WO2018153382A1 - 适应大视野要求的静态实时ct成像系统及其成像方法 - Google Patents

适应大视野要求的静态实时ct成像系统及其成像方法 Download PDF

Info

Publication number
WO2018153382A1
WO2018153382A1 PCT/CN2018/077451 CN2018077451W WO2018153382A1 WO 2018153382 A1 WO2018153382 A1 WO 2018153382A1 CN 2018077451 W CN2018077451 W CN 2018077451W WO 2018153382 A1 WO2018153382 A1 WO 2018153382A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
ray source
ray
time
imaging system
Prior art date
Application number
PCT/CN2018/077451
Other languages
English (en)
French (fr)
Inventor
曹红光
李运祥
邢金辉
Original Assignee
北京纳米维景科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京纳米维景科技有限公司 filed Critical 北京纳米维景科技有限公司
Priority to CN201880000723.8A priority Critical patent/CN108811488B/zh
Priority to JP2019546306A priority patent/JP7217847B2/ja
Priority to EP18757948.7A priority patent/EP3586752A4/en
Publication of WO2018153382A1 publication Critical patent/WO2018153382A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4021Arrangements for generating radiation specially adapted for radiation diagnosis involving movement of the focal spot
    • A61B6/4028Arrangements for generating radiation specially adapted for radiation diagnosis involving movement of the focal spot resulting in acquisition of views from substantially different positions, e.g. EBCT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4241Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using energy resolving detectors, e.g. photon counting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging

Definitions

  • the invention relates to a static real-time CT imaging system adapted to the requirements of a large field of view, and also relates to a method for real-time imaging based on the CT imaging system, and belongs to the technical field of medical imaging.
  • CT Computer Tomography
  • X-ray beam and a highly sensitive X-ray detector are used to scan a section of the human body layer by layer, and the X-ray detector receives the X through the layer.
  • the ray is converted into visible light, it is converted into an electrical signal by the photoelectric converter, amplified, and then converted into a digital signal by analog/digital conversion, and input into a computer for processing.
  • the selected layer is divided into several cubes of the same volume, called Voxel.
  • the X-ray attenuation coefficient or absorption coefficient of each voxel is obtained, and then arranged into a matrix, that is, a voxel digital matrix.
  • the digital information in the voxel digital matrix is converted into small squares of unequal gray scales from black to white, and is called a pixel (Pixel) on a two-dimensional projection, and is arranged in a tomographic manner to form a CT image.
  • the applicant discloses a static real-time CT imaging system. It includes a ring photon counting detector, a ring scan X-ray source, and a scan timing controller. Wherein, under the control of the scanning timing controller, the circular scanning X-ray source emits narrow beam X-rays, and passes through the measured object and then projects onto the corresponding annular photon counting detector.
  • the ring photon counting detector sends the corresponding exposure information to the data acquisition processing unit and the human-machine interaction unit through the scanning host and the main control unit, and performs image reconstruction in the data acquisition processing unit and the human-computer interaction unit.
  • the invention sequentially switches the X-ray projection position by electronic control, so that the scanning speed is increased by several tens of times, and a dynamic three-dimensional stereoscopic image can be obtained; by using the photon counting detector, the absorption data and the energy data can be obtained, thereby realizing real-time data reconstruction; With narrow beam X-rays, high-quality images can be obtained at one-tenth the dose of conventional CT imaging systems, avoiding excessive radiation from the patient.
  • cone beam CT is a new stage in the development of CT. It uses a flat panel detector to measure a series of ray projections at different angles, and then obtains the isotropic three-dimensional structure information of the object through a three-dimensional reconstruction algorithm.
  • FOV cone-beam CT imaging field
  • the projection data corresponding to each piece of data will be truncated in the vertical or horizontal direction, and the usual CT reconstruction algorithm, such as requiring the object to be completely covered by X-rays
  • the reconstruction effect in the presence of this projection cutoff is not ideal.
  • the Chinese invention patent No. ZL 200910091282.X discloses a detector-biased large-field cone beam X-ray oblique scanning three-dimensional digital imaging method.
  • the method biases the area array detector to emit a cone beam X-ray from the X-ray source, tilting the imaging area of the transillumination member at an angle relative to the length and width surface of the member.
  • the radiation source and the area array detector are stationary, and the member is rotated 360 degrees around the rotation axis.
  • the area array detector acquires the modulated ray signal at each rotation angle.
  • the invention can double the tilt scan imaging field of view with constant system hardware and scanning speed.
  • the primary technical problem to be solved by the present invention is to provide a static real-time CT imaging system that meets the requirements of a large field of view.
  • Another technical problem to be solved by the present invention is to provide a method for real-time imaging based on the CT imaging system.
  • a static real-time CT imaging system including a scan bed unit, a gantry unit, a human-machine interaction unit, a power control unit, a ray source control unit, a motion control unit, and a data acquisition and processing unit. a system main control unit and an image data storage unit; wherein the gantry unit includes a multifocal annular X-ray source and an annular photon detector;
  • the multifocal annular X-ray source is composed of a plurality of scanning X-ray sources arranged in a ring shape
  • the annular photon counting detector is composed of a plurality of photon counting detector modules arranged in a ring shape
  • Each of the scanning X-ray sources emits a wide beam of X-rays in turn, passes through the object to be measured, and is projected onto a corresponding photon counting detector module, between the scanning X-ray source and the corresponding photon counting detector module.
  • Each of the photon counting detector modules operates in an overlapping manner, and sends corresponding exposure information to the data acquisition processing unit, and real-time reconstruction and visual reproduction of the image are completed in the data acquisition processing unit.
  • a static real-time CT imaging control method including the following steps:
  • the photon counting detector module controlled by the scanning timing controller and the corresponding scanning X-ray source are operated at a predetermined scanning timing;
  • the scanning X-ray source emits a wide beam of X-rays according to a predetermined emission timing, and the corresponding photon counting detector module collects the X-rays through the measured object in an overlapping manner after the photon counting detector module Exposure information on.
  • the static real-time CT imaging system and the imaging method thereof emit a wide beam X-ray by a multi-focus annular X-ray source, and adopt a non-inverse geometric imaging mode between the ray source and the detector to adapt to a large field of view. (that is, the field of view FOV reaches 450 to 500 or so).
  • FIG. 1 is a schematic view showing the mechanical structure of a static real-time CT imaging system
  • FIGS. 2 and 3 are schematic diagrams showing the mechanical structure of the gantry unit 2 in the static real-time CT imaging system
  • Figure 4 is a front elevational view of the core portion of a static real-time CT imaging system adapted to the requirements of a large field of view;
  • Figure 5 is a side elevational view of the core portion of a static real-time CT imaging system adapted to large field of view requirements;
  • Figure 6 is a schematic diagram of a sequential emission X-ray and intermittently emitted X-rays of a multifocal annular X-ray source
  • Figure 7 is a schematic diagram of a multi-focus annular X-ray source for parallel scanning
  • Figure 8 is a schematic diagram of interpolating scanning of a multifocal annular X-ray source
  • FIG. 9 is a schematic diagram of a multifocal annular X-ray source implementing wobble interpolation
  • Figure 10 is a schematic structural view of a curved multifocal fixed anode grid-controlled ray source
  • Figure 11 is a schematic view showing the connection of the fixed anode reflection ray tube and the ray tube holder of Figure 10;
  • Figure 12A is a front elevational view showing the connection structure of the fixed anode reflection ray tube and the gate control switch;
  • Figure 12B is a side view showing the connection structure of the fixed anode reflection ray tube and the gate control switch;
  • FIG. 13 is a schematic diagram of a complete ring structure composed of a plurality of curved multifocal fixed anode grid-controlled ray sources;
  • Figure 14 is a schematic diagram of a multi-focus annular X-ray source for circumferential multi-spectral scanning
  • Figure 15 is a flow chart of image reconstruction performed by the static real-time CT imaging system.
  • the static real-time CT imaging system specifically includes a scanning bed unit 1, a gantry unit 2, a human-machine interaction unit 3, a power control unit 4, a ray source control unit 5, a motion control unit 6, a data acquisition processing unit 7, and a system main control unit. 8 and image data storage unit 9.
  • the human-computer interaction unit 3, the power control unit 4, the radiation source control unit 5, the motion control unit 6, the data acquisition processing unit 7, the system main control unit 8, and the image data storage unit 9 may be disposed inside the ring CT scanning component.
  • the annular CT scanning assembly is mounted on the gantry unit 2, and the scanning bed unit 1 passes through a circular space enclosed in the middle of the gantry unit 2.
  • the human-machine interaction unit 3, the power control unit 4, the radiation source control unit 5, the motion control unit 6, the data acquisition processing unit 7, and the image data storage unit 9 are respectively performed with the system main control unit 8. Connect to get the operation instructions from it.
  • 2 and 3 are schematic diagrams showing the mechanical structure of the gantry unit 2 in the static real-time CT imaging system.
  • the gantry unit 2 further includes a bracket 15, a main bearing 16, a drive motor 17, a pulley 18, a belt 19, a rotating bracket 20, a multifocal annular X-ray tube 21, and an annular photon detector 22.
  • the rotating support 20 does not need to perform rotational imaging like a normal CT, which is relatively immovable most of the time.
  • the drive motor 17 can drive the pulley 18, the belt 19, and the like to cause the multifocal annular X-ray tube 21 on the rotary holder 20 to swing at a small angle in the circumferential direction. This is an angular interpolation for fine reconstruction, and is essentially not a rotary imaging method like ordinary CT.
  • the above static real-time CT imaging system emits wide beam X-rays by a multi-focus annular X-ray source, and adopts a non-inverse geometric imaging method between the ray source and the detector to adapt to a large field of view (ie, the field of view FOV reaches 450-500 Left and right) requirements.
  • FOV field of view
  • a static real-time CT imaging system adapted to the requirements of a large field of view consists of a multifocal annular X-ray source and a ring-shaped photon detector.
  • the multifocal annular X-ray source 21 and the annular photon detector 22 are mounted on the rotating support 20, and both are on the same axis, which is the Z axis commonly referred to in the CT field.
  • the multifocal annular X-ray source emits a wide beam of X-rays, and the corresponding annular photon detector operates in an overlap manner.
  • the No. 1 scanning X-ray source corresponds to the 1, 2, 3, 4, and 5 photon detectors, and the No.
  • the 2 scanning X-ray source corresponds to the 2, 3, 4, 5, and 6 photon detectors, No. 3
  • the scanning X-ray source corresponds to the 3, 4, 5, 6, and 7 photon detectors, and so on.
  • the corresponding working mode is a full-loop readout, that is, a projection area corresponding to a plurality of focal points is read out at a time.
  • the focal plane of the multifocal annular X-ray source and the Z-center plane of the annular photon detector may or may not coincide in the Z direction. From the perspective of engineering implementation, the two are not coincident and are easier to implement in engineering. As shown in FIG.
  • the multifocal annular X-ray source may be composed of a plurality of independent scanning X-ray sources that are closely and evenly arranged in a ring shape, or may be composed of a ring-shaped X-ray source having a plurality of focal points and a plurality of cathodes, and may also be composed of several
  • the group consists of a plurality of arc-shaped X-ray sources having a plurality of focal points.
  • the annular photon detector preferably consists of a plurality of photon counting detector modules that are closely and evenly arranged in a ring shape. A non-reverse geometric imaging method is used between the scanning X-ray source and the corresponding photon counting detector module.
  • the number of scanning X-ray sources arranged on the circumference and the number of photon counting detectors may or may not coincide.
  • the photon counting detectors constituting the annular photon detector can also be replaced by direct conversion, energy discrimination or scintillator-based integral X-ray detectors.
  • the multifocal annular X-ray source is controlled by the radiation source control unit to emit a wide beam of X-rays along the circumferential direction, the effect of which is equivalent to the circumferential rotation of the existing spiral CT.
  • each of the scanning X-ray sources of the multifocal annular X-ray source may emit X-rays in a clockwise order or X-rays in a counterclockwise order.
  • each of the scanning X-ray sources on the multifocal annular X-ray source may sequentially emit X-rays in the circumferential direction, or may sequentially emit X-rays from a plurality of scanning X-ray sources.
  • the multifocal annular X-ray source can simultaneously emit X-rays in a single scanning X-ray source, or simultaneously emit X-rays in parallel in a plurality of scanning X-ray sources.
  • the maximum number of scanning X-ray sources that emit X-rays in parallel is satisfied that the X-rays emitted in parallel do not interfere with each other on the photon counting detector, and the circumferential distribution of the scanning X-ray sources that emit X-rays in parallel is preferably uniformly distributed circumferentially.
  • the X-rays emitted by the multi-focus annular X-ray source pass through the object to be measured and then illuminate the corresponding photon counting detector on the annular photon detector.
  • the data acquisition and processing unit is composed of a plurality of distributed subsystems, and an embedded GPU is integrated in the subsystem.
  • the photon counting detector collects and receives the X-ray information received by the data acquisition and processing unit, and reconstructs the processed image information and transmits the image information to the image data storage unit and the human-computer interaction unit, and the image data storage unit and the human interaction unit. The storage and visual reproduction of the image is completed.
  • the data acquisition processing mode of the existing CT can also be used: the data acquisition processing unit only collects data, and then transfers the data data to the image data storage unit for reconstruction and storage.
  • the static real-time CT imaging system provided by the present invention can adopt an interpolation scanning method.
  • the circular projection density is higher, the energy spectrum scanning function can be realized, and the multi-focus parallel scanning speed is faster.
  • the multifocal annular X-ray source is rotated at a constant speed not less than the range between the two adjacent focal points, and the multifocal ring X is in the movement time passing through the included angle range.
  • the ray source completes multiple shots of X-rays, which is equivalent to adding multiple focal points between the two foci, and several X-rays are several interpolated scans.
  • the multifocal annular X-ray source can be oscillated at a small angle along the circumferential direction, or can be oscillated in the circumferential direction by the multifocal annular X-ray source and the annular photon detector, or can be a rotating bracket.
  • the whole body does not move, and the scanning bed carries the human body to swing in the circumferential direction. Referring to the wobble interpolation principle shown in FIG.
  • the multifocal annular X-ray source can be illuminated in turn by means of a gate controlled reflective target.
  • This method has the characteristics of high power and high brightness, and is several hundred times higher than the brightness of the deflection electron beam transmitting target commonly used in the prior art.
  • the multifocal annular X-ray source is preferably realized by splicing a plurality of curved multi-focus fixed anode grid-controlled ray sources, as follows:
  • the curved multifocal fixed anode grid-controlled ray source includes a curved ray source housing 211, a ray tube holder 212, a plurality of fixed anode reflection ray tubes 213, and a plurality of gate control switches 214.
  • the plurality of fixed anode reflection ray tubes 213 are fixed on the curved ray source housing 211 by the ray tube holder 212, and the focal points of the plurality of fixed anode reflection ray tubes 213 are distributed on the same distribution circle.
  • the focal points of the plurality of fixed anode reflection ray tubes 213 are evenly distributed within a certain angular range ⁇ (360° ⁇ ⁇ > 0°) with respect to the same distribution circle; the plurality of gate control switches 214 and the plurality of fixed anode reflections
  • the ray tubes 213 are connected to each other for controlling the on and off of the plurality of fixed anode reflection ray tubes 213.
  • the curved ray source housing 211 is preferably a closed outer casing composed of an inner arc wall panel, an outer arc wall panel, a left side panel, a right side panel, a front side panel, and a rear side panel.
  • a bracket 212, a plurality of fixed anode reflection ray tubes 213, and a plurality of gate control switches 214 are disposed inside the curved ray source housing 211.
  • the angle ⁇ between the outer edge of the left side plate of the curved ray source housing 211 and the outer edge of the right side plate may be arbitrarily selected within a range of 0° to 360°, and ⁇ is preferably 360°/N, where N is a positive integer.
  • is equal to 45°, 60°, 90°, 180°, and the like.
  • the ray tube holder 212 is preferably an arc-shaped holder.
  • the ray tube holder 212 is fixed to the inner arc wall plate of the curved ray source housing 211 by a connecting member such as a bolt, and the plurality of fixed anode reflection ray tubes 213. It is fixed to the tube holder 212.
  • a plurality of through holes are uniformly formed in the ray tube holder 212.
  • the anode ends of the plurality of fixed anode reflection ray tubes 213 respectively protrude from the through holes of the ray tube holder 212, and the plurality of fixed anode reflection ray tubes 213 respectively pass the method.
  • the orchid is fixed to the tube holder 212.
  • the focus of the plurality of fixed anode reflection ray tubes 213 can be adjusted to the same circle by finely adjusting the fixed position and angle of the fixed anode reflection ray tube 213 on the ray tube holder 212.
  • a circle having a plurality of focal points of the fixed anode reflection ray tube 213 is referred to as a distribution circle of a plurality of fixed anode reflection ray tubes 213.
  • the inner and outer end faces of the curved ray source housing 211 are all curved surfaces, and the inner arc wall plate and the outer arc wall plate are respectively arranged concentrically with the distribution circle of the plurality of fixed anode reflection ray tubes 213, and of course, may be approximately concentrically arranged. Among them, the concentric setting is optimal.
  • the left and right end faces of the curved ray source housing 211 are at an angle ⁇ , and the extension lines of the left side plate and the right side plate are preferably centered by the center of the distribution circle of the plurality of fixed anode emission ray tubes 3.
  • the focal points of the plurality of fixed anode reflection ray tubes 213 are evenly distributed within a range of angles ⁇ with respect to the distribution circle, the angle range ⁇ being less than or equal to the outer edge of the left side plate and the outer edge of the right side plate of the curved ray source housing 211 The angle ⁇ between.
  • ⁇ and ⁇ are approximately equal, preferably, in the same Among the n fixed anode reflection ray tubes 213 disposed in the curved ray source housing 211, the angle between the adjacent two fixed anode reflection ray tubes 213 is ⁇ /n, and the leftmost and rightmost fixed anode reflected rays The angle between the tube 213 and the outer edge of the adjacent side panel is ⁇ /2n.
  • is smaller than ⁇ , and between the adjacent two fixed anode reflection ray tubes 213
  • the angle between ⁇ /n, the leftmost and rightmost fixed anode ray tube 213 and the outer edge of the adjacent side plate may be greater than ⁇ /2n or less than ⁇ /2n.
  • the anode end of the fixed anode reflected ray tube 213 used generates a beam of X-rays using a reflective fixed anode target.
  • Both ends of the fixed anode reflection ray tube 213 are an anode end and a cathode end, respectively, and a gate is disposed at a position close to the cathode in the fixed anode reflection ray tube 213.
  • each of the fixed anode reflection ray tubes 213 is provided with a separate gate control switch 214.
  • the gate control switch 214 is fixed to the tube body of the fixed anode reflection ray tube 213 through the bracket, and the output end of the gate control switch 214 is connected to the gate of the fixed anode reflection ray tube 213 through a wire, thereby fixing the anode reflection ray tube.
  • the on/off control of 213 is performed to control the payout, and the X-ray beam 215 emitted after being reflected by the anode end is as shown in Figs. 12A and 3B.
  • the on and off of the adjacent plurality of fixed anode reflection ray tubes 213 can also be controlled by the same gate control switch 214.
  • the control mode in which the fixed anode reflection ray tube 213 and the gate control switch 214 shown in the drawings are in one-to-one correspondence is superior.
  • N arc-shaped multi-focus fixed anode grid-controlled ray sources can be assembled into a "full ring structure" by connecting the left side plate and the right side plate of the N arc-shaped ray source housings 211 to each other.
  • the focal points of the plurality of fixed anode reflection ray tubes 213 can be circumferentially distributed on the same distribution circle and distributed as uniformly as possible.
  • the gate control switch 214 By controlling the gate control switch 214 in the entire ring structure, the fixed anode reflection ray tube 213 sequentially emits an X-ray beam, thereby enabling sequential discharge scanning in the 360° direction.
  • the X-ray beam 215 emitted from each of the fixed anode reflection ray tubes 213 is irradiated toward the center of the entire ring.
  • the entire ring structure composed of N arc-shaped multifocal fixed anode grid-controlled ray sources The focus of all the fixed anode reflection ray tubes 213 in the N curved ray source housings 211 are distributed on the same distribution circle, and the focus of the plurality of fixed anode reflection ray tubes 213 in each of the curved ray source housings 211 Uniform.
  • a plurality of curved ray source housings may be assembled into a single ring structure, so that the focal points of all the fixed anode ray tubes in the plurality of curved multifocal fixed anode grid-controlled ray sources are distributed in the same distribution circle.
  • a complete multifocal annular X-ray source is formed.
  • a plurality of gate control switches are connected to a plurality of fixed anode reflection ray tubes, and the gate control switch can control the on and off of the fixed anode reflection ray tube circuit, thereby realizing Take control of the line.
  • the above-mentioned curved multifocal fixed anode grid-controlled ray source has a simple structure, a low cost, and can generate radiation of sufficient intensity while distributing a sufficient number of focal points in the circumferential direction.
  • the static real-time CT imaging system can realize multi-spectral energy spectrum scanning by using a multi-focus annular X-ray source, which is specifically described as follows:
  • the multifocal ring X-ray source can perform energy spectrum scanning by instantaneous switching of energy of a single scanning X-ray source, and can instantaneously switch various energy levels (for example, switching between 100 kV, 120 kV, and 140 kV as shown in FIG. 14). The number of levels of specific switching is determined by the design requirements.
  • the next scanning X-ray source under the scanning timing control performs the energy spectrum scanning in the same manner until the entire scanning operation is completed.
  • the multifocal annular X-ray source can perform energy spectrum scanning by using circumferential intermittent energy switching, that is, each scanning X-ray source of the multifocal annular X-ray source performs a circumferential scan with the same energy level under the timing control, and then all switches. Go to another level and repeat the next circumference scan until all energy levels have been switched.
  • the multifocal ring X-ray source can also use the circular multi-spectral scanning method for energy spectrum scanning, that is, the scanning X-ray sources distributed on the circumference are divided into several groups, each group is unified into one energy level, and is completed under the timing control. After a circular scan, the energy levels of each group of scanned X-ray sources are switched to the corresponding next energy level, and the next circumferential scan is repeated until all energy levels are switched.
  • the photon counting detector of the present invention can also be replaced by an integral detector for achieving the same function.
  • integral detector imaging is relatively poor compared to photon counting detectors, but because the integrated detector technology is relatively mature, its function is relatively stable.
  • the data acquisition processing unit 7 is composed of a main control computer, a real-time reconstruction system, and a visualization processor.
  • the system main control unit 8 includes a scan timing controller, a high speed data transmission channel, and the like.
  • the data processing functions of the main control computer are performed by a main processor that performs data parallel reconstruction and a storage device that stores voxel data.
  • the scanning host includes a plurality of photon counting detector modules 01-XX (XX is a positive integer, the same below), and each photon counting detector module further includes a plurality of photon counting detector units, such as a photon counting detector module.
  • 01 includes photon counting detector units 01 to XX.
  • Each pixel has a size of 400*400um.
  • the outer dimensions of each photon counting detector module are 51.2mm*102.4mm.
  • the ring photon counting detector consists of 50 photon counting detector modules, and the annular photon counting detector has a diameter of about 800 mm and a width of 102.4 mm.
  • the data collected by the plurality of photon counting detector modules 01-XX is transmitted to the data pre-processing module in the scanning host through the data collecting channels 01-XX.
  • the data preprocessing module is composed of a GPU, an ASIC or a DSP, and preprocesses the original pixel exposure information transmitted by the data acquisition channel or the data after the data rearrangement and the data correction, to form a frame data block, and then passes the main control.
  • the high speed data parallel transmission channel in the unit is transmitted to the parallel reconstruction module of the data acquisition processing unit.
  • the parallel reconstruction module may be composed of multiple parallel GPUs or a dedicated ASIC.
  • the reconstruction module reconstructs the uploaded frame or block data into block data. Since the above processes are multi-channel parallel processing, the reconstruction speed can satisfy the real-time visual display. Claim.
  • the acquisition controller in the data acquisition processing unit 7 sends a command to each photon counting detector module through the acquisition command channel under the control of the scanning timing controller to perform pixel exposure information collection.
  • the independently set acquisition command channel is a multi-channel wide digital bus to ensure that all acquisition modules receive acquisition commands in parallel, ensuring that the collected frame data is data of the same frame period; the collected pixel exposure information.
  • the data first integrates the pixel information at the photon counting detector unit level, and then the photon counting detector module performs secondary integration and processing on the photon counting detector unit data, including data splicing and module level pixel data correction, and finally
  • the X-ray data that has been integrated or initially reconstructed is transmitted by the photon counting detector module to the data preprocessor through the parallel fiber optic data transmission channel.
  • the data preprocessor first preprocesses the X-ray data from different photon counting detector modules, including frame data rearrangement, frame data correction, frame data buffering, and frame data real-time output.
  • the frame data of the real-time output is transmitted to the real-time reconstruction system and the main control computer.
  • the main task of the data preprocessor is to organize the data from multiple photon counting detector modules into complete data frames and data blocks, and send them to the main control computer according to the frame and block format.
  • the data frame referred to herein refers to a data layer covering a complete 360° range
  • the data block refers to an array of a plurality of the above data layers.
  • this data pre-processing mechanism is to complete a preliminary processing of a portion of the data processing task before it is transmitted to the computer. It compiles the data obtained by the various acquisition sequences edited by the controller into a frame and block data format, with standard The data structures of the frames and blocks are handed over to the main control computer for processing. Sometimes, we can also put a part of the preprocessing function of frame and block data into the data preprocessor, or put this part of the data processing on the main control computer and then complete it by the main control computer.
  • This partial pre-processing includes, but is not limited to, offset correction for a single pixel, hardening correction, flat field correction of frame data, geometric correction of frame data or block data, time drift correction, energy correction, scattered line suppression, and the like.
  • the multi-row spiral CT in the prior art requires a high-speed rotation of the X-ray source, and a computer that transmits data by a slip ring contact method or a wireless transmission method during the rotation process.
  • the static real-time CT imaging system does not need to use a slip ring structure and no mechanical motion artifacts because there is no conventional rotational imaging link.
  • the static real-time CT imaging system can realize parallel transmission of data by using optical fibers with better speed and reliability, the transmission data flow is increased, the reliability of the data signal is improved, the overall structure is clearer and more reasonable, and the reliability and consistency of the product are better. This can effectively guarantee the real-time performance of the 3D reconstruction algorithm.
  • the parallel reconstruction module passes the reconstructed voxel data to the visual image processor, and provides various views of the data to the observer through various mature visualization algorithms, including but not limited to real-time projection 2D images, real-time 3D color rendering, Endoscopic simulation map, surface rendering map, real-time multi-window gray absorption graph, real-time energy palette map and real-time DSA (Digital Subtraction Angiography).
  • the speed of providing a visual image can reach 25 frames or blocks per second, and theoretically can achieve a reconstruction speed of 1024 frames per second (ie, 1024 fps) or more than the block, which can fully satisfy the human eye.
  • the need for dynamic image observation greatly improves the possibility of applying this static real-time CT imaging system to interventional procedures.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

一种适应大视野要求的静态实时CT成像系统及其成像方法。该静态实时CT成像系统包括多焦点环形X射线源(21)和环形光子探测器(22);其中,多焦点环形X射线源(21)由排列成环形的多个扫描X射线源组成,环形光子计数探测器(22)由排列成环形的多个光子计数探测器模组组成;各扫描X射线源轮流发射宽束X射线,透过被测物体后投照到对应的光子计数探测器模组上,扫描X射线源与对应的光子计数探测器模组之间采用非反向几何成像方式;各光子计数探测器模组以交叠方式进行工作,将相应的曝光信息送入数据采集处理单元,在数据采集处理单元中完成图像的实时重建和可视化再现。

Description

适应大视野要求的静态实时CT成像系统及其成像方法 技术领域
本发明涉及一种适应大视野要求的静态实时CT成像系统,同时也涉及基于该CT成像系统实现实时成像的方法,属于医疗影像技术领域。
背景技术
CT(Computed Tomography)是电子计算机断层扫描技术的简称。它的成像原理是这样的:利用X射线束与灵敏度极高的X射线探测器围绕人体的某一部位进行逐层的断面扫描,由X射线探测器上的闪烁材料接收透过该层面的X射线,转变为可见光后,由光电转换器转变为电信号,放大后再经模拟/数字转换转为数字信号,输入计算机进行处理。在计算机中,将选定层面分成若干个体积相同的立方体,称之为体素(Voxel)。逐层断面扫描所得到的信息经过计算后,获得每个体素的X射线衰减系数或吸收系数,再排列成矩阵,即体素数字矩阵。将体素数字矩阵中的数字信息转为由黑到白不等灰度的小方块,在二维投影上称为像素(Pixel),按照断层方式排列即构成CT图像。
申请人在申请号为201410425061.2的中国专利申请中,公开了一种静态实时CT成像系统。它包括环形光子计数探测器、环形扫描X射线源和扫描时序控制器。其中,在扫描时序控制器的控制下,环形扫描X射线源发射窄束X射线,透过被测物体后投照到对应的环形光子计数探测器上。环形光子计数探测器将相应的曝光信息通过扫描主机和主控制单元送入数据采集处理单元及人机交互单元,在数据采集处理单元及人机交互单元中完成图像重建。本发明通过电子控制依次切换X射线投照位置,使扫描速度提高数十倍,可以获得动态三维立体图像;采用光子计数探测器,可以获得吸收数据和能量数据,并由此实现实时数据重建;采用窄束X射线,可以在传统CT成像系统的十分之一剂量下获得优质的图像,避免患者过量辐射。
另一方面,锥束CT是CT发展的新阶段。它利用平板探测器对检测物体进行一系列不同角度的射线投影测量,然后通过三维重建算法 得到物体各向同性的三维结构信息。在锥束CT检测中,由于X射线源锥角和平板探测器尺寸的有限性,经常会遇到被检物的尺寸超出锥束CT成像视野(Field Of View,简写为FOV)的情况,在这种情况下利用常规的扫描方式和重建算法无法较好地对整个被检物体进行扫描和重建。如果采用对物体进行多次分块扫描重建的方法,则每块数据对应的投影数据会在垂直方向或水平方向上产生截断,而通常的CT重建算法,如要求被检物完全被X射线覆盖,在这种存在投影截断情况下的重建效果并不理想。
为了满足大视野的实际需求,专利号为ZL 200910091282.X的中国发明专利公开了一种探测器偏置的大视野锥束X射线倾斜扫描三维数字成像方法。该方法将面阵探测器偏置放置,以X射线源产生的锥束X射线,相对于构件长宽表面以一定角度倾斜透照构件成像区域。在扫描过程中,射线源与面阵探测器静止,构件绕旋转轴等角步长旋转360度,面阵探测器在每个旋转角度下获取经构件调制后的射线信号。该发明在系统硬件和扫描速度不变条件下,可将倾斜扫描成像视野提高一倍。
发明内容
针对现有技术的不足,本发明所要解决的首要技术问题在于提供一种适应大视野要求的静态实时CT成像系统。
本发明所要解决的另一个技术问题在于提供一种基于该CT成像系统实现实时成像的方法。
为实现上述发明目的,本发明采用下述的技术方案:
根据本发明实施例的第一方面,提供一种静态实时CT成像系统,包括扫描床单元、扫描架单元、人机交互单元、电源控制单元、射线源控制单元、运动控制单元、数据采集处理单元、系统主控单元和图像数据存储单元;其中,所述扫描架单元中包括多焦点环形X射线源和环形光子探测器;
所述多焦点环形X射线源由排列成环形的多个扫描X射线源组成,所述环形光子计数探测器由排列成环形的多个光子计数探测器模组组成;
各所述扫描X射线源轮流发射宽束X射线,透过被测物体后投照 到对应的光子计数探测器模组上,所述扫描X射线源与对应的光子计数探测器模组之间采用非反向几何成像方式;
各所述光子计数探测器模组以交叠方式进行工作,将相应的曝光信息送入所述数据采集处理单元,在所述数据采集处理单元中完成图像的实时重建和可视化再现。
根据本发明实施例的第二方面,提供一种静态实时CT成像控制方法,包括如下步骤:
由扫描时序控制器控制不同空间位置的光子计数探测器模组以及与之对应的扫描X射线源以预定的扫描时序进行工作;
所述扫描X射线源按照预定的发射时序发射宽束X射线,相对应的所述光子计数探测器模组以交叠方式采集所述X射线透过被测物体后在光子计数探测器模组上的曝光信息。
与现有技术相比较,本静态实时CT成像系统及其成像方法由多焦点环形X射线源发射宽束X射线,配合射线源与探测器之间采用非反向几何成像方式,能够适应大视野(即视场角FOV达到450~500左右)的要求。
附图说明
图1为本静态实时CT成像系统的机械结构示意图;
图2和图3为本静态实时CT成像系统中,扫描架单元2的机械结构示意图;
图4是适应大视野要求的静态实时CT成像系统的核心部分主视图;
图5是适应大视野要求的静态实时CT成像系统的核心部分侧视图;
图6是多焦点环形X射线源顺序发射X射线和间隔发射X射线的示意图;
图7是多焦点环形X射线源进行并行扫描的示意图;
图8是多焦点环形X射线源进行插值扫描的示意图;
图9是多焦点环形X射线源实现摆动插值的示意图;
图10是弧形多焦点固定阳极栅控射线源的结构示意图;
图11是图10中固定阳极反射射线管和射线管支架的连接示意图;
图12A是固定阳极反射射线管和栅极控制开关的连接结构的正视图;
图12B是固定阳极反射射线管和栅极控制开关的连接结构的侧视图;
图13是多个弧形多焦点固定阳极栅控射线源组成的整环结构示意图;
图14是多焦点环形X射线源进行圆周多能谱扫描的示意图;
图15是本静态实时CT成像系统实现图像重建的流程图。
具体实施方式
下面结合附图和具体实施例对本发明的技术内容作进一步的详细说明。
图1是本静态实时CT成像系统的机械结构示意图。该静态实时CT成像系统具体包括扫描床单元1、扫描架单元2、人机交互单元3、电源控制单元4、射线源控制单元5、运动控制单元6、数据采集处理单元7、系统主控单元8和图像数据存储单元9。其中,人机交互单元3、电源控制单元4、射线源控制单元5、运动控制单元6、数据采集处理单元7、系统主控单元8和图像数据存储单元9等可以设置在环形CT扫描组件内部,该环形CT扫描组件安装在扫描架单元2上,扫描床单元1穿过扫描架单元2中间围合的圆形空间中。
在本发明的一个实施例中,人机交互单元3、电源控制单元4、射线源控制单元5、运动控制单元6、数据采集处理单元7和图像数据存储单元9分别与系统主控单元8进行连接,以便从中获得操作指令。图2和图3为本静态实时CT成像系统中,扫描架单元2的机械结构示意图。该扫描架单元2进一步包括支架15、主轴承16、驱动电机17、皮带轮18、皮带19、旋转支架20、多焦点环形X射线管21和环形光子探测器22。需要说明的是,在本静态实时CT成像系统的成像过程中,旋转支架20并不需要像普通CT那样进行旋转成像,其在大部分时间是相对不动的。在必要时,驱动电机17可以带动皮带轮18、皮带19等,使旋转支架20上的多焦点环形X射线管21沿着圆周方向进行小角度的摆动。这是为了精细重建而进行角度插值,本质上不属于普通CT那样的旋转成像方式。
上述静态实时CT成像系统由多焦点环形X射线源发射宽束X射线,配合射线源与探测器之间采用非反向几何成像方式,就可以适应大视野(即视场角FOV达到450~500左右)的要求。下面对此展开具体说明。
适应大视野要求的静态实时CT成像系统由多焦点环形X射线源和环形光子探测器构成。其中,多焦点环形X射线源21和环形光子探测器22安装在旋转支架20上,且两者处在同一轴线上,该轴线即为CT领域通称的Z轴。如图4所示,多焦点环形X射线源发射宽束X射线,对应的环形光子探测器以交叠(overlap)方式进行工作。例如,1号扫描X射线源对应1、2、3、4、5号光子探测器进行工作,2号扫描X射线源对应2、3、4、5、6号光子探测器进行工作,3号扫描X射线源对应3、4、5、6、7号光子探测器进行工作,依此类推。对应的工作模式为整环读出,即一次读出对应多个焦点的投影区域。多焦点环形X射线源的焦点面和环形光子探测器的Z向中心面在Z向上可以重合,也可以不重合,从工程实施角度考虑,两者不重合更容易在工程实现。如图5所示,当两者不重合时,X射线是斜射向探测器表面的(即环形光子探测器中的各探测器模组不垂直于对应的入射X射线),在成像时需要进行必要的几何校正。具体的几何校正算法是本领域技术人员普遍掌握的常规技术手段,在此就不赘述了。
该多焦点环形X射线源可以由紧密、均匀排列成环形的多个独立的扫描X射线源组成,也可以由均布多个阴极的具有多个焦点的环形X射线源组成,还可以由几组均布多个阴极的具有多个焦点的弧形X射线源组成。环形光子探测器优选由紧密、均匀排列成环形的多个光子计数探测器模组组成。扫描X射线源与对应的光子计数探测器模组之间采用非反向几何成像方式。排列在圆周上的扫描X射线源数量和光子计数探测器的数量可以一致、也可以不一致。如上所述,组成环形光子探测器的光子计数探测器也可以由直接转换、能量区分式或基于闪烁体的积分式X射线探测器所替代。
该静态实时CT成像系统在工作时,多焦点环形X射线源受射线源控制单元控制,沿着圆周方向发射宽束X射线,其效果等同于现有螺旋CT的圆周转动。需要说明的是,多焦点环形X射线源的各扫描X射 线源可以按照顺时针顺序发射X射线,也可以按照逆时针顺序发射X射线。如图6所示,多焦点环形X射线源上的各扫描X射线源可以沿着圆周方向依次顺序发射X射线,也可以间隔若干个扫描X射线源顺序发射X射线。如图7所示,多焦点环形X射线源可以同时在单一扫描X射线源发射X射线,也可以同时在多个扫描X射线源并行发射X射线。并行发射X射线的扫描X射线源的最大数量以满足并行发射的X射线在光子计数探测器上互不干涉为前提,并行发射X射线的扫描X射线源的圆周分布以圆周均匀分布为佳。
多焦点环形X射线源发射的X射线透过被测物体后照射到环形光子探测器上对应的光子计数探测器上。数据采集处理单元由多个分布式子系统组成,子系统里集成有嵌入式GPU。光子计数探测器将接收到的X射线信息由数据采集处理单元采集并进行重建处理,重建处理后的图像信息再传递给图像数据存储单元及人机交互单元,在图像数据存储单元及人际交互单元中完成图像的存储和可视化再现。当然,也可以按照现有CT的数据采集处理方式:数据采集处理单元只采集数据,然后将数据资料传输给图像数据存储单元进行重建和存储。
在现有技术中,多焦点环形X射线源中的焦点数量决定了静态扫描时圆周最大投影密度。这个投影密度有时无法满足一些要求更高的医学成像需求。为增加圆周最大投影密度,本发明所提供的静态实时CT成像系统可以采用插值扫描方式。通过插值扫描方式使圆周投影密度更高,能够实现能谱扫描功能,多焦点并行扫描速度更快。如图8所示,在进行插值扫描时,多焦点环形X射线源匀速转过不小于两个相邻焦点之间的夹角范围,在通过这个夹角范围的运动时间内,多焦点环形X射线源完成多次发射X射线,相当于在两个焦点之间增加了多个焦点,几次发射X射线即为几个插值扫描。
在进行插值扫描时,可以只有多焦点环形X射线源沿着圆周方向进行小角度的摆动,也可以由多焦点环形X射线源和环形光子探测器沿着圆周方向相对摆动,还可以是旋转支架整体不运动,扫描床携带人体沿着圆周方向进行摆动。参见图9所示的摆动插值原理,在本发明的一个实施例中,假设沿着圆周方向均匀分布150个焦点,相邻焦点之间的间距为26mm,那么多焦点环形X射线源和环形光子探测器相 对摆动2.4°(360/150=2.4),焦点在26mm范围内通过摆动插值增加投影数目,可以使投影数目大幅增加,从而有效改善图像重建的质量。
在本静态实时CT成像系统中,多焦点环形X射线源可以采用栅极控制反射靶的方式轮流点亮。这种方式具有功率大、亮度高的特点,比现有技术中常用的偏转电子束透射靶的亮度高数百倍。为了实现上述方式,多焦点环形X射线源优选采用多个弧形多焦点固定阳极栅控射线源拼接实现,具体说明如下:
如图10所示,该弧形多焦点固定阳极栅控射线源包括弧形射线源外壳211、射线管支架212、多个固定阳极反射射线管213和多个栅极控制开关214。其中,多个固定阳极反射射线管213通过射线管支架212固定在弧形射线源外壳211上,多个固定阳极反射射线管213的焦点分布在同一分布圆上。较优地,多个固定阳极反射射线管213的焦点相对于同一分布圆在一定角度范围α(360°≥α>0°)内均布;多个栅极控制开关214和多个固定阳极反射射线管213对应连接,用于对多个固定阳极反射射线管213的通断进行控制。
下面以图10中所示的方位为例,对弧形多焦点固定阳极栅控射线源的具体结构进行说明。
如图10所示,弧形射线源外壳211优选为一个由内弧壁板、外弧壁板、左侧板、右侧板、前侧板和后侧板所组成的封闭式外壳,射线管支架212、多个固定阳极反射射线管213和多个栅极控制开关214均设置在弧形射线源外壳211内部。弧形射线源外壳211的左侧板的外边缘和右侧板的外边缘之间的夹角θ可以在0°~360°范围内任意选择,θ优选360°/N,其中N是正整数,例如θ等于45°、60°、90°、180°等。当θ=360°/N且N>1时,通过将N个弧形射线源外壳211绕圆周拼接,可将N个弧形多焦点固定阳极栅控射线源组成一个整环结构,从而使多个固定阳极反射射线管213的焦点能够分布在同一个分布圆上。可以理解,当θ=360°/N且N=1时,整个弧形射线源外壳将是一个圆环结构,左侧板和右侧板在理论上不存在。
如图11所示,射线管支架212优选为一个弧形的支架,射线管支架212通过螺栓等连接件固定在弧形射线源外壳211的内弧壁板上,多个固定阳极反射射线管213固定在射线管支架212上。
射线管支架212上均匀开设有多个通孔,多个固定阳极反射射线管213的阳极端分别从射线管支架212的通孔中伸出,并且,多个固定阳极反射射线管213分别通过法兰固定在射线管支架212上。在实际结构中,通过对固定阳极反射射线管213在射线管支架212上的固定位置和角度进行微调,可以将多个固定阳极反射射线管213的焦点调节至同一圆上。下文中,将过多个固定阳极反射射线管213的焦点的圆称为多个固定阳极反射射线管213的分布圆。
弧形射线源外壳211的内外两个端面均是弧面,且内弧壁板和外弧壁板分别同多个固定阳极反射射线管213的分布圆同心设置,当然,也可近似同心设置,其中以同心设置为最优。弧形射线源外壳211的左右端面成θ夹角,且左侧板和右侧板的延长线均通过多个固定阳极发射射线管3的分布圆的圆心为最优。
多个固定阳极反射射线管213的焦点相对于该分布圆在一定角度范围α内均布,该角度范围α小于或等于弧形射线源外壳211的左侧板外边缘和右侧板外边缘之间的角度θ。实际结构中,当左侧板和右侧板壁厚较小且一个弧形射线源外壳211内设置的固定阳极反射射线管213的数量较少时,α和θ近似相等,较优地,在同一弧形射线源外壳211内设置的n个固定阳极反射射线管213中,相邻两个固定阳极反射射线管213之间的角度为θ/n,最左侧和最右侧的固定阳极反射射线管213和相邻侧板的外边缘之间的角度为θ/2n。当左侧板和右侧板壁厚较大或一个弧形射线源外壳211内设置的固定阳极反射射线管213的数量较多时,α小于θ,相邻两个固定阳极反射射线管213之间的角度为α/n,最左侧和最右侧的固定阳极反射射线管213和相邻侧板的外边缘之间的角度可以大于α/2n,也可以小于α/2n。
在本发明的实施例中,所使用的固定阳极反射射线管213的阳极端采用反射式固定阳极靶生成X射线束。固定阳极反射射线管213的两端分别为阳极端和阴极端,在固定阳极反射射线管213内靠近阴极的位置设置有栅极。如图12A和图12B所示,每个固定阳极反射射线管213均配设有独立的栅极控制开关214。栅极控制开关214通过支架与固定阳极反射射线管213的管体固定,并且,栅极控制开关214的输出端通过导线连接至固定阳极反射射线管213的栅极,从而对固 定阳极反射射线管213的通断进行控制,实现对放线的控制,经阳极端反射后发出的X射线束215如图12A和3B所示。当然,也可使相邻多个固定阳极反射射线管213的通断由同一栅极控制开关214控制。不过,在上述多种控制方式中,仍以附图所示的固定阳极反射射线管213和栅极控制开关214一一对应的控制方式为优。
如图13所示,通过将N个弧形射线源外壳211的左侧板和右侧板首尾相接,可以将N个弧形多焦点固定阳极栅控射线源拼成一个“整环结构”,从而使多个固定阳极反射射线管213的焦点能够圆周分布在同一个分布圆上,并尽可能均布。通过对整环结构中的栅极控制开关214进行控制,固定阳极反射射线管213依次发射X射线束,从而能够实现360°方向上的顺序放线扫描。在该整环结构中,每个固定阳极反射射线管213所发出的X射线束215均向整环的中心照射。
当在同一弧形射线源外壳211内设置的相邻两个固定阳极反射射线管213之间的角度为θ/n,最左侧和最右侧的固定阳极反射射线管213和相邻侧板的外边缘之间的角度为θ/2n时,通过将N个弧形多焦点固定阳极栅控射线源组成一个整环结构,可以使N个弧形多焦点固定阳极栅控射线源内的所有固定阳极反射射线管213的焦点在分布圆上均布。当在同一弧形射线源外壳211内设置的相邻两个固定阳极反射射线管213之间的角度取其他值时,在N个弧形多焦点固定阳极栅控射线源所组成的整环结构中,N个弧形射线源外壳211内的所有固定阳极反射射线管213的焦点分布在同一分布圆上,并且,每个弧形射线源外壳211内的多个固定阳极反射射线管213的焦点均布。
在本发明中,可以由多个弧形射线源外壳拼成一个整环结构,从而使多个弧形多焦点固定阳极栅控射线源中的所有固定阳极反射射线管的焦点分布在同一分布圆上,形成完整的多焦点环形X射线源。在该弧形多焦点固定阳极栅控射线源中,多个栅极控制开关和多个固定阳极反射射线管对应相连,栅极控制开关能够控制固定阳极反射射线管电路的通断,从而实现对放线的控制。上述弧形多焦点固定阳极栅控射线源的结构简单、成本较低、能产生足够强度的射线,同时在圆周方向上分布有足够数量的焦点。
如图14所示,该静态实时CT成像系统可以利用多焦点环形X射 线源实现多种方式的能谱扫描,具体说明如下:
首先,多焦点环形X射线源可以利用单个扫描X射线源的能量瞬时切换进行能谱扫描,可以瞬时切换多种能级(例如图14中所示的100kV、120kV、140kV之间的切换),具体切换的能级数量由设计需求决定。某一个扫描X射线源通过能量瞬时切换进行能谱扫描后,在扫描时序控制下的下一个扫描X射线源采用同样方式进行能谱扫描,直到整个扫描工作完成。其次,多焦点环形X射线源可以采用圆周间歇式能量切换进行能谱扫描,即多焦点环形X射线源的各扫描X射线源在时序控制下以同一能级完成一个圆周扫描后,再全部切换到另一个能级,重复完成下一个圆周扫描,直至完成所有的能级切换。再次,多焦点环形X射线源也可以采用圆周多能谱扫描方式进行能谱扫描,即将分布在圆周上的扫描X射线源分成几组,每组统一为一种能级,在时序控制下完成一个圆周扫描后,各组扫描X射线源的能级再分别切换到对应的下一个能级,重复完成下一个圆周扫描,直至完成所有的能级切换。
需要说明的是,本发明中的光子计数探测器也可以用积分式探测器替代,用于实现相同的功能。只是积分式探测器成像的效果相对于光子计数探测器较差,但是由于积分式探测器技术比较成熟,其功能也相对稳定一些。
图15是本发明所提供的静态实时CT成像系统实现图像重建的流程图。在静态实时CT成像系统中,数据采集处理单元7由主控制计算机、实时重建系统、可视化处理器构成。系统主控单元8包括扫描时序控制器以及高速数据传输通道等。主控制计算机的数据处理功能由进行数据并行重建的主处理器和存储体素数据的存储装置完成。扫描主机内包括多个光子计数探测器模组01~XX(XX为正整数,下同),每个光子计数探测器模组又包含多个光子计数探测器单元,例如光子计数探测器模组01包括光子计数探测器单元01~XX。
在本发明的一个优选实施例中,每个光子计数探测器模组由4*8=32个光子计数探测器单元构成,每个光子计数探测器单元由32*32个光子计数探测器像素构成。每个像素的尺寸为400*400um。每个光子计数探测器模组的外形尺寸为51.2mm*102.4mm。环形光子计数探测 器共有50个光子计数探测器模组构成,形成的环形光子计数探测器直径约800mm,宽度为102.4mm。数据采集通道有多条,每条数据采集通道对应一个或者多个光子计数探测器模组。多个光子计数探测器模组01~XX采集的数据通过数据采集通道01~XX传输至扫描主机中的数据预处理模块。数据预处理模块由GPU、ASIC或者DSP构成,将由数据采集通道传输来的原始像素曝光信息或者已经经过数据重排、数据校正之后的数据进行帧数据预处理,形成帧数据块,再通过主控制单元中的高速数据并行传输通道传输至数据采集处理单元的并行重建模块。并行重建模块可以由多个并行GPU构成,也可以通过专用ASIC构成,重建模块将上传的帧或块数据重建成体块数据,由于上述过程都是多路并行处理,重建速度可以满足实时可视化显示的要求。
数据采集处理单元7中的采集控制器在扫描时序控制器的控制下,通过采集命令通道向各个光子计数探测器模组发送命令,进行像素曝光信息采集。其中,独立设置的采集命令通道为多通道宽数位总线,以保证所有的采集模块并行同步收到采集命令,确保所采集到的帧数据为同一个帧周期的数据;所采集到的像素曝光信息数据首先在光子计数探测器单元级别将像素信息整合,再由光子计数探测器模组对光子计数探测器单元的数据进行二次整合和处理,包括数据拼接和模组级别的像素数据校正,最终完成整合或初步重建的X射线数据由光子计数探测器模组通过并行光纤数据传输通道传送到数据预处理器。
数据预处理器首先将来自不同光子计数探测器模组的X射线数据进行帧数据预处理,包括帧数据重排、帧数据校正、帧数据缓冲以及帧数据实时输出等。实时输出的帧数据传至实时重建系统及主控制计算机。其中,数据预处理器的主要任务是将来自多个光子计数探测器模组的数据整理成完整的数据帧和数据块,按照帧和块的格式向主控制计算机发送。这里所说的数据帧是指覆盖完整360°范围的数据层,数据块是指多个上述数据层构成的数组。这种数据预处理机制的目的是将一部分数据处理任务在传输到计算机之前完成初步的处理,它将控制器编辑的各种采集顺序所获得的数据编译成帧和块的数据格式,以标准的帧和块的数据结构交给主控制计算机进行处理。有时候,我 们也可以将一部分对帧和块数据的预处理功能放在数据预处理器内部完成,或者将这部分数据处理放在传输到主控制计算机后,由主控制计算机完成。这部分预处理包括但不限于对单个像素的偏差校正、硬化校正、帧数据的平场校正、帧数据或块数据的几何校正、时间漂移校正、能量校正、散射线抑制等。
现有技术中的多排螺旋CT由于X射线源需要高速旋转,在旋转过程中,需要通过滑环接触方式或者无线传输方式将数据传送的计算机。与现有的多排螺旋CT相比,本静态实时CT成像系统由于不存在常规的旋转成像环节,因此不需要使用滑环结构,也不存在机械运动伪影。本静态实时CT成像系统可采用速度和可靠性更好的光纤实现并行传输数据,传输数据流量增大,数据信号可靠性提高,整体结构更清晰合理,产品的可靠性和一致性更好。这样可以有效保证三维重建算法的实时性。
并行重建模块将重建完成的体素数据传至可视化图像处理器,通过多种成熟的可视化算法向观察者提供各种视图的数据,包括但不限于实时投影二维图、实时3D彩色渲染图、内窥镜模拟图、表面渲染图、实时多窗口灰度吸收图、实时能量调色板图和实时DSA(Digital Subtraction Angiography,数字减影)图。在本发明的一个实施例中,提供可视化图像的速度可以达到每秒钟25个帧或块,理论上可以达到每秒1024帧(即1024fps)或块以上的重建速度,完全可以满足人眼对动态图像观察的需要,极大提高了本静态实时CT成像系统应用在介入治疗手术中的可能性。
以上对本发明所提供的适应大视野要求的静态实时CT成像系统及其成像方法进行了详细的说明。对本领域的一般技术人员而言,在不背离本发明实质精神的前提下对它所做的任何显而易见的改动,都将构成对本发明专利权的侵犯,将承担相应的法律责任。

Claims (20)

  1. 一种静态实时CT成像系统,包括扫描床单元、扫描架单元、人机交互单元、电源控制单元、射线源控制单元、运动控制单元、数据采集处理单元、系统主控单元和图像数据存储单元,其特征在于所述扫描架单元中包括多焦点环形X射线源和环形光子探测器;
    所述多焦点环形X射线源由排列成环形的多个扫描X射线源组成,所述环形光子计数探测器由排列成环形的多个光子计数探测器模组组成;
    各所述扫描X射线源轮流发射宽束X射线,透过被测物体后投照到对应的光子计数探测器模组上,所述扫描X射线源与对应的光子计数探测器模组之间采用非反向几何成像方式;
    各所述光子计数探测器模组以交叠方式进行工作,将相应的曝光信息送入所述数据采集处理单元,在所述数据采集处理单元中完成图像的实时重建和可视化再现。
  2. 如权利要求1所述的静态实时CT成像系统,其特征在于:
    所述主控制单元中具有扫描时序控制器,不同区域内的单个或者多个所述扫描X射线源在所述扫描时序控制器的控制下同时或分时工作,逐点或者隔点、逐行或者隔行发射宽束X射线。
  3. 如权利要求1所述的静态实时CT成像系统,其特征在于:
    所述多焦点环形X射线源匀速转过不小于两个相邻焦点之间的夹角范围,在通过所述夹角范围的运动时间内,多焦点环形X射线源多次发射宽束X射线,从而实现插值扫描方式。
  4. 如权利要求3所述的静态实时CT成像系统,其特征在于:
    在实现插值扫描方式时,由所述多焦点环形X射线源沿着圆周方向进行小角度的转动。
  5. 如权利要求3所述的静态实时CT成像系统,其特征在于:
    在实现插值扫描方式时,由多焦点环形X射线源和环形光子探测器沿着圆周方向相对转动。
  6. 如权利要求3所述的静态实时CT成像系统,其特征在于:
    在实现插值扫描方式时,旋转支架整体不运动,扫描床携带人体 沿着圆周方向进行转动。
  7. 如权利要求1所述的静态实时CT成像系统,其特征在于:
    所述多焦点环形X射线源中,某一个扫描X射线源通过能量瞬时切换方式进行能谱扫描,在扫描时序控制下的下一个扫描X射线源采用同样方式进行能谱扫描,直到整个扫描工作完成。
  8. 如权利要求1所述的静态实时CT成像系统,其特征在于:
    所述多焦点环形X射线源中,各扫描X射线源在时序控制下以同一能级完成一个圆周扫描后,全部切换到另一个能级,再重复完成下一个圆周扫描,直至完成所有的能级切换。
  9. 如权利要求1所述的静态实时CT成像系统,其特征在于:
    所述多焦点环形X射线源中,将分布在圆周上的扫描X射线源分为多组,每组统一为一种能级,在时序控制下完成一个圆周扫描后,各组扫描X射线源的能级再分别切换到对应的下一个能级,重复完成下一个圆周扫描,直至完成所有的能级切换。
  10. 如权利要求1所述的静态实时CT成像系统,其特征在于:
    所述多焦点环形X射线源包括多个弧形多焦点固定阳极栅控射线源,其中,多个所述弧形多焦点固定阳极栅控射线源拼成整环结构,多个所述弧形多焦点固定阳极栅控射线源内的所有固定阳极反射射线管的焦点圆周分布在同一个分布圆上。
  11. 如权利要求10所述的静态实时CT成像系统,其特征在于:
    所述弧形多焦点固定阳极栅控射线源包括弧形射线源外壳、射线管支架、多个固定阳极反射射线管和多个栅极控制开关;其中,多个所述固定阳极反射射线管通过所述射线管支架固定在所述弧形射线源外壳上,多个所述固定阳极反射射线管的焦点分布在同一分布圆上;多个所述栅极控制开关和多个所述固定阳极反射射线管对应连接。
  12. 如权利要求11所述的静态实时CT成像系统,其特征在于:
    所述射线管支架是一个弧形的支架,所述射线管支架固定在所述弧形射线源外壳的内弧壁板上,多个所述固定阳极反射射线管固定在所述射线管支架上,多个所述固定阳极反射射线管的焦点均布在同一分布圆上。
  13. 如权利要求11所述的静态实时CT成像系统,其特征在于:
    所述射线管支架上均匀开设有多个通孔,多个所述固定阳极反射射线管的阳极端分别从所述射线管支架的通孔中伸出,并且,多个所述固定阳极反射射线管分别通过法兰固定在所述射线管支架上。
  14. 如权利要求11所述的静态实时CT成像系统,其特征在于:
    所述弧形射线源外壳的内弧壁板和外弧壁板分别同多个所述固定阳极反射射线管的焦点所在的分布圆同心设置;
    所述弧形射线源外壳的左侧板和右侧板的延长线均通过多个所述固定阳极发射射线管的焦点所在的分布圆的圆心。
  15. 如权利要求11所述的静态实时CT成像系统,其特征在于:
    每个所述固定阳极反射射线管均设有独立的栅极控制开关;所述栅极控制开关通过支架与所述固定阳极反射射线管的管体固定,并且,所述栅极控制开关的输出端通过导线连接至所述固定阳极反射射线管的栅极。
  16. 一种静态实时CT成像控制方法,基于权利要求1~15中任意一项所述的静态实时CT成像系统实现,其特征在于包括如下步骤:
    由扫描时序控制器控制不同空间位置的光子计数探测器模组以及与之对应的扫描X射线源以预定的扫描时序进行工作;
    所述扫描X射线源按照预定的发射时序发射宽束X射线,相对应的所述光子计数探测器模组以交叠方式采集所述X射线透过被测物体后在光子计数探测器模组上的曝光信息。
  17. 如权利要求16所述的静态实时CT成像控制方法,其特征在于包括如下步骤:
    多焦点环形X射线源匀速转过不小于两个相邻焦点之间的夹角范围,在通过所述夹角范围的运动时间内,所述多焦点环形X射线源多次发射宽束X射线,从而实现插值扫描方式。
  18. 如权利要求16所述的静态实时CT成像控制方法,其特征在于包括如下步骤:
    某一个扫描X射线源通过能量瞬时切换方式进行能谱扫描,在扫描时序控制下的下一个扫描X射线源采用同样方式进行能谱扫描,直到整个扫描工作完成。
  19. 如权利要求16所述的静态实时CT成像控制方法,其特征在 于包括如下步骤:
    各扫描X射线源在时序控制下以同一能级完成一个圆周扫描后,全部切换到另一个能级,再重复完成下一个圆周扫描,直至完成所有的能级切换。
  20. 如权利要求16所述的静态实时CT成像控制方法,其特征在于包括如下步骤:
    将分布在圆周上的扫描X射线源分为多组,每组统一为一种能级,在时序控制下完成一个圆周扫描后,各组扫描X射线源的能级再分别切换到对应的下一个能级,重复完成下一个圆周扫描,直至完成所有的能级切换。
PCT/CN2018/077451 2017-02-27 2018-02-27 适应大视野要求的静态实时ct成像系统及其成像方法 WO2018153382A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880000723.8A CN108811488B (zh) 2017-02-27 2018-02-27 适应大视野要求的静态实时ct成像系统及其成像方法
JP2019546306A JP7217847B2 (ja) 2017-02-27 2018-02-27 広視野のニーズに適する静態リアルタイムct画像形成システム及びその画像形成方法
EP18757948.7A EP3586752A4 (en) 2017-02-27 2018-02-27 TO REQUIREMENTS FOR A LARGE FIELD OF VIEW ADAPTABLE STATIC REAL-TIME CT IMAGING SYSTEM AND METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710109426.4 2017-02-27
CN201710109426 2017-02-27

Publications (1)

Publication Number Publication Date
WO2018153382A1 true WO2018153382A1 (zh) 2018-08-30

Family

ID=63252413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077451 WO2018153382A1 (zh) 2017-02-27 2018-02-27 适应大视野要求的静态实时ct成像系统及其成像方法

Country Status (4)

Country Link
EP (1) EP3586752A4 (zh)
JP (1) JP7217847B2 (zh)
CN (1) CN108811488B (zh)
WO (1) WO2018153382A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109171792A (zh) * 2018-09-29 2019-01-11 江苏影医疗设备有限公司 成像方法及使用该成像方法的ct成像系统
CN109827976A (zh) * 2019-03-14 2019-05-31 中国科学院上海应用物理研究所 一种在线观测和调节x射线光束和样品的光学系统
CN110123355A (zh) * 2019-05-30 2019-08-16 东软医疗系统股份有限公司 探测系统
CN110495901A (zh) * 2019-09-12 2019-11-26 北京纳米维景科技有限公司 具有成对射线源环的静态实时ct成像系统及成像控制方法
CN111759335A (zh) * 2020-05-29 2020-10-13 东软医疗系统股份有限公司 多能谱成像数据的获取方法、装置、电子设备、存储介质
JPWO2021059595A1 (zh) * 2019-09-26 2021-04-01
CN113057582A (zh) * 2021-03-05 2021-07-02 中国人民解放军空军军医大学 基于mlem的自适应fista初始图像的定量锥束x射线发光计算机断层扫描方法
EP3734636A4 (en) * 2017-12-25 2021-10-27 Nanovision Technology (Beijing) Co., Ltd. GATE-CONTROLLED ARC-SHAPED RADIATION SOURCE WITH MULTIPLE FOCAL POINTS AND FIXED ANODE
US11244481B2 (en) 2018-09-14 2022-02-08 Nview Medical Inc. Multi-scale image reconstruction of three-dimensional objects
CN114047209A (zh) * 2021-12-24 2022-02-15 北京航星机器制造有限公司 一种分布式静态ct系统及成像方法
CN114209350A (zh) * 2021-12-21 2022-03-22 纳米维景(上海)医疗科技有限公司 一种静态螺旋ct及其扫描方法
CN114280087A (zh) * 2021-12-24 2022-04-05 北京航星机器制造有限公司 一种ct成像系统及成像方法
CN117064424A (zh) * 2023-09-25 2023-11-17 北京富通康影科技有限公司 一种多能级能谱ct系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11051771B2 (en) 2014-06-17 2021-07-06 Xintek, Inc. Stationary intraoral tomosynthesis imaging systems, methods, and computer readable media for three dimensional dental imaging
CA3115575A1 (en) 2018-10-26 2020-04-30 Xin Vivo, Inc. Intraoral tomosynthesis x-ray imaging device, system, and method with interchangeable collimator
CN111358478B (zh) * 2020-03-16 2023-08-18 上海联影医疗科技股份有限公司 一种x射线成像系统及成像方法
CN113675060A (zh) * 2020-05-13 2021-11-19 聚束科技(北京)有限公司 一种扫描电子显微镜
CN115097535B (zh) * 2021-07-07 2024-09-20 清华大学 检查系统和方法
CN115113287B (zh) * 2021-07-07 2024-09-20 清华大学 检查系统和方法
CN114152637B (zh) * 2022-02-07 2022-04-26 东莞市志橙半导体材料有限公司 一种硬质碳化硅材料打孔检测装置与方法
EP4312467B1 (de) * 2022-07-28 2024-09-18 Siemens Healthineers AG Röntgenstrahlergehäuse mit zumindest einem elektrisch leitfähigen gehäuseabschnitt
CN115486863A (zh) * 2022-09-26 2022-12-20 北京纳米维景科技有限公司 一种具有管电流调制功能的静态ct成像设备及其成像方法
CN118266965A (zh) * 2022-12-30 2024-07-02 北京纳米维景科技有限公司 一种静态实时ct成像系统及其成像方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070003004A1 (en) * 2005-06-30 2007-01-04 Delgado Eladio C Stationary computed tomography system and method
CN101801272A (zh) * 2007-09-17 2010-08-11 美国西门子医疗解决公司 具有宽口径ct扫描仪的直线加速器
US20140270054A1 (en) * 2013-03-16 2014-09-18 Lawrence Livermore National Security, Llc Adaptive ct scanning system
CN105361900A (zh) * 2014-08-26 2016-03-02 曹红光 静态实时ct成像系统及其成像控制方法
CN106353350A (zh) * 2016-09-30 2017-01-25 北京纳米维景科技有限公司 一种反向几何成像实验平台

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5361291A (en) * 1991-11-20 1994-11-01 General Electric Company Deconvolution filter for CT system
CN1144032A (zh) * 1994-02-03 1997-02-26 模拟公司 用于提高扫描影像质量的层析x射线照相装置及方法
GB0309379D0 (en) * 2003-04-25 2003-06-04 Cxr Ltd X-ray scanning
JP2004357724A (ja) * 2003-05-30 2004-12-24 Toshiba Corp X線ct装置、x線発生装置及びx線ct装置のデータ収集方法
US7366279B2 (en) * 2004-07-29 2008-04-29 General Electric Company Scatter control system and method for computed tomography
JP5105589B2 (ja) * 2007-07-11 2012-12-26 株式会社日立メディコ X線ct装置
CN102256548B (zh) * 2008-12-17 2014-03-05 皇家飞利浦电子股份有限公司 X射线检查装置及方法
CN102697518B (zh) * 2012-06-25 2015-01-07 苏州生物医学工程技术研究所 静态能量分辨ct扫描仪及其扫描方法
CN102988076B (zh) * 2012-12-11 2015-05-13 苏州生物医学工程技术研究所 Ct扫描仪
CN103462630B (zh) * 2013-09-13 2015-04-08 深圳先进技术研究院 Ct系统及ct扫描方法
CN104749648A (zh) * 2013-12-27 2015-07-01 清华大学 多能谱静态ct设备
WO2016081766A1 (en) * 2014-11-19 2016-05-26 Besson Guy M Multi-source ct systems and pre-reconstruction inversion methods
CN105806858B (zh) * 2014-12-31 2019-05-17 北京固鸿科技有限公司 Ct检测方法和ct设备
CN105266839B (zh) * 2015-11-23 2018-04-13 山东科技大学 一种三源圆轨迹半径不同的大视野ct成像方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070003004A1 (en) * 2005-06-30 2007-01-04 Delgado Eladio C Stationary computed tomography system and method
CN101801272A (zh) * 2007-09-17 2010-08-11 美国西门子医疗解决公司 具有宽口径ct扫描仪的直线加速器
US20140270054A1 (en) * 2013-03-16 2014-09-18 Lawrence Livermore National Security, Llc Adaptive ct scanning system
CN105361900A (zh) * 2014-08-26 2016-03-02 曹红光 静态实时ct成像系统及其成像控制方法
CN106353350A (zh) * 2016-09-30 2017-01-25 北京纳米维景科技有限公司 一种反向几何成像实验平台

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3586752A4

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3734636A4 (en) * 2017-12-25 2021-10-27 Nanovision Technology (Beijing) Co., Ltd. GATE-CONTROLLED ARC-SHAPED RADIATION SOURCE WITH MULTIPLE FOCAL POINTS AND FIXED ANODE
US11456144B2 (en) 2017-12-25 2022-09-27 Nanovision Technology (Beijing) Co., Ltd Arc-shaped multi-focal point fixed anode gate controlled ray source
US11244481B2 (en) 2018-09-14 2022-02-08 Nview Medical Inc. Multi-scale image reconstruction of three-dimensional objects
CN109171792A (zh) * 2018-09-29 2019-01-11 江苏影医疗设备有限公司 成像方法及使用该成像方法的ct成像系统
CN109827976A (zh) * 2019-03-14 2019-05-31 中国科学院上海应用物理研究所 一种在线观测和调节x射线光束和样品的光学系统
CN109827976B (zh) * 2019-03-14 2024-01-05 中国科学院上海应用物理研究所 一种在线观测和调节x射线光束和样品的光学系统
CN110123355A (zh) * 2019-05-30 2019-08-16 东软医疗系统股份有限公司 探测系统
CN110495901A (zh) * 2019-09-12 2019-11-26 北京纳米维景科技有限公司 具有成对射线源环的静态实时ct成像系统及成像控制方法
US12051559B2 (en) 2019-09-26 2024-07-30 Fujifilm Corporation Radiation tube attachment member, radiation source, and tomosynthesis imaging apparatus
WO2021059595A1 (ja) * 2019-09-26 2021-04-01 富士フイルム株式会社 放射線管取付部材、放射線源、およびトモシンセシス撮影装置
JPWO2021059595A1 (zh) * 2019-09-26 2021-04-01
JP7222109B2 (ja) 2019-09-26 2023-02-14 富士フイルム株式会社 放射線管取付部材、放射線源、およびトモシンセシス撮影装置
CN111759335A (zh) * 2020-05-29 2020-10-13 东软医疗系统股份有限公司 多能谱成像数据的获取方法、装置、电子设备、存储介质
CN113057582B (zh) * 2021-03-05 2023-03-14 中国人民解放军空军军医大学 基于mlem的自适应fista初始图像的定量锥束x射线发光计算机断层扫描方法
CN113057582A (zh) * 2021-03-05 2021-07-02 中国人民解放军空军军医大学 基于mlem的自适应fista初始图像的定量锥束x射线发光计算机断层扫描方法
CN114209350A (zh) * 2021-12-21 2022-03-22 纳米维景(上海)医疗科技有限公司 一种静态螺旋ct及其扫描方法
CN114280087A (zh) * 2021-12-24 2022-04-05 北京航星机器制造有限公司 一种ct成像系统及成像方法
CN114047209A (zh) * 2021-12-24 2022-02-15 北京航星机器制造有限公司 一种分布式静态ct系统及成像方法
CN114280087B (zh) * 2021-12-24 2024-04-09 北京航星机器制造有限公司 一种ct成像系统及成像方法
CN114047209B (zh) * 2021-12-24 2024-05-14 北京航星机器制造有限公司 一种分布式静态ct系统及成像方法
CN117064424A (zh) * 2023-09-25 2023-11-17 北京富通康影科技有限公司 一种多能级能谱ct系统

Also Published As

Publication number Publication date
EP3586752A1 (en) 2020-01-01
CN108811488A (zh) 2018-11-13
EP3586752A4 (en) 2020-12-16
JP2020508175A (ja) 2020-03-19
CN108811488B (zh) 2022-05-03
JP7217847B2 (ja) 2023-02-06

Similar Documents

Publication Publication Date Title
WO2018153382A1 (zh) 适应大视野要求的静态实时ct成像系统及其成像方法
US10743826B2 (en) Stationary real time CT imaging system and method thereof
US7903779B2 (en) Apparatus and method for reconstruction of volumetric images in a divergent scanning computed tomography system
US4144457A (en) Tomographic X-ray scanning system
US6754300B2 (en) Methods and apparatus for operating a radiation source
RU2394494C2 (ru) Система сканирования х-кт
US7142629B2 (en) Stationary computed tomography system and method
US7869571B2 (en) Methods and apparatus for x-ray imaging with focal spot deflection
US8983024B2 (en) Tetrahedron beam computed tomography with multiple detectors and/or source arrays
US20050226364A1 (en) Rotational computed tomography system and method
JPH0614912A (ja) コンピュータ断層撮影システムで画像を作成する方法と装置
JP2010115475A (ja) コンピュータ断層撮影装置及び方法
CN102764137A (zh) 一种静态ct扫描仪及其散射x光子校正方法
JPH11226004A (ja) X線検査装置及びx線像の撮像方法
CN108283503A (zh) 一种ct机、扫描方法及图像重建方法
KR20160089762A (ko) 방사선 촬영 장치 및 방사선 촬영 장치의 제어 방법
US20090110142A1 (en) Object rotation for ct data acquisition
CN211381407U (zh) 具有成对射线源环的静态实时ct成像系统
JPH10137234A (ja) X線断層撮像装置
CN219645742U (zh) 一种锥形束ct设备
JPH01254148A (ja) X線ctスキヤナ
JP2000060835A (ja) 放射線画像検出装置
CN118252516A (zh) 乳腺ct成像系统
CN118216940A (zh) 分布式射线源ct成像系统及成像方法
EP4432923A1 (en) Dynamic control of x-ray exposure using focal spot translation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757948

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019546306

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018757948

Country of ref document: EP

Effective date: 20190927