WO2018155701A1 - Magnetic sensor - Google Patents

Magnetic sensor Download PDF

Info

Publication number
WO2018155701A1
WO2018155701A1 PCT/JP2018/007127 JP2018007127W WO2018155701A1 WO 2018155701 A1 WO2018155701 A1 WO 2018155701A1 JP 2018007127 W JP2018007127 W JP 2018007127W WO 2018155701 A1 WO2018155701 A1 WO 2018155701A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic layer
wiring
magnetic sensor
layer
Prior art date
Application number
PCT/JP2018/007127
Other languages
French (fr)
Japanese (ja)
Inventor
剛男 五木田
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to JP2019501869A priority Critical patent/JP7099438B2/en
Publication of WO2018155701A1 publication Critical patent/WO2018155701A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a magnetic sensor, and more particularly to a magnetic sensor including a magnetoresistive effect element and a magnetic layer formed on a substrate.
  • Magnetic sensors using magnetoresistive elements are widely used in ammeters, magnetic encoders, and the like, and may include a magnetic layer for converging magnetic flux to the magnetoresistive elements.
  • a magnetoresistive element is arranged in a gap formed by two magnetic layers (thin film yokes), and thereby a magnetic flux in a predetermined direction is efficiently applied to the magnetoresistive element. ing.
  • the magnetic sensor described in Patent Document 1 uses the magnetic layer as a part of the signal wiring, when an electromagnetic wave flying from the outside enters the magnetic layer, the signal is transmitted through the magnetic layer. There was a problem that noise was superimposed on the wiring.
  • the magnetoresistive effect element and the magnetic layer may be insulated and separated, but even in this case, the magnetoresistive effect element and the magnetic layer need to be arranged close to each other. Therefore, both of them are capacitively coupled, and high frequency noise may be superimposed on the signal wiring.
  • an object of the present invention is to prevent noise caused by electromagnetic waves flying from the outside from being superimposed on a signal wiring in a magnetic sensor including a magnetoresistive effect element and a magnetic layer formed on a substrate.
  • a magnetic sensor according to the present invention is provided on a substrate, a magnetoresistive effect element provided on the substrate and connected between a power supply wiring and a signal wiring, and adjacent to the magnetoresistive effect element. And a magnetic layer connected to the power supply wiring.
  • the magnetic layer adjacent to the magnetoresistive effect element since the magnetic layer adjacent to the magnetoresistive effect element is connected to the power supply wiring, noise due to electromagnetic waves flying from the outside does not directly overlap the signal wiring. In addition, since the magnetic layer is connected to the power supply wiring, noise due to electromagnetic waves can be released to the power supply wiring. Furthermore, since the magnetic layer and the magnetoresistive effect element are connected to the same power supply wiring, an increase in the number of wirings can be minimized.
  • the magnetic sensor according to the present invention may further include a resistance element connected between the magnetic layer and the power supply wiring and having a resistance value lower than that of the magnetoresistance effect element.
  • the magnetic layer need not be directly connected to the power supply wiring, and may be connected via a resistance element having a lower resistance value than the magnetoresistive effect element.
  • the magnetic layer includes first and second magnetic layers, and the magnetoresistive element is formed by a gap between the first magnetic layer and the second magnetic layer. It is preferable to be disposed on the magnetic path. According to this, effective magnetic collection can be performed by the two magnetic layers, and high directivity can be provided.
  • the first magnetic layer is connected to the power line
  • the second magnetic layer is insulated from both the power line and the signal line
  • the area of the first magnetic layer May be larger than the area of the second magnetic layer.
  • the magnetic sensor according to the present invention preferably further comprises a resistance element connected between the signal wiring and another power supply wiring. According to this, it becomes possible to take out a change in the resistance value of the magnetoresistive effect element as a change in voltage.
  • the resistance element may be another magnetoresistance effect element.
  • the magnetic layer further includes a third magnetic layer, and the magnetoresistive element is formed by a gap between the first magnetic layer and the second magnetic layer.
  • the magnetic path includes a plurality of magnetoresistive elements arranged on the magnetic path and bridged by the magnetic path formed by the gap between the second magnetic layer and the third magnetic layer. . This makes it possible to further increase the amplitude of the output signal.
  • the power supply wiring is preferably a ground wiring. According to this, it is possible to reliably stabilize the potential of the magnetic layer and to prevent the occurrence of an unexpected short circuit failure.
  • a magnetic sensor including a magnetoresistive element and a magnetic layer formed on a substrate, it is possible to effectively prevent noise caused by electromagnetic waves flying from the outside from being superimposed on the signal wiring. It becomes possible.
  • FIG. 1 is a schematic plan view for explaining the configuration of the magnetic sensor 10A according to the first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view along the line AA shown in FIG.
  • FIG. 3 is a schematic plan view for explaining the configuration of the magnetic sensor 10B according to the second embodiment of the present invention.
  • FIG. 4 is a schematic plan view for explaining the configuration of a magnetic sensor 10C according to the third embodiment of the present invention.
  • FIG. 5 is a schematic plan view for explaining the configuration of a magnetic sensor 10D according to the fourth embodiment of the present invention.
  • FIG. 6 is a schematic plan view for explaining the configuration of a magnetic sensor 10E according to the fifth embodiment of the present invention.
  • FIG. 1 is a schematic plan view for explaining the configuration of the magnetic sensor 10A according to the first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view along the line AA shown in FIG.
  • FIG. 3 is a schematic plan view for explaining the configuration of the magnetic sensor 10B
  • FIG. 7 is a schematic plan view for explaining the configuration of the magnetic sensor 10F according to the sixth embodiment of the present invention.
  • FIG. 8 is a schematic plan view for explaining the configuration of a magnetic sensor 10G according to the seventh embodiment of the present invention.
  • FIG. 9 is a schematic plan view for explaining the configuration of the magnetic sensor 10H according to the eighth embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional view along the line DD shown in FIG.
  • FIG. 11 is a cross-sectional view showing a first modification of the magnetic sensor 10H.
  • FIG. 12 is a cross-sectional view showing a second modification of the magnetic sensor 10H.
  • FIG. 13 is a cross-sectional view showing a third modification of the magnetic sensor 10H.
  • FIG. 14 is a schematic plan view for explaining the configuration of the magnetic sensor 10I according to the ninth embodiment of the present invention.
  • FIG. 1 is a schematic plan view for explaining the configuration of the magnetic sensor 10A according to the first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view along the line AA shown in FIG.
  • the magnetic sensor 10 ⁇ / b> A includes the first and second magnetic layers 21 and 22 arranged in the x direction and the first (in the z direction) view in plan view. And a magnetoresistive effect element 11 disposed at a position overlapping with a gap provided between the first and second magnetic layers 21 and 22.
  • the magnetoresistive effect element 11 is an element whose electric resistance changes according to the direction and strength of the magnetic field.
  • the longitudinal direction of the magnetoresistive effect element 11 is the y direction
  • the sensitivity direction (fixed magnetization direction) is the direction indicated by the arrow B in FIGS. 1 and 2 (plus side in the x direction).
  • the first and second magnetic layers 21 and 22 function to collect the magnetic flux to be detected, align the direction of the magnetic flux, and apply this to the magnetoresistive element 11.
  • the first and second magnetic layers 21 and 22 may be a film made of a composite magnetic material in which a magnetic filler is dispersed in a resin material, or a thin film or foil made of a soft magnetic material such as nickel or permalloy. It may be a thin film or a bulk sheet made of ferrite or the like.
  • the magnetoresistive effect element 11 and the first and second magnetic layers 21 and 22 are both provided on the substrate 30.
  • a thin insulating layer 31 is formed on the surface of the substrate 30, and the magnetoresistive effect element 11 is formed on the surface of the insulating layer 31.
  • the magnetoresistive effect element 11 is covered with another insulating layer 32, and first and second magnetic layers 21 and 22 are formed on the surface of the insulating layer 32.
  • the insulating layer 32 may be omitted, and the magnetoresistive element 11 and the first and second magnetic layers 21 and 22 may be formed on the surface of the insulating layer 31.
  • the magnetoresistive effect element 11 and the first and second magnetic layers 21 and 22 are arranged so as to be adjacent to each other in the x direction. Therefore, when receiving a magnetic field in the x direction, a magnetic flux is generated from the first magnetic layer 21 to the second magnetic layer 22 (or from the second magnetic layer 22 to the first magnetic layer 21). At that time, the magnetic flux crosses the magnetoresistive element 11 in the x direction. As a result, the resistance value of the magnetoresistive effect element 11 changes depending on the direction and strength of the magnetic flux.
  • one end of the magnetoresistive effect element 11 in the y direction is connected to the ground wiring G, and the other end is connected to the signal wiring S.
  • the ground wiring G is a power supply wiring to which the ground potential GND is supplied.
  • a resistance element R is connected between the power supply wiring P to which the power supply potential Vcc is supplied and the signal wiring S.
  • the resistance element R may be a metal film resistance having a substantially constant resistance value, or may be a resistance value changing like a magnetoresistance effect element.
  • the first and second magnetic layers 21 and 22 and the signal wiring S need to be separated so as not to be directly connected.
  • the first and second magnetic layers 21 and 22 are connected to the ground wiring G, whereby the first and second magnetic layers 21 and 22 are fixed to the ground potential GND. Has been. For this reason, since the potentials of the first and second magnetic layers 21 and 22 hardly change even when an electromagnetic wave flying from the outside is received, no noise is generated in the output signal OUT due to the external electromagnetic wave.
  • the first and second magnetic layers 21 and 22 provided adjacent to the magnetoresistive element 11 are fixed to the ground potential GND. It is possible to suppress noise caused by electromagnetic waves.
  • the ground potential GND is applied to the first and second magnetic layers 21 and 22.
  • the present invention is not limited to this, and the ground potential GND is set to a fixed potential. It is not limited. Therefore, instead of applying the ground potential GND, the power supply potential Vcc may be supplied through the power supply wiring P.
  • it is effective to connect to a power supply wiring having a lower impedance, so it is most preferable to apply the ground potential GND.
  • the magnetoresistive effect element 11 and the first and second magnetic layers 21 and 22 are connected to the same power supply wiring (ground wiring G), but this point is not essential in the present invention. . Therefore, for example, the magnetoresistive effect element 11 may be connected to the ground wiring G, and the first and second magnetic layers 21 and 22 may be connected to the power supply wiring P. However, if the magnetoresistive effect element 11 and the first and second magnetic layers 21 and 22 are connected to the same power supply line as in this embodiment, an unexpected short circuit failure can be prevented and necessary. It is possible to reduce the number of wires.
  • FIG. 3 is a schematic plan view for explaining the configuration of the magnetic sensor 10B according to the second embodiment of the present invention.
  • the magnetic sensor 10B according to the present embodiment is different from the magnetic sensor 10B according to the first embodiment in that resistance elements R1 and R2 are connected between the first and second magnetic layers 21 and 22 and the ground wiring G, respectively. It is different from the sensor 10A. Since other configurations are the same as those of the magnetic sensor 10A according to the first embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • the resistance elements R1 and R2 are interposed therebetween. It doesn't matter.
  • the resistance values of the resistance elements R1 and R2 are preferably lower than the resistance value of the magnetoresistive effect element 11.
  • FIG. 4 is a schematic plan view for explaining the configuration of a magnetic sensor 10C according to the third embodiment of the present invention.
  • the magnetoresistive effect element 11 is divided into two magnetoresistive effect elements 11a and 11b, and another magnetic substance is provided between the magnetoresistive effect element 11a and the magnetoresistive effect element 11b.
  • the magnetic sensor 10A according to the first embodiment is different in that the layer 20 is disposed. Since other configurations are the same as those of the magnetic sensor 10A according to the first embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • each of the magnetoresistive effect elements 11a and 11b extends in the y direction, and both ends thereof are connected to each other through a wiring L.
  • the magnetic layer 20 is also an elongated magnetic body extending in the y direction, and is made of the same material as the first and second magnetic layers 21 and 22. By adding such a magnetic layer 20, it is possible to reduce the magnetic resistance between the first magnetic layer 21 and the second magnetic layer 22.
  • the magnetic layer 20 is not connected to any wiring and is in an electrically floating state, but a ground potential GND may be applied through the ground wiring G. Further, instead of dividing the magnetoresistive effect element 11 into the two magnetoresistive effect elements 11a and 11b, the magnetoresistive effect element 11 itself may be folded back into a U shape.
  • FIG. 5 is a schematic plan view for explaining the configuration of a magnetic sensor 10D according to the fourth embodiment of the present invention.
  • the area of the second magnetic layer 22 is smaller than the area of the first magnetic layer 21, and the second magnetic layer 22 is in an electrically floating state. However, it is different from the magnetic sensor 10A according to the first embodiment. Since other configurations are the same as those of the magnetic sensor 10A according to the first embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • the second magnetic layer 22 when the area of the second magnetic layer 22 is small, the influence of the external electromagnetic wave is small, and therefore the second magnetic layer 22 may be in a floating state without being connected to any wiring. . According to this, the number of wirings on the substrate 30 can be reduced.
  • FIG. 6 is a schematic plan view for explaining the configuration of a magnetic sensor 10E according to the fifth embodiment of the present invention.
  • the magnetic sensor 10E according to the present embodiment is different from the magnetic sensor 10A according to the first embodiment in that the second magnetic layer 22 is deleted. Since other configurations are the same as those of the magnetic sensor 10A according to the first embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • the magnetoresistive element 11 As illustrated in the present embodiment, it is not essential to sandwich the magnetoresistive element 11 between the two magnetic layers 21 and 22 in the present invention, and at least one magnetic layer 21 is adjacent to the magnetoresistive element 11. If it is arranged like this, it is enough.
  • FIG. 7 is a schematic plan view for explaining the configuration of the magnetic sensor 10F according to the sixth embodiment of the present invention.
  • the magnetic sensor 10F according to the present embodiment is different from the magnetic sensor 10A according to the first embodiment in that a magnetoresistive effect element 12 is provided instead of the resistance element R. Since other configurations are the same as those of the magnetic sensor 10A according to the first embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • the magnetoresistive effect element 12 is disposed at a position overlapping with the gap between the first magnetic layer 21 and the second magnetic layer 22, similarly to the magnetoresistive effect element 11.
  • the sensitivity direction (fixed magnetization direction) of the magnetoresistive effect element 11 is the direction indicated by the arrow C in FIG. 7 (minus side in the x direction). That is, the fixed magnetization directions of the magnetoresistive effect element 11 and the magnetoresistive effect element 12 are 180 ° different from each other.
  • the change in the resistance value of the magnetoresistive effect element 11 and the change in the resistance value of the magnetoresistive effect element 12 are complementary, the plus side magnetic field and the minus side magnetic field in the x direction Both can be detected and higher detection sensitivity can be obtained.
  • FIG. 8 is a schematic plan view for explaining the configuration of a magnetic sensor 10G according to the seventh embodiment of the present invention.
  • the first magnetic layer 21 is divided into two magnetic layers 21a and 21b
  • the second magnetic layer 22 is divided into two magnetic layers 22a and 22b.
  • the present embodiment is different from the magnetic sensor 10F according to the sixth embodiment. Since the other configuration is the same as that of the magnetic sensor 10F according to the sixth embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • the magnetic layers 21a, 21b, 22a, and 22b are all connected to the ground wiring G. For this reason, it becomes possible to acquire the effect similar to the magnetic sensor 10F by 6th Embodiment. Moreover, since both the first and second magnetic layers 21 and 22 are divided in the y direction, the magnetic resistance in the y direction is increased. As a result, it becomes difficult to be affected by the magnetic field in the y direction that is not the detection target, and the directivity is improved.
  • FIG. 9 is a schematic plan view for explaining the configuration of the magnetic sensor 10H according to the eighth embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional view along the line DD shown in FIG.
  • the magnetic sensor 10H according to the present embodiment is different from the magnetic sensor 10F according to the sixth embodiment in that magnetoresistive elements 13 and 14 and a third magnetic layer 23 are added.
  • the third magnetic layer 23 is connected to the ground wiring G in the same manner as the first and second magnetic layers 21 and 22.
  • the magnetoresistive effect elements 13 and 14 are arranged at a position overlapping the gap between the second magnetic layer 22 and the third magnetic layer 23.
  • the sensitivity directions (fixed magnetization directions) of these four magnetoresistive elements 11 to 14 are all directions indicated by the arrow B in FIG. 9 (plus side in the x direction), and are bridge-connected as shown in FIG. Yes.
  • the magnetoresistive elements 14 and 11 are connected in series, and the output signal OUT1 is output from the signal wiring S1 that is the contact point, and the magnetoresistive effect elements 12 and 13 are connected in series and the signal that is the contact point.
  • An output signal OUT2 is output from the wiring S2.
  • an external magnetic body 40 is disposed on the second magnetic layer 22, and external magnetic bodies 41 and 42 are disposed at both ends in the x direction of the substrate 30.
  • the external magnetic bodies 40 to 42 are blocks made of a soft magnetic material having a high magnetic permeability such as ferrite. Since the other configuration is the same as that of the magnetic sensor 10F according to the sixth embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • the external magnetic body 40 has a role of collecting magnetic flux ⁇ in the z direction (perpendicular to the main surface of the substrate 30) and distributing it to the left and right via the second magnetic layer 22. Fulfill. That is, half of the z-direction magnetic flux ⁇ collected by the external magnetic body 40 is bent toward the first magnetic layer 21 via the magnetoresistive effect elements 11 and 12, and the other half is magnetoresistive effect element. Bent to the third magnetic layer 23 side through 13 and 14. The force for bending the magnetic flux is enhanced by using the external magnetic bodies 41 and 42. Since these magnetoresistive elements 11 to 14 are bridge-connected, a potential difference corresponding to the density of the magnetic flux ⁇ is generated between the output signal OUT1 and the output signal OUT2.
  • the magnetic sensor 10H includes the external magnetic body 40 and the four magnetoresistance effect elements 11 to 14 are bridge-connected, so that the magnetic flux ⁇ in the z direction can be detected with high sensitivity. Is possible.
  • the magnetoresistive elements 11 to 14 are formed on the lower insulating layer 31, and the magnetic layers 21 to 23 are formed on the upper insulating layer 32.
  • the positions of the elements 11 to 14 and the magnetic layers 21 to 23 in the z direction are slightly different.
  • the magnetoresistive elements 11 to 14 are arranged at positions slightly offset in the z direction with respect to the gap formed by the magnetic layers 21 to 23, but are formed by the presence of the gap. Since it is located on the magnetic path, it can receive a magnetic flux flowing from one magnetic layer to the other magnetic layer. As described above, the position where the magnetoresistive effect element is provided may be slightly shifted from the gap formed by the two magnetic layers.
  • the width of the magnetoresistive effect elements 11 to 14 in the x direction is set to two magnetic materials as shown in FIG.
  • the gap formed by the layers may be larger than the width in the x direction.
  • the gap formed by the two magnetic layers may be formed in the z direction by using the three insulating layers 31 to 33. That is, the gap need not be planar.
  • the magnetoresistive effect element 11 is arranged in the gap formed by the overlap of the magnetic layer 21 and the magnetic layer 22, and the gap formed by the overlap of the magnetic layer 22 and the magnetic layer 23 is formed.
  • a magnetoresistive effect element 13 is arranged.
  • the magnetic layers 21 and 23 and the magnetic layer 22 may be formed on different planes and do not overlap each other.
  • the gap formed by the two magnetic layers is oblique.
  • the magnetoresistive effect element 11 is disposed in an oblique gap formed between the edge of the magnetic layer 21 and the edge of the magnetic layer 22, and the edge of the magnetic layer 22 and the magnetic body
  • the magnetoresistive element 13 is disposed in an oblique gap formed between the edge of the layer 23.
  • the gap formed by the two magnetic layers may be planar or three-dimensional.
  • the magnetoresistive effect element does not need to be strictly located in the gap, and may be located on the magnetic path formed by the existence of the gap.
  • FIG. 14 is a schematic plan view for explaining the configuration of the magnetic sensor 10I according to the ninth embodiment of the present invention.
  • the second and third magnetic layers 22 and 23 are not directly connected to the ground wiring G, but are connected to the ground wiring G through the first magnetic layer 21. This is different from the magnetic sensor 10H according to the eighth embodiment. Since the other configuration is the same as that of the magnetic sensor 10H according to the eighth embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • the present invention it is not essential that all the magnetic layers are directly connected to the power supply wiring such as the ground wiring G, and some of the magnetic layers are replaced with other magnetic layers. It may be connected to the power supply wiring. According to this, since it becomes easy to route power supply wiring such as the ground wiring G, the degree of freedom in design is increased.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

[Problem] To provide a magnetic sensor that prevents noise from being generated by electromagnetic waves from the outside. [Solution] The present invention comprises: a magnetoresistance effect element 11 that is provided upon a substrate and is connected between ground wiring G and signal wiring S; and magnetic layers 21, 22 that are provided upon the substrate so as to be adjacent to the magnetoresistance effect element 11 and are connected to the ground wiring G. Because the magnetic layers that are adjacent to the magnetoresistance effect element are connected to the ground wiring without touching the signal wiring, noise caused by electromagnetic waves that come in from the outside is not directly superimposed on the signal wiring. In addition, because the magnetic layers are connected to power supply wiring, the noise caused by the electromagnetic waves can be released along the power supply wiring.

Description

磁気センサMagnetic sensor
 本発明は磁気センサに関し、特に、基板上に形成された磁気抵抗効果素子及び磁性体層を含む磁気センサに関する。 The present invention relates to a magnetic sensor, and more particularly to a magnetic sensor including a magnetoresistive effect element and a magnetic layer formed on a substrate.
 磁気抵抗効果素子を用いた磁気センサは、電流計や磁気エンコーダなどに広く用いられており、磁束を磁気抵抗効果素子に収束させるための磁性体層を備えることがある。特許文献1に記載された磁気センサは、2つの磁性体層(薄膜ヨーク)によって形成されるギャップに磁気抵抗効果素子を配置し、これによって所定方向の磁束を磁気抵抗効果素子に効率よく印加している。 Magnetic sensors using magnetoresistive elements are widely used in ammeters, magnetic encoders, and the like, and may include a magnetic layer for converging magnetic flux to the magnetoresistive elements. In the magnetic sensor described in Patent Document 1, a magnetoresistive element is arranged in a gap formed by two magnetic layers (thin film yokes), and thereby a magnetic flux in a predetermined direction is efficiently applied to the magnetoresistive element. ing.
特開2005-257605号公報JP 2005-257605 A
 しかしながら、特許文献1に記載された磁気センサは、磁性体層を信号配線の一部として利用していることから、外部から飛来する電磁波が磁性体層に入射すると、磁性体層を介して信号配線にノイズが重畳するという問題があった。このような問題を解決するには、磁気抵抗効果素子と磁性体層とを絶縁分離すればよいが、この場合であっても、磁気抵抗効果素子と磁性体層は互いに近接して配置する必要があることから、両者が容量結合し、高周波ノイズが信号配線に重畳することがあった。 However, since the magnetic sensor described in Patent Document 1 uses the magnetic layer as a part of the signal wiring, when an electromagnetic wave flying from the outside enters the magnetic layer, the signal is transmitted through the magnetic layer. There was a problem that noise was superimposed on the wiring. In order to solve such a problem, the magnetoresistive effect element and the magnetic layer may be insulated and separated, but even in this case, the magnetoresistive effect element and the magnetic layer need to be arranged close to each other. Therefore, both of them are capacitively coupled, and high frequency noise may be superimposed on the signal wiring.
 したがって、本発明は、基板上に形成された磁気抵抗効果素子及び磁性体層を含む磁気センサにおいて、外部から飛来する電磁波によるノイズが信号配線に重畳することを防止することを目的とする。 Accordingly, an object of the present invention is to prevent noise caused by electromagnetic waves flying from the outside from being superimposed on a signal wiring in a magnetic sensor including a magnetoresistive effect element and a magnetic layer formed on a substrate.
 本発明による磁気センサは、基板と、前記基板上に設けられ、電源配線と信号配線との間に接続された磁気抵抗効果素子と、前記磁気抵抗効果素子と隣接するよう前記基板上に設けられ、前記電源配線に接続された磁性体層とを備えることを特徴とする。 A magnetic sensor according to the present invention is provided on a substrate, a magnetoresistive effect element provided on the substrate and connected between a power supply wiring and a signal wiring, and adjacent to the magnetoresistive effect element. And a magnetic layer connected to the power supply wiring.
 本発明によれば、磁気抵抗効果素子と隣接する磁性体層が電源配線に接続されていることから、外部から飛来する電磁波によるノイズが信号配線に直接重畳することがない。しかも、磁性体層が電源配線に接続されていることから、電磁波によるノイズを電源配線に逃がすことが可能となる。さらに、磁性体層と磁気抵抗効果素子は互いに同じ電源配線に接続されていることから、配線本数の増大を最小限に抑えることができる。 According to the present invention, since the magnetic layer adjacent to the magnetoresistive effect element is connected to the power supply wiring, noise due to electromagnetic waves flying from the outside does not directly overlap the signal wiring. In addition, since the magnetic layer is connected to the power supply wiring, noise due to electromagnetic waves can be released to the power supply wiring. Furthermore, since the magnetic layer and the magnetoresistive effect element are connected to the same power supply wiring, an increase in the number of wirings can be minimized.
 本発明による磁気センサは、前記磁性体層と前記電源配線との間に接続され、前記磁気抵抗効果素子よりも抵抗値の低い抵抗素子をさらに備えていても構わない。このように、磁性体層は電源配線に直接接続されている必要はなく、磁気抵抗効果素子よりも抵抗値の低い抵抗素子を介して接続されていても構わない。 The magnetic sensor according to the present invention may further include a resistance element connected between the magnetic layer and the power supply wiring and having a resistance value lower than that of the magnetoresistance effect element. As described above, the magnetic layer need not be directly connected to the power supply wiring, and may be connected via a resistance element having a lower resistance value than the magnetoresistive effect element.
 本発明において、前記磁性体層は第1及び第2の磁性体層を含み、前記磁気抵抗効果素子は、前記第1の磁性体層と前記第2の磁性体層との間のギャップによって形成される磁路上に配置されていることが好ましい。これによれば、2つの磁性体層によって効果的な集磁を行うことができるとともに、高い指向性を持たせることが可能となる。 In the present invention, the magnetic layer includes first and second magnetic layers, and the magnetoresistive element is formed by a gap between the first magnetic layer and the second magnetic layer. It is preferable to be disposed on the magnetic path. According to this, effective magnetic collection can be performed by the two magnetic layers, and high directivity can be provided.
 この場合、前記第1の磁性体層は、前記電源配線に接続され、前記第2の磁性体層は、前記電源配線及び前記信号配線の両方から絶縁され、前記第1の磁性体層の面積は、前記第2の磁性体層の面積よりも大きい構成であっても構わない。このように、面積の小さい磁性体層は、外来電磁波の影響を受けにくいため、このような磁性体層については電源配線から分離しても構わない。これによれば、配線本数の増大を抑制することが可能となる。 In this case, the first magnetic layer is connected to the power line, the second magnetic layer is insulated from both the power line and the signal line, and the area of the first magnetic layer May be larger than the area of the second magnetic layer. As described above, since the magnetic layer having a small area is not easily affected by external electromagnetic waves, such a magnetic layer may be separated from the power supply wiring. According to this, an increase in the number of wirings can be suppressed.
 本発明による磁気センサは、前記信号配線と別の電源配線との間に接続された抵抗素子をさらに備えることが好ましい。これによれば、磁気抵抗効果素子の抵抗値の変化を電圧の変化として取り出すことが可能となる。 The magnetic sensor according to the present invention preferably further comprises a resistance element connected between the signal wiring and another power supply wiring. According to this, it becomes possible to take out a change in the resistance value of the magnetoresistive effect element as a change in voltage.
 この場合、前記抵抗素子は別の磁気抵抗効果素子であっても構わない。これによれば、出力信号の振幅を拡大することが可能となる。さらにこの場合、前記磁性体層は第3の磁性体層をさらに含み、前記磁気抵抗効果素子は、前記第1の磁性体層と前記第2の磁性体層との間のギャップによって形成される磁路上、並びに、前記第2の磁性体層と前記第3の磁性体層との間のギャップによって形成される磁路上に配置され、ブリッジ接続された複数の磁気抵抗効果素子からなることが好ましい。これによれば、出力信号の振幅をさらに拡大することが可能となる。 In this case, the resistance element may be another magnetoresistance effect element. As a result, the amplitude of the output signal can be increased. Furthermore, in this case, the magnetic layer further includes a third magnetic layer, and the magnetoresistive element is formed by a gap between the first magnetic layer and the second magnetic layer. It is preferable that the magnetic path includes a plurality of magnetoresistive elements arranged on the magnetic path and bridged by the magnetic path formed by the gap between the second magnetic layer and the third magnetic layer. . This makes it possible to further increase the amplitude of the output signal.
 この場合、前記第2の磁性体層上に配置された外部磁性体をさらに備えることが好ましい。これによれば、基板に対して垂直方向の磁束を効率よく集磁することができるとともに、ブリッジ接続された複数の磁気抵抗効果素子に対して磁束を分配することが可能となる。 In this case, it is preferable to further include an external magnetic body disposed on the second magnetic layer. According to this, it is possible to efficiently collect magnetic flux in the direction perpendicular to the substrate, and to distribute magnetic flux to a plurality of bridge-connected magnetoresistive elements.
 本発明において、前記電源配線はグランド配線であることが好ましい。これによれば、磁性体層の電位を確実に安定させることができるとともに、予期せぬショート不良の発生などを防止することが可能となる。 In the present invention, the power supply wiring is preferably a ground wiring. According to this, it is possible to reliably stabilize the potential of the magnetic layer and to prevent the occurrence of an unexpected short circuit failure.
 このように、本発明によれば、基板上に形成された磁気抵抗効果素子及び磁性体層を含む磁気センサにおいて、外部から飛来する電磁波によるノイズが信号配線に重畳することを効果的に防止することが可能となる。 As described above, according to the present invention, in a magnetic sensor including a magnetoresistive element and a magnetic layer formed on a substrate, it is possible to effectively prevent noise caused by electromagnetic waves flying from the outside from being superimposed on the signal wiring. It becomes possible.
図1は、本発明の第1の実施形態による磁気センサ10Aの構成を説明するための略平面図である。FIG. 1 is a schematic plan view for explaining the configuration of the magnetic sensor 10A according to the first embodiment of the present invention. 図2は、図1に示すA-A線に沿った略断面図である。FIG. 2 is a schematic cross-sectional view along the line AA shown in FIG. 図3は、本発明の第2の実施形態による磁気センサ10Bの構成を説明するための略平面図である。FIG. 3 is a schematic plan view for explaining the configuration of the magnetic sensor 10B according to the second embodiment of the present invention. 図4は、本発明の第3の実施形態による磁気センサ10Cの構成を説明するための略平面図である。FIG. 4 is a schematic plan view for explaining the configuration of a magnetic sensor 10C according to the third embodiment of the present invention. 図5は、本発明の第4の実施形態による磁気センサ10Dの構成を説明するための略平面図である。FIG. 5 is a schematic plan view for explaining the configuration of a magnetic sensor 10D according to the fourth embodiment of the present invention. 図6は、本発明の第5の実施形態による磁気センサ10Eの構成を説明するための略平面図である。FIG. 6 is a schematic plan view for explaining the configuration of a magnetic sensor 10E according to the fifth embodiment of the present invention. 図7は、本発明の第6の実施形態による磁気センサ10Fの構成を説明するための略平面図である。FIG. 7 is a schematic plan view for explaining the configuration of the magnetic sensor 10F according to the sixth embodiment of the present invention. 図8は、本発明の第7の実施形態による磁気センサ10Gの構成を説明するための略平面図である。FIG. 8 is a schematic plan view for explaining the configuration of a magnetic sensor 10G according to the seventh embodiment of the present invention. 図9は、本発明の第8の実施形態による磁気センサ10Hの構成を説明するための略平面図である。FIG. 9 is a schematic plan view for explaining the configuration of the magnetic sensor 10H according to the eighth embodiment of the present invention. 図10は、図9に示すD-D線に沿った略断面図である。FIG. 10 is a schematic cross-sectional view along the line DD shown in FIG. 図11は、磁気センサ10Hの第1の変形例を示す断面図である。FIG. 11 is a cross-sectional view showing a first modification of the magnetic sensor 10H. 図12は、磁気センサ10Hの第2の変形例を示す断面図である。FIG. 12 is a cross-sectional view showing a second modification of the magnetic sensor 10H. 図13は、磁気センサ10Hの第3の変形例を示す断面図である。FIG. 13 is a cross-sectional view showing a third modification of the magnetic sensor 10H. 図14は、本発明の第9の実施形態による磁気センサ10Iの構成を説明するための略平面図である。FIG. 14 is a schematic plan view for explaining the configuration of the magnetic sensor 10I according to the ninth embodiment of the present invention.
 以下、添付図面を参照しながら、本発明の好ましい実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
<第1の実施形態>
 図1は、本発明の第1の実施形態による磁気センサ10Aの構成を説明するための略平面図である。図2は、図1に示すA-A線に沿った略断面図である。
<First Embodiment>
FIG. 1 is a schematic plan view for explaining the configuration of the magnetic sensor 10A according to the first embodiment of the present invention. FIG. 2 is a schematic cross-sectional view along the line AA shown in FIG.
 図1及び図2に示すように、本実施形態による磁気センサ10Aは、x方向に配列された第1及び第2の磁性体層21,22と、平面視で(z方向から見て)第1及び第2の磁性体層21,22との間に設けられたギャップと重なる位置に配置された磁気抵抗効果素子11とを備えている。磁気抵抗効果素子11は、磁界の向き及び強さに応じて電気抵抗が変化する素子である。本実施形態においては、磁気抵抗効果素子11の長手方向がy方向であり、感度方向(固定磁化方向)は図1及び図2の矢印Bが示す方向(x方向におけるプラス側)である。 As shown in FIGS. 1 and 2, the magnetic sensor 10 </ b> A according to the present embodiment includes the first and second magnetic layers 21 and 22 arranged in the x direction and the first (in the z direction) view in plan view. And a magnetoresistive effect element 11 disposed at a position overlapping with a gap provided between the first and second magnetic layers 21 and 22. The magnetoresistive effect element 11 is an element whose electric resistance changes according to the direction and strength of the magnetic field. In the present embodiment, the longitudinal direction of the magnetoresistive effect element 11 is the y direction, and the sensitivity direction (fixed magnetization direction) is the direction indicated by the arrow B in FIGS. 1 and 2 (plus side in the x direction).
 第1及び第2の磁性体層21,22は、検出すべき磁束を集磁し、磁束の向きを揃え、これを磁気抵抗効果素子11に印加する役割を果たす。第1及び第2の磁性体層21,22としては、樹脂材料に磁性フィラーが分散された複合磁性材料からなる膜であっても構わないし、ニッケル又はパーマロイなどの軟磁性材料からなる薄膜もしくは箔であっても構わないし、フェライトなどからなる薄膜又はバルクシートであっても構わない。 The first and second magnetic layers 21 and 22 function to collect the magnetic flux to be detected, align the direction of the magnetic flux, and apply this to the magnetoresistive element 11. The first and second magnetic layers 21 and 22 may be a film made of a composite magnetic material in which a magnetic filler is dispersed in a resin material, or a thin film or foil made of a soft magnetic material such as nickel or permalloy. It may be a thin film or a bulk sheet made of ferrite or the like.
 磁気抵抗効果素子11と第1及び第2の磁性体層21,22は、いずれも基板30上に設けられる。図2に示す例では、基板30の表面に薄い絶縁層31が形成され、絶縁層31の表面に磁気抵抗効果素子11が形成される。磁気抵抗効果素子11は別の絶縁層32で覆われ、絶縁層32の表面に第1及び第2の磁性体層21,22が形成されている。但し、絶縁層32を省略し、絶縁層31の表面に磁気抵抗効果素子11と第1及び第2の磁性体層21,22を形成しても構わない。 The magnetoresistive effect element 11 and the first and second magnetic layers 21 and 22 are both provided on the substrate 30. In the example shown in FIG. 2, a thin insulating layer 31 is formed on the surface of the substrate 30, and the magnetoresistive effect element 11 is formed on the surface of the insulating layer 31. The magnetoresistive effect element 11 is covered with another insulating layer 32, and first and second magnetic layers 21 and 22 are formed on the surface of the insulating layer 32. However, the insulating layer 32 may be omitted, and the magnetoresistive element 11 and the first and second magnetic layers 21 and 22 may be formed on the surface of the insulating layer 31.
 磁気抵抗効果素子11と第1及び第2の磁性体層21,22は、x方向に隣接するように配置されている。このため、x方向の磁界を受けると、第1の磁性体層21から第2の磁性体層22(或いは、第2の磁性体層22から第1の磁性体層21)への磁束が発生し、その際に磁気抵抗効果素子11を磁束がx方向に横切ることになる。これにより、磁気抵抗効果素子11の抵抗値が磁束の向き及び強さによって変化することになる。 The magnetoresistive effect element 11 and the first and second magnetic layers 21 and 22 are arranged so as to be adjacent to each other in the x direction. Therefore, when receiving a magnetic field in the x direction, a magnetic flux is generated from the first magnetic layer 21 to the second magnetic layer 22 (or from the second magnetic layer 22 to the first magnetic layer 21). At that time, the magnetic flux crosses the magnetoresistive element 11 in the x direction. As a result, the resistance value of the magnetoresistive effect element 11 changes depending on the direction and strength of the magnetic flux.
 図1に示すように、本実施形態においては、磁気抵抗効果素子11のy方向における一端がグランド配線Gに接続され、他端が信号配線Sに接続されている。グランド配線Gは、グランド電位GNDが供給される電源配線である。また、電源電位Vccが供給される電源配線Pと信号配線Sとの間には、抵抗素子Rが接続されている。これにより、信号配線Sに現れる出力信号OUTは、磁気抵抗効果素子11の抵抗値によって変化することになり、磁界の向き及び強さを検出することが可能となる。抵抗素子Rは、抵抗値がほぼ一定である金属皮膜抵抗であっても構わないし、磁気抵抗効果素子のように抵抗値が変化するものであっても構わない。当然ながら、第1及び第2の磁性体層21,22と信号配線Sは、直接接続されないよう分離しておく必要がある。 As shown in FIG. 1, in this embodiment, one end of the magnetoresistive effect element 11 in the y direction is connected to the ground wiring G, and the other end is connected to the signal wiring S. The ground wiring G is a power supply wiring to which the ground potential GND is supplied. Further, a resistance element R is connected between the power supply wiring P to which the power supply potential Vcc is supplied and the signal wiring S. As a result, the output signal OUT appearing on the signal wiring S changes depending on the resistance value of the magnetoresistive effect element 11, and the direction and strength of the magnetic field can be detected. The resistance element R may be a metal film resistance having a substantially constant resistance value, or may be a resistance value changing like a magnetoresistance effect element. Naturally, the first and second magnetic layers 21 and 22 and the signal wiring S need to be separated so as not to be directly connected.
 さらに、本実施形態においては、第1及び第2の磁性体層21,22がグランド配線Gに接続されており、これにより第1及び第2の磁性体層21,22がグランド電位GNDに固定されている。このため、外部から飛来する電磁波を受けても第1及び第2の磁性体層21,22の電位がほとんど変化しないため、外来電磁波によって出力信号OUTにノイズが発生することがない。 Further, in the present embodiment, the first and second magnetic layers 21 and 22 are connected to the ground wiring G, whereby the first and second magnetic layers 21 and 22 are fixed to the ground potential GND. Has been. For this reason, since the potentials of the first and second magnetic layers 21 and 22 hardly change even when an electromagnetic wave flying from the outside is received, no noise is generated in the output signal OUT due to the external electromagnetic wave.
 このように、本実施形態による磁気センサ10Aは、磁気抵抗効果素子11に隣接して設けられた第1及び第2の磁性体層21,22がグランド電位GNDに固定されていることから、外来電磁波に起因するノイズを抑制することが可能となる。尚、本実施形態においては第1及び第2の磁性体層21,22にグランド電位GNDを与えているが、本発明がこれに限定されるものではなく、固定電位であればグランド電位GNDに限定されるものではない。したがって、グランド電位GNDを与える代わりに、電源配線Pを介して電源電位Vccを与えても構わない。しかしながら、本発明による効果を高めるためには、よりインピーダンスの低い電源配線に接続することが有効であるため、グランド電位GNDを与えることが最も好ましい。 As described above, in the magnetic sensor 10A according to the present embodiment, the first and second magnetic layers 21 and 22 provided adjacent to the magnetoresistive element 11 are fixed to the ground potential GND. It is possible to suppress noise caused by electromagnetic waves. In the present embodiment, the ground potential GND is applied to the first and second magnetic layers 21 and 22. However, the present invention is not limited to this, and the ground potential GND is set to a fixed potential. It is not limited. Therefore, instead of applying the ground potential GND, the power supply potential Vcc may be supplied through the power supply wiring P. However, in order to enhance the effect of the present invention, it is effective to connect to a power supply wiring having a lower impedance, so it is most preferable to apply the ground potential GND.
 また、本実施形態においては、磁気抵抗効果素子11と第1及び第2の磁性体層21,22を同じ電源配線(グランド配線G)に接続しているが、本発明においてこの点は必須でない。したがって、例えば、磁気抵抗効果素子11をグランド配線Gに接続し、第1及び第2の磁性体層21,22を電源配線Pに接続しても構わない。しかしながら、本実施形態のように磁気抵抗効果素子11と第1及び第2の磁性体層21,22を同じ電源配線に接続すれば、予期せぬショート不良などを防止することができるとともに、必要な配線の本数を低減することが可能となる。 In the present embodiment, the magnetoresistive effect element 11 and the first and second magnetic layers 21 and 22 are connected to the same power supply wiring (ground wiring G), but this point is not essential in the present invention. . Therefore, for example, the magnetoresistive effect element 11 may be connected to the ground wiring G, and the first and second magnetic layers 21 and 22 may be connected to the power supply wiring P. However, if the magnetoresistive effect element 11 and the first and second magnetic layers 21 and 22 are connected to the same power supply line as in this embodiment, an unexpected short circuit failure can be prevented and necessary. It is possible to reduce the number of wires.
<第2の実施形態>
 図3は、本発明の第2の実施形態による磁気センサ10Bの構成を説明するための略平面図である。
<Second Embodiment>
FIG. 3 is a schematic plan view for explaining the configuration of the magnetic sensor 10B according to the second embodiment of the present invention.
 本実施形態による磁気センサ10Bは、第1及び第2の磁性体層21,22とグランド配線Gとの間に抵抗素子R1,R2がそれぞれ接続されている点において、第1の実施形態による磁気センサ10Aと相違している。その他の構成は第1の実施形態による磁気センサ10Aと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。 The magnetic sensor 10B according to the present embodiment is different from the magnetic sensor 10B according to the first embodiment in that resistance elements R1 and R2 are connected between the first and second magnetic layers 21 and 22 and the ground wiring G, respectively. It is different from the sensor 10A. Since other configurations are the same as those of the magnetic sensor 10A according to the first embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
 本実施形態が例示するように、本発明において第1及び第2の磁性体層21,22をグランド配線Gに直接接続することは必須でなく、両者間に抵抗素子R1,R2が介在していても構わない。このような抵抗素子R1,R2を介在させれば、外来電磁波に起因するノイズがグランド配線Gを介して磁気抵抗効果素子11に回り込みにくくなるという利点がある。尚、外来電磁波の影響を十分に低減するためには、抵抗素子R1,R2の抵抗値は磁気抵抗効果素子11の抵抗値よりも低いことが好ましい。 As illustrated in the present embodiment, it is not essential to directly connect the first and second magnetic layers 21 and 22 to the ground wiring G in the present invention, and the resistance elements R1 and R2 are interposed therebetween. It doesn't matter. When such resistance elements R1 and R2 are interposed, there is an advantage that noise caused by an external electromagnetic wave hardly enters the magnetoresistive effect element 11 via the ground wiring G. In order to sufficiently reduce the influence of external electromagnetic waves, the resistance values of the resistance elements R1 and R2 are preferably lower than the resistance value of the magnetoresistive effect element 11.
<第3の実施形態>
 図4は、本発明の第3の実施形態による磁気センサ10Cの構成を説明するための略平面図である。
<Third Embodiment>
FIG. 4 is a schematic plan view for explaining the configuration of a magnetic sensor 10C according to the third embodiment of the present invention.
 本実施形態による磁気センサ10Cは、磁気抵抗効果素子11が2つの磁気抵抗効果素子11a,11bに分割されているとともに、磁気抵抗効果素子11aと磁気抵抗効果素子11bとの間に別の磁性体層20が配置されている点において、第1の実施形態による磁気センサ10Aと相違している。その他の構成は第1の実施形態による磁気センサ10Aと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。 In the magnetic sensor 10C according to the present embodiment, the magnetoresistive effect element 11 is divided into two magnetoresistive effect elements 11a and 11b, and another magnetic substance is provided between the magnetoresistive effect element 11a and the magnetoresistive effect element 11b. The magnetic sensor 10A according to the first embodiment is different in that the layer 20 is disposed. Since other configurations are the same as those of the magnetic sensor 10A according to the first embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
 図4に示すように、磁気抵抗効果素子11a,11bはいずれもy方向に延在しており、両者の端部が配線Lを介して互いに接続されている。これにより、1個の磁気抵抗効果素子11を用いる場合と比べて、磁界による抵抗値の変化をより大きくすることができる。また、磁性体層20もy方向に延在する細長い磁性体であり、第1及び第2の磁性体層21,22と同じ材料によって構成される。このような磁性体層20を追加することによって、第1の磁性体層21と第2の磁性体層22との間の磁気抵抗を低減することが可能となる。 As shown in FIG. 4, each of the magnetoresistive effect elements 11a and 11b extends in the y direction, and both ends thereof are connected to each other through a wiring L. Thereby, compared with the case where the one magnetoresistive effect element 11 is used, the change of the resistance value by a magnetic field can be enlarged more. The magnetic layer 20 is also an elongated magnetic body extending in the y direction, and is made of the same material as the first and second magnetic layers 21 and 22. By adding such a magnetic layer 20, it is possible to reduce the magnetic resistance between the first magnetic layer 21 and the second magnetic layer 22.
 本実施形態においては磁性体層20がいずれの配線にも接続されておらず、電気的にフローティング状態であるが、グランド配線Gを介してグランド電位GNDを与えても構わない。また、磁気抵抗効果素子11を2つの磁気抵抗効果素子11a,11bに分割するのではなく、磁気抵抗効果素子11自体をU字型に折り返しても構わない。 In the present embodiment, the magnetic layer 20 is not connected to any wiring and is in an electrically floating state, but a ground potential GND may be applied through the ground wiring G. Further, instead of dividing the magnetoresistive effect element 11 into the two magnetoresistive effect elements 11a and 11b, the magnetoresistive effect element 11 itself may be folded back into a U shape.
<第4の実施形態>
 図5は、本発明の第4の実施形態による磁気センサ10Dの構成を説明するための略平面図である。
<Fourth Embodiment>
FIG. 5 is a schematic plan view for explaining the configuration of a magnetic sensor 10D according to the fourth embodiment of the present invention.
 本実施形態による磁気センサ10Dは、第2の磁性体層22の面積が第1の磁性体層21の面積よりも小さく、且つ、第2の磁性体層22が電気的にフローティング状態である点において、第1の実施形態による磁気センサ10Aと相違している。その他の構成は第1の実施形態による磁気センサ10Aと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。 In the magnetic sensor 10D according to the present embodiment, the area of the second magnetic layer 22 is smaller than the area of the first magnetic layer 21, and the second magnetic layer 22 is in an electrically floating state. However, it is different from the magnetic sensor 10A according to the first embodiment. Since other configurations are the same as those of the magnetic sensor 10A according to the first embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
 このように、第2の磁性体層22の面積が小さい場合には、外来電磁波の影響も小さくなるため、第2の磁性体層22をいずれの配線にも接続せずフローティング状態としても構わない。これによれば、基板30上における配線本数を削減することが可能となる。 As described above, when the area of the second magnetic layer 22 is small, the influence of the external electromagnetic wave is small, and therefore the second magnetic layer 22 may be in a floating state without being connected to any wiring. . According to this, the number of wirings on the substrate 30 can be reduced.
<第5の実施形態>
 図6は、本発明の第5の実施形態による磁気センサ10Eの構成を説明するための略平面図である。
<Fifth Embodiment>
FIG. 6 is a schematic plan view for explaining the configuration of a magnetic sensor 10E according to the fifth embodiment of the present invention.
 本実施形態による磁気センサ10Eは、第2の磁性体層22が削除されている点において、第1の実施形態による磁気センサ10Aと相違している。その他の構成は第1の実施形態による磁気センサ10Aと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。 The magnetic sensor 10E according to the present embodiment is different from the magnetic sensor 10A according to the first embodiment in that the second magnetic layer 22 is deleted. Since other configurations are the same as those of the magnetic sensor 10A according to the first embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
 本実施形態が例示するように、本発明において磁気抵抗効果素子11を2つの磁性体層21,22によって挟み込むことは必須でなく、少なくとも1つの磁性体層21が磁気抵抗効果素子11と隣接するように配置されていれば足りる。 As illustrated in the present embodiment, it is not essential to sandwich the magnetoresistive element 11 between the two magnetic layers 21 and 22 in the present invention, and at least one magnetic layer 21 is adjacent to the magnetoresistive element 11. If it is arranged like this, it is enough.
<第6の実施形態>
 図7は、本発明の第6の実施形態による磁気センサ10Fの構成を説明するための略平面図である。
<Sixth Embodiment>
FIG. 7 is a schematic plan view for explaining the configuration of the magnetic sensor 10F according to the sixth embodiment of the present invention.
 本実施形態による磁気センサ10Fは、抵抗素子Rの代わりに磁気抵抗効果素子12が設けられている点において、第1の実施形態による磁気センサ10Aと相違している。その他の構成は第1の実施形態による磁気センサ10Aと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。 The magnetic sensor 10F according to the present embodiment is different from the magnetic sensor 10A according to the first embodiment in that a magnetoresistive effect element 12 is provided instead of the resistance element R. Since other configurations are the same as those of the magnetic sensor 10A according to the first embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
 磁気抵抗効果素子12は、磁気抵抗効果素子11と同様、第1の磁性体層21と第2の磁性体層22との間のギャップと重なる位置に配置されている。磁気抵抗効果素子11の感度方向(固定磁化方向)は、図7の矢印Cが示す方向(x方向におけるマイナス側)である。つまり、磁気抵抗効果素子11と磁気抵抗効果素子12の固定磁化方向は、互いに180°相違している。 The magnetoresistive effect element 12 is disposed at a position overlapping with the gap between the first magnetic layer 21 and the second magnetic layer 22, similarly to the magnetoresistive effect element 11. The sensitivity direction (fixed magnetization direction) of the magnetoresistive effect element 11 is the direction indicated by the arrow C in FIG. 7 (minus side in the x direction). That is, the fixed magnetization directions of the magnetoresistive effect element 11 and the magnetoresistive effect element 12 are 180 ° different from each other.
 このような構成によれば、磁気抵抗効果素子11の抵抗値の変化と磁気抵抗効果素子12の抵抗値の変化が相補的となることから、x方向におけるプラス側の磁界及びマイナス側の磁界の両方を検出することができるとともに、より高い検出感度を得ることが可能となる。 According to such a configuration, since the change in the resistance value of the magnetoresistive effect element 11 and the change in the resistance value of the magnetoresistive effect element 12 are complementary, the plus side magnetic field and the minus side magnetic field in the x direction Both can be detected and higher detection sensitivity can be obtained.
<第7の実施形態>
 図8は、本発明の第7の実施形態による磁気センサ10Gの構成を説明するための略平面図である。
<Seventh Embodiment>
FIG. 8 is a schematic plan view for explaining the configuration of a magnetic sensor 10G according to the seventh embodiment of the present invention.
 本実施形態による磁気センサ10Gは、第1の磁性体層21が2つの磁性体層21a,21bに分割されており、第2の磁性体層22が2つの磁性体層22a,22bに分割されている点において、第6の実施形態による磁気センサ10Fと相違している。その他の構成は第6の実施形態による磁気センサ10Fと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。 In the magnetic sensor 10G according to the present embodiment, the first magnetic layer 21 is divided into two magnetic layers 21a and 21b, and the second magnetic layer 22 is divided into two magnetic layers 22a and 22b. However, the present embodiment is different from the magnetic sensor 10F according to the sixth embodiment. Since the other configuration is the same as that of the magnetic sensor 10F according to the sixth embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
 本実施形態においても、磁性体層21a,21b,22a,22bは全てグランド配線Gに接続されている。このため、第6の実施形態による磁気センサ10Fと同様の効果を得ることが可能となる。しかも、第1及び第2の磁性体層21,22がいずれもy方向に分断されているため、y方向における磁気抵抗が高くなる。その結果、検出対象外であるy方向の磁界の影響を受けにくくなり、指向性が高められる。 Also in this embodiment, the magnetic layers 21a, 21b, 22a, and 22b are all connected to the ground wiring G. For this reason, it becomes possible to acquire the effect similar to the magnetic sensor 10F by 6th Embodiment. Moreover, since both the first and second magnetic layers 21 and 22 are divided in the y direction, the magnetic resistance in the y direction is increased. As a result, it becomes difficult to be affected by the magnetic field in the y direction that is not the detection target, and the directivity is improved.
<第8の実施形態>
 図9は、本発明の第8の実施形態による磁気センサ10Hの構成を説明するための略平面図である。図10は、図9に示すD-D線に沿った略断面図である。
<Eighth Embodiment>
FIG. 9 is a schematic plan view for explaining the configuration of the magnetic sensor 10H according to the eighth embodiment of the present invention. FIG. 10 is a schematic cross-sectional view along the line DD shown in FIG.
 本実施形態による磁気センサ10Hは、磁気抵抗効果素子13,14と第3の磁性体層23が追加されている点において、第6の実施形態による磁気センサ10Fと相違している。第3の磁性体層23は、第1及び第2の磁性体層21,22と同様、グランド配線Gに接続されている。磁気抵抗効果素子13,14は、第2の磁性体層22と第3の磁性体層23との間のギャップと重なる位置に配置されている。これら4つの磁気抵抗効果素子11~14の感度方向(固定磁化方向)は、いずれも図9の矢印Bが示す方向(x方向におけるプラス側)であり、図9に示すようにブリッジ接続されている。つまり、磁気抵抗効果素子14,11が直列に接続され、その接点である信号配線S1から出力信号OUT1が出力されるとともに、磁気抵抗効果素子12,13が直列に接続され、その接点である信号配線S2から出力信号OUT2が出力される。 The magnetic sensor 10H according to the present embodiment is different from the magnetic sensor 10F according to the sixth embodiment in that magnetoresistive elements 13 and 14 and a third magnetic layer 23 are added. The third magnetic layer 23 is connected to the ground wiring G in the same manner as the first and second magnetic layers 21 and 22. The magnetoresistive effect elements 13 and 14 are arranged at a position overlapping the gap between the second magnetic layer 22 and the third magnetic layer 23. The sensitivity directions (fixed magnetization directions) of these four magnetoresistive elements 11 to 14 are all directions indicated by the arrow B in FIG. 9 (plus side in the x direction), and are bridge-connected as shown in FIG. Yes. That is, the magnetoresistive elements 14 and 11 are connected in series, and the output signal OUT1 is output from the signal wiring S1 that is the contact point, and the magnetoresistive effect elements 12 and 13 are connected in series and the signal that is the contact point. An output signal OUT2 is output from the wiring S2.
 また、第2の磁性体層22上には外部磁性体40が配置されており、基板30のx方向における両端には外部磁性体41,42が配置されている。外部磁性体40~42は、フェライトなど透磁率の高い軟磁性材料からなるブロックである。その他の構成は第6の実施形態による磁気センサ10Fと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。 Further, an external magnetic body 40 is disposed on the second magnetic layer 22, and external magnetic bodies 41 and 42 are disposed at both ends in the x direction of the substrate 30. The external magnetic bodies 40 to 42 are blocks made of a soft magnetic material having a high magnetic permeability such as ferrite. Since the other configuration is the same as that of the magnetic sensor 10F according to the sixth embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
 図10に示すように、外部磁性体40はz方向(基板30の主面に対して垂直方向)の磁束φを集め、これを第2の磁性体層22を介して左右に分配する役割を果たす。つまり、外部磁性体40によって集められたz方向の磁束φは、半分が磁気抵抗効果素子11,12を介して第1の磁性体層21側に曲げられるとともに、残りの半分が磁気抵抗効果素子13,14を介して第3の磁性体層23側に曲げられる。磁束を曲げる力は、外部磁性体41,42を用いることによって強められる。そして、これら磁気抵抗効果素子11~14がブリッジ接続されていることから、出力信号OUT1と出力信号OUT2との間には、磁束φの密度に応じた電位差が生じることになる。 As shown in FIG. 10, the external magnetic body 40 has a role of collecting magnetic flux φ in the z direction (perpendicular to the main surface of the substrate 30) and distributing it to the left and right via the second magnetic layer 22. Fulfill. That is, half of the z-direction magnetic flux φ collected by the external magnetic body 40 is bent toward the first magnetic layer 21 via the magnetoresistive effect elements 11 and 12, and the other half is magnetoresistive effect element. Bent to the third magnetic layer 23 side through 13 and 14. The force for bending the magnetic flux is enhanced by using the external magnetic bodies 41 and 42. Since these magnetoresistive elements 11 to 14 are bridge-connected, a potential difference corresponding to the density of the magnetic flux φ is generated between the output signal OUT1 and the output signal OUT2.
 このように、本実施形態による磁気センサ10Hは、外部磁性体40を備えるとともに4つの磁気抵抗効果素子11~14がブリッジ接続されていることから、z方向の磁束φを高感度に検出することが可能となる。 As described above, the magnetic sensor 10H according to the present embodiment includes the external magnetic body 40 and the four magnetoresistance effect elements 11 to 14 are bridge-connected, so that the magnetic flux φ in the z direction can be detected with high sensitivity. Is possible.
 尚、図10に示すように、磁気抵抗効果素子11~14は下層の絶縁層31上に形成され、磁性体層21~23は上層の絶縁層32上に形成されているため、磁気抵抗効果素子11~14と磁性体層21~23のz方向における位置は僅かに相違する。このため、磁気抵抗効果素子11~14は、磁性体層21~23によって形成されるギャップに対してz方向に僅かにオフセットした位置に配置されることになるが、ギャップの存在によって形成される磁路上に位置していることから、一方の磁性体層から他方の磁性体層へ流れる磁束を受けることができる。このように、磁気抵抗効果素子を設ける位置は、2つの磁性体層によって形成されるギャップから僅かにずれていても構わない。このように、磁気抵抗効果素子11~14と磁性体層21~23を異なる層に形成する場合、図11に示すように、磁気抵抗効果素子11~14のx方向における幅を2つの磁性体層によって形成されるギャップのx方向における幅よりも大きくしても構わない。 As shown in FIG. 10, the magnetoresistive elements 11 to 14 are formed on the lower insulating layer 31, and the magnetic layers 21 to 23 are formed on the upper insulating layer 32. The positions of the elements 11 to 14 and the magnetic layers 21 to 23 in the z direction are slightly different. For this reason, the magnetoresistive elements 11 to 14 are arranged at positions slightly offset in the z direction with respect to the gap formed by the magnetic layers 21 to 23, but are formed by the presence of the gap. Since it is located on the magnetic path, it can receive a magnetic flux flowing from one magnetic layer to the other magnetic layer. As described above, the position where the magnetoresistive effect element is provided may be slightly shifted from the gap formed by the two magnetic layers. Thus, when the magnetoresistive effect elements 11 to 14 and the magnetic material layers 21 to 23 are formed in different layers, the width of the magnetoresistive effect elements 11 to 14 in the x direction is set to two magnetic materials as shown in FIG. The gap formed by the layers may be larger than the width in the x direction.
 また、図12に示すように、3つの絶縁層31~33を用いることによって、2つの磁性体層によって形成されるギャップをz方向に形成しても構わない。つまり、ギャップは平面的なものである必要はない。図12に示す例では、磁性体層21と磁性体層22の重なりによって形成されるギャップに磁気抵抗効果素子11が配置され、磁性体層22と磁性体層23の重なりによって形成されるギャップに磁気抵抗効果素子13が配置されている。 In addition, as shown in FIG. 12, the gap formed by the two magnetic layers may be formed in the z direction by using the three insulating layers 31 to 33. That is, the gap need not be planar. In the example shown in FIG. 12, the magnetoresistive effect element 11 is arranged in the gap formed by the overlap of the magnetic layer 21 and the magnetic layer 22, and the gap formed by the overlap of the magnetic layer 22 and the magnetic layer 23 is formed. A magnetoresistive effect element 13 is arranged.
 さらに、図13に示すように、磁性体層21,23と磁性体層22が互いに異なる平面に形成され、且つ、互いに重なりを有していない構成であっても構わない。この場合、2つの磁性体層によって形成されるギャップは斜め方向となる。図13に示す例では、磁性体層21のエッジと磁性体層22のエッジとの間に形成される斜め方向のギャップに磁気抵抗効果素子11が配置され、磁性体層22のエッジと磁性体層23のエッジとの間に形成される斜め方向のギャップに磁気抵抗効果素子13が配置されている。 Furthermore, as shown in FIG. 13, the magnetic layers 21 and 23 and the magnetic layer 22 may be formed on different planes and do not overlap each other. In this case, the gap formed by the two magnetic layers is oblique. In the example shown in FIG. 13, the magnetoresistive effect element 11 is disposed in an oblique gap formed between the edge of the magnetic layer 21 and the edge of the magnetic layer 22, and the edge of the magnetic layer 22 and the magnetic body The magnetoresistive element 13 is disposed in an oblique gap formed between the edge of the layer 23.
 図10~図13が例示するように、2つの磁性体層によって形成されるギャップは、平面的なものであっても構わないし、立体的なものであっても構わない。また、磁気抵抗効果素子は、厳密にギャップ内に位置している必要はなく、ギャップの存在によって形成される磁路上に位置していれば足りる。 As illustrated in FIGS. 10 to 13, the gap formed by the two magnetic layers may be planar or three-dimensional. In addition, the magnetoresistive effect element does not need to be strictly located in the gap, and may be located on the magnetic path formed by the existence of the gap.
<第9の実施形態>
 図14は、本発明の第9の実施形態による磁気センサ10Iの構成を説明するための略平面図である。
<Ninth Embodiment>
FIG. 14 is a schematic plan view for explaining the configuration of the magnetic sensor 10I according to the ninth embodiment of the present invention.
 本実施形態による磁気センサ10Iは、第2及び第3の磁性体層22,23がグランド配線Gに直接接続されているのではなく、第1の磁性体層21を介してグランド配線Gに接続されている点において、第8の実施形態による磁気センサ10Hと相違している。その他の構成は第8の実施形態による磁気センサ10Hと同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。 In the magnetic sensor 10I according to the present embodiment, the second and third magnetic layers 22 and 23 are not directly connected to the ground wiring G, but are connected to the ground wiring G through the first magnetic layer 21. This is different from the magnetic sensor 10H according to the eighth embodiment. Since the other configuration is the same as that of the magnetic sensor 10H according to the eighth embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
 本実施形態が例示するように、本発明において全ての磁性体層がグランド配線Gなどの電源配線に直接接続されていることは必須でなく、一部の磁性体層が他の磁性体層を介して電源配線に接続されていても構わない。これによれば、グランド配線Gなどの電源配線の引き回しが容易となるため、設計自由度が高められる。 As illustrated in this embodiment, in the present invention, it is not essential that all the magnetic layers are directly connected to the power supply wiring such as the ground wiring G, and some of the magnetic layers are replaced with other magnetic layers. It may be connected to the power supply wiring. According to this, since it becomes easy to route power supply wiring such as the ground wiring G, the degree of freedom in design is increased.
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。 The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. Needless to say, it is included in the range.
10A~10I  磁気センサ
11~14,11a,11b  磁気抵抗効果素子
20~23,21a,21b,22a,22b  磁性体層
30  基板
31~33  絶縁層
40~42  外部磁性体
G  グランド配線
L  配線
P  電源配線
R,R1,R2  抵抗素子
S,S1,S2  信号配線
φ  磁束
10A to 10I Magnetic sensors 11 to 14, 11a and 11b Magnetoresistive elements 20 to 23, 21a, 21b, 22a and 22b Magnetic layer 30 Substrate 31 to 33 Insulating layers 40 to 42 External magnetic body G Ground wiring L Wiring P Power supply Wiring R, R1, R2 Resistance element S, S1, S2 Signal wiring φ Magnetic flux

Claims (9)

  1.  基板と、
     前記基板上に設けられ、電源配線と信号配線との間に接続された磁気抵抗効果素子と、
     前記磁気抵抗効果素子と隣接するよう前記基板上に設けられ、前記電源配線に接続された磁性体層と、を備えることを特徴とする磁気センサ。
    A substrate,
    A magnetoresistive element provided on the substrate and connected between a power supply wiring and a signal wiring;
    And a magnetic layer provided on the substrate so as to be adjacent to the magnetoresistive element and connected to the power supply wiring.
  2.  前記磁性体層と前記電源配線との間に接続され、前記磁気抵抗効果素子よりも抵抗値の低い抵抗素子をさらに備えることを特徴とする請求項1に記載の磁気センサ。 The magnetic sensor according to claim 1, further comprising a resistance element connected between the magnetic layer and the power supply wiring and having a resistance value lower than that of the magnetoresistance effect element.
  3.  前記磁性体層は第1及び第2の磁性体層を含み、
     前記磁気抵抗効果素子は、前記第1の磁性体層と前記第2の磁性体層との間のギャップによって形成される磁路上に配置されていることを特徴とする請求項1又は2に記載の磁気センサ。
    The magnetic layer includes first and second magnetic layers,
    The said magnetoresistive effect element is arrange | positioned on the magnetic path formed by the gap between the said 1st magnetic body layer and the said 2nd magnetic body layer, It is characterized by the above-mentioned. Magnetic sensor.
  4.  前記第1の磁性体層は、前記電源配線に接続され、
     前記第2の磁性体層は、前記電源配線及び前記信号配線の両方から絶縁され、
     前記第1の磁性体層の面積は、前記第2の磁性体層の面積よりも大きいことを特徴とする請求項3に記載の磁気センサ。
    The first magnetic layer is connected to the power supply wiring,
    The second magnetic layer is insulated from both the power supply wiring and the signal wiring,
    The magnetic sensor according to claim 3, wherein an area of the first magnetic layer is larger than an area of the second magnetic layer.
  5.  前記信号配線と別の電源配線との間に接続された抵抗素子をさらに備えることを特徴とする請求項3に記載の磁気センサ。 The magnetic sensor according to claim 3, further comprising a resistance element connected between the signal wiring and another power supply wiring.
  6.  前記抵抗素子は、別の磁気抵抗効果素子であることを特徴とする請求項5に記載の磁気センサ。 6. The magnetic sensor according to claim 5, wherein the resistance element is another magnetoresistance effect element.
  7.  前記磁性体層は第3の磁性体層をさらに含み、
     前記磁気抵抗効果素子は、前記第1の磁性体層と前記第2の磁性体層との間のギャップによって形成される磁路上、並びに、前記第2の磁性体層と前記第3の磁性体層との間のギャップによって形成される磁路上に配置され、ブリッジ接続された複数の磁気抵抗効果素子からなることを特徴とする請求項6に記載の磁気センサ。
    The magnetic layer further includes a third magnetic layer,
    The magnetoresistive element includes a magnetic path formed by a gap between the first magnetic layer and the second magnetic layer, and the second magnetic layer and the third magnetic body. The magnetic sensor according to claim 6, comprising a plurality of magnetoresistive effect elements arranged on a magnetic path formed by a gap between the layers and bridge-connected.
  8.  前記第2の磁性体層上に配置された外部磁性体をさらに備えることを特徴とする請求項7に記載の磁気センサ。 The magnetic sensor according to claim 7, further comprising an external magnetic body disposed on the second magnetic layer.
  9.  前記電源配線は、グランド配線であることを特徴とする請求項1乃至8のいずれか一項に記載の磁気センサ。 The magnetic sensor according to claim 1, wherein the power supply wiring is a ground wiring.
PCT/JP2018/007127 2017-02-27 2018-02-27 Magnetic sensor WO2018155701A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019501869A JP7099438B2 (en) 2017-02-27 2018-02-27 Magnetic sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017034534 2017-02-27
JP2017-034534 2017-02-27

Publications (1)

Publication Number Publication Date
WO2018155701A1 true WO2018155701A1 (en) 2018-08-30

Family

ID=63253853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007127 WO2018155701A1 (en) 2017-02-27 2018-02-27 Magnetic sensor

Country Status (2)

Country Link
JP (1) JP7099438B2 (en)
WO (1) WO2018155701A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022088883A (en) * 2020-12-03 2022-06-15 株式会社東芝 Magnetic sensor and inspection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302371A (en) * 1987-06-02 1988-12-09 Yaskawa Electric Mfg Co Ltd Current detector
JP2009276159A (en) * 2008-05-14 2009-11-26 Sae Magnetics (Hk) Ltd Magnetic sensor
WO2010004682A1 (en) * 2008-07-08 2010-01-14 パナソニック株式会社 Current sensor
JP2013172040A (en) * 2012-02-22 2013-09-02 Alps Electric Co Ltd Magnetic sensor and manufacturing method of the same
JP2017096714A (en) * 2015-11-20 2017-06-01 Tdk株式会社 Magnetic field sensor and magnetic field detection device including the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5149964B2 (en) 2008-06-11 2013-02-20 アルプス電気株式会社 Magnetic sensor and magnetic sensor module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302371A (en) * 1987-06-02 1988-12-09 Yaskawa Electric Mfg Co Ltd Current detector
JP2009276159A (en) * 2008-05-14 2009-11-26 Sae Magnetics (Hk) Ltd Magnetic sensor
WO2010004682A1 (en) * 2008-07-08 2010-01-14 パナソニック株式会社 Current sensor
JP2013172040A (en) * 2012-02-22 2013-09-02 Alps Electric Co Ltd Magnetic sensor and manufacturing method of the same
JP2017096714A (en) * 2015-11-20 2017-06-01 Tdk株式会社 Magnetic field sensor and magnetic field detection device including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022088883A (en) * 2020-12-03 2022-06-15 株式会社東芝 Magnetic sensor and inspection device
JP7393319B2 (en) 2020-12-03 2023-12-06 株式会社東芝 Magnetic sensor and inspection equipment

Also Published As

Publication number Publication date
JPWO2018155701A1 (en) 2019-12-19
JP7099438B2 (en) 2022-07-12

Similar Documents

Publication Publication Date Title
CN103842838B (en) Magnet sensor arrangement
JP5066579B2 (en) Magnetic sensor and magnetic sensor module
JP6610178B2 (en) Magnetic sensor
US11442120B2 (en) Magnetic sensor with compensation coil for cancelling magnetic flux applied to a magneto-sensitive element
JP6822127B2 (en) Magnetic sensor
US11567148B2 (en) Magnetic sensor
JP6981299B2 (en) Magnetic sensor
WO2019167598A1 (en) Magnetic sensor
JP2013044641A (en) Magnetic sensor
WO2015087725A1 (en) Magnetic sensor device and magnetic encoder device
WO2018155701A1 (en) Magnetic sensor
US20160341802A1 (en) Magnetic sensor
JP2019174140A (en) Magnetic sensor
US20220299581A1 (en) Magnetic sensor
WO2019139110A1 (en) Magnetic sensor
JP5504483B2 (en) Current sensor
JP2017040628A (en) Magnetic sensor
JP7077679B2 (en) Magnetic sensor
JP7119351B2 (en) magnetic sensor
JP4742816B2 (en) Rotation detector
WO2018198627A1 (en) Magnetic field sensor
WO2022190853A1 (en) Magnetic sensor
JP7070020B2 (en) Magnetic circuit forming member and magnetic sensor using this
WO2011111458A1 (en) Magnetic sensor
JP2023046269A (en) magnetic sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18756937

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501869

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18756937

Country of ref document: EP

Kind code of ref document: A1