WO2018153042A1 - 光源控制组件、显示装置及制造光源控制组件的方法 - Google Patents

光源控制组件、显示装置及制造光源控制组件的方法 Download PDF

Info

Publication number
WO2018153042A1
WO2018153042A1 PCT/CN2017/099066 CN2017099066W WO2018153042A1 WO 2018153042 A1 WO2018153042 A1 WO 2018153042A1 CN 2017099066 W CN2017099066 W CN 2017099066W WO 2018153042 A1 WO2018153042 A1 WO 2018153042A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
source control
control assembly
cover plate
light source
Prior art date
Application number
PCT/CN2017/099066
Other languages
English (en)
French (fr)
Inventor
张粲
陈小川
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/776,388 priority Critical patent/US11131882B2/en
Publication of WO2018153042A1 publication Critical patent/WO2018153042A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V33/00Structural combinations of lighting devices with other articles, not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13324Circuits comprising solar cells

Definitions

  • Embodiments of the present disclosure relate to a light source control assembly, a display device, and a method of fabricating a light source control assembly.
  • the general light source is usually a scattering type light source, which has a large illumination angle, for example, the emitted light is uniformly distributed over a wide angle range and is emitted without a specific propagation direction.
  • a scattering type light source which has a large illumination angle, for example, the emitted light is uniformly distributed over a wide angle range and is emitted without a specific propagation direction.
  • an LCD display using a light-emitting unit such as an LED or an OLED as a backlight such as controlling light emitted from a light source (for example, constraining a range of outgoing light), thereby generating a controlled light beam emitted in a predetermined direction to satisfy a specific Application scenarios such as privacy.
  • a light-emitting unit such as an LED or an OLED as a backlight
  • controlling light emitted from a light source for example, constraining a range of outgoing light
  • a method for controlling the light of a backlight of an LCD display is to use a black matrix to absorb unwanted angle light outside a predetermined small angle range emitted from a light emitting unit such as an LED or an OLED, and to allow only the LED from the LED. Or a light within a predetermined small angle range emitted by the light emitting unit such as an OLED is directed to the LCD display panel in a substantially uniform direction as a display light source, thereby satisfying a specific application scene such as a sneak peek or the like.
  • a specific application scene such as a sneak peek or the like.
  • embodiments of the present disclosure provide a light source control assembly, a display device, and a method of manufacturing the light source control assembly, whereby recycling by using a photoelectric converter cannot be used To generate other light from the controlled beam, thereby increasing light utilization.
  • a light source control assembly including: a photoelectric converter; At least one light emitting unit; and a light control structure configured to cause a portion of light emitted from each of the at least one light emitting unit to pass through and block each of the light emitted from the at least one light emitting unit Another portion of the light emitted by the unit to generate a plurality of controlled beams separated from one another by the portion of light passing through the light control structure, wherein another portion of the light emitted by each of the light emitting units that is blocked by the light control structure is The photoelectric converter receives.
  • the light control structure includes: a plurality of light transmitting portions and a plurality of light blocking portions configured to emit no more than a first divergence angle range emitted from each of the light emitting units Light rays are respectively emitted from the plurality of light transmissive portions; the plurality of light blocking portions are configured such that light rays emitted from the respective light emitting units exceeding a range of the first divergence angle are received by the solar panel to generate electric energy.
  • the at least one light emitting unit is disposed on the photoelectric converter; and the light control structure includes a cover plate disposed opposite to and spaced apart from the photoelectric converter, the cover plate being disposed Above the side of the at least one light emitting unit facing away from the photoelectric converter, the cover plate includes the plurality of light transmitting portions and the plurality of light blocking portions; wherein the plurality of light blocking portions comprise a plurality of light reflecting portions configured to respectively reflect light rays emitted from the respective light emitting units exceeding a first divergence angle range toward the photoelectric converter.
  • the cover plate is a transparent cover plate
  • the plurality of light reflecting portions include a plurality of light reflecting members disposed on a surface of the transparent cover plate facing the photoelectric converter
  • the plurality of light transmitting portions include at least one of a portion of the transparent cover plate other than the plurality of reflective members and a through hole formed on the transparent cover.
  • the plurality of light reflecting portions includes a plurality of light reflecting members disposed on a surface of the transparent cover plate facing the photoelectric converter,
  • the plurality of light transmissive portions include through holes formed in the opaque cover.
  • the plurality of light reflecting elements are a plurality of light reflecting coatings coated on one surface of the cap plate facing the photoelectric converter.
  • the light source control assembly further includes a substrate, the at least one light emitting unit is disposed on the substrate; and the light control structure includes a cover plate disposed opposite to and spaced apart from the substrate, a cover plate disposed above a side of the at least one light emitting unit facing away from the substrate, the cover plate including the plurality of light transmitting portions and the plurality of light blocking portions; wherein the plurality of light blocking portions A plurality of the photoelectric converters are included, the photoelectric converters being configured to respectively receive light rays emitted from respective light emitting units that exceed a range of first divergence angles.
  • the cover plate is a transparent cover plate
  • the plurality of photoelectric converters are formed on one surface of the transparent cover plate facing the substrate
  • the plurality of light transmissive portions include At least one of a portion of the transparent cover except the plurality of photoelectric converters and a through hole formed in the transparent cover.
  • the cover plate is an opaque cover plate
  • the plurality of photoelectric converters are formed on one surface of the transparent cover plate facing the substrate, and the plurality of light transmissive portions include formation a through hole in the opaque cover.
  • the plurality of photoelectric converters are thin film batteries.
  • the light emitting unit forms a point light source
  • the light transmitting portion of the cover plate forms a circular shape
  • the light emitting unit forms a line light source
  • the light transmitting portion of the cover plate is formed in a strip shape
  • the partial distance, ⁇ represents the first divergence angle
  • the first divergence angle is greater than or equal to 1° and less than or equal to 10°.
  • the maximum light emission angle ⁇ of each of the light emitting units is greater than or equal to 50° and less than or equal to 70°.
  • the light emitting unit is an OLED element.
  • the photoelectric converter is a solar panel comprising: at least one of an opaque silicon thin film solar cell, a copper indium gallium selenide thin film solar cell, and a polymer solar cell.
  • a display device comprising: a display panel; and a backlight, the backlight comprising the light source control assembly of the foregoing aspect.
  • a method of manufacturing a light source control assembly comprising: providing a photoelectric converter; providing at least one light emitting unit, each light emitting unit being adapted to emit light; and providing a light control structure, wherein The light control structure is configured such that a portion emitted from each of the at least one light emitting unit Separating light and blocking another portion of light emitted from each of the at least one of the at least one of the light emitting units to utilize the portion of light passing through the light control structure to form a plurality of controlled light beams that are separated from each other Another portion of the light emitted by the light emitting unit is received by the photoelectric conversion unit photoelectric converter.
  • FIG. 1 is a simplified block diagram of a light source control assembly in accordance with one embodiment of the present disclosure
  • Figure 2 is a schematic illustration of an exemplary specific structure of the light source control assembly shown in Figure 1;
  • Figure 3 is a plan view showing the cover of the light source control assembly shown in Figure 2;
  • FIG. 4 is a simplified block diagram of a light source control assembly in accordance with another embodiment of the present disclosure.
  • Figure 5 is a schematic illustration of an exemplary specific structure of the light source control assembly shown in Figure 4;
  • Figure 6 is a plan view showing the cover of the light source control assembly shown in Figure 5;
  • FIG. 7 is a schematic diagram of a display device in accordance with an embodiment of the present disclosure.
  • a light source control assembly including: a photoelectric converter; a plurality of light emitting units each adapted to emit light by receiving electrical energy; and a light control structure, wherein the light
  • the control structure is configured to pass a portion of the light emitted from each of the at least one of the at least one light emitting unit and block another portion of the light emitted from each of the at least one of the at least one of the light emitting units to utilize the light control structure
  • the portion of the light generates a plurality of controlled light beams that are separated from each other and are emitted from the respective light emitting units Another portion of the light that is emitted is received by the photoelectric converter.
  • the light source control assembly of the present disclosure it is possible to utilize a photoelectric converter to recycle other light that cannot be used to generate a controlled beam, thereby improving light utilization efficiency.
  • the photoelectric converter is, for example, a solar panel
  • the solar cell receiving light emitting unit emits a large angle light that is not used to generate a controlled light beam
  • the light energy of the portion of the large angle light is converted into electric energy to supply power to the light emitting unit.
  • FIG. 1 is a simplified block diagram of a light source control assembly 100 in accordance with an exemplary embodiment of the present disclosure.
  • the light source control assembly 100 includes a solar panel 1; at least one light emitting unit 2 disposed on the solar panel 1.
  • FIG. 1 shows the case of a plurality of light emitting units 2.
  • the plurality of light emitting units 2 receive electric energy from a power source to emit beam light L.
  • the light source control assembly 100 further includes a cover plate 3 disposed opposite to the solar panel 1 , the cover plate 3 being disposed above a side of the plurality of light emitting units 2 facing away from the solar panel 1 and with the plurality of The light emitting unit 2 is spaced apart and includes a plurality of light transmitting portions 31 and a plurality of light reflecting portions 32.
  • the plurality of light transmitting portions 31 are respectively aligned with the positions of the plurality of light emitting units 2 such that light rays emitted from the respective light emitting units 2 not exceeding a predetermined range of the divergence angle ⁇ are respectively propagated from the plurality of light transmitting portions 31
  • the plurality of light reflecting portions 32 constitute a light blocking portion, so that light rays emitted from the respective light emitting units 2 exceeding a predetermined range of the divergence angle ⁇ are absorbed by the solar panel 1 to be utilized to generate electric energy.
  • the electrical energy generated by the solar panel 1 described above is used as an auxiliary power source to supply power to the lighting power source 2, for example, for other purposes.
  • the state in which the plurality of light transmitting portions 31 are respectively aligned with the positions of the plurality of light emitting units 2 includes that the vertical projection of each of the light emitting units 2 facing the cover 3 falls in a state aligned with the same The center position of the light transmitting portion 31.
  • the plurality of light reflecting portions 32 reflect light rays emitted from the respective light emitting units 2 in a range exceeding a predetermined divergence angle ⁇ toward the solar cell panel 1 to be absorbed by the solar cell panel 1 to be utilized to generate electric energy. Further, the generated electric energy is again input to the light emitting unit 2 to cause the light emitting unit 2 to emit light.
  • the predetermined divergence angle ⁇ is selected, for example, to 5°.
  • the light emitting unit 2 is, for example, a general LED light source, or an OLED light source.
  • the illumination unit 2 is, for example, a point source, and is instead, for example, a linear source.
  • the light source control assembly of the embodiments of the present disclosure provides, for example, a controlled point beam having a divergence angle within a predetermined range in various directions around the point source to meet various applications requiring a spot beam. occasion.
  • the light source control assembly of the embodiment of the present disclosure provides, for example, a controlled linear beam having a divergence angle within a predetermined range in the width direction of the linear light source to satisfy various applications requiring a linear beam. .
  • the solar panel 1 is, for example, an opaque silicon thin film solar cell, a copper indium gallium selenide thin film solar cell, a polymer solar cell, or the like, and has the same structure and preparation method as a conventional solar cell.
  • FIG. 2 shows a schematic diagram of an exemplary specific structure of the light source control assembly 100 shown in FIG. 1.
  • the light emitting unit 2 employs an OLED light source.
  • the OLED light source includes an anode 21, an organic light emitting layer 22, and a cathode 23 which are arranged in a stacked manner.
  • the anode 21 is prepared, for example, using a transparent indium tin oxide (ITO) material.
  • the organic light-emitting layer 22 specifically includes, for example, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, an electron injection layer, and the like.
  • the cathode 23 is, for example, a conductive layer of a transparent material.
  • the anode 21 and the organic light-emitting layer 22 each include a plurality of independent and spaced apart unit structures, and the cathode 23 is, for example, in the form of a monolithic cathode as shown.
  • the cathode shown can also be configured to be separately aligned with the anode 21 and the organic light-emitting layer 22 in a plurality of independent and spaced apart arrangements.
  • each of the anode unit and each of the organic light-emitting layer units and the corresponding cathode portion constitute an OLED light-emitting unit for receiving electric energy supplied from the solar panel 1 to emit light.
  • the solar panel 1 is in the form of a monolithic solar panel, specifically including a lower electrode 11, a PN junction 12 and an upper electrode 13 which are arranged in a stacked manner.
  • An insulating passivation layer 4 is provided between the solar panel 1 and the OLED lighting unit, for example.
  • the anode 21 and the cathode 23 of the OLED light emitting unit are electrically connected, for example, to the lower electrode 11 and the upper electrode 13 of the solar cell panel 1, respectively, to receive electric energy supplied from the solar cell panel 1.
  • the light source control assembly 100 further includes, for example, other power sources for supplying electrical energy to the OLED unit. This disclosure does not limit this.
  • the light source control assembly 100 further includes a substrate 5 made of, for example, glass on which the solar panel 2 is formed.
  • the cover 3 is opposed to the substrate 5 with a spacer 6 supported therebetween to form a space between the cover 3 and the substrate 5 to accommodate the OLED lighting unit 2 and the solar cell 1.
  • the spacer 5 is, for example, a UV curable adhesive.
  • FIG. 2 is only a schematic illustration of the structure of the light source control assembly 100 in accordance with one embodiment of the present disclosure, for the sake of clarity, only the structures related to the inventive subject matter of the present disclosure are illustrated, while others are omitted.
  • the light source control component 100 of the present embodiment further includes other necessary constituent elements of a conventional OLED light source, for example, the solar panel 1 also includes other necessary components of a conventional solar panel, and details are not described herein.
  • the cover 3 is, for example, a transparent glass cover, and the plurality of light reflecting portions 32 are formed, for example, on one surface of the transparent cover 3 facing the solar panel 1. And spaced apart a plurality of light reflecting members 33, and the plurality of light transmitting portions 31 are formed by a portion of the transparent cover 3 other than the plurality of reflective members 33, and/or a through hole formed in the transparent cover It is configured that the plurality of light transmitting portions 31 are separated from each other by the plurality of light reflecting members 33.
  • the cover 3 constitutes a light control structure, the light transmitting portion 31 is for transmitting substantially controlled light, and the light reflecting portion 32 is for reflecting large angle light.
  • the light control structure of the present disclosure is not limited thereto, and those skilled in the art, for example, envision other light control structures capable of forming a light transmitting portion and a light blocking portion.
  • the cover plate 3 is also, for example, an opaque cover plate
  • the plurality of light reflecting portions 32 also include, for example, a plurality of light reflections disposed on one surface of the transparent cover plate facing the photoelectric converter.
  • the element 33, the plurality of light transmitting portions 31 includes a through hole formed in the opaque cover.
  • Figure 3 is a plan view of the cover 3 of the light source control assembly shown in Figure 2.
  • the light-transmitting portion 31 of the cover plate 3 correspondingly forms a circular shape.
  • the vertical projection of each of the light-emitting units 2 on the cover 3 falls into the center position of the corresponding light-transmitting portion 31.
  • the distance from the light-emitting unit 2 to the cover plate 3 is Y
  • the radius R of the light-transmitting portion 31 is R*Y*tg ⁇ , where ⁇ is the predetermined divergence angle.
  • the person skilled in the art sets the radius R of the light transmitting portion and the distance Y between the light emitting unit and the cover plate, for example, according to the predetermined divergence angle ⁇ of the desired controlled light.
  • the predetermined divergence angle ⁇ is, for example, 1° or more and 10° or less.
  • the maximum light emission angle of each of the light emitting units 2 is represented as ⁇
  • the light reflecting portion 32 includes, for example, an annular portion surrounding the circular light transmitting portion 31.
  • light rays from the light-emitting unit 2 other than the light for generating the controlled light other than the predetermined divergence angle, that is, the large-angle light rays having an emission angle between ⁇ and ⁇ , for example, all of which are light in the annular portion
  • the reflecting portion 32 is reflected back to the solar panel 1 to be reused by the solar panel 1 to generate electric energy, which is then applied to the OLED lighting unit 2 to emit light, whereby the light source control assembly of the embodiment improves light utilization efficiency , reducing power consumption.
  • the size of the light reflecting portion is set by a person skilled in the art, for example, according to the maximum light emitting angle ⁇ of the specific light emitting unit, the distance Y of the light emitting unit and the cover plate, and the radius R of the light transmitting portion.
  • the maximum illuminating angle ⁇ is, for example, 50° or more and 70° or less.
  • the maximum illumination angle ⁇ of an OLED illumination unit is typically about 60°, so that the device size is designed, for example, at a maximum illumination angle of 60°.
  • Y should be about 5.75 um and Z1 should be about 9.46 um.
  • FIG. 3 shows that the light reflecting portion 32 is an annular portion surrounding the circular light transmitting portion 31, for the convenience of manufacture, the light reflecting portion 32 includes, for example, the entire remaining of the cover 3 except the circular light transmitting portion 31. section.
  • the light emitting unit is a point light source
  • the light source control unit of the embodiment provides, for example, a controlled point beam having a divergence angle within a predetermined range in various directions around the point light source to satisfy A variety of applications that require point beams.
  • a substrate such as a glass substrate
  • a monolithic solar panel is fabricated on the substrate, the solar panel including a lower electrode, a PN junction, and an upper electrode.
  • the solar panel is, for example, an opaque silicon thin film solar cell, a copper indium gallium selenide thin film solar cell, a polymer solar cell, etc., and the preparation method is as a conventional process, and will not be described herein.
  • an insulating passivation film is deposited on the upper electrode of the solar panel; and an OLED dot matrix light source is prepared on the passivation film above the upper electrode of the solar panel, and the OLED dot matrix source is sequentially processed, for example, by using a fine mask
  • the ITO anode layer, the hole injection layer, the hole transport layer, the light-emitting layer, the electron transport layer, the electron injection layer, and the cathode layer are deposited.
  • the anode and the cathode of each OLED light emitting unit are respectively electrically connected to the upper electrode and the lower electrode of the solar cell panel by making, for example, via holes, so that the plurality of light emitting units receive electric energy from the solar cell panel to emit light;
  • the cover plate is, for example, previously made to include a plurality of light transmitting portions and a plurality of light reflecting portions as light blocking portions.
  • the plurality of light reflecting elements are, for example, a plurality of light reflecting coatings applied to one surface of the cover plate facing the photoelectric converter.
  • a transparent cover plate is provided, and for example, a metal reflective film is deposited on one surface of the transparent cover plate to be disposed facing the solar cell panel to form a plurality of light reflecting portions, and the remaining portion is formed as a light transmitting portion.
  • the plurality of light transmitting portions are respectively aligned with the positions of the plurality of light emitting units. For example, for example, the vertical projection of each of the light-emitting units 2 on the cover 3 falls into the center position of the aligned light-transmitting portions 31.
  • the illumination unit is a point source
  • the radius R of the circular transparent portion and the illumination are set according to a predetermined divergence angle ⁇ of the desired controlled light.
  • Distance between unit and cover Y; and the size of the light reflecting portion is set according to the maximum light emitting angle ⁇ of the specific light emitting unit, the distance Y of the light emitting unit and the cover plate, and the radius R of the light transmitting portion.
  • the cover plate thus formed, the plurality of light transmitting portions being configured to be respectively aligned with the positions of the plurality of light emitting units such that light rays emitted from the respective light emitting units not exceeding a predetermined divergence angle are respectively transmitted from the plurality of light emitting units
  • the light portion is emitted to be used as controlled light; and the plurality of light reflecting portions are configured to respectively reflect light rays emitted from the respective light emitting units exceeding a predetermined divergence angle toward the solar panel to be reused by the solar panel to generate Electrical energy, which in turn can be supplied to the lighting unit to produce light.
  • the light source control assembly of the above embodiment and the manufacturing method thereof since the solar cell is included in the light source control assembly, and the solar cell is used to receive the large-angle light emitted from the light emitting unit and not used to generate the controlled light, and the portion of the light energy is converted Power is supplied to the lighting unit, thereby increasing the light utilization of the light source control assembly, reducing the power consumption of the lighting unit, and at the same time obtaining the desired controlled beam.
  • the light source control assembly 200 includes a substrate 50; a plurality of light emitting units 20 disposed at intervals on the substrate 50; and a cover plate 30 disposed opposite the substrate 50.
  • the cover plate 30 and the substrate 50 are supported by a spacer 60 to form a space for accommodating the OLED light emitting unit 20.
  • the spacer 60 is, for example, a conductive paste.
  • the cover plate 30 of this embodiment includes a plurality of light transmitting portions 31 and a plurality of photoelectric converters 10 (e.g., a plurality of solar panels 10).
  • the plurality of light transmitting portions 31 are respectively aligned with the positions of the plurality of light emitting units 20 as in the embodiment of FIG. 1, such that light rays emitted from the respective light emitting units 20 not exceeding a predetermined range of divergence angles ⁇ are respectively from the
  • the plurality of light transmitting portions 31 are emitted as controlled light; for example, a vertical projection of each of the light emitting units 2 on the cover 3 falls into a center position of the aligned light transmitting portions 31.
  • the plurality of solar panels 10 respectively constitute light blocking portions such that light rays emitted from the respective light emitting units 20 exceeding a predetermined range of divergence angles ⁇ are reused by the solar panel 10 to generate electric energy.
  • the plurality of solar panels 10 are configured to directly absorb light rays emitted from respective light emitting units exceeding a predetermined range of divergence angle ⁇ , and perform photoelectric conversion to generate electric energy. Thereafter, the generated electrical energy is supplied to the light emitting unit 20, for example, through an electrical connection element for causing the light emitting unit 20 to emit light.
  • the light emitting unit 20 is, for example, a general LED light source, or an OLED light source. Further, the light-emitting unit 20 is, for example, a point light source, and is also, for example, a linear light source.
  • the solar panel 10 is, for example, an opaque silicon thin film solar cell, a copper indium gallium selenide thin film solar cell, a polymer solar cell, or the like, and has the same structure and preparation method as a conventional solar cell.
  • the substrate 50 is, for example, a glass substrate.
  • FIG. 5 illustrates an exemplary specific junction of the light source control assembly 200 illustrated in FIG. Schematic diagram of the structure.
  • the light emitting unit 20 employs an OLED light source.
  • the OLED light source includes an anode 21, an organic light emitting layer 22, and a cathode 23.
  • the anode 21 can be prepared using a transparent indium tin oxide (ITO) material.
  • the organic light-emitting layer 22 specifically includes, for example, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, an electron injection layer, and the like.
  • Cathode 23 can be a conductive layer of transparent material.
  • the anode 21 and the organic light-emitting layer 22 respectively comprise a plurality of unit structures which are independently and spaced apart, and the cathode 23 is, for example, in the form of a monolithic cathode as shown.
  • the cathode shown can also be configured to be separately aligned with the anode 21 and the organic light-emitting layer 22 in a plurality of independent and spaced apart arrangements.
  • each anode unit and each of the organic light-emitting layer units thereon and the aligned cathode portions constitute an OLED light-emitting unit 20 for receiving electrical energy from the solar panel 10 to emit light.
  • Each of the solar panels 10 specifically includes a lower electrode 11, a PN junction 12, and an upper electrode 13.
  • the lower electrode 11 and the upper electrode 13 of the solar cell panel 10 are electrically connected to the anode 21 and the cathode 23 of the OLED light emitting unit 20, respectively, by wires 70, conductive spacers 60, vias, etc., to transfer the electrical energy of the solar panel 10, respectively.
  • the OLED lighting unit 20 is given.
  • the OLED lighting unit 20 receives electrical energy from the solar panel 10 to emit light.
  • the light source control assembly 200 also includes, for example, other power sources for providing electrical energy to the OLED unit. This disclosure does not limit this.
  • the light source control assembly 200 is different from the light source control assembly 100 shown in FIG. 2 in that the plurality of solar panels 10, that is, the lower electrode 11, the PN junction 12, and the upper electrode 13, are It is disposed on the side of the cover plate 30 opposed to the substrate 50 facing the substrate, instead of being directly disposed on the side of the substrate 50 facing the cover plate 30 as shown in FIG.
  • FIG. 5 is only a schematic illustration of the structure of the light source control assembly 200 in accordance with one embodiment of the present disclosure, for the sake of clarity, only the structures related to the inventive subject matter of the present disclosure are illustrated, while others are omitted.
  • the light source control assembly 200 of the present embodiment further includes other necessary constituent elements of a conventional OLED light source, for example, the solar panel 10 also includes other necessary constituent elements of a conventional solar panel, and details are not described herein again.
  • FIG. 5 is not necessarily drawn to scale for the sake of clarity.
  • the cover 30 is, for example, a transparent cover glass, and the plurality of solar panels 10 are composed of a thin film battery formed on one surface of the transparent cover 30 facing the substrate 50.
  • the plurality of light transmitting portions 31 are constituted by portions of the transparent cover plate 30 other than the plurality of solar battery panels 10.
  • the cover plate 30 constitutes a light control structure
  • the light transmitting portion 31 is for transmitting substantially controlled light
  • the solar panel 10 is for absorbing large angle light.
  • the light control structure of the present disclosure is not limited thereto, and those skilled in the art, for example, envision other light control structures capable of forming a light transmitting portion and a light blocking portion.
  • the cover plate 30 is also, for example, an opaque cover plate, and the plurality of photoelectric converters 10 are formed on one surface of the transparent cover plate facing the substrate 30, the plurality of transparent portions 31 includes a through hole formed in the opaque cover 30.
  • the person skilled in the art sets the width X of the light transmitting portion and the distance Y between the light emitting unit and the cover plate, for example, according to the predetermined divergence angle ⁇ of the desired controlled light.
  • the predetermined divergence angle ⁇ is selected, for example, within a range of 1-10 degrees.
  • the predetermined divergence angle ⁇ is selected to be 5°, then tg5° ⁇ 0.87, then X/2Y ⁇ 0.87, where X is the width of the strip-shaped light transmitting portion 31, and Y is the height of the light-emitting unit 2 from the cover plate 3.
  • X is the width of the strip-shaped light transmitting portion 31
  • Y is the height of the light-emitting unit 2 from the cover plate 3.
  • Y should be about 5.75um.
  • each solar panel 10 constituting the light blocking portion includes, for example, a strip portion adjacent to each side of the light transmitting portion 31.
  • the light L emitted from the light-emitting unit 20 other than the light for generating the controlled light, other than the predetermined divergence angle, that is, the large-angle light having an emission angle between ⁇ and ⁇ , for example, is all absorbed by the solar panel 10, whereby, the solar panel 10 is reused to generate electric energy, which can be applied to the OLED lighting unit 20 through the electrical connection unit to cause it to emit light. Therefore, the light source control assembly of this embodiment improves light utilization and reduces power consumption.
  • the size of the solar panel 10 is set by a person skilled in the art, for example, according to the maximum light-emitting angle ⁇ of the specific light-emitting unit, the distance Y of the light-emitting unit and the cover, and the width X of the light-transmitting portion.
  • the maximum illuminating angle ⁇ is selected, for example, in the range of 50-70 degrees.
  • the maximum illuminating angle ⁇ of the OLED lighting unit is generally 60°, so that the device size design is performed, for example, at a maximum illuminating angle of 60°.
  • X is 10 um
  • Y is about 5.75 um
  • Z2 is about 9.46 um.
  • the light emitting unit is a linear light source
  • the light source control assembly of the embodiment provides, for example, a controlled linear light beam having a divergence angle within a predetermined range in the width direction of the linear light source, to satisfy each An application where a linear beam is required.
  • a substrate such as a glass substrate
  • an OLED dot matrix light source is prepared on the substrate, and the OLED dot matrix light source sequentially deposits an ITO anode layer, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode layer, for example, by using a fine mask. Formed
  • the cover is connected by, for example, a conductive paste.
  • the cover plate is, for example, previously made into a structure including a plurality of light transmitting portions and a plurality of solar panels as a light blocking portion.
  • the plurality of light reflecting elements are, for example, coated on a plurality of light reflecting coatings on a surface of the transparent cover that face the photoelectric converter.
  • a transparent cover is provided, and a thin film solar cell is prepared as a light blocking portion on one surface of the transparent cover which will face the solar cell, and the remaining portion is formed as a light transmitting portion.
  • the plurality of light transmitting portions are respectively aligned with the positions of the plurality of light emitting units.
  • each linear light-emitting unit 2 on the cover 3 falls into the center position (width direction) of the aligned strip-shaped light-transmitting portions 31.
  • the cover is made, for example, a lead wire, a via hole, or the like is formed on the solar cell panel, so that after the cover plate is connected, the electric energy of the solar cell panel is transmitted to the light emitting unit through the lead wire, the via hole, the conductive adhesive, or the like, so that the light emitting unit is generated. Light.
  • the width X and the light-emitting portion of the strip-shaped light-transmitting portion are set according to a predetermined divergence angle ⁇ of the desired controlled light.
  • the distance Y between the unit and the cover plate; and the size of the solar panel is set according to the maximum illumination angle ⁇ of the specific illumination unit, the distance Y of the illumination unit and the cover, and the width X of the transparent portion.
  • the cover plate thus formed, the plurality of light transmitting portions being configured to be respectively aligned with the positions of the plurality of light emitting units such that light rays emitted from the respective light emitting units not exceeding a predetermined range of divergence angles are respectively from the plurality of light emitting units
  • the light transmissive portion is emitted for use as controlled light; and the plurality of solar panels are configured to respectively receive light rays emitted from the respective light emitting units exceeding a predetermined range of divergence angles to generate electrical energy, which in turn may be supplied to the light emitting unit To produce light.
  • the light source control assembly of the above embodiment and the manufacturing method thereof are similar to the embodiment of FIGS. 1-3, since the solar cell is included in the light source control assembly, and the solar cell is used to absorb the non-use of the controlled light from the light emitting unit.
  • the large-angle light converts this part of the light energy into electrical energy to supply power to the light-emitting unit, thereby improving the light utilization efficiency of the light source control component, reducing the power consumption of the light-emitting unit, and obtaining the desired controlled light beam.
  • various exemplary embodiments of the present disclosure provide a light source control assembly including a solar panel, a plurality of light emitting units configured to receive electrical energy to emit light, and a plurality of light emitting units a light control structure in a light exiting direction, wherein the light control structure includes a plurality of light transmitting portions and a plurality of light blocking portions configured to emit no more than a predetermined divergence angle from each of the light emitting units Light division Do not exit from the plurality of light transmissive portions; the plurality of light blocking portions are configured such that light rays emitted from the respective light emitting units exceeding a predetermined divergence angle are received by the solar panel to generate electrical energy.
  • embodiments of the present application convert the undesired large-angle light in the light source into electrical energy of the solar cell, for example, further powering the OLED lighting unit, thereby increasing the utilization efficiency of the light and obtaining the required receiving Control the beam.
  • a display device including: a display panel 300; and a backlight including the light source control assembly 100 or 200 of the foregoing embodiment, The specific structure thereof will not be described here.
  • the display panel 300 is, for example, an LCD panel, and the LCD panel includes a color film layer 301 , an array substrate 302 , and a liquid crystal layer 303 between the color film layer and the array substrate. It should be understood by those skilled in the art that the display panel 300 further includes other well-known structures such as a polarizing plate, an alignment film, a diffusion film, and the like, and details are not described herein again.
  • the backlight of the display device of the present embodiment has lower power consumption, high light utilization efficiency, and at the same time obtains a controlled light beam for use as a display light source for the LCD display panel, thereby Meet specific application scenarios such as privacy.
  • the light source control assembly According to the light source control assembly, the display device, and the method of manufacturing the light source control assembly of the present application, other light rays that cannot be used to generate a controlled light beam are recovered by the photoelectric converter, thereby reducing light loss of the light emitting unit and increasing light utilization. Efficiency while at the same time obtaining the required controlled beam.
  • the components of the light source control components of the various embodiments may be combined or substituted with each other without causing a conflict.
  • the embodiment of Figures 1-3 employs a point source
  • the cover plate employs a circular light transmissive portion and an annular light blocking portion; however, the embodiment of Figures 1-3 also employs, for example, a linear light source, and accordingly,
  • the cover plate is, for example, a strip-shaped light transmitting portion and a strip-shaped light blocking portion.
  • the cover plate employs a strip-shaped light-transmissive portion and a strip-shaped light-blocking portion; however, the embodiment of Figures 4-6 also employs, for example, a point source, corresponding
  • the cover plate is, for example, a circular light transmitting portion and a ring-shaped light blocking portion.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种光源控制组件(100)、制造光源控制组件(100)的方法和显示装置。该光源控制组件(100)包括:光电转换器;至少一个发光单元(2);和光控制结构,其中,光控制结构构造成使得从至少一个发光单元(2)中各个发光单元(2)发出的一部分光通过、且阻挡从至少一个发光单元(2)中各个发光单元(2)发射的另一部分光以形成彼此分离的多个受控光束,而从各个发光单元(2)发出的未通过光控制结构的另一部分光被光电转换器接收。根据光源控制组件(100)、显示装置和制造光源控制组件(100)的方法,通过光电转换器来回收利用不能用于产生受控光束的其它光线,从而减少了发光单元(2)的光损失,增加了光的利用效率,同时能够获得需要的受控光束。

Description

光源控制组件、显示装置及制造光源控制组件的方法
相关申请的交叉引用
本申请要求于2017年2月23日递交中国专利局的、申请号为201710101444.8的中国专利申请的权益,该申请的全部内容以引用方式并入本文。
技术领域
本公开的实施例涉及光源控制组件、显示装置及制造光源控制组件的方法。
背景技术
在照明、LCD显示背光源、灯箱等场合均会使用各种光源。除了激光外,一般的光源通常为散射型光源,具有较大的发光角度,例如发出的光线在大角度范围内呈均匀分布而发射而没有特定的传播方向。但是,在某些应用场合,只需要利用从光源发出的具有一定方向或在预定发散角范围内传播的光束。例如,在利用LED或OLED等发光单元作为背光源的LCD显示器中,如对光源发出的光线进行控制(例如约束出射光的范围),由此产生沿预定方向发射的受控光束,以满足特定应用场景如防窥等。
已知一种对LCD显示器的背光源的光线进行控制的方法是利用黑矩阵将从LED或OLED等发光单元发出的预定小角度范围以外的、不需要的大角度光吸收,而只允许从LED或OLED等发光单元发出的预定小角度范围内的光线沿大致一致的方向射向LCD显示面板以作为显示光源,从而满足特定应用场景如防窥等。但是,由于这种方法对光的利用率较低,导致从发光单元发出的大部分大角度出射光不能被有效利用,从而想要获得需要的显示亮度就需要更高的功耗。
发明内容
为至少部分地克服上述现有技术中的缺陷和/或不足,本公开的实施例提供光源控制组件、显示装置及制造光源控制组件的方法,由此,通过利用光电转换器来回收利用不能用于产生受控光束的其它光线,从而提高光利用率。
本公开的实施例所采用的技术方案如下:
根据本公开实施例的一个方面,提供了一种光源控制组件,包括:光电转换器; 至少一个发光单元;和光控制结构,所述光控制结构被构造成用以使得从所述至少一个发光单元中各个发光单元发射的一部分光穿过、且阻挡从所述至少一个发光单元中各个发光单元发射的另一部分光,来利用穿过所述光控制结构的所述一部分光生成彼此分离的多个受控光束,其中从各个发光单元发出的被所述光控制结构阻挡的另一部分光由所述光电转换器接收。
根据本公开的一个实施例,所述光控制结构包括:多个透光部分和多个阻光部分,所述多个透光部分构造成使得从各个发光单元发射的不超过第一发散角范围的光线分别从所述多个透光部分贯穿射出;所述多个阻光部分构造成使得从各个发光单元发射的超过第一发散角范围的光线被太阳能电池板接收以产生电能。
根据本公开的一个实施例,所述至少一个发光单元设置在所述光电转换器上;并且所述光控制结构包括与所述光电转换器相对且间隔开设置的盖板,所述盖板设置在所述至少一个发光单元的背离所述光电转换器的一侧上方,所述盖板包括所述多个透光部分和所述多个阻光部分;其中,所述多个阻光部分包括多个光反射部分,所述多个光反射部分构造成分别将从各个发光单元发射的超过第一发散角范围的光线朝向所述光电转换器反射。
根据本公开的一个实施例,所述盖板为透明盖板,所述多个光反射部分包括设置在透明盖板的面对所述光电转换器的一个表面上的多个光反射元件,所述多个透光部分包括透明盖板的除所述多个反射元件以外的部分和形成于所述透明盖板上的通孔中的至少一种。
根据本公开的一个实施例,其中所述盖板为不透明盖板,所述多个光反射部分包括设置在透明盖板的面对所述光电转换器的一个表面上的多个光反射元件,所述多个透光部分包括形成于所述不透明盖板上的通孔。
根据本公开的一个实施例,所述多个光反射元件是涂覆在所述盖板的面对所述光电转换器的一个表面上的多个光反射涂层。
根据本公开的一个实施例,所述光源控制组件还包括基板,所述至少一个发光单元设置在所述基板上;并且所述光控制结构包括与基板相对且间隔开设置的盖板,所述盖板设置在所述至少一个发光单元的背离所述基板的一侧上方,所述盖板包括所述多个透光部分和所述多个阻光部分;其中,所述多个阻光部分包括多个所述光电转换器,所述光电转换器构造成分别接收从各个发光单元发射的超过第一发散角范围的光线。
根据本公开的一个实施例,所述盖板为透明盖板,所述多个光电转换器被形成在透明盖板的面对所述基板的一个表面上,所述多个透光部分包括所述透明盖板的除所述多个光电转换器以外的部分和形成于所述透明盖板上的通孔中的至少一种。
根据本公开的一个实施例,所述盖板为不透明盖板,所述多个光电转换器被形成在透明盖板的面对所述基板的一个表面上,所述多个透光部分包括形成于所述不透明盖板上的通孔。
根据本公开的一个实施例,所述多个光电转换器是薄膜电池。
根据本公开的一个实施例,所述发光单元形成点光源,所述盖板的透光部分形成圆形形状,所述透光部分的半径R=Y*tgα,其中Y表示从发光单元到透光部分的距离,α表示所述第一发散角。
根据本公开的一个实施例,所述阻光部分至少包括围绕圆形透光部分的环形部分,所述环形部分的沿径向方向的宽度至少为Z1=Y*tgβ-R,其中β表示每个所述发光单元的最大光发射角度。
根据本公开的一个实施例,所述发光单元形成线光源,所述盖板的透光部分形成条状,所述透光部分的宽度X=2Y*tgα,其中Y表示从发光单元到透光部分的距离,α表示所述第一发散角。
根据本公开的一个实施例,所述阻光部分至少包括与透光部分的每一侧相邻的条状部分,所述条状部分的宽度Z2至少为Z2=Y*tgβ-X/2,其中β表示每个所述发光单元的最大光发射角度。
根据本公开的一个实施例,所述第一发散角大于等于1°且小于等于10°。
根据本公开的一个实施例,每个发光单元的最大光发射角度β大于等于50°且小于等于70°。
根据本公开的一个实施例,所述发光单元为OLED元件。
根据本公开的一个实施例,所述光电转换器为太阳能电池板,包括:不透光的硅薄膜太阳能电池、铜铟镓硒薄膜太阳能电池,聚合物太阳能电池中的至少一个。
根据本公开的另一个方面,提供一种显示装置,包括:显示面板;和背光源,所述背光源包括如前述方面的光源控制组件。
根据本公开的另一个方面,提供一种制造光源控制组件的方法,包括:提供光电转换器;提供至少一个发光单元,每个发光单元适于发射光;和提供光控制结构,其中,所述光控制结构构造成使得从所述至少一个发光单元中各个发光单元发出的一部 分光通过、且阻挡从所述至少一个发光单元中各个发光单元发射的另一部分光,来利用穿过所述光控制结构的所述一部分光以形成彼此分离的多个受控光束,而从各个发光单元发出的另一部分光被光电转换单元光电转换器接收。
附图说明
通过下文中参照附图对本公开所作的详细描述,本公开的上述和其它特征和优点将显而易见,并可帮助获得对本公开有全面的理解。在附图中:
图1是根据本公开的一个实施例的光源控制组件的简化结构图;
图2是图1所示的光源控制组件的一个示例性具体结构的示意图;
图3是图2所示的光源控制组件的盖板的平面示意图;
图4是根据本公开的另一个实施例的光源控制组件的简化结构图;
图5是图4所示的光源控制组件的一个示例性具体结构的示意图;
图6是图5所示的光源控制组件的盖板的平面示意图;以及
图7是根据本公开的一个实施例的显示装置的示意图。
具体实施方式
下面通过实施例,并结合附图,对本公开实施例的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本公开实施方式的说明旨在对本公开的总体发明构思进行解释,而不应当理解为对本公开的一种限制。
另外,在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本披露实施例的全面理解。然而明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。在其他情况下,公知的结构和装置以图示的方式体现以简化附图。
附图中各部件尺寸和形状不反映本公开实施例的光源控制组件、显示装置的部件的真实比例,目的只是示意说明本公开内容。
根据本公开实施例的总体发明构思,提供一种光源控制组件,包括:光电转换器;多个发光单元,每个发光单元适于通过接收电能来发射光;和光控制结构,其中,所述光控制结构构造成使得从所述至少一个发光单元中各个发光单元发出的一部分光通过、且阻挡从所述至少一个发光单元中各个发光单元发射的另一部分光,来利用穿过所述光控制结构的所述一部分光生成彼此分离的多个受控光束,而从各个发光单元发 出的另一部分光被光电转换器接收。根据本公开的光源控制组件,能够利用光电转换器来回收利用不能用于产生受控光束的其它光线,从而提高了光利用率。
具体地,所述光电转换器例如是太阳能电池板,所述太阳能电池接收发光单元发出不用于产生受控光束的大角度光,且这部分大角度光的光能被转换为电能给发光单元供电。以下以太阳能电池板为例来说明本公开的示例性实施例。
图1是根据本公开的一个示例性实施例的光源控制组件100的简化结构图。如图1所示,光源控制组件100包括太阳能电池板1;设置在太阳能电池板1上的至少一个发光单元2。图1示出了多个发光单元2的情况。多个发光单元2从电源接收电能以发出束状光线L。所述光源控制组件100还包括与太阳能电池板1相对设置的盖板3,所述盖板3设置于所述多个发光单元2的背离太阳能电池板1的一侧上方且与所述多个发光单元2间隔开,并且包括多个的透光部分31和多个光反射部分32。所述多个透光部分31分别与所述多个发光单元2的位置对准,使得从各个发光单元2发射的不超过预定发散角α范围的光线分别从所述多个透光部分31传播而射出;所述多个光反射部分32构成阻光部分,使得从各个发光单元2发射的超过预定发散角α范围的光线被太阳能电池板1再次吸收而利用以产生电能。在其他实施例中,上述太阳能电池板1产生的电能例如作为辅助电源,向发光电源2供电,也例如用作其他的用途。
根据一个具体的例子,多个透光部分31分别与所述多个发光单元2的位置对准的状态包括:每个发光单元2的朝向盖板3的垂直投影落在与其对准设置的一个透光部分31的中心位置。
具体地,所述多个光反射部分32将从各个发光单元2发射的超过预定发散角α范围的光线朝向太阳能电池板1反射,以被太阳能电池板1再次吸收而利用以产生电能。进而,所产生的电能再次输入发光单元2以使发光单元2发出光线。本领域技术人员例如根据所希望的对于受控光的控制程度确定预定发散角的具体角度。例如,预定发散角α例如选择为5°。
在上述实施例中,所述发光单元2例如是普通LED光源,或者OLED光源。另外,所述发光单元2例如是点光源,也替代地例如是线性光源。在点光源的情况下,通过本公开实施例的光源控制组件例如提供在点光源周围的各个方向上发散角在预定范围内的受控的点状光束,以满足各种需要点状光束的应用场合。在线性光源的情况下,通过本公开实施例的光源控制组件例如提供在线性光源的宽度方向上发散角在预定范围内的受控的线状光束,以满足各种需要线状光束的应用场合。
作为示例性实施例,所述太阳能电池板1例如是不透光的硅薄膜太阳能电池、铜铟镓硒薄膜太阳能电池,聚合物太阳能电池等,其结构和制备方法与常规太阳能电池相同。
图2示出了图1所示的光源控制组件100的一个示例性具体结构的示意图。如图2所示,发光单元2采用OLED光源。所述OLED光源包括层叠布置的阳极21、有机发光层22和阴极23。阳极21例如采用透明氧化铟锡(ITO)材料制备。有机发光层22具体例如包括空穴注入层、空穴传输层、发光层、电子传输层、电子注入层等。阴极23例如是透明材料的导电层。阳极21和有机发光层22各自包括多个独立的且间隔开布置的单元结构,阴极23例如如图所示为整块阴极的形式。在替代的实施例中,所示阴极还可构造成与所述阳极21和有机发光层22呈分别对齐呈多个独立且间隔开地布置。
这里,每个阳极单元和其上的每个有机发光层单元以及对应的阴极部分构成一个OLED发光单元,用于接收从太阳能电池板1提供的电能以发光。太阳能电池板1采用整块太阳能电池板的形式,具体包括层叠布置的下电极11、PN结12和上电极13。太阳能电池板1和OLED发光单元之间例如设置绝缘的钝化层4。OLED发光单元的阳极21和阴极23例如与太阳能电池板1的下电极11和上电极13分别电连接,以接收从太阳能电池板1提供的电能。虽然图中没有示出,能够理解,除了太阳能电池板1以外,光源控制组件100还例如包括其它的电源,用于对OLED单元提供电能。本公开对此不作限定。
如图2所示,光源控制组件100还包括例如玻璃制成的基板5,太阳能电池板2形成在所述基板5上。盖板3与基板5相对,其间用间隔件6支撑,以在盖板3与基板5二者之间形成被构造用以容纳OLED发光单元2和太阳能电池1的空间。间隔件5例如是UV固化胶。
注意,图2只是示意地示出了根据本公开的一个实施例的光源控制组件100的结构,为了清楚起见,只对与本公开的发明主题有关的结构进行了图示,而省略了其它一些已知的结构。本领域技术人员应当理解,本实施例的光源控制组件100还例如包括常规OLED光源的其它必要组成元件,太阳能电池板1也例如包括常规太阳能电池板的其它必要组成元件,在此不再赘述。
如图2所示,根据一个实施例,盖板3例如是透明的玻璃盖板,所述多个光反射部分32例如由形成在透明盖板3的面对太阳能电池板1的一个表面上的且间隔开布置 的多个光反射元件33构成,而所述多个透光部分31由透明盖板3的除所述多个反射元件33以外的部分、和/或形成于所述透明盖板上的通孔构成,即所述多个透光部分31彼此之间被所述多个光反射元件33分隔开。此处,盖板3构成光控制结构,透光部分31用于透过大致受控的光,光反射部分32用于反射大角度光。本公开的光控制结构不限于此,本领域技术人员例如设想其它能够形成透光部分和阻光部分的光控制结构。
作为替代实施例,所述盖板3也例如为不透明盖板,所述多个光反射部分32也例如包括设置在透明盖板的面对所述光电转换器的一个表面上的多个光反射元件33,所述多个透光部分31包括形成于所述不透明盖板上的通孔。
图3是图2所示的光源控制组件的盖板3的平面示意图。参见图1和3,在发光单元2形成点光源时,所述盖板3的透光部分31相应地形成圆形形状。每个发光单元2在盖板3上的垂直投影落入对应的透光部分31的中心位置。如图1所示,从发光单元2到盖板3的距离为Y,则透光部分31的半径R=Y*tgα,其中α是所述预定发散角。
因此,本领域技术人员例如根据所希望的受控光的预定发散角α来设定透光部分的半径R和发光单元与盖板的距离Y。例如,预定发散角α例如大于等于1°且小于等于10°。
例如,若预定发散角α选择为5°,则tg5°≈0.87,则R/Y=0.87,其中R为圆形透光部分31的半径,Y为发光单元2距离盖板3的高度。例如,R为5um,则Y应当为大约5.75um。
另外,根据一些实施例,每个发光单元2的最大光发射角度表示为β,光反射部分32例如包括围绕圆形透光部分31的环形部分。在这种情况下,所述环形部分的沿径向方向的宽度至少为Z1=Y*tgβ-R。这样,从发光单元2发出的除预定发散角以内的用于产生受控光的光线以外的光线,即发射角介于α和β之间的大角度光线例如全部被呈所述环形部分的光反射部分32反射回到太阳能电池板1,以被太阳能电池板1再次利用而产生电能,所述电能继而施加至OLED发光单元2以发光,从而,该实施例的光源控制组件提高了光利用率,降低了功耗。
因此,本领域技术人员例如根据具体发光单元的最大发光角度β、发光单元和盖板的距离Y以及透光部分的半径R来设定光反射部分的尺寸。例如,最大发光角度β例如大于等于50°且小于等于70°。
例如,通过实验得知,通常OLED发光单元的最大发光角度β大约为60°,因此例如按最大发光角度60°进行器件尺寸设计。例如,若要求受控光具有5°以内的预定发散角,则tg5°=R/Y,则R≈0.87y;tg60°=(R+Z1)/Y,则Z1≈1.645Y。例如R为5um,则Y应当为大约5.75um,Z1应当为大约9.46um。
注意,为了清楚起见,图1-3不一定按比例绘制。另外,虽然图3示出了光反射部分32为围绕圆形透光部分31的环形部分,但是为了便于制造,光反射部分32例如包括除圆形透光部分31以外的盖板3的全部剩余部分。
以上的实施例示例地说明了发光单元为点光源的情况,通过该实施例的光源控制组件例如提供在点光源周围的各个方向上发散角在预定范围内的受控的点状光束,以满足各种需要点状光束的应用场合。
以下说明制造图1-3所示的实施例的光源控制组件100的方法。
首先,提供基板,例如玻璃基板;
接着,在基板上制作整块的太阳能电池板,所述太阳能电池板包括下电极、PN结和上电极。太阳能电池板例如是不透光的硅薄膜太阳能电池、铜铟镓硒薄膜太阳能电池,聚合物太阳能电池等,制备方法如常规工艺,在此不再赘述。
接着,例如在太阳能电池板的上电极上沉积一层绝缘钝化膜;并在太阳能电池板的上电极上方的钝化膜上制备OLED点阵光源,OLED点阵光源例如利用精细掩膜版依次沉积ITO阳极层、空穴注入层、空穴传输层、发光层、电子传输层、电子注入层以及阴极层而形成。并且,通过制作例如过孔使得每个OLED发光单元的阳极和阴极分别与太阳能电池板的上电极和下电极电连接,以使得所述多个发光单元从太阳能电池板接收电能以发光;
接着,通过UV固化胶等连接盖板和基板。所述盖板例如预先制成为包括多个透光部分和作为阻光部分的多个光反射部分。在进一步的实施例中,所述多个光反射元件例如是涂覆在所述盖板的面对所述光电转换器的一个表面上的多个光反射涂层。具体地,例如提供透明盖板,并在透明盖板的将面对太阳能电池板而布置的一个表面上沉积例如金属反射膜,以形成多个光反射部分,其余部分则形成为透光部分。连接盖板和基板时,使多个透光部分分别与多个发光单元的位置对准。例如,例如使每个发光单元2在盖板3上的垂直投影落入对准设置的透光部分31的中心位置。
制作和连接盖板时,如前参照图1和3所示,如发光单元为点光源,例如根据所希望的受控光的预定发散角α来设定圆形透光部分的半径R和发光单元与盖板的距离 Y;并根据具体发光单元的最大发光角度β、发光单元和盖板的距离Y以及透光部分的半径R来设定光反射部分的尺寸。
如此制成的盖板,所述多个透光部分构造成分别与所述多个发光单元的位置对准,使得从各个发光单元发射的不超过预定发散角的光线分别从所述多个透光部分射出以作为受控光被使用;而所述多个光反射部分构造成分别将从各个发光单元发射的超过预定发散角的光线朝向太阳能电池板反射,以被太阳能电池板再次利用以产生电能,该电能又可提供给发光单元以产生光。
上述实施例的光源控制组件及其制作方法,由于在光源控制组件中包括了太阳能电池,并利用太阳能电池接收从发光单元发出的不用于产生受控光的大角度光,将这部分光能转换为电能给发光单元供电,从而,提高了光源控制组件的光利用率,减少了发光单元的功耗,同时获得了所需的受控光束。
图4是根据本公开的另一个实施例的光源控制组件200的简化结构图。如图4所示,光源控制组件200包括基板50;设置在基板50上的间隔开布置的多个发光单元20;以及与基板50相对设置的盖板30。盖板30与基板50之间用间隔件60支撑,以形成容纳OLED发光单元20的空间。间隔件60例如是导电胶。
该实施例的盖板30包括多个透光部分31和多个光电转换器10(例如多个太阳能电池板10)。所述多个透光部分31与图1的实施例一样分别与所述多个发光单元20的位置对准,使得从各个发光单元20发射的不超过预定发散角α范围的光线分别从所述多个透光部分31射出,作为受控光;例如,每个发光单元2在盖板3上的垂直投影落入对准设置的透光部分31的中心位置。所述多个太阳能电池板10分别构成阻光部分,以使得从各个发光单元20发射的超过预定发散角α范围的光线被太阳能电池板10再次利用以产生电能。
具体地,所述多个太阳能电池板10构造成直接吸收从各个发光单元发射的超过预定发散角α范围的光线,并进行光电转换以产生电能。之后,所产生的电能例如通过电连接元件输送到发光单元20,用于使发光单元20发光。
在上述实施例中,所述发光单元20例如是普通LED光源,或者OLED光源。另外,所述发光单元20例如是点光源,也例如是线性光源。所述太阳能电池板10例如是不透光的硅薄膜太阳能电池、铜铟镓硒薄膜太阳能电池,聚合物太阳能电池等,其结构和制备方法与常规太阳能电池相同。所述基板50例如是玻璃基板。
作为替代实施例,图5示出了图4所示的光源控制组件200的一个示例性具体结 构的示意图。如图4所示,发光单元20采用OLED光源。所述OLED光源包括阳极21、有机发光层22和阴极23。阳极21可采用透明氧化铟锡(ITO)材料制备。有机发光层22具体例如包括空穴注入层、空穴传输层、发光层、电子传输层、电子注入层等。阴极23可为透明材料的导电层。阳极21和有机发光层22分别包括多个独立且间隔开布置的单元结构,阴极23例如如图所示为整块阴极的形式。在替代的实施例中,所示阴极还可构造成与所述阳极21和有机发光层22呈分别对齐呈多个独立且间隔开地布置。
这里,每个阳极单元和其上的每个有机发光层单元以及对准设置的阴极部分构成一个OLED发光单元20,用于从太阳能电池板10接收电能以发光。每个太阳能电池板10具体包括下电极11、PN结12和上电极13。太阳能电池板10的下电极11和上电极13例如通过引线70、导电的间隔件60、过孔等分别电连接至OLED发光单元20的阳极21和阴极23,以将太阳能电池板10的电能输送给OLED发光单元20。OLED发光单元20从太阳能电池板10接收电能以发光。虽然图中没有示出,能够理解到,除了太阳能电池板10以外,光源控制组件200还例如包括其它的电源,用于对OLED单元提供电能。本公开对此不作限定。实质上,与之前图2所示的光源控制组件100相比,光源控制组件200的不同之处在于,所述多个太阳能电池板10,即下电极11、PN结12和上电极13,被设置到与基板50相对设置的盖板30的与基板面对的一侧上,而非如图2所示直接设置在基板50上的与盖板30面对的一侧上。
注意,图5只是示意地示出了根据本公开的一个实施例的光源控制组件200的结构,为了清楚起见,只对与本公开的发明主题有关的结构进行了图示,而省略了其它一些已知的结构。本领域技术人员应当理解,本实施例的光源控制组件200还例如包括常规OLED光源的其它必要组成元件,太阳能电池板10也例如包括常规太阳能电池板的其它必要组成元件,在此不再赘述。另外,为了清楚起见,图5不一定按比例绘制。
如图4所示,根据一个实施例,盖板30例如是透明的玻璃盖板,所述多个太阳能电池板10由形成在透明盖板30的面对基板50的一个表面上的薄膜电池构成,所述多个透光部分31由透明盖板30的除所述多个太阳能电池板10以外的部分构成。此处,盖板30构成光控制结构,透光部分31用于透过大致被控制的光,太阳能电池板10用于吸收大角度光。本公开的光控制结构不限于此,本领域技术人员例如设想其它能够形成透光部分和阻光部分的光控制结构。
作为替代实施例,所述盖板30也例如为不透明盖板,所述多个光电转换器10被形成在透明盖板的面对所述基板30的一个表面上,所述多个透光部分31包括形成于所述不透明盖板30上的通孔。
图6是图5所示的光源控制组件的盖板30的一个示例平面示意图。参见图4和6,在发光单元20形成线性光源时,所述盖板30的透光部分31相应地形成条状。如图4和6所示,从发光单元20到盖板30的距离为Y,则条状的透光部分31的宽度X=2Y*tgα,其中α是预定发散角。
因此,本领域技术人员例如根据所希望的受控光的预定发散角α来设定透光部分的宽度X和发光单元与盖板的距离Y。例如,预定发散角α例如在1-10度的范围内选择。
例如,若预定发散角α选择为5°,则tg5°≈0.87,则X/2Y≈0.87,其中X为条状透光部分31的宽度,Y为发光单元2距离盖板3的高度。例如,X为10um,则Y应当为大约5.75um。
另外,根据一些实施例,每个发光单元20的最大光发射角度表示为β,构成阻光部分的每个太阳能电池板10例如包括与透光部分31的每一侧相邻的条状部分。在这种情况下,所述条状部分的宽度Z2至少为Z2=Y*tgβ-X/2。这样,从发光单元20发出的除预定发散角以内的用于产生受控光的光线以外的光线L,即发射角介于α和β之间的大角度光线例如全部被太阳能电池板10吸收,从而被太阳能电池板10再次利用而产生电能,所述电能可通过电连接单元施加至OLED发光单元20以使其发光。因此,该实施例的光源控制组件提高了光利用率,降低了功耗。
因此,本领域技术人员例如根据具体发光单元的最大发光角度β、发光单元和盖板的距离Y以及透光部分的宽度X来设定太阳能电池板10的尺寸。通常,最大发光角度β例如在50-70度的范围内选择。
例如,通过实验可知,通常OLED发光单元的最大发光角度β为60°,因此例如按最大发光角度60°进行器件尺寸设计。例如,若要求受控光具有5°以内的预定发散角,则tg5°=X/2Y,则X/2≈0.87y;tg60°=(X/2+Z2)/Y,则Z2≈1.645Y。例如,X为10um,则Y为大约5.75um,Z2为大约9.46um。
以上的实施例示例地说明了发光单元为线性光源的情况,通过该实施例的光源控制组件例如提供在线性光源的宽度方向上发散角在预定范围内的受控的线状光束,以满足各种需要线状光束的应用场合。
以下说明制造图4-6所示的实施例的光源控制组件200的方法。
首先,提供基板,例如玻璃基板;
接着,在基板上制备OLED点阵光源,OLED点阵光源例如利用精细掩膜版依次沉积ITO阳极层、空穴注入层、空穴传输层、发光层、电子传输层、电子注入层以及阴极层而形成;
然后,通过例如导电胶连接盖板。所述盖板例如预先制成为包括多个透光部分和作为阻光部分的多个太阳能电池板的结构。在进一步的实施例中,所述多个光反射元件例如是涂覆在所述透明盖板的面对所述光电转换器的一个表面上的多个光反射涂层。具体地,例如提供透明盖板,并在透明盖板的将面对太阳能电池板的一个表面上制备薄膜太阳能电池,作为阻光部分,其余部分则形成为透光部分。连接盖板时,使多个透光部分分别与多个发光单元的位置对准。具体地,例如使每个线性的发光单元2在盖板3上的垂直投影落入对准设置的条状的透光部分31的中心位置(宽度方向)。在制作盖板时,例如在太阳能电池板上制作引线、过孔等,使得盖板被连接后,通过引线、过孔、导电胶等将太阳能电池板的电能输送至发光单元,使发光单元产生光。
制作和连接盖板时,如前参照图4和6所示,如发光单元为线性光源,例如根据所希望的受控光的预定发散角α来设定条状透光部分的宽度X和发光单元与盖板的距离Y;并根据具体发光单元的最大发光角度β、发光单元和盖板的距离Y以及透光部分的宽度X来设定太阳能电池板的尺寸。
如此制成的盖板,所述多个透光部分构造成分别与所述多个发光单元的位置对准,使得从各个发光单元发射的不超过预定发散角范围的光线分别从所述多个透光部分射出以作为受控光被使用;而所述多个太阳能电池板则构造成分别接收从各个发光单元发射的超过预定发散角范围的光线以产生电能,该电能又可提供给发光单元以产生光。
上述实施例的光源控制组件及其制作方法,类似于图1-3的实施例,由于在光源控制组件中包括了太阳能电池,并利用太阳能电池吸收从发光单元发出的不用于产生受控光的大角度光,将这部分光能转换为电能给发光单元供电,从而,提高了光源控制组件的光利用率,减少了发光单元的功耗,同时获得了想要的受控光束。
综上所述,本公开的各示例性实施例提供了一种光源控制组件,包括太阳能电池板;多个发光单元,所述多个发光单元构造成接收电能以发光;和位于多个发光单元的出光方向上的光控制结构,其中,所述光控制结构包括多个透光部分和多个阻光部分,所述多个透光部分构造成使得从各个发光单元发射的不超过预定发散角的光线分 别从所述多个透光部分射出;所述多个阻光部分构造成使得从各个发光单元发射的超过预定发散角的光线被太阳能电池板接收以产生电能。
因此,本申请的各实施例将控制光源中不需要的大角度的光,转化为太阳能电池的电能,该电能例如进一步给OLED发光单元供电,从而增加了光的利用效率,同时获得需要的受控光束。
根据本公开另一方面的实施例,如图7所示,提供了一种显示装置,包括:显示面板300;和背光源,所述背光源包括如前述实施例的光源控制组件100或200,其具体结构在此不再赘述。
具体地,如图7所示,所述显示面板300例如是LCD面板,所述LCD面板包括彩膜层301、阵列基板302和介于彩膜层与阵列基板之间的液晶层303。本领域技术人员应当理解,显示面板300还例如包括偏振片、取向膜、扩散膜等其它公知的结构,在此不再赘述。
由于采用了如前述实施例的光源控制组件,本实施例的显示装置的背光源具有较低的功耗,光利用率高,同时获得受控光束,用于LCD显示面板以作为显示光源,从而满足特定应用场景如防窥等。
根据本申请的光源控制组件、显示装置和制造光源控制组件的方法,通过光电转换器来回收利用不能用于产生受控光束的其它光线,从而减少了发光单元的光损失,增加了光的利用效率,同时能够获得需要的受控光束。
虽然以上参照附图描述了本公开的一些具体实施例,本领域技术人员应当理解,在不引起冲突的情况下,各施例的光源控制组件的组成部分相互组合或替代。例如,虽然图1-3的实施例采用了点光源,相应地,盖板采用圆形透光部分和环形阻光部分;但是,图1-3的实施例也例如采用线性光源,相应地,盖板例如采用条状透光部分和条状阻光部分。类似地,虽然图4-6的实施例采用了线性光源,相应地,盖板采用条状透光部分和条状阻光部分;但是,图4-6的实施例也例如采用点光源,相应地,盖板例如采用圆形透光部分和环形阻光部分。
另外,虽然以上的实施例以太阳能电池板作为光电转换器的例子,但本领域技术人员能够理解到,其它的光电转换器可用于代替太阳能电池板,只要其能够回收利用不能用于产生受控光束的大角度光线以提高光利用率即可。
本领域的技术人员能够理解到,上面所描述的实施例都是示例性的,并且本领域的技术人员可以对其进行改进,各种实施例中所描述的结构在不发生结构或者原理方面的冲突的情况下可以进行自由组合。
虽然结合附图对本公开进行了说明,但是附图中公开的实施例旨在对本公开优选实施方式进行示例性说明,而不能理解为对本公开的一种限制。
虽然本总体发明构思的一些实施例已被显示和说明,本领域普通技术人员将理解,在不背离本总体发明构思的原则和精神的情况下,可对这些实施例做出改动和变型,这些改动和变型都应涵盖在本公开的保护范围之内。本公开的保护范围以所附权利要求和它们的等同物限定的保护范围为准。
应注意,措词“包括”不排除其它元件或步骤,措词“一”或“一个”不排除多个。另外,权利要求的任何元件标号不应理解为限制本公开的范围。

Claims (20)

  1. 一种光源控制组件,包括:
    光电转换器;
    至少一个发光单元;和
    光控制结构,所述光控制结构被构造成用以使得从所述至少一个发光单元中各个发光单元发射的一部分光穿过、且阻挡从所述至少一个发光单元中各个发光单元发射的另一部分光,来利用穿过所述光控制结构的所述一部分光生成彼此分离的多个受控光束,
    其中,
    从各个发光单元发出的被所述光控制结构阻挡的所述另一部分光由所述光电转换器接收。
  2. 根据权利要求1所述的光源控制组件,其中,所述光控制结构包括:
    多个透光部分,所述多个透光部分构造成使得从各个发光单元发射的不超过第一发散角范围的光线分别从所述多个透光部分贯穿射出;和
    多个阻光部分,所述多个阻光部分构造成使得从各个发光单元发射的超过第一发散角范围的光线被所述光电转换器接收以产生电能。
  3. 根据权利要求2所述的光源控制组件,其中,
    所述至少一个发光单元设置在所述光电转换器上;并且
    所述光控制结构包括与所述光电转换器相对且间隔开设置的盖板,所述盖板设置在所述至少一个发光单元的背离所述光电转换器的一侧上方,所述盖板包括所述多个透光部分和所述多个阻光部分;
    其中,所述多个阻光部分包括多个光反射部分,所述多个光反射部分构造成分别将从各个发光单元发射的超过第一发散角范围的光线朝向所述光电转换器反射。
  4. 根据权利要求3所述的光源控制组件,其中,所述盖板为透明盖板,所述多个光反射部分包括设置在透明盖板的面对所述光电转换器的一个表面上的多个光反射元 件,所述多个透光部分包括透明盖板的除所述多个反射元件以外的部分和形成于所述透明盖板上的通孔中的至少一种。
  5. 根据权利要求3所述的光源控制组件,其中所述盖板为不透明盖板,所述多个光反射部分包括设置在透明盖板的面对所述光电转换器的一个表面上的多个光反射元件,所述多个透光部分包括形成于所述不透明盖板上的通孔。
  6. 根据权利要求4或5所述的光源控制组件,其中所述多个光反射元件是涂覆在所述盖板的面对所述光电转换器的一个表面上的多个光反射涂层。
  7. 根据权利要求2所述的光源控制组件,其中,
    所述光源控制组件还包括基板,所述至少一个发光单元设置在所述基板上;并且
    所述光控制结构包括与基板相对且间隔开设置的盖板,所述盖板设置在所述至少一个发光单元的背离所述基板的一侧上方,所述盖板包括所述多个透光部分和所述多个阻光部分;
    其中,所述多个阻光部分包括多个所述光电转换器,所述光电转换器构造成分别接收从各个发光单元发射的超过第一发散角范围的光线。
  8. 根据权利要求7所述的光源控制组件,其中,所述盖板为透明盖板,所述多个光电转换器被形成在透明盖板的面对所述基板的一个表面上,所述多个透光部分包括所述透明盖板的除所述多个光电转换器以外的部分和形成于所述透明盖板上的通孔中的至少一种。
  9. 根据权利要求7所述的光源控制组件,其中所述盖板为不透明盖板,所述多个光电转换器被形成在透明盖板的面对所述基板的一个表面上,所述多个透光部分包括形成于所述不透明盖板上的通孔。
  10. 根据权利要求7至9中任一项所述的光源控制组件,其中所述多个光电转换器是薄膜电池。
  11. 根据权利要求3至10中任一项所述的光源控制组件,其中,所述发光单元形成点光源,所述盖板的透光部分形成圆形形状,所述透光部分的半径R=Y*tgα,其中Y表示从发光单元到透光部分的距离,α表示所述第一发散角。
  12. 根据权利要求11所述的光源控制组件,其中,所述阻光部分至少包括围绕圆形透光部分的环形部分,所述环形部分的沿径向方向的宽度至少为Z1=Y*tgβ-R,其中β表示每个所述发光单元的最大光发射角度。
  13. 根据权利要求3至10中任一项所述的光源控制组件,其中,所述发光单元形成线光源,所述盖板的透光部分形成条状,所述透光部分的宽度X=2Y*tgα,其中Y表示从发光单元到透光部分的距离,α表示所述第一发散角。
  14. 根据权利要求13所述的光源控制组件,其中,所述阻光部分至少包括与透光部分的每一侧相邻的条状部分,所述条状部分的宽度Z2至少为Z2=Y*tgβ-X/2,其中β表示每个所述发光单元的最大光发射角度。
  15. 根据权利要求2所述的光源控制组件,其中,所述第一发散角大于等于1°且小于等于10°。
  16. 根据权利要求12或14所述的光源控制组件,其中,每个发光单元的最大光发射角度β大于等于50°且小于等于70°。
  17. 根据权利要求1所述的光源控制组件,其中,所述发光单元为OLED元件。
  18. 根据权利要求1所述的光源控制组件,其中,所述光电转换器为太阳能电池板,包括:不透光的硅薄膜太阳能电池、铜铟镓硒薄膜太阳能电池,聚合物太阳能电池中的至少一个。
  19. 一种显示装置,包括:
    显示面板;和
    背光源,所述背光源包括如权利要求1-18任一项所述的光源控制组件。
  20. 一种制造光源控制组件的方法,包括:
    提供光电转换器;
    提供至少一个发光单元,每个发光单元被配置用以通过接收电能来发射光;和
    提供光控制结构,其中,所述光控制结构构造成用以使得从所述至少一个发光单元中各个发光单元发出的一部分光通过、且阻挡从所述至少一个发光单元中各个发光单元发射的另一部分光,来利用穿过所述光控制结构的所述一部分光以形成彼此分离的多个受控光束,而从各个发光单元发出的未通过所述光控制结构的另一部分光被光电转换器接收。
PCT/CN2017/099066 2017-02-23 2017-08-25 光源控制组件、显示装置及制造光源控制组件的方法 WO2018153042A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/776,388 US11131882B2 (en) 2017-02-23 2017-08-25 Light source control assembly, display device and method for manufacturing light source control assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710101444.8 2017-02-23
CN201710101444.8A CN106838849B (zh) 2017-02-23 2017-02-23 准直光源组件、显示装置及制造准直光源组件的方法

Publications (1)

Publication Number Publication Date
WO2018153042A1 true WO2018153042A1 (zh) 2018-08-30

Family

ID=59133479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099066 WO2018153042A1 (zh) 2017-02-23 2017-08-25 光源控制组件、显示装置及制造光源控制组件的方法

Country Status (3)

Country Link
US (1) US11131882B2 (zh)
CN (1) CN106838849B (zh)
WO (1) WO2018153042A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106838849B (zh) * 2017-02-23 2019-11-26 京东方科技集团股份有限公司 准直光源组件、显示装置及制造准直光源组件的方法
US11314098B2 (en) 2018-08-10 2022-04-26 E Ink California, Llc Switchable light-collimating layer with reflector
US11397366B2 (en) * 2018-08-10 2022-07-26 E Ink California, Llc Switchable light-collimating layer including bistable electrophoretic fluid
WO2020033787A1 (en) 2018-08-10 2020-02-13 E Ink California, Llc Driving waveforms for switchable light-collimating layer including bistable electrophoretic fluid

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100091224A1 (en) * 2008-10-10 2010-04-15 Samsung Electronics Co., Ltd. Photonic crystal optical filter, reflective color filter, display apparatus using the reflective color filter, and method of manufacturing the reflective color filter
CN101922669A (zh) * 2009-06-15 2010-12-22 友达光电股份有限公司 背光模组
CN103939793A (zh) * 2013-01-23 2014-07-23 Lg电子株式会社 面状照明装置
CN104791668A (zh) * 2015-04-30 2015-07-22 深圳市华星光电技术有限公司 背光模块及具有该背光模块的液晶显示器
CN106206671A (zh) * 2016-09-05 2016-12-07 京东方科技集团股份有限公司 集成太阳能电池的oled显示基板及显示装置
CN106838849A (zh) * 2017-02-23 2017-06-13 京东方科技集团股份有限公司 准直光源组件、显示装置及制造准直光源组件的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2319550A1 (en) * 1998-02-02 1999-08-05 Uniax Corporation Image sensors made from organic semiconductors
KR100835841B1 (ko) * 2006-09-06 2008-06-05 주식회사 엘지화학 집광시트 및 이의 제조방법
JP5093717B2 (ja) * 2006-10-23 2012-12-12 Nltテクノロジー株式会社 光学素子およびこれを用いた照明光学装置、表示装置、電子機器
US9488862B2 (en) * 2013-02-12 2016-11-08 Apple Inc. Displays with organic light-emitting diode backlight structures
CN103591514B (zh) * 2013-11-22 2016-03-02 京东方科技集团股份有限公司 一种背光模组及液晶显示装置
JP6141347B2 (ja) * 2014-06-05 2017-06-07 キヤノン株式会社 光源装置及び表示装置
CN104614892B (zh) * 2015-02-25 2017-08-08 京东方科技集团股份有限公司 彩膜基板、显示面板和显示装置
CN205749977U (zh) * 2016-06-30 2016-11-30 京东方科技集团股份有限公司 背光模组和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100091224A1 (en) * 2008-10-10 2010-04-15 Samsung Electronics Co., Ltd. Photonic crystal optical filter, reflective color filter, display apparatus using the reflective color filter, and method of manufacturing the reflective color filter
CN101922669A (zh) * 2009-06-15 2010-12-22 友达光电股份有限公司 背光模组
CN103939793A (zh) * 2013-01-23 2014-07-23 Lg电子株式会社 面状照明装置
CN104791668A (zh) * 2015-04-30 2015-07-22 深圳市华星光电技术有限公司 背光模块及具有该背光模块的液晶显示器
CN106206671A (zh) * 2016-09-05 2016-12-07 京东方科技集团股份有限公司 集成太阳能电池的oled显示基板及显示装置
CN106838849A (zh) * 2017-02-23 2017-06-13 京东方科技集团股份有限公司 准直光源组件、显示装置及制造准直光源组件的方法

Also Published As

Publication number Publication date
US20200264478A1 (en) 2020-08-20
US11131882B2 (en) 2021-09-28
CN106838849B (zh) 2019-11-26
CN106838849A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
WO2018153042A1 (zh) 光源控制组件、显示装置及制造光源控制组件的方法
KR102436605B1 (ko) 높은 수의 픽셀을 갖는 디스플레이 장치를 위한 컬러 무기 led 디스플레이
EP3321565B1 (en) Backlight module and display device
US10962832B2 (en) Display device and method for fabricating the same
EP3256776B1 (en) White light source
JP2013016588A (ja) Led発光装置
KR20120110915A (ko) 발광장치
TW200814842A (en) Structure OLED with micro optics for generating directed light
JP2013247369A (ja) 複数の方向に出光可能な発光ダイオードチップを形成するためのサファイア基板、発光ダイオードチップ、及び発光装置
TW200412187A (en) Luminaire for light extraction from a flat light source
JP3187635U (ja) 薄型直下型ledバックライトモジュール
TW200832774A (en) Organic light emitting diode devices with optical microstructures
CN109754711B (zh) 一种背光模组及其制备方法、显示装置
TWI442538B (zh) 發光媒體
CN106461924A (zh) 具有带改善的亮度和反射率的集成光伏单元的显示设备
JP2010251213A (ja) 発光モジュールおよび照明装置
WO2017118214A1 (zh) 光学调制器、背光源模组及显示装置
TW201502665A (zh) 顯示裝置、背光模組與覆晶式發光元件
TWI671558B (zh) 發光裝置與液晶顯示器
TW201944149A (zh) 背光模塊及顯示裝置
CN215259364U (zh) 一种光源装置
JP2015164216A (ja) Led発光装置
US20220326570A1 (en) Backlight unit using semiconductor light-emitting element
WO2023142165A1 (zh) 显示面板及显示装置
CN114068844A (zh) 显示模组及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897698

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/03/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17897698

Country of ref document: EP

Kind code of ref document: A1