WO2018151294A1 - Silicon carbide member and member for semiconductor manufacturing device - Google Patents

Silicon carbide member and member for semiconductor manufacturing device Download PDF

Info

Publication number
WO2018151294A1
WO2018151294A1 PCT/JP2018/005740 JP2018005740W WO2018151294A1 WO 2018151294 A1 WO2018151294 A1 WO 2018151294A1 JP 2018005740 W JP2018005740 W JP 2018005740W WO 2018151294 A1 WO2018151294 A1 WO 2018151294A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
sic
crystal
layer
cvd
Prior art date
Application number
PCT/JP2018/005740
Other languages
French (fr)
Japanese (ja)
Inventor
和之 藤江
正明 小畑
浩充 小川
義宜 平野
千里 辻岳
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2018568653A priority Critical patent/JP6818776B2/en
Publication of WO2018151294A1 publication Critical patent/WO2018151294A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present disclosure relates to a silicon carbide member and a member for a semiconductor manufacturing apparatus.
  • a silicon carbide material (CVD-SiC material) obtained by a chemical vapor deposition method (Chemical Vapor Deposition, CVD method) is used as a coating material, and a CVD-SiC material alone is used as various members.
  • the single CVD-SiC member can be obtained, for example, by depositing silicon carbide (SiC) on the surface of the substrate by the CVD method, forming a film, and then removing the substrate.
  • the CVD-SiC material is dense and high-purity as compared with the SiC material produced by the sintering method, and is excellent in corrosion resistance, heat resistance, and strength characteristics.
  • CVD-SiC materials have been proposed as various members such as heaters for semiconductor manufacturing equipment, focus rings used in etching equipment, dummy wafers, susceptors, furnace core tubes, chemical resistance jigs, and analytical containers. .
  • CVD-SiC materials are mainly used inside semiconductor manufacturing equipment. For this reason, it is used as a high-purity SiC free-standing film in a state in which the substrate used for film formation is removed.
  • a thick CVD-SiC material film is formed for use as a free-standing film, the internal stress increases, and the CVD-SiC film (hereinafter simply referred to as a CVD-SiC film) is cracked or warped when the substrate is removed. Deformation may occur.
  • Patent Document 1 discloses that in a laminate in which three or more silicon carbide layers are stacked, the surface of each layer formed by CVD is flattened, and the warpage is suppressed by setting the thickness of each layer to 100 ⁇ m or less. ing.
  • SiC has a plurality of different crystal structures.
  • a plurality of silicon carbide crystals having different crystal structures are mixed.
  • the silicon carbide member of the present disclosure includes a ⁇ -type first silicon carbide crystal having a 3C crystal structure and a second silicon carbide crystal having a crystal structure different from the first silicon carbide crystal.
  • the silicon carbide member has a first surface, and a direction orthogonal to the first surface is defined as a first direction.
  • the second silicon carbide crystal particles have a long diameter extending along the first direction, and an average length in the first direction is 100 ⁇ m or less.
  • the member for a semiconductor manufacturing apparatus, the focus ring, and the dummy wafer according to the present disclosure include the silicon carbide member described above.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 1. It is an example of sectional drawing to which the broken-line part of Drawing 3 was expanded. It is another example of sectional drawing to which the broken-line part of FIG. 3 was expanded.
  • FIG. 4 schematically shows one example of a microstructure of a silicon carbide member, and is an enlarged cross-sectional view of a broken line portion in FIG. 3.
  • FIG. 1 schematically shows one example of the microstructure of a silicon carbide member, and is an enlarged cross-sectional view of the vicinity of a first surface.
  • FIG. 7 is a cross-sectional view schematically showing another example of FIG. 6. It is sectional drawing which shows typically another example of the microstructure of a silicon carbide member.
  • FIG. 1 and 2 are examples of a member 1 for a semiconductor manufacturing apparatus using a silicon carbide material.
  • FIG. 1 schematically shows a focus ring 1a
  • FIG. 2 schematically shows a dummy wafer 1b.
  • semiconductor manufacturing apparatuses particularly CVD (Chemical Vapor Deposition), PVD (Physical Vapor Deposition), and plasma etching apparatuses, wafers such as Si are plasma processed.
  • the focus ring 1a is disposed on the outer periphery of the wafer. By performing wafer processing using the focus ring 1a, the wafer can be processed more uniformly. For this reason, the focus ring 1a is required to have a resistivity equivalent to or similar to that of a wafer that is an object to be processed and a high corrosion resistance against plasma. Corrosion resistance to plasma is sometimes called plasma resistance.
  • the dummy wafer 1b is used as an alternative to a wafer when adjusting the conditions of a semiconductor manufacturing apparatus, cleaning, or the like. Similar to the focus ring 1a, the dummy wafer 1b is required to have the same or similar resistivity and high plasma resistance as the wafer to be processed.
  • the silicon carbide member has a first surface S1.
  • the silicon carbide member is exposed to the plasma primarily at the first surface S1.
  • 4 and 5 are enlarged cross-sectional views of a part of FIG.
  • the silicon carbide material formed by the CVD method is generally constituted by columnar silicon carbide crystals 2 in which crystals grow along the arrow direction v that is the first direction.
  • the first direction is orthogonal to the first surface S1.
  • silicon carbide may be referred to as SiC
  • a silicon carbide material formed by a CVD method may be referred to as a CVD-SiC material.
  • the silicon carbide member may have any structure of FIG. 4 and FIG. 4 and 5, since the silicon carbide crystal 2 is schematically described as a rectangle, there is a description that there are cavities between the plurality of silicon carbide crystals 2. However, the actual silicon carbide material formed by CVD does not have such a large cavity and is dense.
  • crystal polymorphs such as 3C, 4H, 6H and 15R in the crystal structure of silicon carbide.
  • 3C which is a zinc blende type structure, is also called ⁇ -type
  • 4H, 6H, 15R, etc. having other structures are called ⁇ -type.
  • Silicon carbide crystals with different crystal structures have different resistance to plasma and chemicals.
  • the ⁇ -type silicon carbide crystal has a relatively low resistance to plasma and chemicals compared to the ⁇ -type silicon carbide crystal.
  • corrosion due to plasma or chemicals tends to proceed at the interface between silicon carbide crystals having different crystal forms.
  • the coarse particles and their grain boundaries are sites with relatively low resistance to plasma and chemicals.
  • the surface where the ⁇ -type silicon carbide crystal and the ⁇ -type silicon carbide crystal of the silicon carbide member are mixed is exposed to plasma or a chemical solution, the ⁇ -type silicon carbide crystal and its grain boundary are selectively etched.
  • the unevenness of the etched surface becomes large, the surface becomes rough, and the surface roughness increases.
  • the surface area exposed to plasma and chemicals increases and corrosion tends to proceed.
  • the presence of ⁇ -type coarse particles may deteriorate the resistance of the silicon carbide member as a whole to plasma and chemicals.
  • the silicon carbide member of the first embodiment includes a ⁇ -type first silicon carbide crystal 2a having a 3C crystal structure, and an ⁇ having a crystal structure different from the first silicon carbide crystal 2a.
  • Type second silicon carbide crystal 2b The silicon carbide member has a first surface S1, and the first silicon carbide crystal 2a particles and the second silicon carbide crystal 2b particles both have a first direction perpendicular to the first surface S1. It has a long diameter extending along. That the particle has a major axis extending along the first direction means that the major axis direction of the particle forms an angle of less than 45 ° with respect to the first direction.
  • the particles of the first silicon carbide crystal 2a and the particles of the second silicon carbide crystal 2b have a shape in which the length in the first direction is longer than the length in the direction orthogonal to the first direction.
  • the size of the second silicon carbide crystal 2b is larger than the size of the first silicon carbide crystal 2a.
  • the particles of the second silicon carbide crystal 2b have an average of d1 of 100 ⁇ m or less, where d1 is the length in the first direction.
  • the second SiC crystal 2b is ⁇ -type and has lower resistance to plasma and chemicals than the ⁇ -type first SiC crystal 2a.
  • the resistance to plasma and chemicals may be generally referred to as corrosion resistance.
  • the particles of the second SiC crystal 2b having low corrosion resistance have a long diameter extending along the first direction, and the average of the lengths d1 in the first direction is 100 ⁇ m or less, so that the second SiC crystal 2b The size and number of coarse grains are reduced.
  • the average of d1 may be 50 ⁇ m or less, and further 30 ⁇ m or less. By making d1 smaller, the area of the exposed portion of the second SiC crystal 2b is further reduced, and the corrosion resistance of the SiC member is further improved.
  • the first surface S1 is a surface formed in the final step of CVD, and is not a surface in contact with the substrate.
  • the first surface S1 may be a processed surface subjected to a polishing process or the like.
  • the second SiC crystal 2b hardly exists on the surface in contact with the substrate.
  • the second SiC crystal 2b grows from the nucleus generated during the deposition of CVD-SiC. Therefore, by observing the cross section of the CVD-SiC from which the base material has been removed, the surface on the side in contact with the substrate can be discriminated from the first surface S1.
  • the microstructure of the SiC member may be confirmed by, for example, observing the polished surface or cross section of the SiC member by backscattered electron diffraction (Electron Back Scatter Diffraction, EBSD).
  • the polished surface or cross section of the SiC member may be further wet-etched and observed with an optical microscope or a scanning electron microscope (SEM) to confirm the microstructure.
  • SEM scanning electron microscope
  • a wet etching method for example, a method of immersing a SiC member in molten NaOH or molten KOH may be used.
  • the crystal structure of the SiC crystal may be confirmed by X-ray diffraction.
  • the second SiC crystal 2b is present inside the SiC member and on the first surface S1. As shown in FIG. 7, second SiC crystal 2 b may have a portion exposed on first surface S ⁇ b> 1 of the SiC member. Hereinafter, the portion where the second SiC crystal 2b is exposed on the first surface S1 of the SiC member may be simply referred to as an exposed portion of the second SiC crystal 2b.
  • the average of the length d2 of the exposed portion of the second SiC crystal 2b may be 20 ⁇ m or less. When the average of d2 that is the length of the exposed portion of the second SiC crystal 2b is set to 20 ⁇ m or less, the local decrease in resistance to plasma or chemicals can be reduced on the first surface S1 of the SiC member.
  • the average of d2 may be 10 ⁇ m or less, and further 5 ⁇ m or less. By making d2 smaller, the corrosion resistance of the SiC member is further improved.
  • the length d2 of the exposed portion in the cross section perpendicular to the first surface S1 may be measured as the length d2 of the exposed portion of the second SiC crystal 2b.
  • the number of measurements of d2 is, for example, 10, and may be averaged.
  • the diameter which converted the area of the exposed part of the 2nd SiC crystal 2b into a circle is calculated, and it is good also considering the diameter as d2.
  • the silicon carbide member of the second embodiment includes at least two silicon carbide layers 4 including a first silicon carbide crystal 2a and a second silicon carbide crystal 2b as shown in FIG. Two or three or more silicon carbide layers 4 may overlap in the first direction.
  • the shapes of the particles of the first silicon carbide crystal 2a and the particles of the second silicon carbide crystal 2b of the second embodiment are the same as or similar to those of the first embodiment.
  • the average thickness in the first direction of the SiC layer 4 may be 200 ⁇ m or less per layer.
  • the size of second SiC crystal 2b can be reduced.
  • the etching rate when the SiC member is exposed to plasma or chemicals can be made uniform.
  • the particles of the second SiC crystal 2b are not easily separated from the first surface S1, and the roughness of the first surface S1 due to etching can be reduced.
  • the average thickness of SiC layer 4 may be 50 ⁇ m or more.
  • Different SiC layers 4 may have the same thickness or different thicknesses.
  • the SiC member including two or more SiC layers 4 having different thicknesses includes the thin SiC layer 4 in a portion closer to the first surface S1 than the center in the first direction, and the first member is located in the first direction than the center in the first direction.
  • a thick SiC layer 4 may be provided at a site far from the surface S1.
  • the thickness of one SiC layer 4 can be determined by, for example, observing the cross section of the SiC member with a scanning electron microscope (SEM) or the like, measuring the thickness of one SiC layer 4 at three locations, and taking the average value thereof. Good. If the thickness of each SiC layer 4 is substantially equal, a value obtained by dividing the average value of the total thickness of the SiC members by the number of layers of SiC layer 4 may be the average thickness of one SiC layer 4. .
  • SEM scanning electron microscope
  • An intervening layer 5 may exist at the interface between the adjacent SiC layer 4 and SiC layer 4 as shown in FIG.
  • second SiC crystal 2 b can be effectively interrupted at the interface between adjacent silicon carbide layer 4 and silicon carbide layer 4. Therefore, two or more of the second SiC crystals 2b projecting from the second SiC crystal 2b existing across the two or more silicon carbide layers 4, that is, from the interface of the adjacent silicon carbide layer 4 or the intervening layer 5.
  • the second SiC crystal 2b existing in the silicon carbide layer 4 can be reduced.
  • the thickness of the intervening layer 5 may be, for example, 1 ⁇ m or more and 10 ⁇ m or less.
  • N1 When the number ratio of the second SiC crystals 2b existing over two or more SiC layers 4 among the second SiC crystals 2b included in the SiC member is N1, N1 may be 20% or less.
  • the second SiC crystal 2b existing over two or more SiC layers 4 refers to one second continuous with the two or more SiC layers 4 through the interface between the adjacent SiC layers 4 or the intervening layer 5. It can also be said to be the SiC crystal 2b.
  • the intervening layer 5 may include the first SiC crystal 2a.
  • Intervening layer 5 may be mainly composed of first SiC crystal 2a.
  • the fact that the intervening layer 5 is mainly composed of the first SiC crystal 2a means that 90% or more of the SiC crystals composing the intervening layer 5 are the first SiC crystal 2a.
  • the intervening layer 5 may have a higher defect density than the SiC layer 4.
  • the defect density can be confirmed by mirror-processing the cross section of the SiC member, performing wet etching on the mirror-processed cross section, and observing with a scanning electron microscope (SEM) or the like.
  • the intervening layer 5 may have an atomic ratio (Si / C ratio) of silicon (Si) to carbon (C) smaller than that of the SiC layer 4. If the Si / C ratio of the intervening layer 5 is smaller than that of the SiC layer 4, the ⁇ -type second SiC crystal 2b is likely to undergo a phase transition to the ⁇ -type first SiC crystal 2a when the SiC layer 4 is formed. Become. As a result, the grain growth of second SiC crystal 2b can be effectively suppressed in the vicinity of intervening layer 5. In this case, the average d1 of the particles of the second SiC crystal 2b can be set to 50 ⁇ m or less, for example. Note that the Si / C ratio of SiC layer 4 is approximately 1.0, and may be, for example, 0.95 or more and 1.05 or less.
  • the intervening layer 5 mainly composed of SiC may have a Si / C ratio of 0.90 or more and 0.999 or less.
  • the intervening layer 5 may include at least one of an amorphous phase mainly composed of carbon and a crystalline phase.
  • the intervening layer 5 may contain carbon (C) as a main component.
  • the intervening layer 5 being mainly composed of carbon means that 90% or more of the elements constituting the intervening layer 5 is carbon.
  • the SiC member having the intervening layer 5 containing carbon as a main component between the adjacent SiC layer 4 and the SiC layer 4 the grain growth of the second SiC crystal 2b is more effective when the SiC layer 4 is formed. Is suppressed.
  • the size and number of second SiC crystals 2b existing across two or more SiC layers 4, that is, the second SiC crystals 2b protruding from the intervening layer 5 and extending across the plurality of SiC layers 4 are further increased. Can be reduced.
  • the conductivity of carbon is higher than that of SiC. Therefore, when an SiC member having an intervening layer 5 containing carbon as a main component is used as, for example, a focus ring, charges accumulated on the wafer can be quickly released through the intervening layer 5 of the focus ring, and the wafer processing efficiency is increased. Can be increased.
  • the types and ratios of the elements constituting the SiC layer 4 and the intervening layer 5 can be confirmed by elemental analysis such as energy dispersive X-ray spectroscopy (EDS). It can also be confirmed by evaluating the crystal structure by backscattered electron diffraction (Electron BackScatter Diffraction, EBSD) or electron beam diffraction.
  • EDS energy dispersive X-ray spectroscopy
  • the second SiC crystal 2b may be present inside the SiC member and on the first surface S1.
  • the surface of the SiC layer 4, that is, the interface between the adjacent SiC layer 4 and the SiC layer 4 or the interface between the SiC layer 4 and the intervening layer 5 may have irregularities having a maximum height Rz of 20 ⁇ m or more.
  • the maximum height Rz of the surface of the SiC layer 4 is set to 20 ⁇ m or more, the structure of the interface between the SiC layers 4 or the structure of the interface between the SiC layer 4 and the intervening layer 5 is made a structure having irregularities, and the SiC layer 4 The adhesion between the SiC layer 4 and the intervening layer 5 can be improved.
  • the maximum height Rz of the surface of the SiC layer 4 is the line roughness of the interface between the SiC layer 4 and the SiC layer 4 or the interface between the SiC layer 4 and the intervening layer 5 in the cross section along the first direction of the SiC member. What is necessary is just to measure and calculate.
  • the manufacturing method of the SiC member will be described.
  • the CVD apparatus used for producing the SiC member of this embodiment is not particularly limited to this.
  • the CVD apparatus may include, for example, a vertical or horizontal batch type CVD chamber having gas inlets and outlets, and an electric heating means.
  • the substrate can be selectively heated.
  • the frequency of the high frequency used for heating may be, for example, 3 kHz or more and 100 kHz or less.
  • the CVD method may be any method in which a substrate is set in the CVD chamber, a gas such as a source gas or a carrier gas is introduced into the CVD chamber, and a chemical vapor deposition (CVD) reaction is performed on the substrate.
  • a gas such as a source gas or a carrier gas is introduced into the CVD chamber, and a chemical vapor deposition (CVD) reaction is performed on the substrate.
  • CVD chemical vapor deposition
  • the source gas may be a gas containing carbon atoms and silicon atoms.
  • a gas containing a silicon atom a gas having a structure in which one or more chlorine atoms are bonded to a silicon atom in the molecule may be used.
  • Methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, a mixed raw material of silicon chloride and hydrocarbon gas, or the like may be used.
  • CVD-SiC can be deposited at a high deposition rate of 0.1 mm / hour or more, and an SiC member can be produced efficiently.
  • These source gases are mixed with a carrier gas such as hydrogen or argon at a predetermined ratio and introduced into the CVD chamber as a mixed gas.
  • the mixing ratio of the source gas and the carrier gas may be, for example, 3 to 10 times the volume of the carrier gas with respect to the volume of the source gas.
  • the carrier gas may be hydrogen. When hydrogen is used as a carrier gas, the dechlorination reaction from silicon atoms can be promoted.
  • a gas containing dopant atoms may be introduced into the CVD chamber.
  • dopant atoms By introducing dopant atoms into the CVD-SiC, the electrical resistivity of the CVD-SiC can be reduced.
  • Nitrogen or boron may be used as the dopant atom.
  • the nitrogen-containing gas include nitrogen, ammonia, trimethylamine, and triethylamine.
  • the boron-containing gas include boron trichloride and diborane.
  • the ratio between the source gas and the gas containing dopant atoms may be adjusted as appropriate according to the desired electrical resistivity.
  • the volume of the gas containing dopant atoms may be 0.01 to 50 times the volume of the source gas.
  • a mixed gas of a raw material gas, a carrier gas, and a gas containing dopant atoms as necessary is generally referred to as a mixed raw material gas.
  • the reaction temperature of CVD may be 1200 ° C. or higher, for example, and may be 1250 ° C. or higher. When the reaction temperature is less than 1200 ° C., the deposition rate of CVD-SiC is remarkably lowered, and the production efficiency is lowered.
  • the reaction temperature may be particularly 1350 ° C. or higher, more preferably 1350 ° C. or higher and 1500 ° C. or lower.
  • a silicon carbide member having a microstructure as shown in FIG. 6 may be produced as follows.
  • the mixed source gas is introduced onto the substrate so that the pressure in the CVD chamber is about ⁇ 98 kPa or more and ⁇ 80 kPa or less with respect to the atmospheric pressure, and CVD-SiC having a thickness of 50 ⁇ m or more and 200 ⁇ m or less is deposited on the substrate. (SiC layer 4).
  • the deposition rate of CVD-SiC and the introduction time of the mixed source gas may be adjusted as appropriate.
  • the flow rate of the source gas is set to 1/100 or more and 1/10 or less that in the process A, the mixed source gas is introduced onto the substrate, and the CVD-SiC SiC layer 4 formed in the process A is formed. Further, CVD-SiC having a thickness of 1 ⁇ m or more and 10 ⁇ m or less is deposited.
  • a method of setting the introduction flow rate of the mixed raw material gas to 1/100 or more and 1/10 or less, or the ratio of the raw material gas in the mixed raw material gas is 1/100 or more, 1/10
  • the deposition rate of CVD-SiC and the introduction time of the mixed source gas may be adjusted as appropriate.
  • this step B since the source gas is in a dilute state, a minute ⁇ -type first SiC crystal 2a having a 3C structure is easily generated, and the growth of the ⁇ -type second SiC crystal 2b is suppressed.
  • the substrate temperature may be 1200 ° C. or higher and 1400 ° C. or lower.
  • the repetition frequency of the process A and the process B suitably according to the thickness of the desired silicon carbide member.
  • a silicon carbide member having a microstructure as shown in FIG. 8 may be produced as follows.
  • the introduction flow rate of the source gas is made smaller than 1/100 of the process A.
  • This mixed material gas is introduced onto the substrate, and CVD-SiC is further deposited on the CVD-SiC SiC layer 4 formed in step A.
  • a method of making the introduction flow rate of the mixed raw material gas smaller than 1/100 there are a method of making the ratio of the raw material gas in the mixed raw material gas smaller than 1/100. May be.
  • the introduction time of the mixed raw material gas in step C may be, for example, 0.01 times to 4.0 times the time required for step A.
  • the ⁇ -type first SiC crystal 2a having a 3C structure is easily generated.
  • the defect density of the first SiC crystal 2a to be formed is increased, and the intervening layer 5 is formed.
  • the growth of the ⁇ -type second SiC crystal 2b is further suppressed, and the coarsening of the second SiC crystal 2b can be more effectively suppressed.
  • Presence of the intervening layer 5 having a high defect density can be confirmed by wet etching the cross section of the silicon carbide member.
  • the substrate temperature may be 1200 ° C. or higher and 1400 ° C. or lower.
  • count of repetition of the process A and the process C suitably according to the thickness of the desired silicon carbide member.
  • the introduction flow rate of the source gas is set to 1/100 or more and 1/10 or less, and the pressure in the CVD chamber is set to about ⁇ 100 kPa or more and less than ⁇ 98 kPa with respect to the atmospheric pressure.
  • the pressure in the CVD chamber is low, Si is detached from the CVD-SiC SiC layer 4 formed in the process A.
  • the intervening layer 5 having a Si / C ratio lower than that of the SiC layer 4 is formed.
  • the introduction time of the mixed material gas in the process D may be, for example, 0.01 times or more and 4.0 times or less the time required for the process A.
  • the substrate temperature may be 1200 ° C. or higher and 1400 ° C. or lower.
  • the repetition frequency of the process A and the process D suitably according to the thickness of the desired silicon carbide member.
  • step E the pressure in the CVD chamber is set to about ⁇ 100 kPa or more and less than ⁇ 98 kPa with respect to atmospheric pressure, and the introduction of the source gas and the carrier gas is stopped.
  • the pressure in the CVD chamber is low and the source gas is not supplied, so that the detachment of Si further proceeds from the CVD-SiC SiC layer 4 formed in the process A.
  • the intervening layer 5 containing carbon as a main component is formed.
  • the time for stopping the gas introduction may be 0.01 times or more and 4.0 times or less of the time required for the process A, for example.
  • a silicon carbide member having a microstructure as shown in FIG. 8 and in which the main component of the intervening layer 5 is carbon is obtained.
  • the substrate temperature may be 1200 ° C. or higher and 1400 ° C. or lower.
  • count of repetition of the process A and the process E suitably according to the thickness of the desired silicon carbide member.
  • the silicon carbide member of the present disclosure also has an advantage that the production efficiency is excellent as compared with a case where a laminated structure is formed through removal from the CVD chamber and processing as in the related art.
  • graphite As a substrate on which CVD-SiC is deposited, for example, graphite may be used. Since the thermal expansion coefficient of graphite is close to that of silicon carbide, the use of graphite as the substrate can reduce deformation due to the thermal stress of the substrate and the CVD-SiC formed on the surface of the substrate.
  • the thermal expansion coefficient of graphite may be slightly larger than the thermal expansion coefficient of CVD-SiC.
  • the thermal expansion coefficient of graphite is slightly larger than the thermal expansion coefficient of CVD-SiC, the thermal stress generated in CVD-SiC is compressive. It becomes.
  • compressive stress is applied to CVD-SiC, cracks are less likely to occur in CVD-SiC.
  • CVD-SiC is used as a self-solid (also called a self-supporting film).
  • a silicon carbide member used as a self-solid it is necessary to remove the substrate from the formed CVD-SiC.
  • the graphite substrate is easily removed from CVD-SiC by oxidation or grinding.
  • a cone-like structure 6 having low corrosion resistance as shown in FIG. 9 is unlikely to occur. Therefore, even when such a silicon carbide member is exposed to plasma or chemicals, the outer surface is less rough and cracks are not generated.
  • Such a silicon carbide member may be used as a heater and a susceptor for a semiconductor manufacturing apparatus in addition to the focus ring 1a and the dummy wafer 1b shown in FIG. You may use as various members, such as a container.
  • the silicon carbide member of the present disclosure includes not only the self-solid body from which the substrate is removed as described above, but also a composite member of a silicon carbide coating and the substrate.
  • CVD-SiC was formed on the graphite substrate by the CVD method using methyltrichlorosilane, hydrogen, and nitrogen as raw materials.
  • the CVD apparatus used was a system that heats the substrate by high-frequency induction heating.
  • the frequency of the high frequency was 60 kHz.
  • a substrate support made of a graphite substrate and a heat insulating material was placed in the CVD chamber, and the temperature was raised while evacuating the CVD chamber.
  • the temperature of the graphite substrate was set to 1400 ° C., a mixed source gas of methyltrichlorosilane as a source gas, hydrogen as a carrier gas, and nitrogen as a dopant gas was introduced, and CVD-SiC was deposited on the graphite substrate.
  • the volume ratio of nitrogen to methyltrichlorosilane was 5 times.
  • step A the volume ratio of the carrier gas to the source gas was set to 5 times, and the pressure in the CVD chamber was set to -95 kPa with respect to atmospheric pressure. At this time, the deposition rate of CVD-SiC was approximately 0.5 mm / hour.
  • step B the volume ratio of the carrier gas to the source gas was 100 times, and the pressure in the CVD chamber was ⁇ 95 kPa with respect to atmospheric pressure. At this time, the deposition rate of CVD-SiC was approximately 0.06 mm / hour.
  • step D the volume ratio of the carrier gas to the source gas was set to 100 times, and the pressure in the CVD chamber was set to ⁇ 100 kPa with respect to the atmospheric pressure. At this time, the deposition rate of CVD-SiC was approximately 0.02 mm / hour.
  • step E the supply of the raw material gas mixed with the raw material gas and the carrier gas was stopped while the vacuum exhaust in the CVD chamber was continued.
  • the pressure in the CVD chamber was ⁇ 100 kPa with respect to atmospheric pressure.
  • Sample No. In 1 to 9 CVD-SiC was produced under the conditions shown in Table 1 with Step A and any one of Steps B to E as one set.
  • Sample No. In Step 10 after performing Step A for 20 minutes, the graphite substrate and the CVD-SiC deposited on the surface thereof were taken out from the CVD chamber, and the surface of the CVD-SiC was polished.
  • Sample No. In No. 10 a set of process A and surface polishing was performed, and CVD-SiC was produced under the conditions shown in Table 1.
  • the graphite substrate was removed from the obtained sample by machining, and various evaluations were performed.
  • sample No. The surface was etched by immersing 1 to 10 silicon carbide members in molten sodium hydroxide. Thereafter, the cross section of the silicon carbide member and the state of the etched surface were confirmed with a scanning electron microscope (SEM). The confirmed surface is the first surface, which is different from the surface exposed by removing the graphite substrate, that is, the surface of SiC formed at the initial stage of CVD. Sample No. A clear SiC layer and its interface were not seen in 1-3. Sample No. In 4 to 10, a clear SiC layer and its interface could be confirmed. The total thickness of each sample was measured with a micrometer. Sample No. The thickness of one layer of 4 to 10 was measured using SEM. Table 1 shows the average value of the total thickness of each sample and the average value of the thickness of one silicon carbide layer. Sample No. 1-3 were regarded as one SiC layer as a whole.
  • the crystal structure of the silicon carbide member was confirmed by X-ray diffraction (XRD).
  • Sample No. Each of 1 to 10 included a first SiC crystal having a ⁇ -type structure and a second SiC crystal having an ⁇ -type structure.
  • the sample No. was determined by backscattered electron diffraction (EBSD). In all of 1 to 10, it was confirmed that the size of the second SiC crystal was on average larger than the size of the first SiC crystal. Table numbers corresponding to the microstructure of each sample are shown in Table 1.
  • the length d1 in the first direction of the second SiC crystal and the length d2 of the exposed portion exposed on the first surface were measured using a SEM at a magnification of 200 to 500 times.
  • Table 2 shows the average value of d1 and the average value of d2.
  • the ratio N1 of the crystal existing over two or more silicon carbide layers in the second SiC crystal was evaluated using a cross-sectional photograph of SEM. The magnification of the photograph was 200 to 500 times. The total number of second SiC crystals and the number of second SiC crystals existing over two or more silicon carbide layers were counted, and the ratio was calculated.
  • RIE type etching apparatus For the plasma etching test, an RIE type etching apparatus was used. The first surface of each test piece was polished to have the same surface roughness. A test piece of each sample was placed in the etching chamber of the etching apparatus, and the first surface of each test piece was etched. In the etching process, CF 4 gas was introduced into the etching chamber, and a high frequency of 13.56 MHz was introduced at an output of 0.8 W / cm 2 to generate plasma. The treatment time was 4 hours. As an evaluation of resistance to plasma, the arithmetic average roughness Ra of the etched surface of the sample after the etching treatment was measured using an atomic force microscope (AFM). Moreover, the etched surface was observed visually and by SEM to confirm the presence or absence of cracks. The results are shown in Table 2.
  • AFM atomic force microscope
  • Sample No. In Nos. 1 to 9 there is no noticeable roughness on the etched surface where the length d1 in the first direction of the second SiC crystal is 100 ⁇ m or less, Ra is as small as 410 nm or less, and it has high corrosion resistance to plasma. It was. Sample No. In No. 9, cracks along the interface of the SiC layer were observed on the side surface instead of the etched surface. In 1 to 8, no crack occurred. On the other hand, sample No. In No. 10, d1 was as large as 250 ⁇ m, and the second SiC crystal was grain-grown. Roughness was conspicuous on the etched surface, and Ra was as large as 550 nm. In addition, cracks occurred at the grain boundaries between the first SiC crystal and the second SiC crystal exposed on the etched surface.
  • SYMBOLS 1 Member for semiconductor manufacturing apparatuses 1a: Focus ring 1b: Dummy wafer 2a: 1st silicon carbide crystal 2b: 2nd silicon carbide crystal 4: Silicon carbide layer 5: Intervening layer 6: Cone-like structure S1: First surface

Abstract

Provided is a silicon carbide member comprising a β-type first silicon carbide crystal having a 3C crystal structure and a second silicon carbide crystal having a crystal structure, which is different from that of the first silicon carbide crystal. The silicon carbide member has a first surface, and the direction orthogonal to the first surface is defined as a first direction. Particles of the second silicon carbide crystal have a major axis extending in the first direction and have an average length of 100 μm or less in the first direction. Such a silicon carbide member is highly resistant to plasma or liquid chemicals, and is suitably used as a member for a semiconductor device, such as a focus ring and a dummy wafer.

Description

炭化ケイ素部材および半導体製造装置用部材Silicon carbide member and semiconductor manufacturing apparatus member
 本開示は、炭化ケイ素部材および半導体製造装置用部材に関するものである。 The present disclosure relates to a silicon carbide member and a member for a semiconductor manufacturing apparatus.
 化学気相成長法(Chemical Vapor Deposition、CVD法)により得られる炭化ケイ素材料(CVD-SiC材料)は、被覆材料として用いられるほか、CVD-SiC材料単体で種々の部材として用いられている。単体のCVD-SiC部材は、たとえば基体の表面にCVD法により炭化ケイ素(SiC)を析出させ、成膜した後、基体を除去することで得られる。CVD-SiC材料は、焼結法で製造されたSiC材料に比較して緻密で高純度であり、耐食性、耐熱性、強度特性にも優れている。そのため、CVD-SiC材料は、半導体製造装置用の加熱ヒータ、エッチング装置に用いられるフォーカスリング、ダミーウェハ、サセプター、炉芯管、耐薬品性治具、分析用容器等の各種部材として提案されている。 A silicon carbide material (CVD-SiC material) obtained by a chemical vapor deposition method (Chemical Vapor Deposition, CVD method) is used as a coating material, and a CVD-SiC material alone is used as various members. The single CVD-SiC member can be obtained, for example, by depositing silicon carbide (SiC) on the surface of the substrate by the CVD method, forming a film, and then removing the substrate. The CVD-SiC material is dense and high-purity as compared with the SiC material produced by the sintering method, and is excellent in corrosion resistance, heat resistance, and strength characteristics. For this reason, CVD-SiC materials have been proposed as various members such as heaters for semiconductor manufacturing equipment, focus rings used in etching equipment, dummy wafers, susceptors, furnace core tubes, chemical resistance jigs, and analytical containers. .
 CVD-SiC材料は、主として半導体製造装置の内部で用いられる。そのため、成膜時に用いた基体を除去した状態で、高純度SiCの自立膜として用いられる。自立膜として用いるために厚いCVD-SiC材料の膜を形成すると、内部応力が大きくなり、基体を除去した際にCVD-SiCの膜(以下、単にCVD-SiC膜という)に亀裂、反りなどの変形が生じる場合があった。特許文献1では、3層以上の炭化ケイ素層を積層した積層体において、CVDにより形成された各層の表面を平坦化し、各層の厚みを100μm以下とすることで反りが抑制されることが開示されている。 CVD-SiC materials are mainly used inside semiconductor manufacturing equipment. For this reason, it is used as a high-purity SiC free-standing film in a state in which the substrate used for film formation is removed. When a thick CVD-SiC material film is formed for use as a free-standing film, the internal stress increases, and the CVD-SiC film (hereinafter simply referred to as a CVD-SiC film) is cracked or warped when the substrate is removed. Deformation may occur. Patent Document 1 discloses that in a laminate in which three or more silicon carbide layers are stacked, the surface of each layer formed by CVD is flattened, and the warpage is suppressed by setting the thickness of each layer to 100 μm or less. ing.
 また、SiCは複数の異なる結晶構造が存在する。たとえば、厚いCVD-SiCを効率的に得るために成膜速度を高めると、異なる結晶構造を有する複数の炭化ケイ素結晶が混在したものとなっていた。 Also, SiC has a plurality of different crystal structures. For example, when the film formation rate is increased in order to efficiently obtain thick CVD-SiC, a plurality of silicon carbide crystals having different crystal structures are mixed.
特開平8-188468号公報JP-A-8-188468
 本開示の炭化ケイ素部材は、3Cの結晶構造を有するβ型の第1の炭化ケイ素結晶と、第1の炭化ケイ素結晶とは異なる結晶構造を有する第2の炭化ケイ素結晶とを含む。炭化ケイ素部材は第1の表面を有し、第1の表面と直交する方向を第1方向とする。第2の炭化ケイ素結晶の粒子は、第1方向に沿ってのびる長径を有するとともに、第1方向の長さの平均が100μm以下である。 The silicon carbide member of the present disclosure includes a β-type first silicon carbide crystal having a 3C crystal structure and a second silicon carbide crystal having a crystal structure different from the first silicon carbide crystal. The silicon carbide member has a first surface, and a direction orthogonal to the first surface is defined as a first direction. The second silicon carbide crystal particles have a long diameter extending along the first direction, and an average length in the first direction is 100 μm or less.
 本開示の半導体製造装置用部材、フォーカスリング、およびダミーウェハは、上記の炭化ケイ素部材を含む。 The member for a semiconductor manufacturing apparatus, the focus ring, and the dummy wafer according to the present disclosure include the silicon carbide member described above.
半導体製造装置用部材の例の一つである、フォーカスリングを模式的に示す斜視図である。It is a perspective view which shows typically a focus ring which is one example of the member for semiconductor manufacturing apparatuses. 半導体製造装置用部材の例の一つである、ダミーウェハを模式的に示す斜視図である。It is a perspective view which shows typically the dummy wafer which is one example of the member for semiconductor manufacturing apparatuses. 図1のIII-III線断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 1. 図3の破線部を拡大した断面図の一例である。It is an example of sectional drawing to which the broken-line part of Drawing 3 was expanded. 図3の破線部を拡大した断面図の別の例である。It is another example of sectional drawing to which the broken-line part of FIG. 3 was expanded. 炭化ケイ素部材の微構造の例の一つを模式的に示すもので、図3の破線部を拡大した断面図である。FIG. 4 schematically shows one example of a microstructure of a silicon carbide member, and is an enlarged cross-sectional view of a broken line portion in FIG. 3. 炭化ケイ素部材の微構造の例の一つを模式的に示すもので、第1の表面付近を拡大した断面図である。FIG. 1 schematically shows one example of the microstructure of a silicon carbide member, and is an enlarged cross-sectional view of the vicinity of a first surface. 図6の別の例の一つを模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing another example of FIG. 6. 炭化ケイ素部材の微構造の別の例を模式的に示す断面図である。It is sectional drawing which shows typically another example of the microstructure of a silicon carbide member.
 図1および図2は、炭化ケイ素材料を用いた半導体製造装置用部材1の例である。図1はフォーカスリング1a、図2はダミーウェハ1bを模式的に示している。半導体製造装置、特にCVD(Chemical Vapor Deposition、化学気相成長法)、PVD(Physical Vapor Deposition、物理気相成長法)、およびプラズマエッチング装置では、Siなどのウェハがプラズマ処理される。 1 and 2 are examples of a member 1 for a semiconductor manufacturing apparatus using a silicon carbide material. FIG. 1 schematically shows a focus ring 1a, and FIG. 2 schematically shows a dummy wafer 1b. In semiconductor manufacturing apparatuses, particularly CVD (Chemical Vapor Deposition), PVD (Physical Vapor Deposition), and plasma etching apparatuses, wafers such as Si are plasma processed.
 フォーカスリング1aは、ウェハの外周に配置される。フォーカスリング1aを用いてウェハ処理することで、ウェハをより均一に処理することができる。そのため、フォーカスリング1aには、被処理物であるウェハと同等または類似の抵抗率、およびプラズマに対する高い耐食性を有することが求められる。プラズマに対する耐食性を耐プラズマ性という場合がある。 The focus ring 1a is disposed on the outer periphery of the wafer. By performing wafer processing using the focus ring 1a, the wafer can be processed more uniformly. For this reason, the focus ring 1a is required to have a resistivity equivalent to or similar to that of a wafer that is an object to be processed and a high corrosion resistance against plasma. Corrosion resistance to plasma is sometimes called plasma resistance.
 ダミーウェハ1bは、半導体製造装置の条件調整、クリーニングなどの際に、ウェハの代替として用いられる。ダミーウェハ1bもフォーカスリング1aと同様に、被処理物であるウェハと同等または類似の抵抗率、および高い耐プラズマ性を有することが求められる。 The dummy wafer 1b is used as an alternative to a wafer when adjusting the conditions of a semiconductor manufacturing apparatus, cleaning, or the like. Similar to the focus ring 1a, the dummy wafer 1b is required to have the same or similar resistivity and high plasma resistance as the wafer to be processed.
 図3~図5は、図1に示したフォーカスリング1aのIII-III線断面図である。図3に示すように、炭化ケイ素部材は第1の表面S1を有している。炭化ケイ素部材は、主として第1の表面S1でプラズマに曝される。図4および図5は、図3の一部を拡大した断面図である。図4の例と図5の例とは微構造が異なる。CVD法により形成された炭化ケイ素材料は、一般に、図4または図5に示すように、第1方向である矢印方向vに沿って結晶が成長した柱状の炭化ケイ素結晶2によって構成される。第1方向は、第1の表面S1と直交する。以下、炭化ケイ素をSiCと言い、CVD法により形成された炭化ケイ素材料をCVD-SiC材料という場合がある。 3 to 5 are cross-sectional views taken along the line III-III of the focus ring 1a shown in FIG. As shown in FIG. 3, the silicon carbide member has a first surface S1. The silicon carbide member is exposed to the plasma primarily at the first surface S1. 4 and 5 are enlarged cross-sectional views of a part of FIG. The example of FIG. 4 and the example of FIG. As shown in FIG. 4 or FIG. 5, the silicon carbide material formed by the CVD method is generally constituted by columnar silicon carbide crystals 2 in which crystals grow along the arrow direction v that is the first direction. The first direction is orthogonal to the first surface S1. Hereinafter, silicon carbide may be referred to as SiC, and a silicon carbide material formed by a CVD method may be referred to as a CVD-SiC material.
 炭化ケイ素部材は、図4、図5のいずれの構造を有していてもよい。なお、図4、図5では、炭化ケイ素結晶2を模式的に長方形で記載しているため、複数の炭化ケイ素結晶2間に空洞があるような記載となっている。しかし、CVDにより形成された実際の炭化ケイ素材料は、このように大きな空洞を有さず、緻密である。 The silicon carbide member may have any structure of FIG. 4 and FIG. 4 and 5, since the silicon carbide crystal 2 is schematically described as a rectangle, there is a description that there are cavities between the plurality of silicon carbide crystals 2. However, the actual silicon carbide material formed by CVD does not have such a large cavity and is dense.
 炭化ケイ素の結晶構造には、3C、4H、6Hおよび15R等多くの結晶多形が存在する。閃亜鉛鉱型構造である3Cはβ型とも呼ばれ、それ以外の構造を有する4H、6H、15R等はα型と呼ばれる。 There are many crystal polymorphs such as 3C, 4H, 6H and 15R in the crystal structure of silicon carbide. 3C, which is a zinc blende type structure, is also called β-type, and 4H, 6H, 15R, etc. having other structures are called α-type.
 結晶構造(結晶形)の異なる炭化ケイ素結晶は、プラズマや薬液に対する耐性がそれぞれ異なる。α型の炭化ケイ素結晶は、プラズマや薬液に対する耐性がβ型の炭化ケイ素結晶と比べて相対的に低い。また、互いに異なる結晶形を有する炭化ケイ素結晶同士の界面では、プラズマや薬液による腐食が進行しやすい。 Silicon carbide crystals with different crystal structures (crystal forms) have different resistance to plasma and chemicals. The α-type silicon carbide crystal has a relatively low resistance to plasma and chemicals compared to the β-type silicon carbide crystal. In addition, corrosion due to plasma or chemicals tends to proceed at the interface between silicon carbide crystals having different crystal forms.
 たとえば、α型の炭化ケイ素結晶が結晶成長して粗大粒子を形成した炭化ケイ素部材では、その粗大粒子およびその粒界は、プラズマや薬液に対する耐性が比較的低い部位となる。炭化ケイ素部材のβ型炭化ケイ素結晶とα型の炭化ケイ素結晶とが混在する表面がプラズマや薬液に曝されると、α型の炭化ケイ素結晶およびその粒界が選択的にエッチングされる。α型の粗大粒が存在した場合、エッチングされた表面の凹凸が大きくなって表面が荒れ、表面粗さが大きくなる。表面粗さが大きくなると、プラズマや薬液に曝される表面積が大きくなり、腐食が進行しやすくなる。このように、α型の粗大粒子の存在は、炭化ケイ素部材全体としてのプラズマや薬液に対する耐性を劣化させる懸念がある。 For example, in a silicon carbide member in which α-type silicon carbide crystals are grown to form coarse particles, the coarse particles and their grain boundaries are sites with relatively low resistance to plasma and chemicals. When the surface where the β-type silicon carbide crystal and the α-type silicon carbide crystal of the silicon carbide member are mixed is exposed to plasma or a chemical solution, the α-type silicon carbide crystal and its grain boundary are selectively etched. When α-type coarse particles are present, the unevenness of the etched surface becomes large, the surface becomes rough, and the surface roughness increases. As the surface roughness increases, the surface area exposed to plasma and chemicals increases and corrosion tends to proceed. As described above, the presence of α-type coarse particles may deteriorate the resistance of the silicon carbide member as a whole to plasma and chemicals.
 <第1実施形態>
 第1実施形態の炭化ケイ素部材は、図6に示すように、3Cの結晶構造を有するβ型の第1の炭化ケイ素結晶2aと、第1の炭化ケイ素結晶2aとは異なる結晶構造を有するα型の第2の炭化ケイ素結晶2bとを含んでいる。また、炭化ケイ素部材は、第1の表面S1を有し、第1の炭化ケイ素結晶2aの粒子および第2の炭化ケイ素結晶2bの粒子は、いずれも第1の表面S1に直交する第1方向に沿ってのびる長径を有する。粒子が第1方向に沿ってのびる長径を有するとは、粒子の長径の方向が第1方向に対し45°未満の角度をなすことをいう。すなわち、第1の炭化ケイ素結晶2aの粒子および第2の炭化ケイ素結晶2bの粒子は、第1方向の長さが第1方向に直交する方向の長さよりも長い形状を有する。また、第2の炭化ケイ素結晶2bの粒子の大きさは、第1の炭化ケイ素結晶2aの粒子の大きさよりも大きい。第2の炭化ケイ素結晶2bの粒子は、その第1方向の長さをd1とした時、d1の平均が100μm以下である。
<First Embodiment>
As shown in FIG. 6, the silicon carbide member of the first embodiment includes a β-type first silicon carbide crystal 2a having a 3C crystal structure, and an α having a crystal structure different from the first silicon carbide crystal 2a. Type second silicon carbide crystal 2b. The silicon carbide member has a first surface S1, and the first silicon carbide crystal 2a particles and the second silicon carbide crystal 2b particles both have a first direction perpendicular to the first surface S1. It has a long diameter extending along. That the particle has a major axis extending along the first direction means that the major axis direction of the particle forms an angle of less than 45 ° with respect to the first direction. That is, the particles of the first silicon carbide crystal 2a and the particles of the second silicon carbide crystal 2b have a shape in which the length in the first direction is longer than the length in the direction orthogonal to the first direction. The size of the second silicon carbide crystal 2b is larger than the size of the first silicon carbide crystal 2a. The particles of the second silicon carbide crystal 2b have an average of d1 of 100 μm or less, where d1 is the length in the first direction.
 第2のSiC結晶2bはα型であり、プラズマや薬液に対する耐性がβ型の第1のSiC結晶2aよりも低い。以下、プラズマや薬液に対する耐性を総じて耐食性という場合がある。耐食性の低い第2のSiC結晶2bの粒子が第1方向に沿ってのびる長径を有し、その第1の方向の長さd1の平均を100μm以下とすることで、第2のSiC結晶2bの粗大粒の大きさ及び数が低減される。その結果、第2のSiC結晶2bの露出部の面積、すなわち第1の表面S1に露出した第2のSiC結晶2bの面積が低減され、SiC部材の耐食性が向上する。d1の平均は、50μm以下、さらに30μm以下でもよい。d1をより小さくすることで、第2のSiC結晶2bの露出部の面積がさらに低減され、SiC部材の耐食性がさらに向上する。 The second SiC crystal 2b is α-type and has lower resistance to plasma and chemicals than the β-type first SiC crystal 2a. Hereinafter, the resistance to plasma and chemicals may be generally referred to as corrosion resistance. The particles of the second SiC crystal 2b having low corrosion resistance have a long diameter extending along the first direction, and the average of the lengths d1 in the first direction is 100 μm or less, so that the second SiC crystal 2b The size and number of coarse grains are reduced. As a result, the area of the exposed portion of second SiC crystal 2b, that is, the area of second SiC crystal 2b exposed on first surface S1 is reduced, and the corrosion resistance of the SiC member is improved. The average of d1 may be 50 μm or less, and further 30 μm or less. By making d1 smaller, the area of the exposed portion of the second SiC crystal 2b is further reduced, and the corrosion resistance of the SiC member is further improved.
 なお、第1の表面S1とは、CVDの最終工程において形成された表面であり、基体と接する側の面ではない。第1の表面S1は、研磨処理などをした加工面であってもよい。通常、基体と接する側の面には、第2のSiC結晶2bはほとんど存在しない。第2のSiC結晶2bは、CVD-SiCの堆積中に発生した核を起点として成長する。したがって、基材が除去されたCVD-SiCについても、その断面を観察することで、基体と接していた側の面と第1の表面S1とを判別することができる。 Note that the first surface S1 is a surface formed in the final step of CVD, and is not a surface in contact with the substrate. The first surface S1 may be a processed surface subjected to a polishing process or the like. Usually, the second SiC crystal 2b hardly exists on the surface in contact with the substrate. The second SiC crystal 2b grows from the nucleus generated during the deposition of CVD-SiC. Therefore, by observing the cross section of the CVD-SiC from which the base material has been removed, the surface on the side in contact with the substrate can be discriminated from the first surface S1.
 SiC部材の微構造は、たとえば、SiC部材の研磨された表面または断面を、後方散乱電子回折(Electron BackScatter Diffraction、EBSD)で観察して確認すればよい。SiC部材の研磨された表面または断面を、さらにウェットエッチングし、光学顕微鏡や走査型電子顕微鏡(SEM)で観察して、微構造を確認してもよい。ウェットエッチングの方法は、たとえば溶融NaOHや溶融KOHにSiC部材を浸漬する方法などを用いてもよい。SiC結晶の結晶構造は、X線回折により確認してもよい。また、SiC部材の断面における局所的な結晶構造(各SiC粒子の結晶構造)は、後方散乱電子回折(Electron BackScatter Diffraction、EBSD)で確認してもよい。 The microstructure of the SiC member may be confirmed by, for example, observing the polished surface or cross section of the SiC member by backscattered electron diffraction (Electron Back Scatter Diffraction, EBSD). The polished surface or cross section of the SiC member may be further wet-etched and observed with an optical microscope or a scanning electron microscope (SEM) to confirm the microstructure. As a wet etching method, for example, a method of immersing a SiC member in molten NaOH or molten KOH may be used. The crystal structure of the SiC crystal may be confirmed by X-ray diffraction. Moreover, you may confirm the local crystal structure in the cross section of a SiC member (crystal structure of each SiC particle) by backscattering electron diffraction (Electron | BackScatter | Diffraction, EBSD).
 第2のSiC結晶2bは、SiC部材の内部および第1の表面S1に存在している。図7に示すように、第2のSiC結晶2bは、SiC部材の第1の表面S1に露出した部分を有していてもよい。以下、第2のSiC結晶2bがSiC部材の第1の表面S1に露出した部分を、単に第2のSiC結晶2bの露出部という場合もある。第2のSiC結晶2bの露出部の長さd2の平均は、20μm以下でもよい。第2のSiC結晶2bの露出部の長さであるd2の平均を20μm以下にすると、SiC部材の第1の表面S1において、プラズマや薬液に対する耐性の局所的な低下を小さくできる。その結果、SiC部材がプラズマや薬液にさらされても、その表面すなわち第1の表面S1の荒れや亀裂の発生を低減できる。d2の平均は、10μm以下、さらには5μm以下でもよい。d2をより小さくすることで、SiC部材の耐食性がさらに向上する。 The second SiC crystal 2b is present inside the SiC member and on the first surface S1. As shown in FIG. 7, second SiC crystal 2 b may have a portion exposed on first surface S <b> 1 of the SiC member. Hereinafter, the portion where the second SiC crystal 2b is exposed on the first surface S1 of the SiC member may be simply referred to as an exposed portion of the second SiC crystal 2b. The average of the length d2 of the exposed portion of the second SiC crystal 2b may be 20 μm or less. When the average of d2 that is the length of the exposed portion of the second SiC crystal 2b is set to 20 μm or less, the local decrease in resistance to plasma or chemicals can be reduced on the first surface S1 of the SiC member. As a result, even if the SiC member is exposed to plasma or a chemical solution, it is possible to reduce the occurrence of roughness and cracks on the surface, that is, the first surface S1. The average of d2 may be 10 μm or less, and further 5 μm or less. By making d2 smaller, the corrosion resistance of the SiC member is further improved.
 第2のSiC結晶2bの露出部の長さd2は、図7に示すように、第1の表面S1に垂直な断面における露出部の長さd2を測定してもよい。d2の測定数は、たとえば10個とし、それを平均してもよい。また、第2のSiC結晶2bの露出部の面積を円換算した直径を算出し、その直径をd2としてもよい。 As shown in FIG. 7, the length d2 of the exposed portion in the cross section perpendicular to the first surface S1 may be measured as the length d2 of the exposed portion of the second SiC crystal 2b. The number of measurements of d2 is, for example, 10, and may be averaged. Moreover, the diameter which converted the area of the exposed part of the 2nd SiC crystal 2b into a circle is calculated, and it is good also considering the diameter as d2.
 <第2実施形態>
 第2実施形態の炭化ケイ素部材は、図8に示すように第1の炭化ケイ素結晶2aおよび第2の炭化ケイ素結晶2bを含む炭化ケイ素層4を、少なくとも2つ備えている。2つまたは3つ以上の炭化ケイ素層4は、第1方向に重なっていてもよい。第2実施形態の第1の炭化ケイ素結晶2aの粒子および第2の炭化ケイ素結晶2bの粒子の形状は、第1実施形態と同じ、または類似している。
Second Embodiment
The silicon carbide member of the second embodiment includes at least two silicon carbide layers 4 including a first silicon carbide crystal 2a and a second silicon carbide crystal 2b as shown in FIG. Two or three or more silicon carbide layers 4 may overlap in the first direction. The shapes of the particles of the first silicon carbide crystal 2a and the particles of the second silicon carbide crystal 2b of the second embodiment are the same as or similar to those of the first embodiment.
 SiC層4の第1方向の平均厚さは、1層あたり200μm以下であってもよい。SiC層4の平均厚さを200μm以下とすることで、第2のSiC結晶2bの大きさを小さくすることができる。第2のSiC結晶2bの大きさを小さくすることにより、SiC部材がプラズマや薬液にさらされた場合のエッチングレートを均一化することができる。また、第2のSiC結晶2bの粒子が、第1の表面S1から剥離し難くなり、エッチングによる第1の表面S1の荒れを小さくできる。SiC層4の平均厚さは50μm以上でもよい。 The average thickness in the first direction of the SiC layer 4 may be 200 μm or less per layer. By setting the average thickness of SiC layer 4 to 200 μm or less, the size of second SiC crystal 2b can be reduced. By reducing the size of the second SiC crystal 2b, the etching rate when the SiC member is exposed to plasma or chemicals can be made uniform. Further, the particles of the second SiC crystal 2b are not easily separated from the first surface S1, and the roughness of the first surface S1 due to etching can be reduced. The average thickness of SiC layer 4 may be 50 μm or more.
 異なるSiC層4は、同じくらいの厚さを有してもよいし、それぞれ異なる厚さを有してもよい。厚さの異なる2つ以上のSiC層4を備えるSiC部材は、第1方向の中央よりも第1の表面S1に近い部位に薄いSiC層4を備え、第1方向の中央よりも第1の表面S1から遠い部位に厚いSiC層4を備えていてもよい。 Different SiC layers 4 may have the same thickness or different thicknesses. The SiC member including two or more SiC layers 4 having different thicknesses includes the thin SiC layer 4 in a portion closer to the first surface S1 than the center in the first direction, and the first member is located in the first direction than the center in the first direction. A thick SiC layer 4 may be provided at a site far from the surface S1.
 1つのSiC層4の厚さは、たとえばSiC部材の断面を走査型電子顕微鏡(SEM)などで観察し、1つのSiC層4の厚さを3か所以上測定し、その平均値とすればよい。また、各SiC層4の厚さが略均等であれば、SiC部材の総厚さの平均値を、SiC層4の層数で除した値を1つのSiC層4の平均厚さとしてもよい。 The thickness of one SiC layer 4 can be determined by, for example, observing the cross section of the SiC member with a scanning electron microscope (SEM) or the like, measuring the thickness of one SiC layer 4 at three locations, and taking the average value thereof. Good. If the thickness of each SiC layer 4 is substantially equal, a value obtained by dividing the average value of the total thickness of the SiC members by the number of layers of SiC layer 4 may be the average thickness of one SiC layer 4. .
 隣接するSiC層4とSiC層4との界面には、図8に示すように介在層5が存在していてもよい。 An intervening layer 5 may exist at the interface between the adjacent SiC layer 4 and SiC layer 4 as shown in FIG.
 介在層5が存在することにより、隣接するSiC層4のうち、一方のSiC層4中に存在する第2のSiC結晶2bと、もう一方のSiC層4中に存在する第2のSiC結晶2bとが、つながりにくくなる。すなわち、第2のSiC結晶2bを、隣接する炭化ケイ素層4と炭化ケイ素層4との界面で効果的に途切れさせることができる。したがって、第2のSiC結晶2bのうち、2つ以上の炭化ケイ素層4にわたって存在する第2のSiC結晶2b、すなわち、隣接する炭化ケイ素層4の界面または介在層5から突出して、2つ以上の炭化ケイ素層4に存在する第2のSiC結晶2bを低減することができる。介在層5の厚さは、たとえば1μm以上10μm以下としてもよい。 Due to the presence of the intervening layer 5, the second SiC crystal 2 b existing in one SiC layer 4 and the second SiC crystal 2 b existing in the other SiC layer 4 among the adjacent SiC layers 4. However, it becomes difficult to connect. That is, second SiC crystal 2 b can be effectively interrupted at the interface between adjacent silicon carbide layer 4 and silicon carbide layer 4. Therefore, two or more of the second SiC crystals 2b projecting from the second SiC crystal 2b existing across the two or more silicon carbide layers 4, that is, from the interface of the adjacent silicon carbide layer 4 or the intervening layer 5. The second SiC crystal 2b existing in the silicon carbide layer 4 can be reduced. The thickness of the intervening layer 5 may be, for example, 1 μm or more and 10 μm or less.
 SiC部材に含まれる第2のSiC結晶2bのうち、2つ以上のSiC層4にわたって存在する第2のSiC結晶2bの個数比率をN1としたとき、N1は20%以下でもよい。第2のSiC結晶2bが複数のSiC層4にわたって存在すると、粗大粒となりやすくSiC部材の耐食性を低下させる懸念がある。N1を20%以下とすることで、SiC部材の耐食性の低下を小さくできる。なお、2つ以上のSiC層4にわたって存在する第2のSiC結晶2bとは、隣接するSiC層4の界面または介在層5を貫いて2つ以上のSiC層4に連続したひとつの第2のSiC結晶2bとも言える。 When the number ratio of the second SiC crystals 2b existing over two or more SiC layers 4 among the second SiC crystals 2b included in the SiC member is N1, N1 may be 20% or less. When the second SiC crystal 2b exists over a plurality of SiC layers 4, there is a concern that the particles are likely to be coarse and reduce the corrosion resistance of the SiC member. By making N1 20% or less, a decrease in the corrosion resistance of the SiC member can be reduced. The second SiC crystal 2b existing over two or more SiC layers 4 refers to one second continuous with the two or more SiC layers 4 through the interface between the adjacent SiC layers 4 or the intervening layer 5. It can also be said to be the SiC crystal 2b.
 介在層5は、第1のSiC結晶2aを含んでいてもよい。介在層5は、主として第1のSiC結晶2aにより構成されてもよい。介在層5が主として第1のSiC結晶2aにより構成されるとは、介在層5を構成するSiC結晶の90%以上が、第1のSiC結晶2aであることを意味する。 The intervening layer 5 may include the first SiC crystal 2a. Intervening layer 5 may be mainly composed of first SiC crystal 2a. The fact that the intervening layer 5 is mainly composed of the first SiC crystal 2a means that 90% or more of the SiC crystals composing the intervening layer 5 are the first SiC crystal 2a.
 介在層5は、SiC層4よりも高い欠陥密度を有していてもよい。欠陥密度は、SiC部材の断面を鏡面加工し、その鏡面加工した断面をウェットエッチングして、走査型電子顕微鏡(SEM)などで観察することで確認できる。 The intervening layer 5 may have a higher defect density than the SiC layer 4. The defect density can be confirmed by mirror-processing the cross section of the SiC member, performing wet etching on the mirror-processed cross section, and observing with a scanning electron microscope (SEM) or the like.
 介在層5は、炭素(C)に対するケイ素(Si)の原子比率(Si/C比)が、SiC層4よりも小さくてもよい。介在層5のSi/C比がSiC層4よりも小さいと、SiC層4を形成する際に、α型の第2のSiC結晶2bがβ型の第1のSiC結晶2aに相転移しやすくなる。その結果、介在層5の近傍で第2のSiC結晶2bの粒成長を効果的に抑制できる。この場合、第2のSiC結晶2bの粒子のd1の平均をたとえば50μm以下とすることができる。なお、SiC層4のSi/C比はおよそ1.0であり、たとえば0.95以上、1.05以下でもよい。 The intervening layer 5 may have an atomic ratio (Si / C ratio) of silicon (Si) to carbon (C) smaller than that of the SiC layer 4. If the Si / C ratio of the intervening layer 5 is smaller than that of the SiC layer 4, the α-type second SiC crystal 2b is likely to undergo a phase transition to the β-type first SiC crystal 2a when the SiC layer 4 is formed. Become. As a result, the grain growth of second SiC crystal 2b can be effectively suppressed in the vicinity of intervening layer 5. In this case, the average d1 of the particles of the second SiC crystal 2b can be set to 50 μm or less, for example. Note that the Si / C ratio of SiC layer 4 is approximately 1.0, and may be, for example, 0.95 or more and 1.05 or less.
 主としてSiCにより構成される介在層5は、特に0.90以上、0.999以下のSi/C比を有していてもよい。 The intervening layer 5 mainly composed of SiC may have a Si / C ratio of 0.90 or more and 0.999 or less.
 介在層5は、炭素を主成分とする非晶質相および結晶相のうち少なくともいずれかを含んでもよい。介在層5は、炭素(C)を主成分としてもよい。介在層5が炭素を主成分とするとは、介在層5を構成する元素の90%以上が炭素であることをいう。隣接するSiC層4とSiC層4との間に、炭素を主成分とする介在層5を有するSiC部材は、SiC層4を形成する際に、第2のSiC結晶2bの粒成長がより効果的に抑制される。その結果、2つ以上のSiC層4にわたって存在する第2のSiC結晶2b、すなわち介在層5から突出して複数のSiC層4に跨って存在する第2のSiC結晶2bの大きさ及び数をさらに低減することができる。 The intervening layer 5 may include at least one of an amorphous phase mainly composed of carbon and a crystalline phase. The intervening layer 5 may contain carbon (C) as a main component. The intervening layer 5 being mainly composed of carbon means that 90% or more of the elements constituting the intervening layer 5 is carbon. In the SiC member having the intervening layer 5 containing carbon as a main component between the adjacent SiC layer 4 and the SiC layer 4, the grain growth of the second SiC crystal 2b is more effective when the SiC layer 4 is formed. Is suppressed. As a result, the size and number of second SiC crystals 2b existing across two or more SiC layers 4, that is, the second SiC crystals 2b protruding from the intervening layer 5 and extending across the plurality of SiC layers 4 are further increased. Can be reduced.
 また、炭素の導電率はSiCの導電率よりも高い。そのため、炭素を主成分とする介在層5を有するSiC部材を、例えばフォーカスリングとして用いると、ウェハに蓄積された電荷を、フォーカスリングの介在層5を通して速やかに逃がすことができ、ウェハの加工効率を高めることができる。 Also, the conductivity of carbon is higher than that of SiC. Therefore, when an SiC member having an intervening layer 5 containing carbon as a main component is used as, for example, a focus ring, charges accumulated on the wafer can be quickly released through the intervening layer 5 of the focus ring, and the wafer processing efficiency is increased. Can be increased.
 SiC層4および介在層5を構成する元素の種類、およびその比率は、エネルギー分散型X線分光(EDS)等の元素分析によって確認できる。また、後方散乱電子回折(Electron BackScatter Diffraction、EBSD)や電子線回折によって、結晶構造を評価することでも確認できる。 The types and ratios of the elements constituting the SiC layer 4 and the intervening layer 5 can be confirmed by elemental analysis such as energy dispersive X-ray spectroscopy (EDS). It can also be confirmed by evaluating the crystal structure by backscattered electron diffraction (Electron BackScatter Diffraction, EBSD) or electron beam diffraction.
 第2実施形態においても、第2のSiC結晶2bは、SiC部材の内部および第1の表面S1に存在していてもよい。 Also in the second embodiment, the second SiC crystal 2b may be present inside the SiC member and on the first surface S1.
 SiC層4の面、すなわち隣接するSiC層4とSiC層4との界面、またはSiC層4と介在層5との界面は、最大高さRzが20μm以上の凹凸を有してもよい。SiC層4の面の最大高さRzを20μm以上とすることで、SiC層4同士の界面の構造またはSiC層4と介在層5との界面の構造を、凹凸を有する構造とし、SiC層4間またはSiC層4と介在層5の密着性を向上させることができる。SiC層4の面の最大高さRzは、SiC部材の第1方向に沿う断面において、SiC層4とSiC層4との界面、またはSiC層4と介在層5との界面の線粗さを測定し、算出すればよい。 The surface of the SiC layer 4, that is, the interface between the adjacent SiC layer 4 and the SiC layer 4 or the interface between the SiC layer 4 and the intervening layer 5 may have irregularities having a maximum height Rz of 20 μm or more. By setting the maximum height Rz of the surface of the SiC layer 4 to 20 μm or more, the structure of the interface between the SiC layers 4 or the structure of the interface between the SiC layer 4 and the intervening layer 5 is made a structure having irregularities, and the SiC layer 4 The adhesion between the SiC layer 4 and the intervening layer 5 can be improved. The maximum height Rz of the surface of the SiC layer 4 is the line roughness of the interface between the SiC layer 4 and the SiC layer 4 or the interface between the SiC layer 4 and the intervening layer 5 in the cross section along the first direction of the SiC member. What is necessary is just to measure and calculate.
 <製法>
 SiC部材の製法について説明する。本実施形態のSiC部材の作製に用いるCVD装置は、特にこれに限定されない。CVD装置は、たとえばガスの導入口および導出口を有する縦型または横型のバッチ式のCVD室と、電気的な加熱手段とを備えたものでもよい。高周波を用いて加熱するCVD装置では、基体を選択的に加熱できる。加熱に用いる高周波の周波数は、たとえば3kHz以上、100kHz以下とすればよい。
<Production method>
The manufacturing method of the SiC member will be described. The CVD apparatus used for producing the SiC member of this embodiment is not particularly limited to this. The CVD apparatus may include, for example, a vertical or horizontal batch type CVD chamber having gas inlets and outlets, and an electric heating means. In a CVD apparatus that heats using a high frequency, the substrate can be selectively heated. The frequency of the high frequency used for heating may be, for example, 3 kHz or more and 100 kHz or less.
 CVDの方法は、CVD室内に基体をセットし、原料ガス、キャリアガスなどのガスをCVD室内に導入し、基体上で化学気相成長(CVD)反応させるものであればよい。 The CVD method may be any method in which a substrate is set in the CVD chamber, a gas such as a source gas or a carrier gas is introduced into the CVD chamber, and a chemical vapor deposition (CVD) reaction is performed on the substrate.
 原料ガスは、炭素原子およびケイ素原子を含むガスであればよい。ケイ素原子を含むガスとしては、分子中に、ケイ素原子に1個以上の塩素原子が結合している構造を有するものを用いてもよい。メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、または塩化ケイ素と炭化水素ガスとの混合原料などを用いてもよい。これらの原料ガスを用いることで、たとえば、堆積速度0.1mm/時間以上の高速でCVD-SiCを堆積させることができ、効率的にSiC部材を作製することができる。 The source gas may be a gas containing carbon atoms and silicon atoms. As the gas containing a silicon atom, a gas having a structure in which one or more chlorine atoms are bonded to a silicon atom in the molecule may be used. Methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, a mixed raw material of silicon chloride and hydrocarbon gas, or the like may be used. By using these source gases, for example, CVD-SiC can be deposited at a high deposition rate of 0.1 mm / hour or more, and an SiC member can be produced efficiently.
 これらの原料ガスは、水素、アルゴン等のキャリアガスと所定の比率で混合され、混合ガスとしてCVD室内に導入される。原料ガスとキャリアガスとの混合比率は、たとえば原料ガスの体積に対して、キャリアガスの体積を3倍以上、10倍以下としてもよい。キャリアガスは水素であってもよい。水素をキャリアガスとして用いると、ケイ素原子からの脱塩素反応を促進させることができる。 These source gases are mixed with a carrier gas such as hydrogen or argon at a predetermined ratio and introduced into the CVD chamber as a mixed gas. The mixing ratio of the source gas and the carrier gas may be, for example, 3 to 10 times the volume of the carrier gas with respect to the volume of the source gas. The carrier gas may be hydrogen. When hydrogen is used as a carrier gas, the dechlorination reaction from silicon atoms can be promoted.
 CVD室内には、さらにドーパント原子を含有するガスを導入してもよい。CVD-SiC中にドーパント原子を導入することで、CVD-SiCの電気抵抗率を低下させることができる。ドーパント原子としては、窒素、またはホウ素などを用いてもよい。窒素含有ガスとしては、例えば窒素、アンモニア、トリメチルアミン、およびトリエチルアミンなどが挙げられる。ホウ素含有ガスとしては、例えば三塩化ホウ素、およびジボランなどが挙げられる。原料ガスと、ドーパント原子を含有するガスとの比率は、所望の電気抵抗率に応じて適宜調整してもよい。たとえば、原料ガスの体積に対し、ドーパント原子を含有するガスの体積を0.01倍以上、50倍以下としてもよい。以下、原料ガス、キャリアガス、および必要に応じドーパント原子を含有するガスの混合ガスを、総じて混合原料ガスという。 Further, a gas containing dopant atoms may be introduced into the CVD chamber. By introducing dopant atoms into the CVD-SiC, the electrical resistivity of the CVD-SiC can be reduced. Nitrogen or boron may be used as the dopant atom. Examples of the nitrogen-containing gas include nitrogen, ammonia, trimethylamine, and triethylamine. Examples of the boron-containing gas include boron trichloride and diborane. The ratio between the source gas and the gas containing dopant atoms may be adjusted as appropriate according to the desired electrical resistivity. For example, the volume of the gas containing dopant atoms may be 0.01 to 50 times the volume of the source gas. Hereinafter, a mixed gas of a raw material gas, a carrier gas, and a gas containing dopant atoms as necessary is generally referred to as a mixed raw material gas.
 CVDの反応温度は、たとえば1200℃以上としてもよく、さらに1250℃以上としてもよい。反応温度が1200℃未満であると、CVD-SiCの堆積速度が著しく低下し、生産効率が低下する。反応温度は、特に1350℃以上、さらには1350℃以上、1500℃以下としてもよい。 The reaction temperature of CVD may be 1200 ° C. or higher, for example, and may be 1250 ° C. or higher. When the reaction temperature is less than 1200 ° C., the deposition rate of CVD-SiC is remarkably lowered, and the production efficiency is lowered. The reaction temperature may be particularly 1350 ° C. or higher, more preferably 1350 ° C. or higher and 1500 ° C. or lower.
 図6に示すような微構造を有する炭化ケイ素部材は、以下のようにして作製すればよい。 A silicon carbide member having a microstructure as shown in FIG. 6 may be produced as follows.
 (工程A)
 CVD室内の圧力が大気圧に対して-98kPa以上、-80kPa以下程度になるように、混合原料ガスを基体上に導入し、基体上に50μm以上、200μm以下の厚さのCVD-SiCを堆積させる(SiC層4)。CVD-SiCの堆積速度および混合原料ガスの導入時間は、適宜調整すればよい。
(Process A)
The mixed source gas is introduced onto the substrate so that the pressure in the CVD chamber is about −98 kPa or more and −80 kPa or less with respect to the atmospheric pressure, and CVD-SiC having a thickness of 50 μm or more and 200 μm or less is deposited on the substrate. (SiC layer 4). The deposition rate of CVD-SiC and the introduction time of the mixed source gas may be adjusted as appropriate.
 (工程B)
 工程Bでは、原料ガスの導入流量を、工程Aの1/100以上、1/10以下として、混合原料ガスを基体上に導入し、工程Aで形成されたCVD-SiCのSiC層4上にさらに1μm以上、10μm以下の厚さのCVD-SiCを堆積させる。原料ガスの導入流量を調整するには、混合原料ガスの導入流量を1/100以上、1/10以下とする方法、または混合原料ガス中における原料ガスの比率を1/100以上、1/10以下とする方法があり、そのいずれを用いてもよい。CVD-SiCの堆積速度および混合原料ガスの導入時間は、適宜調整すればよい。
(Process B)
In the process B, the flow rate of the source gas is set to 1/100 or more and 1/10 or less that in the process A, the mixed source gas is introduced onto the substrate, and the CVD-SiC SiC layer 4 formed in the process A is formed. Further, CVD-SiC having a thickness of 1 μm or more and 10 μm or less is deposited. In order to adjust the introduction flow rate of the raw material gas, a method of setting the introduction flow rate of the mixed raw material gas to 1/100 or more and 1/10 or less, or the ratio of the raw material gas in the mixed raw material gas is 1/100 or more, 1/10 There are the following methods, any of which may be used. The deposition rate of CVD-SiC and the introduction time of the mixed source gas may be adjusted as appropriate.
 この工程Bでは、原料ガスが希薄な状態であるため、3C構造を有する微小なβ型の第1のSiC結晶2aが生成しやすくなり、α型の第2のSiC結晶2bの成長が抑制される。 In this step B, since the source gas is in a dilute state, a minute β-type first SiC crystal 2a having a 3C structure is easily generated, and the growth of the α-type second SiC crystal 2b is suppressed. The
 上記の工程A、工程Bを交互に繰り返すことにより、図6に示すような微構造を有する炭化ケイ素部材が得られる。このとき、基体の温度は1200℃以上、1400℃以下とすればよい。また、工程Aおよび工程Bの繰り返し回数は、所望する炭化ケイ素部材の厚さに応じて適宜調節すればよい。 By alternately repeating the above steps A and B, a silicon carbide member having a microstructure as shown in FIG. 6 is obtained. At this time, the substrate temperature may be 1200 ° C. or higher and 1400 ° C. or lower. Moreover, what is necessary is just to adjust the repetition frequency of the process A and the process B suitably according to the thickness of the desired silicon carbide member.
 図8に示すような微構造を有する炭化ケイ素部材は、以下のようにして作製すればよい。 A silicon carbide member having a microstructure as shown in FIG. 8 may be produced as follows.
 (工程C)
 工程Cでは、原料ガスの導入流量を、工程Aの1/100より小さくする。この混合原料ガスを基体上に導入し、工程Aで形成されたCVD-SiCのSiC層4上にさらにCVD-SiCを堆積させる。原料ガスの導入流量を調整するには、混合原料ガスの導入流量を1/100より小さくする方法、混合原料ガス中における原料ガスの比率を1/100より小さくする方法があり、そのいずれを用いてもよい。工程Cにおける混合原料ガスの導入時間は、たとえば工程Aに要する時間の0.01倍以上、4.0倍以下とすればよい。
(Process C)
In the process C, the introduction flow rate of the source gas is made smaller than 1/100 of the process A. This mixed material gas is introduced onto the substrate, and CVD-SiC is further deposited on the CVD-SiC SiC layer 4 formed in step A. In order to adjust the introduction flow rate of the raw material gas, there are a method of making the introduction flow rate of the mixed raw material gas smaller than 1/100 and a method of making the ratio of the raw material gas in the mixed raw material gas smaller than 1/100. May be. The introduction time of the mixed raw material gas in step C may be, for example, 0.01 times to 4.0 times the time required for step A.
 この工程Cでも、3C構造を有するβ型の第1のSiC結晶2aが生成しやすくなる。工程Cでは、特に原料ガスが極めて希薄な状態であるため、形成される第1のSiC結晶2aの欠陥密度が高くなり、介在層5が形成される。その結果、α型の第2のSiC結晶2bの成長がさらに抑制され、第2のSiC結晶2bの粗大化をより効果的に抑制することができる。欠陥密度が高い介在層5の存在は、炭化ケイ素部材の断面をウェットエッチングすることによって確認できる。 Also in this step C, the β-type first SiC crystal 2a having a 3C structure is easily generated. In the process C, since the source gas is particularly in a very dilute state, the defect density of the first SiC crystal 2a to be formed is increased, and the intervening layer 5 is formed. As a result, the growth of the α-type second SiC crystal 2b is further suppressed, and the coarsening of the second SiC crystal 2b can be more effectively suppressed. Presence of the intervening layer 5 having a high defect density can be confirmed by wet etching the cross section of the silicon carbide member.
 上記の工程A、工程Cを交互に繰り返すことにより、図8に示すような微構造を有する炭化ケイ素部材が得られる。このとき、基体の温度は1200℃以上、1400℃以下とすればよい。また、工程Aおよび工程Cの繰り返し回数は、所望する炭化ケイ素部材の厚さに応じて適宜調節すればよい。 By alternately repeating the above steps A and C, a silicon carbide member having a microstructure as shown in FIG. 8 is obtained. At this time, the substrate temperature may be 1200 ° C. or higher and 1400 ° C. or lower. Moreover, what is necessary is just to adjust the frequency | count of repetition of the process A and the process C suitably according to the thickness of the desired silicon carbide member.
 (工程D)
 さらに工程Dでは、原料ガスの導入流量を工程Aの1/100以上、1/10以下とし、CVD室内の圧力を大気圧に対して-100kPa以上、-98kPa未満程度とする。工程Dでは、CVD室内の圧力が低いため、工程Aで形成されたCVD-SiCのSiC層4からSiが離脱する。その結果、SiC層4よりもSi/C比の低い介在層5が形成される。工程Dにおける混合原料ガスの導入時間は、たとえば工程Aに要する時間の0.01倍以上、4.0倍以下とすればよい。
(Process D)
Further, in the step D, the introduction flow rate of the source gas is set to 1/100 or more and 1/10 or less, and the pressure in the CVD chamber is set to about −100 kPa or more and less than −98 kPa with respect to the atmospheric pressure. In the process D, since the pressure in the CVD chamber is low, Si is detached from the CVD-SiC SiC layer 4 formed in the process A. As a result, the intervening layer 5 having a Si / C ratio lower than that of the SiC layer 4 is formed. The introduction time of the mixed material gas in the process D may be, for example, 0.01 times or more and 4.0 times or less the time required for the process A.
 上記の工程A、工程Dを交互に繰り返すことにより、図8に示すような微構造を有し、介在層5のSi/C比が、SiC層4のSi/C比よりも小さい炭化ケイ素部材が得られる。このとき、基体の温度は1200℃以上、1400℃以下とすればよい。また、工程Aおよび工程Dの繰り返し回数は、所望する炭化ケイ素部材の厚さに応じて適宜調節すればよい。 The silicon carbide member having the microstructure as shown in FIG. 8 and having the Si / C ratio of the intervening layer 5 smaller than the Si / C ratio of the SiC layer 4 by alternately repeating the steps A and D described above. Is obtained. At this time, the substrate temperature may be 1200 ° C. or higher and 1400 ° C. or lower. Moreover, what is necessary is just to adjust the repetition frequency of the process A and the process D suitably according to the thickness of the desired silicon carbide member.
 (工程E)
 工程Eでは、CVD室内の圧力を大気圧に対して-100kPa以上、-98kPa未満程度とし、さらに原料ガスおよびキャリアガスの導入を停止する。工程Eでは、CVD室内の圧力が低く、原料ガスが供給されないため、工程Aで形成されたCVD-SiCのSiC層4からSiの離脱がより進行する。その結果、炭素を主成分とする介在層5が形成される。工程Eにおいて、ガス導入を停止する時間は、たとえば工程Aに要する時間の0.01倍以上、4.0倍以下とすればよい。
(Process E)
In step E, the pressure in the CVD chamber is set to about −100 kPa or more and less than −98 kPa with respect to atmospheric pressure, and the introduction of the source gas and the carrier gas is stopped. In the process E, the pressure in the CVD chamber is low and the source gas is not supplied, so that the detachment of Si further proceeds from the CVD-SiC SiC layer 4 formed in the process A. As a result, the intervening layer 5 containing carbon as a main component is formed. In the process E, the time for stopping the gas introduction may be 0.01 times or more and 4.0 times or less of the time required for the process A, for example.
 上記の工程A、工程Eを交互に繰り返すことにより、図8に示すような微構造を有し、介在層5の主成分が炭素である炭化ケイ素部材が得られる。このとき、基体の温度は1200℃以上、1400℃以下とすればよい。また、工程Aおよび工程Eの繰り返し回数は、所望する炭化ケイ素部材の厚さに応じて適宜調節すればよい。 By alternately repeating the above steps A and E, a silicon carbide member having a microstructure as shown in FIG. 8 and in which the main component of the intervening layer 5 is carbon is obtained. At this time, the substrate temperature may be 1200 ° C. or higher and 1400 ° C. or lower. Moreover, what is necessary is just to adjust the frequency | count of repetition of the process A and the process E suitably according to the thickness of the desired silicon carbide member.
 このように、原料ガスの導入流量、および必要に応じCVD室内の圧力を周期的に変化させながらCVD-SiCを堆積させることで、基体およびCVD-SiCをCVD室から取り出すことなく、α型の第2のSiC結晶2bの粒径が小さい炭化ケイ素部材、またはさらに2つ以上の炭化ケイ素層4を有する炭化ケイ素部材を得られる。したがって、本開示の炭化ケイ素部材は、従来のようなCVD室からの取り出しや加工を経て積層構造を形成する場合と比較し、生産効率に優れるという利点も有している。 In this manner, by depositing CVD-SiC while periodically changing the flow rate of the source gas and, if necessary, the pressure in the CVD chamber, the α-type can be obtained without removing the substrate and the CVD-SiC from the CVD chamber. A silicon carbide member having a small particle diameter of the second SiC crystal 2b or a silicon carbide member having two or more silicon carbide layers 4 can be obtained. Therefore, the silicon carbide member of the present disclosure also has an advantage that the production efficiency is excellent as compared with a case where a laminated structure is formed through removal from the CVD chamber and processing as in the related art.
 CVD-SiCを堆積させる基体としては、たとえば黒鉛を用いてもよい。黒鉛の熱膨張係数は、炭化ケイ素の熱膨張係数に近いため、基体として黒鉛を用いることで、基体および基体の表面に形成されたCVD-SiCの熱応力による変形を小さくすることができる。 As a substrate on which CVD-SiC is deposited, for example, graphite may be used. Since the thermal expansion coefficient of graphite is close to that of silicon carbide, the use of graphite as the substrate can reduce deformation due to the thermal stress of the substrate and the CVD-SiC formed on the surface of the substrate.
 黒鉛の熱膨張係数は、CVD-SiCの熱膨張係数よりも若干大きくてもよい。CVD-SiCを堆積させた後に、基体およびCVD-SiCを室温まで冷却した際、黒鉛の熱膨張係数がCVD-SiCの熱膨張係数よりも若干大きいと、CVD-SiCに生じる熱応力は圧縮応力となる。CVD-SiCに圧縮応力が加わることにより、CVD-SiCにはクラックが発生しにくくなる。 The thermal expansion coefficient of graphite may be slightly larger than the thermal expansion coefficient of CVD-SiC. When the substrate and CVD-SiC are cooled to room temperature after depositing CVD-SiC, if the thermal expansion coefficient of graphite is slightly larger than the thermal expansion coefficient of CVD-SiC, the thermal stress generated in CVD-SiC is compressive. It becomes. When compressive stress is applied to CVD-SiC, cracks are less likely to occur in CVD-SiC.
 また、フォーカスリング1aやダミーウェハ1b等の炭化ケイ素部材では、CVD-SiCを自立体(自立膜ともいう)として用いる。自立体として用いる炭化ケイ素部材では、形成したCVD-SiCから基体を除去する必要がある。黒鉛製の基体は、酸化や研削によりCVD-SiCから除去しやすい。 Further, in silicon carbide members such as the focus ring 1a and the dummy wafer 1b, CVD-SiC is used as a self-solid (also called a self-supporting film). In a silicon carbide member used as a self-solid, it is necessary to remove the substrate from the formed CVD-SiC. The graphite substrate is easily removed from CVD-SiC by oxidation or grinding.
 このようにして得られた炭化ケイ素部材では、図9に示すような耐食性の低いコーン状の構造6が発生しにくい。そのため、このような炭化ケイ素部材は、プラズマや薬液にさらされても外表面の荒れや亀裂の発生が少ない。このような炭化ケイ素部材は、図1に示したフォーカスリング1aおよびダミーウェハ1bのほか、半導体製造装置用の加熱ヒータおよびサセプターとして用いてもよく、さらに炉芯管、耐薬品性治具、分析用容器等の各種部材として用いてもよい。 In the silicon carbide member thus obtained, a cone-like structure 6 having low corrosion resistance as shown in FIG. 9 is unlikely to occur. Therefore, even when such a silicon carbide member is exposed to plasma or chemicals, the outer surface is less rough and cracks are not generated. Such a silicon carbide member may be used as a heater and a susceptor for a semiconductor manufacturing apparatus in addition to the focus ring 1a and the dummy wafer 1b shown in FIG. You may use as various members, such as a container.
 本開示の炭化ケイ素部材は、上述のように基体を除去した自立体だけでなく、炭化ケイ素被膜と基体との複合部材も含む。 The silicon carbide member of the present disclosure includes not only the self-solid body from which the substrate is removed as described above, but also a composite member of a silicon carbide coating and the substrate.
 メチルトリクロロシラン、水素、および窒素を原料として、CVD法により、黒鉛基体上にCVD-SiCを形成した。 CVD-SiC was formed on the graphite substrate by the CVD method using methyltrichlorosilane, hydrogen, and nitrogen as raw materials.
 CVD装置は、高周波誘導加熱により基体を加熱する方式の装置を用いた。高周波の周波数は60kHzとした。CVD室内に、黒鉛基体および断熱材からなる基体支持体を配置し、CVD室内を真空排気しながら昇温した。黒鉛基体の温度を1400℃とし、原料ガスであるメチルトリクロロシラン、キャリアガスである水素、およびドーパントガスである窒素の混合原料ガスを導入し、黒鉛基体上にCVD-SiCを堆積させた。メチルトリクロロシランに対する窒素の体積比率は、5倍とした。 The CVD apparatus used was a system that heats the substrate by high-frequency induction heating. The frequency of the high frequency was 60 kHz. A substrate support made of a graphite substrate and a heat insulating material was placed in the CVD chamber, and the temperature was raised while evacuating the CVD chamber. The temperature of the graphite substrate was set to 1400 ° C., a mixed source gas of methyltrichlorosilane as a source gas, hydrogen as a carrier gas, and nitrogen as a dopant gas was introduced, and CVD-SiC was deposited on the graphite substrate. The volume ratio of nitrogen to methyltrichlorosilane was 5 times.
 工程Aでは、原料ガスに対するキャリアガスの体積比率を5倍とし、CVD室内の圧力を大気圧に対して-95kPaとした。このとき、CVD-SiCの堆積速度はおよそ0.5mm/時間であった。 In step A, the volume ratio of the carrier gas to the source gas was set to 5 times, and the pressure in the CVD chamber was set to -95 kPa with respect to atmospheric pressure. At this time, the deposition rate of CVD-SiC was approximately 0.5 mm / hour.
 工程Bでは、原料ガスに対するキャリアガスの体積比率を100倍とし、CVD室内の圧力を大気圧に対して-95kPaとした。このとき、CVD-SiCの堆積速度はおよそ0.06mm/時間であった。 In step B, the volume ratio of the carrier gas to the source gas was 100 times, and the pressure in the CVD chamber was −95 kPa with respect to atmospheric pressure. At this time, the deposition rate of CVD-SiC was approximately 0.06 mm / hour.
 工程Dでは、原料ガスに対するキャリアガスの体積比率を100倍とし、CVD室内の圧力を、大気圧に対して-100kPaとした。このとき、CVD-SiCの堆積速度はおよそ0.02mm/時間であった。 In step D, the volume ratio of the carrier gas to the source gas was set to 100 times, and the pressure in the CVD chamber was set to −100 kPa with respect to the atmospheric pressure. At this time, the deposition rate of CVD-SiC was approximately 0.02 mm / hour.
 工程Eでは、CVD室内の真空排気を継続した状態で、原料ガスとキャリアガスとの混合原料ガスの供給を停止した。CVD室内の圧力は、大気圧に対して-100kPaとした。 In step E, the supply of the raw material gas mixed with the raw material gas and the carrier gas was stopped while the vacuum exhaust in the CVD chamber was continued. The pressure in the CVD chamber was −100 kPa with respect to atmospheric pressure.
 試料No.1~9では工程Aと、工程B~Eのいずれか一つとを1セットとし、表1に示す条件でCVD-SiCを作製した。また、試料No.10は、工程Aを20分間行った後、黒鉛基体とその表面に堆積したCVD-SiCをCVD室から取り出し、CVD-SiCの表面を研磨加工した。試料No.10は、工程Aと表面の研磨加工とを1セットとし、表1に示す条件でCVD-SiCを作製した。 Sample No. In 1 to 9, CVD-SiC was produced under the conditions shown in Table 1 with Step A and any one of Steps B to E as one set. Sample No. In Step 10, after performing Step A for 20 minutes, the graphite substrate and the CVD-SiC deposited on the surface thereof were taken out from the CVD chamber, and the surface of the CVD-SiC was polished. Sample No. In No. 10, a set of process A and surface polishing was performed, and CVD-SiC was produced under the conditions shown in Table 1.
 得られた試料から黒鉛基体を機械加工により除去し、各種評価を行った。 The graphite substrate was removed from the obtained sample by machining, and various evaluations were performed.
 得られた試料No.1~10の炭化ケイ素部材を、溶融水酸化ナトリウムに浸漬して表面をエッチングした。その後、炭化ケイ素部材の断面およびエッチングされた表面の状態を走査型電子顕微鏡(SEM)にて確認した。なお、確認した表面とは第1の表面であり、黒鉛基体の除去により露出された表面すなわちCVDの初期に形成されたSiCの面とは異なる。試料No.1~3には明確なSiC層とその界面は見られなかった。試料No.4~10には、明確なSiC層とその界面が確認できた。各試料の総厚さをマイクロメータで測定した。また、試料No.4~10の1層の厚さを、SEMを用いて測定した。各試料の総厚さの平均値、および炭化ケイ素層1層の厚さの平均値を表1に示す。なお、試料No.1~3は全体で1つのSiC層とみなした。 Obtained sample No. The surface was etched by immersing 1 to 10 silicon carbide members in molten sodium hydroxide. Thereafter, the cross section of the silicon carbide member and the state of the etched surface were confirmed with a scanning electron microscope (SEM). The confirmed surface is the first surface, which is different from the surface exposed by removing the graphite substrate, that is, the surface of SiC formed at the initial stage of CVD. Sample No. A clear SiC layer and its interface were not seen in 1-3. Sample No. In 4 to 10, a clear SiC layer and its interface could be confirmed. The total thickness of each sample was measured with a micrometer. Sample No. The thickness of one layer of 4 to 10 was measured using SEM. Table 1 shows the average value of the total thickness of each sample and the average value of the thickness of one silicon carbide layer. Sample No. 1-3 were regarded as one SiC layer as a whole.
 炭化ケイ素部材の結晶構造は、X線回折(XRD)より確認した。試料No.1~10はいずれもβ型構造を有する第1のSiC結晶とα型構造を有する第2のSiC結晶とを含んでいた。また、後方散乱電子回折(EBSD)により、試料No.1~10はいずれも、第2のSiC結晶の大きさが第1のSiC結晶の大きさよりも平均的に大きいことを確認した。各試料の微構造に対応する図番を表1に示す。 The crystal structure of the silicon carbide member was confirmed by X-ray diffraction (XRD). Sample No. Each of 1 to 10 included a first SiC crystal having a β-type structure and a second SiC crystal having an α-type structure. In addition, the sample No. was determined by backscattered electron diffraction (EBSD). In all of 1 to 10, it was confirmed that the size of the second SiC crystal was on average larger than the size of the first SiC crystal. Table numbers corresponding to the microstructure of each sample are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 第2のSiC結晶の第1方向の長さd1、および第1表面に露出した露出部の長さd2を、SEMを用いて200倍~500倍の倍率で測定した。d1の平均値、およびd2の平均値を表2に示す。 The length d1 in the first direction of the second SiC crystal and the length d2 of the exposed portion exposed on the first surface were measured using a SEM at a magnification of 200 to 500 times. Table 2 shows the average value of d1 and the average value of d2.
 第2のSiC結晶のうち、2つ以上の炭化ケイ素層にわたって存在する結晶の割合N1は、SEMの断面写真を用いて評価した。写真の倍率は200倍~500倍とした。第2のSiC結晶の全数と、2つ以上の炭化ケイ素層にわたって存在する第2のSiC結晶の数を計数し、その比率を算出した。 The ratio N1 of the crystal existing over two or more silicon carbide layers in the second SiC crystal was evaluated using a cross-sectional photograph of SEM. The magnification of the photograph was 200 to 500 times. The total number of second SiC crystals and the number of second SiC crystals existing over two or more silicon carbide layers were counted, and the ratio was calculated.
 介在層の有無、およびSiC層の線粗さの最大高さRzは、SEMの断面写真を用いて評価した。介在層のSiとCとの比率は、エネルギー分散型X線分光(EDS)で評価した。結果を表2に示す。なお、試料No.1~3は全体が1つのSiC層であるため、N1、Rzおよび介在層を評価しなかった。 The presence or absence of an intervening layer and the maximum height Rz of the line roughness of the SiC layer were evaluated using SEM cross-sectional photographs. The ratio of Si and C in the intervening layer was evaluated by energy dispersive X-ray spectroscopy (EDS). The results are shown in Table 2. Sample No. Since 1 to 3 as a whole is one SiC layer, N1, Rz and the intervening layer were not evaluated.
 プラズマエッチング試験には、RIE方式のエッチング装置を用いた。各試験片の第1の面を研磨加工して、その表面粗さを同程度にそろえた。エッチング装置のエッチング室内に各試料の試験片を配置し、各試験片の第1の面をエッチング処理した。エッチング処理は、CF4ガスをエッチング室内に導入するとともに、13.56MHzの高周波を出力0.8W/cm2で導入してプラズマを発生させた。処理時間は4時間とした。プラズマに対する耐性の評価として、エッチング処理後の試料のエッチング面の算術平均粗さRaを、原子間力顕微鏡(AFM)を用いて測定した。また、エッチング面を目視およびSEMで観察し、クラックの有無を確認した。結果を表2に示す。 For the plasma etching test, an RIE type etching apparatus was used. The first surface of each test piece was polished to have the same surface roughness. A test piece of each sample was placed in the etching chamber of the etching apparatus, and the first surface of each test piece was etched. In the etching process, CF 4 gas was introduced into the etching chamber, and a high frequency of 13.56 MHz was introduced at an output of 0.8 W / cm 2 to generate plasma. The treatment time was 4 hours. As an evaluation of resistance to plasma, the arithmetic average roughness Ra of the etched surface of the sample after the etching treatment was measured using an atomic force microscope (AFM). Moreover, the etched surface was observed visually and by SEM to confirm the presence or absence of cracks. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 試料No.1~9は、第2のSiC結晶の第1方向の長さd1が100μm以下のエッチング面に目立った荒れなどは見られず、Raも410nm以下と小さく、プラズマに対して高い耐食性を有していた。試料No.9は、エッチング面ではなく側面にSiC層の界面に沿ったクラックが見られたが、試料No.1~8ではクラックは発生しなかった。一方試料No.10は、d1が250μmと大きく第2のSiC結晶が粒成長しており、エッチング面に荒れが目立ち、Raが550nmと大きかった。また、エッチング面に露出した第1のSiC結晶と第2のSiC結晶との粒界にクラックが生じていた。 Sample No. In Nos. 1 to 9, there is no noticeable roughness on the etched surface where the length d1 in the first direction of the second SiC crystal is 100 μm or less, Ra is as small as 410 nm or less, and it has high corrosion resistance to plasma. It was. Sample No. In No. 9, cracks along the interface of the SiC layer were observed on the side surface instead of the etched surface. In 1 to 8, no crack occurred. On the other hand, sample No. In No. 10, d1 was as large as 250 μm, and the second SiC crystal was grain-grown. Roughness was conspicuous on the etched surface, and Ra was as large as 550 nm. In addition, cracks occurred at the grain boundaries between the first SiC crystal and the second SiC crystal exposed on the etched surface.
 1  :半導体製造装置用部材
  1a :フォーカスリング
  1b :ダミーウェハ
 2a :第1の炭化ケイ素結晶
 2b :第2の炭化ケイ素結晶
 4  :炭化ケイ素層
 5  :介在層
 6  :コーン状組織
 S1 :第1の表面
DESCRIPTION OF SYMBOLS 1: Member for semiconductor manufacturing apparatuses 1a: Focus ring 1b: Dummy wafer 2a: 1st silicon carbide crystal 2b: 2nd silicon carbide crystal 4: Silicon carbide layer 5: Intervening layer 6: Cone-like structure S1: First surface

Claims (14)

  1.  3Cの結晶構造を有するβ型の第1の炭化ケイ素結晶と、該第1の炭化ケイ素結晶とは異なる結晶構造を有する第2の炭化ケイ素結晶とを含み、
     第1の表面を有し、該第1の表面と直交する方向を第1方向としたとき、
     前記第2の炭化ケイ素結晶の粒子は、前記第1方向に沿ってのびる長径を有するとともに、前記第1方向の長さの平均が100μm以下である、炭化ケイ素部材。
    A β-type first silicon carbide crystal having a crystal structure of 3C, and a second silicon carbide crystal having a crystal structure different from the first silicon carbide crystal,
    When having the first surface and the direction perpendicular to the first surface as the first direction,
    The particles of the second silicon carbide crystal have a major axis extending along the first direction, and an average length in the first direction is 100 μm or less.
  2.  前記第2の炭化ケイ素結晶の前記第1方向の長さの平均が50μm以下である、請求項1に記載の炭化ケイ素部材。 The silicon carbide member according to claim 1, wherein an average length of the second silicon carbide crystals in the first direction is 50 µm or less.
  3.  前記第2の炭化ケイ素結晶は、前記第1の表面に露出した露出部を有し、
     該露出部の長さの平均が、20μm以下である、請求項1または2に記載の炭化ケイ素部材。
    The second silicon carbide crystal has an exposed portion exposed on the first surface;
    The silicon carbide member according to claim 1 or 2, wherein the average length of the exposed portions is 20 µm or less.
  4.  前記第1の炭化ケイ素結晶および前記第2の炭化ケイ素結晶を含む炭化ケイ素層を少なくとも2つ備え、
     該炭化ケイ素層は、前記第1方向に重なっている、請求項1~3のうちいずれかに記載の炭化ケイ素部材。
    Comprising at least two silicon carbide layers comprising the first silicon carbide crystal and the second silicon carbide crystal;
    The silicon carbide member according to any one of claims 1 to 3, wherein the silicon carbide layer overlaps the first direction.
  5.  前記炭化ケイ素層の間に介在層を有し、
     該介在層は、炭素(C)に対するケイ素(Si)の原子比率(Si/C)が、前記炭化ケイ素層よりも小さい、請求項4に記載の炭化ケイ素部材。
    Having an intervening layer between the silicon carbide layers;
    The silicon carbide member according to claim 4, wherein the intervening layer has an atomic ratio (Si / C) of silicon (Si) to carbon (C) smaller than that of the silicon carbide layer.
  6.  前記介在層が、第1の炭化ケイ素結晶を含む、請求項5に記載の炭化ケイ素部材。 The silicon carbide member according to claim 5, wherein the intervening layer includes a first silicon carbide crystal.
  7.  前記介在層が、炭素を主成分とする非晶質相および炭素を主成分とする結晶相のうち、少なくともいずれかを含む、請求項5に記載の炭化ケイ素部材。 The silicon carbide member according to claim 5, wherein the intervening layer includes at least one of an amorphous phase mainly composed of carbon and a crystal phase mainly composed of carbon.
  8.  前記炭化ケイ素層の平均厚さが、200μm以下である、請求項4~7のうちいずれかに記載の炭化ケイ素部材。 8. The silicon carbide member according to claim 4, wherein an average thickness of the silicon carbide layer is 200 μm or less.
  9.  前記炭化ケイ素層の平均厚さが、50μm以上である、請求項8に記載の炭化ケイ素部材。 The silicon carbide member according to claim 8, wherein an average thickness of the silicon carbide layer is 50 μm or more.
  10.  前記第2の炭化ケイ素結晶のうち、2つ以上の前記炭化ケイ素層にわたって存在する前記第2の炭化ケイ素結晶の個数比率が20%以下である、請求項4~9のいずれかに記載の炭化ケイ素部材。 The carbonization according to any one of claims 4 to 9, wherein a number ratio of the second silicon carbide crystals existing over two or more silicon carbide layers in the second silicon carbide crystals is 20% or less. Silicon member.
  11.  前記第1方向に沿う断面において、前記炭化ケイ素層の面が、線粗さにして最大高さRz≧20μmの凹凸を有する、請求項4~10のいずれかに記載の炭化ケイ素部材。 The silicon carbide member according to any one of claims 4 to 10, wherein a surface of the silicon carbide layer has irregularities having a maximum height Rz ≧ 20 μm as a line roughness in a cross section along the first direction.
  12.  請求項1~11のいずれかに記載の炭化ケイ素部材を含む、半導体製造装置用部材。 A member for a semiconductor manufacturing apparatus, comprising the silicon carbide member according to any one of claims 1 to 11.
  13.  請求項1~11のいずれかに記載の炭化ケイ素部材を含む、フォーカスリング。 A focus ring including the silicon carbide member according to any one of claims 1 to 11.
  14.  請求項1~11のいずれかに記載の炭化ケイ素部材を含む、ダミーウェハ。 A dummy wafer comprising the silicon carbide member according to any one of claims 1 to 11.
PCT/JP2018/005740 2017-02-20 2018-02-19 Silicon carbide member and member for semiconductor manufacturing device WO2018151294A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018568653A JP6818776B2 (en) 2017-02-20 2018-02-19 Silicon carbide members and semiconductor manufacturing equipment members

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017029133 2017-02-20
JP2017-029133 2017-02-20
JP2017145597 2017-07-27
JP2017-145597 2017-07-27

Publications (1)

Publication Number Publication Date
WO2018151294A1 true WO2018151294A1 (en) 2018-08-23

Family

ID=63170226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005740 WO2018151294A1 (en) 2017-02-20 2018-02-19 Silicon carbide member and member for semiconductor manufacturing device

Country Status (2)

Country Link
JP (1) JP6818776B2 (en)
WO (1) WO2018151294A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102150510B1 (en) * 2019-06-21 2020-09-01 주식회사 티씨케이 Sic structure using cvd method
KR102150515B1 (en) * 2019-06-21 2020-09-01 주식회사 티씨케이 Sic structure using cvd method
KR102150520B1 (en) * 2019-06-21 2020-09-01 주식회사 티씨케이 Sic structure using cvd method
JP2021141271A (en) * 2020-03-09 2021-09-16 信越半導体株式会社 Manufacturing method for susceptor for manufacturing silicon epitaxial wafer and manufacturing method for silicon epitaxial wafer
WO2022080277A1 (en) * 2020-10-16 2022-04-21 Agc株式会社 Member for deposition device or etching device
WO2022138405A1 (en) * 2020-12-24 2022-06-30 Agc株式会社 Member forming method, laminate manufacturing method, and member forming apparatus
JP2022100086A (en) * 2020-12-23 2022-07-05 クアーズテック株式会社 Semiconductor heat treatment member and method of manufacturing the same
JP2023035931A (en) * 2021-08-30 2023-03-13 友達晶材股▲ふん▼有限公司 Component of semiconductor manufacturing apparatus and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180057A (en) * 1993-12-22 1995-07-18 Kyocera Corp Coated member
JPH08188468A (en) * 1994-12-29 1996-07-23 Toyo Tanso Kk Formed silicon carbide produced by chemical vapor deposition and its production
JP2002137967A (en) * 2000-10-31 2002-05-14 Kyocera Corp Silicon carbide member

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1179840A (en) * 1997-08-27 1999-03-23 Bridgestone Corp Silicon carbide sintered compact

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180057A (en) * 1993-12-22 1995-07-18 Kyocera Corp Coated member
JPH08188468A (en) * 1994-12-29 1996-07-23 Toyo Tanso Kk Formed silicon carbide produced by chemical vapor deposition and its production
JP2002137967A (en) * 2000-10-31 2002-05-14 Kyocera Corp Silicon carbide member

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7204960B2 (en) 2019-06-21 2023-01-16 トーカイ カーボン コリア カンパニー.,リミテッド SIC structure formed by CVD method
KR102150515B1 (en) * 2019-06-21 2020-09-01 주식회사 티씨케이 Sic structure using cvd method
KR102150520B1 (en) * 2019-06-21 2020-09-01 주식회사 티씨케이 Sic structure using cvd method
WO2020256411A1 (en) * 2019-06-21 2020-12-24 주식회사 티씨케이 Sic structure formed by cvd method
CN114008744A (en) * 2019-06-21 2022-02-01 韩国东海炭素株式会社 SIC structure formed by CVD method
KR102150510B1 (en) * 2019-06-21 2020-09-01 주식회사 티씨케이 Sic structure using cvd method
JP2022530704A (en) * 2019-06-21 2022-06-30 トーカイ カーボン コリア カンパニー.,リミテッド SIC structure formed by CVD method
CN114008744B (en) * 2019-06-21 2023-02-17 韩国东海炭素株式会社 SIC structure formed by CVD method
JP2021141271A (en) * 2020-03-09 2021-09-16 信越半導体株式会社 Manufacturing method for susceptor for manufacturing silicon epitaxial wafer and manufacturing method for silicon epitaxial wafer
WO2022080277A1 (en) * 2020-10-16 2022-04-21 Agc株式会社 Member for deposition device or etching device
JP2022100086A (en) * 2020-12-23 2022-07-05 クアーズテック株式会社 Semiconductor heat treatment member and method of manufacturing the same
JP7396977B2 (en) 2020-12-23 2023-12-12 クアーズテック株式会社 Semiconductor heat treatment member and its manufacturing method
WO2022138405A1 (en) * 2020-12-24 2022-06-30 Agc株式会社 Member forming method, laminate manufacturing method, and member forming apparatus
JP2023035931A (en) * 2021-08-30 2023-03-13 友達晶材股▲ふん▼有限公司 Component of semiconductor manufacturing apparatus and manufacturing method thereof
JP7465920B2 (en) 2021-08-30 2024-04-11 友達晶材股▲ふん▼有限公司 Semiconductor manufacturing equipment parts and their manufacturing method

Also Published As

Publication number Publication date
JP6818776B2 (en) 2021-01-20
JPWO2018151294A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
WO2018151294A1 (en) Silicon carbide member and member for semiconductor manufacturing device
EP2520691B1 (en) Tantalum carbide-coated carbon material and manufacturing method for same
JP3938361B2 (en) Carbon composite material
TW583733B (en) Production method of SiC monitor wafer
JP5026794B2 (en) Free-standing silicon carbide products formed by chemical vapor deposition and methods for manufacturing them
JPH1179846A (en) Silicon carbide formed product
JP7282214B2 (en) Manufacturing method of rare earth-containing SiC substrate and SiC epitaxial layer
JPH08188468A (en) Formed silicon carbide produced by chemical vapor deposition and its production
US20210301422A1 (en) SiC COMPOSITE SUBSTRATE AND SEMICONDUCTOR DEVICE
JPH08188408A (en) Silicon carbide molded product by chemical vapor deposition and its production
JP4071919B2 (en) SiC-coated graphite member and method for producing the same
JP7372312B2 (en) SiC composite substrate and composite substrate for semiconductor devices
US20210384300A1 (en) SiC COMPOSITE SUBSTRATE AND COMPOSITE SUBSTRATE FOR SEMICONDUCTOR DEVICE
JP4619036B2 (en) Carbon composite material
JPH10251062A (en) Production of silicon carbide formed body
US9194042B2 (en) Jig for semiconductor production and method for producing same
JP3790029B2 (en) SiC dummy wafer
JP2007012933A (en) Semiconductor manufacturing device and component therefor
JP7103182B2 (en) Graphite substrate, silicon carbide film formation method and silicon carbide substrate manufacturing method
JP3942158B2 (en) Method for producing cylindrical SiC molded body
JP7367497B2 (en) Method for forming a silicon carbide polycrystalline film and manufacturing method for a silicon carbide polycrystalline substrate
JP7320070B2 (en) Underlying substrate and manufacturing method thereof
JP5723615B2 (en) Graphite crucible for single crystal pulling apparatus and manufacturing method thereof
JP5013686B2 (en) Compound semiconductor susceptor
JP2012096931A (en) Corrosion-resistant member coated with aluminum nitride, and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754222

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568653

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18754222

Country of ref document: EP

Kind code of ref document: A1