WO2018155419A1 - Vaporizer and production method for element structure - Google Patents

Vaporizer and production method for element structure Download PDF

Info

Publication number
WO2018155419A1
WO2018155419A1 PCT/JP2018/005934 JP2018005934W WO2018155419A1 WO 2018155419 A1 WO2018155419 A1 WO 2018155419A1 JP 2018005934 W JP2018005934 W JP 2018005934W WO 2018155419 A1 WO2018155419 A1 WO 2018155419A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin material
layer
film
substrate
unit
Prior art date
Application number
PCT/JP2018/005934
Other languages
French (fr)
Japanese (ja)
Inventor
信 青代
健介 清
高橋 明久
貴浩 矢島
裕子 加藤
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to CN201880004362.4A priority Critical patent/CN109952388A/en
Priority to JP2019501330A priority patent/JP6768918B2/en
Priority to KR1020197013683A priority patent/KR102221194B1/en
Publication of WO2018155419A1 publication Critical patent/WO2018155419A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources

Definitions

  • the present invention relates to a vaporizer and an element structure manufacturing apparatus, and more particularly to a technique suitable for use in manufacturing an element structure having a laminated structure that protects a device and the like from oxygen, moisture, and the like.
  • an organic EL (Electro Luminescence) element or the like is known as an element including a compound that easily deteriorates due to moisture or oxygen.
  • Patent Document 1 described below describes a light-emitting element that includes a protective film formed of a laminated film of an inorganic film and an organic film on an upper electrode layer.
  • an acrylic resin or the like is used, and the resin material is vaporized and supplied to form a film.
  • the present inventors have found that the vapor can be stably supplied without excessively raising the temperature by spraying the liquid resin into a heated vaporizer and heating and vaporizing it.
  • part of the sprayed resin material does not evaporate on the heating surface, and a liquid film is formed, so that the vaporized area on the heating surface may be reduced by the liquid resin material.
  • the vaporization efficiency is deteriorated, and the supply amount of the resin material supplied from the vaporizer to the film formation chamber is reduced, so that there is a problem that the deposition (film formation rate) is deteriorated.
  • the liquefied resin material when the resin material sprayed on the surface comes in contact with the liquefied resin material, it does not evaporate at this portion, and the reduction of the vaporized area is promoted. Further, on the bottom surface of the vaporizer, when the treatment time is prolonged, the liquefied resin material not only adheres but is stored, and the vaporization rate is extremely lowered. For this reason, the number of resin materials that are not used for film formation increases, the vaporization efficiency decreases, and the liquefied resin material is wasted without being used for film formation. There was a request to improve.
  • the heating temperature of the vaporizer is significantly increased above the evaporation temperature of the resin material in order to increase the vaporization rate, the resin material is polymerized and cured by heat in the vaporizer. There is a problem that the film rate decreases, which is not realistic.
  • the present invention has been made in view of the above circumstances, and aims to achieve at least one of the following objects. 1. To stabilize the evaporation rate. 2. To improve the supply state of resin material vapor. 2. To prevent film formation defects caused by a decrease in the evaporation rate. 3. Ensure barrier properties.
  • a vaporizer is a vaporizer for supplying a vaporized resin material to an element structure manufacturing apparatus, and includes an internal space for vaporizing a liquid resin material.
  • a storage section that is disposed below the heating section and in which the liquid resin material that has not been vaporized in the heating section is dropped and stored in the internal space.
  • the one surface of the heating unit in contact with the liquid resin material sprayed from the discharge unit is directed from the central region toward the outer peripheral region. May be inclined downward.
  • a through hole that communicates from the discharge part to the storage part may be arranged in the outer peripheral area of the heating part.
  • the storage unit may have a temperature lower than that of the heating unit.
  • the vaporization tank may include a temperature control device that controls the temperature of the wall surface in contact with the internal space.
  • the resin material vaporized from the vaporization tank is first introduced into a processing chamber (film formation chamber) that constitutes the element structure manufacturing apparatus.
  • a switching unit that enables selection of the second pipe.
  • the device for manufacturing an element structure according to the second aspect of the present invention is configured to cover the functional layer disposed on the one surface side of the substrate and to form a first layer made of an inorganic material having a local convex portion.
  • a resin material film made of the resin material is formed on the first layer, and the resin material film is cured on the first layer so that the resin material vaporized from the vaporizer according to the first aspect can be supplied.
  • a part of the resin film located at a position including a boundary part between the outer surface of the convex part and one surface of the substrate when the first layer is viewed from a side cross section.
  • a localization processing part for removing the resin film at other positions, the convex part on the one surface side, a resin material in which a part of the resin film is left, and the exposure by the removal
  • a second layer forming part for forming a second layer made of an inorganic material so as to cover the first layer A.
  • the localization processing unit uses a dry etching method so that a region including the top portion of the outer surface of the convex portion is exposed. The resin film may be removed.
  • the liquid resin material flows down from the heating unit to the storage unit, and the liquid resin material sprayed on the heating unit stays on one surface of the heating unit. There is nothing to do. For this reason, it is possible to reduce the amount of the resin material sprayed on the one surface of the heating unit to be liquefied. At the same time, the liquid resin material sprayed on the heating part does not stay on one surface of the heating part. For this reason, the resin material polymerized by heating on the one surface of the warming part is flowed down to the lower storage part, and the amount of the resin material polymerized by heating on the one surface of the warming part can be reduced. This can prevent the vaporization of the resin material on one surface of the heating part from being hindered. For this reason, it becomes possible to suppress the reduction
  • the one surface of the heating unit that contacts the liquid resin material sprayed from the discharge unit is inclined downward from the central region toward the outer peripheral region. This prevents the liquid resin material from flowing down on the one surface of the warming portion by an inclination, so that the liquid resin material sprayed on the warming portion does not stay on the one surface of the warming portion. For this reason, it is possible to reduce the amount of the resin material sprayed on one surface of the warming part to be liquefied. At the same time, the liquid resin material sprayed on the heating part does not stay on one surface of the heating part.
  • the resin material polymerized by heating on the one surface of the warming part is caused to flow down to the lower storage part to reduce the amount of the resin material polymerized by heating on the one surface of the warming part. It is possible to prevent the vaporization of the resin material on the one surface of the heating unit from being hindered. For this reason, it becomes possible to suppress the reduction
  • the internal space is divided into an upper space and a lower space by the heating unit by arranging a through hole that communicates from the discharge unit to the storage unit.
  • the portion below the heating portion is divided into the storage portion, and the portion of the liquid resin material sprayed on the heating portion that has not been vaporized flows down to the storage portion through the through hole. There is no stagnation on one surface of the heating section.
  • the resin material that has not been vaporized is not heated and polymerized for a long time on one side of the heating unit, and even if part of it is polymerized, it is caused to flow down to the lower storage unit by the liquid resin material.
  • a vaporization state can be stabilized by performing vaporization in the internal space upper side divided
  • the storage unit is set to a temperature lower than the heating unit, so that the liquid resin material flowing down to the storage unit is heated in the storage unit. There is no polymerization, and the polymerized resin material does not increase. Furthermore, the influence from the storage part with respect to the temperature state of a heating part can be reduced by making a storage part into temperature lower than a heating part.
  • the vaporization tank includes the wall surface temperature control device in contact with the internal space, whereby the wall surface temperature can be set to a temperature suitable for vaporization. . Furthermore, since the wall surface is erected, the liquid resin material does not flow down the wall surface and stay on the wall surface. In addition, since the resin material solidified by heating on the wall surface flows down to the lower storage part, the heating part can stably perform vaporization on the upper side of the internal space, and the vaporized state can be stabilized. .
  • resin material can be stably supplied to a film-forming chamber, and film-forming The rate can be stabilized and a resin material film having desired film characteristics can be formed.
  • the resin material is stably supplied from the vaporizer to the film forming chamber, the film forming rate is stabilized, and the desired film characteristics are obtained. It is possible to form a resin material film. Thereby, it becomes possible to reliably seal the functional layer by the first layer and the second layer with the localized resin material, and to manufacture an element structure having high barrier characteristics.
  • the localization processing unit may expose a region including the top portion of the outer surface of the convex portion by using a dry etching method.
  • the substrate since the resin film is removed, the substrate, the first layer made of an inorganic material, covering the functional layer disposed on the one surface side of the substrate and having local convex portions, and the first layer
  • the resin material made of an organic material that covers the first layer and is disposed only (only) in the vicinity of the position including the boundary between the outer surface of the convex portion and one surface of the substrate.
  • the second layer made of an inorganic material that covers the first layer exposed in the region where the convex portion on the one surface side, the resin material, and the resin material are not present. be able to.
  • the functional layer is reliably sealed by the first layer and the second layer, and unnecessary damage is not caused to the first layer.
  • unnecessary portions of the resin material can be removed, and only the portions necessary for sealing can be easily localized, and an element structure with high barrier characteristics can be manufactured.
  • the localization processing unit removes a part of the resin film using a dry etching method, and leaves a resin material in which a part of the resin film is localized on the substrate. The resin material remains around the convex portion or in the concave portion. Of the resin film, the upper surface of the convex part and the resin film on the flat part are removed.
  • the localization processing unit detects a change in a specific condition among the conditions for etching the resin film, and ends the etching process. It is preferable to have a detection device used as the above.
  • the resin film forming unit includes a substrate cooling device that cools the substrate to a temperature lower than a vaporization temperature of the resin material.
  • the resin film-forming unit has a UV irradiation device that irradiates the resin material on the substrate surface with UV rays and performs UV curing.
  • the element structure manufacturing apparatus according to the second aspect of the present invention includes the first layer forming unit, the resin film forming unit, the localization processing unit, and the second layer forming unit. It is preferable to have a transfer device for transferring the substrate.
  • the aspect of the present invention it is possible to suppress the reduction of the vaporization rate in the vaporization tank, to supply a stable vaporized resin material, and to manufacture an element structure having high barrier characteristics. It is possible to achieve the effect of being able to.
  • FIG. 1 It is a schematic diagram showing an apparatus for manufacturing an element structure according to the first embodiment of the present invention. It is a schematic cross section which shows the resin film-forming part in the manufacturing apparatus of the element structure which concerns on 1st Embodiment of this invention. It is a schematic cross section which shows the vaporizer
  • FIG. 1 is a schematic diagram showing an element structure manufacturing apparatus according to this embodiment.
  • FIG. 2 is a schematic diagram showing an element structure manufacturing apparatus according to this embodiment.
  • FIG. 3 is a schematic diagram showing a vaporizer according to the present embodiment.
  • reference numeral 1000 denotes an element structure manufacturing apparatus.
  • the element structure manufacturing apparatus 1000 manufactures an element structure such as an organic EL element, as will be described later.
  • the manufacturing apparatus 1000 includes a first layer forming unit 201, a resin film forming unit 100, a localization processing unit 202, a second layer forming unit 203, and a functional layer that becomes an organic EL layer.
  • the functional layer forming unit 204 for forming the core, the core chamber 200, and a load lock chamber 210 connected to the outside.
  • the core chamber 200 is connected to the first layer forming unit 201, the resin film forming unit 100, the localization processing unit 202, the second layer forming unit 203, the functional layer forming unit 204, and the load lock chamber 210.
  • a substrate transferred from another device or the like to the element structure manufacturing apparatus 1000 is inserted.
  • a substrate transfer robot (not shown) is disposed in the core chamber 200.
  • the core chamber 200, the film forming chambers 100, 201, 202, 203, 204 and the load lock chamber 210 constitute a vacuum chamber to which a vacuum exhaust system (not shown) is connected.
  • each manufacturing process can be automated, and at the same time, efficient manufacturing can be performed using a plurality of film formation chambers. It is possible to improve productivity.
  • the first layer forming portion 201 covers the functional layer 3 disposed on the one surface side 2a of the substrate 2 in the element structure 10 to be described later, and has a local convex portion, such as silicon nitride (SiN x ).
  • the first layer 41 made of the inorganic material is formed.
  • the first layer formation unit 201 is a film formation chamber in which the first layer 41 is formed by, for example, a CVD (Chemical Vapor Deposition) method, a sputtering method, an ALD (Atomic Layer Deposition) method, or the like.
  • the functional layer forming unit 204 forms the functional layer 3 in the element structure 10 described later. Note that the functional layer forming unit 204 may be provided outside the load lock chamber 210.
  • the second layer forming unit 203 forms a second layer 42 made of an inorganic material like the first layer 41 so as to cover the first layer 41 and the resin material 51 in the element structure 10 to be described later. It is a room.
  • the 2nd layer 42 and the 1st layer 41 consist of the same material
  • the 2nd layer formation part 203 and the 1st layer formation part 201 are set as the same structure, or one film-forming chamber ( The second layer 42 and the first layer 41 can also be formed using a common film formation chamber.
  • the forming units 201 and 203 and the film forming chamber are In addition to the functions described above, the functions of the localization processing unit 202 described later can be provided.
  • a substrate on which a resin film is formed is loaded into a plasma CVD apparatus, and plasma is generated by introducing an oxidizing gas, thereby etching the resin film and localizing the resin film to form a resin material. it can. Thereafter, the second layer 42 can be formed in the plasma CVD apparatus as it is.
  • the resin film forming unit 100 supplies the vaporized resin material to the inside of the resin film forming unit 100, forms a resin material film made of a resin material on the first layer 41, and cures the resin material film to form a resin.
  • a film formation chamber for forming a film for forming a film.
  • the resin film forming unit 100 includes a chamber 110 whose internal space can be decompressed, and a vaporizer 300 that supplies the vaporized resin material to the chamber 110 (processing chamber).
  • the internal space of the chamber 110 is composed of an upper space 107 and a lower space 108 as will be described later.
  • An unillustrated evacuation device (evacuation means, vacuum pump, etc.) is connected to the chamber 110, and the evacuation device can evacuate the gas in the internal space so that the internal space of the chamber 110 becomes a vacuum atmosphere. It is configured.
  • a shower plate 105 is arranged in the internal space of the chamber 110, and an upper space 107 is formed above the shower plate 105 in the chamber 110.
  • the shower plate 105 is also formed of a member that can transmit ultraviolet light, so that the ultraviolet light that has passed through the top plate 120 from the irradiation device 122 and introduced into the upper space 107 further passes through the shower plate 105, It becomes possible to proceed to the lower space 108 located below the shower plate 105.
  • an acrylic material film (resin material film) formed on the substrate S which will be described later, is irradiated with ultraviolet light after film formation to cure the acrylic material film and form an acrylic resin film (resin film). Is possible.
  • the chamber 110 is provided with a heating device (not shown).
  • the temperature of the inner wall surface of the chamber 110 constituting the upper space 107 and the lower space 108 can be set to be equal to or higher than the vaporization temperature of the resin material, preferably about 40 to 250 ° C., and is controlled by a heating device.
  • a stage 102 (substrate holding part) on which the substrate S is placed is disposed.
  • stage 102 the position where the substrate is to be placed on the surface is predetermined.
  • the stage 102 is disposed in the chamber 110 with its surface exposed.
  • Reference numeral S denotes a substrate disposed at a predetermined position on the surface of the substrate stage 102.
  • the stage 102 is provided with a substrate cooling device 102a for cooling the substrate S.
  • the substrate cooling device 102 a supplies a coolant into the stage 102 to cool the substrate S on the upper surface of the stage 102.
  • the temperature of the substrate S on which the resin material film is formed is controlled by the cooling device 102a built in the stage 102 (substrate holding unit) on which the substrate S is placed, and is preferably equal to or lower than the vaporization temperature of the resin material. Is controlled to below zero degree (0 ° C.), for example, about ⁇ 30 ° C. to 0 ° C.
  • a shower plate 105 is provided above the stage 102 so as to face the entire surface of the stage 102.
  • the shower plate 105 is composed of a plate-shaped member made of an ultraviolet light transmitting material such as quartz provided with a large number of through holes, and divides the internal space of the chamber 110 into an upper space and a lower space.
  • a mask (not shown) is provided in the lower space 108, and the position of this mask can be set to a predetermined position during film formation. When the substrate moves, the mask is movable so as to retract from the substrate.
  • the upper space 107 of the chamber 110 communicates with the vaporizer 300 via a pipe 112 (resin material supply pipe) and a valve 112V.
  • the vaporized resin material can be supplied to the upper space 107 of the chamber 110 through the resin material supply pipe 112.
  • One end of a resin material bypass pipe 113 having a valve 113V is connected to a position closer to the vaporizer 300 than the valve 112V of the resin material supply pipe 112 (first pipe).
  • the other end of the resin material bypass pipe 113 (second pipe) is connected to the outside (a part different from the film formation chamber, outside the film formation chamber) via the exhaust pipe 114, and gas is passed through the resin material bypass pipe 113. Can be exhausted.
  • the exhaust pipe 114 is connected to a liquefaction recovery device, and can liquefy and recover the resin material.
  • the opening / closing drive of the valve 112V and the valve 113V is controlled by the control unit 400.
  • the control unit 400 has a film forming state in which the vaporized resin material from the vaporizer 300 is supplied into the chamber 110, and a non-generated state in which the vaporized resin material from the vaporizer 300 is exhausted to the outside and not supplied into the chamber 110.
  • the film state is controlled to be switchable.
  • the valve 112V, the valve 113V, and the control unit 400 have a selection function of supplying the resin material into the chamber 110 through the resin material supply pipe 112 or exhausting the resin material to the outside of the chamber 110 through the resin material bypass pipe 113.
  • the switch part which has is comprised.
  • the vaporizer 300 can supply the vaporized resin material to the chamber 110. As shown in FIGS. 2 and 3, the vaporizer 300 includes a vaporization tank 130, a discharge unit 132, and a resin material raw material container 150.
  • the vaporization tank 130 includes an internal space 130a for vaporizing the liquid resin material, and a discharge unit 132 for spraying the liquid resin material is disposed above the internal space 130a.
  • the vaporization tank 130 is formed in a substantially cylindrical shape, but may have other cross-sectional shapes.
  • the inner surface of the vaporization tank 130 can be made of, for example, SUS, Al, or the like.
  • a resin material liquid supply pipe 140 connected to the resin material raw material container 150 via a valve 140V and a carrier gas supply pipe 130G for supplying a carrier gas such as nitrogen gas.
  • the other end of the resin material liquid supply pipe 140 is connected to the resin material raw material container 150 and is located inside the liquid resin material stored in the resin material raw material container 150.
  • a pressurized gas supply pipe 150G for supplying a material liquid such as nitrogen gas is connected to the resin material raw material container 150, and the liquid resin material pressurized by increasing the internal pressure of the resin material raw material container 150 is a resin.
  • the liquid can be supplied to the material liquid supply pipe 140.
  • the discharge unit 132 is configured to spray the liquid resin material supplied from the resin material liquid supply pipe 140 into the internal space of the vaporization tank 130 together with the carrier gas.
  • the discharge part 132 is provided in the approximate center position of the top part of the vaporization tank 130.
  • the vaporization tank 130 is provided with a heating unit 135 at a lower position of the vaporization tank 130.
  • the heating unit 135 is arranged to divide the internal space into an upper space and a lower space.
  • a space between the heating unit 135 and the storage bottom 136 s is defined as a storage unit 136.
  • the warming part 135 can be regarded as a warming bottom part, and the vaporizing tank 130 is configured to have a double bottom structure by the warming part 135 (heating bottom part) and the storage bottom part 136s.
  • the vaporization tank 130 is provided with a vacuum gauge PG so that the internal pressure can be measured.
  • a space between the heating unit 135 and the discharge unit 132 is a vaporization space 130 a above the heating unit 135.
  • the heating unit 135 is provided below the discharge unit 132 in the vaporization space 130a, and heats and vaporizes the liquid resin material sprayed from the discharge unit 132.
  • the upper surface (one surface) of the heating unit 135 is a vaporization surface with which the liquid resin material sprayed from the discharge unit 132 comes into contact.
  • a top portion 135a having the highest height on the upper surface of the heating unit 135 is provided at a substantially central position of the upper surface.
  • An inclined surface 135b (one surface) inclined downward from the top portion 135a toward the outer peripheral region is provided, and the upper surface of the heating portion 135 is conical or spherical.
  • the position of the top portion 135a is the central position of the heating unit 135, but it may not be this position.
  • it corresponds to the central position in the discharge direction (spraying direction) directly below the discharge unit 132 or the discharge unit 132.
  • it is a position.
  • the inclination angle of the inclined surface 135b is not particularly limited as long as the resin material can flow down, but can preferably be set in the range of 3 ° to 45 °.
  • the peripheral part of the warming part 135 is fixed to the side wall 130h of the vaporization tank 130 at the outer periphery of the peripheral part.
  • a plurality of through holes 135 c communicating with 136 are provided.
  • a temperature control device that controls the temperature of the surface in contact with the internal space is provided on the heating unit 135 and the side wall 130 h of the vaporization tank 130.
  • the side wall 130 h is provided with a heater 135 d that heats the upper surface 135 a of the heating unit 135 and a heater 130 d that heats the side wall 130 h that is in contact with the vaporization space 130 a above the heating unit 135. ing.
  • the heater 135d is a sheathed heater embedded in the heating unit 135.
  • the heater 130d is a linear resistance heating device and is wound around and attached to the outer periphery of the vaporization tank 130.
  • the heater 130d heats the vaporization tank 130 to prevent adhesion and re-liquefaction, while in the vaporization tank 130.
  • the material can be vaporized.
  • the resin material supply pipe 112 (first pipe) connected to the vaporization space 130a is also provided with a heater 112d as a similar temperature adjusting device.
  • the heater 112d is wound around the resin material supply pipe 112 (first pipe), and the vaporized resin material is not condensed on the wall surface.
  • the resin material bypass pipe 113 is provided with a heater as a similar temperature adjusting device.
  • These heaters 130d, 135d, 112d can prevent the liquefaction of the resin material by setting the surface temperature exposed to the vaporized resin material to be higher than the vaporization temperature of the resin material. At the same time, the temperature is set so as to reduce the heat solidification of the resin material as much as possible.
  • the reservoir 136 is not heated, or the temperature of the reservoir 136 is set to be lower than the vaporization temperature of the resin material.
  • the storage unit 136 is disposed below the heating unit 135 in the internal space of the vaporization tank 130, and the liquid resin material that has not been vaporized by the heating unit 135 flows down from the through hole 135c and is stored.
  • a drain 136b having a valve 136V is provided in the storage bottom 136s of the storage 136, and the stored resin material can be discharged to the outside.
  • the storage part 136 is set below the vaporization temperature of a resin material, and specifically, it is preferable to set it as room temperature.
  • an ultraviolet curable resin material may be used as the resin material.
  • the ultraviolet curable resin material may be partially polymerized or altered by heating in the heating unit 135.
  • the resin changed in this way has an evaporating temperature and does not evaporate in the heating unit 135. Resin that does not evaporate flows on the inclined surface 135b of the heating unit 135 and accumulates in the storage bottom 136s.
  • the heater 130d and 135d are used to heat the heating unit 135 and the side wall 130h of the vaporization tank 130, and the heater 112d is used to heat the resin material.
  • the supply pipe 112 (first pipe) is heated.
  • control unit 400 closes the valve 112V so that the gas cannot flow into the chamber 110, and opens the valve 113V so that the gas can flow into the resin material bypass pipe 113.
  • the internal pressure of the resin material raw material container 150 is increased, and the liquid resin material supplied from the resin material liquid supply pipe 140 is sprayed from the discharge unit 132 to the internal space of the vaporization tank 130 together with the carrier gas. At this time, the resin material and the carrier gas supplied to the discharge unit 132 can be further heated.
  • the resin material sprayed into the internal space of the vaporizing tank 130 together with the carrier gas from the discharge unit 132 is vaporized inside the heated vaporizing tank 130.
  • the resin material that has reached the heating unit 135 is vaporized on the upper surface of the heating unit 135, but the liquid resin material without being vaporized is heated by the inclination of the inclined surface 135 b of the heating unit 135. It flows down toward the periphery and drops on the storage unit 136 without stopping on the heating unit 135. Thereby, it can prevent that the vaporization area in the heating part 135 reduces with a liquid resin material, and can aim at stabilization of the vaporization amount.
  • the liquid resin material flows down toward the periphery of the heating unit 135 and does not stay on the heating unit 135 and is dropped onto the storage unit 136 so that it is overheated on the heating unit 135 and does not solidify. Even if a part of the liquid is solidified, the liquid resin material is dropped into the storage portion 136. Thereby, it can prevent that the vaporization area in the heating part 135 decreases with the solidified resin material, and can stabilize vaporization amount.
  • the control unit 400 opens the valve 112V so that gas can flow into the chamber 110 and closes the valve 113V. Then, the resin material bypass pipe 113 is in a state where gas cannot flow in. Thereby, the vaporized resin material is supplied to the chamber 110, and the film formation process can be performed.
  • the vaporizer 300 in the present embodiment it is possible to prevent the vaporized area in the heating unit 135 from being reduced by the liquid resin material due to the inclination of the inclined surface 135b of the heating unit 135, and the supply amount of the vaporized resin material Can be stabilized.
  • the resin material is supplied to the chamber 110, and the resin material to the resin material bypass pipe 113 (second pipe) is supplied. Supply can be selected. For this reason, since the supply amount of the vaporized resin material supplied to the chamber 110 can be stabilized, it is possible to prevent the film formation rate from fluctuating and stably form a resin material film having excellent film characteristics. It becomes. Furthermore, since the resin material can be continuously vaporized without introducing the resin material into the chamber 110 when the substrate S is replaced and the mask is aligned in the chamber 110, the generation / stop of vapor generation of the vaporized resin material is stopped. The generation rate of steam can be made substantially constant without repeating the above.
  • the resin film forming unit 100 performs film formation of an ultraviolet curable acrylic resin material having a vaporization temperature of about 40 to 250 ° C. and ultraviolet irradiation for curing the formed resin material in the same chamber 110. It is configured to be possible. Thereby, it becomes possible to perform any processing process with the same apparatus structure, and it can improve productivity.
  • FIG. 4 is a schematic cross-sectional view showing the element structure according to the present embodiment.
  • FIG. 5 is a plan view showing the element structure of FIG.
  • FIG. 6 is an enlarged view showing a main part of the element structure.
  • the X-axis, Y-axis, and Z-axis directions indicate triaxial directions orthogonal to each other.
  • the X-axis and Y-axis directions are orthogonal to each other, and the Z-axis direction is vertical. Show.
  • the element structure 10 includes a substrate 2 including a device layer 3 (functional layer), a silicon nitride layer that is formed on the surface 2a of the substrate 2 and covers the functional layer 3, and has local protrusions.
  • the first inorganic material layer 41 (first layer) made of an inorganic material such as a material (SiN x ) and the second inorganic material in the same manner as the first layer 41 so as to cover the first inorganic material layer 41 A layer 42 (second layer).
  • the element structure 10 includes a light emitting element having an organic EL light emitting layer.
  • the substrate 2 has a front surface 2a (first surface) and a back surface 2c (second surface), and is composed of, for example, a glass substrate or a plastic substrate.
  • substrate 2 is not specifically limited, In this embodiment, it forms in a rectangular shape.
  • substrate 2 are not specifically limited,
  • size and thickness is used according to the magnitude
  • a plurality of element structures 10 are manufactured from an assembly of the same elements manufactured on one large substrate S.
  • Device layer 3 (functional layer) is composed of an organic EL light emitting layer including an upper electrode and a lower electrode.
  • the device layer 3 may be composed of various functional elements including materials that easily deteriorate due to moisture, oxygen, and the like, such as a liquid crystal layer in a liquid crystal element and a power generation layer in a power generation element.
  • the device layer 3 is formed in a predetermined region of the surface 2a of the substrate 2.
  • the planar shape of the device layer 3 is not particularly limited and is formed in a substantially rectangular shape in the present embodiment, but other shapes such as a circular shape and a linear shape may be adopted.
  • the device layer 3 is not limited to the example of being disposed on the front surface 2a of the substrate 2, but may be disposed on at least one of the front surface 2a and the back surface 2c of the substrate 2.
  • 1st inorganic material layer 41 (1st layer) is provided in the surface 2a of the board
  • the first inorganic material layer 41 has a three-dimensional structure that protrudes upward in FIG. 6 from the surface 2 a of the substrate 2.
  • the first inorganic material layer 41 is made of an inorganic material capable of protecting the device layer 3 from moisture and oxygen.
  • the first inorganic material layer 41 is composed of silicon nitride (SiN x ) having excellent water vapor barrier properties, but is not limited to this material.
  • the first inorganic material layer 41 may be composed of another silicon compound such as silicon oxide or silicon oxynitride, or another inorganic material having a water vapor barrier property such as aluminum oxide.
  • the first inorganic material layer 41 is formed on the surface 2a of the substrate 2 using an appropriate mask, for example.
  • the first inorganic material layer 41 is formed using a mask having a rectangular opening having a size that can accommodate the device layer 3.
  • the film forming method is not particularly limited, and a CVD (Chemical Vapor Deposition) method, a sputtering method, an ALD (Atomic Layer Deposition) method, or the like is applicable.
  • the thickness of the first inorganic material layer 41 is not particularly limited, and is, for example, 200 nm to 2 ⁇ m.
  • the second inorganic material layer 42 is composed of an inorganic material capable of protecting the device layer 3 from moisture and oxygen. It is provided on the surface 2 a of the substrate 2 so as to cover the surface 41 a and the side surface 41 s of the layer 41.
  • the second inorganic material layer 42 is composed of silicon nitride (SiN x ) having excellent water vapor barrier properties, but is not limited to this material.
  • the second inorganic material layer 42 may be composed of another silicon compound such as silicon oxide or silicon oxynitride, or another inorganic material having a water vapor barrier property such as aluminum oxide.
  • the second inorganic material layer 42 is formed on the surface 2a of the substrate 2 using, for example, an appropriate mask.
  • the second inorganic material layer 42 is formed using a mask having a rectangular opening having a size capable of accommodating the first inorganic material layer 41.
  • the film forming method is not particularly limited, and a CVD (Chemical Vapor Deposition) method, a sputtering method, an ALD (Atomic Layer Deposition) method, or the like is applicable.
  • the thickness of the second inorganic material layer 42 is not particularly limited, and is, for example, 200 nm to 2 ⁇ m.
  • the element structure 10 according to the present embodiment further includes a first resin material 51.
  • the first resin material 51 is unevenly distributed around the first inorganic material layer 41 (convex portion).
  • the first resin material 51 is interposed between the first inorganic material layer 41 and the second inorganic material layer 42, and the side surface 41 s of the first inorganic material layer 41 and the surface 2 a of the substrate 2. Is unevenly distributed at the boundary 2b.
  • the first resin material 51 has a function of filling the gap G (FIG. 6) between the first inorganic material layer 41 formed in the vicinity of the boundary 2b and the substrate surface 2a.
  • the peripheral structure of the boundary portion 2b in the element structure 10 is shown in an enlarged manner. Since the first inorganic material layer 41 is formed of an inorganic material CVD film or sputtered film, the coverage characteristic (step coverage) with respect to the concavo-convex structure surface of the substrate 2 including the device layer 3 is relatively low. As a result, as shown in FIG. 6, the first inorganic material layer 41 covering the side surface 3s of the device layer 3 has reduced coverage characteristics near the substrate surface 2a, and the coating film thickness is extremely small. There is a risk that the film may be absent.
  • the first resin material 51 is unevenly distributed in the poorly coated region around the first inorganic material layer 41 as described above, so that moisture and oxygen from the poorly coated region to the inside of the device layer 3 can be obtained. To prevent intrusion.
  • the first resin material 51 functions as a base layer of the second inorganic material layer 42, so that the second inorganic material layer 42 is appropriately formed. Therefore, the side surface 41s of the first inorganic material layer 41 can be appropriately covered with a desired film thickness.
  • the first resin material 51 is formed by a method in which the resin material vaporized by spray vaporization is supplied to the substrate surface 2a and condensed to form a resin material film, and after the resin material film is cured, unnecessary portions are removed. It is formed by a localization process.
  • 7 to 11 are process diagrams schematically showing a method for forming the first resin material 51 in the element structure manufacturing method according to the present embodiment.
  • the substrate S carried into the core chamber 200 from the load lock chamber 210 is transported from the core chamber 200 to the functional layer forming unit 204 by a substrate transport robot (not shown).
  • the device layer 3 (functional layer) is formed in a predetermined region on the substrate S.
  • the region to be the functional layer 3 is a plurality of regions on the substrate S, for example, four regions arranged at predetermined intervals of two each in the X-axis direction and the Y-axis direction, The region to be the functional layer 3 is used.
  • the method for forming the device layer 3 is not particularly limited, and can be appropriately selected depending on the material, configuration, and the like of the device layer 3.
  • the substrate S is transported to a film forming chamber or the like of the functional layer forming unit 204, and a predetermined material is deposited on the substrate S, sputtered, etc.
  • a desired device layer 3 can be formed.
  • the pattern processing method is not particularly limited, and for example, etching or the like can be employed.
  • the functional layer forming unit 204 includes a large number of processing chambers and includes a transfer device that can transfer the substrate S between adjacent processing chambers can be employed.
  • the structure which is not a vacuum apparatus is also employable. In other words, it is not necessary to go through the load lock chamber 210, and processing for the substrate S outside the element structure manufacturing apparatus 1000 can be made possible.
  • the substrate S on which the device layer 3 is formed is unloaded from the functional layer forming unit 204 by a substrate transfer robot (not shown) and is loaded into the first layer forming unit 201 through the core chamber 200.
  • the first inorganic material layer 41 (first layer) is formed in a predetermined region on the substrate S including the region of the device layer 3 so as to cover the device layer 3.
  • the first inorganic material layer 41 covering the device layer 3 is formed on the substrate S so as to have a convex portion as shown in FIG.
  • the first inorganic material layer 41 made of, for example, silicon nitride is formed as a part of the protective layer using a mask having a number of openings corresponding to the region of the first inorganic material layer 41. May be.
  • the first layer forming unit 201 can include a CVD processing apparatus or a sputtering processing apparatus.
  • a stage for placing the substrate S, a mask placed on the substrate S, and the substrate S on the stage are supported.
  • a mask alignment device for aligning the mask with respect to the film, a film forming material supply device, and the like are installed.
  • the substrate S on which the device layer 3 is formed is placed on the stage of the first layer forming unit 201 by a substrate transport robot or the like placed in the core chamber 200.
  • a mask is arranged at a predetermined position on the substrate S by a mask alignment apparatus or the like so that the device layer 3 is exposed through the opening of the mask.
  • the first inorganic material layer 41 made of silicon nitride or the like is formed so as to cover the device layer 3 by the CVD method.
  • the formation method of the 1st inorganic material layer 41 is not restricted to CVD method, For example, a sputtering method can also be employ
  • the first layer forming unit 201 is configured to have a sputtering apparatus.
  • the substrate S on which the first inorganic material layer 41 having convex portions is formed is unloaded from the first layer forming unit 201 by a substrate transfer robot (not shown), and the resin film forming unit 100 is passed through the core chamber 200. It is carried in.
  • the resin film forming unit 100 performs a step of forming a resin material film on the substrate S on which the first inorganic material layer 41 is formed and a step of forming a resin film by curing the resin material film.
  • a resin material film made of, for example, a material of an ultraviolet curable acrylic resin is formed using the resin film forming unit 100.
  • the substrate S carried into the resin film forming unit 100 is placed on the stage 102. Before the substrate S is carried into the chamber 110, the gas in the chamber 110 is exhausted by the vacuum exhaust device, and the inside of the chamber 110 is maintained in a vacuum state. Further, when the substrate S is carried into the chamber 110, the vacuum state of the chamber 110 is maintained.
  • the chamber 110 is set by a heating device so that at least the temperatures of the inner surfaces of the upper space 107 and the lower space 108 are equal to or higher than the vaporization temperature of the resin material.
  • the substrate S placed on the stage 102 is cooled to a temperature lower than the vaporization temperature of the resin material together with the stage 102 by the substrate cooling device 102a.
  • the resin material supply pipe 112 (first pipe) is heated to a temperature equal to or higher than the vaporization temperature of the resin material by the heater 112d.
  • a mask (not shown) may be arranged at a predetermined position on the substrate S by a mask placing device or the like.
  • the vaporization of the resin material is performed stably and stably in the vaporizer 300.
  • the control unit 400 closes the valve 112V so that the gas cannot flow into the chamber 110, and opens the valve 113V so that the gas can flow into the resin material bypass pipe 113. Maintain the state to do.
  • the vaporization of the resin material in the vaporizer 300 is preferably maintained for a necessary time before the film forming process according to the stability of the amount of the vaporized resin material supplied.
  • the control unit 400 causes the valve 112V. And open / close state of the valve 113V. As a result, the valve 112V is opened and gas flows into the resin material supply pipe 112, and the valve 113V is closed and gas does not flow into the resin material bypass pipe 113. Thereby, the vaporized resin material is supplied to the chamber 110.
  • the vaporized resin material supplied from the vaporizer 300 is supplied from the upper space 107 into the lower space 108 via the shower plate 105 through the resin material supply pipe 112.
  • the vaporized resin material supplied almost evenly over the entire surface of the substrate S by the shower plate 105 is condensed on the substrate surface 2a to form a liquid resin material film 5a as shown in FIG.
  • the film thickness of the resin material film 5a is increased due to surface tension at corners, recesses, gaps, and the like having an inferior angle on the substrate surface 2a.
  • the liquid film 5a may be formed only in a region such as a position close to the convex portion 41 (a nearby position) by a mask (not shown). It is preferable to control the supply amount of the resin material supplied from the vaporizer 300 in consideration of the liquefaction of the resin material and the film formation rate.
  • the resin material liquefied on the surface of the substrate S enters a fine gap due to a capillary phenomenon or further agglomerates due to the surface tension of the resin material, so that the resin material film 5a is formed while smoothing fine irregularities on the substrate S. It becomes possible to do. Thereby, the film thickness of the resin material film 5a is increased at corners, recesses, gaps, and the like having an inferior angle on the surface of the substrate S. In particular, it is possible to fill a minute gap in the boundary portion 2b between the side surface 41s of the first inorganic material layer 41 and the surface 2a of the substrate 2 with the resin material film 5a.
  • the vaporized resin material does not condense on the surface such as the inner wall of the chamber 110.
  • the control unit 400 closes the valve 112V so that no gas can flow into the chamber 110, and The valve 113V is opened, and the gas can flow into the resin material bypass pipe 113. Since the chamber 110 is continuously evacuated, the vaporized resin material is discharged to the outside of the chamber 110 and film formation is stopped.
  • the surface of the substrate S is irradiated with ultraviolet rays from the UV irradiation device 122 while maintaining the vacuum atmosphere in the chamber 110.
  • the irradiated ultraviolet rays pass through the top plate 120 and the shower plate 105 made of an ultraviolet transmitting material such as quartz and reach the substrate S in the chamber 110.
  • a part of the ultraviolet rays irradiated toward the substrate S in the chamber 110 is incident on the surface of the substrate S, and a photopolymerization reaction occurs in the resin material film 5a made of a resin material formed on the surface of the substrate S.
  • the liquid film 5a is cured.
  • the resin film 5 is formed on the surface of the substrate S.
  • an acrylic resin thin film is formed.
  • a mask (not shown) is moved from the film forming position on the substrate S to the retracted position by a mask mounting device or the like.
  • the substrate S on which the resin film 5 is formed is unloaded from the resin film forming unit 100 by a substrate transfer robot (not shown), and is loaded into the localization processing unit 202 through the core chamber 200.
  • the localization processing unit 202 can be configured to include a dry etching processing apparatus, in particular, a plasma etching processing apparatus.
  • the localization processing unit 202 may be a parallel plate type plasma processing apparatus.
  • the localization processing unit 202 places the substrate S on the electrode, introduces an etching gas into the chamber, and irradiates the chamber with the high frequency generated by the high frequency power source through the antenna. And a bias voltage is applied from the high frequency power source to the electrode on which the substrate S is placed. Ions existing in the plasma are drawn into the substrate placed on the electrode, and the resin film 5 formed on the surface of the substrate S is etched and removed.
  • the resin film 5 is etched by ions in the plasma generated from the etching gas.
  • a bias voltage may be applied to the electrode.
  • the flat resin film 5 having a thin film thickness is removed by the etching, and a thicker resin film 5 than the flat part remains at corners, recesses, gaps, and the like having an inferior angle on the surface of the substrate S. This remaining portion becomes the first resin material 51.
  • the forming units 201 and 203 have not only a film forming function but also a localization process.
  • the function of the unit 202 can be provided. In this case, for example, the same processing apparatus can be used as the first layer forming unit 201, the second layer forming unit 203, and the localization processing unit 202.
  • the localization processing unit 202 in the substrate S on which the resin film 5 is formed, most of the resin film 5 is removed by plasma etching as shown in FIG. This plasma processing can be performed for a predetermined processing time by calculating the processing time from the etching rate.
  • the localization processing unit 202 can be provided with a detection device.
  • This detection apparatus measures the bias voltage applied to the electrode, determines that the resin film 5 on the substrate S has been almost removed by the change in the measurement value, and uses the determination result (detection result) as the end point of the etching process. .
  • the first resin material 51 remaining on the substrate S by this dry etching process is localized at the boundary 2b between the side surface 41s of the first inorganic material layer 41 and the surface 2a of the substrate 2. (It exists locally). Further, the first resin material 51 is unevenly distributed in a portion where fine irregularities on the surface of the first inorganic material layer 41 can be smoothed.
  • the substrate S formed by localizing the first resin material 51 is unloaded from the localization processing unit 202 by a substrate transfer robot (not shown), and loaded into the second layer forming unit 203 via the core chamber 200.
  • the second inorganic material layer is formed in a predetermined region on the substrate S including the convex portion so as to cover the first inorganic material layer 41 on which the first resin material 51 is formed. 42 (second layer) is formed.
  • the same material as that of the first inorganic material layer 41 is formed using a mask having a number of openings corresponding to the region of the second inorganic material layer 42.
  • the second inorganic material layer 42 (second layer) made of silicon nitride is formed.
  • the device layer 3 (functional layer) is covered with the first inorganic material layer 41 (first layer), the first resin material 51, and the second inorganic material layer 42 (second layer), and the device layer 3 can function as a protective layer for protecting 3.
  • the second layer forming unit 203 can include a CVD processing apparatus or a sputtering processing apparatus.
  • the second layer forming unit 203 can have the same device configuration as the first layer forming unit 201 described above.
  • the same processing apparatus can be used as the first layer forming unit 201 and the second layer forming unit 203, or the second layer forming unit 203 can have the function of the first layer forming unit 201.
  • the second layer forming unit 203 is a plasma CVD processing apparatus, the function of the localization processing unit 202 can be provided. If the first resin material 51 is localized in the second layer forming portion 203, the second inorganic material layer 42 (second layer) can be formed as it is after the localization.
  • the substrate S on which the second inorganic material layer 42 is formed is unloaded from the second layer forming unit 203 by a substrate transfer robot (not shown), and the element structure body via the core chamber 200 and the load lock chamber 210. It is carried out of the manufacturing apparatus 1000.
  • the resin film 5 is formed by the resin film forming unit 100 and the first resin material 51 localized by the plasma etching process by the localization processing unit 202 is used.
  • Form After that, by forming the second inorganic material layer 42 (second layer), the second inorganic material layer 42 (second layer) is formed at a location requiring barrier properties as a protective layer, such as the boundary portion 2b. Can be reliably formed.
  • the vaporizer 300 can stabilize the amount of resin material supplied, the time required for the film formation process of the resin material film can be shortened, the film formation rate can be stabilized, and fluctuations in film characteristics can be prevented. Is possible.
  • the resin material is unevenly distributed in the boundary portion 2b around the first inorganic material layer 41 (convex portion).
  • the resin may remain on the surface 2a of the substrate 2 other than the boundary portion 2b, the surface 41a of the first inorganic material layer 41, or the like.
  • the second inorganic material layer 42 (second layer) has a region laminated on the first inorganic material layer 41 via the second resin material 52 as shown in FIG. become.
  • the second resin material 52 is interposed between the first inorganic material layer 41 and the second inorganic material layer 42, and the surface of the first inorganic material layer 41 is independent of the first resin material 51. 41a is unevenly distributed.
  • the side surface of the device layer 3 is covered with the first inorganic material layer 41 (first layer) and the second inorganic material layer 42 (second layer). Therefore, it is possible to prevent moisture and oxygen from entering the device layer 3.
  • the fall of the barrier characteristic accompanying the coverage defect of the 1st inorganic material layer 41 or the 2nd inorganic material layer 42 is carried out. And stable device characteristics can be maintained over a long period of time.
  • the element structure 20 according to the present example further includes a second resin material 52 interposed between the first inorganic material layer 41 and the second inorganic material layer 42 as shown in FIG.
  • the second resin material 52 is unevenly distributed on the surface of the first inorganic material layer 41 independently of the first resin material 51.
  • the surface of the first inorganic material layer 41 is not necessarily flat.
  • corrugation is formed because P mixes in a film
  • the coverage characteristics of the first inorganic material layer 41 with respect to the device layer 3 may be deteriorated, and desired barrier characteristics may not be obtained.
  • the element structure 20 according to the present example has a structure in which the second resin material 52 is filled in the poorly coated portion of the first inorganic material layer 41 caused by the mixing of the particles P or the like.
  • the second resin material 52 is unevenly distributed due to surface tension at a boundary portion 32b between the surface of the first inorganic material layer 41 and the peripheral surface of the particles P.
  • the coverage of the device layer 3 is enhanced, and the second inorganic material layer 42 can be appropriately formed by the second resin material 52 functioning as a base.
  • a thin resin film may be formed on a flat portion during film formation. A resin film thicker than the flat portion is formed around the particle P due to surface tension.
  • the second resin material 52 is formed by the same method as the first resin material 51.
  • the second resin material 52 may be made of the same organic material as the first resin material 51. In this case, the first resin material 51 and the second resin material 52 can be simultaneously formed in the same process.
  • the thin portion is removed by etching, and the thick portion remains, that is, the resin film 5 is removed except for the portion where the particles P exist, and the first inorganic material layer 41 is removed.
  • etching of the resin film 5 is stopped.
  • the resin film 5 at the boundary portion 32b hidden by the particles P is not over-etched, and the resin film 5 is reliably attached to the boundary portion 32b around the particles P. Remain.
  • the second resin material 52 exhibits a gentle surface shape at the boundary portion 32b in the vicinity of the particle P.
  • the resin film 5 is substantially removed by anisotropic etching, the resin film 5 is completely removed and the first inorganic material layer 41 is exposed. Note that the etching can be stopped based on the result of plasma emission spectrum analysis or the elapsed time of anisotropic etching. At this time, the resin film 5 is not removed at the boundary portion 2b, and the resin film 5 is localized, whereby the first resin material 51 is formed. Similarly, the second resin material 52 is formed by the resin film 5 being localized without the resin film 5 being removed at the boundary portion 32b.
  • the element structure 30 includes, for example, a substrate 21 having a device layer 3 (functional layer), a protrusion 40 that covers the side surface 3 s of the device layer 3, a protrusion 40, and It has a first inorganic material layer 41 (first layer) and a second inorganic material layer 42 (second layer) formed on the surface of the substrate 21 so as to cover the device layer 3.
  • the convex portion 40 is formed on the surface 21 a of the substrate 21, and has a concave portion 40 a that accommodates the device layer 3 in the central portion.
  • the bottom surface of the recess 40a is formed at a position higher than the surface 21a of the substrate 21, but it may be formed at the same height as the surface 21a or at a position lower than the surface 21a. May be.
  • the element structure 30 according to the present example further includes a resin material 53 interposed between the first inorganic material layer 41 and the second inorganic material layer 42.
  • the resin material 53 is unevenly distributed on the boundary portion 21 b between the outer side surface of the convex portion 40 and the surface 21 a of the substrate 21, and the boundary portion 22 b between the inner side surface of the convex portion 40 and the device layer 3. Thereby, the coating defect of the 1st inorganic material layer 41 and the 2nd inorganic material layer 42 with respect to the convex part 40 and the surface 3a of the device layer 3 can be suppressed, and the improvement of a barrier characteristic can be aimed at.
  • the resin material 53 can be formed by the same method as the first resin material 51 and the second resin material 52 described above.
  • the part which cannot be covered with an inorganic material layer is planarized more by the unevenly distributed resin material.
  • the inorganic material layer formed on the resin material can be formed more uniformly and with good coverage.
  • the resin material has a lower seal against water or the like than the inorganic material layer, but the unevenly distributed resin material is covered with the inorganic material layer and is not exposed to the outside atmosphere, so that the sealing performance is improved. That is, it is preferable to unevenly distribute the resin material so that it is not film-like and is not exposed to the outside atmosphere. While preferred embodiments of the present invention have been described and described above, it should be understood that these are exemplary of the invention and should not be considered as limiting. Additions, omissions, substitutions, and other changes can be made without departing from the scope of the invention. Accordingly, the invention is not to be seen as limited by the foregoing description, but is limited by the scope of the claims.
  • the second inorganic material layer 42 (second layer) covering the first inorganic material layer 41 (first layer) is configured as a single layer, but the second inorganic material layer 42 (second layer) may be formed of a multilayer film.
  • a resin material that is unevenly distributed on the uneven portion of the substrate may be formed by supplying a resin material onto the substrate for each step of forming each layer, thereby further improving the barrier property.
  • the first resin material 51 is localized around the first inorganic material layer 41 serving as a convex portion.
  • the first resin material 51 is unevenly distributed around the device layer 3 by the resin film forming unit 100 and the localization processing unit 202. May be. Thereby, the covering efficiency of the device layer 3 by the first inorganic material layer 41 can be increased.
  • Examples of utilization of the present invention include sealing of electronic devices that dislike moisture such as organic EL devices and thin film Li batteries.
  • UV irradiation device 130 Evaporation tank 130a ... Internal space 130d ... Heater 132 ... Discharge part 135 ... Heating part 135a ... Top part 135b ... Inclined surface 135c ... Through hole 135d ... Heater 136 ... Storage part 140 ... Resin material Liquid supply pipe 150 ... resin material raw material container 200 ... core chamber 201 ... first layer forming section (deposition chamber) 202 ... Localization processing unit 203 ... Second layer forming unit (deposition chamber) 204 ... functional layer forming part (deposition chamber) 210 ... Load lock chamber 300 ... Vaporizer 400 ... Control unit 1000 ... Element structure manufacturing apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

This vaporizer is for supplying a vaporized resin material to a production device for an element structure. The vaporizer comprises: a vaporization tank that comprises an inner space that is for vaporizing a liquid resin material; a discharge part that sprays the liquid resin material into the inner space; a heating part that is arranged in the inner space so as to face the discharge part and that heats and vaporizes the sprayed liquid resin material; and a pooling part that is arranged in the inner space below the heating part. Liquid resin material that is not vaporized by the heating part drips down into the pooling part and is retained therein.

Description

気化器および素子構造体の製造装置Vaporizer and element structure manufacturing apparatus
 本発明は、気化器および素子構造体の製造装置に関し、特に、酸素、水分等からデバイス等を保護する積層構造を有する素子構造体の製造に用いて好適な技術に関する。
 本願は、2017年2月21日に日本に出願された特願2017-030319号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a vaporizer and an element structure manufacturing apparatus, and more particularly to a technique suitable for use in manufacturing an element structure having a laminated structure that protects a device and the like from oxygen, moisture, and the like.
This application claims priority based on Japanese Patent Application No. 2017-030319 for which it applied to Japan on February 21, 2017, and uses the content here.
 水分あるいは酸素等により劣化しやすい性質を有する化合物を含む素子として、例えば、有機EL(Electro Luminescence)素子等が知られている。このような素子については、化合物を含む層と、この層を被覆する保護層とが積層された積層構造を形成することによって、素子内への水分等の侵入を抑制する試みがなされている。例えば、下記特許文献1には、上部電極層の上に、無機膜と有機膜との積層膜で構成された保護膜を有する発光素子が記載されている。 For example, an organic EL (Electro Luminescence) element or the like is known as an element including a compound that easily deteriorates due to moisture or oxygen. For such an element, an attempt has been made to suppress intrusion of moisture or the like into the element by forming a laminated structure in which a layer containing a compound and a protective layer covering the layer are laminated. For example, Patent Document 1 described below describes a light-emitting element that includes a protective film formed of a laminated film of an inorganic film and an organic film on an upper electrode layer.
 上記の有機膜としては、アクリル樹脂などが用いられ、樹脂材料を気化して供給し成膜していた。 As the organic film, an acrylic resin or the like is used, and the resin material is vaporized and supplied to form a film.
日本国特開2013-73880号公報Japanese Unexamined Patent Publication No. 2013-73880 国際公開第2014/196137号パンフレットInternational Publication No. 2014/196137 Pamphlet
 本発明者らは、液状の樹脂を加熱した気化器内に噴霧して加熱して気化することで温度を過剰に上げなくても安定して蒸気を供給することを見出した。しかし、噴霧した樹脂材料の一部が加熱面で蒸発せず、液体の膜を形成することにより、加熱面における気化面積が液状の樹脂材料によって減少する場合があった。これにより、気化効率が悪くなり、気化器から成膜室に供給される樹脂材料の供給量が減少してしまうために、デポレート(成膜率)が悪化してしまうという問題があった。特に、気化器底面においては、液化した樹脂材料が付着した状態でこの面に噴霧された樹脂材料が接触すると、この部分で蒸発せず気化面積の減少が促進されてしまう。
 さらに、気化器底面においては、処理時間が長くなると液化した樹脂材料が付着するのみならず貯留してしまい、気化率が極めて低下する。このため、成膜に使用されない樹脂材料が増加して、気化効率が低減する上、液化してしまった樹脂材料は成膜に使用されずに無駄になるため、液化量を低減して気化率を向上したいという要求があった。
The present inventors have found that the vapor can be stably supplied without excessively raising the temperature by spraying the liquid resin into a heated vaporizer and heating and vaporizing it. However, part of the sprayed resin material does not evaporate on the heating surface, and a liquid film is formed, so that the vaporized area on the heating surface may be reduced by the liquid resin material. As a result, the vaporization efficiency is deteriorated, and the supply amount of the resin material supplied from the vaporizer to the film formation chamber is reduced, so that there is a problem that the deposition (film formation rate) is deteriorated. In particular, on the bottom surface of the vaporizer, when the resin material sprayed on the surface comes in contact with the liquefied resin material, it does not evaporate at this portion, and the reduction of the vaporized area is promoted.
Further, on the bottom surface of the vaporizer, when the treatment time is prolonged, the liquefied resin material not only adheres but is stored, and the vaporization rate is extremely lowered. For this reason, the number of resin materials that are not used for film formation increases, the vaporization efficiency decreases, and the liquefied resin material is wasted without being used for film formation. There was a request to improve.
 ここで、気化率を上昇させるために気化器の加熱温度を樹脂材料の蒸発温度より大幅に上昇させた場合には、気化器内で樹脂材料が熱により重合して硬化してしまい、さらに成膜率が低下するという問題があり、現実的でない。 Here, when the heating temperature of the vaporizer is significantly increased above the evaporation temperature of the resin material in order to increase the vaporization rate, the resin material is polymerized and cured by heat in the vaporizer. There is a problem that the film rate decreases, which is not realistic.
 また、充分な気化が行われないことに起因して、気化器から成膜室に供給される樹脂材料の供給量が減少してしまい、成膜が充分に行われない可能性がある。この場合には、デバイス層を有する基板表面に凹凸がある場合など、当該凹凸の境界部を樹脂膜で十分に被覆することができず、例えば、その後成膜する無機膜で凹凸の境界部に被覆不良が生じる可能性があるという問題があった。このような無機膜の被覆不良が発生すると、被覆不良が発生した箇所からの水分の侵入を阻止することができなくなるため、十分なバリア性を確保することが困難となる。 Further, due to insufficient vaporization, the amount of resin material supplied from the vaporizer to the film formation chamber decreases, and film formation may not be performed sufficiently. In this case, when the substrate surface having the device layer is uneven, the boundary portion of the unevenness cannot be sufficiently covered with the resin film. There was a problem that coating failure might occur. When such a coating failure of the inorganic film occurs, it becomes impossible to prevent moisture from entering from the location where the coating failure has occurred, and thus it becomes difficult to ensure a sufficient barrier property.
 本発明は、上記の事情に鑑みてなされたもので、以下の目的の少なくとも一つを達成しようとするものである。
1.気化率の安定を図ること。
2.樹脂材料の蒸気の供給状態の改善を図ること。
2.気化率低下に起因する成膜の不具合を防止すること。
3.バリア性の確保を図ること。
The present invention has been made in view of the above circumstances, and aims to achieve at least one of the following objects.
1. To stabilize the evaporation rate.
2. To improve the supply state of resin material vapor.
2. To prevent film formation defects caused by a decrease in the evaporation rate.
3. Ensure barrier properties.
 本発明の第1態様に係る気化器は、素子構造体の製造装置に対して気化された樹脂材料を供給するための気化器であって、液状の樹脂材料を気化するための内部空間を備えた気化槽と、前記内部空間において、前記液状の樹脂材料を噴霧する吐出部と、前記内部空間において、前記吐出部に対向して配され、噴霧された前記液状の樹脂材料を加熱気化させる加温部と、前記内部空間において、前記加温部より下方に配され、該加温部で気化されなかった前記液状の樹脂材料が滴下されて保管される貯留部とを備えている。
 本発明の第1態様に係る気化器においては、前記吐出部から見て、前記吐出部から噴霧された前記液状の樹脂材料が接する前記加温部の一面は、その中央域から外周域へ向けて下降傾斜してもよい。
 本発明の第1態様に係る気化器においては、前記加温部の外周域には、前記吐出部から前記貯留部へ連通する貫通孔が配されてもよい。
 本発明の第1態様に係る気化器においては、前記貯留部は、前記加温部より低い温度であってもよい。
 本発明の第1態様に係る気化器においては、前記気化槽は、その内部空間に接する壁面の温度を制御する温度制御装置を備えてもよい。
 本発明の第1態様に係る気化器においては、前記気化槽から気化された前記樹脂材料を、前記素子構造体の製造装置を構成する処理室(成膜室)へ向けて、導入する第一配管と、前記気化槽から気化された前記樹脂材料を、前記成膜室とは異なる部分へ導出する第二配管と、前記気化槽と前記成膜室との間に配され、前記第一配管と前記第二配管を選択可能とする切替部とを備えてもよい。
 本発明の第2態様に係る素子構造体の製造装置は、基板の一面側に配された機能層を被覆するとともに、局所的な凸部を有する、無機材料からなる第一層を形成する第一層形成部と、第1態様に係る気化器から気化した前記樹脂材料を供給可能として、前記第一層上に、前記樹脂材料からなる樹脂材料膜を形成し、前記樹脂材料膜を硬化して樹脂膜を形成する樹脂成膜部と、前記第一層を側断面から見て、前記凸部の外側面と前記基板の一面との境界部を含む位置にある前記樹脂膜の一部を残存させ、他の位置にある該樹脂膜を除去する局在化処理部と、前記の一面側にある前記凸部、前記樹脂膜の一部を残存させた樹脂材、および、前記除去により露呈した前記第一層を被覆するように、無機材料からなる第二層を形成する第二層形成部とを有する。
 本発明の第2態様に係る素子構造体の製造装置においては、前記局在化処理部は、ドライエッチング法を用いて、前記凸部の外側面のうち、頂部を含む領域が露呈するように、前記樹脂膜を除去してもよい。
A vaporizer according to a first aspect of the present invention is a vaporizer for supplying a vaporized resin material to an element structure manufacturing apparatus, and includes an internal space for vaporizing a liquid resin material. A vaporizing tank, a discharge part that sprays the liquid resin material in the internal space, and a heating unit that is disposed opposite to the discharge part and heats and vaporizes the sprayed liquid resin material in the internal space. And a storage section that is disposed below the heating section and in which the liquid resin material that has not been vaporized in the heating section is dropped and stored in the internal space.
In the vaporizer according to the first aspect of the present invention, when viewed from the discharge unit, the one surface of the heating unit in contact with the liquid resin material sprayed from the discharge unit is directed from the central region toward the outer peripheral region. May be inclined downward.
In the vaporizer according to the first aspect of the present invention, a through hole that communicates from the discharge part to the storage part may be arranged in the outer peripheral area of the heating part.
In the vaporizer according to the first aspect of the present invention, the storage unit may have a temperature lower than that of the heating unit.
In the vaporizer according to the first aspect of the present invention, the vaporization tank may include a temperature control device that controls the temperature of the wall surface in contact with the internal space.
In the vaporizer according to the first aspect of the present invention, the resin material vaporized from the vaporization tank is first introduced into a processing chamber (film formation chamber) that constitutes the element structure manufacturing apparatus. A pipe, a second pipe for leading the resin material vaporized from the vaporization tank to a portion different from the film formation chamber, and the first pipe arranged between the vaporization tank and the film formation chamber. And a switching unit that enables selection of the second pipe.
The device for manufacturing an element structure according to the second aspect of the present invention is configured to cover the functional layer disposed on the one surface side of the substrate and to form a first layer made of an inorganic material having a local convex portion. A resin material film made of the resin material is formed on the first layer, and the resin material film is cured on the first layer so that the resin material vaporized from the vaporizer according to the first aspect can be supplied. A part of the resin film located at a position including a boundary part between the outer surface of the convex part and one surface of the substrate when the first layer is viewed from a side cross section. A localization processing part for removing the resin film at other positions, the convex part on the one surface side, a resin material in which a part of the resin film is left, and the exposure by the removal A second layer forming part for forming a second layer made of an inorganic material so as to cover the first layer A.
In the device structure manufacturing apparatus according to the second aspect of the present invention, the localization processing unit uses a dry etching method so that a region including the top portion of the outer surface of the convex portion is exposed. The resin film may be removed.
 本発明の第1態様に係る気化器によれば、液状の樹脂材料が加温部から貯留部へと流下し、加温部に噴霧された液状の樹脂材料が加温部の一面上に滞留することがない。このため、加温部の一面上に噴霧された樹脂材料の再液化する量を低減することができる。同時に、加温部に噴霧された液状の樹脂材料が加温部の一面上に滞留することがない。このため、加温部の一面上で加温により重合した樹脂材料が下部の貯留部に流下されて、加温により重合した樹脂材料が加温部の一面上に付着する量を低減することができ、加温部の一面上における樹脂材料の気化が阻害されることを防止できる。このため、気化槽内での気化率の低減を抑制し、安定した気化した樹脂材料の供給を行うことが可能となる。 According to the vaporizer according to the first aspect of the present invention, the liquid resin material flows down from the heating unit to the storage unit, and the liquid resin material sprayed on the heating unit stays on one surface of the heating unit. There is nothing to do. For this reason, it is possible to reduce the amount of the resin material sprayed on the one surface of the heating unit to be liquefied. At the same time, the liquid resin material sprayed on the heating part does not stay on one surface of the heating part. For this reason, the resin material polymerized by heating on the one surface of the warming part is flowed down to the lower storage part, and the amount of the resin material polymerized by heating on the one surface of the warming part can be reduced. This can prevent the vaporization of the resin material on one surface of the heating part from being hindered. For this reason, it becomes possible to suppress the reduction | decrease of the vaporization rate in a vaporization tank, and to supply the stable vaporized resin material.
 本発明の第1態様に係る気化器によれば、前記吐出部から噴霧された前記液状の樹脂材料が接する前記加温部の一面は、その中央域から外周域へ向けて下降傾斜していることにより、液状の樹脂材料が加温部の一面上で傾斜により流下し、加温部に噴霧された液状の樹脂材料が加温部の一面上に滞留することがない。このため、この加温部の一面上に噴霧された樹脂材料の再液化する量を低減することができる。同時に、加温部に噴霧された液状の樹脂材料がこの加温部の一面上に滞留することがない。このため、この加温部の一面上で加温により重合した樹脂材料が下部の貯留部に流下されて、加温により重合した樹脂材料が加温部の一面上に付着する量を低減することができ、加温部の一面上における樹脂材料の気化が阻害されることを防止できる。このため、気化槽内での気化率の低減を抑制し、安定した気化した樹脂材料の供給を行うことが可能となる。 According to the vaporizer according to the first aspect of the present invention, the one surface of the heating unit that contacts the liquid resin material sprayed from the discharge unit is inclined downward from the central region toward the outer peripheral region. This prevents the liquid resin material from flowing down on the one surface of the warming portion by an inclination, so that the liquid resin material sprayed on the warming portion does not stay on the one surface of the warming portion. For this reason, it is possible to reduce the amount of the resin material sprayed on one surface of the warming part to be liquefied. At the same time, the liquid resin material sprayed on the heating part does not stay on one surface of the heating part. For this reason, the resin material polymerized by heating on the one surface of the warming part is caused to flow down to the lower storage part to reduce the amount of the resin material polymerized by heating on the one surface of the warming part. It is possible to prevent the vaporization of the resin material on the one surface of the heating unit from being hindered. For this reason, it becomes possible to suppress the reduction | decrease of the vaporization rate in a vaporization tank, and to supply the stable vaporized resin material.
 本発明の第1態様に係る気化器によれば、前記吐出部から前記貯留部へ連通する貫通孔が配されていることにより、前記内部空間が前記加温部により上空間と下空間とに分割され、前記加温部より下側が前記貯留部とされるとともに、貫通孔を介して、加温部に噴霧された液状の樹脂材料のうち気化しなかった分が貯留部へと流下してこの加温部の一面上に滞留することがない。同時に、気化しなかった樹脂材料は、加温部の一面上で長時間過加温されて重合することがなく、仮に一部が重合しても液体の樹脂材料により下部の貯留部に流下される。また、加温部により上空間と下空間とに分割された内部空間上側において気化を行うことにより、気化状態を安定させることができる。このため、加温部の一面上における樹脂材料の気化が阻害されることがなく、気化槽内での気化率の低減を抑制し、安定した気化した樹脂材料の供給を行うことが可能となる。 According to the vaporizer according to the first aspect of the present invention, the internal space is divided into an upper space and a lower space by the heating unit by arranging a through hole that communicates from the discharge unit to the storage unit. The portion below the heating portion is divided into the storage portion, and the portion of the liquid resin material sprayed on the heating portion that has not been vaporized flows down to the storage portion through the through hole. There is no stagnation on one surface of the heating section. At the same time, the resin material that has not been vaporized is not heated and polymerized for a long time on one side of the heating unit, and even if part of it is polymerized, it is caused to flow down to the lower storage unit by the liquid resin material. The Moreover, a vaporization state can be stabilized by performing vaporization in the internal space upper side divided | segmented into upper space and lower space by the heating part. For this reason, the vaporization of the resin material on one surface of the heating unit is not hindered, and it is possible to suppress the reduction of the vaporization rate in the vaporization tank and to supply a stable vaporized resin material. .
 本発明の第1態様に係る気化器によれば、前記貯留部は、前記加温部より低い温度とされることにより、貯留部へと流下した液体の樹脂材料が貯留部において加温されて重合することがなく、重合した樹脂材料が増加することがない。さらに、加温部より貯留部を低い温度とすることで、加温部の温度状態に対する貯留部からの影響を低減することができる。 According to the vaporizer according to the first aspect of the present invention, the storage unit is set to a temperature lower than the heating unit, so that the liquid resin material flowing down to the storage unit is heated in the storage unit. There is no polymerization, and the polymerized resin material does not increase. Furthermore, the influence from the storage part with respect to the temperature state of a heating part can be reduced by making a storage part into temperature lower than a heating part.
 本発明の第1態様に係る気化器によれば、前記気化槽は、その内部空間に接する壁面の温度制御装置を備えることにより、壁面温度を気化に適した温度に設定することが可能となる。さらに、壁面が立設されていることにより、液状の樹脂材料が壁面を流下し、壁面に滞留することがない。また、壁面で加温により固化した樹脂材料が下部の貯留部に流下されるため、加温部により内部空間上側において気化を安定して行うことができ、気化状態を安定させることが可能となる。 According to the vaporizer according to the first aspect of the present invention, the vaporization tank includes the wall surface temperature control device in contact with the internal space, whereby the wall surface temperature can be set to a temperature suitable for vaporization. . Furthermore, since the wall surface is erected, the liquid resin material does not flow down the wall surface and stay on the wall surface. In addition, since the resin material solidified by heating on the wall surface flows down to the lower storage part, the heating part can stably perform vaporization on the upper side of the internal space, and the vaporized state can be stabilized. .
 また、本発明の第1態様に係る気化器によれば、第一配管と、第二配管と、切替部とを備えることにより、樹脂材料を安定して成膜室に供給可能とし、成膜レートを安定させて、所望の膜特性を有する樹脂材料膜を形成することができる。 Moreover, according to the vaporizer which concerns on the 1st aspect of this invention, by providing a 1st piping, a 2nd piping, and a switching part, resin material can be stably supplied to a film-forming chamber, and film-forming The rate can be stabilized and a resin material film having desired film characteristics can be formed.
 また、本発明の第2態様に係る素子構造体の製造装置によれば、気化器から樹脂材料を安定して成膜室に供給し、成膜レートを安定させて、所望の膜特性を有する樹脂材料膜を形成することを可能とする。これにより、局在化した樹脂材によって、第一層および第二層による機能層に対する封止を確実に行い、バリア特性の高い素子構造体を製造可能とすることが可能となる。 Further, according to the element structure manufacturing apparatus of the second aspect of the present invention, the resin material is stably supplied from the vaporizer to the film forming chamber, the film forming rate is stabilized, and the desired film characteristics are obtained. It is possible to form a resin material film. Thereby, it becomes possible to reliably seal the functional layer by the first layer and the second layer with the localized resin material, and to manufacture an element structure having high barrier characteristics.
 また、本発明の第2態様に係る素子構造体の製造装置において、前記局在化処理部は、ドライエッチング法を用いて、前記凸部の外側面のうち、頂部を含む領域が露呈するように、前記樹脂膜を除去するので、基板と、前記基板の一面側に配された機能層を被覆するとともに、局所的な凸部を有する、無機材料からなる第一層と、前記第一層を側断面から見て、前記第一層を被覆し、かつ、前記凸部の外側面と前記基板の一面との境界部を含む位置の近傍に(のみ)配された、有機物からなる樹脂材と、前記の一面側にある前記凸部、前記樹脂材、および、前記樹脂材が存在しない領域において露呈した前記第一層を被覆する、無機材料からなる第二層と、を容易に形成することができる。この局在化した樹脂材によって、第一層および第二層による機能層に対する封止を確実に行い、かつ、第一層に不要なダメージを与えることがない。このとき、樹脂材の不必要な部分を除去して、封止に必要な部分のみ局在化させることが容易に可能となり、バリア特性の高い素子構造体を製造可能とすることが可能となる。
 前記局在化処理部は、ドライエッチング法を用いて、前記樹脂膜の一部を除去し、樹脂膜の一部が局在化した樹脂材を基板上に残存させる。樹脂材は凸部の周辺や凹部内等に残存する。樹脂膜の内、前記凸部の上面や平坦部の樹脂膜は除去される。
In the device structure manufacturing apparatus according to the second aspect of the present invention, the localization processing unit may expose a region including the top portion of the outer surface of the convex portion by using a dry etching method. In addition, since the resin film is removed, the substrate, the first layer made of an inorganic material, covering the functional layer disposed on the one surface side of the substrate and having local convex portions, and the first layer As seen from the side cross section, the resin material made of an organic material that covers the first layer and is disposed only (only) in the vicinity of the position including the boundary between the outer surface of the convex portion and one surface of the substrate. And the second layer made of an inorganic material that covers the first layer exposed in the region where the convex portion on the one surface side, the resin material, and the resin material are not present. be able to. With this localized resin material, the functional layer is reliably sealed by the first layer and the second layer, and unnecessary damage is not caused to the first layer. At this time, unnecessary portions of the resin material can be removed, and only the portions necessary for sealing can be easily localized, and an element structure with high barrier characteristics can be manufactured. .
The localization processing unit removes a part of the resin film using a dry etching method, and leaves a resin material in which a part of the resin film is localized on the substrate. The resin material remains around the convex portion or in the concave portion. Of the resin film, the upper surface of the convex part and the resin film on the flat part are removed.
 本発明の第2態様に係る素子構造体の製造装置において、前記局在化処理部は、前記樹脂膜をエッチング処理する条件のうち、特定の条件の変化を検出して、該エッチング処理の終点として用いる検出装置を有することが好ましい。
 本発明の第2態様に係る素子構造体の製造装置において、前記樹脂成膜部は、前記樹脂材料の気化温度よりも低い温度に前記基板を冷却する基板冷却装置を有することが好ましい。
 本発明の第2態様に係る素子構造体の製造装置において、前記樹脂成膜部は、前記基板表面の前記樹脂材料に紫外線を照射してUV硬化するUV照射装置を有することが好ましい。
 本発明の第2態様に係る素子構造体の製造装置は、前記第一層形成部と、前記樹脂成膜部と、前記局在化処理部と、前記第二層形成部と、の間で前記基板を搬送する搬送装置を有することが好ましい。
In the device structure manufacturing apparatus according to the second aspect of the present invention, the localization processing unit detects a change in a specific condition among the conditions for etching the resin film, and ends the etching process. It is preferable to have a detection device used as the above.
In the element structure manufacturing apparatus according to the second aspect of the present invention, it is preferable that the resin film forming unit includes a substrate cooling device that cools the substrate to a temperature lower than a vaporization temperature of the resin material.
In the element structure manufacturing apparatus according to the second aspect of the present invention, it is preferable that the resin film-forming unit has a UV irradiation device that irradiates the resin material on the substrate surface with UV rays and performs UV curing.
The element structure manufacturing apparatus according to the second aspect of the present invention includes the first layer forming unit, the resin film forming unit, the localization processing unit, and the second layer forming unit. It is preferable to have a transfer device for transferring the substrate.
 本発明の態様によれば、気化槽内での気化率の低減を抑制し、安定した気化した樹脂材料の供給を行うことを可能とし、バリア特性の高い素子構造体を製造可能とすることができるという効果を奏することが可能となる。 According to the aspect of the present invention, it is possible to suppress the reduction of the vaporization rate in the vaporization tank, to supply a stable vaporized resin material, and to manufacture an element structure having high barrier characteristics. It is possible to achieve the effect of being able to.
本発明の第1実施形態に係る素子構造体の製造装置を示す概略模式図である。It is a schematic diagram showing an apparatus for manufacturing an element structure according to the first embodiment of the present invention. 本発明の第1実施形態に係る素子構造体の製造装置における樹脂成膜部を示す模式断面である。It is a schematic cross section which shows the resin film-forming part in the manufacturing apparatus of the element structure which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る気化器を示す模式断面である。It is a schematic cross section which shows the vaporizer | carburetor which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る気化器および素子構造体を示す概略断面図である。It is a schematic sectional drawing which shows the vaporizer | carburetor and element structure which concern on 1st Embodiment of this invention. 本発明の第1実施形態に係る素子構造体の製造装置によって製造される素子構造体を示す平面図である。It is a top view which shows the element structure manufactured by the manufacturing apparatus of the element structure which concerns on 1st Embodiment of this invention. 上記素子構造体の要部の拡大断面図である。It is an expanded sectional view of the important section of the above-mentioned element structure. 本発明の第1実施形態に係る素子構造体の製造方法における工程を示す工程図である。It is process drawing which shows the process in the manufacturing method of the element structure which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る素子構造体の製造方法における工程を示す工程図である。It is process drawing which shows the process in the manufacturing method of the element structure which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る素子構造体の製造方法における工程を示す工程図である。It is process drawing which shows the process in the manufacturing method of the element structure which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る素子構造体の製造方法における工程を示す工程図である。It is process drawing which shows the process in the manufacturing method of the element structure which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る素子構造体の製造方法における工程を示す工程図である。It is process drawing which shows the process in the manufacturing method of the element structure which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る素子構造体の製造装置によって製造される素子構造体の構成の変形例を示す概略断面図である。It is a schematic sectional drawing which shows the modification of a structure of the element structure manufactured by the manufacturing apparatus of the element structure which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る素子構造体の製造装置によって製造される素子構造体の構成の変形例を示す概略断面図である。It is a schematic sectional drawing which shows the modification of a structure of the element structure manufactured by the manufacturing apparatus of the element structure which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る素子構造体の製造装置によって製造される素子構造体の構成の変形例を示す概略断面図である。It is a schematic sectional drawing which shows the modification of a structure of the element structure manufactured by the manufacturing apparatus of the element structure which concerns on 1st Embodiment of this invention.
 以下、本発明の第1実施形態に係る気化器および素子構造体の製造装置を、図面に基づいて説明する。
 図1は、本実施形態に係る素子構造体の製造装置を示す概略模式図である。図2は、本実施形態に係る素子構造体の製造装置を示す概略模式図である。図3は、本実施形態における気化器を示す概略模式図であり、図1において、符号1000は、素子構造体の製造装置である。
Hereinafter, a vaporizer and element structure manufacturing apparatus according to a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram showing an element structure manufacturing apparatus according to this embodiment. FIG. 2 is a schematic diagram showing an element structure manufacturing apparatus according to this embodiment. FIG. 3 is a schematic diagram showing a vaporizer according to the present embodiment. In FIG. 1, reference numeral 1000 denotes an element structure manufacturing apparatus.
 本実施形態に係る素子構造体の製造装置1000は、後述するように、有機EL素子などの素子構造体の製造を行う。製造装置1000は、図1に示すように、第一層形成部201と、樹脂成膜部100と、局在化処理部202と、第二層形成部203と、有機EL層となる機能層を形成する機能層形成部204と、コア室200と、外部に接続されたロードロック室210と、を有する。コア室200は、第一層形成部201、樹脂成膜部100、局在化処理部202、第二層形成部203、機能層形成部204、及びロードロック室210に連結されている。 The element structure manufacturing apparatus 1000 according to the present embodiment manufactures an element structure such as an organic EL element, as will be described later. As shown in FIG. 1, the manufacturing apparatus 1000 includes a first layer forming unit 201, a resin film forming unit 100, a localization processing unit 202, a second layer forming unit 203, and a functional layer that becomes an organic EL layer. The functional layer forming unit 204 for forming the core, the core chamber 200, and a load lock chamber 210 connected to the outside. The core chamber 200 is connected to the first layer forming unit 201, the resin film forming unit 100, the localization processing unit 202, the second layer forming unit 203, the functional layer forming unit 204, and the load lock chamber 210.
 ロードロック室210の内部には、他の装置等から素子構造体の製造装置1000に搬送された基板が挿入される。コア室200には、例えば、図示しない基板搬送ロボットが配置される。これにより、コア室200と、それぞれの第一層形成部201、樹脂成膜部100、局在化処理部202、第二層形成部203、機能層形成部204、ロードロック室210との間で基板の搬送が可能になる。このロードロック室210を介して素子構造体の製造装置1000の外側へ基板を搬送することが可能である。コア室200、各成膜室100,201,202,203,204、ロードロック室210は、それぞれ、図示しない真空排気システムが接続された真空チャンバを構成する。 In the inside of the load lock chamber 210, a substrate transferred from another device or the like to the element structure manufacturing apparatus 1000 is inserted. For example, a substrate transfer robot (not shown) is disposed in the core chamber 200. Thereby, between the core chamber 200 and each of the first layer forming unit 201, the resin film forming unit 100, the localization processing unit 202, the second layer forming unit 203, the functional layer forming unit 204, and the load lock chamber 210. This makes it possible to transport the substrate. The substrate can be transferred to the outside of the element structure manufacturing apparatus 1000 via the load lock chamber 210. The core chamber 200, the film forming chambers 100, 201, 202, 203, 204 and the load lock chamber 210 constitute a vacuum chamber to which a vacuum exhaust system (not shown) is connected.
 上記構成を有する素子構造体の製造装置1000を用いて素子構造体10の製造を行うことにより、各製造工程をオートメーション化できるとともに、同時に複数の成膜室を用いて効率的に製造を行うことができ、生産性を高めることが可能となる。 By manufacturing the element structure 10 using the element structure manufacturing apparatus 1000 having the above-described configuration, each manufacturing process can be automated, and at the same time, efficient manufacturing can be performed using a plurality of film formation chambers. It is possible to improve productivity.
 第一層形成部201は、後述する素子構造体10において、基板2の一面側2aに配された機能層3を被覆するとともに、局所的な凸部を有する、シリコン窒化物(SiN)等の無機材料からなる第一層41を形成する。第一層形成部201は、例えば、CVD(Chemical Vapor Deposition)法やスパッタリング法、ALD(Atomic Layer Deposition)法等により第一層41を成膜する成膜室である。 The first layer forming portion 201 covers the functional layer 3 disposed on the one surface side 2a of the substrate 2 in the element structure 10 to be described later, and has a local convex portion, such as silicon nitride (SiN x ). The first layer 41 made of the inorganic material is formed. The first layer formation unit 201 is a film formation chamber in which the first layer 41 is formed by, for example, a CVD (Chemical Vapor Deposition) method, a sputtering method, an ALD (Atomic Layer Deposition) method, or the like.
 機能層形成部204は、後述する素子構造体10において、機能層3を形成する。なお、機能層形成部204は、ロードロック室210の外側に設けることもできる。 The functional layer forming unit 204 forms the functional layer 3 in the element structure 10 described later. Note that the functional layer forming unit 204 may be provided outside the load lock chamber 210.
 第二層形成部203は、後述する素子構造体10において、第一層41および樹脂材51を被覆するように、第一層41と同様に無機材料からなる第二層42を形成する成膜室である。なお、第二層42と第一層41とが同一材料からなる場合には、第二層形成部203と第一層形成部201とを同一の構成とする、もしくは、一つの成膜室(共通の成膜室)を使用して第二層42と第一層41を形成することもできる。 The second layer forming unit 203 forms a second layer 42 made of an inorganic material like the first layer 41 so as to cover the first layer 41 and the resin material 51 in the element structure 10 to be described later. It is a room. In addition, when the 2nd layer 42 and the 1st layer 41 consist of the same material, the 2nd layer formation part 203 and the 1st layer formation part 201 are set as the same structure, or one film-forming chamber ( The second layer 42 and the first layer 41 can also be formed using a common film formation chamber.
 さらに、第二層形成部203と第一層形成部201のいずれか、又は、共通の成膜室が、プラズマCVD装置で構成される場合、この形成部201、203や成膜室は、上述した機能だけでなく、後述する局在化処理部202の機能を兼ね備えることができる。例えば、プラズマCVD装置に樹脂膜が形成された基板を搬入し、酸化性ガスを導入してプラズマを発生させることにより、樹脂膜をエッチングし樹脂膜を局在化して樹脂材を形成することができる。その後、そのままプラズマCVD装置内で第二層42を形成することもできる。 Further, in the case where either the second layer forming unit 203 and the first layer forming unit 201 or the common film forming chamber is configured by a plasma CVD apparatus, the forming units 201 and 203 and the film forming chamber are In addition to the functions described above, the functions of the localization processing unit 202 described later can be provided. For example, a substrate on which a resin film is formed is loaded into a plasma CVD apparatus, and plasma is generated by introducing an oxidizing gas, thereby etching the resin film and localizing the resin film to form a resin material. it can. Thereafter, the second layer 42 can be formed in the plasma CVD apparatus as it is.
 樹脂成膜部100は、気化した樹脂材料を樹脂成膜部100の内部に供給して、第一層41上に、樹脂材料からなる樹脂材料膜を形成し、樹脂材料膜を硬化して樹脂膜を形成する成膜室である。 The resin film forming unit 100 supplies the vaporized resin material to the inside of the resin film forming unit 100, forms a resin material film made of a resin material on the first layer 41, and cures the resin material film to form a resin. A film formation chamber for forming a film.
 樹脂成膜部100は、図2に示すように、内部空間が減圧可能なチャンバ110と、気化した樹脂材料をチャンバ110(処理室)に供給する気化器300と、を有する。 As shown in FIG. 2, the resin film forming unit 100 includes a chamber 110 whose internal space can be decompressed, and a vaporizer 300 that supplies the vaporized resin material to the chamber 110 (processing chamber).
 チャンバ110の内部空間は、後述するように、上部空間107、下部空間108、から構成されている。
 チャンバ110には、不図示の真空排気装置(真空排気手段、真空ポンプ等)が接続され、真空排気装置は、チャンバ110の内部空間が真空雰囲気となるように、内部空間のガスを排気できるように構成されている。
The internal space of the chamber 110 is composed of an upper space 107 and a lower space 108 as will be described later.
An unillustrated evacuation device (evacuation means, vacuum pump, etc.) is connected to the chamber 110, and the evacuation device can evacuate the gas in the internal space so that the internal space of the chamber 110 becomes a vacuum atmosphere. It is configured.
 チャンバ110の内部空間には、図2に示すように、シャワープレート105が配されており、チャンバ110内においてシャワープレート105より上側が上部空間107を構成する。チャンバ110の最上部には、石英等の紫外光を透過可能な部材からなる天板120が設けられ、天板120の上側には紫外光の照射装置122(UV照射装置)が配されている。ここで、シャワープレート105も紫外光を透過可能な部材で形成することにより、照射装置122から天板120を通過して上部空間107へ導入された紫外光は、さらにシャワープレート105を通過し、シャワープレート105の下側に位置する下部空間108へ進行可能となる。これにより、後述する基板S上に形成されたアクリル材料膜(樹脂材料膜)に対して、成膜後に紫外光を照射し、アクリル材料膜を硬化させアクリル樹脂膜(樹脂膜)を形成することが可能である。 As shown in FIG. 2, a shower plate 105 is arranged in the internal space of the chamber 110, and an upper space 107 is formed above the shower plate 105 in the chamber 110. A top plate 120 made of a material that can transmit ultraviolet light, such as quartz, is provided at the top of the chamber 110, and an ultraviolet light irradiation device 122 (UV irradiation device) is disposed above the top plate 120. . Here, the shower plate 105 is also formed of a member that can transmit ultraviolet light, so that the ultraviolet light that has passed through the top plate 120 from the irradiation device 122 and introduced into the upper space 107 further passes through the shower plate 105, It becomes possible to proceed to the lower space 108 located below the shower plate 105. As a result, an acrylic material film (resin material film) formed on the substrate S, which will be described later, is irradiated with ultraviolet light after film formation to cure the acrylic material film and form an acrylic resin film (resin film). Is possible.
 チャンバ110には、不図示の加熱装置が配されている。上部空間107及び下部空間108を構成するチャンバ110の内壁面の温度は、樹脂材料の気化温度以上、好ましくは40~250℃程度となるように設定可能であり、加熱装置によって制御される。 The chamber 110 is provided with a heating device (not shown). The temperature of the inner wall surface of the chamber 110 constituting the upper space 107 and the lower space 108 can be set to be equal to or higher than the vaporization temperature of the resin material, preferably about 40 to 250 ° C., and is controlled by a heating device.
 チャンバ110内においてシャワープレート105より下側に位置する下部空間108には、基板Sを載置するステージ102(基板保持部)が配されている。 In the lower space 108 located below the shower plate 105 in the chamber 110, a stage 102 (substrate holding part) on which the substrate S is placed is disposed.
 ステージ102においては、表面に基板が配置されるべき位置が予め定められている。ステージ102は、その表面が露出された状態で、チャンバ110内に配置されている。符号Sは基板ステージ102の表面の所定位置に配置された基板を示している。ステージ102には、基板Sを冷却する基板冷却装置102aが設けられる。 In stage 102, the position where the substrate is to be placed on the surface is predetermined. The stage 102 is disposed in the chamber 110 with its surface exposed. Reference numeral S denotes a substrate disposed at a predetermined position on the surface of the substrate stage 102. The stage 102 is provided with a substrate cooling device 102a for cooling the substrate S.
 基板冷却装置102aは、ステージ102内部に冷媒を供給してステージ102上面の基板Sを冷却する。具体的には、樹脂材料膜が形成される基板Sの温度が、基板Sを載置するステージ102(基板保持部)に内蔵された冷却装置102aにより制御され、樹脂材料の気化温度以下、好ましくは零度(0℃)以下、例えば、-30℃~0℃程度に制御される。 The substrate cooling device 102 a supplies a coolant into the stage 102 to cool the substrate S on the upper surface of the stage 102. Specifically, the temperature of the substrate S on which the resin material film is formed is controlled by the cooling device 102a built in the stage 102 (substrate holding unit) on which the substrate S is placed, and is preferably equal to or lower than the vaporization temperature of the resin material. Is controlled to below zero degree (0 ° C.), for example, about −30 ° C. to 0 ° C.
 ステージ102の上側位置には、ステージ102の全面に対向してシャワープレート105が設けられる。
 シャワープレート105は、多数の貫通孔の設けられた石英等の紫外線透過材料からなるからなる板状部材で構成され、チャンバ110の内部空間を上空間と下空間とに分割している。
A shower plate 105 is provided above the stage 102 so as to face the entire surface of the stage 102.
The shower plate 105 is composed of a plate-shaped member made of an ultraviolet light transmitting material such as quartz provided with a large number of through holes, and divides the internal space of the chamber 110 into an upper space and a lower space.
 下部空間108には、図示しないマスクが設けられ、このマスクの位置は、成膜時において所定の位置に設定可能である。基板が移動する際には、マスクは、基板から退避するように移動可能である。 A mask (not shown) is provided in the lower space 108, and the position of this mask can be set to a predetermined position during film formation. When the substrate moves, the mask is movable so as to retract from the substrate.
 チャンバ110の上部空間107は、配管112(樹脂材料供給管)およびバルブ112Vを介して気化器300と連通している。この樹脂材料供給管112を介してチャンバ110の上部空間107に対して、気化された樹脂材料は供給可能である。 The upper space 107 of the chamber 110 communicates with the vaporizer 300 via a pipe 112 (resin material supply pipe) and a valve 112V. The vaporized resin material can be supplied to the upper space 107 of the chamber 110 through the resin material supply pipe 112.
 樹脂材料供給管112(第一配管)のバルブ112Vよりも気化器300に近い位置には、バルブ113Vを有する樹脂材料迂回管113の一端が接続されている。樹脂材料迂回管113(第二配管)の他端は、排気管114を介して外部(成膜室とは異なる部分、成膜室の外部)に接続されており、樹脂材料迂回管113を通じてガスが排気可能である。排気管114は、液化回収装置に接続され、樹脂材料を液化して回収することが可能である。 One end of a resin material bypass pipe 113 having a valve 113V is connected to a position closer to the vaporizer 300 than the valve 112V of the resin material supply pipe 112 (first pipe). The other end of the resin material bypass pipe 113 (second pipe) is connected to the outside (a part different from the film formation chamber, outside the film formation chamber) via the exhaust pipe 114, and gas is passed through the resin material bypass pipe 113. Can be exhausted. The exhaust pipe 114 is connected to a liquefaction recovery device, and can liquefy and recover the resin material.
 バルブ112Vおよびバルブ113Vの開閉駆動は、制御部400によって制御される。制御部400は、気化器300からの気化した樹脂材料をチャンバ110内へ供給する成膜状態と、気化器300からの気化した樹脂材料を外部に排気してチャンバ110内への供給しない非成膜状態と、を切り替え可能に制御する。 The opening / closing drive of the valve 112V and the valve 113V is controlled by the control unit 400. The control unit 400 has a film forming state in which the vaporized resin material from the vaporizer 300 is supplied into the chamber 110, and a non-generated state in which the vaporized resin material from the vaporizer 300 is exhausted to the outside and not supplied into the chamber 110. The film state is controlled to be switchable.
 バルブ112V、バルブ113V、及び制御部400は、樹脂材料供給管112を通じてチャンバ110の内部に樹脂材料を供給する、或いは、樹脂材料迂回管113を通じてチャンバ110の外部に樹脂材料を排気する選択機能を有する切替部を構成している。 The valve 112V, the valve 113V, and the control unit 400 have a selection function of supplying the resin material into the chamber 110 through the resin material supply pipe 112 or exhausting the resin material to the outside of the chamber 110 through the resin material bypass pipe 113. The switch part which has is comprised.
 気化器300は、チャンバ110に対して気化された樹脂材料を供給可能とする。図2,図3に示すように、気化器300は、気化槽130と、吐出部132と、樹脂材料原料容器150と、を有する。 The vaporizer 300 can supply the vaporized resin material to the chamber 110. As shown in FIGS. 2 and 3, the vaporizer 300 includes a vaporization tank 130, a discharge unit 132, and a resin material raw material container 150.
 気化槽130は、図2,図3に示すように、液状の樹脂材料を気化するための内部空間130aを備え、内部空間130aの上方には、液状の樹脂材料を噴霧する吐出部132が配されている。気化槽130は、略円筒状に形成されるが、他の断面形状とされることもできる。気化槽130は、その内面が、例えば、SUS、Al等からなることができる。 As shown in FIGS. 2 and 3, the vaporization tank 130 includes an internal space 130a for vaporizing the liquid resin material, and a discharge unit 132 for spraying the liquid resin material is disposed above the internal space 130a. Has been. The vaporization tank 130 is formed in a substantially cylindrical shape, but may have other cross-sectional shapes. The inner surface of the vaporization tank 130 can be made of, for example, SUS, Al, or the like.
 吐出部132には、樹脂材料原料容器150にバルブ140Vを介して接続された樹脂材料液供給管140の一端と、窒素ガス等とされるキャリアガスを供給するキャリアガス供給管130Gと、が接続されている。樹脂材料液供給管140の他端は、樹脂材料原料容器150に接続されるとともに、樹脂材料原料容器150内に貯留された液状の樹脂材料の内部に位置している。 Connected to the discharge section 132 are one end of a resin material liquid supply pipe 140 connected to the resin material raw material container 150 via a valve 140V and a carrier gas supply pipe 130G for supplying a carrier gas such as nitrogen gas. Has been. The other end of the resin material liquid supply pipe 140 is connected to the resin material raw material container 150 and is located inside the liquid resin material stored in the resin material raw material container 150.
 樹脂材料原料容器150には、窒素ガス等とされる材料液供給用の加圧ガス供給管150Gが接続され、樹脂材料原料容器150の内圧を上昇させて加圧した液状の樹脂材料は、樹脂材料液供給管140へと送液可能となっている。 A pressurized gas supply pipe 150G for supplying a material liquid such as nitrogen gas is connected to the resin material raw material container 150, and the liquid resin material pressurized by increasing the internal pressure of the resin material raw material container 150 is a resin. The liquid can be supplied to the material liquid supply pipe 140.
 吐出部132は、樹脂材料液供給管140から供給された液状の樹脂材料をキャリアガスとともに気化槽130の内部空間に噴霧するよう構成されている。吐出部132は、気化槽130の頂部略中央位置に設けられている。 The discharge unit 132 is configured to spray the liquid resin material supplied from the resin material liquid supply pipe 140 into the internal space of the vaporization tank 130 together with the carrier gas. The discharge part 132 is provided in the approximate center position of the top part of the vaporization tank 130.
 気化槽130には、図2,図3に示すように、気化槽130の下側位置に加温部135が設けられる。加温部135は、内部空間を上空間と下空間とに分割するように配置されている。加温部135より下方において、加温部135と貯留底部136sとの間の空間が貯留部136とされている。加温部135は加温底部と見なすことができ、この加温部135(加熱底部)と貯留底部136sとにより、気化槽130が二重底構造となるように構成されている。気化槽130には、真空計PGが設けられ、内部の圧力を測定可能とされている。
 気化槽130は、加温部135より上方において、加温部135と吐出部132との間の空間が気化空間130aとされている。
As shown in FIGS. 2 and 3, the vaporization tank 130 is provided with a heating unit 135 at a lower position of the vaporization tank 130. The heating unit 135 is arranged to divide the internal space into an upper space and a lower space. Below the heating unit 135, a space between the heating unit 135 and the storage bottom 136 s is defined as a storage unit 136. The warming part 135 can be regarded as a warming bottom part, and the vaporizing tank 130 is configured to have a double bottom structure by the warming part 135 (heating bottom part) and the storage bottom part 136s. The vaporization tank 130 is provided with a vacuum gauge PG so that the internal pressure can be measured.
In the vaporization tank 130, a space between the heating unit 135 and the discharge unit 132 is a vaporization space 130 a above the heating unit 135.
 加温部135は、気化空間130aにおいて、吐出部132より下方位置に設けられ、吐出部132から噴霧された液状の樹脂材料を加熱して気化させる。
 加温部135の上面(一面)は、吐出部132から噴霧された液状の樹脂材料が接する気化面である。加温部135の上面には、その上面の略中央位置に、加温部135の上面において最も高い高さを有する頂部135aが設けられている。この頂部135aから外周域へ向けて下降傾斜している傾斜面135b(一面)が設けられており、加温部135の上面は、円錐形状あるいは、球面状とされている。
The heating unit 135 is provided below the discharge unit 132 in the vaporization space 130a, and heats and vaporizes the liquid resin material sprayed from the discharge unit 132.
The upper surface (one surface) of the heating unit 135 is a vaporization surface with which the liquid resin material sprayed from the discharge unit 132 comes into contact. On the upper surface of the heating unit 135, a top portion 135a having the highest height on the upper surface of the heating unit 135 is provided at a substantially central position of the upper surface. An inclined surface 135b (one surface) inclined downward from the top portion 135a toward the outer peripheral region is provided, and the upper surface of the heating portion 135 is conical or spherical.
 頂部135aの位置は、加温部135の中央位置とされるが、この位置でなくてもよく、例えば、吐出部132の直下あるいは吐出部132の吐出方向(噴霧方向)における中心位置に対応する位置であることが好ましい。傾斜面135bの傾斜角度は、樹脂材料が流下可能であれば、特に、限定はされないが、好ましくは、3°~45°の範囲に設定することができる。 The position of the top portion 135a is the central position of the heating unit 135, but it may not be this position. For example, it corresponds to the central position in the discharge direction (spraying direction) directly below the discharge unit 132 or the discharge unit 132. Preferably it is a position. The inclination angle of the inclined surface 135b is not particularly limited as long as the resin material can flow down, but can preferably be set in the range of 3 ° to 45 °.
 加温部135の周縁部は、周縁部の外周が気化槽130の側壁130hに固定されており、また、加温部135の外周域には、吐出部132が露出する気化空間130aから貯留部136へ連通する複数の貫通孔135cが設けられている。 The peripheral part of the warming part 135 is fixed to the side wall 130h of the vaporization tank 130 at the outer periphery of the peripheral part. A plurality of through holes 135 c communicating with 136 are provided.
 加温部135および気化槽130の側壁130hには、内部空間に接する面の温度を制御する温度制御装置が設けられている。具体的に、側壁130hには、加温部135の上面135aを加温するヒータ135dと、加温部135よりも上側の気化空間130aに接する側壁130hを加温するヒータ130dと、が設けられている。 A temperature control device that controls the temperature of the surface in contact with the internal space is provided on the heating unit 135 and the side wall 130 h of the vaporization tank 130. Specifically, the side wall 130 h is provided with a heater 135 d that heats the upper surface 135 a of the heating unit 135 and a heater 130 d that heats the side wall 130 h that is in contact with the vaporization space 130 a above the heating unit 135. ing.
 ヒータ135dは、加温部135に埋め込まれたシーズヒータである。また、ヒータ130dは、線状の抵抗加熱装置であり、気化槽130の外周に巻き回されて取り付けられ、気化槽130内を加熱して、付着再液化を防止しつつ、気化槽130内の材料を気化できるようになっている。 The heater 135d is a sheathed heater embedded in the heating unit 135. The heater 130d is a linear resistance heating device and is wound around and attached to the outer periphery of the vaporization tank 130. The heater 130d heats the vaporization tank 130 to prevent adhesion and re-liquefaction, while in the vaporization tank 130. The material can be vaporized.
 気化空間130aに接続された樹脂材料供給管112(第一配管)にも、同様の温度調整装置としてヒータ112dが設けられている。ヒータ112dは、樹脂材料供給管112(第一配管)に巻き付けられており、気化した樹脂材料が、壁面で凝縮しないようになっている。
 なお、樹脂材料迂回管113に、同様の温度調整装置としてヒータが設けられる。
The resin material supply pipe 112 (first pipe) connected to the vaporization space 130a is also provided with a heater 112d as a similar temperature adjusting device. The heater 112d is wound around the resin material supply pipe 112 (first pipe), and the vaporized resin material is not condensed on the wall surface.
The resin material bypass pipe 113 is provided with a heater as a similar temperature adjusting device.
 これらのヒータ130d,135d,112dは、気化した樹脂材料に露出する表面の温度を樹脂材料の気化温度よりも高い状態に設定して、樹脂材料の液化を防止することが可能である。同時に、樹脂材料の加熱固化を極力低減するように温度設定されている。なお、貯留部136は加熱しない、もしくは、貯留部136の温度は、樹脂材料の気化温度より低くなるように設定される。 These heaters 130d, 135d, 112d can prevent the liquefaction of the resin material by setting the surface temperature exposed to the vaporized resin material to be higher than the vaporization temperature of the resin material. At the same time, the temperature is set so as to reduce the heat solidification of the resin material as much as possible. The reservoir 136 is not heated, or the temperature of the reservoir 136 is set to be lower than the vaporization temperature of the resin material.
 貯留部136は、気化槽130内部空間において、加温部135より下方に配され、加温部135で気化されなかった液状の樹脂材料が貫通孔135cから流下されて保管される。貯留部136の貯留底部136sには、バルブ136Vを有するドレーン136bが設けられ、貯留した樹脂材料を外部に排出可能とされている。また、貯留部136は、樹脂材料の気化温度以下に設定されており、具体的には、室温とすることが好ましい。 The storage unit 136 is disposed below the heating unit 135 in the internal space of the vaporization tank 130, and the liquid resin material that has not been vaporized by the heating unit 135 flows down from the through hole 135c and is stored. A drain 136b having a valve 136V is provided in the storage bottom 136s of the storage 136, and the stored resin material can be discharged to the outside. Moreover, the storage part 136 is set below the vaporization temperature of a resin material, and specifically, it is preferable to set it as room temperature.
 なお、本実施形態では、樹脂材料として紫外線硬化樹脂材料を使用する場合がある。紫外線硬化樹脂材料は、加温部135での加熱により一部が重合・変質する場合がある。このように変化した樹脂は蒸発温度が上がり加温部135で蒸発しない。蒸発しない樹脂は、加温部135の傾斜面135bを流れて、貯留底部136sに溜まる。 In this embodiment, an ultraviolet curable resin material may be used as the resin material. The ultraviolet curable resin material may be partially polymerized or altered by heating in the heating unit 135. The resin changed in this way has an evaporating temperature and does not evaporate in the heating unit 135. Resin that does not evaporate flows on the inclined surface 135b of the heating unit 135 and accumulates in the storage bottom 136s.
 本実施形態に係る気化器300において樹脂材料を気化させる際には、ヒータ130d,135dによって、加温部135および気化槽130の側壁130hを加温した状態とするとともに、ヒータ112dにより、樹脂材料供給管112(第一配管)を加温した状態とする。 When the resin material is vaporized in the vaporizer 300 according to the present embodiment, the heater 130d and 135d are used to heat the heating unit 135 and the side wall 130h of the vaporization tank 130, and the heater 112d is used to heat the resin material. The supply pipe 112 (first pipe) is heated.
 同時に、制御部400により、バルブ112Vを閉状態として、チャンバ110にガスが流入できない状態とするとともに、バルブ113Vを開状態として、樹脂材料迂回管113にガスが流入可能な状態とする。 At the same time, the control unit 400 closes the valve 112V so that the gas cannot flow into the chamber 110, and opens the valve 113V so that the gas can flow into the resin material bypass pipe 113.
 この状態で、樹脂材料原料容器150の内圧を上昇させて、樹脂材料液供給管140から供給された液状の樹脂材料を、吐出部132からキャリアガスとともに気化槽130の内部空間に噴霧する。このとき、吐出部132に供給される樹脂材料およびキャリアガスをさらに加温することもできる。 In this state, the internal pressure of the resin material raw material container 150 is increased, and the liquid resin material supplied from the resin material liquid supply pipe 140 is sprayed from the discharge unit 132 to the internal space of the vaporization tank 130 together with the carrier gas. At this time, the resin material and the carrier gas supplied to the discharge unit 132 can be further heated.
 吐出部132からキャリアガスとともに気化槽130の内部空間に噴霧された樹脂材料は、加温された気化槽130内部において気化する。このとき、加温部135に到達した樹脂材料は、加温部135上面で気化するが、気化せずに液状の樹脂材料は、加温部135の傾斜面135bの傾斜により、加温部135周縁に向けて流下し、加温部135上に停留せず貯留部136へと滴下する。これにより、加温部135における気化面積が液状の樹脂材料によって減少することを防止でき、気化量の安定化を図ることができる。 The resin material sprayed into the internal space of the vaporizing tank 130 together with the carrier gas from the discharge unit 132 is vaporized inside the heated vaporizing tank 130. At this time, the resin material that has reached the heating unit 135 is vaporized on the upper surface of the heating unit 135, but the liquid resin material without being vaporized is heated by the inclination of the inclined surface 135 b of the heating unit 135. It flows down toward the periphery and drops on the storage unit 136 without stopping on the heating unit 135. Thereby, it can prevent that the vaporization area in the heating part 135 reduces with a liquid resin material, and can aim at stabilization of the vaporization amount.
 同時に、液状の樹脂材料が加温部135周縁に向けて流下し、加温部135上に停留せず貯留部136へと滴下することにより、加温部135上で過加熱されて固化しない。仮に一部が固化しても液状の樹脂材料とともに貯留部136へと滴下する。これにより、加温部135における気化面積が固化した樹脂材料によって減少することを防止でき、気化量の安定化を図ることができる。 At the same time, the liquid resin material flows down toward the periphery of the heating unit 135 and does not stay on the heating unit 135 and is dropped onto the storage unit 136 so that it is overheated on the heating unit 135 and does not solidify. Even if a part of the liquid is solidified, the liquid resin material is dropped into the storage portion 136. Thereby, it can prevent that the vaporization area in the heating part 135 decreases with the solidified resin material, and can stabilize vaporization amount.
 樹脂材料の気化が定常的に行われている間に、制御部400により、バルブ112Vを開状態として、チャンバ110にガスが流入可能な状態とするとともに、バルブ113Vを閉状態とする。すると、樹脂材料迂回管113は、ガスが流入できない状態となる。これにより、チャンバ110に気化した樹脂材料が供給され、成膜処理を行うことが可能となる。
 本実施形態における気化器300によれば、加温部135の傾斜面135bの傾斜により、加温部135における気化面積が液状の樹脂材料によって減少することを防止でき、気化した樹脂材料の供給量の安定化を図ることができる。
While the resin material is constantly vaporized, the control unit 400 opens the valve 112V so that gas can flow into the chamber 110 and closes the valve 113V. Then, the resin material bypass pipe 113 is in a state where gas cannot flow in. Thereby, the vaporized resin material is supplied to the chamber 110, and the film formation process can be performed.
According to the vaporizer 300 in the present embodiment, it is possible to prevent the vaporized area in the heating unit 135 from being reduced by the liquid resin material due to the inclination of the inclined surface 135b of the heating unit 135, and the supply amount of the vaporized resin material Can be stabilized.
 また、切替部の駆動によって、即ち、制御部400によってバルブ112V及びバルブ113Vの開閉状態を切り替えるだけで、チャンバ110に対する樹脂材料の供給と、樹脂材料迂回管113(第二配管)に対する樹脂材料の供給とを選択することができる。このため、チャンバ110に供給する気化した樹脂材料の供給量を安定化できるため、成膜レートが変動することを防止して、膜特性の優れた樹脂材料膜を安定して形成することが可能となる。さらに、チャンバ110における基板Sの入れ替えおよびマスクの位置合わせ時に、チャンバ110に樹脂材料を導入せずに、樹脂材料の気化を継続して行えるので、気化した樹脂材料である蒸気発生の停止/開始を繰り返さず蒸気の発生レートを概ね一定にすることができる。 Also, by switching the valve 112V and the valve 113V by the control unit 400 by driving the switching unit, the resin material is supplied to the chamber 110, and the resin material to the resin material bypass pipe 113 (second pipe) is supplied. Supply can be selected. For this reason, since the supply amount of the vaporized resin material supplied to the chamber 110 can be stabilized, it is possible to prevent the film formation rate from fluctuating and stably form a resin material film having excellent film characteristics. It becomes. Furthermore, since the resin material can be continuously vaporized without introducing the resin material into the chamber 110 when the substrate S is replaced and the mask is aligned in the chamber 110, the generation / stop of vapor generation of the vaporized resin material is stopped. The generation rate of steam can be made substantially constant without repeating the above.
 樹脂成膜部100は、例えば、気化温度40~250℃程度とされる紫外線硬化型アクリル樹脂材料の成膜と、成膜された樹脂材料の硬化のための紫外線照射とを同一のチャンバ110内で可能とするように構成されている。これにより、いずれの処理工程も同一の装置構成で行うことが可能となり、生産性を向上させることができる。 For example, the resin film forming unit 100 performs film formation of an ultraviolet curable acrylic resin material having a vaporization temperature of about 40 to 250 ° C. and ultraviolet irradiation for curing the formed resin material in the same chamber 110. It is configured to be possible. Thereby, it becomes possible to perform any processing process with the same apparatus structure, and it can improve productivity.
 以下、本実施形態に係る素子構造体の製造装置1000で製造される素子構造体10について説明する。
 図4は、本実施形態に係る素子構造体を示す概略断面図である。図5は、図4の素子構造体を示す平面図である。図6は、素子構造体の要部を示す拡大図である。各図においてX軸、Y軸及びZ軸方向は相互に直交する3軸方向を示しており、本実施形態ではX軸及びY軸方向は相互に直交する水平方向、Z軸方向は鉛直方向を示している。
Hereinafter, the element structure 10 manufactured by the element structure manufacturing apparatus 1000 according to the present embodiment will be described.
FIG. 4 is a schematic cross-sectional view showing the element structure according to the present embodiment. FIG. 5 is a plan view showing the element structure of FIG. FIG. 6 is an enlarged view showing a main part of the element structure. In each figure, the X-axis, Y-axis, and Z-axis directions indicate triaxial directions orthogonal to each other. In this embodiment, the X-axis and Y-axis directions are orthogonal to each other, and the Z-axis direction is vertical. Show.
 本実施形態に係る素子構造体10は、デバイス層3(機能層)を含む基板2と、基板2の表面2aに形成され機能層3を被覆するとともに、局所的な凸部を有する、シリコン窒化物(SiN)等の無機材料からなる第1の無機材料層41(第一層)と、第1の無機材料層41を被覆するように、第一層41と同様に第2の無機材料層42(第二層)とを備える。本実施形態において素子構造体10は、有機EL発光層を有する発光素子で構成される。 The element structure 10 according to the present embodiment includes a substrate 2 including a device layer 3 (functional layer), a silicon nitride layer that is formed on the surface 2a of the substrate 2 and covers the functional layer 3, and has local protrusions. The first inorganic material layer 41 (first layer) made of an inorganic material such as a material (SiN x ) and the second inorganic material in the same manner as the first layer 41 so as to cover the first inorganic material layer 41 A layer 42 (second layer). In the present embodiment, the element structure 10 includes a light emitting element having an organic EL light emitting layer.
 基板2は、表面2a(第1の面)と裏面2c(第2の面)とを有し、例えば、ガラス基板、プラスチック基板等で構成される。基板2の形状は、特に限定されず、本実施形態では矩形状に形成される。基板2の大きさ、厚み等は、特に限定されず、素子サイズの大きさに応じて、適宜の大きさ、厚みを有する基板が用いられる。本実施形態では、一枚の大型基板S上に作製された同一素子の集合体から複数の素子構造体10が作製される。 The substrate 2 has a front surface 2a (first surface) and a back surface 2c (second surface), and is composed of, for example, a glass substrate or a plastic substrate. The shape of the board | substrate 2 is not specifically limited, In this embodiment, it forms in a rectangular shape. The magnitude | size, thickness, etc. of the board | substrate 2 are not specifically limited, The board | substrate which has a suitable magnitude | size and thickness is used according to the magnitude | size of element size. In the present embodiment, a plurality of element structures 10 are manufactured from an assembly of the same elements manufactured on one large substrate S.
 デバイス層3(機能層)は、上部電極及び下部電極を含む有機EL発光層で構成される。これ以外にも、デバイス層3は、液晶素子における液晶層や発電素子における発電層等のような、水分、酸素等により劣化しやすい性質の材料を含む種々の機能素子で構成されてもよい。 Device layer 3 (functional layer) is composed of an organic EL light emitting layer including an upper electrode and a lower electrode. In addition to this, the device layer 3 may be composed of various functional elements including materials that easily deteriorate due to moisture, oxygen, and the like, such as a liquid crystal layer in a liquid crystal element and a power generation layer in a power generation element.
 デバイス層3は、基板2の表面2aの所定領域に成膜される。デバイス層3の平面形状は、特に限定されず、本実施形態では略矩形状に形成されるが、このような形状以外にも、円形状、線形状等の形状が採用されてもよい。デバイス層3は、基板2の表面2aに配置される例に限られず、基板2の表面2a及び裏面2cのうち少なくとも一方の面に配置されていればよい。 The device layer 3 is formed in a predetermined region of the surface 2a of the substrate 2. The planar shape of the device layer 3 is not particularly limited and is formed in a substantially rectangular shape in the present embodiment, but other shapes such as a circular shape and a linear shape may be adopted. The device layer 3 is not limited to the example of being disposed on the front surface 2a of the substrate 2, but may be disposed on at least one of the front surface 2a and the back surface 2c of the substrate 2.
 第1の無機材料層41(第一層)は、デバイス層3が配置される基板2の面2aに設けられ、デバイス層3の表面3a及び側面3sを被覆する凸部を構成する。第1の無機材料層41は、基板2の表面2aから図6における上方へ突出する立体構造を有する。 1st inorganic material layer 41 (1st layer) is provided in the surface 2a of the board | substrate 2 with which the device layer 3 is arrange | positioned, and comprises the convex part which coat | covers the surface 3a and the side surface 3s of the device layer 3. FIG. The first inorganic material layer 41 has a three-dimensional structure that protrudes upward in FIG. 6 from the surface 2 a of the substrate 2.
 第1の無機材料層41は、水分や酸素からデバイス層3を保護することが可能な無機材料で構成される。本実施形態において第1の無機材料層41は、水蒸気バリア特性に優れたシリコン窒化物(SiN)で構成されるが、この材料に限定されない。シリコン酸化物やシリコン酸窒化物等の他のシリコン化合物、あるいは酸化アルミニウム等の水蒸気バリア性を有する他の無機材料で、第1の無機材料層41が構成されてもよい。 The first inorganic material layer 41 is made of an inorganic material capable of protecting the device layer 3 from moisture and oxygen. In the present embodiment, the first inorganic material layer 41 is composed of silicon nitride (SiN x ) having excellent water vapor barrier properties, but is not limited to this material. The first inorganic material layer 41 may be composed of another silicon compound such as silicon oxide or silicon oxynitride, or another inorganic material having a water vapor barrier property such as aluminum oxide.
 第1の無機材料層41は、例えば、適宜のマスクを用いて基板2の表面2aに成膜される。本実施形態では、デバイス層3を収容できる大きさの矩形開口部を有するマスクを用いて第1の無機材料層41が成膜される。成膜方法は、特に限定されず、CVD(Chemical Vapor Deposition)法やスパッタリング法、ALD(Atomic Layer Deposition)法等が適用可能である。第1の無機材料層41の厚みは、特に限定されず、例えば、200nm~2μmである。 The first inorganic material layer 41 is formed on the surface 2a of the substrate 2 using an appropriate mask, for example. In the present embodiment, the first inorganic material layer 41 is formed using a mask having a rectangular opening having a size that can accommodate the device layer 3. The film forming method is not particularly limited, and a CVD (Chemical Vapor Deposition) method, a sputtering method, an ALD (Atomic Layer Deposition) method, or the like is applicable. The thickness of the first inorganic material layer 41 is not particularly limited, and is, for example, 200 nm to 2 μm.
 第2の無機材料層42(第二層)は、第1の無機材料層41と同様に、水分や酸素からデバイス層3を保護することが可能な無機材料で構成され、第1の無機材料層41の表面41a及び側面41sを被覆するように基板2の表面2aに設けられる。本実施形態において第2の無機材料層42は、水蒸気バリア特性に優れたシリコン窒化物(SiN)で構成されるが、この材料に限定されない。シリコン酸化物やシリコン酸窒化物等の他のシリコン化合物、あるいは酸化アルミニウム等の水蒸気バリア性を有する他の無機材料で、第2の無機材料層42が構成されてもよい。 Similar to the first inorganic material layer 41, the second inorganic material layer 42 (second layer) is composed of an inorganic material capable of protecting the device layer 3 from moisture and oxygen. It is provided on the surface 2 a of the substrate 2 so as to cover the surface 41 a and the side surface 41 s of the layer 41. In the present embodiment, the second inorganic material layer 42 is composed of silicon nitride (SiN x ) having excellent water vapor barrier properties, but is not limited to this material. The second inorganic material layer 42 may be composed of another silicon compound such as silicon oxide or silicon oxynitride, or another inorganic material having a water vapor barrier property such as aluminum oxide.
 第2の無機材料層42は、例えば、適宜のマスクを用いて基板2の表面2aに成膜される。本実施形態では、第1の無機材料層41を収容できる大きさの矩形開口部を有するマスクを用いて第2の無機材料層42が成膜される。成膜方法は、特に限定されず、CVD(Chemical Vapor Deposition)法やスパッタリング法、ALD(Atomic Layer Deposition)法等が適用可能である。第2の無機材料層42の厚みは、特に限定されず、例えば、200nm~2μmである。 The second inorganic material layer 42 is formed on the surface 2a of the substrate 2 using, for example, an appropriate mask. In the present embodiment, the second inorganic material layer 42 is formed using a mask having a rectangular opening having a size capable of accommodating the first inorganic material layer 41. The film forming method is not particularly limited, and a CVD (Chemical Vapor Deposition) method, a sputtering method, an ALD (Atomic Layer Deposition) method, or the like is applicable. The thickness of the second inorganic material layer 42 is not particularly limited, and is, for example, 200 nm to 2 μm.
 本実施形態に係る素子構造体10は、第1の樹脂材51をさらに有する。第1の樹脂材51は、第1の無機材料層41(凸部)の周囲に偏在する。本実施形態において第1の樹脂材51は、第1の無機材料層41と第2の無機材料層42との間に介在し、第1の無機材料層41の側面41sと基板2の表面2aとの境界部2bに偏在する。第1の樹脂材51は、境界部2b付近に形成された第1の無機材料層41と基板表面2aとの間の間隙G(図6)を充填する機能を有する。 The element structure 10 according to the present embodiment further includes a first resin material 51. The first resin material 51 is unevenly distributed around the first inorganic material layer 41 (convex portion). In the present embodiment, the first resin material 51 is interposed between the first inorganic material layer 41 and the second inorganic material layer 42, and the side surface 41 s of the first inorganic material layer 41 and the surface 2 a of the substrate 2. Is unevenly distributed at the boundary 2b. The first resin material 51 has a function of filling the gap G (FIG. 6) between the first inorganic material layer 41 formed in the vicinity of the boundary 2b and the substrate surface 2a.
 図6では、素子構造体10における境界部2bの周辺構造を拡大して示している。第1の無機材料層41は、無機材料のCVD膜あるいはスパッタ膜で形成されるため、デバイス層3を含む基板2の凹凸構造面に対するカバレッジ特性(段差被覆性)が比較的低い。その結果、図6に示すようにデバイス層3の側面3sを被覆する第1の無機材料層41は、基板表面2a付近でカバレッジ特性が低下し、被覆膜厚が極度に小さいか、被覆膜が存在しない状態になるおそれがある。 In FIG. 6, the peripheral structure of the boundary portion 2b in the element structure 10 is shown in an enlarged manner. Since the first inorganic material layer 41 is formed of an inorganic material CVD film or sputtered film, the coverage characteristic (step coverage) with respect to the concavo-convex structure surface of the substrate 2 including the device layer 3 is relatively low. As a result, as shown in FIG. 6, the first inorganic material layer 41 covering the side surface 3s of the device layer 3 has reduced coverage characteristics near the substrate surface 2a, and the coating film thickness is extremely small. There is a risk that the film may be absent.
 そこで本実施形態では、上述のような第1の無機材料層41の周辺の被覆不良領域に第1の樹脂材51を偏在させることで、当該被覆不良領域からデバイス層3内部への水分や酸素の侵入を抑制するようにしている。また、第2の無機材料層42の成膜時には、第1の樹脂材51が第2の無機材料層42の下地層として機能することで、第2の無機材料層42の適正な成膜を可能とし、第1の無機材料層41の側面41sを所望の膜厚で適切に被覆することが可能となる。 Therefore, in the present embodiment, the first resin material 51 is unevenly distributed in the poorly coated region around the first inorganic material layer 41 as described above, so that moisture and oxygen from the poorly coated region to the inside of the device layer 3 can be obtained. To prevent intrusion. In addition, when the second inorganic material layer 42 is formed, the first resin material 51 functions as a base layer of the second inorganic material layer 42, so that the second inorganic material layer 42 is appropriately formed. Therefore, the side surface 41s of the first inorganic material layer 41 can be appropriately covered with a desired film thickness.
 第1の樹脂材51の形成方法は、噴霧気化によって気化した樹脂材料が、基板表面2aに供給され凝縮して樹脂材料膜を形成し、樹脂材料膜を硬化した後、不要部分を除去する局在化工程により形成される。 The first resin material 51 is formed by a method in which the resin material vaporized by spray vaporization is supplied to the substrate surface 2a and condensed to form a resin material film, and after the resin material film is cured, unnecessary portions are removed. It is formed by a localization process.
 以下、本実施形態に係る素子構造体の製造装置による素子構造体の製造方法について説明する。
 図7~図11は、本実施形態に係る素子構造体の製造方法における第1の樹脂材51の形成方法を模式的に示す工程図である。
Hereinafter, a method for manufacturing an element structure using the device for manufacturing an element structure according to the present embodiment will be described.
7 to 11 are process diagrams schematically showing a method for forming the first resin material 51 in the element structure manufacturing method according to the present embodiment.
(デバイス層の形成工程例)
 まず、図1に示す素子構造体の製造装置1000において、ロードロック室210からコア室200に搬入された基板Sは、図示しない基板搬送ロボットによりコア室200から機能層形成部204に搬送される。この機能層形成部204において基板S上の所定の領域にデバイス層3(機能層)を形成する。
 本実施形態において、機能層3となる領域としては、基板S上における複数箇所の領域、例えば、X軸方向及びY軸方向にそれぞれ2箇所ずつ所定間隔で配列された4箇所の領域や、単数の機能層3となる領域が用いられる。
(Example of device layer formation process)
First, in the element structure manufacturing apparatus 1000 shown in FIG. 1, the substrate S carried into the core chamber 200 from the load lock chamber 210 is transported from the core chamber 200 to the functional layer forming unit 204 by a substrate transport robot (not shown). . In the functional layer forming unit 204, the device layer 3 (functional layer) is formed in a predetermined region on the substrate S.
In the present embodiment, the region to be the functional layer 3 is a plurality of regions on the substrate S, for example, four regions arranged at predetermined intervals of two each in the X-axis direction and the Y-axis direction, The region to be the functional layer 3 is used.
 デバイス層3の形成方法は、特に限られず、デバイス層3の材料、構成等によって適宜選択することが可能である。例えば、基板Sを機能層形成部204の成膜室等へ搬送し、基板S上へ所定の材料の蒸着、スパッタ等を行い、さらにパターン加工等することで、基板S上の所定の領域上に所望のデバイス層3を形成することができる。パターン加工の方法は、特に限られず、例えば、エッチング等を採用することが可能である。 The method for forming the device layer 3 is not particularly limited, and can be appropriately selected depending on the material, configuration, and the like of the device layer 3. For example, the substrate S is transported to a film forming chamber or the like of the functional layer forming unit 204, and a predetermined material is deposited on the substrate S, sputtered, etc. A desired device layer 3 can be formed. The pattern processing method is not particularly limited, and for example, etching or the like can be employed.
 なお、素子構造体の製造装置1000の具体的な構成については、図1において詳細な説明を省いている。機能層形成部204が多数の処理室からなり、互いに隣り合う処理室の間で基板Sを搬送可能な搬送装置を有する構成を採用することができる。あるいは、真空装置ではない構成を採用することもできる。つまり、ロードロック室210を介する必要はなく、素子構造体の製造装置1000の外部での基板Sに対する処理を可能とすることもできる。 Note that a detailed description of the specific structure of the element structure manufacturing apparatus 1000 is omitted in FIG. A configuration in which the functional layer forming unit 204 includes a large number of processing chambers and includes a transfer device that can transfer the substrate S between adjacent processing chambers can be employed. Or the structure which is not a vacuum apparatus is also employable. In other words, it is not necessary to go through the load lock chamber 210, and processing for the substrate S outside the element structure manufacturing apparatus 1000 can be made possible.
(第一層の形成工程例)
 次に、デバイス層3が形成された基板Sは、図示しない基板搬送ロボットにより機能層形成部204から搬出されて、コア室200を介して第一層形成部201に搬入される。
(Example of first layer formation process)
Next, the substrate S on which the device layer 3 is formed is unloaded from the functional layer forming unit 204 by a substrate transfer robot (not shown) and is loaded into the first layer forming unit 201 through the core chamber 200.
 第一層形成部201においては、デバイス層3を被覆するように、デバイス層3の領域を含む基板S上の所定の領域に第1の無機材料層41(第一層)を形成する。これにより、デバイス層3を被覆した第1の無機材料層41が、図7に示すように、基板S上で凸部を有するように形成される。
 本工程では、例えば、第1の無機材料層41の領域に対応する個数の開口を有するマスクを用いて、例えば、窒化ケイ素からなる第1の無機材料層41を保護層の一部として形成してもよい。
In the first layer forming unit 201, the first inorganic material layer 41 (first layer) is formed in a predetermined region on the substrate S including the region of the device layer 3 so as to cover the device layer 3. Thereby, the first inorganic material layer 41 covering the device layer 3 is formed on the substrate S so as to have a convex portion as shown in FIG.
In this step, for example, the first inorganic material layer 41 made of, for example, silicon nitride is formed as a part of the protective layer using a mask having a number of openings corresponding to the region of the first inorganic material layer 41. May be.
 ここで、第一層形成部201は、CVD処理装置、または、スパッタ処理装置を有する構成とすることができる。また、図示はしないが、第一層形成部201の成膜室には、基板Sを配置するためのステージと、基板S上に配置されるマスクと、マスクを支持し、ステージ上の基板Sに対してマスクの位置合わせ等を行うマスクアライメント装置、成膜材料供給装置等が設置される。 Here, the first layer forming unit 201 can include a CVD processing apparatus or a sputtering processing apparatus. In addition, although not shown, in the film forming chamber of the first layer forming unit 201, a stage for placing the substrate S, a mask placed on the substrate S, and the substrate S on the stage are supported. A mask alignment device for aligning the mask with respect to the film, a film forming material supply device, and the like are installed.
 デバイス層3が形成された基板Sは、コア室200に配置された基板搬送ロボット等により、第一層形成部201のステージ上に配置される。マスクアライメント装置等によって、マスクの開口を介してデバイス層3が露出するように基板S上の所定位置にマスクが配置される。
 そして、例えば、CVD法により、窒化ケイ素等からなる第1の無機材料層41が、デバイス層3を被覆するように形成される。なお、第1の無機材料層41の形成方法はCVD法に限られず、例えば、スパッタ法を採用することもできる。この場合に、第一層形成部201はスパッタリング装置を有するように構成される。
The substrate S on which the device layer 3 is formed is placed on the stage of the first layer forming unit 201 by a substrate transport robot or the like placed in the core chamber 200. A mask is arranged at a predetermined position on the substrate S by a mask alignment apparatus or the like so that the device layer 3 is exposed through the opening of the mask.
Then, for example, the first inorganic material layer 41 made of silicon nitride or the like is formed so as to cover the device layer 3 by the CVD method. In addition, the formation method of the 1st inorganic material layer 41 is not restricted to CVD method, For example, a sputtering method can also be employ | adopted. In this case, the first layer forming unit 201 is configured to have a sputtering apparatus.
(樹脂材の形成工程例~成膜工程)
 次に、凸部を有する第1の無機材料層41が形成された基板Sは、図示しない基板搬送ロボットにより第一層形成部201から搬出されて、コア室200を介して樹脂成膜部100に搬入される。
(Example of resin material formation process to film formation process)
Next, the substrate S on which the first inorganic material layer 41 having convex portions is formed is unloaded from the first layer forming unit 201 by a substrate transfer robot (not shown), and the resin film forming unit 100 is passed through the core chamber 200. It is carried in.
 樹脂成膜部100は、第1の無機材料層41の形成された基板Sに、樹脂材料膜を形成する工程と、樹脂材料膜を硬化して樹脂膜を形成する工程と、を行う。本工程では、まず、樹脂成膜部100を用いて、例えば、紫外線硬化型アクリル樹脂の材料からなる樹脂材料膜を形成する。 The resin film forming unit 100 performs a step of forming a resin material film on the substrate S on which the first inorganic material layer 41 is formed and a step of forming a resin film by curing the resin material film. In this step, first, a resin material film made of, for example, a material of an ultraviolet curable acrylic resin is formed using the resin film forming unit 100.
 樹脂成膜部100においては、まず、樹脂成膜部100に搬入された基板Sがステージ102上に載置される。基板Sがチャンバ110内に搬入される前においては、チャンバ110内の気体は真空排気装置により排気され、チャンバ110内が真空状態に維持されている。また、基板Sがチャンバ110内に搬入される時には、チャンバ110の真空状態が維持されている。 In the resin film forming unit 100, first, the substrate S carried into the resin film forming unit 100 is placed on the stage 102. Before the substrate S is carried into the chamber 110, the gas in the chamber 110 is exhausted by the vacuum exhaust device, and the inside of the chamber 110 is maintained in a vacuum state. Further, when the substrate S is carried into the chamber 110, the vacuum state of the chamber 110 is maintained.
 このとき、チャンバ110は、加温装置により、少なくとも上部空間107および下部空間108の内面側の温度が樹脂材料の気化温度以上となるように設定される。同時に、ステージ102上に配置された基板Sは、基板冷却装置102aにより、ステージ102とともに樹脂材料の気化温度よりも低い温度に冷却される。
 また、ヒータ112dにより、樹脂材料供給管112(第一配管)を樹脂材料の気化温度以上に加温した状態とする。
At this time, the chamber 110 is set by a heating device so that at least the temperatures of the inner surfaces of the upper space 107 and the lower space 108 are equal to or higher than the vaporization temperature of the resin material. At the same time, the substrate S placed on the stage 102 is cooled to a temperature lower than the vaporization temperature of the resin material together with the stage 102 by the substrate cooling device 102a.
Further, the resin material supply pipe 112 (first pipe) is heated to a temperature equal to or higher than the vaporization temperature of the resin material by the heater 112d.
 次いで、ステージ102上に配置された基板S上には、図示しないマスクが、マスク載置装置等によって、基板S上の所定位置へ配置される場合がある。 Next, on the substrate S arranged on the stage 102, a mask (not shown) may be arranged at a predetermined position on the substrate S by a mask placing device or the like.
 基板Sをステージ102に載置する以前に、気化器300において樹脂材料の気化を定常的に安定して行う。この気化安定化処理の間は、制御部400によって、バルブ112Vを閉状態として、チャンバ110にガスが流入できない状態とするとともに、バルブ113Vを開状態として、樹脂材料迂回管113にガスが流入可能する状態を維持する。
 なお、気化器300における樹脂材料の気化は、供給される気化樹脂材料量の安定度に応じて、成膜処理前に必要な時間、維持することが好ましい。
Before the substrate S is placed on the stage 102, the vaporization of the resin material is performed stably and stably in the vaporizer 300. During the vaporization stabilization process, the control unit 400 closes the valve 112V so that the gas cannot flow into the chamber 110, and opens the valve 113V so that the gas can flow into the resin material bypass pipe 113. Maintain the state to do.
Note that the vaporization of the resin material in the vaporizer 300 is preferably maintained for a necessary time before the film forming process according to the stability of the amount of the vaporized resin material supplied.
 次いで、マスクアライメント状態、チャンバ110内の雰囲気、チャンバ110の内壁の温度、樹脂材料供給管112の温度、基板Sの温度等の条件が所定の状態になった後、制御部400により、バルブ112Vとバルブ113Vとの開閉状態を切り替える。これによって、バルブ112Vを開状態として、樹脂材料供給管112にガスを流入させるとともに、バルブ113Vを閉状態として、樹脂材料迂回管113にガスが流入しない状態とする。これにより、チャンバ110に気化した樹脂材料が供給される。 Subsequently, after the conditions such as the mask alignment state, the atmosphere in the chamber 110, the temperature of the inner wall of the chamber 110, the temperature of the resin material supply pipe 112, the temperature of the substrate S, and the like are in a predetermined state, the control unit 400 causes the valve 112V. And open / close state of the valve 113V. As a result, the valve 112V is opened and gas flows into the resin material supply pipe 112, and the valve 113V is closed and gas does not flow into the resin material bypass pipe 113. Thereby, the vaporized resin material is supplied to the chamber 110.
 気化器300から供給された気化した樹脂材料は、樹脂材料供給管112の内部を通って、上部空間107からシャワープレート105を介して下部空間108内に供給される。
 下部空間108では、シャワープレート105によって基板Sの全面にほぼ均等に供給された気化された樹脂材料が、図8に示すように、基板表面2aで凝縮して液状の樹脂材料膜5aとなる。基板表面2aで凝縮した液状の樹脂材料膜5aにおいては、基板表面2a上で劣角を有する角部、凹部、隙間部等では、表面張力により、樹脂材料膜5aの膜厚が厚くなる。
The vaporized resin material supplied from the vaporizer 300 is supplied from the upper space 107 into the lower space 108 via the shower plate 105 through the resin material supply pipe 112.
In the lower space 108, the vaporized resin material supplied almost evenly over the entire surface of the substrate S by the shower plate 105 is condensed on the substrate surface 2a to form a liquid resin material film 5a as shown in FIG. In the liquid resin material film 5a condensed on the substrate surface 2a, the film thickness of the resin material film 5a is increased due to surface tension at corners, recesses, gaps, and the like having an inferior angle on the substrate surface 2a.
 このとき、液状膜5aは、図示していないマスクによって、凸部41に近い位置(近傍の位置)といった領域のみに形成されるようにしてもよい。なお、樹脂材料の液化および成膜レートを勘案して、気化器300から供給される樹脂材料の供給量を制御することが好ましい。基板Sの表面において液化した樹脂材料は、毛細管現象により微細な隙間に入り込み、または、樹脂材料の表面張力によってさらに凝集するため、基板S上における微細な凹凸を平滑化しながら樹脂材料膜5aを形成することが可能となる。これにより、基板Sの表面上で劣角を有する角部、凹部、隙間部等では、樹脂材料膜5aの膜厚が厚くなる。特に、第1の無機材料層41の側面41sと基板2の表面2aとの境界部2bにおける微細な隙間を樹脂材料膜5aで埋めることができる。 At this time, the liquid film 5a may be formed only in a region such as a position close to the convex portion 41 (a nearby position) by a mask (not shown). It is preferable to control the supply amount of the resin material supplied from the vaporizer 300 in consideration of the liquefaction of the resin material and the film formation rate. The resin material liquefied on the surface of the substrate S enters a fine gap due to a capillary phenomenon or further agglomerates due to the surface tension of the resin material, so that the resin material film 5a is formed while smoothing fine irregularities on the substrate S. It becomes possible to do. Thereby, the film thickness of the resin material film 5a is increased at corners, recesses, gaps, and the like having an inferior angle on the surface of the substrate S. In particular, it is possible to fill a minute gap in the boundary portion 2b between the side surface 41s of the first inorganic material layer 41 and the surface 2a of the substrate 2 with the resin material film 5a.
 また、気化した樹脂材料は、チャンバ110が加熱されているため、チャンバ110内壁等の表面では凝縮しない。 Further, since the chamber 110 is heated, the vaporized resin material does not condense on the surface such as the inner wall of the chamber 110.
 所定の処理時間が経過した後、基板Sの表面に所定の厚みの液状膜5aが形成された後、制御部400によってバルブ112Vを閉状態として、チャンバ110にガスが流入できない状態とするとともに、バルブ113Vを開状態として、樹脂材料迂回管113にガスが流入可能な状態とする。
 チャンバ110は継続して排気されているので、気化樹脂材料はチャンバ110外部に排出され、成膜は停止する。
After a predetermined processing time has elapsed, after the liquid film 5a having a predetermined thickness is formed on the surface of the substrate S, the control unit 400 closes the valve 112V so that no gas can flow into the chamber 110, and The valve 113V is opened, and the gas can flow into the resin material bypass pipe 113.
Since the chamber 110 is continuously evacuated, the vaporized resin material is discharged to the outside of the chamber 110 and film formation is stopped.
 この状態で、チャンバ110内の真空雰囲気を維持しながら、UV照射装置122から紫外線を基板Sの表面に照射する。照射された紫外線は、石英等の紫外線透過材料からなる天板120およびシャワープレート105を透過してチャンバ110内の基板S上に到達する。 In this state, the surface of the substrate S is irradiated with ultraviolet rays from the UV irradiation device 122 while maintaining the vacuum atmosphere in the chamber 110. The irradiated ultraviolet rays pass through the top plate 120 and the shower plate 105 made of an ultraviolet transmitting material such as quartz and reach the substrate S in the chamber 110.
 チャンバ110内において基板Sに向けて照射された紫外線の一部は基板Sの表面に入射して、基板Sの表面に形成された樹脂材料からなる樹脂材料膜5aに光重合反応が生じて、液状膜5aが硬化する。図9に示すように、基板Sの表面に樹脂膜5が形成される。本実施形態ではアクリル樹脂の薄膜が形成される。
 次いで、図示しないマスクが、マスク載置装置等によって、基板S上の成膜位置から、退避位置へ移動される。
A part of the ultraviolet rays irradiated toward the substrate S in the chamber 110 is incident on the surface of the substrate S, and a photopolymerization reaction occurs in the resin material film 5a made of a resin material formed on the surface of the substrate S. The liquid film 5a is cured. As shown in FIG. 9, the resin film 5 is formed on the surface of the substrate S. In this embodiment, an acrylic resin thin film is formed.
Next, a mask (not shown) is moved from the film forming position on the substrate S to the retracted position by a mask mounting device or the like.
(樹脂材の形成工程例~局在化工程)
 次に、樹脂膜5が形成された基板Sは、図示しない基板搬送ロボットにより樹脂成膜部100から搬出されて、コア室200を介して局在化処理部202に搬入される。
(Example of resin material formation process-localization process)
Next, the substrate S on which the resin film 5 is formed is unloaded from the resin film forming unit 100 by a substrate transfer robot (not shown), and is loaded into the localization processing unit 202 through the core chamber 200.
 ここで、局在化処理部202は、ドライエッチング処理装置、特に、プラズマエッチング処理装置を有する構成とすることができる。
 また、図示はしないが、局在化処理部202は、平行平板型のプラズマ処理装置であってもよい。この場合、局在化処理部202においては、基板Sを電極に載置して、チャンバ内にエッチングガスを導入し、高周波電源によって発生した高周波を、アンテナを介してチャンバ内に照射してプラズマを生成するとともに、基板Sの載置された電極に高周波電源からバイアス電圧を印加する。電極に載置された基板にプラズマ中に存在するイオンが引き込まれ、基板Sの表面に形成された樹脂膜5は、エッチングされ、除去される。
Here, the localization processing unit 202 can be configured to include a dry etching processing apparatus, in particular, a plasma etching processing apparatus.
Although not shown, the localization processing unit 202 may be a parallel plate type plasma processing apparatus. In this case, the localization processing unit 202 places the substrate S on the electrode, introduces an etching gas into the chamber, and irradiates the chamber with the high frequency generated by the high frequency power source through the antenna. And a bias voltage is applied from the high frequency power source to the electrode on which the substrate S is placed. Ions existing in the plasma are drawn into the substrate placed on the electrode, and the resin film 5 formed on the surface of the substrate S is etched and removed.
 ここで、図10に示すように、エッチングガスから生じさせたプラズマ中のイオンによって樹脂膜5をエッチングする。このとき、イオンを電極上の基板Sへ向けて引き込むために、電極にバイアス電圧が印加されてもよい。
 エッチングにより膜厚が薄い平坦部分の樹脂膜5が除去され、基板Sの表面上で劣角を有する角部、凹部、隙間部等では、平坦部より厚い部分の樹脂膜5が残存する。この残存した部分が、第1の樹脂材51となる。
Here, as shown in FIG. 10, the resin film 5 is etched by ions in the plasma generated from the etching gas. At this time, in order to draw ions toward the substrate S on the electrode, a bias voltage may be applied to the electrode.
The flat resin film 5 having a thin film thickness is removed by the etching, and a thicker resin film 5 than the flat part remains at corners, recesses, gaps, and the like having an inferior angle on the surface of the substrate S. This remaining portion becomes the first resin material 51.
 なお、上述の第一層形成部201や第二層形成部203がスパッタ装置またはプラズマCVD装置を有する場合に、この形成部201、203は、成膜機能を有するだけでなく、局在化処理部202の機能を兼ね備えることができる。この場合、例えば、第一層形成部201、第二層形成部203、及び局在化処理部202として、同一の処理装置を使用することが可能である。 When the first layer forming unit 201 and the second layer forming unit 203 have a sputtering device or a plasma CVD device, the forming units 201 and 203 have not only a film forming function but also a localization process. The function of the unit 202 can be provided. In this case, for example, the same processing apparatus can be used as the first layer forming unit 201, the second layer forming unit 203, and the localization processing unit 202.
 局在化処理部202において、図10に示すように、樹脂膜5が形成された基板Sにおいては、プラズマエッチングにより、図11に示すように、樹脂膜5の大部分が除去される。このプラズマ処理は、エッチングレートから処理時間を算出して、所定の処理時間行うことができる。 In the localization processing unit 202, as shown in FIG. 10, in the substrate S on which the resin film 5 is formed, most of the resin film 5 is removed by plasma etching as shown in FIG. This plasma processing can be performed for a predetermined processing time by calculating the processing time from the etching rate.
 さらに、局在化処理部202には、検出装置を設けられることができる。この検出装置は、電極に印加するバイアス電圧を測定し、測定値の変化によって、基板S上の樹脂膜5がほとんど除去されたと判断し、その判断結果(検出結果)をエッチング処理の終点として用いる。 Furthermore, the localization processing unit 202 can be provided with a detection device. This detection apparatus measures the bias voltage applied to the electrode, determines that the resin film 5 on the substrate S has been almost removed by the change in the measurement value, and uses the determination result (detection result) as the end point of the etching process. .
 このドライエッチング処理により基板S上に残った第1の樹脂材51は、図11に示すように、第1の無機材料層41の側面41sと基板2の表面2aとの境界部2bに局在化する(局所的に存在する)。さらに、第1の樹脂材51は、第1の無機材料層41の表面の微細な凹凸を平滑化可能な部分に偏在する。 As shown in FIG. 11, the first resin material 51 remaining on the substrate S by this dry etching process is localized at the boundary 2b between the side surface 41s of the first inorganic material layer 41 and the surface 2a of the substrate 2. (It exists locally). Further, the first resin material 51 is unevenly distributed in a portion where fine irregularities on the surface of the first inorganic material layer 41 can be smoothed.
(第二層の形成工程例)
 第1の樹脂材51が局在して形成された基板Sは、図示しない基板搬送ロボットにより局在化処理部202から搬出されて、コア室200を介して第二層形成部203に搬入される。
(Example of second layer formation process)
The substrate S formed by localizing the first resin material 51 is unloaded from the localization processing unit 202 by a substrate transfer robot (not shown), and loaded into the second layer forming unit 203 via the core chamber 200. The
 第二層形成部203においては、第1の樹脂材51が形成された第1の無機材料層41を被覆するように、凸部を含む基板S上の所定の領域に第2の無機材料層42(第二層)を形成する。 In the second layer forming portion 203, the second inorganic material layer is formed in a predetermined region on the substrate S including the convex portion so as to cover the first inorganic material layer 41 on which the first resin material 51 is formed. 42 (second layer) is formed.
 本工程では、第1の無機材料層41と同様に、第2の無機材料層42の領域に対応する個数の開口を有するマスクを用いて、第1の無機材料層41と同一材料とされる、例えば、窒化ケイ素からなる第2の無機材料層42(第二層)を形成する。これにより、第1の無機材料層41(第一層)、第1の樹脂材51、および第2の無機材料層42(第二層)によってデバイス層3(機能層)を被覆し、デバイス層3を保護する保護層として機能することができる。 In this step, similarly to the first inorganic material layer 41, the same material as that of the first inorganic material layer 41 is formed using a mask having a number of openings corresponding to the region of the second inorganic material layer 42. For example, the second inorganic material layer 42 (second layer) made of silicon nitride is formed. Thus, the device layer 3 (functional layer) is covered with the first inorganic material layer 41 (first layer), the first resin material 51, and the second inorganic material layer 42 (second layer), and the device layer 3 can function as a protective layer for protecting 3.
 ここで、第二層形成部203は、CVD処理装置またはスパッタ処理装置を有する構成とすることができる。
 第二層形成部203は、上述の第一層形成部201と同様の装置構成を有することができる。例えば、第一層形成部201及び第二層形成部203として、同一の処理装置を使用すること、あるいは、第二層形成部203が第一層形成部201の機能を兼ね備えることが可能である。
 また、第二層形成部203が、プラズマCVD処理装置である場合は、局在化処理部202の機能を兼ね備えることができる。第二層形成部203にて第1の樹脂材51の局在化を行えば、局在化の後に、そのまま第2の無機材料層42(第二層)を形成することができる。
Here, the second layer forming unit 203 can include a CVD processing apparatus or a sputtering processing apparatus.
The second layer forming unit 203 can have the same device configuration as the first layer forming unit 201 described above. For example, the same processing apparatus can be used as the first layer forming unit 201 and the second layer forming unit 203, or the second layer forming unit 203 can have the function of the first layer forming unit 201. .
Further, when the second layer forming unit 203 is a plasma CVD processing apparatus, the function of the localization processing unit 202 can be provided. If the first resin material 51 is localized in the second layer forming portion 203, the second inorganic material layer 42 (second layer) can be formed as it is after the localization.
 この後、第2の無機材料層42が形成された基板Sは、図示しない基板搬送ロボットにより第二層形成部203から搬出されて、コア室200およびロードロック室210を介して素子構造体の製造装置1000の外部に搬出される。 Thereafter, the substrate S on which the second inorganic material layer 42 is formed is unloaded from the second layer forming unit 203 by a substrate transfer robot (not shown), and the element structure body via the core chamber 200 and the load lock chamber 210. It is carried out of the manufacturing apparatus 1000.
 本実施形態に係る素子構造体の製造装置1000は、樹脂成膜部100で樹脂膜5を形成して、局在化処理部202でプラズマエッチング処理により局在化した第1の樹脂材51を形成する。その後、第2の無機材料層42(第二層)を形成することにより、境界部2b等、保護層としてのバリア性を要求される箇所に、第2の無機材料層42(第二層)を確実に形成することが可能となる。しかも、気化器300によって、樹脂材料供給量の安定化を図ることができるため、樹脂材料膜の成膜工程に要する時間を短縮し、成膜レートを安定させて、膜特性の変動を防ぐことが可能となる。 In the element structure manufacturing apparatus 1000 according to the present embodiment, the resin film 5 is formed by the resin film forming unit 100 and the first resin material 51 localized by the plasma etching process by the localization processing unit 202 is used. Form. After that, by forming the second inorganic material layer 42 (second layer), the second inorganic material layer 42 (second layer) is formed at a location requiring barrier properties as a protective layer, such as the boundary portion 2b. Can be reliably formed. In addition, since the vaporizer 300 can stabilize the amount of resin material supplied, the time required for the film formation process of the resin material film can be shortened, the film formation rate can be stabilized, and fluctuations in film characteristics can be prevented. Is possible.
 以下、本実施形態に係る素子構造体の製造装置1000によって製造された素子構造体の他の例について説明する。 Hereinafter, another example of the element structure manufactured by the element structure manufacturing apparatus 1000 according to the present embodiment will be described.
 本実施形態に係る素子構造体の製造装置1000によって製造された本例における素子構造体10においては、樹脂材が第1の無機材料層41(凸部)の周囲である境界部2bに偏在する構造のみに限られず、例えば、境界部2b以外の基板2の表面2aや第1の無機材料層41の表面41a等に当該樹脂が残留していてもよい。 In the element structure 10 in this example manufactured by the element structure manufacturing apparatus 1000 according to the present embodiment, the resin material is unevenly distributed in the boundary portion 2b around the first inorganic material layer 41 (convex portion). For example, the resin may remain on the surface 2a of the substrate 2 other than the boundary portion 2b, the surface 41a of the first inorganic material layer 41, or the like.
 この場合は、第2の無機材料層42(第二層)は、図12に示すように第2の樹脂材52を介して第1の無機材料層41の上に積層される領域を有することになる。第2の樹脂材52は、第1の無機材料層41と第2の無機材料層42との間に介在し、第1の樹脂材51とは独立して第1の無機材料層41の表面41aに偏在する。 In this case, the second inorganic material layer 42 (second layer) has a region laminated on the first inorganic material layer 41 via the second resin material 52 as shown in FIG. become. The second resin material 52 is interposed between the first inorganic material layer 41 and the second inorganic material layer 42, and the surface of the first inorganic material layer 41 is independent of the first resin material 51. 41a is unevenly distributed.
 以上のように本実施形態に係る素子構造体10によれば、デバイス層3の側面が第1の無機材料層41(第一層)および第2の無機材料層42(第二層)により被覆されているため、デバイス層3への水分や酸素の侵入を防止することができる。 As described above, according to the element structure 10 according to the present embodiment, the side surface of the device layer 3 is covered with the first inorganic material layer 41 (first layer) and the second inorganic material layer 42 (second layer). Therefore, it is possible to prevent moisture and oxygen from entering the device layer 3.
 また、本実施形態によれば、境界部2bに第1の樹脂材51が偏在しているため、第1の無機材料層41あるいは第2の無機材料層42のカバレッジ不良に伴うバリア特性の低下を防止でき、長期にわたって安定した素子特性を維持することができる。 Moreover, according to this embodiment, since the 1st resin material 51 is unevenly distributed in the boundary part 2b, the fall of the barrier characteristic accompanying the coverage defect of the 1st inorganic material layer 41 or the 2nd inorganic material layer 42 is carried out. And stable device characteristics can be maintained over a long period of time.
 以下、本実施形態に係る素子構造体の製造装置1000によって製造された素子構造体の他の例について説明する。 Hereinafter, another example of the element structure manufactured by the element structure manufacturing apparatus 1000 according to the present embodiment will be described.
 本例に係る素子構造体20は、図13に示すように、第1の無機材料層41と第2の無機材料層42との間に介在する第2の樹脂材52をさらに有する。第2の樹脂材52は、第1の樹脂材51とは独立して第1の無機材料層41の表面に偏在する。 The element structure 20 according to the present example further includes a second resin material 52 interposed between the first inorganic material layer 41 and the second inorganic material layer 42 as shown in FIG. The second resin material 52 is unevenly distributed on the surface of the first inorganic material layer 41 independently of the first resin material 51.
 本例に係る素子構造体20において、第1の無機材料層41の表面は必ずしも平坦ではなく、例えば、成膜前(基板搬送時あるいは成膜装置への投入前)あるいは成膜時等においてパーティクルPが膜中に混入することで凹凸が形成された場合を例示している。第1の無機材料層41にパーティクルが混入すると、デバイス層3に対する第1の無機材料層41のカバレッジ特性が低下し、所望のバリア特性が得られなくなるおそれがある。 In the element structure 20 according to the present example, the surface of the first inorganic material layer 41 is not necessarily flat. The case where unevenness | corrugation is formed because P mixes in a film | membrane is illustrated. When particles are mixed into the first inorganic material layer 41, the coverage characteristics of the first inorganic material layer 41 with respect to the device layer 3 may be deteriorated, and desired barrier characteristics may not be obtained.
 そこで、本例に係る素子構造体20は、パーティクルPの混入等により生じた第1の無機材料層41の被覆不良部に第2の樹脂材52が充填された構造を有する。典型的には、この第2の樹脂材52は、第1の無機材料層41の表面とパーティクルPの周面との境界部32bに、表面張力により偏在する。これにより、デバイス層3の被覆性が高まるとともに、第2の樹脂材52が下地として機能することで第2の無機材料層42の適正な成膜が可能となる。なお、成膜時には平坦部分に薄く樹脂膜が形成されてもよい。パーティクルPの周辺には、表面張力により平坦部より厚い樹脂膜が形成される。 Therefore, the element structure 20 according to the present example has a structure in which the second resin material 52 is filled in the poorly coated portion of the first inorganic material layer 41 caused by the mixing of the particles P or the like. Typically, the second resin material 52 is unevenly distributed due to surface tension at a boundary portion 32b between the surface of the first inorganic material layer 41 and the peripheral surface of the particles P. Thereby, the coverage of the device layer 3 is enhanced, and the second inorganic material layer 42 can be appropriately formed by the second resin material 52 functioning as a base. Note that a thin resin film may be formed on a flat portion during film formation. A resin film thicker than the flat portion is formed around the particle P due to surface tension.
 第2の樹脂材52は、第1の樹脂材51と同様な方法で形成される。第2の樹脂材52は、第1の樹脂材51と同一の有機物で構成されてもよい。この場合、第1の樹脂材51と第2の樹脂材52とを同一工程において同時に形成することができる。 The second resin material 52 is formed by the same method as the first resin material 51. The second resin material 52 may be made of the same organic material as the first resin material 51. In this case, the first resin material 51 and the second resin material 52 can be simultaneously formed in the same process.
 ここで、局在化処理部202において、エッチングにより、薄い部分が除去され、厚い部分が残存する、即ち、パーティクルPが存在する箇所以外で樹脂膜5が除去されて第1の無機材料層41が露出したときに樹脂膜5のエッチングを停止する。これにより、凸部を鉛直方向に上方から眺めた際、パーティクルPによって隠される境界部32bの樹脂膜5がオーバーエッチングされることがなく、樹脂膜5がパーティクルPの周りの境界部32bに確実に残存する。結果として、パーティクルPの近傍の境界部32bで第2の樹脂材52はなだらかな表面形状を呈する。もし、パーティクルPが全く存在しない場合には、樹脂膜5が異方性エッチングにより実質的に除去されたとき、樹脂膜5が完全に除去されて第1の無機材料層41が露出する。
 なお、エッチングの停止は、プラズマの発光スペクトル分析の結果や異方性エッチングの経過時間に基づいて実行されることができる。
 このとき、境界部2bにおいて樹脂膜5が除去されないで、樹脂膜5が局在化することで第1の樹脂材51が形成される。同じく、樹脂膜5が境界部32bで除去されずに、樹脂膜5が局在化することで第2の樹脂材52が形成される。
Here, in the localization processing unit 202, the thin portion is removed by etching, and the thick portion remains, that is, the resin film 5 is removed except for the portion where the particles P exist, and the first inorganic material layer 41 is removed. When the film is exposed, etching of the resin film 5 is stopped. Thereby, when the convex portion is viewed from above in the vertical direction, the resin film 5 at the boundary portion 32b hidden by the particles P is not over-etched, and the resin film 5 is reliably attached to the boundary portion 32b around the particles P. Remain. As a result, the second resin material 52 exhibits a gentle surface shape at the boundary portion 32b in the vicinity of the particle P. If the particles P are not present at all, when the resin film 5 is substantially removed by anisotropic etching, the resin film 5 is completely removed and the first inorganic material layer 41 is exposed.
Note that the etching can be stopped based on the result of plasma emission spectrum analysis or the elapsed time of anisotropic etching.
At this time, the resin film 5 is not removed at the boundary portion 2b, and the resin film 5 is localized, whereby the first resin material 51 is formed. Similarly, the second resin material 52 is formed by the resin film 5 being localized without the resin film 5 being removed at the boundary portion 32b.
 本例においても上述の素子構造体10の製造と同様の作用効果を得ることができる。また、本例によれば、パーティクルPの混入による膜質の低下を第2の樹脂材52によって補うことができるため、所望のバリア特性を確保しつつ生産性の向上を図ることができる。 Also in this example, it is possible to obtain the same effect as that of the manufacturing of the element structure 10 described above. Further, according to this example, since the film quality deterioration due to the mixing of the particles P can be compensated for by the second resin material 52, it is possible to improve productivity while ensuring desired barrier characteristics.
 以下、本実施形態に係る素子構造体の製造装置1000によって製造された素子構造体の他の例について説明する。 Hereinafter, another example of the element structure manufactured by the element structure manufacturing apparatus 1000 according to the present embodiment will be described.
 本例に係る素子構造体30は、図14に示すように、例えば、デバイス層3(機能層)を有する基板21と、デバイス層3の側面3sを被覆する凸部40と、凸部40及びデバイス層3を被覆するように基板21の表面に形成された第1の無機材料層41(第一層)及び第2の無機材料層42(第二層)を有する。 As shown in FIG. 14, the element structure 30 according to this example includes, for example, a substrate 21 having a device layer 3 (functional layer), a protrusion 40 that covers the side surface 3 s of the device layer 3, a protrusion 40, and It has a first inorganic material layer 41 (first layer) and a second inorganic material layer 42 (second layer) formed on the surface of the substrate 21 so as to cover the device layer 3.
 凸部40は、基板21の表面21aに形成され、中央部にデバイス層3を収容する凹部40aを有する。本例では、凹部40aの底面が基板21の表面21aよりも高い位置に形成されているが、表面21aと同一の高さ位置に形成されてもよいし、表面21aよりも低い位置に形成されてもよい。 The convex portion 40 is formed on the surface 21 a of the substrate 21, and has a concave portion 40 a that accommodates the device layer 3 in the central portion. In this example, the bottom surface of the recess 40a is formed at a position higher than the surface 21a of the substrate 21, but it may be formed at the same height as the surface 21a or at a position lower than the surface 21a. May be.
 本例に係る素子構造体30は、第1の無機材料層41と第2の無機材料層42との間に介在する樹脂材53をさらに有する。樹脂材53は、凸部40の外側面と基板21の表面21aとの境界部21bと、凸部40の内側面とデバイス層3との境界部22bとにそれぞれ偏在している。これにより、凸部40およびデバイス層3の表面3aに対する第1の無機材料層41および第2の無機材料層42の被覆不良を抑制でき、バリア特性の向上を図ることができる。樹脂材53は、上述の第1の樹脂材51及び第2の樹脂材52と同様な方法で形成されることができる。 The element structure 30 according to the present example further includes a resin material 53 interposed between the first inorganic material layer 41 and the second inorganic material layer 42. The resin material 53 is unevenly distributed on the boundary portion 21 b between the outer side surface of the convex portion 40 and the surface 21 a of the substrate 21, and the boundary portion 22 b between the inner side surface of the convex portion 40 and the device layer 3. Thereby, the coating defect of the 1st inorganic material layer 41 and the 2nd inorganic material layer 42 with respect to the convex part 40 and the surface 3a of the device layer 3 can be suppressed, and the improvement of a barrier characteristic can be aimed at. The resin material 53 can be formed by the same method as the first resin material 51 and the second resin material 52 described above.
 このように凹凸を有する基板Sにおいて、無機材料層でカバーできない部分を、偏在した樹脂材でより平坦化する。樹脂材の上に成膜する無機材料層がより均一に、かつ、カバレッジよく成膜できるようになる。さらに、樹脂材は、水等に対するシールが無機材料層より低いが、偏在した樹脂材は無機材料層で覆われて外雰囲気に露出しないので、シール性が向上する。すなわち、樹脂材を、膜状ではなく、外雰囲気に露出しないように偏在させることが好ましい。
 以上、本発明の好ましい実施形態を説明し、上記で説明してきたが、これらは本発明の例示的なものであり、限定するものとして考慮されるべきではないことを理解すべきである。追加、省略、置換、およびその他の変更は、本発明の範囲から逸脱することなく行うことができる。従って、本発明は、前述の説明によって限定されていると見なされるべきではなく、請求の範囲によって制限されている。
Thus, in the board | substrate S which has an unevenness | corrugation, the part which cannot be covered with an inorganic material layer is planarized more by the unevenly distributed resin material. The inorganic material layer formed on the resin material can be formed more uniformly and with good coverage. Furthermore, the resin material has a lower seal against water or the like than the inorganic material layer, but the unevenly distributed resin material is covered with the inorganic material layer and is not exposed to the outside atmosphere, so that the sealing performance is improved. That is, it is preferable to unevenly distribute the resin material so that it is not film-like and is not exposed to the outside atmosphere.
While preferred embodiments of the present invention have been described and described above, it should be understood that these are exemplary of the invention and should not be considered as limiting. Additions, omissions, substitutions, and other changes can be made without departing from the scope of the invention. Accordingly, the invention is not to be seen as limited by the foregoing description, but is limited by the scope of the claims.
 例えば、以上の実施形態では、第1の無機材料層41(第一層)を被覆する第2の無機材料層42(第二層)は単一層で構成されたが、第2の無機材料層42(第二層)は多層膜で構成されてもよい。この場合、各層を成膜する工程毎に樹脂材料を基板上に供給して基板の凹凸部に偏在する樹脂材を形成してもよく、これによりバリア性の更なる向上を図ることができる。 For example, in the above embodiment, the second inorganic material layer 42 (second layer) covering the first inorganic material layer 41 (first layer) is configured as a single layer, but the second inorganic material layer 42 (second layer) may be formed of a multilayer film. In this case, a resin material that is unevenly distributed on the uneven portion of the substrate may be formed by supplying a resin material onto the substrate for each step of forming each layer, thereby further improving the barrier property.
 さらに、以上の実施形態では、第1の無機材料層41(第一層)の形成後に、第1の樹脂材51を凸部となる第1の無機材料層41の周囲に局在化させたが、第一層形成部201による第1の無機材料層41の形成前に、樹脂成膜部100および局在化処理部202によって、デバイス層3の周囲に第1の樹脂材51を偏在させてもよい。これにより第1の無機材料層41によるデバイス層3の被覆効率を高めることができる。 Furthermore, in the above embodiment, after the formation of the first inorganic material layer 41 (first layer), the first resin material 51 is localized around the first inorganic material layer 41 serving as a convex portion. However, before the first inorganic material layer 41 is formed by the first layer forming unit 201, the first resin material 51 is unevenly distributed around the device layer 3 by the resin film forming unit 100 and the localization processing unit 202. May be. Thereby, the covering efficiency of the device layer 3 by the first inorganic material layer 41 can be increased.
 本発明の活用例として、有機EL装置や薄膜Li電池等の水分を嫌う電子デバイスの封止を挙げることができる。 Examples of utilization of the present invention include sealing of electronic devices that dislike moisture such as organic EL devices and thin film Li batteries.
S,2,21…基板
2b,21b,22b,32b…境界部
3…デバイス層(機能層)
10,20,30…素子構造体
40…凸部
41…第1の無機材料層(第一層)
42…第2の無機材料層(第二層)
51,53…第1の樹脂材(樹脂材)
52…第2の樹脂材(樹脂材)
53…樹脂材
100…樹脂成膜部(成膜室)
102…ステージ
105…シャワープレート
102a…基板冷却装置
112…樹脂材料供給管(第一配管)
112V…バルブ
113…樹脂材料迂回管(第二配管)
113V…バルブ
122…UV照射装置
130…気化槽
130a…内部空間
130d…ヒータ
132…吐出部
135…加温部
135a…頂部
135b…傾斜面
135c…貫通孔
135d…ヒータ
136…貯留部
140…樹脂材料液供給管
150…樹脂材料原料容器
200…コア室
201…第一層形成部(成膜室)
202…局在化処理部
203…第二層形成部(成膜室)
204…機能層形成部(成膜室)
210…ロードロック室
300…気化器
400…制御部
1000…素子構造体の製造装置
S, 2, 21 ... substrates 2b, 21b, 22b, 32b ... boundary 3 ... device layer (functional layer)
10, 20, 30 ... element structure 40 ... convex portion 41 ... first inorganic material layer (first layer)
42 ... Second inorganic material layer (second layer)
51, 53 ... 1st resin material (resin material)
52. Second resin material (resin material)
53 ... Resin material 100 ... Resin film forming section (film forming chamber)
102 ... Stage 105 ... Shower plate 102a ... Substrate cooling device 112 ... Resin material supply pipe (first pipe)
112V ... Valve 113 ... Resin material bypass pipe (second pipe)
113V ... Bulb 122 ... UV irradiation device 130 ... Evaporation tank 130a ... Internal space 130d ... Heater 132 ... Discharge part 135 ... Heating part 135a ... Top part 135b ... Inclined surface 135c ... Through hole 135d ... Heater 136 ... Storage part 140 ... Resin material Liquid supply pipe 150 ... resin material raw material container 200 ... core chamber 201 ... first layer forming section (deposition chamber)
202 ... Localization processing unit 203 ... Second layer forming unit (deposition chamber)
204 ... functional layer forming part (deposition chamber)
210 ... Load lock chamber 300 ... Vaporizer 400 ... Control unit 1000 ... Element structure manufacturing apparatus

Claims (8)

  1.  素子構造体の製造装置に対して気化された樹脂材料を供給するための気化器であって、
     液状の樹脂材料を気化するための内部空間を備えた気化槽と、
     前記内部空間において、前記液状の樹脂材料を噴霧する吐出部と、
     前記内部空間において、前記吐出部に対向して配され、噴霧された前記液状の樹脂材料を加熱気化させる加温部と、
     前記内部空間において、前記加温部より下方に配され、該加温部で気化されなかった前記液状の樹脂材料が滴下されて保管される貯留部と、
    を備えている、
     気化器。
    A vaporizer for supplying a vaporized resin material to an element structure manufacturing apparatus,
    A vaporization tank having an internal space for vaporizing a liquid resin material;
    In the internal space, a discharge unit that sprays the liquid resin material;
    In the internal space, a heating unit that is disposed to face the discharge unit and heats and vaporizes the sprayed liquid resin material;
    In the internal space, a storage unit that is disposed below the heating unit and in which the liquid resin material that has not been vaporized in the heating unit is dropped and stored;
    With
    Vaporizer.
  2.  前記吐出部から見て、前記吐出部から噴霧された前記液状の樹脂材料が接する前記加温部の一面は、その中央域から外周域へ向けて下降傾斜している、
     請求項1に記載の気化器。
    As viewed from the discharge unit, one surface of the heating unit that contacts the liquid resin material sprayed from the discharge unit is inclined downward from the central region toward the outer peripheral region.
    The vaporizer according to claim 1.
  3.  前記加温部の外周域には、前記吐出部から前記貯留部へ連通する貫通孔が配されている、
     請求項2に記載の気化器。
    In the outer peripheral area of the heating part, a through hole communicating from the discharge part to the storage part is arranged,
    The vaporizer according to claim 2.
  4.  前記貯留部は、前記加温部より低い温度とされる、
     請求項1又は請求項2に記載の気化器。
    The storage unit is set to a temperature lower than the heating unit.
    The vaporizer according to claim 1 or claim 2.
  5.  前記気化槽は、その内部空間に接する壁面の温度を制御する温度制御装置を備える、
     請求項1から請求項4のいずれか一項に記載の気化器。
    The vaporization tank includes a temperature control device that controls the temperature of the wall surface in contact with the internal space.
    The vaporizer as described in any one of Claims 1-4.
  6.  前記気化槽から気化された前記樹脂材料を、前記素子構造体の製造装置を構成する成膜室へ向けて、導入する第一配管と、
     前記気化槽から気化された前記樹脂材料を、前記成膜室とは異なる部分へ導出する第二配管と、
     前記気化槽と前記成膜室との間に配され、前記第一配管と前記第二配管を選択可能とする切替部と、
    を備える、
     請求項1から請求項5のいずれか一項に記載の気化器。
    A first pipe for introducing the resin material vaporized from the vaporization tank toward a film forming chamber constituting the device manufacturing apparatus;
    A second pipe for leading the resin material vaporized from the vaporization tank to a portion different from the film formation chamber;
    A switching unit that is arranged between the vaporization tank and the film forming chamber, and allows the first pipe and the second pipe to be selected;
    Comprising
    The vaporizer as described in any one of Claims 1-5.
  7.  基板の一面側に配された機能層を被覆するとともに、局所的な凸部を有する、無機材料からなる第一層を形成する第一層形成部と、
     請求項1から請求項6のいずれか一項に記載の気化器から気化した前記樹脂材料を供給可能として、前記第一層上に、前記樹脂材料からなる樹脂材料膜を形成し、前記樹脂材料膜を硬化して樹脂膜を形成する樹脂成膜部と、
     前記第一層を側断面から見て、前記凸部の外側面と前記基板の一面との境界部を含む位置にある前記樹脂膜の一部を残存させ、他の位置にある該樹脂膜を除去する局在化処理部と、
     前記の一面側にある前記凸部、前記樹脂膜の一部を残存させた樹脂材、および、前記除去により露呈した前記第一層を被覆するように、無機材料からなる第二層を形成する第二層形成部と、
     を有する、
     素子構造体の製造装置。
    A first layer forming part for forming a first layer made of an inorganic material, covering a functional layer disposed on one surface side of the substrate and having a local convex part;
    A resin material film made of the resin material is formed on the first layer so that the resin material vaporized from the vaporizer according to any one of claims 1 to 6 can be supplied, and the resin material A resin film forming section for curing the film to form a resin film;
    When the first layer is viewed from a side cross section, a part of the resin film at a position including a boundary portion between the outer surface of the convex portion and one surface of the substrate is left, and the resin film at another position is left. A localization processing unit to be removed;
    A second layer made of an inorganic material is formed so as to cover the convex portion on the one surface side, the resin material in which a part of the resin film is left, and the first layer exposed by the removal. A second layer forming part;
    Having
    Device structure manufacturing apparatus.
  8.  前記局在化処理部は、ドライエッチング法を用いて、前記凸部の外側面のうち、頂部を含む領域が露呈するように、前記樹脂膜を除去する、
     請求項7に記載の素子構造体の製造装置。
    The localization processing unit removes the resin film by using a dry etching method so that a region including the top portion of the outer surface of the convex portion is exposed.
    The device structure manufacturing apparatus according to claim 7.
PCT/JP2018/005934 2017-02-21 2018-02-20 Vaporizer and production method for element structure WO2018155419A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880004362.4A CN109952388A (en) 2017-02-21 2018-02-20 The manufacturing device of gasifier and element structure
JP2019501330A JP6768918B2 (en) 2017-02-21 2018-02-20 Vaporizer and device structure manufacturing equipment
KR1020197013683A KR102221194B1 (en) 2017-02-21 2018-02-20 Carburetor and device for manufacturing device structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017030319 2017-02-21
JP2017-030319 2017-02-21

Publications (1)

Publication Number Publication Date
WO2018155419A1 true WO2018155419A1 (en) 2018-08-30

Family

ID=63253799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005934 WO2018155419A1 (en) 2017-02-21 2018-02-20 Vaporizer and production method for element structure

Country Status (5)

Country Link
JP (1) JP6768918B2 (en)
KR (1) KR102221194B1 (en)
CN (1) CN109952388A (en)
TW (1) TW201840242A (en)
WO (1) WO2018155419A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112703821A (en) * 2018-09-26 2021-04-23 夏普株式会社 Manufacturing device and manufacturing method of display device
JP7450051B2 (en) 2020-02-28 2024-03-14 アプライド マテリアルズ インコーポレイテッド Methods to improve thin film encapsulation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113563116B (en) * 2021-07-21 2022-12-02 佛山欧神诺陶瓷有限公司 Composite ceramic tile and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173778A (en) * 2000-12-04 2002-06-21 Japan Pionics Co Ltd Vaporizer
JP2003213422A (en) * 2002-01-24 2003-07-30 Nec Corp Apparatus and method for depositing thin film
JP2007103801A (en) * 2005-10-06 2007-04-19 Tokyo Electron Ltd Vaporizing apparatus, film forming apparatus, and vaporizing method
JP2008251614A (en) * 2007-03-29 2008-10-16 Tokyo Electron Ltd Vaporizing apparatus, film forming apparatus, and vaporizing method
WO2014196137A1 (en) * 2013-06-07 2014-12-11 株式会社アルバック Element structure and method for producing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200304955A (en) * 2002-04-05 2003-10-16 Matsushita Electric Ind Co Ltd Method and apparatus for producing resin thin film
JP2004131768A (en) * 2002-10-09 2004-04-30 Matsushita Electric Ind Co Ltd Vapor deposition system for resin
JP4789551B2 (en) * 2005-09-06 2011-10-12 株式会社半導体エネルギー研究所 Organic EL film forming equipment
EP2190264A4 (en) * 2007-09-10 2011-11-23 Ulvac Inc Evaporation apparatus
JP2013073880A (en) 2011-09-29 2013-04-22 Ulvac Japan Ltd Light emitting element manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173778A (en) * 2000-12-04 2002-06-21 Japan Pionics Co Ltd Vaporizer
JP2003213422A (en) * 2002-01-24 2003-07-30 Nec Corp Apparatus and method for depositing thin film
JP2007103801A (en) * 2005-10-06 2007-04-19 Tokyo Electron Ltd Vaporizing apparatus, film forming apparatus, and vaporizing method
JP2008251614A (en) * 2007-03-29 2008-10-16 Tokyo Electron Ltd Vaporizing apparatus, film forming apparatus, and vaporizing method
WO2014196137A1 (en) * 2013-06-07 2014-12-11 株式会社アルバック Element structure and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112703821A (en) * 2018-09-26 2021-04-23 夏普株式会社 Manufacturing device and manufacturing method of display device
CN112703821B (en) * 2018-09-26 2024-03-08 夏普株式会社 Manufacturing device and manufacturing method of display device
JP7450051B2 (en) 2020-02-28 2024-03-14 アプライド マテリアルズ インコーポレイテッド Methods to improve thin film encapsulation

Also Published As

Publication number Publication date
CN109952388A (en) 2019-06-28
JPWO2018155419A1 (en) 2019-06-27
JP6768918B2 (en) 2020-10-14
KR20190062564A (en) 2019-06-05
KR102221194B1 (en) 2021-03-02
TW201840242A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
WO2018155419A1 (en) Vaporizer and production method for element structure
KR100947157B1 (en) Apparatus for depositing a multilayer coating on discrete sheets
US9839940B2 (en) Apparatus for depositing a multilayer coating on discrete sheets
KR101223489B1 (en) Apparatus for Processing Substrate
KR101504443B1 (en) Apparatus for organic film formation and method for organic film formation
CN109315035B (en) Organic EL display device and method for manufacturing the same
KR20140085516A (en) Apparatus for manufacturing semiconductor device, method for manufacturing semiconductor device, and recoding medium
US9118037B2 (en) Method of manufacturing flexible substrate and method of manufacturing display device using the same
WO2017051790A1 (en) Deposition source, deposition device, and deposition film manufacturing method
US20180219187A1 (en) Vapor deposition source, vapor deposition device, and method for manufacturing vapor deposition film
JP7038049B2 (en) Organic electroluminescence device and method for manufacturing organic electroluminescence device
WO2018155415A1 (en) Film forming method, film forming device, production method for element structure, and production device for element structure
KR102186663B1 (en) Method of manufacturing device structure
JP6034548B2 (en) Organic film forming apparatus and organic film forming method
KR101479528B1 (en) Protective film forming method, and surface flattening method
US10249545B2 (en) Method for processing substrate including forming a film on a silicon-containing surface of the substrate to prevent resist from extruding from the substrate during an imprinting process
KR20150046966A (en) Plasma processing apparatus and plasma processing method
US20120137973A1 (en) Substrate processing apparatus and film forming system
WO2018155452A1 (en) Mask and film-forming device
JPH05140747A (en) Film forming apparatus and formation of film using this apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18756913

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501330

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197013683

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18756913

Country of ref document: EP

Kind code of ref document: A1