • connection part may be symmetrical with respect to the center line of the connection part.
  • connection portion may be curved.
  • connection portion may have a shape recessed inwardly.
  • connection portion may have a convex shape symmetrically.
  • connection portion may have a concave shape symmetrically.
  • Widths of the connection part may have different widths from one side of the connection part to the center of the connection part.
  • connection part may increase linearly or curved from one side of the connection part to the center of the connection part.
  • connection part may be linearly reduced from one side of the connection part to the center of the connection part or may be reduced in a curved shape.
  • connection portion may be modified such that the amplitude of the acoustic signal emitted by the piezoelectric layer increases linearly or curvedly from one side of the connection portion to the center of the connection portion.
  • connection portion may be modified such that the magnitude of the acoustic signal emitted by the piezoelectric layer decreases linearly or curves from one side of the connection portion to the center of the connection portion.
  • the connecting portion may have the form of a circle, ellipse or rhombus.
  • connection part may include at least one flexible printed circuit board (PCB).
  • PCB flexible printed circuit board
  • connection part may include a conductive material.
  • connection part may be electrically connected to the piezoelectric body.
  • connection part may include a plurality of connection parts, and an insulating layer may be disposed between the connection parts.
  • connection part may include a first connection part and a second connection part, and an insulating layer may be disposed between the first connection part and the second connection part.
  • the outer circumferential surface of the first connection portion may have a convex shape or a concave shape symmetrically.
  • the outer circumferential surface of the second connection portion may have a convex shape or a concave shape symmetrically.
  • the ultrasonic probe may further include an insulating layer disposed under the connection part.
  • the directivity of the ultrasonic signal is improved and the side lobe is reduced.
  • an apodization effect capable of suppressing overlapping of adjacent phases may be obtained by using the difference in the amount of acoustic energy emitted.
  • FIG. 1 is a perspective view showing the appearance of an ultrasonic diagnostic apparatus according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating an internal configuration of an ultrasound diagnostic apparatus according to an exemplary embodiment.
  • FIG. 3 is a perspective view illustrating the appearance of various types of ultrasonic probes according to an exemplary embodiment.
  • FIG. 4 is a diagram illustrating a laminated structure of an ultrasonic probe acoustic device according to the prior art.
  • FIG. 5 is a diagram illustrating a laminated structure of an ultrasonic probe acoustic device according to an exemplary embodiment of the present invention.
  • FIG. 6 is an exploded perspective view of an ultrasonic probe acoustic device according to an embodiment of the present invention.
  • FIG. 7 and 8 are views showing the magnitude of sound energy radiated differently according to the position of the connection portion, according to an embodiment of the present invention.
  • FIG. 9 is a view showing a comparison of the shape of the ultrasonic signal emitted from the ultrasonic probe according to the prior art and the shape of the ultrasonic signal emitted from the ultrasonic probe according to an embodiment of the present invention.
  • connection unit 10 is a diagram illustrating various forms of a connection unit according to an embodiment of the present invention.
  • FIG. 11 is a diagram illustrating the amount of energy radiated according to the position of a connection unit according to an embodiment of the present invention.
  • FIG. 12 is a diagram illustrating a laminated structure of an ultrasonic probe acoustic device according to another embodiment of the present invention.
  • connection unit 13 is a view illustrating various forms of a connection unit according to another embodiment of the present invention.
  • FIG. 14 is a view illustrating various forms of a connecting unit according to another embodiment of the present invention.
  • FIG. 1 is a perspective view showing an embodiment of an ultrasound diagnostic apparatus 300 including an ultrasound probe 100
  • FIG. 2 is a block diagram illustrating components of the ultrasound diagnostic apparatus 300
  • FIG. 3 is an ultrasound. It is an external view showing various types of ultrasonic probes 100 classified according to the shape of the transducer of the probe 100.
  • the ultrasound diagnosis apparatus 300 receives an input unit 290 and a command received from the main body 200 to receive a command for controlling the ultrasound diagnosis apparatus 300 from the main body 200 and the user. It may include a display 280 for outputting information.
  • the main body 200 may control the overall operation of the ultrasound diagnosis apparatus 300, and thus, various components for controlling the overall operation of the ultrasound probe 100 or the main body 200 may be provided.
  • the main body 200 and the ultrasonic probe 100 may transmit and receive data to each other using a cable 93 or a wireless communication module.
  • the ultrasound probe 100 and the main body 200 may be connected to communicate with each other using the connection cable 93 as shown in FIG. Electrical signals output from the ultrasonic probe 100 through the connection cable 93 may be transmitted to the main body 200. In addition, the control command generated in the main body 200 may also be transmitted to the ultrasonic probe 100 through the connection cable 93.
  • a connector 94 may be provided at one end of the connection cable 93, and the connector 94 may be coupled to or separated from a port 95 provided in the exterior 201 of the main body 200.
  • the connector 94 is coupled to the port 95, the ultrasonic probe 100 and the main body 200 may be communicatively connected.
  • one side of the main body 200 may be provided with a probe holder 292 for mounting the ultrasonic probe 100.
  • the probe holder 292 may be provided as many as the number of ultrasonic probes 100, and may be mounted or detached from the main body 200. When the user does not use the ultrasonic probe 100, the user may store the ultrasonic probe 100 on the probe holder 293.
  • the main body 200 may receive an electrical signal output from the ultrasonic probe 100 through a wireless communication network with the ultrasonic probe 100, and transmit the electrical signal generated from the main body 200 to the ultrasonic probe 100. It may be.
  • a wireless communication module including an antenna and a wireless communication chip may be installed in each of the ultrasonic probe 100 and the main body 200.
  • Wireless communication modules include Bluetooth, Bluetooth low energy, infrared data association (IrDA), Wi-Fi, Wi-Fi Direct, Ultra Wideband (UWB)
  • IrDA infrared data association
  • Wi-Fi Wi-Fi Direct
  • UWB Ultra Wideband
  • the main body 200 may exchange data with a hospital server or another medical device in a hospital connected through a PACS (Picture Archiving and Communication System) through a communication unit.
  • the main body 10 may exchange data according to a digital imaging and communications in medicine (DICOM) standard.
  • DICOM digital imaging and communications in medicine
  • the display 280 may be coupled to the main body 200 and output various types of information received from the main body 200.
  • the display 280 may display an ultrasound image of a target area inside the object.
  • the ultrasound image displayed on the display 280 may be a 2D ultrasound image, a 3D stereoscopic ultrasound image, or a Doppler image, and various ultrasound images may be displayed according to an operation mode of the ultrasound diagnosis apparatus 300.
  • the ultrasound image may include an A-mode (A-mode) image, a B-mode (B-mode) image, and an M-mode (M-mode) image.
  • A-mode A-mode
  • B-mode B-mode
  • M-mode M-mode
  • C Color
  • D Doppler
  • the A-mode image described below refers to an ultrasound image indicating the magnitude of an ultrasound signal corresponding to the echo ultrasound signal
  • the B-mode image refers to an ultrasound image indicating the brightness of the ultrasound signal corresponding to the echo ultrasound signal.
  • the M-mode image refers to an ultrasound image representing the movement of the object over time at a specific location.
  • the D-mode image refers to an ultrasound image representing a moving object in a waveform form using the Doppler effect
  • the C-mode image refers to an ultrasound image representing a moving object in a color spectrum form.
  • the display 280 may be a variety of known materials, such as a cathode ray tube (CRT), a liquid crystal display (LCD), a light emitting diode (LED), a plasma display panel (PDP), an organic light emitting diode (OLED), and the like. It can be implemented in a manner.
  • CTR cathode ray tube
  • LCD liquid crystal display
  • LED light emitting diode
  • PDP plasma display panel
  • OLED organic light emitting diode
  • the input unit 290 may be implemented in various ways such as a keyboard, a foot switch, or a foot pedal.
  • the keyboard may be implemented in hardware.
  • a keyboard may include at least one of a switch, a key, a joystick, and a trackball, and may be implemented in software such as a graphical user interface.
  • the keyboard may be displayed through the display 280.
  • the display 280 may also perform a function of the input unit 290. That is, the main body 200 may receive various commands from the user through at least one of the display 280 and the input unit 290.
  • the third display 291 illustrated in FIG. 1 may simultaneously perform a display function and an input function.
  • the display 280 and the input unit 290 may be defined as the input / output unit 270 by combining the display 280 and the input unit 290 in that it receives information from the user or transmits the information to the user.
  • the ultrasound probe 100 is electrically connected to the ultrasound transceiver 110 and the ultrasound transceiver 110 to generate ultrasound or receive ultrasound, and controls the operation of the ultrasound transceiver 110.
  • a first processor 130 for performing signal processing using an electrical signal output from the ultrasonic element.
  • the ultrasonic transceiver 110 may include an ultrasonic transducer capable of generating an ultrasonic wave or an electrical signal corresponding to the ultrasonic wave.
  • the ultrasonic transducer may convert AC current energy of a predetermined frequency into mechanical vibration of the same frequency to generate ultrasonic waves or convert mechanical vibration of a predetermined frequency into AC current energy due to the received ultrasonic waves. Accordingly, the ultrasound transducer may generate an ultrasound or output an electrical signal corresponding to the received ultrasound.
  • the structure of the ultrasonic transducer will be described in detail with reference to FIG. 4.
  • the ultrasound transceiver 110 may include an ultrasound transmitter 110a and an ultrasound receiver 110b.
  • the ultrasonic transmitter 110a may generate ultrasonic waves having a frequency corresponding to the frequency of the pulse signal according to the pulse signal transmitted from the first processor 130 or the second processor 220.
  • the generated ultrasound may be irradiated to the target area 98 of the object 99.
  • the ultrasonic receiver 110b may receive ultrasonic waves reflected from the target region 98 of the object 99 or generated by the laser at the target region 98, and convert the received signals into ultrasonic signals.
  • the ultrasonic receiver 110b may include a plurality of ultrasonic transducers, and since each ultrasonic transducer outputs each ultrasonic signal, the ultrasonic receiver 110b may output ultrasonic signals of a plurality of channels.
  • the ultrasonic transceiving unit 110 may be installed on one surface of the acoustic sound absorbing unit 120.
  • the acoustic sound absorbing unit 120 may include a first connection unit 121 corresponding to each ultrasonic transceiving unit 110. Can be.
  • the first connection part 212 may be installed in the sound absorbing part 120 through the sound absorbing part 120, and in this case, the first connection part 212 may be a part of the sound absorbing part 120. It can be installed penetrating from surface to surface.
  • the first processor 130 may generate and output an electrical signal for controlling the ultrasonic transceiver 110, or may perform various kinds of signal processing by using the ultrasonic signal transmitted from the ultrasonic transceiver 110. have.
  • the electrical signal output from the first processor 130 may be transmitted to the ultrasonic transceiver 110, for example, the ultrasonic transmitter 110a, through the first connector 121.
  • the ultrasonic transmitter 110a may drive according to the received electrical signal.
  • the first processor 130 may include at least one of a pulser 131, an amplifier 132, an analog-to-digital converter 133, and a beam former 134.
  • the pulser 131 may generate a voltage having a predetermined frequency for driving the ultrasonic transceiver 110 and transmit the generated voltage to the ultrasonic transceiver 110.
  • the ultrasonic transceiving unit 110 may generate ultrasonic waves by vibrating according to the amplitude and frequency of the voltage output from the pulser 131.
  • the frequency and intensity of the ultrasonic wave generated by the ultrasonic transceiver 110 may be determined according to the amplitude and frequency of the voltage generated by the pulser 131.
  • the voltage output from the pulser 131 may be applied to the ultrasonic transceiver 110 with a predetermined time difference, and thus the ultrasonic waves generated by the ultrasonic transceiver 110 may be focused at the target region 98 or may be in a predetermined direction. It can also be steered.
  • the pulser 131 may be provided in the second processor 221.
  • the first processor 130 may not include the pulser 131.
  • the amplifier 132 may amplify the ultrasonic signal output from the ultrasonic receiver 110b of the ultrasonic transceiver 110.
  • the amplifier 132 may compensate for the difference in strength between the ultrasonic signals of the plurality of channels by amplifying differently the ultrasonic signals of the plurality of channels output from the plurality of ultrasonic transceivers 110 according to an embodiment.
  • the analog-digital convertor (ADC) 132 may convert the amplified ultrasound signal into a digital signal when the amplified ultrasound signal is an analog signal.
  • the analog-to-digital converter 132 may output a digital signal by sampling the ultrasonic signal, which is an analog signal, according to a predetermined sampling rate.
  • the beamformers 134, B.F, and beamformer may focus ultrasonic signals input through a plurality of channels.
  • the beamformer 134 may generate a beamformed signal by concentrating a signal transmitted from the ultrasound transceiver 110, the amplifier 132, or the analog-digital converter 133.
  • the beamformer 134 may perform electronic beam scanning, steering, focusing, afodging, and aperture functions of signals of a plurality of channels.
  • the ultrasonic probe 100 when the ultrasonic probe 100 is a wireless ultrasonic probe, it may further include a battery (not shown) for supplying power to the ultrasonic probe 100.
  • the main body 200 may include a signal generator 210, an image generator 211, a volume data generator 212, a storage device 213, and a controller 220.
  • the signal generator 210 may perform various signal processing on the beamformed signal.
  • the signal generator 210 may perform at least one of a filtering process, a detection process, and a compression process.
  • the filtering process is a process of removing a signal other than a signal having a specific bandwidth by applying a filter to a beamformed signal.
  • the filtering process may include a harmonic imaging process that removes the fundamental frequency components and passes the harmonic signals.
  • the detection process is a process of converting a voltage of an ultrasonic signal from a radio frequency form into a video signal form.
  • the compression process is a process of reducing the amplitude difference between ultrasonic signals.
  • the signal generator 210 may be omitted as necessary.
  • the image generator 230 converts the beamformed signal or the signal processed by the signal generator 210 into an ultrasonic image in the form of a still image or a moving image, and also processes a predetermined image of the still image or the moving image as necessary. Can be performed.
  • the image generator 230 may generate an ultrasound image by using scan conversion.
  • the generated ultrasound image may include an A mode, a B mode, an M mode, a Doppler mode, or a 3D image.
  • the ultrasound image may include a Doppler image using the Doppler effect.
  • the ultrasound image in the A mode refers to an ultrasound image obtained by imaging the intensity of reflection based on an amplitude based on a distance or time between the target region 98, the ultrasound probe 100, and the object 99 (B mode)
  • An ultrasound image of the brightness mode refers to an ultrasound image in which intensity of ultrasound is expressed using brightness.
  • the ultrasound image in the M mode refers to an ultrasound image in which the degree of change in the motion of the subject is imaged.
  • the Doppler image may include a blood flow Doppler image (or also called a color Doppler image) representing blood flow, a tissue Doppler image representing a tissue movement, and a spectral Doppler image displaying a moving speed of an object as a waveform. have.
  • the image generator 230 may correct the generated ultrasound image.
  • the image generator 230 may correct brightness, luminance, sharpness, contrast, or color of all or some regions of the ultrasound image so that a user may clearly see tissue in the ultrasound image.
  • the image generator 211 may remove noise in the ultrasound image or perform pixel interpolation.
  • the image generator 211 may transmit the generated or corrected ultrasound image to the storage device 213 or display the ultrasound image on the display 280. In addition, the image generator 211 may transfer the generated or corrected ultrasound image to the volume data generator 212 so that the ultrasound volume data may be obtained.
  • the volume image generator 212 may obtain ultrasonic volume data representing a three-dimensional volume by using the two-dimensional ultrasound image generated or corrected by the image generator 211.
  • the signal generator 210, the image generator 211, and the volume image generator 212 may be implemented by a central processing unit or a graphic processing unit.
  • the central processing unit or graphics processing unit may be implemented using one or more semiconductor chips and related components.
  • the storage device 213 may store various programs or data related to a function of the controller 220, an ultrasound image, and various information related to the ultrasound image.
  • the storage unit 213 may be implemented using a semiconductor storage device, a magnetic disk storage device, or a magnetic tape storage device.
  • the controller 220 may control the overall operation of the ultrasound diagnosis apparatus 300 according to a user's command or a predefined setting. For example, the controller 220 may generate a predetermined control command according to the frequency of the ultrasound to be irradiated, and then transfer the generated control command to the pulser 131 of the first processor 130, and the pulser 131 may be According to the control command, a voltage having a predetermined frequency may be applied to the ultrasonic element unit 110. Accordingly, the ultrasonic element unit 110 may generate ultrasonic waves of a predetermined frequency and irradiate the target portion 98 of the subject 99.
  • the controller 220 may include a second processor 221 and a storage device 222 such as a ROM or a RAM to assist the operation of the second processor 221.
  • the second processor 221 may be implemented by a central processing unit.
  • the central processing unit may be implemented by one or more semiconductor chips and related components.
  • FIG 3 is an external view illustrating various types of ultrasonic probes 100 according to the shape of the ultrasonic transceiver unit 110 of the ultrasonic probe 100.
  • the ultrasonic probe 100a illustrated in (a) of FIG. 3 is a linear probe, and the linear probe 100a is characterized in that the transducers are arranged in a linear form.
  • the probe shown in FIG. 3B is a convex ultrasound probe 100b. Since the curved ultrasound probe 100b is convex, a fan-shaped image is created and the abdomen is wide. It is mainly used to examine the site.
  • the basic operating principle of the ultrasonic probe 100 is the same as that of the straight probe.
  • the probe shown in (c) of FIG. 3 is a micro-convex ultrasonic probe 100c, and the micro-curve ultrasonic probe 100c has an effect of the curved probe, so that it is easy to inspect a narrow region. It is designed to be compact.
  • the probe illustrated in (d) of FIG. 3 may be a two-dimensional matrix array ultrasonic probe 100d, and may provide a three-dimensional ultrasound diagnostic image that provides a 360 ° stereoscopic image of an object in real time.
  • the present invention is not limited thereto, and the probe 100 may be provided in other forms known in the art, in addition to those illustrated in FIG. 3, such as a phased array probe and a 3D matrix probe.
  • the structure of 100 may be employed as the structure of any kind of ultrasonic probe described above, and the features of the ultrasonic probe 100 described later may be applied to all kinds of ultrasonic probes described above.
  • FIG. 4 is a diagram illustrating a laminated structure of an ultrasonic probe acoustic device according to the prior art.
  • the acoustic device of the ultrasonic probe may include a piezoelectric layer 13, a matching layer 12 disposed on the piezoelectric layer 13, and an acoustic lens 11 disposed on the matching layer 12.
  • the piezoelectric layer 13 includes a piezoelectric material, and the piezoelectric material plays a role of mutually converting an electrical signal and an acoustic signal while vibrating.
  • electrodes for connecting electrical signals may be formed on the upper and lower portions of the piezoelectric layer 13.
  • the acoustic impedance difference between the matching layer 12 and the piezoelectric layer 13 and the object 99 may be reduced so that ultrasonic waves radiated from the piezoelectric layer 13 may be effectively transmitted to the object, and may be configured as a single layer according to the construction method. 4, the first matching layer 12a and the second matching layer 12b may be formed.
  • the suction layer 15 blocks or absorbs the ultrasonic signal from the rear of the ultrasonic probe or reflects the ultrasonic wave to prevent image distortion.
  • the suction layer 15 transmits a predetermined ultrasonic wave signal in a direction of elevation of the ultrasonic probe. It can play a role in focusing on a location.
  • the materials constituting the acoustic device are all stacked in the same model.
  • the method of manufacturing the ultrasonic probe is easy, while the characteristics of the ultrasonic probe are consistent. There was a problem.
  • the magnitude of acoustic energy radiated from the center of the ultrasonic probe is the same as the magnitude of acoustic energy radiated from the side, so that the directivity of the ultrasonic signal is decreased and the lobe of the side is increased.
  • the structure of the connecting portion 50 is partially modified, so that the magnitude of the acoustic energy radiated from the center of the ultrasonic probe 100 is greater than the magnitude of the acoustic energy radiated from the side. Has characteristics. Therefore, the directivity of the ultrasonic signal is improved and at the same time, there is an effect of reducing the lobe of the side of the ultrasonic probe 100.
  • the structure of the present invention will be described with reference to the accompanying drawings.
  • FIG 5 is a view showing a laminated structure of the ultrasonic probe 100, the acoustic device according to an embodiment of the present invention
  • Figure 6 is an exploded perspective view of the ultrasonic probe 100, the acoustic device according to an embodiment of the present invention to be.
  • 7 and 8 are views showing the magnitude of the acoustic energy radiated differently according to the position of the connection portion according to an embodiment of the present invention
  • Figure 9 is an ultrasonic wave emitted from the ultrasonic probe according to an embodiment of the present invention
  • Figure is a view comparing the shape of the signal and the shape of the ultrasonic signal emitted from the ultrasonic probe according to the prior art.
  • the ultrasonic probe 100 includes a piezoelectric layer 40, a matching layer 30 disposed on the piezoelectric layer 40, and a sound disposed on the piezoelectric layer 40.
  • the lens 20 may include a sound absorbing layer 60 disposed under the piezoelectric layer 40, and a connecting portion 50 disposed between the piezoelectric layer 40 and the sound absorbing layer 60.
  • the lens 20, the matching layer 30, the piezoelectric layer 40, and the sound absorbing layer 60 except for the connecting portion 50 are the same as those described with reference to FIG. 4, and thus the structure and characteristics of the connecting portion 50 will be described. .
  • connection part 50 may also be referred to as an interconnection layer according to its name.
  • the connection part 50 is disposed between the piezoelectric layer 40 and the sound absorption layer 60, but is not limited thereto. And may be additionally disposed between the matching layer 30.
  • connection part 50 is electrically connected to the piezoelectric layer 40, and may include at least one flexible printed circuit board (PCB) according to a purpose of use, and may include a conductive material.
  • PCB flexible printed circuit board
  • the piezoelectric layer 40 of the ultrasonic probe 100 Since the piezoelectric layer 40 of the ultrasonic probe 100 is disposed under the connecting portion 50, the piezoelectric layer 40 vibrates due to the mass loading of the connecting portion 50 and externally outputs an acoustic signal. To emit.
  • the size of the energy radiated from the piezoelectric layer 40 is different depending on the size, material, and thickness of the connection portion 40.
  • the model of the connection part has the same model as other materials stacked on the acoustic device, for example, a rectangular model, so that the magnitude of acoustic energy radiated from the center or side direction of the ultrasonic probe is the same. It was. Therefore, there is a problem that the directivity of the ultrasonic probe signal is not good and the lobe of the side of the ultrasonic probe increases.
  • connection part 50 is deformed, so that the mass loading effect of the connection part 50 applied to the piezoelectric layer 40 is piezoelectric.
  • the position of layer 40 varies from one location to another, and due to this feature, the amount of energy radiated from piezoelectric layer 40 is also emitted from location to location.
  • FIG. 7 is a diagram for explaining this, and FIG. 7 (a) is a view showing one form of a connecting portion according to an embodiment of the present invention, and (b) is a graph showing an area ratio of the connecting portion 50 according to an elevation position. (C) is a graph showing the amount of energy radiated according to the elevation position of the ultrasonic probe 100, and (d) is a connection portion 50 shown in FIG. 7 (a) to the ultrasonic probe 100. When mounted, it is a perspective view of the ultrasonic probe 100 from the side.
  • connection part 50 is wider at the side of the connection part 50 and decreases toward the center of the connection part 50, and FIG. 7 (b) shows such a shape.
  • Figure is a graph.
  • the piezoelectric layer 40 is electrically connected to the connecting portion 50 and may include at least one flexible printed circuit board (PCB), the amount of acoustic energy radiated from the ultrasonic probe 100 is greater than that of the flexible printed circuit board. It depends on the presence of.
  • PCB flexible printed circuit board
  • the width of the connection part 60 is relatively large, but the amount of acoustic energy radiated from the ultrasonic probe 100 is small, but the width of the connection part 50 is relatively large. In the case of a wide central portion, the amount of energy radiated from the ultrasonic probe 100 is large.
  • the directivity of the ultrasonic signal may be improved.
  • the ultrasonic signal pattern of the ultrasonic probe according to the prior art has a tendency to spread the signal sideways as shown in FIG. 9 (b)
  • the pattern of the ultrasonic probe 100 signal according to the present invention is shown in FIG. As shown in a), it is relatively centered so that the directivity of the ultrasonic signal can be improved over the prior art.
  • the size of the acoustic signal emitted from the side is smaller than the size of the acoustic signal emitted from the center, it is possible to reduce the side lobe emitted from the side of the ultrasonic probe 100 and at the same time the focal zone of the ultrasonic signal. Can expand).
  • connection unit 10 is a diagram illustrating various forms of a connection unit according to an embodiment of the present invention.
  • connection part 50 is symmetrically shaped to have a concave shape, but is not limited thereto. As illustrated in FIG. 10, the connection part 50 may take various forms.
  • the non-curved rectangles may be collected, or as shown in (c) of FIG. 10, the convex shape of the opposite model to that of FIG.
  • the shape of the connection part 50 since the shape of the connection part 50 is different, the magnitude of energy radiated from the ultrasonic probe 100 also varies according to its position as described above.
  • the model of the connecting portion 50 is limited to the form shown in Figure 10 may take a variety of forms. According to the purpose of use, at least a portion of the connecting portion 50 may be deformed, and one side of the connecting portion 50 may take the form of a curved shape or inwardly contained.
  • the outer circumferential surface of the connecting portion 50 may have a convex or concave shape symmetrically, and the width of the connecting portion 50 has a different width from one side of the connecting portion 50 to the center of the connecting portion 50 or the connecting portion. Linearly increase from one side of the 50 to the center of the connecting portion 50 or take the form of linearly decreasing or decreasing in a curved form from one side of the connecting portion 50 to the center of the connecting portion 50 Can be.
  • connection portion 50 of the connection portion 50 so that the magnitude of the sound signal radiated according to the purpose of use increases or decreases linearly or increases or decreases in a curved form from one side of the connection portion 50 to the center of the connection portion. It may take the form of part deformation, or it may take the form of circle, ellipse or rhombus.
  • FIG. 11 is a diagram showing the amount of radiant energy emitted depending on the position when the connecting part takes the form of FIG.
  • FIG. 11A the width of the connecting portion 50 is small at the side, but the width of the connecting portion 50 is increased toward the center, and the width of the connecting portion 50 decreases toward the other side.
  • FIG. 11B is a diagram showing such a form using a graph.
  • the connecting portion 50 takes the form as shown in FIG. 11A, the magnitude of energy radiated from the ultrasonic probe 100 is changed as shown in FIG. 11C.
  • the piezoelectric layer 40 is electrically connected to the connection part 50 and may include at least one flexible printed circuit board (PCB), the amount of acoustic energy radiated from the ultrasonic probe 100 is determined by the presence or absence of the flexible printed circuit board. Depending on the radiation is emitted.
  • PCB flexible printed circuit board
  • the amount of acoustic energy radiated from the ultrasonic probe 100 is large, but the relative width of the connecting portion 50 is small.
  • the amount of energy radiated from the ultrasonic probe 100 becomes smaller toward the center. Therefore, by utilizing these characteristics, it is possible to increase the utilization of the ultrasonic probe according to the purpose.
  • FIGS. 13 and 14 are views illustrating various types of connection parts according to another exemplary embodiment of the present invention.
  • the ultrasonic probe 100 may be disposed on the piezoelectric layer 40, the matching layer 30 disposed on the piezoelectric layer 40, and the piezoelectric layer 40.
  • the acoustic lens 20 may include a sound absorbing layer 60 disposed under the piezoelectric layer 40, and a plurality of connection parts 50a and 50b disposed between the piezoelectric layer 40 and the sound absorbing layer 60.
  • An insulating layer 70 may be included between the first connector 50a and the second connector 50b, and the acoustic lens 20, the matching layer 30, the piezoelectric layer 40, and the sound absorbing layer 60 are illustrated in FIG. Same as described in 5.
  • the ultrasonic probe 100 shown in FIG. 12 may include two connecting portions 50a and 50b, and the two connecting portions 50a and 50b may use the ultrasonic probe 100 as shown in FIG. 13. It may have various forms depending on the purpose and manufacturing environment.
  • first connecting portion 50a may be convex or concave (FIG. 13A and FIG. 13), and only the second connecting portion 50a may be convex or concave. (C and d of FIG. 13)
  • both the first and second connecting portions 50a and 50b may be convex or concave (FIG. 13 e and f), and the first and second connecting portions 50a may be convex.
  • the second connecting portion 50b may be concave, or the first connecting portion 50a may be concave, and the second connecting portion 50b may be convex.
  • first connecting portion 50a and the second connecting portion 50b is not limited to the form shown in FIG. 13, but may have various forms described in FIG. 10, and in FIG. 12, two connecting portions ( Although 50a and 50b are illustrated, the present invention is not limited thereto and may include two or more connection parts 50.
  • the second connector 50b does not exist and only the first connector 50a and the insulating layer 70 may be disposed between the piezoelectric layer 40 and the sound absorbing layer 60.
  • the first connection part 50a may be configured in various forms such as a rectangular shape (a of FIG. 14), a convex shape (b of FIG. 14), and a concave shape (c of FIG. 14).
  • the materials constituting the acoustic device are all stacked in the same form, and thus the amount of energy radiated from the ultrasonic probe is constant in all aspects. Therefore, there is a problem that the directivity of the ultrasonic signal is lowered and the side lobe increases.
  • the shape of the connection portion 50 is partially modified, so that the magnitude of the acoustic energy radiated from the ultrasonic probe 100 is greater than that of the acoustic energy radiated from the side. It has the effect of improving the directivity of the ultrasonic signal and at the same time reducing the lobe of the side of the ultrasonic probe 100.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Gynecology & Obstetrics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Acoustics & Sound (AREA)

Abstract

본 발명에 의한 초음파 프로브는 압전층과 상기 압전층 하부에 배치되고 음향 신호를 흡수하는 흡음층와 상기 압전층과 상기 흡음층 사이에 배치되는 연결부를 포함하고 상기 연결부는 상기 연결부로 인해 상기 압전층에서 방사되는 복수 개의 음향 신호의 크기가 서로 다른 크기를 갖도록 상기 연결부의 적어도 일부분이 변형될 수 있다. 본 발명에 의한 초음파 프로브의 경우 초음파 프로의 중심부에서 방사되는 음향 에너지의 크기가 측면에서 방사되는 음향 에너지의 크기보다 크므로 초음파 신호의 지향성이 향상됨과 동시에 측면의 로브(Lobe)를 감소시킬 수 있다. 또한, 방사되는 음향 에너지 크기의 차이를 이용하여 인접하는 상끼리의 중복을 억제할 수 있는 아포디제이션(Apodization) 효과를 얻을 수 있다.

Description

초음파 프로브
본 발명은 초음파 프로브에 관한 발명으로서, 보다 상세하게는 초음파 프로브의 연결부 형태를 변형하여 초음파 프로브에서 방사되는 음향 에너지의 크기를 위치에 따라 다르게 방사되는 기술에 관한 발명이다
초음파 진단 장치는 대상체의 특정 부위를 향하여 초음파 신호를 조사하고, 대상체에서 반사된 초음파 신호(초음파 에코신호)를 수신한 후, 이에 대한 정보를 이용하여 연부조직의 단층이나 혈류에 관한 이미지 등을 무침습으로 얻는 장치를 말한다.
초음파 진단 장치의 경우 X선 진단 장치, X선 CT스캐너(Computerized Tomography Scanner), MRI(Magnetic Resonance Image), 핵의학 진단 장치 등의 다른 영상 진단 장치와 비교해 볼 때, 상대적으로 소형이고 저렴한 장점이 있다. 또한, 초음파 진단 장치는 대상체 내부에 관한 영상을 실시간으로 획득할 수 있고 방사선에 의해 발생되는 피폭이 없어 안전성이 높은 특징이 있다. 따라서 일반적으로 초음파 진단 장치는 사람의 심장, 복부, 비뇨기 및 산부인과 진단에서 널리 이용되고 있다.
따라서, 초음파 진단 장치는 대상체 내부의 초음파 영상을 얻기 위해 초음파 신호를 대상체로 송신하고, 대상체로부터 반사되어 오는 응답 신호를 수신하기 위한 초음파 프로브를 포함한다.
초음파 프로브는 초음파 프로브 내부의 압전물질이 진동하면서 전기신호와 음향신호를 상호 변환시키는 압전층과, 압전층과 대상체 사이의 음향 임피던스 차이를 감소시켜 압전층에서 발생된 초음파가 대상체에 효과적으로 전달될 수 있도록 하는 정합층과, 압전층의 전방으로 진행하는 초음파를 특정 지점에 접속시키는 렌즈와, 초음파가 압전층의 후방으로 진행되는 것을 차단시키거나 초음파를 반사시켜 영상 왜곡을 방지하는 흡음층 및 압전체와 흠음층에 전기적으로 연결되어 있는 연결부 등을 포함한다.
그러고 일반적인 초음파 프로브의 음향 소자는 직사각형 형태로 여러 물질이 쌓여 있는 구조로 되어있는데, 이러한 경우 단일한 형태로 인해 제조 방법은 용이한 반면, 초음파 프로브의 특성이 일관된 문제점이 존재하였다. 즉, 초음파 프로브의 중심부에서 방사되는 음향 에너지의 크기와 측면에서 방사되는 음향 에너지의 크기가 동일하여 초음파 신호의 지향성이 떨어졌으며, 측면의 로브(Lobe)가 증가하는 문제가 존재하였다.
따라서, 본 발명은 상기 설명한 문제점을 해결하기 위해 고안된 발명으로서, 초음파 프로브에서 방사되는 음향 에너지의 크기를 중심부에서 증가시키고 측면에서는 감소하도록 하여 초음파 신호의 지향성이 향상된 초음파 프로브를 제공하기 위함이다.
본 발명의 일 실시예에 의한 초음파 프로브는 압전층과 상기 압전층 하부에 배치되고 음향 신호를 흡수하는 흡음층과 상기 압전층과 상기 흡음층 사이에 배치되는 연결부를 포함하고 상기 연결부는 상기 연결부로 인해 상기 압전층에서 방사되는 복수 개의 음향 신호의 크기가 서로 다른 크기를 갖도록 상기 연결부의 적어도 일부분이 변형될 수 있다.
상기 연결부는 상기 연결부의 중심선을 기준으로 대칭인 형태일 수 있다.
상기 연결부의 적어도 일 측면은 곡선 형태일 수 있다.
상기 연결부의 적어도 일 측면은 내측으로 함몰된 형태일 수 있다.
상기 연결부의 외주면은 볼록한 형태를 대칭적으로 가질 수 있다.
상기 연결부의 외주면은 오목한 형태를 대칭적으로 가질 수 있다.
상기 연결부의 폭은 상기 연결부의 일 측면에서부터 상기 연결부의 중심까지 서로 다른 폭을 가질 수 있다.
상기 연결부의 폭은 상기 연결부의 일 측면에서부터 상기 연결부의 중심까지 선형적으로 증가하거나 곡선 형태로 증가할 수 있다.
상기 연결부의 폭은 상기 연결부의 일 측면에서부터 상기 연결부의 중심까지 선형적으로 감소하거나 곡선 형태로 감소할 수 있다.
상기 압전층에 의해 방사되는 음향 신호의 크기가 상기 연결부의 일 측면에서부터 상기 연결부의 중심까지 선형적으로 증가하거나 곡선 형태로 증가하도록 상기 연결부의 일부분이 변형될 수 있다.
상기 압전층에 의해 방사되는 음향 신호의 크기가 상기 연결부의 일 측면에서부터 상기 연결부의 중심까지 선형적으로 감소하거나 곡선 형태로 감소하도록 상기 연결부의 일부분이 변형될 수 있다.
상기 연결부는 원, 타원 또는 마름모의 형태를 가질 수 있다.
상기 연결부는 적어도 하나의 연성회로기판(PCB)를 포함할 수 있다.
상기 연결부는 전도성 물질을 포함할 수 있다.
상기 연결부는 상기 압전체와 전기적으로 연결될 수 있다.
상기 연결부는 복수 개의 연결부를 포함하고 상기 연결부 사이에는 절연층이 배치될 수 있다.
상기 연결부는 제1 연결부 및 제2 연결부를 포함하고, 상기 제1 연결부와 제2 연결부 사이에는 절연층이 배치될 수 있다.
상기 제1 연결부의 외주면은 볼록한 형태 또는 오목한 형태를 대칭적으로 가질 수 있다.
상기 제2 연결부의 외주면은 볼록한 형태 또는 오목한 형태를 대칭적으로 가질 수 있다.
상기 초음파 프로브는 상기 연결부의 하부에 배치되는 절연층을 더 포함할 수 있다.
본 발명의 경우 초음파 프로의 중심부에서 방사되는 음향 에너지의 크기가 측면에서 방사되는 음향 에너지의 크기보다 크므로 초음파 신호의 지향성이 향상됨과 동시에 측면의 로브(Lobe)를 감소시키는 효과가 존재한다.
또한, 방사되는 음향 에너지 크기의 차이를 이용하여 인접하는 상끼리의 중복을 억제할 수 있는 아포디제이션(Apodization) 효과를 얻을 수 있다.
도 1은 본 발명의 일 실시예에 따른 초음파 진단 장치의 외관을 도시한 사시도이다.
도 2는 본 발명의 일 실시예에 따른 초음파 진단 장치의 내부 구성을 도시한 블럭도이다.
도 3은 본 발명의 일 실시예에 따른 다양한 종류의 초음파 프로브의 외관을 도시한 사시도이다.
도 4는 종래 기술에 따른, 초음파 프로브 음향 소자의 적층 구조를 도시한 도면이다.
도 5는 본 발명의 일 실시예에 따른, 초음파 프로브 음향 소자의 적층 구조를 도시한 도면이다.
도 6은 본 발명의 일 실시예에 따른, 초음파 프로브 음향 소자의 분해 사시도이다.
도 7과 도 8은 본 발명의 일 실시예에 따른, 연결부의 위치에 따라 다르게 방사되는 음향 에너지의 크기를 도시한 도면이다.
도 9는 본 발명의 일 실시예에 따른 초음파 프로브에서 방출되는 초음파 신호의 형태와 종래기술에 따른 초음파 프로브에서 방출되는 초음파 신호의 형태를 비교 도시한 도면이다.
도 10은 본 발명의 일 실시예에 따른, 연결부의 다양한 형태를 도시한 도면이다.
도 11은 본 발명의 일 실시예에 따른, 연결부의 위치에 따라 방사되는 에너지의 크기를 도시한 도면이다.
도 12 본 발명의 다른 실시예에 따른, 초음파 프로브 음향 소자의 적층 구조를 도시한 도면이다.
도 13은 본 발명의 다른 실시예에 따른, 연결부의 다양한 형태를 도시한 도면이다.
도 14는 본 발명의 또 다른 실시예에 따른, 연결부의 다양한 형태를 도시한 도면이다.
본 명세서에 기재된 실시 예와 도면에 도시된 구성은 개시된 발명의 바람직한 일 예이며, 본 출원의 출원 시점에 있어서 본 명세서의 실시 예와 도면을 대체할 수 있는 다양한 변형 예들이 있을 수 있다.
또한, 본 명세서에서 사용한 용어는 실시 예를 설명하기 위해 사용된 것으로, 개시된 발명을 제한 및/또는 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는다.
또한, 본 명세서에서 사용한 "제1", "제2" 등과 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되지는 않는다.
아래에서는 첨부한 도면을 참고하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.
도 1은 초음파 프로브(100)를 포함하는 초음파 진단 장치(300)의 일 실시 예를 도시한 사시도이고, 도 2는 초음파 진단 장치(300) 구성 요소를 설명하기 위한 블록도이며, 도 3은 초음파 프로브(100)의 트랜스듀서의 모양에 따라 구분되는 여려 종류의 초음파 프로브(100)를 도시한 외관도이다.
도 1과 도 2를 참조하면, 초음파 진단 장치(300)는, 본체(200)와 사용자로부터 초음파 진단 장치(300)를 제어하기 위한 명령을 입력 받는 입력부(290)와 본체(200)로부터 수신 받은 정보를 출력하는 디스플레이(280)를 포함할 수 있다.
구체적으로, 본체(200)는 초음파 진단 장치(300)의 전반적인 동작을 제어할 수 있으며, 이에 따라 초음파 프로브(100)나 본체(200)의 전반적인 동작을 제어하기 위한 각종 부품이 마련될 수 있으며, 본체(200)와 초음파 프로브(100)는 케이블(93) 또는 무선 통신 모듈을 이용하여 상호 데이터를 송수신할 수 있다.
또한, 초음파 프로브(100)와 본체(200)는 도 1에 도시된 바와 같이 연결 케이블(93)을 이용하여 서로 통신 가능하도록 연결될 수 있다. 연결 케이블(93)을 통하여 초음파 프로브(100)에서 출력되는 전기적 신호는 본체(200)로 전달될 수 있다. 또한 본체(200)에서 생성된 제어 명령 등 역시 연결 케이블(93)을 통하여 초음파 프로브(100)로 전달될 수 있다.
연결 케이블(93)의 일 말단에는 커넥터(94)가 마련될 수 있으며, 커넥터(94)는 본체(200)의 외장(201)에 마련된 포트(95)에 결합 및 분리될 수 있다. 커넥터(94)가 포트(95)에 결합된 경우, 초음파 프로브(100)와 본체(200)는 통신 가능하게 연결될 수 있다.
또한, 본체(200)의 일 측면에는 초음파 프로브(100)를 거치시킬 수 있는 프로브 홀더(292)가 마련될 수 있다. 프로브 홀더(292)는 초음파 프로브(100)의 개수만큼 마련될 수 있으며, 본체(200)에 장착되거나 탈착될 수 있다. 사용자는 초음파 프로브(100)를 사용하지 않는 경우 프로브 홀더(293)에 초음파 프로브(100)를 거치시켜 보관할 수 있다.
또한, 본체(200)는 초음파 프로브(100)와 무선 통신 네트워크를 통해 초음파 프로브(100)에서 출력되는 전기적 신호를 수신할 수 있고 본체(200)에서 생성된 전기적 신호를 초음파 프로브(100)로 전달할 수도 있다. 이 경우 초음파 프로브(100) 및 본체(200) 각각의 내부에는 안테나 및 무선 통신 칩을 포함하는 무선 통신 모듈이 설치될 수 있다.
무선 통신 모듈은 블루투스(Bluetooth), 블루투스 저 에너지(Bluetooth low energy), 적외선 통신(IrDA, infrared data association), 와이파이(Wi-Fi), 와이파이 다이렉트(Wi-Fi Direct), 초광대역(UWB; Ultra-Wideband) 및 근거리 장 통신(NFC; Near Field Communication) 중 적어도 하나를 이용하는 근거리 무선 통신 모듈일 수도 있고, 국제 전기 통신 연합(ITU)에서 인증한 3GPP 계열, 3GPP2 계열 또는 IEEE 계열의 무선 통신 네트워크를 지원하는 무선 통신 모듈일 수도 있다.
본체(200)는 통신부를 통하여 의료 영상 정보 시스템(PACS; Picture Archiving and Communication System)을 통해 연결된 병원 서버나 병원 내의 다른 의료 장치와 데이터를 주고 받을 수 있다. 또한, 본체(10)는 의료용 디지털 영상 및 통신(DICOM; Digital Imaging and Communications in Medicine) 표준에 따라 데이터를 주고 받을 수 있다. 그러나 이에 한정되는 것은 아니다.
디스플레이(280)는 본체(200)에 결합되고 본체(200)로부터 수신한 각종 정보를 출력할 수 있다.
구체적으로, 디스플레이(280)는 대상체 내부의 목표 부위에 대한 초음파 영상을 표시할 수 있다. 디스플레이(280)에 표시되는 초음파 영상은 2차원 초음파 영상, 또는 3차원 입체 초음파 영상, 도플러 영상 일 수 있으며, 초음파 진단 장치(300)의 동작 모드에 따라 다양한 초음파 영상이 표시될 수 있다.
일 실시예에 따르면, 초음파 영상은 A-모드(Amplitude mode, A-모드) 영상, B-모드(Brightness Mode; B-Mode) 영상, M-모드(Motion Mode; M-mode) 영상을 포함할 뿐만 아니라, C(Color)-모드 영상 및 D(Doppler)-모드 영상을 포함한다.
이하에서 설명되는 A-모드 영상은 에코 초음파 신호에 대응되는 초음파 신호의 크기를 나타내는 초음파 영상을 의미하며, B-모드 영상은 에코 초음파 신호에 대응되는 초음파 신호의 크기를 밝기로 나타낸 초음파 영상을 의미하며, M-모드 영상은 특정 위치에서 시간에 따른 대상체의 움직임을 나타내는 초음파 영상을 의미한다. D-모드 영상은 도플러 효과를 이용하여 움직이는 대상체를 파형 형태로 나타내는 초음파 영상을 의미하며, 또한, C-모드 영상은 움직이는 대상체를 컬러 스펙트럼 형태로 나타내는 초음파 영상을 의미한다.
따라서, 디스플레이(280)는 브라운관(Cathode Ray Tube; CRT), LCD(Liquid Crystal Display), LED(Light Emitting Diode), PDP(Plasma Display Panel), OLED(Organic Light Emitting Diode) 등과 같이, 공지된 다양한 방식으로 구현될 수 있다.
입력부(290)는 키보드, 풋 스위치(Foot switch) 또는 풋 페달(Foot pedal) 방식 등 다양하게 구현될 수 있다.
예를 들어, 키보드는 하드웨어적으로 구현될 수 있다. 이러한 키보드는 스위치, 키, 조이스틱 및 트랙볼 중 적어도 하나를 포함할 수 있으며 그래픽 유저 인터페이스와 같이 소프트웨어적으로 구현될 수도 있다. 이 경우, 키보드는 디스플레이(280)를 통해 표시될 수 있다.
한편, 디스플레이(280)가 터치 스크린(Touch Screen) 타입으로 구현되는 경우, 디스플레이(280)는 입력부(290)의 기능도 함께 수행할 수 있다. 즉, 본체(200)는 디스플레이(280) 및 입력부(290) 중 적어도 하나를 통해 사용자로부터 각종 명령을 입력 받을 수 있다. 일 실시예로서 도 1에 도시된 제 3디스플레이(291)는 디스플레이 기능과 입력 기능을 동시에 할 수 있다.
디스플레이(280)와 입력부(290)은 사용자로부터 정보를 수신 받거나 사용자에게 정보를 송신한다는 점에서 디스플레이(280)와 입력부(290)를 합쳐 입출력부(270)로 정의될 수 있다.
도 2를 참고하면, 초음파 프로브(100)는 초음파를 생성하거나 또는 초음파를 수신하기 위하여 초음파 송수신부(110), 초음파 송수신부(110)와 전기적으로 연결되고 초음파 송수신부(110)의 동작을 제어하거나 또는 초음파 소자에서 출력된 전기적 신호를 이용하여 신호 처리를 수행하는 제1 프로세서(130) 등을 포함할 수 있다.
초음파 송수신부(110)는 초음파를 생성하거나, 또는 초음파에 상응하는 전기적 신호를 생성할 수 있는 초음파 트랜스듀서(Ultrasonic Transducer)를 포함할 수 있다.
초음파 트랜스듀서는 소정 주파수의 교류 전류 에너지를 동일한 주파수의 기계적 진동으로 변환하여 초음파를 발생시키거나 수신한 초음파에 기인한 소정 주파수의 기계적 진동을 교류 전류 에너지로 변환할 수 있다. 이에 따라 초음파 트랜스듀서는 초음파를 생성하거나 또는 수신한 초음파에 상응하는 전기적 신호를 출력할 수 있다. 초음파 트랜스듀서의 구조에 대해서는 도 4를 통하여 자세히 알아본다.
도 2에 도시된 일 실시 예를 참조하면 초음파 송수신부(110)는 초음파 송신부 (110a) 및 초음파 수신부(110b)를 포함할 수도 있다.
초음파 송신부 (110a)는 제1 프로세서(130) 또는 제2 프로세서(220)에서 전달되는 펄스 신호에 따라서 펄스 신호의 주파수에 상응하는 주파수의 초음파를 생성할 수 있다. 이렇게 생성된 초음파는 대상체(99)의 목표 부위(98)로 조사될 수 있다.
초음파 수신부(110b)는 대상체(99)의 목표 부위(98)에서 반사되거나 또는 목표 부위(98)에서 레이저 등에 따라 발생한 초음파를 수신하고, 수신한 신호를 초음파 신호로 변환할 수 있다. 초음파 수신부(110b)는 복수의 초음파 트랜스듀서를 포함할 수 있고, 각각의 초음파 트랜스듀서는 각각의 초음파 신호를 출력하므로, 초음파 수신부(110b)는 복수 채널의 초음파 신호를 출력할 수 있다.
또한, 초음파 송수신부(110)는 음향 흡음부(120)의 일 면에 설치될 수 있는데 음향 흡음부(120)에는 각각의 초음파 송수신부(110)에 대응하는 제1 연결부(121)가 마련될 수 있다.
일 실시예에 의하면 제1 연결부(212)는 음향 흡음부(120)를 관통하여 음향 흡음부(120)에 설치될 수 있으며, 이 경우 제1 연결부(212)는 음향 흡음부(120)의 일 면에서 타 면까지 관통하며 설치될 수 있다.
제1 프로세서(130)는, 초음파 송수신부(110)를 제어하기 위한 전기적 신호를 생성하여 출력하거나, 또는 초음파 송수신부(110)에서 전달된 초음파 신호를 이용하여 다양한 종류의 신호 처리를 수행할 수 있다.
제1 프로세서(130)에서 출력된 전기적 신호는 제1연결부(121)를 통해 초음파 송수신부(110), 일례로 초음파 송신부(110a)로 전달될 수 있다. 초음파 송신부(110a)는 전달받은 전기적 신호에 따라 구동할 수 있다.
도 2에 도시된 일 실시예에 의하면, 제1프로세서(130)는 펄서(131), 증폭기(132), 아날로그 디지털 변환기(133) 및 빔 포머(134) 중 적어도 하나를 포함할 수 있다.
펄서(131)는 초음파 송수신부(110)를 구동시키기 위한 소정 주파수의 전압을 생성하고, 생성된 전압을 초음파 송수신부(110)에 전달할 수 있다. 초음파 송수신부(110)는 펄서(131)에서 출력되는 전압의 진폭 및 주파수에 따라 진동하여 초음파를 생성할 수 있다.
초음파 송수신부(110)에서 발생하는 초음파의 주파수 및 강도는 펄서(131)에서 발생된 전압의 진폭 및 주파수에 따라 결정될 수 있다. 펄서(131)에서 출력된 전압은 초음파 송수신부(110)에 일정한 시차를 두고 인가될 수 있으며, 이에 따라 초음파 송수신부(110)에서 발생된 초음파는 목표 부위(98)에서 집속되거나, 소정의 방향으로 조향될 수도 있다.
실시예에 따라서 펄서(131)는 제2프로세서(221)에 마련될 수도 있다. 이 경우 제1프로세서(130)는 펄서(131)를 포함하지 않을 수도 있다.
증폭기(132, AMP, Amplifier)는 초음파 송수신부(110)의 초음파 수신 부(110b)에서 출력되는 초음파 신호를 증폭시킬 수 있다. 증폭기(132)는 실시예에 따라서 복수의 초음파 송수신부(110)에서 출력되는 복수 채널의 초음파 신호를 서로 상이하게 증폭시킴으로써 복수 채널의 초음파 신호 사이의 강약 차를 보상할 수도 있다.
아날로그 디지털 변환기(132, ADC, Analog-digital convertor)는 증폭된 초음파 신호가 아날로그 신호인 경우, 이를 디지털 신호로 변환할 수 있다. 아날로그 디지털 변환기(132)는 아날로그 신호인 초음파 신호로부터 소정의 샘플링률에 따라 샘플링을 수행하여 디지털 신호를 출력할 수 있다.
빔 포머(134, B.F, Beamformer)는 복수 채널로 입력되는 초음파 신호를 집속시킬 수 있다. 빔포머(134)는 초음파 송수신부(110), 증폭부(132) 또는 아날로그 디지털 변환부(133)에서 전달되는 신호를 집속하여 빔포밍된 신호를 생성할 수 있다. 빔포머(134)는 복수 채널의 신호의 전자적 빔 스캐닝, 조향, 집속, 어포다이징 및 구경 기능을 수행할 수 있다.
또한, 초음파 프로브(100)가 무선 초음파 프로브인 경우 초음파 프로브(100)에 전원을 공급하는 배터리(미도시)를 추가적으로 구비할 수 있다.
본체(200)는 도 2에 도시된 바와 같이 신호 생성부(210), 영상 생성부(211), 볼륨 데이터 생성부(212), 저장 장치(213) 및 제어부(220)를 포함할 수 있다.
신호 생성부(210)는 빔 포밍된 신호에 대해 다양한 신호 처리를 수행할 수 있다. 예를 들어 신호 생성부(210)는 필터링 프로세스, 검출 프로세스 및 압축 프로세스 중 적어도 하나를 수행할 수 있다. 필터링 프로세스는 빔 포밍된 신호에 필터를 적용하여 특정 대역폭의 신호 외의 다른 신호는 제거하는 프로세스이다. 필터링 프로세스는 기본 주파수 성분을 제거하고 고조파 신호를 통과시키는 고조파 영상화 프로세스를 포함할 수 있다. 검출 프로세스는 초음파 신호의 전압을 무선 주파수 형태에서 비디오 신호 형식으로 변환하는 프로세스이다. 압축 프로세스는 초음파 신호 사이의 진폭 차를 감소시키는 프로세스이다. 신호 생성부(210)는 필요에 따라서 생략될 수 있다.
영상 생성부(230)는 빔 포밍된 신호 또는 신호 생성부(210)에서 처리된 신호를 정지 화상 또는 동화상의 형태의 초음파 영상으로 변환하고, 또한 필요에 따라 정지 화상 또는 동화상에 대한 소정의 영상 처리를 수행할 수 있다.
영상 생성부(230)는 주사 변환(Scan Conversion)을 이용하여 초음파 영상을 생성할 수 있다. 생성되는 초음파 영상은 A 모드, B 모드, M 모드, 도플러 모드 또는 3D 영상 등을 포함할 수 있다. 초음파 영상은 도플러 효과를 이용한 도플러 영상을 포함할 수 있다.
A 모드(Amplitude mode)의 초음파 영상은 목표 부위(98)와 초음파 프로브(100)와 대상체(99(사이의 거리 또는 시간을 기초로 반사의 강도를 진폭으로 영상화한 초음파 영상을 의미하며, B 모드(Brightness mode) 의 초음파 영상은 초음파의 강도를 밝기를 이용하여 표현한 초음파 영상을 의미한다.
M 모드(Motion mode)의 초음파 영상은 피사체의 동작의 변화 정도를 영상화 초음파 영상을 의미한다. 도플러 영상은, 혈액의 흐름을 나타내는 혈류 도플러 영상 (또는, 컬러 도플러 영상으로도 불림), 조직의 움직임을 나타내는 티슈 도플러 영상, 및 대상체의 이동 속도를 파형으로 표시하는 스펙트럴 도플러 영상을 포함할 수 있다.
또한, 영상 생성부(230)는 생성된 초음파 영상을 보정할 수도 있다. 예를 들어 영상 생성부(230)는 사용자가 초음파 영상 내의 조직을 명확하게 볼 수 있도록 초음파 영상의 전부 또는 일부 영역의 명도, 휘도, 선예도(sharpness), 대조도 또는 색상 등을 보정할 수도 있다. 필요에 따라서 영상 생성부(211)는 초음파 영상 내의 노이즈를 제거하거나 화소 보간을 수행할 수도 있다.
영상 생성부(211)는 생성 또는 보정된 초음파 영상을 저장 장치(213)에 전달하거나, 또는 디스플레이(280)에 표시하도록 할 수 있다. 또한 영상 생성부(211)는 생성 또는 보정된 초음파 영상을 볼륨 데이터 생성부(212)로 전달하여 초음파 볼륨 데이터가 획득되도록 할 수도 있다.
볼륨 영상 생성부(212)는 영상 생성부(211)에서 생성 또는 보정된 이차원 초음파 영상을 이용하여 삼차원 부피를 나타내는 초음파 볼륨 데이터를 획득할 수 있다.
상술한 신호 생성부(210), 영상 생성부(211), 볼륨 영상 생성부(212)는 중앙 처리 장치 또는 그래픽 처리 장치에 의해 구현될 수 있다. 중앙 처리 장치 또는 그래픽 처리 장치는 하나 또는 둘 이상의 반도체 칩 및 이와 관련된 부품을 이용하여 구현될 수 있다.
저장 장치(213)는 제어부(220)의 기능과 관련된 각종 프로그램이나 데이터, 초음파 영상 및 초음파 영상과 관련된 각종 정보를 저장할 수 있다. 저장부(213)는 반도체 저장 장치, 자기 디스크 저장 장치 또는 자기 테이프 저장 장치 등을 이용하여 구현될 수 있다.
제어부(220)는 사용자의 명령 또는 미리 정의된 설정에 따라 초음파 진단 장치(300)의 전반적인 동작을 제어할 수 있다. 예를 들어 제어부(220)는 조사될 초음파의 주파수에 따라 소정의 제어 명령을 생성한 후, 생성한 제어 명령을 제1 프로세서(130)의 펄서(131)로 전달할 수 있으며, 펄서(131)는 제어 명령에 따라 소정 주파수의 전압을 초음파 소자부(110)에 인가할 수 있다. 이에 따라 초음파 소자부(110)는 소정 주파수의 초음파를 생성하여 피사체(99)의 목표 부위(98)로 조사할 수 있게 된다.
제어부(220)는 제2 프로세서(221) 및 제2 프로세서(221)의 동작을 보조하기 위한 롬(ROM)이나 램(RAM)과 같은 저장 장치(222)를 포함할 수 있다. 제2 프로세서(221)는 중앙 처리 장치에 의해 구현될 수 있다. 중앙 처리 장치는 하나 또는 둘 이상의 반도체 칩 및 관련 부품에 의해 구현될 수 있다.
도 3은 초음파 프로브(100)의 초음파 송수신부(110) 모양에 따른 여러 종류의 초음파 프로브(100)를 도시한 외관도이다.
도 3의 (a)에 도시된 초음파 프로브(100a)는 직선형 프로브(Linear Probe)로서, 직선형 프로브(100a)는 트랜스듀서가 일자 형태로 배열된 것을 특징으로 하고 있다.
도 3의 (b)에 도시된 프로브는 곡선형(Convex) 초음파 프로브(100b)로서, 곡선형 초음파 프로브(100b)는 표면이 볼록하기 때문에 부채꼴 모양의 영상이 만들어지며 복부(Abdomen) 등의 넓은 부위를 검사하는데 주로 사용된다. 초음파 프로브(100)의 기본적인 동작 원리는 직선형 프로브와 동일하다.
도 3의 (c)에 도시된 프로브는 마이크로 곡선형(Micro Convex) 초음파 프로브(100c)로써, 마이크로 곡선형 초음파 프로브(100c)는 곡선형 프로브의 효과를 그대로 가지면서 좁은 부위를 검사하는데 용이하도록 소형으로 설계된 특징을 갖고 있다.
도 3의 (d)에 도시된 프로브는 2차원 매트릭스(Matrix) 배열형 초음파 프로브(100d)로써, 대상체의 360˚ 입체 영상을 실시간으로 제공하는 3차원 초음파 진단 영상을 제공할 수 있다.
다만, 이에 한정되는 것은 아니며, 프로브(100)는 위상 배열 프로브(Phased Array Probe), 3D Matrix 프로브 등 도 3에 예시된 바 이외에 당업계에 알려진 다른 형태로 마련될 수 있으며, 후술할 초음파 프로브(100)의 구조는 상기 설명한 어느 종류의 초음파 프로브의 구조로서 채용될 수 있으며, 후술한 초음파 프로브(100)의 특징은 상기 설명한 모든 종류의 초음파 프로브에 적용될 수 있다.
지금까지 초음파 프로브(100) 및 초음파 진단 장치(300)의 외부 구성 및 내부 구성에 대해 알아보았다. 이하 초음파 프로브(100) 음향 소자의 내부 적층 구조에 대해 알아본다.
도 4는 종래 기술에 따른, 초음파 프로브 음향 소자의 적층 구조를 도시한 도면이다.
도 4를 참조하면, 초음파 프로브의 음향 소자는 압전층(13), 압전층(13) 상부에 배치되는 정합층(12), 정합층(12) 상부에 배치되는 음향 렌즈(Acoustic Lens, 11), 압전층(13) 상부에 배치되는 렌즈(11), 압전층(13) 하부에 배치되는 흡음층(15) 및 압전층(13)과 흡음층(15) 사이에 배치되는 연결부(14) 등을 포함할 수 있다.
구체적으로, 압전층(13)은 압전 물질(Piezoelectric Material)을 포함하며 압전 물질은 진동하면서 전기 신호와 음향 신호를 상호 변환시키는 역할을 한다. 또한, 도면에는 도시되지 않았으나 전기 신호를 연결하기 위한 전극이 압전층(13)의 상부 및 하부에 형성될 수 있다.
정합층(12) 압전층(13)과 대상체(99) 사이의 음향 임피던스 차이를 감소시켜 압전층(13)에서 방사된 초음파가 대상체에 효과적으로 전달될 수 있도록 하며 구성 방법에 따라 단일층으로 구성될 수 있고, 도 4에 도시된 바와 같이 제1 정합층(12a)과 제2 정합층(12b)으로 구성될 수 있다.
흡읍층(15)은 초음파 신호가 초음파 프로브의 후방으로 진행되는 것을 차단 또는 흡수시키거나 초음파를 반사시켜 영상 왜곡을 방지하는 역할을 하며, 초음파 프로브의 엘리베이션(Elevation) 방향에서 송신 초음파 신호를 소정의 위치에 집속(Focusing)시킬 수 있는 역할을 할 수 있다.
종래 기술에 의한 초음파 프로브의 경우, 도 4에 도시된 바와 같이 음향 소자를 구성하는 물질들이 모두 동일한 모형으로 적층되어 있 이러한 구조의 경우 초음파 프로브의 제조 방법은 용이한 반면, 초음파 프로브의 특성이 일관된 문제점이 존재하였다.
즉, 동일한 모형으로 인해 초음파 프로브의 중심부에서 방사되는 음향 에너지의 크기와 측면에서 방사되는 음향 에너지의 크기가 동일하여 초음파 신호의 지향성이 떨어지고, 측면의 로브(Lobe)가 증가하는 문제가 존재하였다.
그러나 본 발명에 의한 초음파 프로브(100)의 경우, 연결부(50)의 구조가 일부 변형되어 있어, 초음파 프로브(100)의 중심부에서 방사되는 음향 에너지의 크기가 측면에서 방사되는 음향 에너지의 크기보다 큰 특징을 가지고 있다. 따라서, 초음파 신호의 지향성이 향상됨과 동시에 초음파 프로브(100)의 측면의 로브(Lobe)를 감소시키는 효과가 존재한다. 이하 도면을 통하여 본 발명의 구조에 대해 알아본다.
도 5는 본 발명의 일 실시예에 따른, 초음파 프로브(100) 음향 소자의 적층 구조를 도시한 도면이며, 도 6은 본 발명의 일 실시예에 따른, 초음파 프로브(100) 음향 소자의 분해 사시도이다. 도 7과 도 8은 본 발명의 일 실시예에 따른, 연결부의 위치에 따라 다르게 방사되는 음향 에너지의 크기를 도시한 도면이고, 도 9는 본 발명의 일 실시예에 따른 초음파 프로브에서 방출되는 초음파 신호의 형태와 종래기술에 따른 초음파 프로브에서 방출되는 초음파 신호의 형태를 비교 도시한 도면이다.
도 5와 도 6을 참고하면, 본 발명에 의한 초음파 프로브(100)는 압전층(40), 압전층(40) 상부에 배치되는 정합층(30), 압전층(40) 상부에 배치되는 음향 렌즈(20), 압전층(40) 하부에 배치되는 흡음층(60) 및 압전층(40)과 흡음층(60) 사이에 배치되는 연결부(50) 등을 포함할 수 있다.
연결부(50)를 제외한 렌즈(20), 정합층(30), 압전층(40) 및 흡음층(60)의 특징은 도 4에서 설명한 바와 동일한바 연결부(50)의 구조 및 특성에 대해 설명한다.
연결부(50)는 그 명칭에 따라 인터커넥션 레이어(Interconnection Layer)로 지칭되기도 하며, 도 4에는 압전층(40)와 흡음층(60) 사이에 배치되었으나, 이에 한정되는 것은 아니고 압전층(40)과 정합층(30) 사이에도 추가적으로 배치될 수 있다.
또한, 연결부(50)는 압전층(40)와 전기적으로 연결되어 있으며, 사용 목적에 따라 적어도 하나의 연성회로기판(PCB)를 포함할 수 있으며, 전도성 물질을 포함할 수 도 있다.
초음파 프로브(100)의 압전층(40)은 연결부(50)의 하부에 배치되어 있기 때문에, 압전층(40)은 연결부(50)의 질량 부하(Mass Loading)로 인해 진동을 하면서 음향 신호를 외부로 방사한다. 그리고 압전층(40)에서 방사되는 에너지의 크기는 연결부(40)의 크기, 재질, 두께에 따라 다르게 방사된다.
그러나 종래 기술에 의한 초음파 프로브의 경우 연결부의 모형이 음향 소자에 적층되어 있는 다른 물질들과 동일한 모형, 예를 들어 직사각형 모형을 하고 있어 초음파 프로브의 중심부나 측면 방향에서 방사되는 음향 에너지의 크기가 동일하였다. 따라서, 초음파 프로브 신호의 지향성이 좋지 않고 초음파 프로브의 측면의 로브(Lobe)가 증가하는 문제가 존재하였다.
그러나, 본 발명에 의한 초음파 프로브(100)의 경우, 도 6에 도시된 바와 같이 연결부(50)의 일 부분이 변형되어 있어 압전층(40)에 가해지는 연결부(50)의 질량 부하 효과는 압전층(40)의 위치마다 다르며, 이러한 특징으로 인해 압전층(40)에서 방사되는 에너지의 크기 또한 위치마다 다르게 방사된다.
도 7은 이를 설명하기 위한 도면으로서, 도 7의 (a)는 본 발명의 일 실시예에 따른 연결부의 일 형태를 도면이고 (b)는 엘리베이션 위치에 따른 연결부(50)의 면적 비율을 나타낸 그래프이며, (c)는 초음파 프로브(100)의 엘리베이션 위치에 따라 방사되는 에너지의 크기를 도시면 그래프이고, (d)는 도 7 (a)에 도시된 연결부(50)가 초음파 프로브(100)에 탑재된 경우 초음파 프로브(100)를 측면에서 바라본 사시도이다.
도 7 (a)를 참고하면, 연결부(50)의 폭은 연결부(50)의 측면에서는 넓다가 연결부(50)의 중심으로 갈수록 감소하는 형태를 하고 있으며, 도 7의 (b)는 이러한 형태를 그래프로 도시한 도면이다.
그리고 연결부(50)가 도 7의 (a)와 같은 형태를 취하는 경우, 도 7 (c)에 도시된 바와 같이 초음파 프로브(100)에서 방사되는 에너지의 크기가 그 위치에 따른 다른 특성을 가지고 있다.
즉, 연결부(50)는 압전층(40)가 전기적으로 연결되어 있고 적어도 하나의 연성회로기판(PCB)을 포함할 수 있기 때문에, 초음파 프로브(100)에서 방사되는 음향 에너지의 크기는 연성회로기판의 유무에 따라 달라진다.
따라서, 도 7 의 (a)와 같은 구조를 취하는 경우 연결부(60)의 폭이 상대적으로 넓은 측면에서는 초음파 프로브(100)에서 방사되는 음향 에너지의 크기는 작으나, 연결부(50)의 폭이 상대적으로 넓은 중심부의 경우 초음파 프로브(100)에서 방사되는 에너지의 크기가 크다.
따라서, 초음파 프로브(100)의 중심부에서 방사되는 음향 에너지의 크기가 측면에서 방사되는 에너지의 크기보다 크므로 초음파 신호의 지향성이 향상될 수 있다.
즉, 종래 기술에 따른 초음파 프로브의 초음파 신호 패턴은 도 9의 (b)에 도시된 바와 같이 신호가 옆으로 퍼지는 경향이 있었으나, 본 발명에 의한 초음파 프로브(100) 신호의 패턴은 도 9의 (a)에 도시된 바와 같이 상대적으로 중심부에 쏠려 있어, 초음파 신호의 지향성이 종래 기술보다 향상될 수 있다.
또한, 측면에서 방사되는 음향 신호의 크기가 중심부에서 방사되는 음향 신호의 크기보다 작으므로 초음파 프로브(100) 측면에서 방사되는 사이드 로브(Side Lobe)를 줄일 수 있고 동시에 초음파 신호의 초점 범위(Focal Zone)를 넓힐 수 있다.
또한, 초음파 프로브(100)의 중심부에서 방사되는 음향 에너지와 측면에서 방사되는 음향 에너지 크기의 차이를 이용하여 인접하는 상끼리의 중복을 억제할 수 있는 아포디제이션(Apodization) 효과를 얻을 수 있다.
도 10은 본 발명의 일 실시예에 따른, 연결부의 다양한 형태를 도시한 도면이다.
도 6에서 대표적인 실시예로, 연결부(50)의 모형이 오목한 형태를 대칭적으로 갖는 모습으로 도시하였으나, 이에 한정되는 것은 아니고 도 10에 도시된 것처럼 연결부(50)는 다양한 형태를 취할 수 있다.
즉, 도 10의 (b) 와 (d) 처럼 곡선이 아닌 직사각형이 모인 형태를 취할 수 있고, 도 10의 (c)처럼 도 10의 (a)와 반대 모형의 볼록한 형태를 취할 수 도 있다. 이러한 경우 연결부(50)의 형태가 달라지므로 앞서 설명한 바와 같이 초음파 프로브(100)에서 방사되는 에너지의 크기 또한 그 위치에 따라 달라진다.
따라서, 초음파 프로브의 사용 환경 및 목적에 맞추어 연결부(50)에 모형을 변경하여 목적에 맞는 초음파 프로브를 생산할 수 있다.
또한, 연결부(50)의 모형은 도 10에 도시된 형태에 한정되는 것은 다양한 형태를 취할 수 있다. 사용 목적에 따라 연결부(50)의 적어도 일부분이 변형될 수 있으며, 연결부(50)의 일 측면은 곡선 형태 또는 내측으로 함물된 형태를 취할 수 있다.
또한, 연결부(50)의 외주면은 볼록한 또는 오목한 형태를 대칭적으로 취할 수 있으며, 연결부(50)의 폭은 연결부(50)의 일 측면에서부터 연결부(50)의 중심까지 서로 다른 폭을 갖거나 연결부(50)의 일 측면에서부터 연결부(50)의 중심까지 선형적으로 증가하거나 곡선 형태 또는 연결부(50)의 일 측면에서부터 연결부(50)의 중심까지 선형적으로 감소하거나 곡선 형태로 감소하는 형태를 취할 수 있다.
또한, 연결부(50)는 그 사용 목적에 맞추어 방사되는 음향 신호의 크기가 연결부(50)의 일 측면에서부터 연결부의 중심까지 선형적으로 증가 또는 감소하거나 곡선 형태로 증가 또는 감소하도록 연결부(50)의 일부분이 변형되는 형태를 취할 수 있으며, 원, 타원 또는 마름모의 형태를 취할 수 도 있다.
도 11은 연결부가 도 10의 (c) 형태를 취하는 경우 위치에 따라 방출되는 방사 에너지의 크기를 도시한 도면이다.
도 11의 (a)를 참고하면, 연결부(50)의 넓이는 측면에서는 작으나 중심으로 갈수록 연결부(50)의 폭은 커지며, 다시 다른 측면으로 갈수록 연결부(50)가 폭이 작아짐을 알 수 있다. 도 11의 (b)는 이러한 형태를 그래프를 이용하여 표시한 도면이다.
연결부(50)가 도 11의 (a)와 같은 형태를 취하는 경우, 도 11 (c)에 도시된 바와 같이 초음파 프로브(100)에서 방사되는 에너지의 크기가 변한다.
즉, 연결부(50)는 압전층(40)가 전기적으로 연결되어 있고 적어도 하나의 연성회로기판(PCB)을 포함할 수 있으므로 초음파 프로브(100)에서 방사되는 음향 에너지의 크기는 연성회로기판의 유무에 따라 다르게 방사된다.
따라서, 도 11 의 (a)와 같은 구조를 취하는 경우 연결부(50)의 폭이 상대적으로 넓은 측면에서는 초음파 프로브(100)에서 방사되는 음향 에너지의 크기는 크나, 연결부(50)의 상대적인 폭이 작은 중심부로 향할수록 초음파 프로브(100)에서 방사되는 에너지의 크기는 작아진다. 따라서, 이러한 특성을 이용하여 그 목적에 따라 초음파 프로브의 활용도를 높일 수 있다.
도 12 본 발명의 다른 실시예에 따른, 초음파 프로브 음향 소자의 적층 구조를 도시한 도면이고, 도 13과 14는 본 발명의 다른 실시예에 따른, 연결부의 다양한 형태를 도시한 도면이다.
도 12를 참고하면, 본 발명에 다른 실시예에 의한 초음파 프로브(100)는 압전층(40), 압전층(40) 상부에 배치되는 정합층(30), 압전층(40) 상부에 배치되는 음향 렌즈(20), 압전층(40) 하부에 배치되는 흡음층(60) 및 압전층(40)과 흡음층(60) 사이에 배치되는 복수 개의 연결부(50a, 50b)를 포함할 수 있고, 제1 연결부(50a)와 제2 연결부(50b) 사이에는 절연층(70)이 포함될 수 있으며, 음향 렌즈(20), 정합층(30), 압전층(40), 흡음층(60)은 도 5에 설명된 내용과 동일하다.
도 12에 도시된 초음파 프로브(100)의 경우, 두 개의 연결부(50a, 50b)를 포함할 수 있으며, 두 개의 연결부(50a, 50b)는 도 13에 도시된 바와 같이 초음파 프로브(100)의 사용 목적 및 제조 환경에 따라 다양한 형태를 가질 수 있다.
즉, 제1 연결부(50a)만이 볼록한 형태이거나 오목한 형태일 수 있고(도 13의 a, b) 제2 연결부(50a) 만이 볼록한 형태거나 오목한 형태 일 수 있다. (도 13의 c, d) 또한, 제1 연결부(50a)와 제2 연결부(50b) 둘 다 볼록한 형태이거나 오목한 형태일 수 있으며(도 13의 e, f), 제 1연결부(50a)는 볼록한 형태, 제2 연결부(50b)는 오목한 형태 또는 제 1연결부(50a)는 오목한 형태, 제2 연결부(50b)는 볼록한 형태일 수 있다.
또한, 제1 연결부(50a)와 제2 연결부(50b)의 이러한 형태는 도 13에 도시된 형태로 한정되는 것은 아니며, 도 10에서 설명된 다양한 형태를 가질 수 있으며, 도 12에는 두 개의 연결부(50a, 50b)를 도시하였지만 이에 한정되는 것은 아니고 두 개 이상의 복수 개의 연결부(50)를 포함할 수도 있다.
그리고 도 14에 도시된 바와 같이, 제2 연결부(50b)는 존재하지 않고 제 1연결부(50a)와 절연층(70)만이 압전층(40)과 흡음층(60) 사이에 배치될 수 있으며, 제1 연결부(50a)는 직사각형 형태(도 14의 a), 볼록한 형태(도 14의 b) 오목한 형태(도 14의 c) 등 다양한 형태로 구성될 수 있다.
지금까지 본 발명의 다양한 실시 예를 통하여 본 발명의 특징 및 효과에 대해 알아보았다.
종래 기술에 따른 초음파 프로브의 경우 음향 소자를 구성하는 물질이 모두 동일한 형태로 적층되어 있어, 초음파 프로브에서 방사되는 에너지의 크기가 모든 면에서 일정하였다. 따라서, 초음파 신호의 지향성이 떨어지고, 측면의 로브(Lobe)가 증가하는 문제가 존재하였다
그러나 본 발명에 의한 초음파 프로브(100)의 경우, 연결부(50)의 형태가 일부 변형되어 있어, 초음파 프로브(100)에서 방사되는 음향 에너지의 크기가 측면에서 방사되는 음향 에너지의 크기보다 큰 특징을 가지고 있어, 초음파 신호의 지향성이 향상되고 동시에 초음파 프로브(100)의 측면의 로브(Lobe)를 감소시키는 효과가 있다.
지금까지 실시 예들이 비록 한정된 실시 예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및 / 또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다. 그러므로, 다른 구현들, 다른 실시 예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (15)

  1. 압전층;
    상기 압전층 하부에 배치되고 음향 신호를 흡수하는 흡음층;
    상기 압전층과 상기 흡음층 사이에 배치되는 연결부;를 포함하고
    상기 연결부는,
    상기 연결부로 인해 상기 압전층에서 방사되는 복수 개의 음향 신호의 크기가 서로 다른 크기를 갖도록 상기 연결부의 적어도 일부분이 변형된 초음파 프로브.
  2. 제 1항에 있어서,
    상기 연결부는,
    상기 연결부의 중심선을 기준으로 대칭인 형태를 갖는 초음파 프로브.
  3. 제 1항에 있어서,
    상기 연결부의 적어도 일 측면은 곡선의 형태를 갖는 초음파 프로브.
  4. 제 1항에 있어서,
    상기 연결부의 적어도 일 측면은 내측으로 함물된 형태를 갖는 초음파 프로브.
  5. 제 1항에 있어서,
    상기 연결부의 외주면은,
    볼록한 형태를 대칭적으로 갖는 초음파 프로브.
  6. 제 1항에 있어서,
    상기 연결부의 외주면은,
    오목한 형태를 대칭적으로 갖는 초음파 프로브.
  7. 제 1항에 있어서,
    상기 연결부의 폭은
    상기 연결부의 일 측면에서부터 상기 연결부의 중심까지 서로 다른 폭을 갖는 초음파 프로브.
  8. 제 1항에 있어서,
    상기 연결부의 폭은,
    상기 연결부의 일 측면에서부터 상기 연결부의 중심까지 선형적으로 증가하거나 곡선 형태로 증가하는 초음파 프로브.
  9. 제 1항에 있어서,
    상기 연결부의 폭은,
    상기 연결부의 일 측면에서부터 상기 연결부의 중심까지 선형적으로 감소하거나 곡선 형태로 감소하는 초음파 프로브.
  10. 제 1항에 있어서,
    상기 연결부는,
    상기 압전층에 의해 방사되는 음향 신호의 크기가 상기 연결부의 일 측면에서부터 상기 연결부의 중심까지 선형적으로 증가하거나 곡선 형태로 증가하도록 상기 연결부의 일부분이 변형된 초음파 프로브.
  11. 제 1항에 있어서,
    상기 연결부는,
    상기 압전층에 의해 방사되는 음향 신호의 크기가 상기 연결부의 일 측면에서부터 상기 연결부의 중심까지 선형적으로 감소하거나 곡선 형태로 감소하도록 상기 연결부의 일부분이 변형된 초음파 프로브.
  12. 제 1항에 있어서,
    상기 연결부는,
    복수 개의 연결층을 포함하고 상기 연결층 사이에는 절연층이 배치되는 초음파 프로브.
  13. 제 1항에 있어서,
    상기 연결부는,
    제1 연결부 및 제2 연결부를 포함하고, 상기 제1 연결부와 제2 연결부 사이에는 절연층이 배치되는 초음파 프로브.
  14. 제 12항에 있어서,
    상기 제1 연결부의 외주면은,
    볼록한 형태 또는 오목한 형태를 대칭적으로 갖는 초음파 프로브.
  15. 제 13항 또는 제 14항에 있어서,
    상기 제2 연결부의 외주면은,
    볼록한 형태 또는 오목한 형태를 대칭적으로 갖는 초음파 프로브.
PCT/KR2017/007782 2017-02-23 2017-07-19 초음파 프로브 WO2018155772A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/488,365 US11555906B2 (en) 2017-02-23 2017-07-19 Ultrasonic probe
EP17898243.5A EP3581110B1 (en) 2017-02-23 2017-07-19 Ultrasonic probe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0024070 2017-02-23
KR1020170024070A KR20180097285A (ko) 2017-02-23 2017-02-23 초음파 프로브

Publications (1)

Publication Number Publication Date
WO2018155772A1 true WO2018155772A1 (ko) 2018-08-30

Family

ID=63253241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007782 WO2018155772A1 (ko) 2017-02-23 2017-07-19 초음파 프로브

Country Status (4)

Country Link
US (1) US11555906B2 (ko)
EP (1) EP3581110B1 (ko)
KR (1) KR20180097285A (ko)
WO (1) WO2018155772A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022092888A (ja) * 2020-12-11 2022-06-23 コニカミノルタ株式会社 音響レンズ、超音波探触子、及び、超音波診断装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003299196A (ja) * 2002-03-29 2003-10-17 Nippon Dempa Kogyo Co Ltd 超音波探触子
US20060079785A1 (en) * 2004-09-30 2006-04-13 Yasuharu Hosono Ultrasonic probe and ultrasonic diagnostic apparatus
JP4338568B2 (ja) * 2004-03-30 2009-10-07 アロカ株式会社 超音波探触子及び超音波診断装置
JP2011146764A (ja) * 2010-01-12 2011-07-28 Toshiba Corp 超音波プローブ
KR20150020945A (ko) * 2013-08-19 2015-02-27 삼성메디슨 주식회사 초음파 프로브 및 그 제조 방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003135458A (ja) 2001-10-30 2003-05-13 Hitachi Ltd 超音波探触子、超音波撮像装置及び撮像方法
CN101536545B (zh) * 2006-11-08 2013-02-06 松下电器产业株式会社 超声波探头
KR101196214B1 (ko) * 2010-09-06 2012-11-05 삼성메디슨 주식회사 초음파 진단장치용 프로브
KR101362378B1 (ko) * 2011-12-13 2014-02-13 삼성전자주식회사 초음파 진단장치용 프로브
KR20130104202A (ko) * 2012-03-13 2013-09-25 삼성메디슨 주식회사 초음파 진단장치용 프로브
JP6149425B2 (ja) * 2013-03-01 2017-06-21 コニカミノルタ株式会社 超音波探触子の製造方法
JP6186957B2 (ja) * 2013-07-04 2017-08-30 コニカミノルタ株式会社 超音波探触子及び超音波画像診断装置
WO2015068080A1 (en) * 2013-11-11 2015-05-14 Koninklijke Philips N.V. Robust ultrasound transducer probes having protected integrated circuit interconnects
EP2894631B1 (en) * 2013-12-20 2018-08-22 Samsung Medison Co., Ltd. Ultrasonic diagnostic apparatus and manufacturing method thereof
KR102369731B1 (ko) * 2014-12-26 2022-03-04 삼성메디슨 주식회사 프로브 및 프로브의 제조방법
KR101625657B1 (ko) * 2015-10-27 2016-05-30 알피니언메디칼시스템 주식회사 초음파 프로브
CN109804643B (zh) * 2016-10-13 2021-02-19 富士胶片株式会社 超声波探头及超声波探头的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003299196A (ja) * 2002-03-29 2003-10-17 Nippon Dempa Kogyo Co Ltd 超音波探触子
JP4338568B2 (ja) * 2004-03-30 2009-10-07 アロカ株式会社 超音波探触子及び超音波診断装置
US20060079785A1 (en) * 2004-09-30 2006-04-13 Yasuharu Hosono Ultrasonic probe and ultrasonic diagnostic apparatus
JP2011146764A (ja) * 2010-01-12 2011-07-28 Toshiba Corp 超音波プローブ
KR20150020945A (ko) * 2013-08-19 2015-02-27 삼성메디슨 주식회사 초음파 프로브 및 그 제조 방법

Also Published As

Publication number Publication date
EP3581110A4 (en) 2020-02-19
EP3581110B1 (en) 2024-07-03
US11555906B2 (en) 2023-01-17
US20200237340A1 (en) 2020-07-30
KR20180097285A (ko) 2018-08-31
EP3581110A1 (en) 2019-12-18

Similar Documents

Publication Publication Date Title
JP5679983B2 (ja) 超音波トランスデューサ・プローブ用のフロントエンド回路
JP5210080B2 (ja) 医用撮像装置
KR20100016338A (ko) 저 전력 초음파 시스템
WO2021167274A1 (ko) 초음파 프로브 및 그 제조 방법
KR102656560B1 (ko) 초음파 진단 장치 및 그 제어 방법
JP2016509925A (ja) 超音波画像診断装置および超音波診断画像を生成する方法
KR20180063564A (ko) 초음파 프로브 및 이를 포함하는 초음파 진단 장치
JP5475971B2 (ja) 超音波診断装置
JP5255472B2 (ja) 超音波プローブ及びその充電装置
JP6510290B2 (ja) 超音波プローブ及び超音波診断装置
JP2009082449A (ja) 医用撮像装置
KR20170033222A (ko) 초음파 프로브, 이를 포함하는 초음파 영상 장치 및 그 제어 방법
WO2018155772A1 (ko) 초음파 프로브
JP2006187593A (ja) クライアント/サーバ基盤の超音波診断システム
WO2017126793A1 (ko) 초음파 프로브 및 초음파 프로브의 제조 방법
WO2016006739A1 (ko) 초음파 프로브 및 초음파 영상장치
KR20180097270A (ko) 초음파 진단 장치 및 그 제어 방법
WO2017195983A1 (ko) 초음파 프로브
JP2009172014A (ja) 超音波診断装置
WO2019151673A1 (ko) 초음파 프로브
US11564664B2 (en) Ultrasound diagnostic apparatus and control method thereof
WO2014196783A1 (ko) 혈관 내 초음파 변환자의 시야각 확대장치 및 방법
JP2013243462A (ja) 超音波プローブおよび超音波診断装置
JP2006192031A (ja) 超音波画像診断装置
US11185306B2 (en) Ultrasound probe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017898243

Country of ref document: EP

Effective date: 20190909