WO2018154643A1 - 苛性ソーダ製造用の食塩電解装置 - Google Patents

苛性ソーダ製造用の食塩電解装置 Download PDF

Info

Publication number
WO2018154643A1
WO2018154643A1 PCT/JP2017/006526 JP2017006526W WO2018154643A1 WO 2018154643 A1 WO2018154643 A1 WO 2018154643A1 JP 2017006526 W JP2017006526 W JP 2017006526W WO 2018154643 A1 WO2018154643 A1 WO 2018154643A1
Authority
WO
WIPO (PCT)
Prior art keywords
ldh
chamber
cathode
gas
gas diffusion
Prior art date
Application number
PCT/JP2017/006526
Other languages
English (en)
French (fr)
Inventor
服部 達哉
岩井 真
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to PCT/JP2017/006526 priority Critical patent/WO2018154643A1/ja
Publication of WO2018154643A1 publication Critical patent/WO2018154643A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features

Definitions

  • the present invention relates to a salt electrolyzer for producing caustic soda (sodium hydroxide).
  • NaOH is widely produced by electrolysis of saline solution (hereinafter referred to as salt electrolysis). Its domestic production reaches 3.66 million tons (2013). It is known that salt electrolysis consumes a very large amount of power. According to one report, the domestic power consumption of salt electrolysis is 11.3 billion kWh per year (2001), which corresponds to 3% of domestic industrial power. Therefore, energy saving of salt electrolysis is required.
  • the gas diffusion electrode method has been widely adopted as a method capable of reducing power consumption by 40%.
  • the gas diffusion electrode method is a method for producing chlorine and caustic soda by electrolyzing saline by an ion exchange membrane method using a gas diffusion electrode.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-278864 discloses a salt electrolyzer equipped with a gas diffusion electrode, which describes that the gas diffusion electrode includes a reaction layer and a water repellent layer.
  • FIG. 3 shows a conventional salt electrolyzer 100 employing the gas diffusion electrode method.
  • an anode chamber 112 having an anode 122 and supplied with an aqueous NaCl solution a cathode chamber 114 having a gas diffusion electrode 124 (cathode) and generating an aqueous NaOH solution, are partitioned by an ion exchange membrane 116.
  • the cathode chamber 114 has a cathode gas chamber 118 and a catholyte chamber 120 and is partitioned by a gas diffusion electrode 124.
  • the electrode reaction in the gas diffusion electrode method is as follows, and hydroxide ions (OH ⁇ ) are involved in the cathode reaction in the gas diffusion electrode.
  • Patent Document 2 International Publication No. 2013/118561 discloses that in a nickel zinc secondary battery, an LDH separator is provided between a positive electrode and a negative electrode for the purpose of preventing a short circuit due to zinc dendrite.
  • Patent Document 3 International Publication No. 2016/076047 discloses a separator structure including an LDH separator combined with a porous substrate, and the LDH separator is gas-impermeable and / or It is disclosed to have high density enough to have water impermeability.
  • JP 7-278864 A International Publication No. 2013/118561 International Publication No. 2016/076047 International Publication No. 2016/208769
  • the porous gas diffusion electrode 124 is in contact with the alkaline electrolyte. For this reason, when CO 2 in the supply gas component enters the electrolytic solution through the porous gas diffusion electrode 124, the electrolytic solution deteriorates.
  • CO 2 is a component that may be derived from components in the air and mixed into the supply gas. That is, as shown microscopically in FIG. 4, the H 2 O and O 2 containing gas supplied from the outside passes through the water repellent layer 124b to generate OH ⁇ in the reaction layer 124a, while being mixed into the gas.
  • the CO 2 thus passed through the water-repellent layer 124b reaches the electrolytic solution in the reaction layer 124a, and is combined with Na + to precipitate carbonate (Na 2 CO 3 ), thereby deteriorating the electrolytic solution. Further, the deposited Na 2 CO 3 covers the surface of the reaction active site in the reaction layer 124a, thereby inhibiting the reaction of generating OH ⁇ from H 2 O and O 2 gas and increasing the reaction resistance.
  • the present inventors have prevented the intrusion of carbon dioxide into an aqueous sodium hydroxide solution by interposing an LDH separator between the gas diffusion electrode and the electrolyte. As a result, it was found that carbonate precipitation, electrolyte deterioration, and reaction resistance increase in the reaction layer can be prevented.
  • an object of the present invention is to produce caustic soda, which can effectively prevent the precipitation of carbonate, the deterioration of the electrolyte, and the increase in reaction resistance in the reaction layer due to the penetration of carbon dioxide into the electrolyte.
  • the object is to provide a salt electrolysis device.
  • a salt electrolysis device for producing caustic soda, comprising: An anode chamber having an anode and supplied with an aqueous sodium chloride solution to generate chlorine; A cathode chamber having a gas diffusion electrode as a cathode and being supplied with oxygen and water to produce a sodium hydroxide aqueous solution; An ion exchange membrane that partitions the anode chamber and the cathode chamber and selectively transmits sodium ions; A cathode gas chamber provided on one side of the gas diffusion electrode in the cathode chamber and supplied with oxygen gas and water vapor; A layered double hydroxide (LDH) separator that is provided on the other surface side of the gas diffusion electrode and prevents carbon dioxide from entering the sodium hydroxide aqueous solution from the cathode gas chamber; A salt electrolyzer is provided.
  • An anode chamber having an anode and supplied with an aqueous sodium chloride solution to generate chlorine
  • a cathode chamber having a gas diffusion electrode as a cathode and
  • FIG. 1 schematically shows the configuration of the salt electrolysis apparatus.
  • the salt electrolysis device 10 includes an anode chamber 12, a cathode chamber 14, an ion exchange membrane 16, a cathode gas chamber 18, and an LDH separator 28.
  • the anode chamber 12 is a compartment that is supplied with a sodium chloride aqueous solution and generates chlorine, and has an anode 22.
  • the cathode chamber 14 is a compartment that is supplied with oxygen and water to generate a sodium hydroxide aqueous solution, and has a gas diffusion electrode 24 as a cathode.
  • the ion exchange membrane 16 is a membrane that selectively transmits sodium ions, and partitions the anode chamber 12 and the cathode chamber 14.
  • the cathode gas chamber 18 is provided on one surface side of the gas diffusion electrode 24 in the cathode chamber 14 and supplied with oxygen gas and water vapor.
  • the LDH separator 28 is provided on the other surface side of the gas diffusion electrode 24, and prevents carbon dioxide from entering the sodium hydroxide aqueous solution from the cathode gas chamber 18.
  • a catholyte chamber 20 is provided between the ion exchange membrane 16 and the LDH separator 28 in the cathode chamber 14.
  • the LDH separator 28 interposing the LDH separator 28 between the gas diffusion electrode 24 and the electrolytic solution (sodium hydroxide aqueous solution), the intrusion of carbon dioxide into the sodium hydroxide aqueous solution is prevented, thereby precipitating the carbonate. Further, it is possible to prevent deterioration of the electrolytic solution and increase in reaction resistance in the reaction layer. That is, as shown microscopically in FIG. 2, during electrolysis, H 2 O and O 2 containing gas supplied from the outside generates OH ⁇ in the gas diffusion electrode 24 and is mixed into the gas. Infiltration of CO 2 into the electrolytic solution is prevented by the LDH separator 28.
  • the precipitation of carbonate (Na 2 CO 3 ) due to the penetration of CO 2 into the electrolyte is prevented, and as a result, the deterioration of the electrolyte due to the precipitation of carbonate and the increase in reaction resistance in the reaction layer. Is effectively prevented.
  • the LDH separator 28 contains a layered double hydroxide known to have hydroxide ion conductivity, OH ⁇ generated in the gas diffusion electrode 24 selectively passes through the LDH separator 28 and passes Na + . It is supplied to an electrolyte solution containing sodium hydroxide (NaOH).
  • the anode chamber 12 is a compartment that is supplied with a sodium chloride aqueous solution and generates chlorine, and has an anode 22. Therefore, the anode chamber 12 has a supply port 12a for supplying a sodium chloride aqueous solution and a discharge port 12b for discharging chlorine gas.
  • the anode 22 can be a known anode used for salt electrolysis.
  • an electrode in which a titanium base material is coated with a platinum group metal oxide for example, an electrode for generating DSE chlorine (manufactured by Denora Permerek Co., Ltd.) may be mentioned.
  • the cathode chamber 14 is a compartment that is supplied with oxygen and water to generate a sodium hydroxide aqueous solution, and has a gas diffusion electrode 24.
  • a typical cathode chamber 14 includes a catholyte chamber 20 and a cathode gas chamber 18, and the catholyte chamber 20 and the cathode gas chamber 18 are separated by a gas diffusion electrode 24 and an LDH separator 28.
  • the catholyte chamber 20 is provided between the ion exchange membrane 16 and the LDH separator 28 in the cathode chamber 14, and water, sodium ions and hydroxide ions are supplied to generate an aqueous sodium hydroxide solution.
  • the catholyte chamber 20 has a supply port 20a for supplying water and a discharge port 20b for discharging sodium hydroxide.
  • the salt electrolysis apparatus 10 including the catholyte chamber 20 has three chambers of the anode chamber 12, the cathode gas chamber 18, and the catholyte chamber 20, and is therefore referred to as a three-chamber electrolytic cell.
  • the salt electrolysis apparatus of the present invention may have a configuration in which the cathode chamber 14 does not have the catholyte chamber 20 (so-called two-chamber electrolytic cell), and in this case, the ion exchange membrane 16 and the LDH separator 28 (or the porous substrate).
  • the material 30) can be joined.
  • the gas diffusion electrode 24 may be a known gas diffusion electrode or an air electrode (also referred to as an oxygen electrode), and is not particularly limited. It is desirable that the gas diffusion electrode 24 has a porous structure so as to allow gas diffusion.
  • the gas diffusion electrode 24 preferably includes a reaction layer 24a, and the LDH separator 28 is preferably joined to the reaction layer 24a.
  • the reaction layer 24a includes an air electrode catalyst, an electron conductive material, and a hydroxide ion conductive material. However, when an air electrode catalyst that also functions as an electron conductive material is used, the reaction layer 24a includes such an electron conductive material / air electrode catalyst and a hydroxide ion conductive material. Also good.
  • the air electrode catalyst is not particularly limited as long as it is a known catalyst used in a gas diffusion electrode or an air electrode, and various air electrode catalysts that can use oxygen as an active material can be used.
  • Preferred examples of the air electrode catalyst include carbon-based materials having a redox catalyst function such as graphite, metals having a redox catalyst function such as platinum and nickel, perovskite oxides, manganese dioxide, nickel oxide, cobalt oxide, spinel. Examples thereof include inorganic oxides having a redox catalyst function such as oxides.
  • the shape of the air electrode catalyst is not particularly limited, but is preferably a particle shape.
  • the electron conductive material is not particularly limited as long as it has conductivity and enables electron conduction between the air electrode catalyst and the LDH separator 28.
  • Preferred examples of the electron conductive material include carbon blacks such as ketjen black, acetylene black, channel black, furnace black, lamp black, and thermal black, natural graphite such as flake graphite, artificial graphite, and expanded graphite.
  • Examples thereof include conductive fibers such as graphites, carbon fibers, and metal fibers, metal powders such as copper, silver, nickel, and aluminum, organic electron conductive materials such as polyphenylene derivatives, and any mixture thereof.
  • the shape of the electron conductive material may be a particle shape or any other shape, but is used in a form that provides a continuous phase (that is, an electron conductive phase) in the thickness direction in the reaction layer 24a.
  • the electron conductive material may be a porous material.
  • the electron conductive material may be in the form of a mixture or complex with an air electrode catalyst (for example, platinum-supported carbon).
  • an air electrode catalyst for example, a transition metal
  • It may be a perovskite type compound or carbon nanotube (CNT).
  • the hydroxide ion conductive material is not particularly limited as long as it is a material that can transmit hydroxide ions, and various materials and forms of materials can be used regardless of inorganic materials and organic materials.
  • the hydroxide ion conductive material may be in the form of particles, or may be in the form of a coating film that partially or substantially entirely covers the air electrode catalyst and the electron conductive material.
  • the ion conductive material is not dense and has open pores, and O 2 and H 2 from the outer surface of the reaction layer 24a toward the interface with the LDH separator 28. It is desirable that O be configured to diffuse through the pores.
  • the hydroxide ion conductive material comprises a layered double hydroxide (LDH).
  • LDH used in the reaction layer 24a has the general formula: M 2+ 1-x M 3+ x (OH) 2 A n- x / n ⁇ mH 2 O (wherein, M 2+ is at least one or more divalent cations in and, M 3+ is a trivalent least one cation, a n-is the n-valent anion, n is an integer of 1 or more, x is 0.1 to 0.4, Those having a basic composition of (m is an arbitrary real number) are preferable.
  • M 2+ may be any divalent cation, and preferred examples include Ni 2+ , Mg 2+ , Ca 2+ , Mn 2+ , Fe 2+ , Co 2+ , Cu 2+ and Zn 2+. More preferably, it is Ni 2+ .
  • M 3+ may be any trivalent cation, and preferred examples include Fe 3+ , Al 3+ , Co 3+ , Cr 3+ , and In 3+ , and more preferably Fe 3+ .
  • a n- may be any anion, NO 3- preferred examples, CO 3 2-, SO 4 2- , OH -, Cl -, I -, Br -, F - , and the like, and more Preferred is NO 3 ⁇ and / or CO 3 2 ⁇ .
  • M 2+ comprises Ni 2+
  • M 3+ comprises Fe 3+
  • a n-is preferably comprises NO 3- and / or CO 3 2- and.
  • n is an integer of 1 or more, preferably 1 to 3.
  • x is 0.1 to 0.4, preferably 0.2 to 0.35.
  • m is an arbitrary real number. More specifically, m is a real number or an integer of 0 or more, typically more than 0 or 1 or more.
  • the hydroxide ion conductive material may be one of NaCo 2 O 4 , LaFe 3 Sr 3 O 10 , Bi 4 Sr 14 Fe 24 O 56 , NaLaTiO 4 , RbLaNb 2 O 7 , and KLaNb 2 O 7. It may have at least one basic composition selected from the group consisting of Sr 4 Co 1.6 Ti 1.4 O 8 (OH) 2 .xH 2 O.
  • the hydroxide ion conductive material may include a polymer material having hydroxide ion conductivity, or a mixture of such a polymer material and the layered double hydroxide described above or It may be a complex.
  • a polymer material having hydroxide ion conductivity a polymer material having an anion exchange group capable of transmitting hydroxide ions is preferably used.
  • Preferred examples of the polymer material having hydroxide ion conductivity include hydrocarbon resins having anion exchange groups such as quaternary ammonium groups, pyridinium groups, imidazolium groups, phosphonium groups, sulfonium groups (for example, polystyrene). , Polysulfone, polyethersulfone, polyetheretherketone, polyphenylene, polybenzimidazole, polyimide, polyarylene ether, and the like) and fluorine-based resins.
  • the formation of the reaction layer 24a may be performed by any method as long as a layer containing an air electrode catalyst, an electron conductive material, and a hydroxide ion conductive material can be finally formed on the LDH separator 28.
  • the air electrode catalyst, the electron conductive material, and the hydroxide ion conductive material are wet-mixed using a solvent such as ethanol, dried and crushed, then mixed with a binder to fibrillate, and the resulting fibrils are obtained.
  • the reaction mixture 24a may be formed by pressure-bonding the mixture to the current collector, and the reaction layer 24a side of the reaction layer 24a / current collector laminated sheet may be pressure-bonded to the LDH separator 28.
  • the air electrode catalyst, the electron conductive material, and the hydroxide ion conductive material are wet mixed with a solvent such as ethanol to form a slurry, and this slurry is applied to the LDH separator 28 and dried to form the reaction layer 24a. May be.
  • the reaction layer 24a may contain a binder.
  • the binder may be a thermoplastic resin or a thermosetting resin and is not particularly limited. Preferred examples include polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, and tetrafluoro.
  • the air electrode catalyst that also functions as an electron conductive material preferably contains carbon nanotubes (CNT).
  • CNT carbon nanotubes
  • the reaction layer 24a containing CNT and LDH is preferable in that gas diffusion electrode characteristics (hydroxide ion conductivity, electron conductivity, and catalytic reaction activity) can be improved.
  • gas diffusion electrode characteristics hydrogen ion conductivity, electron conductivity, and catalytic reaction activity
  • an air electrode in which a plurality of LDH particles are supported by a plurality of CNTs is disclosed in Patent Document 4 (International Publication No. 2016/208769).
  • the gas diffusion electrode 24 may further include a water repellent layer 24b on the cathode gas chamber 18 side of the reaction layer 24a.
  • the water repellent layer 24b can include a known water repellent material used as a water repellent layer of a gas diffusion electrode.
  • An example of such a water repellent material is a fluororesin.
  • the water repellent layer 24b has open pores, and is configured such that O 2 and H 2 O can diffuse through the pores from the outer surface (surface on the cathode gas chamber 18 side) of the water repellent layer 24b toward the reaction layer 24a. It is desirable to be done.
  • the ion exchange membrane 16 is a membrane that selectively transmits sodium ions, and partitions the anode chamber 12 and the cathode chamber 14 (typically the catholyte chamber 20).
  • the ion exchange membrane 16 may be a commercially available cation exchange membrane, and is not particularly limited.
  • a fluororesin-based cation exchange membrane is preferred from the viewpoint of corrosion resistance.
  • the cathode gas chamber 18 is provided on one surface side of the gas diffusion electrode 24 in the cathode chamber 14 (typically opposite to the catholyte chamber 20), and is supplied with oxygen gas and water vapor. Therefore, the cathode gas chamber 18 has a supply port 18a for supplying oxygen gas and water vapor, and a discharge port 18b for discharging unreacted oxygen gas and water vapor.
  • the LDH separator 28 is provided on the opposite side of the gas diffusion electrode 24 from the cathode gas chamber 18 (that is, the catholyte chamber 20 side), and prevents carbon dioxide from entering the sodium hydroxide aqueous solution from the cathode gas chamber 18.
  • the LDH separator 28 is joined to the gas diffusion electrode 24 (particularly the reaction layer 24a).
  • the LDH separator 28 is a ceramic separator containing layered double hydroxide (LDH). As described above, the LDH separator 28 is known as a dense separator having hydroxide ion conductivity in the field of zinc secondary batteries. A preferred LDH separator 28 is gas impermeable and / or water impermeable. In other words, the LDH separator 28 is preferably so dense that it has gas impermeability and / or water impermeability. In this specification, “having gas impermeability” means that an object to be measured (that is, LDH separator 28 and / or porous material) in water, as described in Patent Document 3 (International Publication No. 2016/076047).
  • “having water impermeability” means that, as described in Patent Document 3, water in contact with one surface side of a measurement object (for example, an LDH film and / or a porous substrate) is used. It means that it does not transmit to the other side. That is, the fact that the LDH separator 28 has gas impermeability and / or water impermeability means that the LDH separator 28 has a high degree of denseness that does not allow gas or water to pass through.
  • the LDH separator 28 selectively allows only hydroxide ions to pass through due to its hydroxide ion conductivity. As a result, it is possible to efficiently exchange hydroxide ions necessary for the production of sodium hydroxide between the electrolytic solution and the gas diffusion electrode 24 while preventing the infiltration of carbon dioxide from the gas diffusion electrode 24 into the electrolytic solution. It can be carried out. Needless to say, the LDH separator 28 may be combined with the porous substrate 30 as shown in FIG.
  • the LDH separator 28 includes a layered double hydroxide (LDH), and is preferably composed of LDH.
  • LDH is composed of a plurality of hydroxide base layers and an intermediate layer interposed between the plurality of hydroxide base layers.
  • the hydroxide base layer is mainly composed of metal elements (typically metal ions) and OH groups.
  • the intermediate layer of LDH is composed of anions and H 2 O.
  • the anion is a monovalent or higher anion, preferably a monovalent or divalent ion.
  • the anion in LDH comprises OH - and / or CO 3 2- .
  • LDH has excellent ionic conductivity due to its inherent properties.
  • LDH is M 2+ 1-x M 3+ x (OH) 2 A n ⁇ x / n ⁇ mH 2 O (where M 2+ is a divalent cation and M 3+ is a trivalent cation).
  • a n ⁇ is an n-valent anion, n is an integer of 1 or more, x is 0.1 to 0.4, and m is 0 or more). It is known as a representative.
  • M 2+ may be any divalent cation, and preferred examples include Mg 2+ , Ca 2+ and Zn 2+ , and more preferably Mg 2+ .
  • M 3+ may be any trivalent cation, but preferred examples include Al 3+ or Cr 3+ , and more preferred is Al 3+ .
  • a n- can be any anion, but preferred examples include OH - and CO 3 2- .
  • M 2+ comprises Mg 2+
  • M 3+ comprises Al 3+
  • a n-is OH - and / or CO preferably contains 3 2-.
  • n is an integer of 1 or more, preferably 1 or 2.
  • x is 0.1 to 0.4, preferably 0.2 to 0.35.
  • m is an arbitrary number which means the number of moles of water, and is a real number of 0 or more, typically more than 0 or 1 or more.
  • the above basic composition formula is merely a formula of “basic composition” that is typically exemplified with respect to LDH in general, and the constituent ions can be appropriately replaced.
  • the constituent ions can be appropriately replaced.
  • it may be replaced with some or all of the M 3+ tetravalent or higher valency cations in the basic formula, in which case, the anion A coefficient of n-x / n in the general formula May be changed as appropriate.
  • the hydroxide base layer of LDH may be composed of Ni, Ti, OH groups and possibly inevitable impurities.
  • the intermediate layer of LDH is composed of an anion and H 2 O.
  • the alternate layered structure of the hydroxide basic layer and the intermediate layer itself is basically the same as the commonly known alternate layered structure of LDH, but the LDH of this embodiment is mainly composed of Ni, By comprising Ti and OH groups, excellent alkali resistance can be exhibited.
  • an element for example, Al
  • the LDH of this embodiment can also exhibit high ionic conductivity suitable for use as a gas diffusion electrode separator in a salt electrolysis device.
  • Ni in LDH can take the form of nickel ions.
  • the nickel ions in LDH are typically considered to be Ni 2+ , but are not particularly limited because other valences such as Ni 3+ may also exist.
  • Ti in LDH can take the form of titanium ions.
  • the titanium ion in LDH is typically considered to be Ti 4+ , but is not particularly limited because other valences such as Ti 3+ may also exist.
  • Inevitable impurities are optional elements that can be inevitably mixed in the manufacturing process, and can be mixed in LDH, for example, derived from raw materials and base materials.
  • the hydroxide base layer is mainly composed of Ni 2+ , Ti 4+ and OH groups
  • the corresponding LDH has the general formula: Ni 2+ 1-x Ti 4+ x (OH) 2 An - 2x / n ⁇ mH 2 O (wherein, a n-n-valent anion, n is an integer of 1 or more, preferably 1 or 2, 0 ⁇ x ⁇ 1, preferably 0.01 ⁇ x ⁇ 0.5, m is 0 or more, typically greater than 0 or 1 or more real number).
  • the hydroxide basic layer of LDH may contain Ni, Al, Ti and OH groups.
  • the intermediate layer is composed of an anion and H 2 O.
  • the alternate layered structure of the hydroxide basic layer and the intermediate layer itself is basically the same as the generally known alternate layered structure of LDH, but the LDH of this embodiment uses the basic hydroxide layer of LDH as Ni, Al.
  • the LDH of this embodiment uses the basic hydroxide layer of LDH as Ni, Al.
  • the LDH of this embodiment is thought to be because Al, which was previously thought to be easily eluted in an alkaline solution, is less likely to be eluted in an alkaline solution due to some interaction with Ni and Ti.
  • the LDH of this embodiment can also exhibit high ionic conductivity suitable for use as a gas diffusion electrode separator in a salt electrolysis device.
  • Ni in LDH can take the form of nickel ions.
  • the nickel ions in LDH are typically considered to be Ni 2+ , but are not particularly limited because other valences such as Ni 3+ may also exist.
  • Al in LDH can take the form of aluminum ions.
  • Aluminum ions in LDH are typically considered to be Al 3+ , but are not particularly limited because other valences are possible.
  • Ti in LDH can take the form of titanium ions.
  • the titanium ion in LDH is typically considered to be Ti 4+ , but is not particularly limited because other valences such as Ti 3+ may also exist.
  • the hydroxide base layer may contain other elements or ions as long as it contains Ni, Al, Ti and OH groups. However, it is preferable that the hydroxide base layer contains Ni, Al, Ti, and OH groups as main components. That is, the hydroxide base layer is preferably mainly composed of Ni, Al, Ti and OH groups. Therefore, the hydroxide base layer is typically composed of Ni, Al, Ti, OH groups and possibly inevitable impurities. Inevitable impurities are optional elements that can be inevitably mixed in the manufacturing process, and can be mixed in LDH, for example, derived from raw materials and base materials. As described above, since the valences of Ni, Al, and Ti are not necessarily certain, it is impractical or impossible to specify LDH strictly by a general formula.
  • the hydroxide base layer is mainly composed of Ni 2+ , Al 3+ , Ti 4+ and OH groups
  • the corresponding LDH has the general formula: Ni 2+ 1-xy Al 3+ x Ti 4+ y (OH) 2 A n ⁇ (x + 2y) / n ⁇ mH 2 O
  • a n ⁇ is an n-valent anion
  • n is an integer of 1 or more, preferably 1 or 2, and 0 ⁇ x ⁇ 1, preferably 0.01 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 1, preferably 0.01 ⁇ y ⁇ 0.5, 0 ⁇ x + y ⁇ 1, m is 0 or more, typically 0.
  • the LDH separator 28 may be in a plate shape, a film shape, or a layer shape.
  • the film or layer LDH separator 28 is combined with the porous substrate 30.
  • it is preferably formed on or in the porous substrate 30.
  • a preferable thickness of the plate-like LDH separator 28 is 0.01 to 0.5 mm, more preferably 0.02 to 0.2 mm, and still more preferably 0.05 to 0.1 mm.
  • the hydroxide ion conductivity of the LDH separator 28 is preferably as high as possible, but typically has a conductivity of 10 ⁇ 4 to 10 ⁇ 1 S / m.
  • the thickness is preferably 100 ⁇ m or less, more preferably 75 ⁇ m or less, still more preferably 50 ⁇ m or less, particularly preferably 25 ⁇ m or less, and most preferably 5 ⁇ m or less.
  • the lower limit of the thickness is not particularly limited because it varies depending on the application, but in order to ensure a certain degree of rigidity desired as a separator film or layer, the thickness is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more. is there.
  • the LDH separator 28 is preferably combined with the porous substrate 30.
  • the porous substrate 30 may be provided on at least one side of the LDH separator 28.
  • the porous substrate 30 is provided on the surface of the LDH separator 28 opposite to the gas diffusion electrode 24 (typically on the catholyte chamber 20 side). Is preferred.
  • the porous substrate 30 has water permeability, so that the electrolytic solution in the catholyte chamber 20 can reach the LDH separator 28.
  • the LDH separator 28 can be thinned to reduce the resistance.
  • a dense film or dense layer of LDH can be formed on or in the porous substrate 30.
  • a method of preparing a porous substrate and forming an LDH film on the porous substrate can be considered.
  • the porous substrate 30 is preferably composed of at least one selected from the group consisting of a ceramic material, a metal material, and a polymer material, more preferably a ceramic material and / or a polymer material, still more preferably. It is a polymer material. More preferably, the porous substrate is made of a ceramic material. In this case, preferable examples of the ceramic material include alumina, zirconia, titania, magnesia, spinel, calcia, cordierite, zeolite, mullite, ferrite, zinc oxide, silicon carbide, and any combination thereof, and more preferable.
  • the metal material include aluminum and zinc.
  • Preferable examples of the polymer material include polystyrene, polyether sulfone, polypropylene, epoxy resin, polyphenylene sulfide, hydrofluorinated fluororesin (tetrafluorinated resin: PTFE, etc.), and any combination thereof. It is further preferable to appropriately select a material excellent in alkali resistance as the resistance to the electrolytic solution from the various preferable materials described above.
  • the LDH separator 28 is composed of an aggregate of a plurality of LDH plate-like particles, and the plurality of LDH plate-like particles have their plate surfaces on the surface of the porous substrate 30 (ignoring fine irregularities caused by the porous structure). The orientation is such that it intersects perpendicularly or diagonally with the main surface of the porous substrate when observed macroscopically as much as possible.
  • the LDH separator 28 may be at least partially incorporated in the pores of the porous substrate 30, and in that case, LDH plate-like particles may also exist in the pores of the porous substrate 30.
  • the manufacturing method of the LDH separator 28, for example, the LDH separator 28 combined with the porous substrate 30, is not particularly limited, and is manufactured by referring to the already known LDH separator manufacturing methods (for example, Patent Documents 2 and 3). be able to.
  • the salt electrolysis apparatus 10 in the production of caustic soda, it is possible to effectively precipitate carbonate, deteriorate the electrolyte, and increase the reaction resistance in the reaction layer due to the intrusion of carbon dioxide into the electrolyte. Can be prevented.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

二酸化炭素の電解液への浸入に起因する、炭酸塩の析出、電解液の劣化、及び反応層での反応抵抗増大を効果的に防止可能な、苛性ソーダ製造用の食塩電解装置が提供される。この食塩電解装置は、陽極を有し、塩化ナトリウム水溶液が供給されて塩素を生成する陽極室と、陰極としてガス拡散電極を有し、酸素及び水が供給されて水酸化ナトリウム水溶液を生成する陰極室と、陽極室と陰極室とを区画し、ナトリウムイオンを選択的に透過させるイオン交換膜と、陰極室内におけるガス拡散電極の一面側に設けられ、酸素ガス及び水蒸気が供給される陰極ガス室と、ガス拡散電極の他面側に設けられ、陰極ガス室から水酸化ナトリウム水溶液への二酸化炭素の浸入を阻止する層状複水酸化物(LDH)セパレータとを備える。

Description

苛性ソーダ製造用の食塩電解装置
 本発明は、苛性ソーダ(水酸化ナトリウム)製造用の食塩電解装置に関するものである。
 NaOHが食塩水の電解(以下、食塩電解という)により広く製造されている。その国内生産量は年間366万トン(2013年度)にも達している。食塩電解は極めて多量の電力を消費することが知られている。ある報告によれば、食塩電解の国内電力消費量は年間113億kWh(2001年)であり、これは国内産業用電力の3%に相当する。したがって、食塩電解の省エネルギー化が求められている。
 従来より、消費電力を40%削減可能な手法として、ガス拡散電極法が広く採用されている。ガス拡散電極法は、ガス拡散電極を用いたイオン交換膜法で食塩水を電解し、塩素及び苛性ソーダを製造する手法である。例えば、特許文献1(特開平7-278864号公報)にはガス拡散電極を備えた食塩電解槽が開示されており、ガス拡散電極は反応層と撥水層を備えることが記載されている。
 図3にガス拡散電極法を採用した従来の食塩電解装置100が示される。図3に示されるように、ガス拡散電極法においては、陽極122を有しNaCl水溶液が供給される陽極室112と、ガス拡散電極124(陰極)を有しNaOH水溶液を生成する陰極室114とを、イオン交換膜116で区画する。陰極室114は陰極ガス室118と陰極液室120とを有し、ガス拡散電極124で区画される。そして、陰極ガス室118にO及びHOを供給して両電極122,124間に電圧を印加して電解する。こうして、陰極液室120でNaOH水溶液を生成し、陽極室122でClを生成する。すなわち、ガス拡散電極法における電極反応は以下のとおりであり、ガス拡散電極における陰極反応には水酸化物イオン(OH)が関与する。
‐ 陽極:2Cl→Cl+2e
‐ 陰極:1/2O+HO+2e→2OH
     2Na+2OH→2NaOH
‐ 全体:2Na+2Cl+HO+1/2O→2NaOH+Cl
 一方、亜鉛二次電池の分野において、水酸化物イオン(OH)伝導性を有する層状複水酸化物(LDH)セパレータが提案されている。例えば、特許文献2(国際公開第2013/118561号)には、ニッケル亜鉛二次電池において、亜鉛デンドライトによる短絡の防止を目的として、LDHセパレータを正極及び負極間に設けることが開示されている。また、特許文献3(国際公開第2016/076047号)には、多孔質基材と複合化されたLDHセパレータを備えたセパレータ構造体が開示されており、LDHセパレータがガス不透過性及び/又は水不透過性を有する程の高い緻密性を有することが開示されている。
特開平7-278864号公報 国際公開第2013/118561号 国際公開第2016/076047号 国際公開第2016/208769号
 図3から分かるように、ガス拡散電極法では、多孔なガス拡散電極124がアルカリ性電解液に接している。このため、供給ガス成分中のCOが多孔なガス拡散電極124を通って電解液に侵入すると、電解液が劣化する。COは空気中の成分に由来して供給ガスに混入する可能性のある成分である。すなわち、図4に微視的に示されるように、外部から供給されたHO及びO含有ガスが撥水層124bを通って反応層124aでOHを生成する一方、上記ガスに混入されたCOが撥水層124bを通って反応層124aで電解液に到達し、Naと結合して炭酸塩(NaCO)を析出し、電解液を劣化させる。また、析出したNaCOが反応層124a中の反応活性点表面を被覆することでHO及びOガスからOHを生成する反応が阻害され、反応抵抗が増大する。
 本発明者らは、今般、苛性ソーダ製造用の食塩電解装置において、ガス拡散電極と電解液との間にLDHセパレータを介在させることで、水酸化ナトリウム水溶液への二酸化炭素の浸入を阻止し、それにより炭酸塩の析出、電解液の劣化、及び反応層での反応抵抗増大を防止できるとの知見を得た。
 したがって、本発明の目的は、二酸化炭素の電解液への浸入に起因する、炭酸塩の析出、電解液の劣化、及び反応層での反応抵抗増大を効果的に防止可能な、苛性ソーダ製造用の食塩電解装置を提供することにある。
 本発明の一態様によれば、苛性ソーダ製造用の食塩電解装置であって、
 陽極を有し、塩化ナトリウム水溶液が供給されて塩素を生成する陽極室と、
 陰極としてガス拡散電極を有し、酸素及び水が供給されて水酸化ナトリウム水溶液を生成する陰極室と、
 前記陽極室と前記陰極室とを区画し、ナトリウムイオンを選択的に透過させるイオン交換膜と、
 前記陰極室内における前記ガス拡散電極の一面側に設けられ、酸素ガス及び水蒸気が供給される陰極ガス室と、
 前記ガス拡散電極の他面側に設けられ、前記陰極ガス室から前記水酸化ナトリウム水溶液への二酸化炭素の浸入を阻止する層状複水酸化物(LDH)セパレータと、
を備えた、食塩電解装置が提供される。
本発明の食塩電解装置の一形態を模式的に示す図である。 本発明のガス拡散電極とLDHセパレータの積層構造において生じる現象を概念的に示す図である。 ガス拡散電極法を採用した従来の食塩電解装置の一形態を模式的に示す図である。 ガス拡散電極法を採用した従来のガス拡散電極において生じる現象を概念的に示す図である。
 食塩電解装置
 本発明は、苛性ソーダ製造用の食塩電解装置に関する。図1に食塩電解装置の構成が模式的に示される。図1に示されるように、食塩電解装置10は、陽極室12と、陰極室14と、イオン交換膜16と、陰極ガス室18と、LDHセパレータ28とを備える。陽極室12は、塩化ナトリウム水溶液が供給されて塩素を生成する区画であり、陽極22を有する。陰極室14は、酸素及び水が供給されて水酸化ナトリウム水溶液を生成する区画であり、陰極としてガス拡散電極24を有する。イオン交換膜16は、ナトリウムイオンを選択的に透過させる膜であり、陽極室12と陰極室14とを区画する。陰極ガス室18は、陰極室14におけるガス拡散電極24の一面側に設けられ、酸素ガス及び水蒸気が供給される。LDHセパレータ28は、ガス拡散電極24の他面側に設けられ、陰極ガス室18から水酸化ナトリウム水溶液への二酸化炭素の浸入を阻止する。典型的には、陰極室14内におけるイオン交換膜16とLDHセパレータ28との間には陰極液室20が設けられる。このように、ガス拡散電極24と電解液(水酸化ナトリウム水溶液)との間にLDHセパレータ28を介在させることで、水酸化ナトリウム水溶液への二酸化炭素の浸入を阻止し、それにより炭酸塩の析出、電解液の劣化、及び反応層での反応抵抗増大を防止することができる。すなわち、図2に微視的に示されるように、電解時において、外部から供給されたHO及びO含有ガスがガス拡散電極24でOHを生成する一方、上記ガスに混入されたCOの電解液への浸入がLDHセパレータ28で阻止される。こうして、COの電解液への浸入に起因する、炭酸塩(NaCO)の析出が防止され、その結果、炭酸塩の析出に起因する電解液の劣化及び反応層での反応抵抗増大が効果的に防止される。しかも、LDHセパレータ28は水酸化物イオン伝導性を有することが知られる層状複水酸化物を含むため、ガス拡散電極24で生成したOHはLDHセパレータ28を選択的に通過してNaを含む電解液に供給され、水酸化ナトリウム(NaOH)を生成する。
 陽極室12は、塩化ナトリウム水溶液が供給されて塩素を生成する区画であり、陽極22を有する。したがって、陽極室12は、塩化ナトリウム水溶液を供給するための供給口12aと、塩素ガスを排出するための排出口12bとを有する。陽極22は、食塩電解に使用される公知の陽極であることができる。陽極22の例としては、チタン基材に白金族金属酸化物を被覆した電極、例えばDSE塩素発生用電極(デノラ・ペルメレック株式会社製)が挙げられる。
 陰極室14は、酸素及び水が供給されて水酸化ナトリウム水溶液を生成する区画であり、ガス拡散電極24を有する。典型的な陰極室14は、陰極液室20と陰極ガス室18とを有し、陰極液室20と陰極ガス室18とがガス拡散電極24及びLDHセパレータ28で隔離される。陰極液室20は、陰極室14内におけるイオン交換膜16とLDHセパレータ28との間に設けられ、水、ナトリウムイオン及び水酸化物イオンが供給されて水酸化ナトリウム水溶液が生成される。したがって、陰極液室20は、水を供給するための供給口20aと、水酸化ナトリウムを排出するための排出口20bとを有する。このように陰極液室20を備える食塩電解装置10は、陽極室12、陰極ガス室18及び陰極液室20の3室を有するため、3室型電解槽と称されるものである。もっとも、本発明の食塩電解装置は、陰極室14が陰極液室20を有しない構成(いわゆる2室型電解槽)としてもよく、この場合、イオン交換膜16とLDHセパレータ28(又は多孔質基材30)とが接合させた構成となりうる。
 ガス拡散電極24は、公知のガス拡散電極又は空気極(これは酸素極とも称される)の構成を採用すればよく、特に限定されない。ガス拡散電極24はガス拡散を許容するように多孔構造を有することが望まれる。ガス拡散電極24は反応層24aを含み、LDHセパレータ28が反応層24aに接合されているのが好ましい。
 反応層24aは、空気極触媒、電子伝導性材料、及び水酸化物イオン伝導性材料を含む。もっとも、電子伝導性材料としても機能する空気極触媒を用いる場合には、反応層24aは、そのような電子伝導性材料兼空気極触媒と水酸化物イオン伝導性材料とを含むものであってもよい。
 空気極触媒は、ガス拡散電極又は空気極において使用される公知の触媒であれば特に限定されず、酸素を活物質として利用可能な種々の空気極触媒が使用可能である。空気極触媒の好ましい例としては、黒鉛等の酸化還元触媒機能を有するカーボン系材料、白金、ニッケル等の酸化還元触媒機能を有する金属、ペロブスカイト型酸化物、二酸化マンガン、酸化ニッケル、酸化コバルト、スピネル酸化物等の酸化還元触媒機能を有する無機酸化物が挙げられる。空気極触媒の形状は特に限定されないが、粒子形状であるのが好ましい。
 電子伝導性材料は、導電性を有し、空気極触媒とLDHセパレータ28との間で電子伝導を可能とするものであれば特に限定されない。電子伝導性材料の好ましい例としては、ケッチェンブラック、アセチレンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、鱗片状黒鉛のような天然黒鉛、人造黒鉛、膨張黒鉛等のグラファイト類、炭素繊維、金属繊維等の導電性繊維類、銅、銀、ニッケル、アルミニウム等の金属粉末類、ポリフェニレン誘導体等の有機電子伝導性材料、及びこれらの任意の混合物が挙げられる。電子伝導性材料の形状は、粒子形状であってもよいし、その他の形状であってもよいが、反応層24aにおいて厚さ方向に連続した相(即ち電子伝導相)をもたらす形態で用いられるのが好ましい。例えば、電子伝導性材料は、多孔質材料であってもよい。また、電子伝導性材料は空気極触媒との混合物ないし複合体の形態(例えば白金担持カーボン)であってもよく、前述したように電子伝導性材料としても機能する空気極触媒(例えば遷移金属を含有するペロブスカイト型化合物、あるいはカーボンナノチューブ(CNT))であってもよい。
 水酸化物イオン伝導性材料は、水酸化物イオンを透過可能な材料であれば特に限定されず、無機材料及び有機材料を問わず、各種の材質及び形態の材料が使用可能である。水酸化物イオン伝導性材料は、粒子形態であってもよいし、空気極触媒及び電子伝導性材料を部分的に又は概ね全体的に被覆するような塗布膜の形態であってもよい。もっとも、この塗布膜の形態においても、イオン伝導性材料は緻密質ではなく、開気孔を有しており、反応層24aの外側表面からLDHセパレータ28との界面に向かって、OやHOが気孔中を拡散できるように構成されるのが望ましい。
 水酸化物イオン伝導性材料が層状複水酸化物(LDH)を含むのが好ましい。反応層24aに用いるLDHは、一般式:M2+ 1-x3+ (OH)n- x/n・mHO(式中、M2+は少なくとも1種以上の2価の陽イオンであり、M3+は3価の少なくとも1種以上の陽イオンであり、An-はn価の陰イオンであり、nは1以上の整数、xは0.1~0.4であり、mは任意の実数である)の基本組成を有するものが好ましい。上記一般式において、M2+は任意の2価の陽イオンでありうるが、好ましい例としてはNi2+、Mg2+、Ca2+、Mn2+、Fe2+、Co2+、Cu2+、Zn2+が挙げられ、より好ましくはNi2+である。M3+は任意の3価の陽イオンでありうるが、好ましい例としてはFe3+、Al3+、Co3+,Cr3+、In3+が挙げられ、より好ましくはFe3+である。An-は任意の陰イオンでありうるが、好ましい例としてはNO3-、CO 2-、SO 2-、OH、Cl、I、Br、Fが挙げられ、より好ましくはNO3-及び/又はCO 2-である。したがって、上記一般式は、M2+がNi2+を含み、M3+がFe3+を含み、An-がNO3-及び/又はCO 2-を含むのが好ましい。nは1以上の整数であるが、好ましくは1~3である。xは0.1~0.4であるが、好ましくは0.2~0.35である。mは任意の実数である。より具体的には、mは0以上、典型的には0を超える又は1以上の実数ないし整数である。あるいは、水酸化物イオン伝導性材料は、NaCo、LaFeSr10、BiSr14Fe2456、NaLaTiO、RbLaNb、及びKLaNbのいずれかを水和させたもの、及びSrCo1.6Ti1.4(OH)・xHOからなる群から選択される少なくとも一種の基本組成を有するものであってもよい。
 また、水酸化物イオン伝導性材料は、水酸化物イオン伝導性を有する高分子材料を含むものであってもよく、あるいはそのような高分子材料と上述した層状複水酸化物との混合物又は複合体であってもよい。水酸化物イオン伝導性を有する高分子材料は、水酸化物イオンを透過可能な陰イオン交換基を有する高分子材料を使用するのが好ましい。水酸化物イオン伝導性を有する高分子材料の好ましい例としては、四級アンモニウム基、ピリジニウム基、イミダゾリウム基、ホスホニウム基、スルホニウム基等の陰イオン交換基を有する炭化水素系樹脂(例えば、ポリスチレン、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリフェニレン、ポリベンズイミダゾール、ポリイミド、ポリアリーレンエーテル等)、フッ素系樹脂等の高分子化合物が挙げられる。
 反応層24aの形成は、最終的にLDHセパレータ28上に空気極触媒、電子伝導性材料、及び水酸化物イオン伝導性材料を含む層を形成できる限り、あらゆる手法で行われてよく、特に限定されない。例えば、空気極触媒、電子伝導性材料、及び水酸化物イオン伝導性材料をエタノール等の溶媒を用いて湿式混合して乾燥及び解砕した後、バインダーと混合してフィブリル化し、得られたフィブリル状混合物を集電体に圧着して反応層24aを形成し、この反応層24a/集電体の積層シートの反応層24a側をLDHセパレータ28に圧着してもよい。あるいは、空気極触媒、電子伝導性材料、及び水酸化物イオン伝導性材料をエタノール等の溶媒と共に湿式混合してスラリー化し、このスラリーをLDHセパレータ28に塗布して乾燥させて反応層24aを形成してもよい。
 したがって、反応層24aはバインダーを含んでいてもよい。バインダーは、熱可塑性樹脂や熱硬化性樹脂であってよく特に限定されないが、好ましい例としては、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、テトラフルオロエチレン-ヘキサフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-クロロトリフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン-ペンタフルオロプロピレン共重合体、プロピレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体、フッ化ビニリデン-パーフルオロメチルビニルエーテル-テトラフルオロエチレン共重合体、エチレン-アクリル酸共重合体、カルボキシメチルセルロール(CMC)、メチルセルロース(MC)、酢酸フタル酸セルロース(CAP)、ヒドロキシプロピルメチルセルロース(HPMC)、ヒドロキシプロピルメチルセルロースフタレート(HPMCP)、ポリビニルアルコール(PVA)及びこれらの任意の混合物が挙げられる。
 電子伝導性材料としても機能する空気極触媒はカーボンナノチューブ(CNT)を含むのが好ましい。特に、CNTとLDHとを含む反応層24aが、ガス拡散電極特性(水酸化物イオン伝導性、電子伝導性及び触媒反応活性)を向上できる点で好ましい。特に好ましくは、複数個のLDH粒子が複数本のCNTに支持された空気極である。このようなCNT及びLDHを含む空気極は特許文献4(国際公開2016/208769号)に開示されている。
 ガス拡散電極24は、反応層24aの陰極ガス室18側に撥水層24bをさらに含んでいてもよい。撥水層24bは、ガス拡散電極の撥水層として用いられる公知の撥水性物質を含みうる。そのような撥水性物質の例としてはフッ素樹脂が挙げられる。撥水層24bは開気孔を有し、撥水層24bの外側表面(陰極ガス室18側の表面)から反応層24aに向かって、OやHOが気孔中を拡散できるように構成されるのが望ましい。
 イオン交換膜16は、ナトリウムイオンを選択的に透過させる膜であり、陽極室12と陰極室14(典型的には陰極液室20)とを区画する。イオン交換膜16は市販の陽イオン交換膜を採用すればよく、特に限定されない。フッ素樹脂系の陽イオン交換膜が耐食性の観点から好ましい。
 陰極ガス室18は、陰極室14内におけるガス拡散電極24の一面側(典型的には陰極液室20と反対側)に設けられ、酸素ガス及び水蒸気が供給される。したがって、陰極ガス室18は、酸素ガス及び水蒸気を供給するための供給口18aと、未反応の酸素ガス及び水蒸気を排出するための排出口18bとを有する。
 LDHセパレータ28は、ガス拡散電極24の陰極ガス室18と反対側(すなわち陰極液室20側)に設けられ、陰極ガス室18から水酸化ナトリウム水溶液への二酸化炭素の浸入を阻止する。LDHセパレータ28はガス拡散電極24(特に反応層24a)に接合されている。
 LDHセパレータ28は層状複水酸化物(LDH)を含むセラミックスセパレータである。LDHセパレータ28は、前述したように、亜鉛二次電池の分野において水酸化物イオン伝導性を有する緻密セパレータとして知られている。好ましいLDHセパレータ28はガス不透過性及び/又は水不透過性を有する。換言すれば、LDHセパレータ28はガス不透過性及び/又は水不透過性を有するほどに緻密化されているのが好ましい。なお、本明細書において「ガス不透過性を有する」とは、特許文献3(国際公開第2016/076047号)に記載されるように、水中で測定対象物(すなわちLDHセパレータ28及び/又は多孔質基材30)の一面側にヘリウムガスを0.5atmの差圧で接触させても他面側からヘリウムガスに起因する泡の発生がみられないことを意味する。また、本明細書において「水不透過性を有する」とは、特許文献3に記載されるように、測定対象物(例えばLDH膜及び/又は多孔質基材)の一面側に接触した水が他面側に透過しないことを意味する。すなわち、LDHセパレータ28がガス不透過性及び/又は水不透過性を有するということは、LDHセパレータ28が気体又は水を通さない程の高度な緻密性を有することを意味し、透水性及び/又は通気性を有する多孔性フィルムやその他の多孔質材料ではないことを意味する。こうすることで、LDHセパレータ28は、その水酸化物イオン伝導性に起因して水酸化物イオンのみを選択的に通すものとなる。その結果、ガス拡散電極24からの二酸化炭素の電解液への浸入を阻止しながら、電解液とガス拡散電極24との間で水酸化ナトリウムの生成に必要な水酸化物イオンの授受を効率良く行うことができる。もっとも、図1に示されるようにLDHセパレータ28が多孔質基材30と複合化されてよいのはいうまでもない。
 LDHセパレータ28は層状複水酸化物(LDH)を含み、好ましくはLDHで構成される。一般的に知られているように、LDHは、複数の水酸化物基本層と、これら複数の水酸化物基本層間に介在する中間層とから構成される。水酸化物基本層は主として金属元素(典型的には金属イオン)とOH基で構成される。LDHの中間層は、陰イオン及びHOで構成される。陰イオンは1価以上の陰イオン、好ましくは1価又は2価のイオンである。好ましくは、LDH中の陰イオンはOH及び/又はCO 2-を含む。また、LDHはその固有の性質に起因して優れたイオン伝導性を有する。
 一般的に、LDHは、M2+ 1-x3+ (OH)n- x/n・mHO(式中、M2+は2価の陽イオンであり、M3+は3価の陽イオンであり、An-はn価の陰イオンであり、nは1以上の整数であり、xは0.1~0.4であり、mは0以上である)の基本組成式で代表されるものとして知られている。上記基本組成式において、M2+は任意の2価の陽イオンでありうるが、好ましい例としてはMg2+、Ca2+及びZn2+が挙げられ、より好ましくはMg2+である。M3+は任意の3価の陽イオンでありうるが、好ましい例としてはAl3+又はCr3+が挙げられ、より好ましくはAl3+である。An-は任意の陰イオンでありうるが、好ましい例としてはOH及びCO 2-が挙げられる。したがって、上記基本組成式において、M2+がMg2+を含み、M3+がAl3+を含み、An-がOH及び/又はCO 2-を含むのが好ましい。nは1以上の整数であるが、好ましくは1又は2である。xは0.1~0.4であるが、好ましくは0.2~0.35である。mは水のモル数を意味する任意の数であり、0以上、典型的には0を超える又は1以上の実数である。もっとも、上記基本組成式は、一般にLDHに関して代表的に例示される「基本組成」の式にすぎず、構成イオンを適宜置き換え可能なものである。例えば、上記基本組成式においてM3+の一部または全部を4価またはそれ以上の価数の陽イオンで置き換えてもよく、その場合は、上記一般式における陰イオンAn-の係数x/nは適宜変更されてよい。
 例えば、LDHの水酸化物基本層は、Ni、Ti、OH基、及び場合により不可避不純物で構成されてもよい。LDHの中間層は、上述のとおり、陰イオン及びHOで構成される。水酸化物基本層と中間層の交互積層構造自体は一般的に知られるLDHの交互積層構造と基本的に同じであるが、本態様のLDHは、LDHの水酸化物基本層を主としてNi、Ti及びOH基で構成することで、優れた耐アルカリ性を呈することができる。その理由は必ずしも定かではないが、本態様のLDHにはアルカリ溶液に溶出しやすいと考えられる元素(例えばAl)が意図的又は積極的に添加されていないためと考えられる。そうでありながらも、本態様のLDHは、食塩電解装置のガス拡散電極用セパレータとしての使用に適した高いイオン伝導性も呈することができる。LDH中のNiはニッケルイオンの形態を採りうる。LDH中のニッケルイオンは典型的にはNi2+であると考えられるが、Ni3+等の他の価数もありうるため、特に限定されない。LDH中のTiはチタンイオンの形態を採りうる。LDH中のチタンイオンは典型的にはTi4+であると考えられるが、Ti3+等の他の価数もありうるため、特に限定されない。不可避不純物は製法上不可避的に混入されうる任意元素であり、例えば原料や基材に由来してLDH中に混入しうる。上記のとおり、Ni及びTiの価数は必ずしも定かではないため、LDHを一般式で厳密に特定することは非実際的又は不可能である。仮に水酸化物基本層が主としてNi2+、Ti4+及びOH基で構成されるものと想定した場合には、対応するLDHは、一般式:Ni2+ 1-xTi4+ (OH)n- 2x/n・mHO(式中、An-はn価の陰イオン、nは1以上の整数、好ましくは1又は2であり、0<x<1、好ましくは0.01≦x≦0.5、mは0以上、典型的には0を超える又は1以上の実数である)なる基本組成で表すことができる。もっとも、上記一般式はあくまで「基本組成」と解されるべきであり、Ni2+やTi4+等の元素がLDHの基本的特性を損なわない程度に他の元素又はイオン(同じ元素の他の価数の元素又はイオンや製法上不可避的に混入されうる元素又はイオンを含む)で置き換え可能なものとして解されるべきである。
 あるいは、LDHの水酸化物基本層は、Ni、Al、Ti及びOH基を含むものであってもよい。中間層は、上述のとおり、陰イオン及びHOで構成される。水酸化物基本層と中間層の交互積層構造自体は一般的に知られるLDHの交互積層構造と基本的に同じであるが、本態様のLDHは、LDHの水酸化物基本層をNi、Al、Ti及びOH基を含む所定の元素ないしイオンで構成することで、優れた耐アルカリ性を呈することができる。その理由は必ずしも定かではないが、本態様のLDHは、従来はアルカリ溶液に溶出しやすいと考えられていたAlが、Ni及びTiとの何らかの相互作用によりアルカリ溶液に溶出しにくくなるためと考えられる。そうでありながらも、本態様のLDHは、食塩電解装置のガス拡散電極用セパレータとしての使用に適した高いイオン伝導性も呈することができる。LDH中のNiはニッケルイオンの形態を採りうる。LDH中のニッケルイオンは典型的にはNi2+であると考えられるが、Ni3+等の他の価数もありうるため、特に限定されない。LDH中のAlはアルミニウムイオンの形態を採りうる。LDH中のアルミニウムイオンは典型的にはAl3+であると考えられるが、他の価数もありうるため、特に限定されない。LDH中のTiはチタンイオンの形態を採りうる。LDH中のチタンイオンは典型的にはTi4+であると考えられるが、Ti3+等の他の価数もありうるため、特に限定されない。水酸化物基本層は、Ni、Al、Ti及びOH基を含んでいさえすれば、他の元素ないしイオンを含んでいてもよい。もっとも、水酸化物基本層は、Ni、Al、Ti及びOH基を主要構成要素として含むのが好ましい。すなわち、水酸化物基本層は、主としてNi、Al、Ti及びOH基からなるのが好ましい。したがって、水酸化物基本層は、Ni、Al、Ti、OH基及び場合により不可避不純物で構成されるのが典型的である。不可避不純物は製法上不可避的に混入されうる任意元素であり、例えば原料や基材に由来してLDH中に混入しうる。上記のとおり、Ni、Al及びTiの価数は必ずしも定かではないため、LDHを一般式で厳密に特定することは非実際的又は不可能である。仮に水酸化物基本層が主としてNi2+、Al3+、Ti4+及びOH基で構成されるものと想定した場合には、対応するLDHは、一般式:Ni2+ 1-x-yAl3+ Ti4+ (OH)n- (x+2y)/n・mHO(式中、An-はn価の陰イオン、nは1以上の整数、好ましくは1又は2であり、0<x<1、好ましくは0.01≦x≦0.5、0<y<1、好ましくは0.01≦y≦0.5、0<x+y<1、mは0以上、典型的には0を超える又は1以上の実数である)なる基本組成で表すことができる。もっとも、上記一般式はあくまで「基本組成」と解されるべきであり、Ni2+、Al3+、Ti4+等の元素がLDHの基本的特性を損なわない程度に他の元素又はイオン(同じ元素の他の価数の元素又はイオンや製法上不可避的に混入されうる元素又はイオンを含む)で置き換え可能なものとして解されるべきである。
 LDHセパレータ28は、板状、膜状又は層状のいずれの形態であってもよく、膜状又は層状の形態である場合、膜状又は層状のLDHセパレータ28が多孔質基材30と複合化されている、例えば多孔質基材30上又はその中に形成されたものであるのが好ましい。板状のLDHセパレータ28の好ましい厚さは、0.01~0.5mmであり、より好ましくは0.02~0.2mm、さらに好ましくは0.05~0.1mmである。また、LDHセパレータ28の水酸化物イオン伝導度は高ければ高い方が望ましいが、典型的には10-4~10-1S/mの伝導度を有する。一方、膜状又は層状の形態の場合には、厚さが100μm以下であるのが好ましく、より好ましくは75μm以下、さらに好ましくは50μm以下、特に好ましくは25μm以下、最も好ましくは5μm以下である。このように薄いことでLDHセパレータ28の低抵抗化を実現できる。厚さの下限値は用途に応じて異なるため特に限定されないが、セパレータ膜ないし層として望まれるある程度の堅さを確保するためには厚さ1μm以上であるのが好ましく、より好ましくは2μm以上である。
 LDHセパレータ28は多孔質基材30と複合化されているのが好ましい。例えば、LDHセパレータ28の少なくとも片面に多孔質基材30を設けてもよい。LDHセパレータ28の片面に多孔質基材30が設けられる場合、多孔質基材30はLDHセパレータ28のガス拡散電極24と反対側(典型的には陰極液室20側)の面に設けられるのが好ましい。多孔質基材30は透水性を有し、それ故陰極液室20内の電解液がLDHセパレータ28に到達可能である。また、多孔質基材30により強度を付与できるため、LDHセパレータ28を薄くして低抵抗化を図ることもできる。また、多孔質基材30上又はその中にLDHの緻密膜ないし緻密層を形成することもできる。LDHセパレータ28の片面に多孔質基材を設ける場合には、多孔質基材を用意して、この多孔質基材にLDHを成膜する手法が考えられる。
 多孔質基材30は、セラミックス材料、金属材料、及び高分子材料からなる群から選択される少なくとも1種で構成されるのが好ましく、より好ましくはセラミックス材料及び/又は高分子材料、さらに好ましくは高分子材料である。多孔質基材は、セラミックス材料で構成されるのがより好ましい。この場合、セラミックス材料の好ましい例としては、アルミナ、ジルコニア、チタニア、マグネシア、スピネル、カルシア、コージライト、ゼオライト、ムライト、フェライト、酸化亜鉛、炭化ケイ素、及びそれらの任意の組合せが挙げられ、より好ましくは、アルミナ、ジルコニア、チタニア、及びそれらの任意の組合せであり、特に好ましくはアルミナ及びジルコニアであり、最も好ましくはアルミナである。これらの多孔質セラミックスを用いると緻密性に優れたLDHセパレータ28を形成しやすい。金属材料の好ましい例としては、アルミニウム及び亜鉛が挙げられる。高分子材料の好ましい例としては、ポリスチレン、ポリエーテルサルフォン、ポリプロピレン、エポキシ樹脂、ポリフェニレンサルファイド、親水化したフッ素樹脂(四フッ素化樹脂:PTFE等)、及びそれらの任意の組合せが挙げられる。上述した各種の好ましい材料から電解液に対する耐性として耐アルカリ性に優れたものを適宜選択するのが更に好ましい。
 好ましくは、LDHセパレータ28が、複数のLDH板状粒子の集合体で構成され、複数のLDH板状粒子がそれらの板面が多孔質基材30の表面(多孔構造に起因する微細凹凸を無視できる程度に巨視的に観察した場合における多孔質基材の主面)と垂直に又は斜めに交差するような向きに配向している。なお、LDHセパレータ28は多孔質基材30の孔内に少なくとも部分的に組み込まれていてもよく、その場合、多孔質基材30の孔内にもLDH板状粒子は存在しうる。
 LDHセパレータ28、例えば多孔質基材30と複合化されたLDHセパレータ28の製造方法は特に限定されず、既に知られるLDHセパレータの製造方法(例えば特許文献2及び3)を参照することにより作製することができる。
 上述したような食塩電解装置10によれば、苛性ソーダ製造において、二酸化炭素の電解液への浸入に起因する、炭酸塩の析出、電解液の劣化、及び反応層での反応抵抗増大を効果的に防止することができる。
 

 

Claims (8)

  1.  苛性ソーダ製造用の食塩電解装置であって、
     陽極を有し、塩化ナトリウム水溶液が供給されて塩素を生成する陽極室と、
     陰極としてガス拡散電極を有し、酸素及び水が供給されて水酸化ナトリウム水溶液を生成する陰極室と、
     前記陽極室と前記陰極室とを区画し、ナトリウムイオンを選択的に透過させるイオン交換膜と、
     前記陰極室内における前記ガス拡散電極の一面側に設けられ、酸素ガス及び水蒸気が供給される陰極ガス室と、
     前記ガス拡散電極の他面側に設けられ、前記陰極ガス室から前記水酸化ナトリウム水溶液への二酸化炭素の浸入を阻止する層状複水酸化物(LDH)セパレータと、
    を備えた、食塩電解装置。
  2.  前記ガス拡散電極が、空気極触媒、電子伝導性材料、及び水酸化物イオン伝導性材料を含む、又は電子伝導性材料としても機能する空気極触媒、及び水酸化物イオン伝導性材料を含む反応層を有し、前記LDHセパレータが前記反応層に接合されている、請求項1に記載の食塩電解装置。
  3.  前記水酸化物イオン伝導性材料が層状複水酸化物(LDH)を含む、請求項2に記載の食塩電解装置。
  4.  前記電子伝導性材料としても機能する空気極触媒がカーボンナノチューブを含む、請求項2又は3に記載の食塩電解装置。
  5.  前記ガス拡散電極が、前記反応層の前記陰極ガス室側に撥水層をさらに含む、請求項2~4のいずれか一項に記載の食塩電解装置。
  6.  前記LDHセパレータがガス不透過性及び/又は水不透過性を有する、請求項1~5のいずれか一項に記載の食塩電解装置。
  7.  前記LDHセパレータが多孔質基材と複合化されている、請求項1~6のいずれか一項に記載の食塩電解装置。
  8.  前記LDHセパレータが、複数のLDH板状粒子の集合体で構成され、該複数のLDH板状粒子がそれらの板面が前記多孔質基材の表面と垂直に又は斜めに交差するような向きに配向している、請求項7に記載の食塩電解装置。
     
     

     
PCT/JP2017/006526 2017-02-22 2017-02-22 苛性ソーダ製造用の食塩電解装置 WO2018154643A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/006526 WO2018154643A1 (ja) 2017-02-22 2017-02-22 苛性ソーダ製造用の食塩電解装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/006526 WO2018154643A1 (ja) 2017-02-22 2017-02-22 苛性ソーダ製造用の食塩電解装置

Publications (1)

Publication Number Publication Date
WO2018154643A1 true WO2018154643A1 (ja) 2018-08-30

Family

ID=63254166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006526 WO2018154643A1 (ja) 2017-02-22 2017-02-22 苛性ソーダ製造用の食塩電解装置

Country Status (1)

Country Link
WO (1) WO2018154643A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021125386A (ja) * 2020-02-06 2021-08-30 日本碍子株式会社 電解質材料及びアルカリ形燃料電池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248483A (ja) * 1993-02-26 1994-09-06 Permelec Electrode Ltd 塩化アルカリ電解用電解槽及び電解方法
JPH0896812A (ja) * 1994-09-21 1996-04-12 Asahi Glass Co Ltd ガス拡散電極
JP2000017471A (ja) * 1998-06-30 2000-01-18 Permelec Electrode Ltd 水素発生装置
JP2003041388A (ja) * 2001-07-31 2003-02-13 Association For The Progress Of New Chemistry イオン交換膜電解槽および電解方法
WO2016076047A1 (ja) * 2014-11-13 2016-05-19 日本碍子株式会社 亜鉛二次電池に用いられるセパレータ構造体
JP2017010914A (ja) * 2015-06-26 2017-01-12 日本碍子株式会社 空気極、金属空気電池、空気極材料及び空気極材料の製造方法
JP2017024949A (ja) * 2015-07-24 2017-02-02 日本碍子株式会社 層状複水酸化物含有複合材料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248483A (ja) * 1993-02-26 1994-09-06 Permelec Electrode Ltd 塩化アルカリ電解用電解槽及び電解方法
JPH0896812A (ja) * 1994-09-21 1996-04-12 Asahi Glass Co Ltd ガス拡散電極
JP2000017471A (ja) * 1998-06-30 2000-01-18 Permelec Electrode Ltd 水素発生装置
JP2003041388A (ja) * 2001-07-31 2003-02-13 Association For The Progress Of New Chemistry イオン交換膜電解槽および電解方法
WO2016076047A1 (ja) * 2014-11-13 2016-05-19 日本碍子株式会社 亜鉛二次電池に用いられるセパレータ構造体
JP2017010914A (ja) * 2015-06-26 2017-01-12 日本碍子株式会社 空気極、金属空気電池、空気極材料及び空気極材料の製造方法
JP2017024949A (ja) * 2015-07-24 2017-02-02 日本碍子株式会社 層状複水酸化物含有複合材料

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021125386A (ja) * 2020-02-06 2021-08-30 日本碍子株式会社 電解質材料及びアルカリ形燃料電池

Similar Documents

Publication Publication Date Title
JP6441900B2 (ja) 金属空気電池用空気極
CN107408743B (zh) 空气极、水电解阳极、金属空气电池及水电解装置
Oh et al. M13 virus-directed synthesis of nanostructured metal oxides for lithium–oxygen batteries
JP4955015B2 (ja) Naイオン伝導セラミックス膜を使用した次亜塩素酸ナトリウム製造の電解プロセス
JP6550193B2 (ja) セパレータ/空気極複合体の製造方法
US10601094B2 (en) Separator-equipped air electrode for air-metal battery
JP6483111B2 (ja) アルカリ溶液の電解セル
WO2016088673A1 (ja) 亜鉛空気二次電池
US20080245671A1 (en) Electrochemical Process to Recycle Aqueous Alkali Chemicals Using Ceramic Ion Conducting Solid Membranes
JP6570545B2 (ja) 空気極、金属空気電池及び空気極材料
JP6517606B2 (ja) 空気極、金属空気電池、空気極材料及び空気極材料の製造方法
CN110199055B (zh) 阳极、水电解用阳极、电解单元以及氢的制造方法
JP2018513912A (ja) イオン交換膜、電気化学システムおよび方法
Liu et al. A photocatalytic graphene quantum dots–Cu 2 O/bipolar membrane as a separator for water splitting
Wang et al. Recent advances of bifunctional electrocatalysts and electrolyzers for overall seawater splitting
WO2018154643A1 (ja) 苛性ソーダ製造用の食塩電解装置
Tang et al. Advanced membrane‐based electrode engineering toward efficient and durable water electrolysis and cost‐effective seawater electrolysis in membrane electrolyzers
KR900002301B1 (ko) 전극 막-조립품용 다층 구조물 및 이를 사용한 전해방법
JP6203139B2 (ja) 組成物、該組成物を含有する多孔性層を有する電極、および該電極を有する金属空気二次電池
JP6313156B2 (ja) 亜鉛空気二次電池
US10777821B2 (en) Catalyst, anode, membrane electrode assembly, water electrolysis cell, stack, water electrolyzer, and hydrogen utilizing system
JP6618484B2 (ja) 空気極材料、空気極及び金属空気電池
JP2017050294A (ja) 組成物、該組成物を含有する多孔性層を有する電極、および該電極を有する金属空気二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP