WO2011111458A1 - Magnetic sensor - Google Patents

Magnetic sensor Download PDF

Info

Publication number
WO2011111458A1
WO2011111458A1 PCT/JP2011/052661 JP2011052661W WO2011111458A1 WO 2011111458 A1 WO2011111458 A1 WO 2011111458A1 JP 2011052661 W JP2011052661 W JP 2011052661W WO 2011111458 A1 WO2011111458 A1 WO 2011111458A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft magnetic
magnetic
elements
portions
magnetoresistive
Prior art date
Application number
PCT/JP2011/052661
Other languages
French (fr)
Japanese (ja)
Inventor
真次 杉原
秀人 安藤
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2011111458A1 publication Critical patent/WO2011111458A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/1215Measuring magnetisation; Particular magnetometers therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors

Definitions

  • the present invention relates to a magnetic sensor using a magnetoresistive effect element.
  • the geomagnetic sensor 1 includes a sensor unit 6 in which magnetoresistive elements 2, 3, 4 and 5 are bridge-connected, an input unit 7 electrically connected to the sensor unit 6, a ground unit 8,
  • the integrated circuit 11 can include a differential amplifier 9 and an external output terminal 10.
  • the magnetoresistive effect elements 2 and 3 and the magnetoresistive effect elements 4 and 5 are formed so that the magnetization of the pinned magnetic layer faces in the opposite direction.
  • the magnetoresistive effect elements 2, 3, 4, and 5 vary in resistance value with respect to the strength of the magnetic field from the sensitivity axis direction.
  • the dynamic amplifier 9 detects the voltage change and acquires magnetic change information in the sensitivity axis direction.
  • Such a geomagnetic sensor needs to be separated into two or three axes to detect magnetism, so it is necessary not to have sensitivity to other axes.
  • a magnetic sensor has been proposed in which the amplification effect in the sensitivity axis direction and the magnetic shield effect in the direction orthogonal to the sensitivity axis are improved (see, for example, Patent Document 1).
  • FIG. 5 (a) and 5 (b) show a configuration diagram of the magnetoresistive effect element portion in the magnetic sensor described in Patent Document 1, wherein FIG. 5 (a) is a partial plan view, and FIG. 5 (b) is the same drawing.
  • the AA arrow directional cross-sectional view shown to (a) is shown.
  • a plurality of element portions 12 elongated in the X direction shown in the figure and formed with an element length L1 longer than the element width W1 are arranged at predetermined intervals in the Y direction orthogonal to the X direction, and the end portions of the element portions 12
  • the gap is electrically connected by the connection electrode 13 to form a meander shape.
  • An electrode portion 15 connected to the input terminal 7, the ground terminal 8, and the output extraction portion 14 is connected to one of the element portions 12 at both ends formed in a meander shape.
  • the element unit 12 is formed by laminating an antiferromagnetic layer, a pinned magnetic layer, a nonmagnetic layer, and a free magnetic layer in this order.
  • the magnetoresistive effect elements 2 and 3 are formed on the substrate 16, and the magnetoresistive effect elements 2 and 3 are covered with the insulating layer 17.
  • the space between the elements 12 forming the magnetoresistive elements 2 and 3 is also filled with an insulating layer 17.
  • soft magnetic bodies 18 are provided between the element portions 12 forming the magnetoresistive effect elements 2 and 3 and outside the element portion 12 located on the outermost side.
  • the width dimension W2 of the soft magnetic body 18 is smaller than the width dimension W1 of the element portion 12
  • the length dimension L2 of the soft magnetic body 18 is set to be longer than the length dimension L1 of the element portion 12.
  • the soft magnetic body 18 includes an extending portion 18 a that extends outward from both end portions in the length direction of the element portion 12.
  • the soft magnetic body 18 exhibits a yoke effect with respect to an external magnetic field in a specific direction, and exhibits a shielding effect with respect to an external magnetic field in a direction different from the specific direction (a direction orthogonal to the specific direction). That is, the soft magnetic body 18 amplifies the external magnetic field in the sensitivity axis direction (arrow Y direction) and shields the external magnetic field in the direction orthogonal to the sensitivity axis direction (arrow X direction).
  • the length of the soft magnetic body 18 is greatly increased as shown in FIG. If this becomes larger, there arises a problem that the element size increases.
  • FIG. 7 is a diagram showing a state where four magnetoresistive elements shown in FIG. 6 are arranged and wired.
  • the elements A and D are the magnetoresistive elements 2 and 3
  • the elements B and C have the magnetization of the fixed magnetic layer opposite to that of the magnetoresistive elements 2 and 3.
  • the magnetoresistive effect elements 4 and 5 face the direction. Even an element having the same configuration as the magnetoresistive effect elements 2 and 3 can function as a bridge circuit by adjusting the sensitivity axis direction.
  • the magnetoresistive effect elements A, B, C, and D in which the extending portion of the soft magnetic material is greatly extended, are to be arranged in the two-dimensional space. Then, there is a problem that the element size is significantly increased.
  • the present invention has been made in view of such points, and has an element arrangement capable of maintaining the amplification and magnetic shielding effect by the soft magnetic material and suppressing the increase of the elements due to the extending portion of the soft magnetic material.
  • An object is to provide a realized magnetic sensor.
  • the magnetic sensor of the present invention is a magnetic sensor including a plurality of magnetoresistive effect elements, wherein each of the magnetoresistive effect elements includes a plurality of element portions arranged at intervals in the element width direction, and the element portions.
  • a plurality of soft magnetic bodies arranged alternately with the element portion in the element width direction, wherein the element portion includes a pinned magnetic layer whose magnetization direction is fixed, and a nonmagnetic layer interposed between the pinned magnetic layer and the element portion.
  • a free magnetic layer whose magnetization direction is changed by receiving an external magnetic field, and the soft magnetic body has extension portions extending in the element length direction from both ends in the length direction of the element portion, respectively.
  • the soft magnetic material is shared between the magnetoresistive elements arranged adjacent to each other in the element length direction of the element section.
  • the soft magnetic material arranged for each element unit is at least the total of the two element units connected in the element length direction. Since the length is longer than the length, the amplification and magnetic shielding effect by the soft magnetic material can be greatly improved. This means that if the soft magnetic material amplification and magnetic shielding effect are maintained, the length of the extension portion of the soft magnetic material between the elements sharing the soft magnetic material can be shortened to increase the distance between the devices. It means that it can be shortened. Therefore, it is possible to maintain the amplification and magnetic shield effect by the soft magnetic material and to reduce the element size by shortening the distance between the elements.
  • the extension portion of the soft magnetic body includes an inner extension portion that extends to a side facing the counterpart element that shares the soft magnetic body, and a side that does not face the counterpart element. And an outer extension portion extending to the inner extension portion, wherein the inner extension portion has a smaller extension amount than the outer extension portion.
  • the plurality of element portions are formed in a meander shape by alternately connecting ends of adjacent element portions, and the plurality of element portions and the plurality of soft magnetic bodies are formed differently. It may be formed on the surface.
  • the present invention it is possible to realize an element arrangement capable of maintaining the amplification and the magnetic shielding effect by the soft magnetic material and suppressing the increase of elements due to the extended portion of the soft magnetic material.
  • FIG. 2 is a configuration diagram of a magnetoresistive effect element portion in a magnetic sensor described in Patent Document 1.
  • FIG. It is a top view of the magnetoresistive effect element which extended the extension part of the soft-magnetic body. It is a figure which shows a mode that four magnetoresistive effect elements shown in FIG. 6 are arrange
  • a soft magnetic material is shared between a plurality of magnetoresistive elements arranged continuously in the element length direction of the element portion, and the length of the soft magnetic material extending portion between adjacent elements is It has a configuration with a reduced size.
  • a four-element arrangement will be described, but the number of elements and the arrangement configuration are not limited to this.
  • an embodiment applied to the geomagnetic sensor 1 shown in FIG. 4 will be described.
  • FIG. 1 is a plan view showing an element arrangement of a sensor unit of a magnetic sensor according to an embodiment of the present invention.
  • the magnetic sensor 20 forms a sensor unit by four magnetoresistive elements A, B, C, and D that are bridge-connected. Two magnetoresistive elements A and B are disposed adjacent to each other in the X direction, and the remaining two magnetoresistive elements C and D are disposed adjacent to each other in the X direction.
  • the magnetoresistive effect element A and the magnetoresistive effect element C are adjacent to each other in the Y direction, and the magnetoresistive effect element B and the magnetoresistive effect element D are adjacent to each other in the Y direction.
  • a soft magnetic material is shared between the two magnetoresistive elements A and B arranged adjacent to each other in the X direction, and a soft magnetic material is shared between the two magnetoresistive elements C and D.
  • common means that a strip of soft magnetic material penetrates between magnetoresistive elements A and B.
  • the four magnetoresistive elements A, B, C, and D have the same basic configuration as the magnetoresistive element 12 (13) shown in FIGS. 4 and 5 except that a soft magnetic material is used in common.
  • Each of the magnetoresistive effect elements A, B, C, and D has a plurality of element portions 21 that are formed in an element length (L1) longer than the element width (W1) and are elongated in the X direction in the figure, and are spaced at a predetermined interval in the Y direction. Arranged at intervals, the end portions of the element portions 21 are electrically connected by the connection electrodes 22 to form a meander shape.
  • an electrode 22c connected to the ground terminal 8 is formed on one of the element portions 21 at both ends formed in a meander shape, and output to the other of the element portions 21.
  • An electrode portion 22d connected to the extraction portion 14 is connected.
  • soft magnetic bodies 23 and 24 are provided between the element portions 21 in each of the magnetoresistive effect elements A, B, C, and D and outside the element portion 21 located on the outermost side.
  • a soft magnetic body 23 is shared between two magnetoresistive elements A and B arranged adjacent to each other in the X direction, and between two magnetoresistive elements C and D arranged adjacent to each other in the X direction.
  • the soft magnetic body 24 is shared.
  • the soft magnetic bodies 23 and 24 have first outer extending portions 23a and 24a that extend largely outward from one end (upper side in the figure) of the element portion 21 of the magnetoresistive effect elements A and C in the X direction.
  • first and second outer extending portions 23a, 24a, 23b, and 24b are provided.
  • the inner extension portions 23c and 24c are greatly reduced in length as compared with the first (second) outer extension portions 23a and 24a (23b and 24b).
  • the length dimensions of the first and second outer extending portions 23a, 24a, 23b, and 24b are such that, for example, the required amplification and magnetic shielding effects can be obtained as in the soft magnetic material extending portion shown in FIG. It is long.
  • the magnetoresistive effect elements A, B, C, and D have a cross-sectional structure similar to the structure shown in FIG. That is, the magnetoresistive elements A, B, C, and D are formed on the substrate 16 (FIG. 5B), and the magnetoresistive elements A, B, C, and D are covered with the insulating layer 17. The space between the elements 12 forming the magnetoresistive effect elements A, B, C, D is also filled with an insulating layer 17. A soft magnetic material 23 (24) is formed on the insulating layer 17.
  • FIG. 2 is a view showing a laminated structure of the magnetoresistive effect element A, and shows a cut surface cut in the film thickness maintaining direction from a direction parallel to the element width of the element portion 21.
  • the element unit 21 is formed by laminating an antiferromagnetic layer 33, a pinned magnetic layer 34, a nonmagnetic layer 35, and a free magnetic layer 36 in this order from below, and the surface of the free magnetic layer 36 is covered with a protective layer 37. Yes.
  • the element part 21 can be formed by sputtering.
  • the antiferromagnetic layer 33 is made of an antiferromagnetic material such as an Ir-Mn alloy (iridium-manganese alloy).
  • the pinned magnetic layer 34 is formed of a soft magnetic material such as Co—Fe (cobalt-iron alloy).
  • the nonmagnetic layer 35 is made of Cu (copper) or the like.
  • the free magnetic layer 36 is formed of a nonmagnetic material such as a Ni—Fe alloy (nickel-iron alloy).
  • the protective layer 37 is made of Ta (tantalum) or the like.
  • the non-magnetic layer 35 is a non-magnetic conductive material giant magnetoresistance effect element formed by such Cu (GMR element), a tunnel magnetoresistive formed of insulating material such as Al 2 O 3 It may be a resistance effect element (TRM element).
  • the laminated structure of the element part 21 is an example, and another laminated structure can also be employ
  • the free magnetic layer 36, the nonmagnetic layer 35, the pinned magnetic layer 34, the antiferromagnetic layer 33, and the protective layer 37 may be stacked in this order from the bottom.
  • the magnetization direction of the pinned magnetic layer 34 is fixed by antiferromagnetic coupling between the antiferromagnetic layer 33 and the pinned magnetic layer 34.
  • the pinned magnetization direction P of the pinned magnetic layer 34 faces the element width direction (Y direction). That is, the fixed magnetization direction P of the fixed magnetic layer 34 is orthogonal to the longitudinal direction (X direction) of the element portion 21.
  • the magnetization direction F of the free magnetic layer 36 varies depending on the external magnetic field.
  • the soft magnetic bodies 23 and 24 make the length of the soft magnetic bodies 23 and 24 for one element significantly longer than the configuration in which an independent soft magnetic body is provided for each element.
  • the effect of amplifying the external magnetic field in the direction (Y direction) is increased, and the shielding effect against the external magnetic field in the direction (X direction) orthogonal to the sensitivity axis direction is also increased.
  • the soft magnetic bodies 23, 24 can maintain the amplification and magnetic shielding effect, and the increase in the element size as a whole can be suppressed.
  • Fig. 3 shows a variation of the 4-element arrangement.
  • the magnetic sensor 40 shown in FIG. 3 constitutes a sensor unit with four magnetoresistive elements A, B, C, and D that are bridge-connected.
  • the four magnetoresistive elements A, B, C, and D share a soft magnetic material.
  • Magnetoresistive elements A and D are arranged on both sides in the X direction, and two magnetoresistive elements B and C are arranged in parallel between them.
  • the sensor region of the magnetoresistive effect elements B and C arranged in parallel in the Y direction (the region where the element portion 21 is formed) has a dimension in the width direction perpendicular to the longitudinal direction of the element portion 21 and the magnetoresistive effect element A , D are less than half of the dimension in the width direction in the same direction. That is, if the magnetoresistive effect elements A and D have the same structure as the magnetoresistive effect element shown in FIG. 1, ten element parts 21 are arranged at predetermined intervals in the sensor part region of the magnetoresistive effect elements A and D. However, in this modification, the magnetoresistive elements B and C arranged in the middle have five element portions 21 arranged at predetermined intervals. The five element portions 21 of the magnetoresistive effect elements B and C are approximately twice as long as the element portion 21 of the magnetoresistive effect elements A and D.
  • the common soft magnetic body 41 has a length larger than the interval between the magnetoresistive effect element A disposed at one end in the X direction and the magnetoresistive effect element D disposed at the other end in the X direction as described above. Have dimensions. That is, the soft magnetic body 41 has a length that penetrates the magnetoresistive effect elements A, B, C, and D in the X direction, and is larger outward than one end of the element portion 21 of the magnetoresistive effect element A in the X direction.
  • a first outer extension portion 41a that extends and a second outer extension portion 41b that extends to the outside of the other end in the X direction of the element portion 21 of the magnetoresistive element D disposed on the opposite side. And have.
  • the soft magnetic body 41 includes the other end (lower side in the figure) of the element portion 21 (10 pieces) of the magnetoresistive effect element A and the element portions 21 (5 pieces each) of the magnetoresistive effect elements B and C.
  • the first inner extending portion 41c slightly extending to a portion facing the one end in the X direction (upper side in the figure), and one end in the X direction (10 pieces) of the element portions 21 (10 pieces) of the magnetoresistive effect element D
  • the second inner extending portion 41d that slightly extends to a portion facing the other end in the X direction (the lower side in the figure) of the element portions 21 (five each) of the magnetoresistive effect elements B and C (middle upper side). And having.
  • the first and second outer extending portions 41a and 41b are formed sufficiently longer than the length of the first and second inner extending portions 41c and 41d.
  • the magnetoresistive elements A, B, C, and D have the same basic element structure as the magnetic sensor of the above embodiment except for the common configuration of the soft magnetic body 41.
  • first and second outer extending portions 41a and 41b there are two outer extending portions (first and second outer extending portions 41a and 41b) that greatly extend from the end of the element portion 21 to the outside.
  • the element size can be further reduced as compared with the above-described embodiment in which the second outer extending portions 23a, 23b, 24a, and 24b are four places.
  • the length of the soft magnetic body 41 with respect to one element is significantly increased, and the effect of amplifying the external magnetic field in the sensitivity axis direction (Y direction) is increased.
  • the shielding effect against the external magnetic field in the direction (X direction) orthogonal to the sensitivity axis direction is also increased.
  • the present invention is applicable to a magnetic sensor using a plurality of magnetoresistive elements such as a geomagnetic sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

Disclosed is a magnetic sensor wherein elements are disposed such that amplification and magnetic shield effects due to a soft magnetic body are maintained and that an increase of element size due to extending portion of the soft magnetic body can be suppressed. In the magnetic sensor (20), each of the magnetoresistive effect elements (A, B, C, D) has a plurality of element sections (21), which are disposed in the element width direction at intervals, and a plurality of soft magnetic bodies (23, 24), which are alternately disposed with the element sections (21) in the element width direction of the element section (21). The element section (21) has a fixed magnetic layer (34) wherein the magnetization direction is fixed, and a free magnetic layer (36), which is laminated on the fixed magnetic layer (34) with a nonmagnetic layer (35) therebetween, and which changes the magnetization direction when an external magnetic field is applied. The soft magnetic bodies (23, 24) respectively have the extending portions (23a-23c, 24a-24c) that extend in the element length direction from both the ends of each element section (21). The soft magnetic bodies (23, 24) are shared by the magnetoresistive effect elements disposed adjacent to each other in the element length direction of the element section (21).

Description

磁気センサMagnetic sensor
 本発明は、磁気抵抗効果素子を用いる磁気センサに関する。 The present invention relates to a magnetic sensor using a magnetoresistive effect element.
 従来、磁気抵抗効果素子を用いた磁気センサが、携帯電話機等の携帯機器に組み込まれた地磁気センサとして用いられている。図4に示すように、地磁気センサ1は、磁気抵抗効果素子2,3,4,5がブリッジ接続されてなるセンサ部6と、センサ部6と電気接続された入力部7、グランド部8、差動増幅器9及び外部出力端子10とを備えた集積回路11とで構成することができる。磁気抵抗効果素子2,3と磁気抵抗効果素子4,5とは、固定磁性層の磁化が反対方向を向くように形成されている。磁気抵抗効果素子2,3,4,5は、感度軸方向からの磁場の強さに対して電気抵抗値が変動するので、磁気抵抗効果素子2,3,4,5の抵抗値変化を差動増幅器9が電圧変化として検出し感度軸方向の磁気変化情報を取得している。 Conventionally, a magnetic sensor using a magnetoresistive effect element has been used as a geomagnetic sensor incorporated in a portable device such as a cellular phone. As shown in FIG. 4, the geomagnetic sensor 1 includes a sensor unit 6 in which magnetoresistive elements 2, 3, 4 and 5 are bridge-connected, an input unit 7 electrically connected to the sensor unit 6, a ground unit 8, The integrated circuit 11 can include a differential amplifier 9 and an external output terminal 10. The magnetoresistive effect elements 2 and 3 and the magnetoresistive effect elements 4 and 5 are formed so that the magnetization of the pinned magnetic layer faces in the opposite direction. The magnetoresistive effect elements 2, 3, 4, and 5 vary in resistance value with respect to the strength of the magnetic field from the sensitivity axis direction. The dynamic amplifier 9 detects the voltage change and acquires magnetic change information in the sensitivity axis direction.
 かかる地磁気センサは、2軸又は3軸に分解して磁気を検出する必要があるため、他の軸に対して感度を持たないようにする必要がある。このような要請に応えるため、感度軸方向への増幅作用及び感度軸と直交する方向への磁気シールド効果を改善した磁気センサが提案されている(例えば、特許文献1参照)。 Such a geomagnetic sensor needs to be separated into two or three axes to detect magnetism, so it is necessary not to have sensitivity to other axes. In order to meet such a demand, a magnetic sensor has been proposed in which the amplification effect in the sensitivity axis direction and the magnetic shield effect in the direction orthogonal to the sensitivity axis are improved (see, for example, Patent Document 1).
 図5(a)(b)は特許文献1に記載された磁気センサにおける磁気抵抗効果素子部分の構成図を示しており、同図(a)は部分平面図、同図(b)は同図(a)に示すA-A線矢視断面図を示している。素子幅W1に比べて素子長L1が長く形成された図示X方向に細長い形状の複数の素子部12がX方向に直交するY方向に所定間隔空けて配設され、各素子部12の端部間が接続電極13により電気的に接続されてミアンダ形状になっている。ミアンダ形状に形成された両端にある素子部12の一方には入力端子7、グランド端子8、出力取り出し部14に接続される電極部15が接続されている。素子部12は、反強磁性層、固定磁性層、非磁性層、フリー磁性層の順に積層されて成膜される。また、図5(b)に示すように、磁気抵抗効果素子2,3は、基板16上に形成され、磁気抵抗効果素子2,3上は絶縁層17に覆われる。また磁気抵抗効果素子2,3を形成する素子12間も絶縁層17で埋められている。 5 (a) and 5 (b) show a configuration diagram of the magnetoresistive effect element portion in the magnetic sensor described in Patent Document 1, wherein FIG. 5 (a) is a partial plan view, and FIG. 5 (b) is the same drawing. The AA arrow directional cross-sectional view shown to (a) is shown. A plurality of element portions 12 elongated in the X direction shown in the figure and formed with an element length L1 longer than the element width W1 are arranged at predetermined intervals in the Y direction orthogonal to the X direction, and the end portions of the element portions 12 The gap is electrically connected by the connection electrode 13 to form a meander shape. An electrode portion 15 connected to the input terminal 7, the ground terminal 8, and the output extraction portion 14 is connected to one of the element portions 12 at both ends formed in a meander shape. The element unit 12 is formed by laminating an antiferromagnetic layer, a pinned magnetic layer, a nonmagnetic layer, and a free magnetic layer in this order. As shown in FIG. 5B, the magnetoresistive effect elements 2 and 3 are formed on the substrate 16, and the magnetoresistive effect elements 2 and 3 are covered with the insulating layer 17. The space between the elements 12 forming the magnetoresistive elements 2 and 3 is also filled with an insulating layer 17.
 図5(a)に示すように、磁気抵抗効果素子2,3を形成する素子部12間、及び最も外側に位置する素子部12の外側に軟磁性体18が設けられている。軟磁性体18の幅寸法W2は素子部12の幅寸法W1よりも小さいが、軟磁性体18の長さ寸法L2は素子部12の長さ寸法L1よりも長く設定される。軟磁性体18は、素子部12の長さ方向の両端部よりも外方へ延出した延出部18aを備える。 As shown in FIG. 5A, soft magnetic bodies 18 are provided between the element portions 12 forming the magnetoresistive effect elements 2 and 3 and outside the element portion 12 located on the outermost side. Although the width dimension W2 of the soft magnetic body 18 is smaller than the width dimension W1 of the element portion 12, the length dimension L2 of the soft magnetic body 18 is set to be longer than the length dimension L1 of the element portion 12. The soft magnetic body 18 includes an extending portion 18 a that extends outward from both end portions in the length direction of the element portion 12.
 軟磁性体18は、特定の方向の外部磁界に対してはヨーク効果を発揮し、特定の方向と異なる方向(特定の方向と直交する方向)の外部磁界に対してはシールド効果を発揮する。すなわち、軟磁性体18は、感度軸方向(矢印Y方向)の外部磁界を増幅すると共に、感度軸方向に直交する方向(矢印X方向)の外部磁界をシールドする。 The soft magnetic body 18 exhibits a yoke effect with respect to an external magnetic field in a specific direction, and exhibits a shielding effect with respect to an external magnetic field in a direction different from the specific direction (a direction orthogonal to the specific direction). That is, the soft magnetic body 18 amplifies the external magnetic field in the sensitivity axis direction (arrow Y direction) and shields the external magnetic field in the direction orthogonal to the sensitivity axis direction (arrow X direction).
国際公開第2009/084434号パンフレットInternational Publication No. 2009/084434 Pamphlet
 ところが、軟磁性体18による増幅及び磁気シールド効果を十分に得るために、図6に示すように軟磁性体18を大幅に長尺化することが考えられるが、延出部18aの長さ寸法が大きくなれば、素子サイズが増大するといった問題が生じる。 However, in order to sufficiently obtain the amplification and magnetic shielding effect by the soft magnetic body 18, it can be considered that the length of the soft magnetic body 18 is greatly increased as shown in FIG. If this becomes larger, there arises a problem that the element size increases.
 図7は図6に示す磁気抵抗効果素子を4つ配置して配線した様子を示す図である。たとえば、図4に示すブリッジ配線に対応させるとすれば、素子A、Dは磁気抵抗効果素子2、3であり、素子B、Cは固定磁性層の磁化が磁気抵抗効果素子2、3と反対方向を向く磁気抵抗効果素子4,5である。磁気抵抗効果素子2、3と同一構成の素子であっても、感度軸方向を調整して配置することで、ブリッジ回路として機能させることができる。 FIG. 7 is a diagram showing a state where four magnetoresistive elements shown in FIG. 6 are arranged and wired. For example, if it corresponds to the bridge wiring shown in FIG. 4, the elements A and D are the magnetoresistive elements 2 and 3, and the elements B and C have the magnetization of the fixed magnetic layer opposite to that of the magnetoresistive elements 2 and 3. The magnetoresistive effect elements 4 and 5 face the direction. Even an element having the same configuration as the magnetoresistive effect elements 2 and 3 can function as a bridge circuit by adjusting the sensitivity axis direction.
 このように、軟磁性体による増幅及び磁気シールド効果を得るために軟磁性体の延出部を大幅に延出させた磁気抵抗効果素子A,B,C,Dを二次元空間に配置しようとすると、素子サイズが大幅に大きくなる問題がある。 As described above, in order to obtain the amplification and magnetic shielding effect by the soft magnetic material, the magnetoresistive effect elements A, B, C, and D, in which the extending portion of the soft magnetic material is greatly extended, are to be arranged in the two-dimensional space. Then, there is a problem that the element size is significantly increased.
 本発明は、かかる点に鑑みてなされたものであり、軟磁性体による増幅及び磁気シールド効果を維持すると共に軟磁性体の延出部に起因する素子の増大を抑えることが可能な素子配置を実現した磁気センサを提供することを目的とする。 The present invention has been made in view of such points, and has an element arrangement capable of maintaining the amplification and magnetic shielding effect by the soft magnetic material and suppressing the increase of the elements due to the extending portion of the soft magnetic material. An object is to provide a realized magnetic sensor.
 本発明の磁気センサは、複数の磁気抵抗効果素子を備えた磁気センサであって、前記各磁気抵抗効果素子は、素子幅方向に間隔をあけて配置された複数の素子部と、前記素子部の素子幅方向に前記素子部と交互に配置された複数の軟磁性体とを有し、前記素子部は、磁化方向が固定される固定磁性層と、前記固定磁性層に非磁性層を介して積層され外部磁場を受けて磁化方向が変動するフリー磁性層とを有し、前記軟磁性体は、前記素子部の長さ方向の両端より素子長さ方向にそれぞれ延出する延出部を有し、前記素子部の素子長さ方向に隣接して配置される磁気抵抗効果素子間で前記軟磁性体を共通化することを特徴とする。 The magnetic sensor of the present invention is a magnetic sensor including a plurality of magnetoresistive effect elements, wherein each of the magnetoresistive effect elements includes a plurality of element portions arranged at intervals in the element width direction, and the element portions. A plurality of soft magnetic bodies arranged alternately with the element portion in the element width direction, wherein the element portion includes a pinned magnetic layer whose magnetization direction is fixed, and a nonmagnetic layer interposed between the pinned magnetic layer and the element portion. And a free magnetic layer whose magnetization direction is changed by receiving an external magnetic field, and the soft magnetic body has extension portions extending in the element length direction from both ends in the length direction of the element portion, respectively. And the soft magnetic material is shared between the magnetoresistive elements arranged adjacent to each other in the element length direction of the element section.
 この構成によれば、磁気抵抗効果素子間で軟磁性体を共通化することにより、各素子部に対して配置される軟磁性体は、少なくとも素子長さ方向に2連結した素子部の合計の長さよりも長くなるので、軟磁性体による増幅及び磁気シールド効果を大幅に改善できる。このことは、軟磁性体による増幅及び磁気シールド効果を維持するのであれば、軟磁性体を共通化する素子間における軟磁性体の延出部の長さ寸法を短縮して素子間の距離を短くできることを意味する。よって、軟磁性体による増幅及び磁気シールド効果を維持すると共に素子間距離を短縮することによる素子サイズの抑制効果も奏することができる。 According to this configuration, by sharing the soft magnetic material between the magnetoresistive effect elements, the soft magnetic material arranged for each element unit is at least the total of the two element units connected in the element length direction. Since the length is longer than the length, the amplification and magnetic shielding effect by the soft magnetic material can be greatly improved. This means that if the soft magnetic material amplification and magnetic shielding effect are maintained, the length of the extension portion of the soft magnetic material between the elements sharing the soft magnetic material can be shortened to increase the distance between the devices. It means that it can be shortened. Therefore, it is possible to maintain the amplification and magnetic shield effect by the soft magnetic material and to reduce the element size by shortening the distance between the elements.
 また本発明は、上記磁気センサにおいて、前記軟磁性体の延出部は、当該軟磁性体を共通化する相手素子と対向する側に延出する内側延出部と、相手素子と対向しない側に延出する外側延出部とを有し、前記内側延出部が外側延出部よりも延出量が少ないことを特徴とする。 According to the present invention, in the magnetic sensor, the extension portion of the soft magnetic body includes an inner extension portion that extends to a side facing the counterpart element that shares the soft magnetic body, and a side that does not face the counterpart element. And an outer extension portion extending to the inner extension portion, wherein the inner extension portion has a smaller extension amount than the outer extension portion.
 この構成により、軟磁性体による増幅及び磁気シールド効果を維持すると共に素子間距離を短縮することにより素子サイズの増大を抑制することができる。 With this configuration, it is possible to suppress an increase in the element size by maintaining the amplification and magnetic shielding effect by the soft magnetic material and shortening the distance between the elements.
 上記磁気センサにおいて、前記複数の素子部は、隣接する各素子部の端部間が交互に接続されてミアンダ形状をなしており、前記複数の素子部と前記複数の軟磁性体とが異なる形成面に形成されても良い。 In the magnetic sensor, the plurality of element portions are formed in a meander shape by alternately connecting ends of adjacent element portions, and the plurality of element portions and the plurality of soft magnetic bodies are formed differently. It may be formed on the surface.
 本発明によれば、軟磁性体による増幅及び磁気シールド効果を維持すると共に軟磁性体の延出部に起因する素子の増大を抑えることが可能な素子配置を実現することができる。 According to the present invention, it is possible to realize an element arrangement capable of maintaining the amplification and the magnetic shielding effect by the soft magnetic material and suppressing the increase of elements due to the extended portion of the soft magnetic material.
本発明の実施の形態に係る磁気センサの素子配置を示す平面図である。It is a top view which shows element arrangement | positioning of the magnetic sensor which concerns on embodiment of this invention. 実施の形態における素子部の断面図である。It is sectional drawing of the element part in embodiment. 変形例に係る磁気センサの素子配置を示す平面図である。It is a top view which shows element arrangement | positioning of the magnetic sensor which concerns on a modification. 地磁気センサの回路構成図である。It is a circuit block diagram of a geomagnetic sensor. 特許文献1記載の磁気センサにおける磁気抵抗効果素子部分の構成図である。2 is a configuration diagram of a magnetoresistive effect element portion in a magnetic sensor described in Patent Document 1. FIG. 軟磁性体の延出部を長尺化した磁気抵抗効果素子の平面図である。It is a top view of the magnetoresistive effect element which extended the extension part of the soft-magnetic body. 図6に示す磁気抵抗効果素子を4つ配置して配線した様子を示す図である。It is a figure which shows a mode that four magnetoresistive effect elements shown in FIG. 6 are arrange | positioned and wired.
 以下、本発明の実施の形態について添付図面を参照して詳細に説明する。
 本発明の実施の形態は、素子部の素子長さ方向に連続して配置された複数の磁気抵抗効果素子間で軟磁性体を共通化し、隣接する素子間における軟磁性体延出部の長さ寸法を抑えた構成を有する。ここでは、4素子配置の例を説明するが、素子数及び配置構成はこれに限定されるものではない。以下、図4に示す地磁気センサ1に適用した実施の形態について説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
In the embodiment of the present invention, a soft magnetic material is shared between a plurality of magnetoresistive elements arranged continuously in the element length direction of the element portion, and the length of the soft magnetic material extending portion between adjacent elements is It has a configuration with a reduced size. Here, an example of a four-element arrangement will be described, but the number of elements and the arrangement configuration are not limited to this. Hereinafter, an embodiment applied to the geomagnetic sensor 1 shown in FIG. 4 will be described.
 図1は本発明の実施の形態に係る磁気センサのセンサ部の素子配置を示す平面図である。本実施の形態に係る磁気センサ20は、ブリッジ接続された4つの磁気抵抗効果素子A,B,C,Dでセンサ部を構成している。2つの磁気抵抗効果素子A,BがX方向に隣接して配置され、残りの2つの磁気抵抗効果素子C,DがX方向に隣接して配置されている。磁気抵抗効果素子Aと磁気抵抗効果素子CとがY方向に隣接し、磁気抵抗効果素子Bと磁気抵抗効果素子DとがY方向に隣接する。X方向に隣接して配置された2つの磁気抵抗効果素子A,B間で軟磁性体を共通化し、2つの磁気抵抗効果素子C,D間で軟磁性体を共通化している。ここで、共通化とは、軟磁性体のストリップが磁気抵抗効果素子A,B間を貫いていることをいう。 FIG. 1 is a plan view showing an element arrangement of a sensor unit of a magnetic sensor according to an embodiment of the present invention. The magnetic sensor 20 according to the present embodiment forms a sensor unit by four magnetoresistive elements A, B, C, and D that are bridge-connected. Two magnetoresistive elements A and B are disposed adjacent to each other in the X direction, and the remaining two magnetoresistive elements C and D are disposed adjacent to each other in the X direction. The magnetoresistive effect element A and the magnetoresistive effect element C are adjacent to each other in the Y direction, and the magnetoresistive effect element B and the magnetoresistive effect element D are adjacent to each other in the Y direction. A soft magnetic material is shared between the two magnetoresistive elements A and B arranged adjacent to each other in the X direction, and a soft magnetic material is shared between the two magnetoresistive elements C and D. Here, common means that a strip of soft magnetic material penetrates between magnetoresistive elements A and B.
 4つの磁気抵抗効果素子A,B,C,Dは、軟磁性体を共通化している点を除いて、図4,図5に示す磁気抵抗効果素子12(13)と基本構成は同じである。各磁気抵抗効果素子A,B,C,Dは、素子幅(W1)に比べて素子長(L1)が長く形成された図示X方向に細長い形状の複数の素子部21がY方向に所定間隔空けて配設され、各素子部21の端部間が接続電極22により電気的に接続されてミアンダ形状になっている。磁気抵抗効果素子A,Cは、ミアンダ形状に形成された両端にある素子部21の一方に入力端子7(図4)に接続される電極22aが形成され、素子部12の他方に出力取り出し部14に接続される電極部22bが接続されている。また、磁気抵抗効果素子B,Dは、ミアンダ形状に形成された両端にある素子部21の一方にグランド端子8(図4)に接続される電極22cが形成され、素子部21の他方に出力取り出し部14(図4)に接続される電極部22dが接続されている。 The four magnetoresistive elements A, B, C, and D have the same basic configuration as the magnetoresistive element 12 (13) shown in FIGS. 4 and 5 except that a soft magnetic material is used in common. . Each of the magnetoresistive effect elements A, B, C, and D has a plurality of element portions 21 that are formed in an element length (L1) longer than the element width (W1) and are elongated in the X direction in the figure, and are spaced at a predetermined interval in the Y direction. Arranged at intervals, the end portions of the element portions 21 are electrically connected by the connection electrodes 22 to form a meander shape. In the magnetoresistive effect elements A and C, an electrode 22 a connected to the input terminal 7 (FIG. 4) is formed on one of the element parts 21 at both ends formed in a meander shape, and an output extraction part is formed on the other of the element parts 12. 14 is connected to the electrode portion 22b. In the magnetoresistive effect elements B and D, an electrode 22c connected to the ground terminal 8 (FIG. 4) is formed on one of the element portions 21 at both ends formed in a meander shape, and output to the other of the element portions 21. An electrode portion 22d connected to the extraction portion 14 (FIG. 4) is connected.
 一方、各磁気抵抗効果素子A,B,C,Dにおける素子部21間、及び最も外側に位置する素子部21の外側に軟磁性体23、24が設けられている。X方向に隣接して配置された2つの磁気抵抗効果素子A,B間で軟磁性体23を共通化しており、同じくX方向に隣接して配置された2つの磁気抵抗効果素子C,D間で軟磁性体24を共通化している。軟磁性体23、24は、磁気抵抗効果素子A、Cの素子部21のX方向の一方端(図中上側)よりも外側へ大きく延出した第1の外側延出部23a,24aを有し、同様に素子部21のX方向の他方端(図中下側)よりも外側へ大きく延出した第2の外側延出部23b,24bを有する。また、軟磁性体23(24)は、磁気抵抗効果素子A,B(C,D)間で素子部21の端部よりも外側(素子A,B同士の対向方向)に僅かに延出する内側延出部23c,24cを有する。内側延出部23c,24cは第1(第2)の外側延出部23a,24a(23b,24b)に比べて大幅に長さ寸法が短縮されている。なお、第1及び第2の外側延出部23a,24a、23b,24bの長さ寸法は、例えば図6に示す軟磁性体延出部と同様に所要の増幅及び磁気シールド効果を奏する程度に長尺化されている。 On the other hand, soft magnetic bodies 23 and 24 are provided between the element portions 21 in each of the magnetoresistive effect elements A, B, C, and D and outside the element portion 21 located on the outermost side. A soft magnetic body 23 is shared between two magnetoresistive elements A and B arranged adjacent to each other in the X direction, and between two magnetoresistive elements C and D arranged adjacent to each other in the X direction. The soft magnetic body 24 is shared. The soft magnetic bodies 23 and 24 have first outer extending portions 23a and 24a that extend largely outward from one end (upper side in the figure) of the element portion 21 of the magnetoresistive effect elements A and C in the X direction. Similarly, it has second outer extending portions 23b and 24b that greatly extend outward from the other end (lower side in the figure) of the element portion 21 in the X direction. Further, the soft magnetic body 23 (24) slightly extends outside the end portion of the element portion 21 between the magnetoresistive effect elements A and B (C, D) (the opposing direction of the elements A and B). Inner extending portions 23c and 24c are provided. The inner extension portions 23c and 24c are greatly reduced in length as compared with the first (second) outer extension portions 23a and 24a (23b and 24b). The length dimensions of the first and second outer extending portions 23a, 24a, 23b, and 24b are such that, for example, the required amplification and magnetic shielding effects can be obtained as in the soft magnetic material extending portion shown in FIG. It is long.
 また、磁気抵抗効果素子A,B,C,Dは、図5(b)に示す構造と同様の断面構造を有する。すなわち、磁気抵抗効果素子A,B,C,Dは、基板16(図5(b))上に形成され、磁気抵抗効果素子A,B,C,D上は絶縁層17に覆われる。また磁気抵抗効果素子A,B,C,Dを形成する素子12間も絶縁層17で埋められている。絶縁層17上に軟磁性体23(24)が形成される。 Further, the magnetoresistive effect elements A, B, C, and D have a cross-sectional structure similar to the structure shown in FIG. That is, the magnetoresistive elements A, B, C, and D are formed on the substrate 16 (FIG. 5B), and the magnetoresistive elements A, B, C, and D are covered with the insulating layer 17. The space between the elements 12 forming the magnetoresistive effect elements A, B, C, D is also filled with an insulating layer 17. A soft magnetic material 23 (24) is formed on the insulating layer 17.
 各磁気抵抗効果素子A,B,C,Dは、同じ積層構造で構成される。図2は磁気抵抗効果素子Aの積層構造を示す図であり、素子部21の素子幅と平行な方向から膜厚保方向に切断した切断面を示している。素子部21は、下から反強磁性層33、固定磁性層34、非磁性層35、フリー磁性層36の順に積層されて成膜され、フリー磁性層36の表面が保護層37で覆われている。素子部21はスパッタにて形成することができる。 Each magnetoresistive effect element A, B, C, D is constituted by the same laminated structure. FIG. 2 is a view showing a laminated structure of the magnetoresistive effect element A, and shows a cut surface cut in the film thickness maintaining direction from a direction parallel to the element width of the element portion 21. The element unit 21 is formed by laminating an antiferromagnetic layer 33, a pinned magnetic layer 34, a nonmagnetic layer 35, and a free magnetic layer 36 in this order from below, and the surface of the free magnetic layer 36 is covered with a protective layer 37. Yes. The element part 21 can be formed by sputtering.
 反強磁性層33は、Ir-Mn合金(イリジウム-マンガン合金)等の反強磁性材料で形成されている。固定磁性層34は、Co-Fe(コバルト-鉄合金)等の軟磁性材料で形成されている。非磁性層35は、Cu(銅)等である。フリー磁性層36は、Ni-Fe合金(ニッケル-鉄合金)等の非磁性材料で形成されている。保護層37は、Ta(タンタル)等である。本実施の形態では、非磁性層35がCu等の非磁性導電材料で形成された巨大磁気抵抗効果素子(GMR素子)であるが、AlO等の絶縁材料で形成されたトンネル型磁気抵抗効果素子(TRM素子)であっても良い。また、素子部21の積層構造は一例であり、他の積層構造を採用することもできる。たとえば、下からフリー磁性層36、非磁性層35、固定磁性層34、反強磁性層33、保護層37の順に積層されても良い。 The antiferromagnetic layer 33 is made of an antiferromagnetic material such as an Ir-Mn alloy (iridium-manganese alloy). The pinned magnetic layer 34 is formed of a soft magnetic material such as Co—Fe (cobalt-iron alloy). The nonmagnetic layer 35 is made of Cu (copper) or the like. The free magnetic layer 36 is formed of a nonmagnetic material such as a Ni—Fe alloy (nickel-iron alloy). The protective layer 37 is made of Ta (tantalum) or the like. In this embodiment, the non-magnetic layer 35, but is a non-magnetic conductive material giant magnetoresistance effect element formed by such Cu (GMR element), a tunnel magnetoresistive formed of insulating material such as Al 2 O 3 It may be a resistance effect element (TRM element). Moreover, the laminated structure of the element part 21 is an example, and another laminated structure can also be employ | adopted. For example, the free magnetic layer 36, the nonmagnetic layer 35, the pinned magnetic layer 34, the antiferromagnetic layer 33, and the protective layer 37 may be stacked in this order from the bottom.
 素子部21では、反強磁性層33と固定磁性層34との反強磁性結合により、固定磁性層34の磁化方向が固定されている。図2に示すように、固定磁性層34の固定磁化方向Pは素子幅方向(Y方向)に向いている。すなわち、固定磁性層34の固定磁化方向Pは素子部21の長手方向(X方向)と直交している。一方、フリー磁性層36の磁化方向Fは外部磁場により変動する。固定磁性層34の固定磁化方向Pと同一方向から外部磁場が作用してフリー磁性層36の磁化方向Fが外部磁場方向に向くと、固定磁性層34の固定磁化方向Pとフリー磁性層36の磁化方向Fとが並行に近づいて電気抵抗値が低下する。逆に、固定磁性層34の固定磁化方向Pと反対方向から外部磁場が作用してフリー磁性層36の磁化方向Fが外部磁場方向に向くと、電気抵抗値が増大する。 In the element portion 21, the magnetization direction of the pinned magnetic layer 34 is fixed by antiferromagnetic coupling between the antiferromagnetic layer 33 and the pinned magnetic layer 34. As shown in FIG. 2, the pinned magnetization direction P of the pinned magnetic layer 34 faces the element width direction (Y direction). That is, the fixed magnetization direction P of the fixed magnetic layer 34 is orthogonal to the longitudinal direction (X direction) of the element portion 21. On the other hand, the magnetization direction F of the free magnetic layer 36 varies depending on the external magnetic field. When an external magnetic field acts from the same direction as the fixed magnetization direction P of the fixed magnetic layer 34 and the magnetization direction F of the free magnetic layer 36 is directed to the external magnetic field direction, the fixed magnetization direction P of the fixed magnetic layer 34 and the free magnetic layer 36 As the magnetization direction F approaches parallel, the electrical resistance value decreases. Conversely, when an external magnetic field acts from a direction opposite to the fixed magnetization direction P of the fixed magnetic layer 34 and the magnetization direction F of the free magnetic layer 36 is directed to the external magnetic field direction, the electrical resistance value increases.
 以上のように構成された本実施の形態によれば、素子部21の長手方向となるX方向に隣接して配置される磁気抵抗効果素子A,B間、磁気抵抗効果素子C,D間でそれぞれ軟磁性体23、24を共通化したことにより、素子毎に独立した軟磁性体を設ける構成に比べて、1素子に対する軟磁性体23、24の長さ寸法が大幅に長くなり、感度軸方向(Y方向)の外部磁界を増幅する効果が増大されると共に、感度軸方向に直交する方向(X方向)の外部磁界に対するシールド効果も増大する。したがって、軟磁性体23、24が共通化された素子間(A,B)、(C,D)において内側延出部23c,24cの長さ寸法を大幅に短縮しても軟磁性体23、24による増幅及び磁気シールド効果を維持することができ、全体として素子サイズの増大を抑制することができる。 According to the present embodiment configured as described above, between the magnetoresistive effect elements A and B and between the magnetoresistive effect elements C and D arranged adjacent to each other in the X direction which is the longitudinal direction of the element portion 21. The common use of the soft magnetic bodies 23 and 24 makes the length of the soft magnetic bodies 23 and 24 for one element significantly longer than the configuration in which an independent soft magnetic body is provided for each element. The effect of amplifying the external magnetic field in the direction (Y direction) is increased, and the shielding effect against the external magnetic field in the direction (X direction) orthogonal to the sensitivity axis direction is also increased. Therefore, even if the length dimension of the inner extending portions 23c, 24c is greatly shortened between the elements (A, B), (C, D) where the soft magnetic bodies 23, 24 are shared, the soft magnetic bodies 23, 24 can maintain the amplification and magnetic shielding effect, and the increase in the element size as a whole can be suppressed.
 図3に4素子配置の変形例を示す。図3に示す磁気センサ40は、ブリッジ接続された4つの磁気抵抗効果素子A,B,C,Dでセンサ部を構成している。4つの磁気抵抗効果素子A,B,C,Dで軟磁性体を共通化している。磁気抵抗効果素子A,DをX方向の両側に配置し、その間に2つの磁気抵抗効果素子B,Cを並列に配置している。Y方向に並列配置された磁気抵抗効果素子B,Cのセンサ部領域(素子部21が形成された領域)は、素子部21の長手方向と直交する幅方向の寸法が、磁気抵抗効果素子A,Dのセンサ部領域の同方向の幅方向の寸法の半分以下としている。すなわち、磁気抵抗効果素子A,Dを図1に示す磁気抵抗効果素子と同一構造とすると、磁気抵抗効果素子A,Dのセンサ部領域には10本の素子部21が所定間隔で配置されているが、本変形例では中間に配置される磁気抵抗効果素子B,Cは5本の素子部21が所定間隔で配置されている。そして、磁気抵抗効果素子B,Cの5本の素子部21は、長さ寸法が磁気抵抗効果素子A,Dの素子部21の略2倍となっている。 Fig. 3 shows a variation of the 4-element arrangement. The magnetic sensor 40 shown in FIG. 3 constitutes a sensor unit with four magnetoresistive elements A, B, C, and D that are bridge-connected. The four magnetoresistive elements A, B, C, and D share a soft magnetic material. Magnetoresistive elements A and D are arranged on both sides in the X direction, and two magnetoresistive elements B and C are arranged in parallel between them. The sensor region of the magnetoresistive effect elements B and C arranged in parallel in the Y direction (the region where the element portion 21 is formed) has a dimension in the width direction perpendicular to the longitudinal direction of the element portion 21 and the magnetoresistive effect element A , D are less than half of the dimension in the width direction in the same direction. That is, if the magnetoresistive effect elements A and D have the same structure as the magnetoresistive effect element shown in FIG. 1, ten element parts 21 are arranged at predetermined intervals in the sensor part region of the magnetoresistive effect elements A and D. However, in this modification, the magnetoresistive elements B and C arranged in the middle have five element portions 21 arranged at predetermined intervals. The five element portions 21 of the magnetoresistive effect elements B and C are approximately twice as long as the element portion 21 of the magnetoresistive effect elements A and D.
 共通化された軟磁性体41は、上記のようにX方向の一端に配置された磁気抵抗効果素子AとX方向の他端に配置された磁気抵抗効果素子Dとの間隔よりも大きい長さ寸法を有する。すなわち、軟磁性体41は、X方向に磁気抵抗効果素子A、B又はC、Dを貫く長さを有し、さらに磁気抵抗効果素子Aの素子部21のX方向の一端よりも外側に大きく延出する第1の外側延出部41aと、反対側に配置された磁気抵抗効果素子Dの素子部21のX方向の他端よりも外側に大きく延出する第2の外側延出部41bとを有する。また、軟磁性体41は、磁気抵抗効果素子Aの素子部21(10本)のX方向の他端(図中下側)と磁気抵抗効果素子B,Cの素子部21(各5本)のX方向の一端(図中上側)との対向部に僅かに延出する第1の内側延出部41cと、磁気抵抗効果素子Dの素子部21(10本)のX方向の一端(図中上側)と磁気抵抗効果素子B,Cの素子部21(各5本)のX方向の他端(図中下側)との対向部に僅かに延出する第2の内側延出部41dと、を有する。第1及び第2の外側延出部41a,41bは、第1及び第2の内側延出部41c、41dの長さ寸法よりも十分に長く形成されている。磁気抵抗効果素子A,B,C,Dは、軟磁性体41の共通化構成を除けば、基本素子構造は上記実施の形態の磁気センサと同じである。 The common soft magnetic body 41 has a length larger than the interval between the magnetoresistive effect element A disposed at one end in the X direction and the magnetoresistive effect element D disposed at the other end in the X direction as described above. Have dimensions. That is, the soft magnetic body 41 has a length that penetrates the magnetoresistive effect elements A, B, C, and D in the X direction, and is larger outward than one end of the element portion 21 of the magnetoresistive effect element A in the X direction. A first outer extension portion 41a that extends and a second outer extension portion 41b that extends to the outside of the other end in the X direction of the element portion 21 of the magnetoresistive element D disposed on the opposite side. And have. The soft magnetic body 41 includes the other end (lower side in the figure) of the element portion 21 (10 pieces) of the magnetoresistive effect element A and the element portions 21 (5 pieces each) of the magnetoresistive effect elements B and C. The first inner extending portion 41c slightly extending to a portion facing the one end in the X direction (upper side in the figure), and one end in the X direction (10 pieces) of the element portions 21 (10 pieces) of the magnetoresistive effect element D The second inner extending portion 41d that slightly extends to a portion facing the other end in the X direction (the lower side in the figure) of the element portions 21 (five each) of the magnetoresistive effect elements B and C (middle upper side). And having. The first and second outer extending portions 41a and 41b are formed sufficiently longer than the length of the first and second inner extending portions 41c and 41d. The magnetoresistive elements A, B, C, and D have the same basic element structure as the magnetic sensor of the above embodiment except for the common configuration of the soft magnetic body 41.
 このような変形例によれば、素子部21の端部から外側へ大きく延出する外側延出部(第1及び第2の外側延出部41a,41b)が2箇所になるので、第1及び第2の外側延出部23a,23b,24a,24bが4箇所であった上記実施の形態に比べて、さらに素子サイズを小型化することができる。また、各磁気抵抗効果素子A,B,C,Dは1素子に対する軟磁性体41の長さ寸法が大幅に長くなり、感度軸方向(Y方向)の外部磁界を増幅する効果が増大されると共に、感度軸方向に直交する方向(X方向)の外部磁界に対するシールド効果も増大する。 According to such a modified example, there are two outer extending portions (first and second outer extending portions 41a and 41b) that greatly extend from the end of the element portion 21 to the outside. In addition, the element size can be further reduced as compared with the above-described embodiment in which the second outer extending portions 23a, 23b, 24a, and 24b are four places. In each of the magnetoresistive elements A, B, C, and D, the length of the soft magnetic body 41 with respect to one element is significantly increased, and the effect of amplifying the external magnetic field in the sensitivity axis direction (Y direction) is increased. In addition, the shielding effect against the external magnetic field in the direction (X direction) orthogonal to the sensitivity axis direction is also increased.
 本発明は、地磁気センサ等の複数の磁気抵抗効果素子を用いる磁気センサに適用可能である。 The present invention is applicable to a magnetic sensor using a plurality of magnetoresistive elements such as a geomagnetic sensor.
 本出願は、2010年3月12日出願の特願2010-056151に基づく。この内容は、全てここに含めておく。 This application is based on Japanese Patent Application No. 2010-056151 filed on Mar. 12, 2010. All this content is included here.

Claims (3)

  1.  複数の磁気抵抗効果素子を備えた磁気センサであって、
     前記各磁気抵抗効果素子は、素子幅方向に間隔をあけて配置された複数の素子部と、前記素子部の素子幅方向に前記素子部と交互に配置された複数の軟磁性体とを有し、
     前記素子部は、磁化方向が固定される固定磁性層と、前記固定磁性層に非磁性層を介して積層され外部磁場を受けて磁化方向が変動するフリー磁性層とを有し、
     前記軟磁性体は、前記素子部の長さ方向の両端より素子長さ方向にそれぞれ延出する延出部を有し、
     前記素子部の素子長さ方向に隣接して配置される磁気抵抗効果素子間で前記軟磁性体を共通化することを特徴とする磁気センサ。
    A magnetic sensor comprising a plurality of magnetoresistive elements,
    Each of the magnetoresistive elements has a plurality of element portions arranged at intervals in the element width direction and a plurality of soft magnetic bodies arranged alternately with the element portions in the element width direction of the element portion. And
    The element portion includes a pinned magnetic layer whose magnetization direction is fixed, and a free magnetic layer that is stacked on the pinned magnetic layer via a nonmagnetic layer and receives an external magnetic field and changes the magnetization direction.
    The soft magnetic body has extending portions extending in the element length direction from both ends in the length direction of the element portion,
    A magnetic sensor characterized in that the soft magnetic material is shared between magnetoresistive elements arranged adjacent to each other in the element length direction of the element section.
  2.  前記軟磁性体の延出部は、当該軟磁性体を共通化する相手素子と対向する側に延出する内側延出部と、相手素子と対向しない側に延出する外側延出部とを有し、前記内側延出部が外側延出部よりも延出量が少ないことを特徴とする請求項1記載の磁気センサ。 The extension part of the soft magnetic body includes an inner extension part that extends to the side facing the counterpart element that shares the soft magnetic body, and an outer extension part that extends to the side not facing the counterpart element. The magnetic sensor according to claim 1, wherein the inner extension portion has a smaller extension amount than the outer extension portion.
  3.  前記複数の素子部は、隣接する各素子部の端部間が交互に接続されてミアンダ形状をなしており、
     前記複数の素子部と前記複数の軟磁性体とが異なる形成面に形成されることを特徴とする請求項1記載の磁気センサ。
    The plurality of element portions have a meander shape in which the ends of adjacent element portions are alternately connected,
    The magnetic sensor according to claim 1, wherein the plurality of element portions and the plurality of soft magnetic bodies are formed on different formation surfaces.
PCT/JP2011/052661 2010-03-12 2011-02-08 Magnetic sensor WO2011111458A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-056151 2010-03-12
JP2010056151 2010-03-12

Publications (1)

Publication Number Publication Date
WO2011111458A1 true WO2011111458A1 (en) 2011-09-15

Family

ID=44563284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052661 WO2011111458A1 (en) 2010-03-12 2011-02-08 Magnetic sensor

Country Status (1)

Country Link
WO (1) WO2011111458A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104105978A (en) * 2012-02-07 2014-10-15 旭化成微电子株式会社 Magnetic sensor and magnetic detection method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634131A (en) * 1979-08-29 1981-04-06 Nec Corp Element for detecting magnetic field
WO2009084434A1 (en) * 2007-12-28 2009-07-09 Alps Electric Co., Ltd. Magnetic sensor and magnetic sensor module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634131A (en) * 1979-08-29 1981-04-06 Nec Corp Element for detecting magnetic field
WO2009084434A1 (en) * 2007-12-28 2009-07-09 Alps Electric Co., Ltd. Magnetic sensor and magnetic sensor module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104105978A (en) * 2012-02-07 2014-10-15 旭化成微电子株式会社 Magnetic sensor and magnetic detection method thereof
CN104105978B (en) * 2012-02-07 2016-07-06 旭化成微电子株式会社 Magnetic Sensor and magnetic detection method thereof

Similar Documents

Publication Publication Date Title
JP5066579B2 (en) Magnetic sensor and magnetic sensor module
JP6525335B2 (en) Single chip bridge type magnetic field sensor
JP5597206B2 (en) Magnetic sensor
JP5066580B2 (en) Magnetic sensor and magnetic sensor module
JP5297539B2 (en) Magnetic sensor
JP6305181B2 (en) Magnetic sensor
JP5174911B2 (en) Magnetic sensor and magnetic sensor module
JP2009175120A (en) Magnetic sensor and magnetic sensor module
JP5210983B2 (en) Geomagnetic sensor
WO2009151024A1 (en) Magnetic sensor and magnetic sensor module
JP5171933B2 (en) Magnetic sensor
JP2009162499A (en) Magnetometric sensor
JP5066581B2 (en) Magnetic sensor and magnetic sensor module
JP5149964B2 (en) Magnetic sensor and magnetic sensor module
US20220326320A1 (en) Magnetic sensor
JP2017072375A (en) Magnetic sensor
JP2009162540A (en) Magnetometric sensor and its manufacturing method
US9835692B2 (en) Magnetic detection device
JP6438930B2 (en) Magnetic field detector
WO2011074488A1 (en) Magnetic sensor
JP5413866B2 (en) Current sensor with magnetic sensing element
WO2011111458A1 (en) Magnetic sensor
JP2013160639A (en) Magnetic sensor and method of manufacturing the same
WO2011111457A1 (en) Magnetism sensor and magnetic-balance current sensor provided therewith
JP5223001B2 (en) Magnetic sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11753120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP