JP6034548B2 - Organic film forming apparatus and organic film forming method - Google Patents

Organic film forming apparatus and organic film forming method Download PDF

Info

Publication number
JP6034548B2
JP6034548B2 JP2010253123A JP2010253123A JP6034548B2 JP 6034548 B2 JP6034548 B2 JP 6034548B2 JP 2010253123 A JP2010253123 A JP 2010253123A JP 2010253123 A JP2010253123 A JP 2010253123A JP 6034548 B2 JP6034548 B2 JP 6034548B2
Authority
JP
Japan
Prior art keywords
substrate
organic film
organic
film forming
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010253123A
Other languages
Japanese (ja)
Other versions
JP2011137139A (en
Inventor
亮由 鈴木
亮由 鈴木
内田 一也
一也 内田
大輔 大森
大輔 大森
入倉 鋼
鋼 入倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2010253123A priority Critical patent/JP6034548B2/en
Publication of JP2011137139A publication Critical patent/JP2011137139A/en
Application granted granted Critical
Publication of JP6034548B2 publication Critical patent/JP6034548B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、原料有機分子を薄膜化して形成することに用いられる有機膜形成装置及び有機膜形成方法に関する。   The present invention relates to an organic film forming apparatus and an organic film forming method used for forming raw organic molecules into a thin film.

有機エレクトロルミネッセンス素子、太陽電池や薄膜リチウム電池等の電子デバイスには、大気中の水蒸気や酸素等のガスにより劣化し易いものが含まれ、耐久性を高めるために、特に水蒸気を確実に遮断する(封止機能)構造を電子デバイスに設けておく必要があることは従来から知られている。   Electronic devices such as organic electroluminescent elements, solar cells, and thin film lithium batteries include those that are easily deteriorated by gases such as water vapor and oxygen in the atmosphere. It is conventionally known that a (sealing function) structure needs to be provided in an electronic device.

特許文献1には、基板表面に形成した有機EL素子及びその周囲の基板表面を覆うように、ポリ尿素等の高分子化合物からなる有機膜を設けた後、その縁部及びその周辺の基板表面を覆うように、バリア性能を発揮するアルミナ等からなる無機膜を設けることが開示されている。このように無機膜と有機膜との多層構造とするのは、例えば、デバイス構造を覆ってこのデバイス構造に存する段差等を平滑化しつつ、電子デバイスの強度を高めたり、電子デバイスが可撓性を有するようにするためである。   In Patent Document 1, an organic film made of a polymer compound such as polyurea is provided so as to cover the organic EL element formed on the substrate surface and the surrounding substrate surface, and then the edge and the surrounding substrate surface. It is disclosed to provide an inorganic film made of alumina or the like that exhibits barrier performance so as to cover the surface. In this way, the multilayer structure of the inorganic film and the organic film can be achieved by, for example, increasing the strength of the electronic device while covering the device structure and smoothing the steps existing in the device structure, or making the electronic device flexible. It is for having it.

ここで、上記有機膜を形成するための有機膜形成装置としては、基板(ガラス基板上にデバイス素子が形成されたもの等、有機膜が形成される処理対象物をいう)表面に、気化させた原料有機分子を供給して液相にて堆積させる(堆積工程)第1の処理室と、この堆積した原料有機分子に紫外線などの光を照射して重合反応させる(重合工程)第2の処理室とを並設すると共に、第1及び第2の両処理室間で基板を順次移送する移送手段を設けた所謂インライン式のものが従来から利用されている(例えば、Vitex System社のホームページに掲載あり)。   Here, as an organic film forming apparatus for forming the organic film, vaporization is performed on the surface of a substrate (which is a processing object on which an organic film is formed, such as a device element formed on a glass substrate). A first processing chamber for supplying raw organic molecules to be deposited in a liquid phase (deposition process) and a polymerization reaction by irradiating the deposited raw organic molecules with light such as ultraviolet rays (polymerization process) A so-called in-line type apparatus has been conventionally used in which a processing chamber is provided in parallel and a transfer means for sequentially transferring the substrate between the first and second processing chambers is provided (for example, a website of Vitex System). Posted on).

然しながら、上記従来例の装置では、堆積工程と重合工程とを別個に分けて実施する処理室を複数並設して構成されているため、装置自体の設置面積が大きくなると共に、基板搬送時間が付加されることで有機膜形成の処理時間が長くなるという不具合がある。その上、原料有機分子を堆積させた基板を次の処理室に移送するまでに、装置等からの熱を受けて原料有機分子が再蒸発し、装置内部を汚染する虞もある。   However, since the conventional apparatus is configured by arranging a plurality of processing chambers in which the deposition process and the polymerization process are separately performed, the installation area of the apparatus itself is increased and the substrate transport time is increased. When added, there is a problem that the processing time for forming the organic film becomes long. In addition, before the substrate on which the raw organic molecules are deposited is transferred to the next processing chamber, the raw organic molecules may re-evaporate due to heat from the apparatus or the like, thereby contaminating the inside of the apparatus.

ところで、従来、有機膜を形成する際に用いる原料有機分子としては、処理基板との密着性、有機膜自体の可撓性や原料有機分子の取扱性(毒性)等を考慮して、エポキシアクリレート、ウレタンアクリレートまたはポリエステルアクリレートが使用されている。然し、これらの原料有機分子は気化効率が悪く、上記のように堆積、重合工程を経て有機膜を形成する場合、処理時間が長くなるという不具合がある。また、電子デバイスによっては、可撓性を有する樹脂製の基板(基材)が用いられることがあるため、使用環境を考慮すると、基板との密着性を一層高めることが必要である。   By the way, as a raw material organic molecule conventionally used for forming an organic film, epoxy acrylate is considered in consideration of adhesion to a processing substrate, flexibility of the organic film itself, handling property (toxicity) of the raw organic molecule, and the like. Urethane acrylate or polyester acrylate is used. However, these raw material organic molecules have poor vaporization efficiency, and when the organic film is formed through the deposition and polymerization steps as described above, there is a problem that the processing time becomes long. Moreover, since a resin-made substrate (base material) having flexibility may be used depending on the electronic device, it is necessary to further improve the adhesion with the substrate in consideration of the use environment.

特開2007−27378号公報JP 2007-27378 A

本発明は、以上の点に鑑み、設置面積が小さくかつ処理時間が短くでき、しかも、装置内部が汚染させ難い構造を有する有機膜形成装置を提供することをその第1の課題とするものである。また、平滑性等の機能を損なうことなく、処理基板との密着性を一層高めることができ、しかも、短い処理時間で効率よく堆積、重合工程を経て有機膜を形成し得る有機膜形成方法を提供することを第2の課題とする。   In view of the above points, it is a first object of the present invention to provide an organic film forming apparatus having a structure in which an installation area is small and a processing time can be shortened and the inside of the apparatus is difficult to be contaminated. is there. In addition, an organic film forming method capable of further improving the adhesion with a processing substrate without impairing functions such as smoothness, and capable of forming an organic film through a deposition process and a polymerization process efficiently in a short processing time. Providing is a second problem.

上記課題を解決するために、本発明の有機膜形成装置は、真空ポンプに通じる配管が接続される排気口を有する真空チャンバと、前記排気口が形成された真空チャンバの壁面を下とし、この真空チャンバ下部に配置され、基板を保持すると共にこの基板の冷却を可能とするステージと、この真空チャンバ内に、原料有機分子を気化させて導入し得る原料導入手段と、この原料導入手段を介して真空チャンバ内に導入された原料有機分子を基板表面に堆積させた後、基板上方に対向配置されてこの堆積した原料有機分子に光を照射して重合反応を引き起こす光照射手段と、を備え、前記光照射手段の照射面は、この照射面への基板の輪郭の投影面より外方まで延びており、前記原料導入手段は、照射面を囲う環状のシャワーヘッドを有し、このシャワーヘッドから噴出された原料有機分子を基板表面へと導くガイド手段を設けたことを特徴とする。   In order to solve the above-described problems, an organic film forming apparatus of the present invention has a vacuum chamber having an exhaust port to which a pipe leading to a vacuum pump is connected, and a wall surface of the vacuum chamber in which the exhaust port is formed. A stage disposed at the lower part of the vacuum chamber to hold the substrate and to cool the substrate, a raw material introducing means capable of vaporizing and introducing raw organic molecules into the vacuum chamber, and via the raw material introducing means A light irradiation means for depositing the raw material organic molecules introduced into the vacuum chamber on the surface of the substrate and then opposingly arranged above the substrate and irradiating the deposited raw material organic molecules with light to cause a polymerization reaction; The irradiation surface of the light irradiation means extends outward from the projection surface of the outline of the substrate onto the irradiation surface, and the raw material introduction means has an annular shower head surrounding the irradiation surface, The raw organic molecules ejected from Yawaheddo characterized in that a guide means for guiding to the substrate surface.

本発明によれば、ステージで基板を保持させて処理室内を真空引きした後、原料導入手段を介して、気化された原料有機分子を導入する。このとき、シャワーヘッドより噴出された原料有機分子はガイド手段により基板方向に向かって導かれて基板に到達するようになる。原料有機分子が基板に到達したとき、この基板を保持するステージが所定温度(例えば−10℃)に冷却されているため、原料有機分子は液相にて堆積する。そして、光照射手段により原料有機分子が堆積した基板に光が照射され、この光を吸収して活性化され、その励起作用で重合反応が引き起こされて硬化する。これにより、基板表面に所定の有機膜が形成される。このとき、光照射手段の照射面は、この照射面への基板の輪郭の投影面より外方まで延びているため、基板全面に亘って確実に光りが照射され、硬化不足な箇所が局所的に生じる等の不具合は生じない。   According to the present invention, after the substrate is held on the stage and the processing chamber is evacuated, the vaporized raw organic molecules are introduced via the raw material introducing means. At this time, the raw organic molecules ejected from the shower head are guided toward the substrate by the guide means and reach the substrate. When the raw organic molecules reach the substrate, the raw organic molecules are deposited in the liquid phase because the stage holding the substrate is cooled to a predetermined temperature (for example, −10 ° C.). Then, light is irradiated onto the substrate on which the raw material organic molecules are deposited by the light irradiation means, the light is absorbed and activated, and a polymerization reaction is caused by the excitation action to be cured. As a result, a predetermined organic film is formed on the substrate surface. At this time, since the irradiation surface of the light irradiation means extends outward from the projection surface of the outline of the substrate on the irradiation surface, the light is reliably irradiated over the entire surface of the substrate, and the insufficiently cured portion is localized. There will be no problems such as

このように本発明によれば、ステージ上の基板に対向させて光照射手段を設けると共にその周囲に原料導入手段のシャワーヘッドを設け、このシャワーヘッドから噴出された原料有機分子を基板上面へと導くガイド手段を設けたことで、堆積工程と重合工程とを同一の処理室たる真空チャンバ内で実施できる構成が実現でき、特に有機膜を厚い膜厚(例えば、5μm以上)で形成する際に、硬化収縮や硬化不足を回避するために複数回に分けて有機膜を形成する場合に有利となる。そして、本発明の有機膜形成装置は、上記従来例のものと比較して格段に装置自体の設置面積を小さくでき、基板の移送手段等も不要になるため、処理時間も短縮できるだけでなく、装置製造のコストも低くできる。その上、光照射手段により光が照射されるまで、ステージで保持された基板を移送する必要がなく、このステージにて基板が確実に冷却された状態で保持されるため、原料有機分子が再蒸発して装置内部を汚染するという不具合も生じない。   As described above, according to the present invention, the light irradiation means is provided opposite to the substrate on the stage, and the shower head of the raw material introduction means is provided around the light irradiation means, and the raw material organic molecules ejected from the shower head are transferred to the upper surface of the substrate. By providing the guiding means for guiding, it is possible to realize a configuration in which the deposition process and the polymerization process can be performed in a vacuum chamber which is the same processing chamber, particularly when an organic film is formed with a thick film thickness (for example, 5 μm or more). In order to avoid curing shrinkage and insufficient curing, it is advantageous when forming an organic film in multiple steps. And the organic film forming apparatus of the present invention can significantly reduce the installation area of the apparatus itself as compared with the conventional example, and also eliminates the need for a substrate transfer means, etc. Device manufacturing costs can also be reduced. Moreover, it is not necessary to transfer the substrate held on the stage until light is irradiated by the light irradiating means, and the substrate is held in this stage in a state of being reliably cooled. There is no problem of evaporating and contaminating the inside of the apparatus.

本発明においては、前記ガイド手段は、シャワーヘッドの下方に配置され、下方に向かって縮径した漏斗状部材であれば、このガイド手段を真空チャンバの壁面等に固定するだけで簡単に装着できてよい。   In the present invention, if the guide means is a funnel-like member arranged below the shower head and having a diameter reduced downward, the guide means can be easily mounted simply by fixing the guide means to the wall surface of the vacuum chamber. It's okay.

また、本発明においては、前記ステージで保持された基板の輪郭より小さい開口を有するマスクプレートと、このマスクプレートを上下動する駆動手段とを更に備える構成を採用することが好ましい。これによれば、マスクプレートの開口の周縁部が基板の上面周縁部に当接するようにマスクプレートを設置すれば、この開口を臨む基板表面に原料有機分子を液相にて堆積させた後、光を照射するまでの間に、原料有機分子の流動により基板の周囲に浸み出し、重合させた後に有機膜の外周面に歪が生じる等の不具合が生じることを防止できる。   In the present invention, it is preferable to employ a configuration further comprising a mask plate having an opening smaller than the contour of the substrate held by the stage, and a driving means for moving the mask plate up and down. According to this, if the mask plate is installed so that the peripheral edge of the opening of the mask plate is in contact with the peripheral edge of the upper surface of the substrate, the organic material molecules are deposited in the liquid phase on the substrate surface facing this opening, It is possible to prevent problems such as distortion occurring on the outer peripheral surface of the organic film after leaching to the periphery of the substrate due to the flow of the raw organic molecules and polymerization after the light is irradiated.

更に、本発明においては、前記真空チャンバを加熱する加熱手段を更に備える構成を採用することが好ましい。これによれば、原料有機分子が堆積した基板に光を照射したときに、その一部が再蒸発する場合があるが、真空チャンバを所定温度に加熱しておくことで、その真空チャンバ内壁等に付着、堆積することが防止できてよい。なお、例えばガイド手段等の部品を真空チャンバに接触させた状態で設置しておけば、真空チャンバを加熱したときの伝熱によりこれの部品も加熱され、これらの部品への付着、堆積も同時に防止できる。   Furthermore, in the present invention, it is preferable to employ a configuration further comprising heating means for heating the vacuum chamber. According to this, when light is applied to the substrate on which the raw organic molecules are deposited, a part of the substrate may re-evaporate. However, by heating the vacuum chamber to a predetermined temperature, the inner wall of the vacuum chamber, etc. It may be possible to prevent adhesion and deposition. For example, if the parts such as the guide means are installed in contact with the vacuum chamber, the parts are also heated by heat transfer when the vacuum chamber is heated, and adhesion and deposition to these parts are simultaneously performed. Can be prevented.

なお、本発明においては、前記原料有機分子を噴出するシャワーヘッドの噴出口が、そのシャワーヘッドの周方向全長に亘って等間隔で列設されている構成を採用すれば、基板に対して原料有機分子を均等に供給でき、基板全面に亘って均等な膜厚で有機膜を形成できてよい。   In the present invention, if the structure in which the outlets of the shower head for ejecting the raw material organic molecules are arranged at equal intervals over the entire circumferential length of the shower head is used, the raw material with respect to the substrate is used. Organic molecules can be supplied uniformly, and an organic film can be formed with a uniform film thickness over the entire surface of the substrate.

前記原料導入手段は、気化させた原料有機分子をシャワーヘッドへと供給するガス配管を備え、このガス配管が複数に分岐された後、シャワーヘッドに、その周方向全長に亘って等間隔で接続されている構成を採用すれば、シャワーヘッドの各噴出口から均等に原料有機分子が噴出でき、噴出口を等間隔で列設したことと相俟って、基板に対して原料有機分子を一層均等に供給できるようになる。   The raw material introducing means includes a gas pipe for supplying vaporized raw organic molecules to the shower head, and after the gas pipe is branched into a plurality of parts, it is connected to the shower head at equal intervals over the entire length in the circumferential direction. If the configuration is adopted, the raw material organic molecules can be ejected evenly from the respective outlets of the shower head, and coupled with the fact that the outlets are arranged at equal intervals, the raw organic molecules are further layered on the substrate. It becomes possible to supply evenly.

また、上記課題を解決するために、本発明の有機膜形成方法は、請求項1〜請求項6のいずれか1項に記載の有機膜形成装置を用いて、基板表面に有機膜を形成する有機膜形成方法であって、原料有機分子として、ベンジルアクリレートを主成分とするものを用い、この原料有機分子を気化させ、この気化した原料有機分子を基板表面に堆積させた後、紫外光を照射して重合反応させることを特徴とする。   Moreover, in order to solve the said subject, the organic film formation method of this invention forms an organic film on the substrate surface using the organic film formation apparatus of any one of Claims 1-6. An organic film forming method using a raw material organic molecule having benzyl acrylate as a main component, vaporizing the raw organic molecule, depositing the vaporized raw organic molecule on the substrate surface, and then emitting ultraviolet light. It is characterized by carrying out a polymerization reaction by irradiation.

本発明によれば、平滑性が良く、しかも、処理基板との間の密着性を著しく向上させることができる。これは、ベンジルアクリレートを気化させて基板表面に堆積させ、この状態で紫外線を照射すると、重合性官能基の重合反応が起き、このとき、ベンゼン環が処理基板表面側に位置するようにベンジルアクリレートが配向されて重合されることに起因するものと考えられる。そして、このベンジルアクリレートは、その蒸気圧が高く、また、粘度が低いことから、気化器での気化効率がよく、また、気化器のメンテナンスサイクルを長くできる。その結果、短い処理時間で効率よく堆積、重合工程を経て有機膜を形成できる。   According to the present invention, the smoothness is good and the adhesion to the processing substrate can be remarkably improved. This is because benzyl acrylate is vaporized and deposited on the substrate surface, and when irradiated with ultraviolet rays in this state, a polymerization reaction of the polymerizable functional group occurs. At this time, the benzyl acrylate is positioned so that the benzene ring is located on the treated substrate surface side. This is considered to be caused by the fact that the polymer is oriented and polymerized. Since this benzyl acrylate has a high vapor pressure and low viscosity, the vaporization efficiency in the vaporizer is good, and the maintenance cycle of the vaporizer can be lengthened. As a result, an organic film can be formed through a deposition and polymerization process efficiently in a short processing time.

ところで、ベンジルアクリレートは、紫外光を照射したときの硬化性が低い。このため、本発明においては、原料有機分子に重合開始剤が添加されることが好ましい。これにより、紫外光を吸収して活性化されてその励起作用で原料有機分子の重合反応を早期に引き起こし、その結果、処理時間を確実に短縮できる。なお、重合開始剤は、1〜20重量%の割合で添加される。1重量%より少ないと、効果的に重合反応を引き起こすことができず、また、20重量%を超えると、硬化性が向上し過ぎて、有機膜の応力が大きくなり、特に有機膜表面の平滑性が損なわれる虞がある。   By the way, benzyl acrylate has low curability when irradiated with ultraviolet light. For this reason, in this invention, it is preferable that a polymerization initiator is added to a raw material organic molecule. As a result, the ultraviolet light is absorbed and activated, and the excitation action thereof causes the polymerization reaction of the raw organic molecules at an early stage, and as a result, the processing time can be reliably shortened. The polymerization initiator is added at a ratio of 1 to 20% by weight. When the amount is less than 1% by weight, the polymerization reaction cannot be effectively caused. When the amount exceeds 20% by weight, the curability is excessively improved and the stress of the organic film increases, and particularly the surface of the organic film becomes smooth. There is a possibility that the property is impaired.

また、重合開始剤として、その蒸気圧がベンジルアクリレートの蒸気圧と同等のものを用いることが好ましい。これにより、気化器にて効率よく原料有機分子と重合開始剤とを気化させることができる。なお、蒸気圧が同等とは、蒸気圧が厳密に一致していることを意味するのではなく、例えば、液相のベンジルアクリレートと重合開始剤とを気化器に供給し、この気化器にて所定の温度で加熱しつつアルゴンガス等のキャリアガスによるアトマイジング作用で気化する際に、上記温度にてベンジルアクリレート共に、重合開始剤も気化するものであればよい。   Further, it is preferable to use a polymerization initiator having a vapor pressure equivalent to that of benzyl acrylate. Thereby, a raw material organic molecule and a polymerization initiator can be efficiently vaporized with a vaporizer. Note that the equivalent vapor pressure does not mean that the vapor pressures are exactly the same.For example, a liquid phase benzyl acrylate and a polymerization initiator are supplied to a vaporizer, and this vaporizer What is necessary is just to vaporize a polymerization initiator with benzyl acrylate at the said temperature when vaporizing by atomizing action by carrier gas, such as argon gas, heating at predetermined temperature.

本発明の実施形態の有機膜形成装置の構成を概略的に説明する断面図。Sectional drawing which illustrates roughly the structure of the organic film forming apparatus of embodiment of this invention. シャワーヘッドの構成を説明する図。The figure explaining the structure of a shower head. 本発明の他の実施形態の有機膜形成装置の構成を概略的に説明する断面図。Sectional drawing which illustrates roughly the structure of the organic film forming apparatus of other embodiment of this invention.

以下、図面を参照して、矩形のガラス基板W上に、気化させたUV硬化性の原料有機分子を供給して有機膜を形成する場合を例として、本発明の実施形態の有機膜形成装置及び有機膜形成方法を説明する。なお、本発明において有機膜を形成する薄膜形成対象物は、上記ガラス基板に限定されるものではなく、可撓性を有する樹脂基板等であってもよい。   Hereinafter, with reference to the drawings, an organic film forming apparatus according to an embodiment of the present invention will be described by taking as an example a case where a vaporized UV-curable raw material organic molecule is supplied onto a rectangular glass substrate W to form an organic film. The organic film forming method will be described. In addition, the thin film formation object which forms an organic film in this invention is not limited to the said glass substrate, The resin substrate etc. which have flexibility may be sufficient.

図1を参照して、1は、有機膜形成装置の真空チャンバ1を示す。真空チャンバ1は筒状側壁を有し、その下面中央には、基板Wを保持する円筒形状のステージ2が設けられている。ステージ2内には冷媒循環用の通路21が形成され、図示省略のチラーユニットにより冷媒を循環させて、ステージ2に載置された基板Wを所定温度(例えば、−10℃)に冷却保持できるようにしている。   Referring to FIG. 1, reference numeral 1 denotes a vacuum chamber 1 of an organic film forming apparatus. The vacuum chamber 1 has a cylindrical side wall, and a cylindrical stage 2 that holds the substrate W is provided at the center of the lower surface thereof. A passage 21 for circulating the refrigerant is formed in the stage 2, and the substrate W placed on the stage 2 can be cooled and held at a predetermined temperature (for example, −10 ° C.) by circulating the refrigerant by a chiller unit (not shown). I am doing so.

ステージ2に載置された基板Wに対向させて真空チャンバ1の上面中央には、光照射手段3が配置されている。光照射手段3は、円盤状の石英板31と、石英板31の上方に配置された紫外線ランプからなる光源32とから構成されている。石英板31の下面たる光照射面31aは、ステージ2上に基板Wを位置決め保持させたときに、光照射面31aへの基板Wの輪郭の投影面より外方まで延びるような大きさを有し、基板W全面に亘って確実に紫外光が照射されるようにしている。   In the center of the upper surface of the vacuum chamber 1 facing the substrate W placed on the stage 2, a light irradiation means 3 is arranged. The light irradiation means 3 includes a disk-shaped quartz plate 31 and a light source 32 composed of an ultraviolet lamp arranged above the quartz plate 31. The light irradiation surface 31a, which is the lower surface of the quartz plate 31, has a size that extends outward from the projection surface of the contour of the substrate W on the light irradiation surface 31a when the substrate W is positioned and held on the stage 2. In addition, ultraviolet light is reliably irradiated over the entire surface of the substrate W.

また、真空チャンバ1の上面には、原料導入手段4が設けられている。原料導入手段4は、ヒータ41aを備えた気化器41と、この気化器41に、開閉弁42aを介設したガス配管42を介して接続されるシャワーヘッド43とから構成されている。シャワーヘッド43は、真空チャンバ1の上面で光照射手段3の石英板31の周囲に同心に配置されている。   A raw material introduction means 4 is provided on the upper surface of the vacuum chamber 1. The raw material introduction means 4 includes a vaporizer 41 provided with a heater 41a, and a shower head 43 connected to the vaporizer 41 via a gas pipe 42 having an on-off valve 42a. The shower head 43 is disposed concentrically around the quartz plate 31 of the light irradiation means 3 on the upper surface of the vacuum chamber 1.

原料有機分子としては、基板W上に形成しようとする膜の特性に応じて適宜選択され、例えば、電子デバイスにてバリア膜と共に形成される有機膜の場合には、1分子中に少なくとも1個の重合性官能基(例えば、ビニル基)を持つUV硬化型モノマー(例えば、ネオペンチルグリコールジアクリレート、ベンジルアクリレートを主成分とするもの)やUV硬化型オリゴマー(例えば、エポキシアクリレート、ウレタンアクリレート)が用いられる。この場合、また、原料有機材料によっては、紫外光によって直接重合反応が起きにくい材料があることから、紫外光を吸収して活性化されてその励起作用で原料有機分子の重合反応を引き起こす公知の重合開始剤を添加してもよい。   The raw organic molecules are appropriately selected according to the characteristics of the film to be formed on the substrate W. For example, in the case of an organic film formed with a barrier film in an electronic device, at least one molecule per molecule UV curable monomers (for example, those based on neopentyl glycol diacrylate and benzyl acrylate) and UV curable oligomers (for example, epoxy acrylate and urethane acrylate) having a polymerizable functional group (for example, vinyl group) Used. In this case, depending on the raw material organic material, there is a material that does not easily cause a direct polymerization reaction due to ultraviolet light. Therefore, the material is known to be activated by absorbing ultraviolet light and cause a polymerization reaction of raw organic molecules by its excitation action. A polymerization initiator may be added.

本実施形態の有機膜形成方法においては、原料有機分子たるベンジルアクリレートを主成分とするものに、1〜20重量%の割合で重合開始剤を添加したものを用いる。これにより、有機膜の表面平滑性が良く、しかも、処理基板との間の密着性を著しく向上させることができる。これは、ベンジルアクリレートを気化させて基板表面に堆積させ、この状態で紫外線を照射すると、重合性官能基の重合反応が起き、このとき、ベンゼン環が処理基板表面側に位置するようにベンジルアクリレートが配向されて重合されることに起因するものと考えられる。そして、このベンジルアクリレートは、その蒸気圧が高く、また、粘度が低いことから、気化器での気化効率がよく、また、気化器のメンテナンスサイクルを長くできる。なお、重合開始剤の添加量が1重量%より少ないと、効果的に重合反応を引き起こすことができず、また、20重量%を超えると、硬化性が向上し過ぎて、有機膜の応力が大きくなり、特に表面の平滑性が損なわれる虞がある。   In the organic film forming method of this embodiment, a method in which a polymerization initiator is added at a ratio of 1 to 20% by weight to a material mainly composed of benzyl acrylate as a raw material organic molecule is used. Thereby, the surface smoothness of an organic film is good, and also the adhesiveness between process substrates can be improved remarkably. This is because benzyl acrylate is vaporized and deposited on the substrate surface, and when irradiated with ultraviolet rays in this state, a polymerization reaction of the polymerizable functional group occurs, and at this time, the benzyl acrylate is positioned on the treated substrate surface side. This is considered to be caused by the fact that the polymer is oriented and polymerized. Since this benzyl acrylate has a high vapor pressure and low viscosity, the vaporization efficiency in the vaporizer is good, and the maintenance cycle of the vaporizer can be lengthened. In addition, when the addition amount of the polymerization initiator is less than 1% by weight, the polymerization reaction cannot be effectively caused, and when it exceeds 20% by weight, the curability is excessively improved and the stress of the organic film is increased. In particular, the surface smoothness may be impaired.

また、重合開始剤として、後述の気化器にて効率よく原料有機分子と共に気化させるように、その蒸気圧がベンジルアクリレートの蒸気圧と同等であるものを用いることができる。蒸気圧が同等とは、蒸気圧が厳密に一致していることを意味するのではなく、気化器にてベンジルアクリレートと共に重合開始剤が効率よく気化されるのに支障がない範囲内で微差を有する場合を含む。このような重合開始剤としては、ダロキュア(登録商標、Ciba社製)等が挙げられる。   As the polymerization initiator, one having a vapor pressure equivalent to the vapor pressure of benzyl acrylate can be used so that it can be efficiently vaporized together with the raw material organic molecules in a vaporizer described later. Equivalent vapor pressure does not mean that the vapor pressures are exactly the same, but it is a slight difference within the range where there is no problem in efficiently vaporizing the polymerization initiator together with benzyl acrylate in the vaporizer. Including the case of having Examples of such a polymerization initiator include Darocur (registered trademark, manufactured by Ciba).

上記原料有機分子及び重合開始剤は、所定の割合で混合され、液化状態でタンク41b内に貯蔵されている。このタンク41bには、気体導入管41cが接続され、この気体導入管41cからアルゴン等の気体をタンク内に導入することで、原料有機分子及び重合開始剤液が、マスフローコントローラ41dを介設した供給管41eを介して気化器41に所定流量で導入される。また、気化器41には、この気化器41にキャリアガスを導入する、マスフローコントローラ41dを介設したキャリアガス導入管41fが接続されている。そして、気化器41にて加熱されている原料有機分子及び重合開始剤液が、気化器41にてアルゴンガス等のキャリアガスによるアトマイジング作用で気化されて、ガス配管42を介してシャワーヘッド41へと供給される。   The raw organic molecules and the polymerization initiator are mixed at a predetermined ratio and stored in the tank 41b in a liquefied state. A gas introduction pipe 41c is connected to the tank 41b. By introducing a gas such as argon from the gas introduction pipe 41c into the tank, the raw material organic molecules and the polymerization initiator liquid are provided via the mass flow controller 41d. It is introduced into the vaporizer 41 at a predetermined flow rate via the supply pipe 41e. The vaporizer 41 is connected to a carrier gas introduction pipe 41f that introduces a carrier gas into the vaporizer 41 and that is provided with a mass flow controller 41d. Then, the raw organic molecules and the polymerization initiator liquid heated in the vaporizer 41 are vaporized by the atomizing action with a carrier gas such as argon gas in the vaporizer 41, and the shower head 41 is connected via the gas pipe 42. Supplied to.

シャワーヘッド43は、所定の幅を有する環状の基材43aを有し、この基材上でその内周縁部及び外周縁部に沿って所定高さのリング状のスペーサ43bを固定し、その上面を、基材43aと同一形状の蓋材43cで覆って構成されている。図2に示すように、基材43aの下面には、その全周に亘って等間隔で噴出口43dが形成されている。この場合、噴射口43d相互の間隔(ピッチ)や開口径は、原料有機分子の種類によって適宜設計される。また、蓋材43cには、周方向に90度間隔で開口が形成され、各開口に、気化器41からのガス配管42が分岐して接続され、各噴出口43dから、気化させた原料有機分子が均一に噴出されるようにしている。なお、各噴出口43dから均一に原料有機分子を噴出できるものであれば、配管の接続位置や接続本数は上記に限定されるものではない。   The shower head 43 has an annular base material 43a having a predetermined width, and a ring-shaped spacer 43b having a predetermined height is fixed along the inner peripheral edge and the outer peripheral edge on the base. Is covered with a lid member 43c having the same shape as the base material 43a. As shown in FIG. 2, the nozzle 43d is formed in the lower surface of the base material 43a at equal intervals over the whole periphery. In this case, the interval (pitch) and opening diameter between the injection ports 43d are appropriately designed according to the type of the raw material organic molecules. Further, openings are formed in the lid member 43c at intervals of 90 degrees in the circumferential direction, and gas pipes 42 from the vaporizer 41 are branched and connected to the openings, and the vaporized raw material organics are emitted from the respective outlets 43d. The molecules are ejected uniformly. Note that the connection position and the number of connections of the pipes are not limited to the above as long as the raw material organic molecules can be uniformly ejected from the respective ejection ports 43d.

ところで、上記のように基板Wの面積より石英板31の面積を大きくし、石英板31の外側のシャワーヘッド43からダウンフロー状態で、気化した原料有機分子を真空チャンバ1に導入すると、基板W上に均一に原料有機分子が供給されない虞がある。そこで、本実施形態では、シャワーヘッド43の下方に、その下方に向かって縮径した漏斗状部材5(ガイド手段)を設けている。この場合、漏斗状部材5の上端は、真空チャンバ1の上面に固定されている。なお、漏斗状部材5の周側壁の傾斜角や長さは、例えば原料有機分子の種類やその流量に応じて適宜設定される。   By the way, when the area of the quartz plate 31 is made larger than the area of the substrate W as described above and the vaporized raw organic molecules are introduced into the vacuum chamber 1 from the shower head 43 outside the quartz plate 31 in the downflow state, the substrate W There is a possibility that the raw material organic molecules may not be supplied uniformly. Therefore, in the present embodiment, the funnel-shaped member 5 (guide means) having a diameter reduced toward the lower side thereof is provided below the shower head 43. In this case, the upper end of the funnel-shaped member 5 is fixed to the upper surface of the vacuum chamber 1. The inclination angle and length of the peripheral side wall of the funnel-shaped member 5 are appropriately set according to, for example, the type of raw material organic molecules and the flow rate thereof.

また、真空チャンバ1には、マスクプレート6と、このマスクプレート6を上下動する駆動手段7とが設けられている。マスクプレート6は、矩形または円形の板材の中央部に、その下側に向う凹陥部61が形成され、この凹陥部61には、ステージ2に位置決め保持された基板Wの輪郭より小さい開口62が形成されている。そして、後述のようにマスクプレート6を下動させると、マスクプレート6の開口62の周縁部が基板Wの上面周縁部に当接する。これにより、開口62の下側が基板Wで塞がれる。   Further, the vacuum chamber 1 is provided with a mask plate 6 and driving means 7 for moving the mask plate 6 up and down. The mask plate 6 is formed with a concave portion 61 directed downward at a central portion of a rectangular or circular plate material. The concave portion 61 has an opening 62 smaller than the contour of the substrate W positioned and held on the stage 2. Is formed. When the mask plate 6 is moved downward as will be described later, the peripheral edge of the opening 62 of the mask plate 6 comes into contact with the peripheral edge of the upper surface of the substrate W. As a result, the lower side of the opening 62 is closed by the substrate W.

また、駆動手段7は、周方向に90度間隔で4箇所に設けられており、同一形態の各駆動手段7は、真空チャンバの下方に設けたエアーシリンダや直動モータ等の駆動源71を備え、この駆動源71からの駆動軸72が、図示省略のシール手段を介して真空チャンバ1内まで突出してマスクプレート6のフランジ部63の下面に当接している。そして、各駆動手段7を同期して駆動することで、マスクプレート6の凹陥部61の下面が、その開口62の周縁部で基板W上面の周縁部に面接触したマスク位置と、凹陥部61がステージ2上方に退避して、図示省略の搬送ロボットにて基板Wの受け渡しを行い得る退避位置との間でマスクプレート6が上下動される。   Further, the driving means 7 are provided at four positions at intervals of 90 degrees in the circumferential direction, and each driving means 7 of the same form has a driving source 71 such as an air cylinder or a linear motion motor provided below the vacuum chamber. A drive shaft 72 from the drive source 71 protrudes into the vacuum chamber 1 through seal means (not shown) and abuts the lower surface of the flange portion 63 of the mask plate 6. Then, by driving each driving means 7 synchronously, the mask position where the lower surface of the concave portion 61 of the mask plate 6 is in surface contact with the peripheral portion of the upper surface of the substrate W at the peripheral portion of the opening 62, and the concave portion 61 Is retreated above the stage 2 and the mask plate 6 is moved up and down between the retreat position where the transfer of the substrate W can be performed by a transfer robot (not shown).

真空チャンバ1の下面には、周方向に90度間隔(駆動手段の位置と45度間隔)で4つの排気口8が形成され、この排気口8には、真空チャンバ1内を真空引きする真空ポンプPに通じる配管81が接続されている。なお、各配管8を集合させ、1個の真空ポンプにて排気するようにできる。ここで、シャワーヘッド43及び漏斗状部材5を介して導入された原料有機分子を基板W表面全体に亘って均一に供給するには、ステージ2の周囲から等方排気が行われるようにする必要がある。この場合、同心に配置された真空チャンバ1の内壁面とステージ2の側壁との間に周方向に等間隔の狭い排気通路を形成し、ステージ2の下方に排気通路に通じる、容積の大きい空間を設けておけばよいが、本実施形態では、マスクプレート6を上下動する駆動手段7を設けている。このため、コンダクタンスプレート9をステージ2上面より下側でかつその周囲に局所的に配置して等方排気が行われるようにしている。また、真空チャンバ1の側壁には、温媒を循環する温媒循環用の通路11が形成され、図示省略のチラーユニットにより温媒を循環させて真空チャンバ1を所定温度に加熱できるようにしている。   Four exhaust ports 8 are formed in the lower surface of the vacuum chamber 1 at intervals of 90 degrees in the circumferential direction (45 degrees intervals with respect to the position of the driving means). A vacuum for evacuating the vacuum chamber 1 is formed in the exhaust ports 8. A pipe 81 leading to the pump P is connected. In addition, each piping 8 can be gathered and exhausted with one vacuum pump. Here, in order to uniformly supply the raw material organic molecules introduced through the shower head 43 and the funnel-shaped member 5 over the entire surface of the substrate W, it is necessary to perform isotropic exhaust from around the stage 2. There is. In this case, a space having a large volume is formed between the inner wall surface of the vacuum chamber 1 and the side wall of the stage 2 that are concentrically arranged, and an exhaust passage that is narrow in the circumferential direction is formed in the circumferential direction and communicates with the exhaust passage below the stage 2. However, in this embodiment, the driving means 7 for moving the mask plate 6 up and down is provided. For this reason, the conductance plate 9 is locally disposed below and above the upper surface of the stage 2 so that isotropic exhaust is performed. Further, a passage 11 for circulating a heating medium is formed in the side wall of the vacuum chamber 1 so that the heating medium is circulated by a chiller unit (not shown) so that the vacuum chamber 1 can be heated to a predetermined temperature. Yes.

次に、本実施形態の有機膜形成装置を用い、原料有機分子たるベンジルアクリレートを主成分とするものに、1〜20重量%の割合で重合開始剤を添加したものを用いた本実施形態の有機膜形成方法を説明する。先ず、マスクプレート6の退避位置にて、図示省略の搬送ロボットにより基板Wを搬入し、ステージ2上に位置決めした状態で載置する。ステージ2上に基板Wが載置されると、各駆動手段7を下動させる。これにより、開口62の周縁部が基板Wの上面周縁部に当接して開口62の下側が基板Wで塞がれる。このとき、マスクプレート6がマスク位置に到達する。   Next, by using the organic film forming apparatus of the present embodiment, a material in which a polymerization initiator is added at a ratio of 1 to 20% by weight to a material mainly composed of benzyl acrylate as a raw material organic molecule. An organic film forming method will be described. First, the substrate W is carried in by a transfer robot (not shown) at the retracted position of the mask plate 6 and placed on the stage 2 while being positioned. When the substrate W is placed on the stage 2, each driving means 7 is moved downward. As a result, the peripheral edge of the opening 62 abuts on the peripheral edge of the upper surface of the substrate W, and the lower side of the opening 62 is closed with the substrate W. At this time, the mask plate 6 reaches the mask position.

その後、真空ポンプPを作動させて真空チャンバ1内を真空引きする共に、図示省略のチラーユニットにより冷媒を循環させてステージ2を所定温度(例えば、−10℃)に冷却する一方で、温媒循環用の通路11に温媒を循環させて真空チャンバ1を所定温度(例えば、60℃)に加熱する。   Thereafter, the vacuum pump P is operated to evacuate the vacuum chamber 1, and the refrigerant is circulated by a chiller unit (not shown) to cool the stage 2 to a predetermined temperature (for example, −10 ° C.). A heating medium is circulated through the circulation passage 11 to heat the vacuum chamber 1 to a predetermined temperature (for example, 60 ° C.).

他方、予め上記割合で液化状態にて原料有機分子と重合開始剤液とをタンク41b内に貯蔵し、気体導入管41cからアルゴン等の気体をタンク41b内に導入することで、原料有機分子及び重合開始剤液が、マスフローコントローラ41dを介設した供給管41eを介して、所定温度に加熱されている気化器41に所定流量で導入する。そして、気化器41に、キャリアガス導入管41fを介してキャリアガスを導入し、原料有機分子と重合開始剤液とがアトマイジング作用で気化される。   On the other hand, the raw material organic molecules and the polymerization initiator liquid are stored in the tank 41b in the liquefied state in the above-mentioned ratio in advance, and a gas such as argon is introduced into the tank 41b from the gas introduction pipe 41c. The polymerization initiator solution is introduced at a predetermined flow rate into the vaporizer 41 heated to a predetermined temperature via a supply pipe 41e provided with a mass flow controller 41d. Then, the carrier gas is introduced into the vaporizer 41 via the carrier gas introduction pipe 41f, and the raw organic molecules and the polymerization initiator liquid are vaporized by the atomizing action.

そして、真空チャンバが所定圧力に達すると、原料導入手段により、気化された原料有機分子と重合開始剤液とを真空チャンバ1内に導入する。このとき、マスフローコントローラ41dを適宜制御して、所定の流量でガス配管42を介して、気化した原料有機分子がシャワーヘッド43へと供給され、このシャワーヘッド43より噴出された原料有機分子が、漏斗状部材5により基板W方向に向かって導かれて基板W上に均一に到達するようになる。他方、原料有機分子が、マスクプレート6の開口62を臨む基板W上に到達したとき、ステージ2が所定温度に冷却されているため、原料有機分子は液相にて堆積するようになる(堆積工程)。なお、このとき、真空チャンバ1内は、100Pa程度の減圧下に保持されている。   When the vacuum chamber reaches a predetermined pressure, the vaporized raw organic molecules and the polymerization initiator liquid are introduced into the vacuum chamber 1 by the raw material introducing means. At this time, by appropriately controlling the mass flow controller 41d, vaporized raw organic molecules are supplied to the shower head 43 through the gas pipe 42 at a predetermined flow rate, and the raw organic molecules ejected from the shower head 43 are The funnel-shaped member 5 is guided toward the substrate W and reaches the substrate W uniformly. On the other hand, when the raw organic molecules reach the substrate W facing the opening 62 of the mask plate 6, since the stage 2 is cooled to a predetermined temperature, the raw organic molecules are deposited in a liquid phase (deposition). Process). At this time, the inside of the vacuum chamber 1 is maintained under a reduced pressure of about 100 Pa.

基板W上に原料有機分子が所定の厚さで堆積すると、減圧下を維持したまま、原料導入手段の作動を停止すると同時に光源32を作動し、紫外光を基板Wに照射する。これにより、原料有機分子が紫外光を吸収して活性化され、その励起作用で重合反応が引き起こされて硬化し、所定の有機膜が形成される(重合工程)。このとき、石英板31の光照射面31aは、この光照射面31aへの基板Wの輪郭の投影面より外方まで延びているため、基板W全面に亘って確実に紫外光が照射され、基板W上で硬化不足な箇所が局所的に生じることを防止できる。   When the raw material organic molecules are deposited on the substrate W at a predetermined thickness, the light source 32 is operated simultaneously with the operation of the raw material introducing means while maintaining the reduced pressure, and the substrate W is irradiated with ultraviolet light. As a result, the raw material organic molecules are activated by absorbing the ultraviolet light, and a polymerization reaction is caused by the excitation action to cure and form a predetermined organic film (polymerization step). At this time, since the light irradiation surface 31a of the quartz plate 31 extends outward from the projection surface of the outline of the substrate W on the light irradiation surface 31a, ultraviolet light is reliably irradiated over the entire surface of the substrate W. It is possible to prevent local occurrence of insufficiently cured portions on the substrate W.

なお、5μmを超えた厚さで有機膜を形成するような場合には、上記操作を複数回繰り返して有機膜を形成することが好ましい。最後に、所定膜厚さの有機膜が形成されると、各駆動手段7を同期して上動し、この状態で搬送ロボットにより処理済みの基板Wを取り出す。   In addition, when forming an organic film with the thickness exceeding 5 micrometers, it is preferable to repeat the said operation in multiple times and to form an organic film. Finally, when an organic film having a predetermined thickness is formed, each driving means 7 is moved up in synchronization, and the processed substrate W is taken out by the transfer robot in this state.

次に、本発明の効果を確認するため、図1に示す有機膜形成装置を用いて次の実験を行った。この実験では、原料有機分子として、ベンジルアクリレートに1重量%の割合で重合開始剤(ダロキュア:登録商標、Ciba社製)を添加したものを用いた。また、気化器41での加熱温度を80℃に設定すると共に、キャリアガスのガス流量を3slmに設定し、原料有機分子を0.2g/minの流量で真空チャンバ1内に導入し、600秒間、140×140mmのガラス基板W表面に付着、堆積させた。また、光照射手段3により60秒間紫外光を照射して、有機膜を形成した(発明品)。この場合の膜厚を測定すると、3μmであり、また、ガラス基板表面での平滑性も良好であった。   Next, in order to confirm the effect of the present invention, the following experiment was performed using the organic film forming apparatus shown in FIG. In this experiment, a raw material organic molecule obtained by adding a polymerization initiator (Darocur: registered trademark, manufactured by Ciba) at a ratio of 1% by weight to benzyl acrylate was used. Further, the heating temperature in the vaporizer 41 is set to 80 ° C., the gas flow rate of the carrier gas is set to 3 slm, and the raw organic molecules are introduced into the vacuum chamber 1 at a flow rate of 0.2 g / min for 600 seconds. , Attached to and deposited on the surface of a 140 × 140 mm glass substrate W. In addition, an organic film was formed by irradiating with ultraviolet light by the light irradiation means 3 for 60 seconds (invention product). When the film thickness in this case was measured, it was 3 μm, and the smoothness on the glass substrate surface was good.

次に、比較実験として、原料有機分子たるネオペンチルグリコールジアクリラートに1重量%の割合で重合開始剤を添加したものを用いた。また、気化器41での加熱温度を80℃に設定すると共に、キャリアガスのガス流量を3slmに設定し、原料有機分子を0.2g/minの流量で真空チャンバ1内に導入し、600秒間、ガラス基板W表面に付着、堆積させた。また、光照射手段3により60秒間紫外光を照射して、有機膜を形成した(比較品)。この場合の膜厚を測定すると、3μmであった。   Next, as a comparative experiment, a raw material organic molecule neopentyl glycol diacrylate added with a polymerization initiator at a ratio of 1% by weight was used. Further, the heating temperature in the vaporizer 41 is set to 80 ° C., the gas flow rate of the carrier gas is set to 3 slm, and the raw organic molecules are introduced into the vacuum chamber 1 at a flow rate of 0.2 g / min for 600 seconds. The glass substrate W was adhered and deposited on the surface. In addition, ultraviolet light was irradiated by the light irradiation means 3 for 60 seconds to form an organic film (comparative product). The film thickness in this case was measured to be 3 μm.

上記発明品及び比較品に対して、所謂テープテスト法による密着性のテストを施した。即ち、有機膜の表面にカッターを用いて碁盤目状に切れ込みを入れ、有機膜表面に市販のテープを貼付し、その後、所定角度でこのテープを引っ張って剥離し、剥離面積を評価した。これによれば、比較品では、ほぼ全面に亘って有機膜が剥離した。それに対して、発明品では、3〜10%の範囲で有機膜が剥離しているだけであった。これにより、基板と有機膜との密着性が向上することが確認された。   The above-mentioned invention product and comparative product were subjected to an adhesion test by a so-called tape test method. That is, the surface of the organic film was cut into a grid using a cutter, a commercially available tape was applied to the surface of the organic film, and then the tape was pulled and peeled at a predetermined angle to evaluate the peeled area. According to this, in the comparative product, the organic film peeled over almost the entire surface. On the other hand, in the product of the invention, the organic film was only peeled in the range of 3 to 10%. This confirmed that the adhesion between the substrate and the organic film was improved.

以上説明したように、本実施形態の有機膜形成装置によれば、堆積工程と重合工程とを単一の真空チャンバ1にて実施できるため、上記従来例のものと比較して格段に装置の設置面積を小さくでき、基板Wの移送手段等も不要になるため、処理時間を短縮できるだけでなく、装置製造のコストも低くできる。その上、光照射手段3により光が照射されるまで、ステージ2にて基板Wが確実冷却されているため、原料有機分子が再蒸発して装置内部を汚染するという不具合も生じない。   As described above, according to the organic film forming apparatus of the present embodiment, the deposition process and the polymerization process can be performed in a single vacuum chamber 1, so that the apparatus of the present invention is remarkably compared with the conventional example. Since the installation area can be reduced and no means for transferring the substrate W is required, not only the processing time can be shortened, but also the cost for manufacturing the apparatus can be reduced. In addition, since the substrate W is reliably cooled on the stage 2 until light is irradiated by the light irradiation means 3, there is no problem that the raw organic molecules are re-evaporated and contaminate the inside of the apparatus.

ガイド手段を真空チャンバ1の上面に装着した漏斗状部材5から構成したため、その装着作業が容易であり、しかも、真空チャンバ1を加熱すると、伝熱で漏斗状部材5も加熱されるため、真空チャンバ1の内部と共に、重合工程にて再蒸発したものが付着することが防止できる。   Since the guide means is composed of the funnel-shaped member 5 mounted on the upper surface of the vacuum chamber 1, the mounting operation is easy, and when the vacuum chamber 1 is heated, the funnel-shaped member 5 is also heated by heat transfer. Along with the inside of the chamber 1, it is possible to prevent the re-evaporated material in the polymerization process from adhering.

また、ステージ2で保持された基板Wの輪郭より小さい開口62を有するマスクプレート6と、このマスクプレート6を上下動する駆動手段7とを備える構成を採用したため、マスクプレート6の開口62を臨む基板W表面に原料有機分子を液相にて堆積させた後、この原料有機分子の流動により有機膜の外周面に歪が生じる等の不具合が生じることを防止でき、堆積工程と重合工程とを単一の真空チャンバ1にて実施できることと相俟って、特に有機膜を厚い膜厚(例えば、5μm以上)で形成するような場合に、硬化収縮や硬化不足を回避するため、複数回に分けて成膜する場合に有利となる。   Further, since the configuration including the mask plate 6 having an opening 62 smaller than the contour of the substrate W held by the stage 2 and the driving means 7 for moving the mask plate 6 up and down is employed, the opening 62 of the mask plate 6 is exposed. After depositing raw material organic molecules in the liquid phase on the surface of the substrate W, it is possible to prevent the occurrence of defects such as distortion on the outer peripheral surface of the organic film due to the flow of the raw material organic molecules. Combined with the fact that it can be carried out in a single vacuum chamber 1, in order to avoid curing shrinkage and insufficient curing, especially when the organic film is formed with a thick film thickness (for example, 5 μm or more) This is advantageous when the film is formed separately.

以上、本発明の実施形態について説明したが、本発明はこれに限定されるものではない。上記実施形態では、光照射手段として紫外線ランプを用いたものを例に説明したが、原料有機材料の種類に応じて電子線を照射するような場合にも本発明は適用できる。また、上記実施形態では、マスクプレート6を配置して有機膜を形成するものを例に説明したが、原料有機分子の堆積後に、液相たるこの原料有機分子の粘性が強く、基板Wの周囲に浸み出し難いものであるような場合には、省略することができる。   As mentioned above, although embodiment of this invention was described, this invention is not limited to this. In the above embodiment, an example in which an ultraviolet lamp is used as the light irradiation means has been described as an example. Further, in the above-described embodiment, the case where the mask plate 6 is disposed to form the organic film has been described as an example. However, after the deposition of the source organic molecules, the viscosity of the source organic molecules in the liquid phase is strong and the surroundings of the substrate W If it is difficult to ooze out, it can be omitted.

また、上記実施形態では、ガイド手段として漏斗状部材5から構成したものを例に説明したが、シャワーヘッド43から噴出した原料有機分子を基板W表面全体に亘って均一に供給できるものであれば、特にその形態は問わない。また、ステージ2を冷却したり、または、真空チャンバ1を加熱する形態について、冷媒または温媒させるものを例として説明したが、これに限定されるものではなく、空冷式の冷却手段や電気ヒータの加熱手段等を用いることもできる。   Moreover, in the said embodiment, although demonstrated as an example what was comprised from the funnel-shaped member 5 as a guide means, as long as the raw material organic molecule which ejected from the shower head 43 can supply uniformly over the whole surface of the board | substrate W, it is. The form is not particularly limited. Moreover, although the form which cools the stage 2 or heats the vacuum chamber 1 has been described as an example of a refrigerant or a heating medium, it is not limited to this, and an air-cooling cooling means or an electric heater is not limited thereto. These heating means can also be used.

さらに、上記実施形態では、石英板32を基板Wに対向配置し、その周囲にシャワーヘッド43を配置したものを説明したが、図3に示すように、シャワーヘッド40を、基板W中心を通る線上に配置し、その周囲に環状に形成した石英板30を配置して構成することもできる。   Further, in the above-described embodiment, the quartz plate 32 is disposed opposite to the substrate W and the shower head 43 is disposed around the quartz plate 32. However, as shown in FIG. 3, the shower head 40 passes through the center of the substrate W. A quartz plate 30 arranged on a line and formed in an annular shape around the line can also be arranged.

1…有機膜形成装置の真空チャンバ、2…ステージ、3…光照射手段、31a…石英板の光照射面、41…気化器(原料導入手段)、43…シャワーヘッド(原料導入手段)、5…漏斗状部材(ガイド手段)、6…マスクプレート、62…開口、7…駆動手段、8…真空チャンバの排気口、81…配管、11…温媒循環用通路(加熱手段)、P…真空ポンプ、W…基板。   DESCRIPTION OF SYMBOLS 1 ... Vacuum chamber of organic film formation apparatus, 2 ... Stage, 3 ... Light irradiation means, 31a ... Light irradiation surface of quartz plate, 41 ... Vaporizer (raw material introduction means), 43 ... Shower head (raw material introduction means), 5 ... funnel-shaped member (guide means), 6 ... mask plate, 62 ... opening, 7 ... driving means, 8 ... exhaust port of vacuum chamber, 81 ... piping, 11 ... passage for heating medium circulation (heating means), P ... vacuum Pump, W ... substrate.

Claims (9)

真空ポンプに通じる配管が接続される排気口を有する真空チャンバと、
前記排気口が形成された真空チャンバの壁面を下とし、この真空チャンバ下部に配置され、基板を保持すると共にこの基板の冷却を可能とするステージと、
この真空チャンバ内に、原料有機分子を気化させて導入し得る原料導入手段と、
この原料導入手段を介して真空チャンバ内に導入された原料有機分子を基板表面に堆積させた後、基板上方に対向配置されてこの堆積した原料有機分子に光を照射して重合反応を引き起こす光照射手段と、を備え、
前記光照射手段の照射面は、この照射面への基板の輪郭の投影面より外方まで延びており、
前記原料導入手段は、照射面を囲う環状のシャワーヘッドを有し、このシャワーヘッドから噴出された原料有機分子を基板表面へと導くガイド手段を設けたことを特徴とする有機膜形成装置。
A vacuum chamber having an exhaust port to which piping leading to a vacuum pump is connected;
The vacuum chamber wall in which the exhaust port is formed is located below, and a stage is disposed below the vacuum chamber to hold the substrate and to cool the substrate;
Raw material introduction means capable of vaporizing and introducing raw organic molecules into the vacuum chamber;
Light is deposited on the substrate surface through the organic material molecules introduced into the vacuum chamber via the raw material introduction means, and then disposed oppositely above the substrate to irradiate the deposited organic material molecules with light to cause a polymerization reaction. Irradiation means,
The irradiation surface of the light irradiation means extends outward from the projection surface of the contour of the substrate to the irradiation surface,
The organic material forming apparatus characterized in that the raw material introducing means has an annular shower head surrounding the irradiation surface, and provided with guiding means for guiding raw organic molecules ejected from the shower head to the substrate surface.
前記ガイド手段は、シャワーヘッドの下方に配置され、下方に向かって縮径した漏斗状部材であることを特徴とする請求項1記載の有機膜形成装置。   2. The organic film forming apparatus according to claim 1, wherein the guide means is a funnel-shaped member disposed below the shower head and having a diameter reduced toward the bottom. 前記ステージで保持された基板の輪郭より小さい開口を有するマスクプレートと、このマスクプレートを上下動する駆動手段とを更に備えることを特徴とする請求項1または請求項2記載の有機膜形成装置。   The organic film forming apparatus according to claim 1, further comprising: a mask plate having an opening smaller than a contour of the substrate held by the stage; and a driving unit that moves the mask plate up and down. 前記真空チャンバを加熱する加熱手段を更に備えることを特徴とする請求項1〜請求項3のいずれか1項に記載の有機膜形成装置。   The organic film forming apparatus according to any one of claims 1 to 3, further comprising a heating unit that heats the vacuum chamber. 前記原料有機分子を噴出するシャワーヘッドの噴出口が、そのシャワーヘッドの周方向全長に亘って等間隔で列設されていることを特徴とする請求項1〜請求項4のいずれか1項に記載の有機膜形成装置。   The jet nozzle of the shower head which jets out the said raw material organic molecule is lined up at equal intervals over the circumferential direction full length of the shower head in any one of Claims 1-4 characterized by the above-mentioned. The organic film forming apparatus described. 前記原料導入手段は、気化させた原料有機分子をシャワーヘッドに供給するガス配管を備え、このガス配管が複数に分岐された後、シャワーヘッドに、その周方向全長に亘って等間隔でそれぞれ接続されていることを特徴とする請求項1〜請求項5のいずれか1項に記載の有機膜形成装置。   The raw material introducing means includes a gas pipe for supplying the vaporized raw organic molecules to the shower head, and after the gas pipe is branched into a plurality of parts, each is connected to the shower head at equal intervals over the entire length in the circumferential direction. The organic film forming apparatus according to any one of claims 1 to 5, wherein the organic film forming apparatus is formed. 請求項1〜請求項6のいずれか1項に記載の有機膜形成装置を用いて、基板表面に有機膜を形成する有機膜形成方法であって、
原料有機分子として、ベンジルアクリレートを主成分とするものを用い、このベンジルアクリレートを気化させ、この気化したベンジルアクリレートを基板表面に堆積させた後、紫外光を照射して重合反応させることを特徴とする有機膜形成方法。
An organic film forming method for forming an organic film on a substrate surface using the organic film forming apparatus according to any one of claims 1 to 6,
Using organic benzyl acrylate as the main ingredient organic molecule, vaporizing this benzyl acrylate, depositing this vaporized benzyl acrylate on the substrate surface, and then irradiating it with ultraviolet light to cause a polymerization reaction An organic film forming method.
原料有機分子に重合開始剤が添加されることを特徴とする請求項7記載の有機膜形成方法。   8. The organic film forming method according to claim 7, wherein a polymerization initiator is added to the raw organic molecules. 重合開始剤として、その蒸気圧がベンジルアクリレートの蒸気圧と同等のものを用いることを特徴とする請求項8記載の有機膜形成方法。

9. The organic film forming method according to claim 8, wherein the polymerization initiator has a vapor pressure equivalent to that of benzyl acrylate.

JP2010253123A 2009-12-01 2010-11-11 Organic film forming apparatus and organic film forming method Active JP6034548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010253123A JP6034548B2 (en) 2009-12-01 2010-11-11 Organic film forming apparatus and organic film forming method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009273982 2009-12-01
JP2009273982 2009-12-01
JP2010253123A JP6034548B2 (en) 2009-12-01 2010-11-11 Organic film forming apparatus and organic film forming method

Publications (2)

Publication Number Publication Date
JP2011137139A JP2011137139A (en) 2011-07-14
JP6034548B2 true JP6034548B2 (en) 2016-11-30

Family

ID=44348864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010253123A Active JP6034548B2 (en) 2009-12-01 2010-11-11 Organic film forming apparatus and organic film forming method

Country Status (1)

Country Link
JP (1) JP6034548B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9142778B2 (en) * 2013-11-15 2015-09-22 Universal Display Corporation High vacuum OLED deposition source and system
JP6827287B2 (en) * 2016-09-28 2021-02-10 株式会社日立ハイテク How to operate the plasma processing equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931115A (en) * 1995-07-13 1997-02-04 Japan Atom Energy Res Inst Light-induced vapor deposition polymerization method

Also Published As

Publication number Publication date
JP2011137139A (en) 2011-07-14

Similar Documents

Publication Publication Date Title
JP5608758B2 (en) Organic thin film forming equipment
JP6161294B2 (en) Apparatus and method for depositing a multilayer coating on a substrate
TWI542060B (en) Organic film forming apparatus and a method for forming an organic film
US8808457B2 (en) Apparatus for depositing a multilayer coating on discrete sheets
CN106415876A (en) Thin film encapsulation processing system and process kit permitting low-pressure tool replacement
JP5981115B2 (en) Deposition equipment
KR101956740B1 (en) Drying apparatus and drying method
KR20170002513A (en) Gas cushion apparatus and techniques for substrate coating
JP2008159824A (en) Device for manufacturing silicon-oxide thin-film, and method for forming it
TWI650614B (en) Deposition method and deposition apparatus
JP2019140122A (en) Printing system assembly and method
JP6034548B2 (en) Organic film forming apparatus and organic film forming method
JP2018535508A5 (en)
KR102249249B1 (en) Resin film forming method and resin film forming apparatus
KR102221194B1 (en) Carburetor and device for manufacturing device structure
JP6044352B2 (en) Organic material coating apparatus and organic material coating method using the same
JP2010067430A (en) Thin film forming apparatus
WO2020174845A1 (en) Film forming device
JP2013129866A (en) Method and apparatus for depositing thin film
KR100521696B1 (en) Apparatus and method for forming polymer thin film with cyclic and photo assisted deposition
WO2018155452A1 (en) Mask and film-forming device
CN112424389A (en) Film forming apparatus and film forming method
CN117926232A (en) Parallel circumferential continuous plasma coating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161028

R150 Certificate of patent or registration of utility model

Ref document number: 6034548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250