WO2017118214A1 - 光学调制器、背光源模组及显示装置 - Google Patents

光学调制器、背光源模组及显示装置 Download PDF

Info

Publication number
WO2017118214A1
WO2017118214A1 PCT/CN2016/105417 CN2016105417W WO2017118214A1 WO 2017118214 A1 WO2017118214 A1 WO 2017118214A1 CN 2016105417 W CN2016105417 W CN 2016105417W WO 2017118214 A1 WO2017118214 A1 WO 2017118214A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimming unit
light
backlight
optical modulator
substrate
Prior art date
Application number
PCT/CN2016/105417
Other languages
English (en)
French (fr)
Inventor
王倩
董学
陈小川
赵文卿
高健
卢鹏程
杨明
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/534,414 priority Critical patent/US10545366B2/en
Publication of WO2017118214A1 publication Critical patent/WO2017118214A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0944Diffractive optical elements, e.g. gratings, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/291Two-dimensional analogue deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating

Definitions

  • the present invention relates to the field of display technologies, and in particular, to an optical modulator, a backlight module, and a display device.
  • the backlight module since the light source emits light in various directions, it is difficult to cause the backlight module to emit collimated light even after corresponding modulation.
  • Embodiments of the present invention provide an optical modulator, a backlight module, and a display device, which can output collimated light after the light emitted by the backlight passes through the optical modulator, and improve light utilization efficiency.
  • an optical modulator including: a first level dimming unit, a second level dimming unit, and a third level dimming unit arranged in sequence;
  • the first level dimming unit is a converging element, Converging light emitted by the light source;
  • the second level dimming unit is a collimating element for converting light from the first level dimming unit into parallel light;
  • the third level dimming unit is a redirecting element for converting parallel light from the second level dimming unit into light in a vertical direction.
  • the first level dimming unit is a liquid crystal lens.
  • the second-stage dimming unit is a transmission grating;
  • the transmission grating includes a grating surface and a groove surface, and the grating surface and the groove surface have an acute angle, by setting each of the grooves The angle between the face and the acute angle of the grating face and the spacing between adjacent groove faces converts light from the first stage dimming unit into parallel light of a predetermined angle and a predetermined wavelength.
  • the third level dimming unit is an optical wedge, the optical wedge includes an inclined surface adjacent to the second level dimming unit; the second level dimming unit and the third level dimming There is a transition unit between the units, the transition unit having a refractive index smaller than that of the third level dimming unit.
  • a backlight module including a backlight and the optical modulator of the first aspect; the backlight is disposed at a first level of the optical modulator and away from the second level Light unit side.
  • the backlight is a dot matrix LED.
  • a display device includes a backlight and a display panel; the display panel includes a substrate adjacent to the backlight; the display device further includes the optical modulator of the first aspect; The optical modulator is disposed on a surface of the substrate facing the backlight or a surface of the substrate facing away from the backlight.
  • the optical modulator is disposed between the backlight and the display panel, and the base substrate is used as a third level dimming unit of the optical modulator.
  • the display panel includes an array substrate, a counter substrate, and a liquid crystal layer therebetween;
  • the array substrate includes the substrate, and a film disposed on the substrate a transistor and a pixel electrode electrically coupled to a drain of the thin film transistor.
  • the pair of cassette substrates include a filter pattern.
  • Embodiments of the present invention provide an optical modulator, a backlight module, and a display device, which can increase light in a specific direction after the light emitted by the backlight passes through a first-stage dimming unit that converges in the optical modulator.
  • the light extraction rate thereby enhancing the light efficiency utilization; on this basis, after passing through the second-stage dimming unit, most of the light can be converted into parallel light, and other small portions of light can be neglected due to the relatively scattered energy; further, After passing through the third-stage dimming unit, the parallel light can be converted into light in the vertical direction, thereby achieving collimation modulation of the light emitted by the backlight, and improving the light efficiency utilization.
  • FIG. 1 is a schematic diagram of an optical modulator according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a first-stage dimming unit according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a second level dimming unit according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another optical modulator according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a backlight module according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a display device according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of another display device according to an embodiment of the present invention.
  • An embodiment of the present invention provides an optical modulator 01, as shown in FIG.
  • the optical modulator 01 includes a first-stage dimming unit 10, a second-stage dimming unit 20, and a third-stage dimming unit 30 that are sequentially disposed.
  • the first stage dimming unit 10 is a converging element for concentrating light emitted by the light source; the second stage dimming unit 20 is a collimating element for converting light from the first stage dimming unit 10 into parallel light.
  • the third stage dimming unit 30 is a redirecting element for converting parallel light from the second level dimming unit into light in the vertical direction.
  • any structure made based on the principle of light refraction can be used.
  • the light that refracts, based on the refraction theorem allows the outgoing ray to approach the vertical direction with respect to the incident light, thereby achieving a function of concentrating the light.
  • the second-stage dimming unit 20 may be, for example, a transmission grating; the second-stage dimming unit 20 may also be any structure made based on the principle of diffraction of light. It can select the incident light to ensure that most of the emitted light is parallel light, and other small parts of the light are negligible due to the scattered energy.
  • At least a portion of the light from the first-stage dimming unit 10 can be concentrated in a specific direction, that is, by controlling the first-stage dimming unit 10, There is more light coming out in one direction.
  • the third-stage dimming unit 30 may be, for example, a wedge; the third-stage dimming unit 30 may also be any structure made based on the principle of light refraction. Wherein, when the parallel light emitted by the second-stage dimming unit 20 passes through the third-stage dimming unit 30, based on the refraction theorem, the parallel light can be emitted in a vertical direction.
  • FIG. 1 only schematically shows each dimming unit in the optical modulator, and an optical path diagram through each dimming unit.
  • the embodiment of the present invention provides an optical modulator 01.
  • the light emitted by the backlight passes through the first-stage dimming unit 10 that functions as a convergence, the light-emitting rate of the light in a specific direction can be increased, thereby enhancing the light efficiency utilization rate.
  • the second-stage dimming unit 20 After passing through the second-stage dimming unit 20, most of the light can be converted into parallel light, and other small portions of light can be neglected due to the relatively scattered energy; further, when passing through the third-stage dimming unit 30 After that, the parallel light can be converted into light in the vertical direction, thereby achieving collimation modulation of the light output from the backlight, and improving the light efficiency utilization.
  • the first level dimming unit 10 is a liquid crystal lens.
  • the liquid crystal lens may include a first substrate 101, a second substrate 102, and a liquid crystal layer 103 interposed therebetween.
  • the first substrate 101 may include a first transparent substrate 1011 and a first electrode 1012 disposed on the first transparent substrate 1011.
  • the second substrate 102 may include a second transparent substrate 1021 and a second electrode disposed on the second transparent substrate 1021. 1022.
  • one of the first electrode 1012 and the second electrode 1022 may be a strip electrode and the other may be a planar electrode.
  • both are strip electrodes.
  • embodiments of the invention may include a strip electrode and a planar electrode.
  • the first electrode 1012 is a strip electrode
  • the second electrode 1022 is a planar electrode.
  • the liquid crystal layer 103 located therebetween can be driven.
  • the strip electrodes are independent of each other, a lens can be formed between each strip electrode and the corresponding planar electrode, and the liquid crystal can be made different by adjusting the voltage of the corresponding strip electrode. The refraction of the angle allows control of the direction of exit of the light.
  • the emission direction of the light can be flexibly controlled by controlling the pressure difference between the first electrode 1012 and the second electrode 1022, so that The secondary dimming unit 20 provides incident light at a desired angle and maximizes light efficiency utilization.
  • the second-stage dimming unit 20 is a transmission grating;
  • the transmission grating includes a grating surface 201 and a groove surface 202, and the grating surface 201 and the groove surface 202 have an acute angle ⁇ , by setting each The angle between the groove faces 202 and the acute angle of the grating face 201 and the distance d between the adjacent groove faces 202 convert the light from the first-stage dimming unit 10 into parallel light of a predetermined angle and a predetermined wavelength.
  • a specific angle an angle perpendicular to the groove surface.
  • the light passing through the second-stage dimming unit 20 is parallel light, and therefore, the angle ⁇ between each groove surface 202 and the grating surface 201 is required to be the same.
  • the adjustment may not be exactly the same, so that the light output by the second-stage dimming unit 20 is white light.
  • the first-stage dimming unit 10 can be controlled to increase the incident rate of the light of the vertical groove surface 202;
  • the voltages of the first electrode 1012 and the second electrode 1022 can be adjusted to increase the incident rate of the light of the vertical groove surface 202, so that after passing through the second-stage dimming unit 20, the light can be made along the vertical groove surface 202. Shining shines out.
  • the parallel light of a predetermined angle is selected by the transmission grating, and is emitted in a blazed reinforcement manner, so that the output light energy is concentrated, and the brightness of the output light is ensured.
  • the third-level dimming unit 30 is an optical wedge, and the optical wedge includes An inclined surface close to the second-stage dimming unit 20; a transition unit 40 between the second-stage dimming unit 20 and the third-stage dimming unit 30, and the refractive index of the transition unit 40 is smaller than that of the third-stage dimming unit 30 rate.
  • the refractive index of the transition unit 40 is denoted by n1
  • the refractive index of the third-stage dimming unit 30 is denoted by n2
  • the incident angle of light incident from the transition unit 40 into the third-stage dimming unit 30 is denoted as i1
  • the lower surface of the third-stage dimming unit 30 adjacent to the second-stage dimming unit 20 is set as an inclined surface, and the material of the third-stage dimming unit 30 is a high refractive index material;
  • a transition unit 40 is disposed between the stage dimming unit 20 and the third stage dimming unit 30, so that a vertical exit of light can be achieved with a simple structure.
  • the embodiment of the present invention further provides a backlight module, as shown in FIG. 5, including a backlight 02 and the optical modulator 01 described above; wherein the backlight 02 is disposed at the first level dimming unit of the optical modulator 01. 10 is away from the side of the second stage dimming unit 20.
  • a backlight module as shown in FIG. 5, including a backlight 02 and the optical modulator 01 described above; wherein the backlight 02 is disposed at the first level dimming unit of the optical modulator 01. 10 is away from the side of the second stage dimming unit 20.
  • the backlight 02 is not limited.
  • the collimation modulation of the light can be realized, and the light efficiency utilization rate is improved, so that the backlight module satisfies the better illumination. performance.
  • the backlight 02 is optionally a dot matrix LED.
  • the embodiment of the present invention further provides a display device, as shown in FIG. 6, comprising a backlight 02 and a display panel 03, wherein the display panel 03 includes a substrate 311 adjacent to the backlight 02; further, the display device further The optical modulator 01 described above is included; wherein the optical modulator 01 is disposed on a surface of the base substrate 311 facing the backlight 02 or a surface of the base substrate facing away from the backlight 02.
  • FIG. 6 is a diagram showing a liquid crystal display panel as an example.
  • the collimation modulation of the light can be realized, and the light efficiency utilization rate is improved, so that the display device has a better display effect.
  • the backlight 02 is a dot matrix LED.
  • an optical modulator 01 is disposed between the backlight 02 and the display panel 03, and the base substrate 311 is used as a third-stage dimming unit of the optical modulator 01. 30.
  • the material and shape of the base substrate 311 can be set to have the function of the third-stage dimming unit 30.
  • the thickness of the display device can be reduced.
  • the display panel 03 may include an array substrate 31, a counter substrate 32, and a liquid crystal layer 103 interposed therebetween.
  • the array substrate 31 includes a base substrate 311, and a thin film transistor and a pixel electrode disposed on the base substrate 311.
  • the thin film transistor includes a gate, a gate insulating layer, a semiconductor active layer, a source and a drain, and the drain is electrically coupled to the pixel electrode.
  • a common electrode may be disposed on the array substrate 31 or the pair of cassette substrates 32.
  • the pixel electrode and the common electrode are spaced apart in the same layer, and both are strip electrodes; for advanced-super Dimensional (Advanced-super Dimensional)
  • the pixel electrode and the common electrode are disposed in different layers, wherein the upper electrode is a strip electrode, and the lower electrode is a plate electrode or a strip electrode.
  • the cartridge substrate 32 may include a filter pattern.
  • the filter pattern may be a red filter pattern, a green filter pattern, and a blue filter pattern, or other three primary color filter patterns.
  • the filter pattern is disposed on the array substrate 31, and the filter pattern is disposed on the counter substrate 32, which simplifies the preparation process of the array substrate 31.
  • the display device of the embodiment of the present invention may be any product or component having a display function, such as a mobile phone, a tablet computer, a display, a notebook computer, a digital photo frame, a navigator, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

一种光学调制器(01)、背光源模组及显示装置。所述光学调制器(01)包括:依次布置的第一级调光单元(10)、第二级调光单元(20)和第三级调光单元(30);所述第一级调光单元(10)为汇聚元件,用于对光源发出的光进行汇聚;所述第二级调光单元(20)为准直元件,用于将来自所述第一级调光单元(10)的光转换为平行光;所述第三级调光单元(30)为重定向元件,用于将来自所述第二级调光单元(20)的平行光转换为竖直方向的光。

Description

光学调制器、背光源模组及显示装置
相关申请
本申请要求保护在2016年1月8日提交的申请号为201610012041.1的中国专利申请的优先权,该申请的全部内容以引用的方式结合到本文中。
技术领域
本发明涉及显示技术领域,尤其涉及一种光学调制器、背光源模组及显示装置。
背景技术
近年来,随着科学技术的日益发展,各类显示装置逐渐发展起来。在此基础上,用户对显示装置的性能要求也越来越高。基于此,对于显示装置中的背光源来说,则希望输出竖直向上的准直光。
然而,对于背光源模组来说,由于光源发出各个方向的光,即使经过相应的调制,目前也很难使背光源模组发出准直光。
发明内容
本发明的实施例提供一种光学调制器、背光源模组及显示装置,在背光源发出的光经过光学调制器后可输出准直光,并提高光效利用率。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,提供一种光学调制器,包括:依次布置的第一级调光单元、第二级调光单元和第三级调光单元;所述第一级调光单元为汇聚元件,用于对光源发出的光进行汇聚;所述第二级调光单元为准直元件,用于将来自所述第一级调光单元的光转换为平行光;所述第三级调光单元为重定向元件,用于将来自所述第二级调光单元的平行光转换为竖直方向的光。
可选的,所述第一级调光单元为液晶透镜。
可选的,所述第二级调光单元为透射光栅;所述透射光栅包括光栅面和槽面,所述光栅面和槽面具有锐角夹角,通过设置每个所述槽 面与所述光栅面的锐角夹角以及相邻所述槽面间的间距,将来自所述第一级调光单元的光转换为预定角度以及预定波长的平行光。
可选的,所述第三级调光单元为光楔,所述光楔包括靠近所述第二级调光单元的倾斜面;所述第二级调光单元和所述第三级调光单元之间具有过渡单元,所述过渡单元的折射率小于所述第三级调光单元的折射率。
第二方面,提供一种背光源模组,包括背光源和上述第一方面所述的光学调制器;所述背光源设置在所述光学调制器的第一级调光单元远离第二级调光单元一侧。
所述背光源为点阵LED。
第三方面,提供一种显示装置,包括背光源和显示面板;所述显示面板包括靠近所述背光源的衬底基板;所述显示装置还包括上述第一方面所述的光学调制器;所述光学调制器设置在所述衬底基板面对所述背光源的表面或所述衬底基板背离所述背光源的表面。
可选的,所述光学调制器设置在所述背光源和所述显示面板之间,且所述衬底基板用作所述光学调制器的第三级调光单元。
基于上述,可选的,所述显示面板包括阵列基板、对盒基板以及位于二者之间的液晶层;所述阵列基板包括所述衬底基板,以及设置在所述衬底基板上的薄膜晶体管和与所述薄膜晶体管的漏极电联接的像素电极。
进一步的,所述对盒基板包括滤光图案。
本发明的实施例提供一种光学调制器、背光源模组及显示装置,当背光源发出的光经过光学调制器中起汇聚作用的第一级调光单元后,可增加特定方向的光的出光率,从而增强光效利用率;在此基础上,当通过第二级调光单元后,便可使大部分光转换为平行光,其他少部分光由于能量较为分散可忽略;进一步的,当通过第三级调光单元后,便可使平行光转换为竖直方向的光,从而实现对背光源发出的光的准直调制,且提高光效利用率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而 易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种光学调制器的示意图;
图2为本发明实施例提供的一种第一级调光单元的示意图;
图3为本发明实施例提供的一种第二级调光单元的示意图;
图4为本发明实施例提供的另一种光学调制器的示意图;
图5为本发明实施例提供的一种背光源模组的示意图;
图6为本发明实施例提供的一种显示装置的示意图;以及
图7为本发明实施例提供的另一种显示装置的示意图。
附图标记:
01-光学调制器;02-背光源;03-显示面板;10-第一级调光单元;20-第二级调光单元;30-第三级调光单元;40-过渡单元;31-阵列基板;32-对盒基板;101-第一基板;102-第二基板;103-液晶层;201-光栅面;202-槽面;311-衬底基板;1011-第一透明基板;1012-第一电极;1021-第二透明基板;1022-第二电极。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供了一种光学调制器01,如图1所示。所述光学调制器01包括依次布置的第一级调光单元10、第二级调光单元20和第三级调光单元30。
第一级调光单元10为汇聚元件,用于对光源发出的光进行汇聚;第二级调光单元20为准直元件,用于将来自第一级调光单元10的光转换为平行光;第三级调光单元30为重定向元件,用于将来自第二级调光单元的平行光转换为竖直方向的光。
需要说明的是,第一,对于第一级调光单元10,可基于光的折射原理制成的任意结构。当光源发出的光通过第一级调光单元10时,对 于发生折射的光,基于折射定理,可使出射光线相对入射光向竖直方向靠近,从而实现对光的汇聚功能。
在此基础上,第二级调光单元20例如可以是透射光栅;第二级调光单元20也可以是基于光的衍射原理制成的任意结构。其可对入射光进行选择,以保证大部分出射的光为平行光,其他少部分光由于能量较为分散,因此可忽略。
为了能使第二级调光单元20出射的光能量较大,可使来自第一级调光单元10的光的至少一部分向特定方向汇聚,即,通过控制第一级调光单元10,使某个方向上出射的光线增多。
进一步的,第三级调光单元30例如可以是光楔;第三级调光单元30也可以是基于光的折射原理制成的任意结构。其中,当第二级调光单元20发出的平行光通过第三级调光单元30时,基于折射定理,可使平行光以竖直方向出射。
第二,附图1仅示意性的绘示出光学调制器中各调光单元,以及经过各调光单元的光路图。
本发明实施例提供了一种光学调制器01,当背光源发出的光经过起汇聚作用的第一级调光单元10后,可增加特定方向的光的出光率,从而增强光效利用率;在此基础上,当通过第二级调光单元20后,便可使大部分光转换为平行光,其他少部分光由于能量较为分散可忽略;进一步的,当通过第三级调光单元30后,便可使平行光转换为竖直方向的光,从而实现对背光源输出的光的准直调制,且提高光效利用率。
可选的,第一级调光单元10为液晶透镜。
具体的,如图2所示,液晶透镜可以包括第一基板101、第二基板102、以及位于二者之间的液晶层103。第一基板101可以包括第一透明基板1011和设置在第一透明基板1011上的第一电极1012,第二基板102可以包括第二透明基板1021和设置在第二透明基板1021上的第二电极1022。
其中,第一电极1012和第二电极1022中,例如其中一个可以设为条状电极,另一个设为面状电极。当然也可以是两个都为条状电极。为了简化工艺,本发明实施例可以包括一个条状电极和一个面状电极。其中,图2中以第一电极1012为条状电极,第二电极1022为面状电极进行示意。
基于此,利用第一电极1012和第二电极1022之间形成的电场,可驱动位于二者之间的液晶层103。其中,由于条状电极之间相互独立,在每个条状电极和相对应的面状电极之间便可形成一个透镜,通过调整相应的条状电极的电压,便可使液晶对光进行不同角度的折射,从而可实现对光的出射方向的控制。
本发明实施例中,通过将第一级调光单元10设为液晶透镜,可通过控制第一电极1012和第二电极1022之间的压差,来灵活控制光的出射方向,以便可以为第二级调光单元20提供所需角度的入射光,而且可以最大化的提高光效利用率。
可选的,如图3所示,第二级调光单元20为透射光栅;所述透射光栅包括光栅面201和槽面202,光栅面201和槽面202具有锐角夹角θ,通过设置每个槽面202与光栅面201的锐角夹角θ以及相邻槽面202间的间距d,将来自第一级调光单元10的光转换为预定角度以及预定波长的平行光。
具体的,第二级调光单元20基于光的衍射来提取出入射光,参考图3所示,当入射到第二级调光单元20的入射光与槽面202垂直并且满足2d·sinθ=λ时,该波长的光束会被以特定的角度(与槽面垂直的角度)闪耀加强出射。其中,通过设计不同的d值和θ值,则可获得不同出射角度和不同的出光波段。
由于本发明实施例中,通过第二级调光单元20的光为平行光,因此,需使每个槽面202与光栅面201的夹角θ相同。对于相邻槽面202间的间距d,可调整的不完全相同,以使第二级调光单元20输出的光为白光。
基于上述描述,由于在入射光与槽面202垂直的情况下,可使光束闪耀加强出射,因此,可控制第一级调光单元10,以增加垂直槽面202的光的入射率;即,可以调整第一电极1012和第二电极1022的电压,来增加垂直槽面202的光的入射率,从而在经过第二级调光单元20后,便可在使光沿垂直槽面202的方向闪耀加强出射。
本发明实施例中,利用透射光栅,将预定角度的平行光选择出来,并以闪耀加强方式出射,从而使得输出的光能量较为集中,保证了输出光的亮度。
可选的,如图4所示,第三级调光单元30为光楔,所述光楔包括 靠近第二级调光单元20的倾斜面;第二级调光单元20和第三级调光单元30之间具有过渡单元40,过渡单元40的折射率小于第三级调光单元30的折射率。
其中,将过渡单元40的折射率记为n1,将第三级调光单元30的折射率记为n2,将从过渡单元40射入第三级调光单元30的光的入射角记为i1,将出射角记为i2,根据折射定理i1×sinn1=i2×sinn2,由于n1<n2,因此i2<i1。基于此,通过调整倾斜面的倾角以及过渡单元40和第三级调光单元30的折射率,便可使出射光以竖直方向出射。
本发明实施例中,第三级调光单元30的靠近第二级调光单元20的下表面被设置为倾斜面,且第三级调光单元30的材料为高折射率材料;在第二级调光单元20和第三级调光单元30之间设置有过渡单元40,因此可采用简单的结构实现光的竖直出射。
本发明实施例还提供了一种背光源模组,如图5所述,包括背光源02和上述的光学调制器01;其中,背光源02设置在光学调制器01的第一级调光单元10远离第二级调光单元20的一侧。
此处,不对背光源02进行限定。
本发明实施例中,背光源02发出的光经过光学调制器01后,便可以实现对光的准直调制,且提高了光效利用率,从而使得该背光源模组满足具有更好的发光性能。
由于LED(Light Emitting Diode,发光二极管)具有体积小,耗电量低,使用寿命长等优点,因此,可选地,背光源02为点阵LED。
本发明实施例还提供了一种显示装置,如图6所示,包括背光源02和显示面板03,其中,显示面板03包括靠近背光源02的衬底基板311;进一步的,该显示装置还包括上述的光学调制器01;其中,光学调制器01设置在所述衬底基板311面对所述背光源02的表面或所述衬底基板背离所述背光源02的表面。
需要说明的是,对于显示面板03,只要是被动发光式显示面板均可。其中,图6以液晶显示面板为例进行示意。
本发明实施例中,背光源02发出的光经过光学调制器01后,便可以实现对光的准直调制,且提高了光效利用率,从而使得该显示装置具有更好的显示效果。
可选地,背光源02为点阵LED。
可选的,如图7所示,光学调制器01设置在所述背光源02和所述显示面板03之间,且所述衬底基板311用作光学调制器01的第三级调光单元30。
即,可以设置衬底基板311的材料以及形状,使其具有第三级调光单元30的功能。
本发明实施例中通过将衬底基板311用作第三级调光单元30,可降低显示装置的厚度。
基于上述,参考图6和图7所示,显示面板03可以包括阵列基板31、对盒基板32以及位于二者之间的液晶层103。其中,阵列基板31包括衬底基板311,以及设置在衬底基板311上的薄膜晶体管和像素电极。薄膜晶体管包括栅极、栅绝缘层、半导体有源层、源极和漏极,漏极与像素电极电联接。
进一步的,还可以在所述阵列基板31或所述对盒基板32上布置公共电极。
其中,对于共平面切换型(In-Plane Switch,简称IPS)阵列基板而言,像素电极和公共电极同层间隔设置,且均为条状电极;对于高级超维场转换型(Advanced-super Dimensional Switching,简称ADS)阵列基板而言,像素电极和公共电极不同层设置,其中在上的电极为条状电极,在下的电极为板状电极或条状电极。
在此基础上,对盒基板32可以包括滤光图案。其中,滤光图案可以为红色滤光图案、绿色滤光图案和蓝光滤光图案,或者是其他三基色滤光图案。
本发明实施例中,相对将滤光图案设置在阵列基板31上,将滤光图案设置在对盒基板32上,可简化阵列基板31的制备工艺。
基于上述,本发明实施例的显示装置可以为:手机、平板电脑、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种光学调制器,包括:依次布置的第一级调光单元、第二级调光单元和第三级调光单元;
    所述第一级调光单元为汇聚元件,用于对光源发出的光进行汇聚;
    所述第二级调光单元为准直元件,用于将来自所述第一级调光单元的光转换为平行光;
    所述第三级调光单元为重定向元件,用于将来自所述第二级调光单元的平行光转换为竖直方向的光。
  2. 根据权利要求1所述的光学调制器,其中,所述第一级调光单元为液晶透镜。
  3. 根据权利要求1所述的光学调制器,其中,所述第二级调光单元为透射光栅;所述透射光栅包括光栅面和槽面,所述光栅面和槽面具有锐角夹角,通过设置每个所述槽面与所述光栅面的锐角夹角以及相邻所述槽面间的间距,将来自所述第一级调光单元的光转换为预定角度以及预定波长的平行光。
  4. 根据权利要求1所述的光学调制器,其中,所述第三级调光单元为光楔,所述光楔包括靠近所述第二级调光单元的倾斜面;
    所述第二级调光单元和所述第三级调光单元之间具有过渡单元,所述过渡单元的折射率小于所述第三级调光单元的折射率。
  5. 一种背光源模组,包括背光源和权利要求1-4任一项所述的光学调制器;
    其中,所述背光源设置在所述光学调制器的第一级调光单元远离第二级调光单元一侧。
  6. 根据权利要求5所述的背光源模组,其中,所述背光源为点阵LED。
  7. 一种显示装置,包括背光源和显示面板,其中,所述显示面板包括靠近所述背光源的衬底基板;其中,所述显示装置还包括权利要求1-4任一项所述的光学调制器;
    其中,所述光学调制器设置在所述衬底基板面对所述背光源的表面或所述衬底基板背离所述背光源的表面。
  8. 根据权利要求7所述的显示装置,其中,所述光学调制器设置 在所述背光源和所述显示面板之间,且所述衬底基板用作所述光学调制器的第三级调光单元。
  9. 根据权利要求7或8所述的显示装置,其中,所述显示面板包括阵列基板、对盒基板以及位于二者之间的液晶层;
    所述阵列基板包括所述衬底基板,以及设置在所述衬底基板上的薄膜晶体管和与所述薄膜晶体管的漏极电联接的像素电极。
  10. 根据权利要求9所述的显示装置,其中,所述对盒基板包括滤光图案。
PCT/CN2016/105417 2016-01-08 2016-11-11 光学调制器、背光源模组及显示装置 WO2017118214A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/534,414 US10545366B2 (en) 2016-01-08 2016-11-11 Optical modulator including multiple modulation units, backlight module and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610012041.1 2016-01-08
CN201610012041.1A CN106959550B (zh) 2016-01-08 2016-01-08 一种光学调制器、背光源模组及显示装置

Publications (1)

Publication Number Publication Date
WO2017118214A1 true WO2017118214A1 (zh) 2017-07-13

Family

ID=59273203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105417 WO2017118214A1 (zh) 2016-01-08 2016-11-11 光学调制器、背光源模组及显示装置

Country Status (3)

Country Link
US (1) US10545366B2 (zh)
CN (1) CN106959550B (zh)
WO (1) WO2017118214A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109541850B (zh) 2019-01-07 2021-10-29 京东方科技集团股份有限公司 显示装置及其驱动方法
CN109782499B (zh) * 2019-02-26 2022-02-01 京东方科技集团股份有限公司 液晶显示装置及电子设备
CN114047651B (zh) * 2021-11-17 2022-11-08 中国科学院半导体研究所 空间光调制器及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292821A (ja) * 1996-04-24 1997-11-11 Dainippon Printing Co Ltd ホログラム照明用プリズムシート組立体
CN1291729A (zh) * 1999-10-08 2001-04-18 国际商业机器公司 光导装置、背景光装置以及液晶显示器装置
CN1922539A (zh) * 2004-02-27 2007-02-28 夏普株式会社 显示装置和电子设备
CN1991499A (zh) * 2005-09-26 2007-07-04 三星电子株式会社 直射型背光组件以及应用它的无滤色器液晶显示装置
CN101625458A (zh) * 2008-07-11 2010-01-13 财团法人工业技术研究院 复合式分光元件
CN205281087U (zh) * 2016-01-08 2016-06-01 京东方科技集团股份有限公司 一种光学调制器、背光源模组及显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100657330B1 (ko) * 2005-08-19 2006-12-14 삼성전자주식회사 백라이트 유닛 및 이를 구비한 액정표시장치
ATE507500T1 (de) * 2005-12-14 2011-05-15 Koninkl Philips Electronics Nv Steuerung der wahrgenommenen tiefe einer autostereoskopischen anzeigeeinrichtung und verfahren dafür
KR20080042219A (ko) * 2006-11-09 2008-05-15 삼성전자주식회사 표시장치
TWI331230B (en) * 2008-06-27 2010-10-01 Ind Tech Res Inst Composite optical division device and image apparatus
CN101634753A (zh) * 2008-07-25 2010-01-27 财团法人工业技术研究院 复合式分光元件与影像装置
US8804067B2 (en) * 2011-05-02 2014-08-12 Au Optronics Corporation Display device
KR20150092424A (ko) * 2014-02-04 2015-08-13 삼성디스플레이 주식회사 표시 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292821A (ja) * 1996-04-24 1997-11-11 Dainippon Printing Co Ltd ホログラム照明用プリズムシート組立体
CN1291729A (zh) * 1999-10-08 2001-04-18 国际商业机器公司 光导装置、背景光装置以及液晶显示器装置
CN1922539A (zh) * 2004-02-27 2007-02-28 夏普株式会社 显示装置和电子设备
CN1991499A (zh) * 2005-09-26 2007-07-04 三星电子株式会社 直射型背光组件以及应用它的无滤色器液晶显示装置
CN101625458A (zh) * 2008-07-11 2010-01-13 财团法人工业技术研究院 复合式分光元件
CN205281087U (zh) * 2016-01-08 2016-06-01 京东方科技集团股份有限公司 一种光学调制器、背光源模组及显示装置

Also Published As

Publication number Publication date
CN106959550A (zh) 2017-07-18
US20180052330A1 (en) 2018-02-22
US10545366B2 (en) 2020-01-28
CN106959550B (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
US11237429B2 (en) Light guiding assembly and fabricating method thereof, backlight module and display device
WO2022001388A1 (zh) 背光模组及其制造方法、显示装置
US10962832B2 (en) Display device and method for fabricating the same
US8899811B2 (en) Light emitting device module and backlight unit including the same
US10866453B2 (en) Display panel and method for fabricating the same, display device and display method
KR102411120B1 (ko) 표시 장치
CN105425469B (zh) 一种背光模组及其制作方法、显示装置
WO2019024605A1 (zh) 面光源及显示装置
WO2018223988A1 (zh) 光学模组和包括其的反射式显示器件
TW201741742A (zh) 直下式背光模組
JP2017015973A (ja) 波長変換装置およびそれを用いた表示装置
CN207148485U (zh) 一种背光装置及显示器
US10890801B2 (en) Backlight module, display device and fabricating method for backlight module
WO2021018219A1 (zh) 显示面板和显示装置
WO2018166154A1 (zh) 一种光源器件及显示装置
US20170242172A1 (en) Polarising photovoltaic module built into the screen of an electronic display device
KR20170004205A (ko) 도광판 및 이를 포함하는 면광원 장치
WO2017118214A1 (zh) 光学调制器、背光源模组及显示装置
WO2017118234A1 (zh) 显示装置及控制方法
CN109991775B (zh) 背光源和显示装置
WO2018153042A1 (zh) 光源控制组件、显示装置及制造光源控制组件的方法
TW201502665A (zh) 顯示裝置、背光模組與覆晶式發光元件
CN111684199A (zh) 照明装置
JP2008277176A (ja) 光学デバイス、及び液晶表示装置
JP2010102906A (ja) 面状光源及び液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15534414

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883341

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16883341

Country of ref document: EP

Kind code of ref document: A1